More stories

  • in

    Stocking density mediated stress modulates growth attributes in cage reared Labeo rohita (Hamilton) using multifarious biomarker approach

    Tolussi, C. E., Hilsdorf, A. W. S., Caneppele, D. & Moreira, R. G. The effects of stocking density in physiological parameters and growth of the endangered teleost species piabanha, Brycon insignis (Steindachner, 1877). Aquaculture 310, 221–228 (2010).
    Google Scholar 
    Wang, Y. et al. Effects of stocking density on growth, serum parameters, antioxidant status, liver and intestine histology and gene expression of largemouth bass (Micropterus salmoides) farmed in the in-pond raceway system. Aquac. Res. 51, 5228–5240 (2020).CAS 

    Google Scholar 
    Zahedi, S., Akbarzadeh, A., Mehrzad, J., Noori, A. & Harsij, M. Effect of stocking density on growth performance, plasma biochemistry and muscle gene expression in rainbow trout (Oncorhynchus mykiss). Aquaculture 498, 271–278 (2019).CAS 

    Google Scholar 
    Yousefi, M., Paktinat, M., Mahmoudi, N., Pérez-Jiménez, A. & Hoseini, S. M. Serum biochemical and non-specific immune responses of rainbow trout (Oncorhynchus mykiss) to dietary nucleotide and chronic stress. Fish Physiol. Biochem. 42, 1417–1425 (2016).CAS 
    PubMed 

    Google Scholar 
    Duan, Y., Dong, X., Zhang, X. & Miao, Z. Effects of dissolved oxygen concentration and stocking density on the growth, energy budget and body composition of juvenile Japanese flounder, Paralichthys olivaceus (Temminck et Schlegel). Aquac. Res. 42, 407–416 (2011).CAS 

    Google Scholar 
    Castillo-Vargasmachuca, S. et al. Effect of stocking density on growth performance and yield of subadult pacific red snapper cultured in floating sea cages. N. Am. J. Aquac. 74, 413–418 (2012).
    Google Scholar 
    Upadhyay, A. et al. Stocking density matters in open water cage culture: influence on growth, digestive enzymes, haemato-immuno and stress responses of Puntius sarana (Ham, 1822). Aquaculture 547, 737445 (2021).
    Google Scholar 
    Kumar, V. et al. Assessment of the effect of sub-lethal acute toxicity of Emamectin benzoate in Labeo rohita using multiple biomarker approach. Toxicol. Rep. 9, 102–110 (2022).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rebl, A. et al. The synergistic interaction of thermal stress coupled with overstocking strongly modulates the transcriptomic activity and immune capacity of rainbow trout (Oncorhynchus mykiss). Sci. Rep. 10, 1–15 (2020).ADS 

    Google Scholar 
    Braun, N., de Lima, R. L., Baldisserotto, B., Dafre, A. L. & de Oliveira Nuñer, A. P. Growth, biochemical and physiological responses of Salminus brasiliensis with different stocking densities and handling. Aquaculture 301, 22–30 (2010).CAS 

    Google Scholar 
    Refaey, M. M., Tian, X., Tang, R. & Li, D. Changes in physiological responses, muscular composition and flesh quality of channel catfish Ictalurus punctatus suffering from transport stress. Aquaculture 478, 9–15 (2017).CAS 

    Google Scholar 
    Liu, G. et al. Influence of stocking density on growth, digestive enzyme activities, immune responses, antioxidant of Oreochromis niloticus fingerlings in biofloc systems. Fish Shellfish Immunol. 81, 416–422 (2018).CAS 
    PubMed 

    Google Scholar 
    Kumar, G. & Engle, C. R. Technological advances that led to growth of shrimp, salmon, and tilapia farming. Rev. Fish. Sci. Aquac. 24, 136–152 (2016).
    Google Scholar 
    Sundin, L. Hypoxia and blood flow control in fish gills. In Biology of tropical fishes (eds Val, A. L. & Almeida-Val, V. M. F.) 353–362 (Manaus INPA, 1999).
    Google Scholar 
    Beveridge, M. C. M. Cage Aquaculture Vol. 5 (John Wiley & Sons, 2008).
    Google Scholar 
    Valenti, W. C., Barros, H. P., Moraes-Valenti, P., Bueno, G. W. & Cavalli, R. O. Aquaculture in Brazil: past, present and future. Aquac. Rep. 19, 100611 (2021).
    Google Scholar 
    Das, A. K., Meena, D. K. & Sharma, A. P. Cage farming in an Indian Reservoir. World Aquac. 45, 56–59 (2014).
    Google Scholar 
    Sarkar, U. K. et al. Status, prospects, threats, and the way forward for sustainable management and enhancement of the tropical Indian reservoir fisheries: an overview. Rev. Fish. Sci. Aquac. 26, 155–175 (2018).
    Google Scholar 
    Singh, A. K. & Lakra, W. S. Culture of Pangasianodon hypophthalmus into India: impacts and present scenario. Pakistan J. Biol. Sci. 15, 19 (2012).CAS 

