AnimalTraits – a curated animal trait database for body mass, metabolic rate and brain size
Westoby, M. & Wright, I. J. Land-plant ecology on the basis of functional traits. Trends Ecol. Evol. 21, 261–268 (2006).Article
Google Scholar
Chown, S. L. & Gaston, K. J. Body size variation in insects: a macroecological perspective. Biol. Rev. Camb. Philos. Soc. 85, 139–169 (2010).Article
Google Scholar
Parr, C. L. et al. GlobalAnts: a new database on the geography of ant traits (Hymenoptera: Formicidae). Insect Conserv. Divers. 10, 5–20 (2017).Article
Google Scholar
Wolff, J. O., Wierucka, K., Uhl, G. & Herberstein, M. E. Building behavior does not drive rates of phenotypic evolution in spiders. Proceedings of the National Academy of Sciences 118, e2102693118 (2021).CAS
Article
Google Scholar
Le Boulch, M., Déhais, P., Combes, S. & Pascal, G. The MACADAM database: a MetAboliC pAthways DAtabase for Microbial taxonomic groups for mining potential metabolic capacities of archaeal and bacterial taxonomic groups. Database 2019 (2019).Madin, J. S. et al. A synthesis of bacterial and archaeal phenotypic trait data. Scientific Data 7, 170 (2020).CAS
Article
Google Scholar
Lowe, E. C., Wolff, J. O. & Aceves-Aparicio, A. Towards establishment of a centralized spider traits database. The Journal of Arachnology (2020).Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).ADS
Article
Google Scholar
Mizerek, T. L., Baird, A. H. & Madin, J. S. Species traits as indicators of coral bleaching. Coral Reefs 37, 791–800 (2018).ADS
Article
Google Scholar
De Meester, G. & Huyghe, K. & Van Damme, R. Brain size, ecology and sociality: a reptilian perspective. Biol. J. Linn. Soc. Lond. 126, 381–391 (2019).Article
Google Scholar
Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A global synthesis of animal phenological responses to climate change. Nat. Clim. Chang. 8, 224–228 (2018).ADS
Article
Google Scholar
Makarieva, A. M. et al. Mean mass-specific metabolic rates are strikingly similar across life’s major domains: Evidence for life’s metabolic optimum. Proceedings of the National Academy of Sciences 105, 16994 (2008).ADS
CAS
Article
Google Scholar
Gallagher, R. V. et al. Open Science principles for accelerating trait-based science across the Tree of Life. Nat Ecol Evol 4, 294–303 (2020).Article
Google Scholar
R Core Team. A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. (2020).Chamberlain, S. A. & Szöcs, E. taxize: taxonomic search and retrieval in R [version 2; peer review: 3 approved]. F1000Res. 2, (2013).Pebesma, E., Mailund, T. & Hiebert, J. Measurement Units in R. R J. 8, 486–494 (2016).Article
Google Scholar
Hiebert, J. udunits-2 bindings for R. (2016).Iwaniuk, A. N. & Nelson, J. E. Can endocranial volume be used as an estimate of brain size in birds? Canadian Journal of Zoology-Revue Canadienne De Zoologie 80, 16–23 (2002).Article
Google Scholar
Taylor, G. M., Nol, E. & Boire, D. Brain regions and encephalization in anurans: adaptation or stability? Brain Behav. Evol. 45, 96–109, https://doi.org/10.1159/000113543 (1995).CAS
Article
PubMed
Google Scholar
McLean, D. J. AnimalTraits (v1.0.7). Zenodo. https://doi.org/10.5281/zenodo.6468938 (2022).Christian, K. & Conley, K. Activity and Resting Metabolism of Varanid Lizards Compared With Typical Lizards. Aust. J. Zool. 42, 185–193, https://doi.org/10.1071/ZO9940185 (1994).Article
Google Scholar
Hadley, N. F., Ahearn, G. A. & Howarth, F. G. Water and metabolic relations of cave-adapted and epigean lycosid spiders in Hawaii. J. Arachnol., 215–222 (1981).Wang, L. C., Jones, D. L., MacArthur, R. A. & Fuller, W. A. Adaptation to cold: energy metabolism in an atypical lagomorph, the arctic hare (Lepus arcticus). Can. J. Zool. 51, 841–846, https://doi.org/10.1139/z73-125 (1973).CAS
Article
PubMed
Google Scholar
Nevo, E. & Shkolnik, A. Adaptive metabolic variation of chromosome forms in mole rats, Spalax. Experientia 30, 724–726, https://doi.org/10.1007/bf01924150 (1974).CAS
Article
PubMed
Google Scholar
Haim, A. Adaptive variations in heat production within Gerbils (genus Gerbillus) from different habitats. Oecologia 61, 49–52, https://doi.org/10.1007/bf00379087 (1984).ADS
CAS
Article
PubMed
Google Scholar
Kamel, S. & Gatten, R. E. J. Aerobic and Anaerobic Activity Metabolism of Limbless and Fossorial Reptiles. Physiol. Zool. 56, 419–429, https://doi.org/10.1086/physzool.56.3.30152607 (1983).Article
Google Scholar
Gatten, R. E. Jr. Aerobic metabolism in snapping turtles, Chelydra serpentina, after thermal acclimation. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 61, 325–337, https://doi.org/10.1016/0300-9629(78)90116-0 (1978).Article
Google Scholar
Coelho, J. R. & Moore, A. J. Allometry of resting metabolic rate in cockroaches. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 94, 587–590, https://doi.org/10.1016/0300-9629(89)90598-7 (1989).CAS
Article
Google Scholar
Lighton, J. & Garrigan, D. Ant breathing: testing regulation and mechanism hypotheses with hypoxia. J. Exp. Biol. 198, 1613–1620 (1995).CAS
Article
Google Scholar
Pettit, T. N., Ellis, H. I. & Whittow, G. C. Basal metabolic rate in tropical seabirds. The Auk 102, 172–174, https://doi.org/10.2307/4086838 (1985).Article
Google Scholar
Bozinovic, F. & Contreras, L. C. Basal rate of metabolism and temperature regulation of two desert herbivorous octodontid rodents: Octomys mimax and Tympanoctomys barrerae. Oecologia 84, 567–570, https://doi.org/10.1007/bf00328175 (1990).ADS
Article
PubMed
Google Scholar
Morrison, P. & Middleton, E. H. Body temperature and metabolism in the pigmy marmoset. Folia Primatol. 6, 70–82, https://doi.org/10.1159/000155068 (1967).CAS
Article
Google Scholar
Bartholomew, G. A. & Casey, T. M. Body temperature and oxygen consumption during rest and activity in relation to body size in some tropical beetles. J. Therm. Biol. 2, 173–176, https://doi.org/10.1016/0306-4565(77)90026-2 (1977).Article
Google Scholar
Cortés, A., Báez, C., Rosenmann, M. & Pino, C. Body temperature, activity cycle and metabolic rate in a small nocturnal Chilean lizard, Garthia gaudichaudi (Sauria: Gekkonidae). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 109, 967–973, https://doi.org/10.1016/0300-9629(94)90245-3 (1994).Article
Google Scholar
Leitner, P. & Nelson, J. E. Body temperature, oxygen consumption and heart rate in the Australian false vampire bat, Macroderma gigas. Comp. Biochem. Physiol. 21, 65–74, https://doi.org/10.1016/0010-406X(67)90115-6 (1967).CAS
Article
PubMed
Google Scholar
Whittow, G. C., Gould, E. & Rand, D. Body temperature, oxygen consumption, and evaporative water loss in a primitive insectivore, the moon rat, Echinosorex gymnurus. J. Mammal. 58, 233–235, https://doi.org/10.2307/1379582 (1977).CAS
Article
PubMed
Google Scholar
Weathers, W. W., Koenig, W. D. & Stanback, M. T. Breeding energetics and thermal ecology of the acorn woodpecker in central coastal California. Condor, 341–359, https://doi.org/10.2307/1368232 (1990).Shelton, T. G. & Appel, A. G. Carbon dioxide release in Coptotermes formosanus Shiraki and Reticulitermes flavipes (Kollar): effects of caste, mass, and movement. J. Insect Physiol. 47, 213–224, https://doi.org/10.1016/S0022-1910(00)00111-6 (2001).CAS
Article
PubMed
Google Scholar
Bradley, T. J., Brethorst, L., Robinson, S. & Hetz, S. Changes in the Rate of CO2 Release following Feeding in the Insect Rhodnius prolixus. Physiol. Biochem. Zool. 76, 302–309, https://doi.org/10.1086/367953 (2003).Article
PubMed
Google Scholar
Herreid, C. F. & Full, R. J. Cockroaches on a treadmill: aerobic running. J. Insect Physiol. 30, 395–403, https://doi.org/10.1016/0022-1910(84)90097-0 (1984).Article
Google Scholar
Arends, A. & McNab, B. K. The comparative energetics of ‘caviomorph’ rodents. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 130, 105–122, https://doi.org/10.1016/S1095-6433(01)00371-3 (2001).CAS
Article
Google Scholar
McNab, B. K. The comparative energetics of rigid endothermy: the Arvicolidae. J. Zool. 227, 585–606, https://doi.org/10.1111/j.1469-7998.1992.tb04417.x (1992).Article
Google Scholar
Bozinovic, F. & Rosenmann, M. Comparative energetics of South American cricetid rodents. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 91, 195–202, https://doi.org/10.1016/0300-9629(88)91616-7 (1988).CAS
Article
Google Scholar
Haim, A. & Skinner, J. D. A comparative study of metabolic rates and thermoregulation of two African antelopes, the steenbok Raphicerus campestris and the blue duiker Cephalophus monticola. J. Therm. Biol. 16, 145–148, https://doi.org/10.1016/0306-4565(91)90036-2 (1991).Article
Google Scholar
Else, P. L. & Hulbert, A. J. Comparison of the “mammal machine” and the “reptile machine”: energy production. Am. J. Physiol. Regul. Integr. Comp. Physiol. 240, R3–R9, https://doi.org/10.1152/ajpregu.1981.240.1.R3 (1981).CAS
Article
Google Scholar
Duncan, F. D. & Crewe, R. M. A comparison of the energetics of foraging of three species of Leptogenys (Hymenoptera, Formicidae). Physiol. Entomol. 18, 372–378, https://doi.org/10.1111/j.1365-3032.1993.tb00610.x (1993).Article
Google Scholar
Kurta, A. & Ferkin, M. The correlation between demography and metabolic rate: a test using the beach vole (Microtus breweri) and the meadow vole (Microtus pennsylvanicus). Oecologia 87, 102–105, https://doi.org/10.1007/bf00323786 (1991).ADS
Article
PubMed
Google Scholar
Chown, S. L. & Holter, P. Discontinuous gas exchange cycles in Aphodius fossor (Scarabaeidae): a test of hypotheses concerning origins and mechanisms. J. Exp. Biol. 203, 397–403, https://doi.org/10.1242/jeb.203.2.397 (2000).CAS
Article
PubMed
Google Scholar
Duncan, F. D. & Byrne, M. J. Discontinuous gas exchange in dung beetles: patterns and ecological implications. Oecologia 122, 452–458, https://doi.org/10.1007/s004420050966 (2000).ADS
CAS
Article
PubMed
Google Scholar
Rezende, E. L., Silva-Durán, I., Novoa, F. F. & Rosenmann, M. Does thermal history affect metabolic plasticity?: a study in three Phyllotis species along an altitudinal gradient. J. Therm. Biol. 26, 103–108, https://doi.org/10.1016/S0306-4565(00)00029-2 (2001).Article
PubMed
Google Scholar
Chown, S. L., Scholtz, C. H., Klok, C. J., Joubert, F. J. & Coles, K. S. Ecophysiology, range contraction and survival of a geographically restricted African dung beetle (Coleoptera: Scarabaeidae). Funct. Ecol. 9, 30–39, https://doi.org/10.2307/2390087 (1995).Article
Google Scholar
Rübsamen, U., Hume, I. D. & Rübsamen, K. Effect of ambient temperature on autonomic thermoregulation and activity patterns in the rufous rat-kangaroo (Aepyprymnus rufescens: Marsupialia). J. Comp. Physiol. 153, 175–179, https://doi.org/10.1007/bf00689621 (1983).Article
Google Scholar
Lewis, L. C., Mutchmor, J. A. & Lynch, R. E. Effect of Perezia pyraustae on oxygen consumption by the European corn borer, Ostrinia nubilalis. J. Insect Physiol. 17, 2457–2468, https://doi.org/10.1016/0022-1910(71)90093-X (1971).Article
Google Scholar
Louw, G., Young, B. & Bligh, J. Effect of thyroxine and noradrenaline on thermoregulation, cardiac rate and oxygen consumption in the monitor lizard Varanus albigularis albigularis. J. Therm. Biol. 1, 189–193, https://doi.org/10.1016/0306-4565(76)90013-9 (1976).CAS
Article
Google Scholar
Full, R. J., Zuccarello, D. A. & Tullis, A. Effect of variation in form on the cost of terrestrial locomotion. J. Exp. Biol. 150, 233–246 (1990).CAS
Article
Google Scholar
Bennett, A. F., Dawson, W. R. & Bartholomew, G. A. Effects of activity and temperature on aerobic and anaerobic metabolism in the Galapagos marine iguana. J. Comp. Physiol. 100, 317–329, https://doi.org/10.1007/bf00691052 (1975).CAS
Article
Google Scholar
Thompson, G. G. & Withers, P. C. Effects of body mass and temperature on standard metabolic rates for two Australian varanid lizards (Varanus gouldii and V. panoptes). Copeia, 343–350, https://doi.org/10.2307/1446195 (1992).Hack, M. A. The effects of mass and age on standard metabolic rate in house crickets. Physiol. Entomol. 22, 325–331, https://doi.org/10.1111/j.1365-3032.1997.tb01176.x (1997).ADS
Article
Google Scholar
Gatten, R. E. Jr. Effects of temperature and activity on aerobic and anaerobic metabolism and heart rate in the turtles Pseudemys scripta and Terrapene ornata. Comp. Biochem. Physiol., A: Mol. Integr. Physiol, https://doi.org/10.1016/0300-9629(74)90606-9 (1974).Gleeson, T. T. The effects of training and captivity on the metabolic capacity of the lizard Sceloporus occidentalis. J. Comp. Physiol. 129, 123–128, https://doi.org/10.1007/bf00798176 (1979).CAS
Article
Google Scholar
Bartholomew, G. A. & Lighton, J. R. Endothermy and energy metabolism of a giant tropical fly, Pantophthalmus tabaninus thunberg. J. Comp. Physiol., B 156, 461–467, https://doi.org/10.1007/bf00691031 (1986).Article
Google Scholar