    Google Scholar 
    Jena, J. et al. Evaluation of growth performance of Labeo fimbriatus (Bloch), Labeo gonius (Hamilton) and Puntius gonionotus (Bleeker) in polyculture with Labeo rohita (Hamilton) during fingerlings rearing at varied densities. Aquaculture 319, 493–496 (2011).
    Google Scholar 
    Liu, B., Jia, R., Han, C., Huang, B. & Lei, J.-L. Effects of stocking density on antioxidant status, metabolism and immune response in juvenile turbot (Scophthalmus maximus). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 190, 1–8 (2016).CAS 

    Google Scholar 
    Wu, F. et al. Effect of stocking density on growth performance, serum biochemical parameters, and muscle texture properties of genetically improved farm tilapia, Oreochromis niloticus. Aquac. Int. 26, 1247–1259 (2018).CAS 

    Google Scholar 
    Andrade, T. et al. Evaluation of different stocking densities in a Senegalese sole (Solea senegalensis) farm: implications for growth, humoral immune parameters and oxidative status. Aquaculture 438, 6–11 (2015).CAS 

    Google Scholar 
    Qi, C. et al. Effect of stocking density on growth, physiological responses, and body composition of juvenile blunt snout bream, Megalobrama amblycephala. J. World Aquac. Soc. 47, 358–368 (2016).CAS 

    Google Scholar 
    Shao, T. et al. Evaluation of the effects of different stocking densities on growth and stress responses of juvenile hybrid grouper♀ Epinephelus fuscoguttatus×♂ Epinephelus lanceolatus in recirculating aquaculture systems. J. Fish Biol. 95, 1022–1029 (2019).CAS 
    PubMed 

    Google Scholar 
    Adineh, H., Naderi, M., Hamidi, M. K. & Harsij, M. Biofloc technology improves growth, innate immune responses, oxidative status, and resistance to acute stress in common carp (Cyprinus carpio) under high stocking density. Fish Shellfish Immunol. 95, 440–448 (2019).CAS 
    PubMed 

    Google Scholar 
    Fazelan, Z., Vatnikov, Y. A., Kulikov, E. V., Plushikov, V. G. & Yousefi, M. Effects of dietary ginger (Zingiber officinale) administration on growth performance and stress, immunological, and antioxidant responses of common carp (Cyprinus carpio) reared under high stocking density. Aquaculture 518, 734833 (2020).CAS 

    Google Scholar 
    Hoseini, S. M., Yousefi, M., Hoseinifar, S. H. & Van Doan, H. Effects of dietary arginine supplementation on growth, biochemical, and immunological responses of common carp (Cyprinus carpio L.), stressed by stocking density. Aquaculture 503, 452–459 (2019).CAS 

    Google Scholar 
    Adineh, H., Naderi, M., Nazer, A., Yousefi, M. & Ahmadifar, E. Interactive effects of stocking density and dietary supplementation with nano selenium and garlic extract on growth, feed utilization, digestive enzymes, stress responses, and antioxidant capacity of grass carp, Ctenopharyngodon idella. J. World Aquac. Soc. 52, 789–804 (2021).CAS 

    Google Scholar 
    Zhao, H. et al. Transcriptome and physiological analysis reveal alterations in muscle metabolisms and immune responses of grass carp (Ctenopharyngodon idellus) cultured at different stocking densities. Aquaculture 503, 186–197 (2019).CAS 

    Google Scholar 
    Frisso, R. M., de Matos, F. T., Moro, G. V. & de Mattos, B. O. Stocking density of Amazon fish (Colossoma macropomum) farmed in a continental neotropical reservoir with a net cages system. Aquaculture 529, 735702 (2020).CAS 