Bailey, W. J., Withers, P. C., Endersby, M. & Gaull, K. The energetic costs of calling in the bushcrisket Requena verticalis (Orthoptera: Tettigoniidae: Listroscelidinae). J. Exp. Biol. 178, 21–37 (1993).Article
Google Scholar
Kotiaho, J. S. et al. Energetic costs of size and sexual signalling in a wolf spider. Proc. R. Soc. B: Biol. Sci. 265, 2203–2209, https://doi.org/10.1098/rspb.1998.0560 (1998).Article
Google Scholar
Chaplin, S. B. The energetic significance of huddling behavior in common bushtits (Psaltriparus minimus). The Auk, 424-430 (1982).Seymour, R. S., Withers, P. C. & Weathers, W. W. Energetics of burrowing, running, and free-living in the Namib Desert golden mole (Eremitalpa namibensis). J. Zool. 244, 107–117 (1998).Article
Google Scholar
Herreid, C. F., Full, R. J. & Prawel, D. A. Energetics of Cockroach Locomotion. J. Exp. Biol. 94, 189–202 (1981).Article
Google Scholar
Bartholomew, G. A., Lighton, J. R. & Louw, G. N. Energetics of locomotion and patterns of respiration in tenebrionid beetles from the Namib Desert. J. Comp. Physiol., B 155, 155–162, https://doi.org/10.1007/bf00685208 (1985).Article
Google Scholar
Lighton, J. R. B. & Gillespie, R. G. The energetics of mimicry: the cost of pedestrian transport in a formicine ant and its mimic, a clubionid spider. Physiol. Entomol. 14, 173–177, https://doi.org/10.1111/j.1365-3032.1989.tb00949.x (1989).Article
Google Scholar
Marhold, S. & Nagel, A. The energetics of the common mole rat Cryptomys, a subterranean eusocial rodent from Zambia. J. Comp. Physiol., B 164, 636–645, https://doi.org/10.1007/bf00389805 (1995).CAS
Article
Google Scholar
Pauls, R. W. Energetics of the red squirrel: a laboratory study of the effects of temperature, seasonal acclimatization, use of the nest and exercise. J. Therm. Biol. 6, 79–86, https://doi.org/10.1016/0306-4565(81)90057-7 (1981).ADS
Article
Google Scholar
Brush, A. H. Energetics, temperature regulation and circulation in resting, active and defeathered California quail, Lophortyx californicus. Comp. Biochem. Physiol. 15, 399–421, https://doi.org/10.1016/0010-406X(65)90141-6 (1965).Article
Google Scholar
Bailey, C. G. & Riegert, P. W. Energy dynamics of Encoptolophus sordidus costalis (Scudder) (Orthoptera: Acrididae) in a grassland ecosystem. Can. J. Zool. 51, 91–100, https://doi.org/10.1139/z73-014 (1973).Article
Google Scholar
Prinzinger, R., Lübben, I. & Schuchmann, K.-L. Energy metabolism and body temperature in 13 sunbird species (Nectariniidae). Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 92, 393–402, https://doi.org/10.1016/0300-9629(89)90581-1 (1989).Article
Google Scholar
Baudinette, R. V. Energy metabolism and evaporative water loss in the California ground squirrel. J. Comp. Physiol. 81, 57–72, https://doi.org/10.1007/bf00693550 (1972).Article
Google Scholar
May, M. L. Energy metabolism of dragonflies (Odonata: Anisoptera) at rest and during endothermic warm-up. J. Exp. Biol. 83, 79–94 (1979).Article
Google Scholar
Baudinette, R. V., Churchill, S. K., Christian, K. A., Nelson, J. E. & Hudson, P. J. Energy, water balance and the roost microenvironment in three Australian cave-dwelling bats (Microchiroptera). J. Comp. Physiol., B 170, 439–446, https://doi.org/10.1007/s003600000121 (2000).CAS
Article
Google Scholar
Withers, P. C. Energy, Water, and Solute Balance of the Ostrich Struthio camelus. Physiol. Zool. 56, 568–579, https://doi.org/10.1086/physzool.56.4.30155880 (1983).Article
Google Scholar
Hadley, N. F., Quinlan, M. C. & Kennedy, M. L. Evaporative Cooling in the Desert Cicada: Thermal Efficiency and Water/Metabolic Costs. J. Exp. Biol. 159, 269–283, https://doi.org/10.1242/jeb.159.1.269 (1991).Article
Google Scholar
Dunson, W. A. & Bramham, C. R. Evaporative Water Loss and Oxygen Consumption of Three Small Lizards from the Florida Keys: Sphaerodactylus cinereus, S. notatus, and Anolis sagrei. Physiol. Zool. 54, 253–259, https://doi.org/10.1086/physzool.54.2.30155827 (1981).Article
Google Scholar
Wunder, B. A. Evaporative water loss from birds: effects of artificial radiation. Comp. Biochem. Physiol. 63, 493–494, https://doi.org/10.1016/0300-9629(79)90180-4 (1979).Article
Google Scholar
Maclean, G. S. Factors influencing the composition of respiratory gases in mammal burrows. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 69, 373–380, https://doi.org/10.1016/0300-9629(81)92992-3 (1981).Article
Google Scholar
Campbell, K. L., McIntyre, I. W. & MacArthur, R. A. Fasting metabolism and thermoregulatory competence of the star-nosed mole, Condylura cristata (Talpidae: Condylurinae). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 123, 293–298, https://doi.org/10.1016/S1095-6433(99)00065-3 (1999).CAS
Article
Google Scholar
Weathers, W. W., Paton, D. C. & Seymour, R. S. Field Metabolic Rate and Water Flux of Nectarivorous Honeyeaters. Aust. J. Zool. 44, 445–460, https://doi.org/10.1071/ZO9960445 (1996).Article
Google Scholar
Fewell, J. H., Harrison, J. F., Lighton, J. R. B. & Breed, M. D. Foraging energetics of the ant, Paraponera clavata. Oecologia 105, 419–427, https://doi.org/10.1007/bf00330003 (1996).ADS
Article
PubMed
Google Scholar
Greenstone, M. H. & Bennett, A. F. Foraging strategy and metabolic rate in spiders. Ecology 61, 1255–1259, https://doi.org/10.2307/1936843 (1980).Article
Google Scholar
Schmitz, A. Functional morphology of the respiratory organs in the cellar spider Pholcus phalangioides (Arachnida, Araneae, Pholcidae). J. Comp. Physiol., B 185, 637–646, https://doi.org/10.1007/s00360-015-0914-8 (2015).CAS
Article
Google Scholar
Marder, J. & Bernstein, R. Heat balance of the partridge Alectoris chukar exposed to moderate, high and extreme thermal stress. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 74, 149–154, https://doi.org/10.1016/0300-9629(83)90726-0 (1983).CAS
Article
Google Scholar
Lovegrove, B. G., Raman, J. & Perrin, M. R. Heterothermy in elephant shrews, Elephantulus spp. (Macroscelidea): daily torpor or hibernation? J. Comp. Physiol., B 171, 1–10, https://doi.org/10.1007/s003600000139 (2001).CAS
Article
Google Scholar
Zari, T. The influence of body mass and temperature on the standard metabolic rate of the herbivorous desert lizard, Uromastyx microlepis. J. Therm. Biol. 16, 129–133, https://doi.org/10.1016/0306-4565(91)90033-X (1991).Article
Google Scholar
Jensen, T. F. & Nielsen, M. G. The influence of body size and temperature on worker ant respiration. Nat. Jutl. 18, 21–25 (1975).
Google Scholar
McNab, B. K. The Influence of Body Size on the Energetics and Distribution of Fossorial and Burrowing Mammals. Ecology 60, 1010–1021, https://doi.org/10.2307/1936869 (1979).Article
Google Scholar
Shillington, C. Inter-sexual differences in resting metabolic rates in the Texas tarantula, Aphonopelma anax. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 142, 439–445, https://doi.org/10.1016/j.cbpa.2005.09.010 (2005).CAS
Article
Google Scholar
Nespolo, R. F., Lardies, M. A. & Bozinovic, F. Intrapopulational variation in the standard metabolic rate of insects: repeatability, thermal dependence and sensitivity (Q10) of oxygen consumption in a cricket. J. Exp. Biol. 206, 4309–4315, https://doi.org/10.1242/jeb.00687 (2003).CAS
Article
PubMed
Google Scholar
Hailey, A. & Davies, P. M. C. Lifestyle, latitude and activity metabolism of natricine snakes. J. Zool. 209, 461–476, https://doi.org/10.1111/j.1469-7998.1986.tb03604.x (1986).Article
Google Scholar
Richter, T. A., Webb, P. I. & Skinner, J. D. Limits to the distribution of the southern African ice rat (Otomys sloggetti): thermal physiology or competitive exclusion? Funct. Ecol. 11, 240–246, https://doi.org/10.1046/j.1365-2435.1997.00078.x (1997).Article
Google Scholar
Putnam, R. W. & Murphy, R. W. Low metabolic rate in a nocturnal desert lizard, Anarbylus switaki Murphy (Sauria: Gekkonidae). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 71, 119–123 (1982).Article
Google Scholar
Lighton, J. R. B. & Fielden, L. J. Mass Scaling of Standard Metabolism in Ticks: A Valid Case of Low Metabolic Rates in Sit-and-Wait Strategists. Physiol. Zool. 68, 43–62, https://doi.org/10.1086/physzool.68.1.30163917 (1995).Article
Google Scholar
Jones, D. L. & Wang, L. C.-H. Metabolic and cardiovascular adaptations in the western chipmunks, genus Eutamias. J. Comp. Physiol. 105, 219–231, https://doi.org/10.1007/bf00691124 (1976).Article
Google Scholar
Casey, T. M., Withers, P. C. & Casey, K. K. Metabolic and respiratory responses of arctic mammals to ambient temperature during the summer. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 64, 331–341, https://doi.org/10.1016/0300-9629(79)90452-3 (1979).Article
Google Scholar
Grant, G. S. & Whittow, G. C. Metabolic cost of incubation in the Laysan albatross and Bonin petrel. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 74, 77–82, https://doi.org/10.1016/0300-9629(83)90715-6 (1983).CAS
Article
Google Scholar
Bennett, A. F. & Gleeson, T. T. Metabolic expenditure and the cost of foraging in the lizard Cnemidophorus murinus. Copeia, 573-577, https://doi.org/10.2307/1443864 (1979).Withers, P. C., Thompson, G. G. & Seymour, R. S. Metabolic physiology of the north-western marsupial mole. Notoryctes caurinus (Marsupialia: Notoryctidae). Aust. J. Zool. 48, 241–258, https://doi.org/10.1071/ZO99073 (2000).Article
Google Scholar
Thurling, D. J. Metabolic rate and life stage of the mites Tetranychus cinnabarinus boisd. (Prostigmata) and Phytoseiulus persimilis A-H. (Mesostigmata). Oecologia 46, 391–396, https://doi.org/10.1007/BF00346269 (1980).ADS
CAS
Article
PubMed
Google Scholar
Vleck, C. M. & Vleck, D. Metabolic rate in five tropical bird species. Condor 81, 89–91, https://doi.org/10.2307/1367864 (1979).Article
Google Scholar
Terblanche, J. S., Jaco Klok, C., Marais, E. & Chown, S. L. Metabolic rate in the whip-spider, Damon annulatipes (Arachnida: Amblypygi). J. Insect Physiol. 50, 637-645, j.jinsphys.2004.04.010 (2004).Boyce, A. J., Mouton, J. C., Lloyd, P., Wolf, B. O. & Martin, T. E. Metabolic rate is negatively linked to adult survival but does not explain latitudinal differences in songbirds. Ecol. Lett. 23, 642–652, https://doi.org/10.1111/ele.13464 (2020).Article
PubMed
Google Scholar
Worthen, G. L. & Kilgore, D. L. Metabolic rate of pine marten in relation to air temperature. J. Mammal. 62, 624–628, https://doi.org/10.2307/1380410 (1981).Article
Google Scholar
Hails, C. J. The metabolic rate of tropical birds. Condor, 61–65, https://doi.org/10.2307/1367889 (1983).Terblanche, J. S., Klok, C. J. & Chown, S. L. Metabolic rate variation in Glossina pallidipes (Diptera: Glossinidae): gender, ageing and repeatability. J. Insect Physiol. 50, 419–428, https://doi.org/10.1016/j.jinsphys.2004.02.009 (2004).CAS
Article
PubMed
Google Scholar
Schmitz, A. Metabolic rates during rest and activity in differently tracheated spiders (Arachnida, Araneae): Pardosa lugubris (Lycosidae) and Marpissa muscosa (Salticidae). J. Comp. Physiol., B 174, 519–526, https://doi.org/10.1007/s00360-004-0440-6 (2004).CAS
Article
Google Scholar
Anderson, J. F. Metabolic rates of resting salticid and thomisid spiders. J. Arachnol. 129–134 (1996).Adams, N. J. & Brown, C. R. Metabolic rates of sub-Antarctic Procellariiformes: a comparative study. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 77, 169–173, https://doi.org/10.1016/0300-9629(84)90030-6 (1984).Article
Google Scholar
Morrison, P. & Ryser, F. A. Metabolism and body temperature in a small hibernator, the meadow jumping mouse, Zapus hudsonius. J. Cell. Compar. Physl. 60, 169–180, https://doi.org/10.1002/jcp.1030600206 (1962).CAS
Article
Google Scholar
Bieńkowski, P. & Marszałek, U. Metabolism and energy budget in the snow vole. Acta Theriol. 19, 55–67 (1974).Article
Google Scholar
Lardies, M. A., Catalán, T. P. & Bozinovic, F. Metabolism and life-history correlates in a lowland and highland population of a terrestrial isopod. Can. J. Zool. 82, 677–687, https://doi.org/10.1139/z04-033 (2004).Article
Google Scholar
Król, E. Metabolism and thermoregulation in the eastern hedgehog Erinaceus concolor. J. Comp. Physiol., B 164, 503–507, https://doi.org/10.1007/bf00714589 (1994).Article
Google Scholar
Hennemann, W. W., Thompson, S. D. & Konecny, M. J. Metabolism of Crab-Eating Foxes, Cerdocyon thous: Ecological Influences on the Energetics of Canids. Physiol. Zool. 56, 319–324, https://doi.org/10.1086/physzool.56.3.30152596 (1983).Article
Google Scholar
Lovegrove, B. G. The metabolism of social subterranean rodents: adaptation to aridity. Oecologia 69, 551–555, https://doi.org/10.1007/bf00410361 (1986).ADS
CAS
Article
PubMed
Google Scholar
Prinzinger, R. & Hänssler, I. Metabolism-weight relationship in some small nonpasserine birds. Experientia 36, 1299–1300, https://doi.org/10.1007/bf01969600 (1980).Article
Google Scholar
Hill, R. W. Metabolism, thermal conductance, and body temperature in one of the largest species of Peromyscus, P. pirrensis. J. Therm. Biol. 1, 109–112, https://doi.org/10.1016/0306-4565(76)90029-2 (1976).Article