    Google Scholar 
    Tammam, M. S., Wassef, E. A., Toutou, M. M. & El-Sayed, A.-F.M. Combined effects of surface area of periphyton substrates and stocking density on growth performance, health status, and immune response of Nile tilapia (Oreochromis niloticus) produced in cages. J. Appl. Phycol. 32, 3419–3428 (2020).CAS 

    Google Scholar 
    Zaki, M. A. A. et al. The impact of stocking density and dietary carbon sources on the growth, oxidative status and stress markers of Nile tilapia (Oreochromis niloticus) reared under biofloc conditions. Aquac. Reports 16, 100282 (2020).
    Google Scholar 
    Rowland, S. J., Mifsud, C., Nixon, M. & Boyd, P. Effects of stocking density on the performance of the Australian freshwater silver perch (Bidyanus bidyanus) in cages. Aquaculture 253, 301–308 (2006).
    Google Scholar 
    Mohler, J. W., King, M. K. & Farrell, P. R. Growth and survival of first-feeding and fingerling Atlantic sturgeon under culture conditions. N. Am. J. Aquac. 62, 174–183 (2000).
    Google Scholar 
    Mirghaed, A. T., Hoseini, S. M. & Ghelichpour, M. Effects of dietary 1, 8-cineole supplementation on physiological, immunological and antioxidant responses to crowding stress in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 81, 182–188 (2018).
    Google Scholar 
    Hoseini, S. M., Mirghaed, A. T., Iri, Y. & Ghelichpour, M. Effects of dietary cineole administration on growth performance, hematological and biochemical parameters of rainbow trout (Oncorhynchus mykiss). Aquaculture 495, 766–772 (2018).CAS 

    Google Scholar 
    Barton, B. A., Morgan, J. D. & Vijayan, M. M. Physiological and condition-related indicators of environmental stress in fish. In Biological Indicators of Aquatic Ecosystem Stress (ed. Adams, S. M.) 111–148 (American Fisheries Society, 2002).
    Google Scholar 
    Varela, J. L. et al. Dietary administration of probiotic Pdp11 promotes growth and improves stress tolerance to high stocking density in gilthead seabream Sparus auratus. Aquaculture 309, 265–271 (2010).CAS 

    Google Scholar 
    Costas, B., Aragão, C., Dias, J., Afonso, A. & Conceição, L. E. C. Interactive effects of a high-quality protein diet and high stocking density on the stress response and some innate immune parameters of Senegalese sole Solea senegalensis. Fish Physiol. Biochem. 39, 1141–1151 (2013).CAS 
    PubMed 

    Google Scholar 
    Long, L. et al. Effects of stocking density on growth, stress, and immune responses of juvenile Chinese sturgeon (Acipenser sinensis) in a recirculating aquaculture system. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 219, 25–34 (2019).CAS 

    Google Scholar 
    Sadhu, N., Sharma, S. R. K., Joseph, S., Dube, P. & Philipose, K. K. Chronic stress due to high stocking density in open sea cage farming induces variation in biochemical and immunological functions in Asian seabass (Lates calcarifer, Bloch). Fish Physiol. Biochem. 40, 1105–1113 (2014).CAS 
    PubMed 

    Google Scholar 
    Zahran, E., Risha, E., AbdelHamid, F., Mahgoub, H. A. & Ibrahim, T. Effects of dietary Astragalus polysaccharides (APS) on growth performance, immunological parameters, digestive enzymes, and intestinal morphology of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 38, 149–157 (2014).CAS 
    PubMed 

    Google Scholar 
    Aruoma, O. I. Free radicals, oxidative stress, and antioxidants in human health and disease. J. Am. Oil Chem. Soc. 75, 199–212 (1998).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haridas, H. et al. Enhanced growth and immuno-physiological response of genetically improved farmed Tilapia in indoor biofloc units at different stocking densities. Aquac. Res. 48, 4346–4355 (2017).CAS 

    Google Scholar 
    Ruane, N. M., Carballo, E. C. & Komen, J. Increased stocking density influences the acute physiological stress response of common carp Cyprinus carpio (L.). Aquac. Res. 33, 777–784 (2002).
    Google Scholar 
    Wang, X. et al. Effects of stocking density on growth, nonspecific immune response, and antioxidant status in African catfish (Clarias gariepinus). (2013).Johnson, K. M. & Lema, S. C. Tissue-specific thyroid hormone regulation of gene transcripts encoding iodothyronine deiodinases and thyroid hormone receptors in striped parrotfish (Scarus iseri). Gen. Comp. Endocrinol. 172, 505–517 (2011).CAS 
    PubMed 