Google Scholar
Saarela, S. & Hissa, R. Metabolism, thermogenesis and daily rhythm of body temperature in the wood lemming, Myopus schisticolor. J. Comp. Physiol., B 163, 546–555, https://doi.org/10.1007/bf00302113 (1993).CAS
Article
Google Scholar
MacMillen, R. E. Nonconformance of standard metabolic rate with body mass in Hawaiian Honeycreepers. Oecologia 49, 340–343, https://doi.org/10.1007/bf00347595 (1981).ADS
CAS
Article
PubMed
Google Scholar
Krog, H. & Monson, M. Notes on the metabolism of a mountain goat. Am. J. Physiol. 178, 515–516 (1954).CAS
Article
Google Scholar
Du Toit, J. T., Jarvis, J. U. M. & Louw, G. N. Nutrition and burrowing energetics of the Cape mole-rat Georychus capensis. Oecologia 66, 81–87, https://doi.org/10.1007/bf00378556 (1985).ADS
Article
PubMed
Google Scholar
Farrell, D. J. & Wood, A. J. The nutrition of the female mink (Mustela vison). I. The metabolic rate of the mink. Can. J. Zool. 46, 41–45, https://doi.org/10.1139/z68-008 (1968).Article
Google Scholar
Hennemann, W. W. & Konecny, M. J. Oxygen consumption in large spotted genets, Genetta tigrina. J. Mammal. 61, 747–750, https://doi.org/10.2307/1380332 (1980).Article
Google Scholar
May, M. L., Pearson, D. L. & Casey, T. M. Oxygen consumption of active and inactive adult tiger beetles. Physiol. Entomol. 11, 171–179, https://doi.org/10.1111/j.1365-3032.1986.tb00403.x (1986).Article
Google Scholar
Bartholomew, G. A. & Casey, T. M. Oxygen Consumption of Moths During Rest, Pre-Flight Warm-Up, and Flight In Relation to Body Size and Wing Morphology. J. Exp. Biol. 76, 11–25 (1978).Article
Google Scholar
MacMillen, R. E., Whittow, G. C., Christopher, E. A. & Ebisu, R. J. Oxygen consumption, evaporative water loss, and body temperature in the sooty tern. The Auk, 72–79 (1977).Francis, C. & Brooks, G. R. Oxygen consumption, rate of heart beat and ventilatory rate in parietalectomized lizards, Sceloporus occidentalis. Comp. Biochem. Physiol. 35, 463–469, https://doi.org/10.1016/0010-406X(70)90609-2 (1970).Article
Google Scholar
Tucker, V. A. Oxygen consumption, thermal conductance, and torpor in the California pocket mouse Perognathus californicus. J. Cell. Physiol. 65, 393–403, https://doi.org/10.1002/jcp.1030650313 (1965).CAS
Article
PubMed
Google Scholar
McNab, B. K. Physiological convergence amongst ant-eating and termite-eating mammals. J. Zool. 203, 485–510, https://doi.org/10.1111/j.1469-7998.1984.tb02345.x (1984).Article
Google Scholar
Genoud, M., Bonaccorso, F. J. & Anends, A. Rate of metabolism and temperature regulation in two small tropical insectivorous bats (Peropteryx macrotis and Natalus tumidirostris). Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 97, 229–234, https://doi.org/10.1016/0300-9629(90)90177-T (1990).Article
Google Scholar
Genoud, M. & Ruedi, M. Rate of metabolism, temperature regulations, and evaporative water loss in the lesser gymnure Hylomys suillus (Insectivora, Mammalia). J. Zool. 240, 309–316, https://doi.org/10.1111/j.1469-7998.1996.tb05287.x (1996).Article
Google Scholar
Ricklefs, R. E. & Matthew, K. K. Rates of oxygen consumption in four species of seabird at Palmer Station, Antarctic peninsula. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 74, 885–888, https://doi.org/10.1016/0300-9629(83)90363-8 (1983).CAS
Article
Google Scholar
Lasiewski, R. C. & Dawson, W. R. A Re-Examination of the Relation between Standard Metabolic Rate and Body Weight in Birds. Condor 69, 13–23, https://doi.org/10.2307/1366368 (1967).Article
Google Scholar
Goldstein, R. B. Relation of metabolism to ambient temperature in the Verdin. Condor 76, 116–119, https://doi.org/10.2307/1365995 (1974).Article
Google Scholar
Mispagel, M. E. Relation of oxygen consumption to size and temperature in desert arthropods. Ecol. Entomol. 6, 423–431, https://doi.org/10.1111/j.1365-2311.1981.tb00634.x (1981).Article
Google Scholar
Bryant, D. M., Hails, C. J. & Tatner, P. Reproductive energetics of two tropical bird species. The Auk, 25–37 (1984).Holter, P. Resource utilization and local coexistence in a guild of scarabaeid dung beetles (Aphodius spp.). Oikos 39, 213–227, https://doi.org/10.2307/3544488 (1982).Article
Google Scholar
Goldstein, D. L. & Nagy, K. A. Resource Utilization by Desert Quail: Time and Energy, Food and Water. Ecology 66, 378–387, https://doi.org/10.2307/1940387 (1985).Article
Google Scholar
Louw, G. N., Nicolson, S. W. & Seely, M. K. Respiration beneath desert sand: carbon dioxide diffusion and respiratory patterns in a tenebrionid beetle. J. Exp. Biol. 120, 443–446 (1986).Article
Google Scholar
Anderson, J. F. & Prestwich, K. N. Respiratory Gas Exchange in Spiders. Physiol. Zool. 55, 72–90, https://doi.org/10.1086/physzool.55.1.30158445 (1982).Article
Google Scholar
Meyer, E. & Phillipson, J. Respiratory metabolism of the isopod Trichoniscus pusillus provisorius. Oikos, 69–74, https://doi.org/10.2307/3544200 (1983).Duncan, F. D. & Dickman, C. R. Respiratory patterns and metabolism in tenebrionid and carabid beetles from the Simpson Desert, Australia. Oecologia 129, 509–517, https://doi.org/10.1007/s004420100772 (2001).ADS
Article
PubMed
Google Scholar
Nielsen, M. G. Respiratory rates of ants from different climatic areas. J. Insect Physiol. 32, 125–131, https://doi.org/10.1016/0022-1910(86)90131-9 (1986).Article
Google Scholar
Calder, W. A. III & Dawson, T. J. Resting metabolic rates of ratite birds: the kiwis and the emu. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 60, 479–481 (1978).Article
Google Scholar
Kawamoto, T. H., Machado, Fd. A., Kaneto, G. E. & Japyassu, H. F. Resting metabolic rates of two orbweb spiders: A first approach to evolutionary success of ecribellate spiders. J. Insect Physiol. 57, 427–432, https://doi.org/10.1016/j.jinsphys.2011.01.001 (2011).CAS
Article
PubMed
Google Scholar
Lehmann, F. O., Dickinson, M. H. & Staunton, J. The scaling of carbon dioxide release and respiratory water loss in flying fruit flies (Drosophila spp.). J. Exp. Biol. 203, 1613–1624 (2000).CAS
Article
Google Scholar
Chown, S. L. et al. Scaling of insect metabolic rate is inconsistent with the nutrient supply network model. Funct. Ecol. 21, 282–290, https://doi.org/10.1111/j.1365-2435.2007.01245.x (2007).Article
Google Scholar
Bartholomew, G. A. & Lighton, J. R. B. Short Communication: Ventilation and Oxygen Consumption During Rest and Locomotion in a Tropical Cockroach, Blaberus Giganteus. J. Exp. Biol. 118, 449–454 (1985).Article
Google Scholar
Stahel, C. D., Megirian, D. & Nicol, S. C. Sleep and metabolic rate in the little penguin, Eudyptula minor. J. Comp. Physiol., B 154, 487–494, https://doi.org/10.1007/bf02515153 (1984).Article
Google Scholar
Lighton, J. R. Slow Discontinuous Ventilation in the Namib Dune-sea Ant Camponotus Detritus (Hymenoptera, Formicidae). J. Exp. Biol. 151, 71–82 (1990).Article
Google Scholar
Bech, C., Chappell, M. A., Astheimer, L. B., Londoño, G. A. & Buttemer, W. A. A ‘slow pace of life’ in Australian old-endemic passerine birds is not accompanied by low basal metabolic rates. J. Comp. Physiol., B 186, 503–512, https://doi.org/10.1007/s00360-016-0964-6 (2016).CAS
Article
Google Scholar
Young, S. R. & Block, W. Some factors affecting metabolic rate in an Antarctic mite. Oikos, 178–185, https://doi.org/10.2307/3544180 (1980).Wang, L. C.-H. & Hudson, J. W. Some physiological aspects of temperature regulation in the normothermic and torpid hispid pocket mouse, Perognathus hispidus. Comp. Biochem. Physiol. 32, 275–293, https://doi.org/10.1016/0010-406X(70)90941-2 (1970).CAS
Article
PubMed
Google Scholar
Bedford, G. S. & Christian, K. A. Standard metabolic rate and preferred body temperatures in some Australian pythons. Aust. J. Zool. 46, 317–328, https://doi.org/10.1071/ZO98019 (1999).Article
Google Scholar
Vogt, J. T. & Appel, A. G. Standard metabolic rate of the fire ant, Solenopsis invicta Buren: effects of temperature, mass, and caste. J. Insect Physiol. 45, 655–666, https://doi.org/10.1016/S0022-1910(99)00036-0 (1999).CAS
Article
PubMed
Google Scholar
Thompson, G., Heger, N., Heger, T. & Withers, P. Standard metabolic rate of the largest Australian lizard, Varanus giganteus. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 111, 603–608, https://doi.org/10.1016/0300-9629(95)00055-C (1995).Article
Google Scholar
Vitali, S. D., Withers, P. C. & Richardson, K. C. Standard metabolic rates of three nectarivorous meliphagid passerine birds. Aust. J. Zool. 47, 385–391, https://doi.org/10.1071/ZO99023 (1999).Article
Google Scholar
Dawson, T. J., Grant, T. R. & Fanning, D. Standard Metabolism of Monotremes and the Evolution of Homeothermy. Aust. J. Zool. 27, 511–515, https://doi.org/10.1071/ZO9790511 (1979).Article
Google Scholar
Al-Sadoon, M. K. & Abdo, N. M. Temperature effects on oxygen consumption of two nocturnal geckos, Ptyodactylus hasselquistii (Donndorff) and Bunopus tuberculatus (Blanford) (Reptilia: Gekkonidae) in Saudi Arabia. J. Comp. Physiol., B 159, 1–4, https://doi.org/10.1007/bf00692676 (1989).ADS
Article
Google Scholar
Roxburgh, L. & Perrin, M. R. Temperature regulation and activity pattern of the round-eared elephant shrew Macroscelides proboscideus. J. Therm. Biol. 19, 13–20, https://doi.org/10.1016/0306-4565(94)90004-3 (1994).Article
Google Scholar
Wang, L. C.-H. & Hudson, J. W. Temperature regulation in normothermic and hibernating eastern chipmunk, Tamias striatus. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 38, 59–90, https://doi.org/10.1016/0300-9629(71)90098-3 (1971).CAS
Article
Google Scholar
Rfinking, L. N., Kilgore, D. L. Jr, Fairbanks, E. S. & Hamilton, J. D. Temperature regulation in normothermic black-tailed prairie dogs, Cynomys ludovicianus. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 57, 161–165, https://doi.org/10.1016/0300-9629(77)90368-1 (1977).Article
Google Scholar
Chew, R. M., Lindberg, R. G. & Hayden, P. Temperature regulation in the little pocket mouse, Perognathus longimembris. Comp. Biochem. Physiol. 21, 487–505, https://doi.org/10.1016/0010-406X(67)90447-1 (1967).CAS
Article
PubMed
Google Scholar
Ebisu, R. J. & Whittow, G. C. Temperature regulation in the small Indian mongoose (Herpestes auropunctatus). Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 54, 309–313, https://doi.org/10.1016/S0300-9629(76)80117-X (1976).CAS
Article
Google Scholar
Whittow, G. C., Scammell, C. A., Leong, M. & Rand, D. Temperature regulation in the smallest ungulate, the lesser mouse deer (Tragulus javanicus). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 56, 23–26, https://doi.org/10.1016/0300-9629(77)90436-4 (1977).CAS
Article
Google Scholar
Fusari, M. H. Temperature responses of standard, aerobic metabolism by the California legless lizard, Anniella pulchra. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 77, 97–101, https://doi.org/10.1016/0300-9629(84)90018-5 (1984).CAS
Article
Google Scholar
Dawson, T. J. & Fanning, F. D. Thermal and energetic problems of semiaquatic mammals: a study of the Australian water rat, including comparisons with the platypus. Physiol. Zool. 54, 285–296 (1981).Article
Google Scholar
Campbell, K. L. & Hochachka, P. W. Thermal biology and metabolism of the American shrew-mole, Neurotrichus gibbsii. J. Mammal. 81, 578-585, 10.1644/1545-1542(2000)0812.0.CO;2 (2000).Hosken, D. J. Thermal Biology and Metabolism of the Greater Long-eared Bat. Nyctophilus major (Chiroptera:Vespertilionidae). Aust. J. Zool. 45, 145–156, https://doi.org/10.1071/ZO96043 (1997).Article
Google Scholar
Duxbury, K. J. & Perrin, M. Thermal biology and water turnover rate in the Cape gerbil, Tatera afra (Gerbillidae). J. Therm. Biol. 17, 199–208, https://doi.org/10.1016/0306-4565(92)90056-L (1992).Article
Google Scholar
Downs, C. T. & Perrin, M. R. The thermal biology of the white-tailed rat Mystromys albicaudatus, a cricetine relic in southern temperate African grassland. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 110, 65–69, https://doi.org/10.1016/0300-9629(94)00147-L (1995).CAS
Article
Google Scholar
Downs, C. T. & Perrin, M. R. The thermal biology of three southern African elephant-shrews. J. Therm. Biol. 20, 445–450, https://doi.org/10.1016/0306-4565(95)00003-F (1995).Article
Google Scholar
Maloiy, G. M. O., Kamau, J. M. Z., Shkolnik, A., Meir, M. & Arieli, R. Thermoregulation and metabolism in a small desert carnivore: the Fennec fox (Fennecus zerda)(Mammalia). J. Zool. 198, 279–291, https://doi.org/10.1111/j.1469-7998.1982.tb02076.x (1982).Article
Google Scholar
Maskrey, M. & Hoppe, P. P. Thermoregulation and oxygen consumption in Kirk’s dik-dik (Madoqua kirkii) at ambient temperatures of 10–45 °C. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 62, 827–830, https://doi.org/10.1016/0300-9629(79)90010-0 (1979).Article
Google Scholar
Kamau, J. M., Johansen, K. & Maloiy, G. Thermoregulation and standard metabolism of the slender mongoose (Herpestes sanguineus). Physiol. Zool. 52, 594–602 (1979).Article
Google Scholar
Knight, M. H. Thermoregulation in the largest African cricetid, the giant rat Cricetomys gambianus. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 89, 705–708, https://doi.org/10.1016/0300-9629(88)90856-0 (1988).CAS
Article
Google Scholar
Bennett, N. C., Aguilar, G. H., Jarvis, J. U. M. & Faulkes, C. G. Thermoregulation in three species of Afrotropical subterranean mole-rats (Rodentia: Bathyergidae) from Zambia and Angola and scaling within the genus Cryptomys. Oecologia 97, 222–227, https://doi.org/10.1007/bf00323153 (1994).ADS
CAS
Article
PubMed
Google Scholar
Casey, T. M. & Casey, K. K. Thermoregulation of Arctic Weasels. Physiol. Zool. 52, 153–164, https://doi.org/10.1086/physzool.52.2.30152560 (1979).Article
Google Scholar
Layne, J. N. & Dolan, P. G. Thermoregulation, metabolism, and water economy in the golden mouse (Ochrotomys nuttalli). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 52, 153–163, https://doi.org/10.1016/S0300-9629(75)80146-0 (1975).CAS
Article
Google Scholar
Roberts, J. R. & Baudinette, R. V. Thermoregulation, Oxygen Consumption and Water Turnover in Stubble Quail, Coturnix pectoralis, and King Quail, Coturnix chinensis. Aust. J. Zool. 34, 25–33, https://doi.org/10.1071/ZO9860025 (1986).Article
Google Scholar
du Plessis, A., Erasmus, T. & Kerley, G. I. Thermoregulatory patterns of two sympatric rodents: Otomys unisulcatus and Parotomys brantsii. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 94, 215–220, https://doi.org/10.1016/0300-9629(89)90538-0 (1989).Article
Google Scholar
Bradley, W. & Yousef, M. Thermoregulatory responses in the plains pocket gopher, Geomys bursarius. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 52, 35–38, https://doi.org/10.1016/S0300-9629(75)80122-8 (1975).CAS
Article
Google Scholar
Drent, R. H. & Stonehouse, B. Thermoregulatory responses of the Peruvian penguin, Spheniscus humboldti. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 40, 689–710, https://doi.org/10.1016/0300-9629(71)90254-4 (1971).CAS
Article
Google Scholar
El-Nouty, F. D., Yousef, M. K., Magdub, A. B. & Johnson, H. D. Thyroid hormones and metabolic rate in burros, Equus asinus, and llamas, Lama glama: effects of environmental temperature. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 60, 235–237, https://doi.org/10.1016/0300-9629(78)90238-4 (1978).Article
Google Scholar
Krüger, K., Prinzinger, R. & Schuchmann, K.-L. Torpor and metabolism in hummingbirds. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 73, 679–689 (1982).
Google Scholar
Bartholomew, G. A. & Barnhart, M. C. Tracheal Gases, Respiratory Gas Exchange, Body Temperature and Flight in Some Tropical Cicadas. J. Exp. Biol. 111, 131–144 (1984).Article
Google Scholar
Zachariassen, K. E., Andersen, J., Maloiy, G. M. & Kamau, J. M. Transpiratory water loss and metabolism of beetles from arid areas in East Africa. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 86, 403–408, https://doi.org/10.1016/0300-9629(87)90515-9 (1987).Article
Google Scholar
Bucher, T. L. Ventilation and oxygen consumption in Amazona viridigenalis. J. Comp. Physiol., B 155, 269–276, https://doi.org/10.1007/bf00687467 (1985).ADS
Article
Google Scholar
Bickler, P. E. & Anderson, R. A. Ventilation, Gas Exchange, and Aerobic Scope in a Small Monitor Lizard, Varanus gilleni. Physiol. Zool. 59, 76–83, https://doi.org/10.1086/physzool.59.1.30156093 (1986).Article
Google Scholar
Seid, M. A., Castillo, A. & Wcislo, W. T. The allometry of brain miniaturization in ants. Brain Behav. Evol. 77, 5–13, https://doi.org/10.1159/000322530 (2011).Article
PubMed
Google Scholar
Quesada, R. et al. The allometry of CNS size and consequences of miniaturization in orb-weaving and cleptoparasitic spiders. Arthropod Struct. Dev. 40, 521–529, https://doi.org/10.1016/j.asd.2011.07.002 (2011).Article
PubMed
Google Scholar
Mares, S., Ash, L. & Gronenberg, W. Brain allometry in bumblebee and honey bee workers. Brain Behav. Evol. 66, 50–61, https://doi.org/10.1159/000085047 (2005).Article
PubMed
Google Scholar
Mlikovsky, J. Brain size and forearmen magnum area in crows and allies (Aves: Corvidae). Acta Soc. Zool. Bohem. 67, 203–211 (2003).
Google Scholar
Mlikovsky, J. Brain size in birds: 4. Passeriformes. Acta Soc. Zool. Bohem. 54, 27–37 (1990).
Google Scholar
Bronson, R. T. Brain weight-body weight relationships in 12 species of nonhuman primates. Am. J. Phys. Anthropol. 56, 77–81, https://doi.org/10.1002/ajpa.1330560109 (1981).Article
Google Scholar
Guay, P., Weston, M., Symonds, M. & Glover, H. Brains and bravery: Little evidence of a relationship between brain size and flightiness in shorebirds. Austral Ecol. 38, 516–522, https://doi.org/10.1111/j.1442-9993.2012.02441.x (2013).Article
Google Scholar
Boddy, A. M. et al. Comparative analysis of encephalization in mammals reveals relaxed constraints on anthropoid primate and cetacean brain scaling. J. Evol. Biol. 25, 981–994, https://doi.org/10.1111/j.1420-9101.2012.02491.x (2012).CAS
Article
PubMed
Google Scholar
Stankowich, T. & Romero, A. N. The correlated evolution of antipredator defences and brain size in mammals. Proc. R. Soc. B: Biol. Sci. 284, https://doi.org/10.1098/rspb.2016.1857 (2017).Sheehan, Z. B. V., Kamhi, J. F., Seid, M. A. & Narendra, A. Differential investment in brain regions for a diurnal and nocturnal lifestyle in Australian Myrmecia ants. J. Comp. Neurol. 0, https://doi.org/10.1002/cne.24617.Bauchot, R. & Stephan, H. Données nouvelles sur l’encéphalisation des insectivores et des prosimiens. Mammalia 30, 160–196, https://doi.org/10.1515/mamm.1966.30.1.160 (1966).Article
Google Scholar
Rosenzweig, M. & Bennett, E. L. Effects of differential environments on brain weights and enzyme activities in gerbils, rats, and mice. Dev. Psychobiol. 2, 87–95, https://doi.org/10.1002/dev.420020208 (1969).CAS
Article
PubMed
Google Scholar
Pirlot, P. & Stephan, H. Encephalization in Chiroptera. Can. J. Zool. 48, 433–444, https://doi.org/10.1139/z70-075 (1970).Article
Google Scholar
Ashwell, K. W. S. Encephalization of Australian and New Guinean marsupials. Brain Behav. Evol. 71, 181–199, https://doi.org/10.1159/000114406 (2008).CAS
Article
PubMed
Google Scholar
Hoops, D. et al. Evidence for concerted and mosaic brain evolution in dragon lizards. Brain Behav. Evol. 90, 211–223, https://doi.org/10.1159/000478738 (2017).Article
PubMed
Google Scholar
Pasquet, A., Toscani, C. & Anotaux, M. Influence of aging on brain and web characteristics of an orb web spider. J. Ethol. 36, 85–91, https://doi.org/10.1007/s10164-017-0530-z (2018).Article
PubMed
Google Scholar
Warnke, P. Mitteilung neuer Gehirn-und Körpergewichtsbestimmungen bei Saugern. J. Psychol. Neurol. 13, 355–403 (1908).
Google Scholar
Naccarati, S. On the relation between the weight of the internal secretory glands and the body weight and brain weight. Anat. Rec. 24, 254–260, https://doi.org/10.1002/ar.1090240408 (1922).Article
Google Scholar
Crile, G. & Quiring, D. P. A record of the body weight and certain organ and gland weights of 3690 animals. Ohio J. Sci. (1940).Franklin, D. C., Garnett, S. T., Luck, G. W., Gutierrez-Ibanez, C. & Iwaniuk, A. N. Relative brain size in Australian birds. Emu 114, 160–170, https://doi.org/10.1071/MU13034 (2014).Article
Google Scholar
Hrdlička, A. Weight of the brain and of the internal organs in American monkeys. With data on brain weight in other apes. Am. J. Phys. Anthropol. 8, 201–211, https://doi.org/10.1002/ajpa.1330080207 (1925).Article
Google Scholar
Stöckl, A. L., Ribi, W. A. & Warrant, E. J. Adaptations for nocturnal and diurnal vision in the hawkmoth lamina. J. Comp. Neurol. 524, 160–175, https://doi.org/10.1002/cne.23832 (2016).Article
PubMed
Google Scholar
Napiorkowska, T. & Kobak, J. The allometry of the central nervous system during the postembryonic development of the spider Eratigena atrica. Arthropod Struct. Dev. 46, 805–814, https://doi.org/10.1016/j.asd.2017.08.005 (2017).Article
PubMed
Google Scholar
El Jundi, B., Huetteroth, W., Kurylas, A. E. & Schachtner, J. Anisometric brain dimorphism revisited: Implementation of a volumetric 3D standard brain in Manduca sexta. J. Comp. Neurol. 517, 210–225, https://doi.org/10.1002/cne.22150 (2009).Article
PubMed
Google Scholar
Krieger, J., Sandeman, R. E., Sandeman, D. C., Hansson, B. S. & Harzsch, S. Brain architecture of the largest living land arthropod, the Giant Robber Crab Birgus latro (Crustacea, Anomura, Coenobitidae): evidence for a prominent central olfactory pathway? Front. Zool. 7, 25, https://doi.org/10.1186/1742-9994-7-25 (2010).Article
PubMed
PubMed Central
Google Scholar
Powell, B. J. & Leal, M. Brain Organization and Habitat Complexity in Anolis Lizards. Brain Behav. Evol. 84, 8–18, https://doi.org/10.1159/000362197 (2014).Article
PubMed
Google Scholar
Platel, R. in Biology of the Reptilia 10 (eds Gans, C. G., Northcutt, R. G & Ulinski, P. S.) 147–171 (Academic Press, 1979).Van Der Woude, E., Smid, H. M., Chittka, L. & Huigens, M. E. Breaking Haller’s rule: brain-body size isometry in a minute parasitic wasp. Brain Behav. Evol. 81, 86–92, https://doi.org/10.1159/000345945 (2013).Article
PubMed
Google Scholar
Guay, P.-J. & Iwaniuk, A. N. Captive breeding reduces brain volume in waterfowl (Anseriformes). Condor 110, 276–284, https://doi.org/10.1525/cond.2008.8424 (2008).Article
Google Scholar
Robinson, C. D., Patton, M. S., Andre, B. M. & Johnson, M. A. Convergent evolution of brain morphology and communication modalities in lizards. Current Zoology 61, 281–291, https://doi.org/10.1093/czoolo/61.2.281 (2015).Article
Google Scholar
Kvello, P., Løfaldli, B., Rybak, J., Menzel, R. & Mustaparta, H. Digital, three-dimensional average shaped atlas of the Heliothis virescens brain with integrated gustatory and olfactory neurons. Front. Syst. Neurosci. 3, https://doi.org/10.3389/neuro.06.014.2009 (2009).Montgomery, S. H. & Merrill, R. M. Divergence in brain composition during the early stages of ecological specialization in Heliconius butterflies. J. Evol. Biol. 30, 571–582, https://doi.org/10.1111/jeb.13027 (2017).CAS
Article
PubMed
Google Scholar
Gordon, D. G., Zelaya, A., Arganda-Carreras, I., Arganda, S. & Traniello, J. F. A. Division of labor and brain evolution in insect societies: Neurobiology of extreme specialization in the turtle ant Cephalotes varians. PLOS ONE 14, e0213618, https://doi.org/10.1371/journal.pone.0213618 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
Rein, K., Zöckler, M., Mader, M. T., Grübel, C. & Heisenberg, M. The Drosophila Standard Brain. Curr. Biol. 12, 227–231, https://doi.org/10.1016/S0960-9822(02)00656-5 (2002).CAS
Article
PubMed
Google Scholar
Shen, J.-M., Li, R.-D. & Gao, F.-Y. Effects of ambient temperature on lipid and fatty acid composition in the oviparous lizards, Phrynocephalus przewalskii. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 142, 293–301, https://doi.org/10.1016/j.cbpb.2005.07.013 (2005).CAS
Article
Google Scholar
Muscedere, M. L., Gronenberg, W., Moreau, C. S. & Traniello, J. F. A. Investment in higher order central processing regions is not constrained by brain size in social insects. Proc. R. Soc. B: Biol. Sci. 281, https://doi.org/10.1098/rspb.2014.0217 (2014).Platel, R. L’encéphalisation chez le Tuatara de Nouvelle-Zélande Sphenodon punctatus Gray (Lepidosauria, Sphenodonta). Etude quantifiée des principales subdivisions encéphaliques. J. Hirnforsch. 30, 325–337 (1989).CAS
PubMed
Google Scholar
Makarova, A. A. & Polilov, A. A. Peculiarities of the brain organization and fine structure in small insects related to miniaturization. 1. The smallest Coleoptera (Ptiliidae). Entomol. Rev. 93, 703–713, https://doi.org/10.1134/S0013873813060043 (2013).Article
Google Scholar
Bininda‐Emonds, O. R. P. Pinniped brain sizes. Mar. Mamm. Sci. 16, 469–481 (2000).Article
Google Scholar
Stafstrom, J. A., Michalik, P. & Hebets, E. A. Sensory system plasticity in a visually specialized, nocturnal spider. Sci. Rep. 7, 46627, https://doi.org/10.1038/srep46627 (2017).ADS
Article
PubMed
PubMed Central
Google Scholar
O’Donnell, S., Bulova, S. J., Barrett, M. & Fiocca, K. Size constraints and sensory adaptations affect mosaic brain evolution in paper wasps (Vespidae: Epiponini). Biol. J. Linn. Soc. 123, 302–310, https://doi.org/10.1093/biolinnean/blx150 (2018).Article
Google Scholar
Kamhi, J. F., Gronenberg, W., Robson, S. K. A. & Traniello, J. F. A. Social complexity influences brain investment and neural operation costs in ants. Proc. R. Soc. B: Biol. Sci. 283, 20161949, https://doi.org/10.1098/rspb.2016.1949 (2016).Article
Google Scholar
Kurylas, A. E., Rohlfing, T., Krofczik, S., Jenett, A. & Homberg, U. Standardized atlas of the brain of the desert locust, Schistocerca gregaria. Cell Tissue Res. 333, 125, https://doi.org/10.1007/s00441-008-0620-x (2008).Article
PubMed
Google Scholar
O’Donnell, S. et al. A test of neuroecological predictions using paperwasp caste differences in brain structure (Hymenoptera: Vespidae). Behav. Ecol. Sociobiol. 68, 529–536, https://doi.org/10.1007/s00265-013-1667-6 (2014).Article
Google Scholar
Weltzien, P. & Barth, F. G. Volumetric measurements do not demonstrate that the spider brain “central body” has a special role in web building. J. Morphol. 208, 91–98, https://doi.org/10.1002/jmor.1052080104 (1991).Article
PubMed
Google Scholar More