    Google Scholar 
    El-Khaldi, A. T. F. Effect of different stress factors on some physiological parameters of Nile tilapia (Oreochromis niloticus). Saudi J. Biol. Sci. 17, 241–246 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sharma, A., Devi, S., Singh, K. & Prabhakar, P. K. Correlation of body mass index with thyroid-stimulating hormones in thyroid patient. Asian J. Pharm. Clin. Res. 11, 65–68 (2018).
    Google Scholar 
    Li, D., Liu, Z. & Xie, C. Effect of stocking density on growth and serum concentrations of thyroid hormones and cortisol in Amur sturgeon, Acipenser schrenckii. Fish Physiol. Biochem. 38, 511–520 (2012).CAS 
    PubMed 

    Google Scholar 
    Park, J.-W. et al. The thyroid endocrine disruptor perchlorate affects reproduction, growth, and survival of mosquitofish. Ecotoxicol. Environ. Saf. 63, 343–352 (2006).CAS 
    PubMed 

    Google Scholar 
    Refaey, M. M. et al. High stocking density alters growth performance, blood biochemistry, intestinal histology, and muscle quality of channel catfish Ictalurus punctatus. Aquaculture 492, 73–81 (2018).CAS 

    Google Scholar 
    Reinecke, M. et al. Growth hormone and insulin-like growth factors in fish: where we are and where to go. Gen. Comp. Endocrinol. 142, 20–24 (2005).CAS 
    PubMed 

    Google Scholar 
    Salas-Leiton, E. et al. Dexamethasone modulates expression of genes involved in the innate immune system, growth and stress and increases susceptibility to bacterial disease in Senegalese sole (Solea senegalensis Kaup, 1858). Fish Shellfish Immunol. 32, 769–778 (2012).CAS 
    PubMed 

    Google Scholar 
    Dyer, A. R. et al. Correlation of plasma IGF-I concentrations and growth rate in aquacultured finfish: a tool for assessing the potential of new diets. Aquaculture 236, 583–592 (2004).CAS 

    Google Scholar 
    Kajimura, S. et al. Dual mode of cortisol action on GH/IGF-I/IGF binding proteins in the tilapia, Oreochromis mossambicus. J. Endocrinol. 178, 91–99 (2003).CAS 
    PubMed 

    Google Scholar 
    Ren, Y., Wen, H., Li, Y. & Li, J. Stocking density affects the growth performance and metabolism of Amur sturgeon by regulating expression of genes in the GH/IGF axis. J. Oceanol. Limnol. 36, 956–972 (2018).ADS 
    CAS 

    Google Scholar 
    Salas-Leiton, E. et al. Effects of stocking density and feed ration on growth and gene expression in the Senegalese sole (Solea senegalensis): potential effects on the immune response. Fish Shellfish Immunol. 28, 296–302 (2010).CAS 
    PubMed 

    Google Scholar 
    Vijayan, M. M., Aluru, N. & Leatherland, J. F. Stress response and the role of cortisol. Fish Dis. Disord. 2, 182–201 (2010).
    Google Scholar 
    Hegazi, M. M., Attia, Z. I. & Ashour, O. A. Oxidative stress and antioxidant enzymes in liver and white muscle of Nile tilapia juveniles in chronic ammonia exposure. Aquat. Toxicol. 99, 118–125 (2010).CAS 
    PubMed 

    Google Scholar 
    Kpundeh, M. D., Xu, P., Yang, H., Qiang, J. & He, J. Stocking densities and chronic zero culture water exchange stress’ effects on biological performances, hematological and serum biochemical indices of GIFT tilapia juveniles (Oreochromis niloticus). J. Aquac. Res. Dev. 4, 2 (2013).
    Google Scholar 
    Tan, C. et al. Effects of stocking density on growth, body composition, digestive enzyme levels and blood biochemical parameters of Anguilla marmorata in a recirculating aquaculture system. Turk. J. Fish. Aquat. Sci. 18, 9–16 (2018).
    Google Scholar 
    Ni, M. et al. The physiological performance and immune responses of juvenile Amur sturgeon (Acipenser schrenckii) to stocking density and hypoxia stress. Fish Shellfish Immunol. 36, 325–335 (2014).CAS 
    PubMed 

    Google Scholar 
    Abdel-Tawwab, M. Effects of dietary protein levels and rearing density on growth performance and stress response of Nile tilapia, Oreochromis niloticus (L.). Int. Aquat. Res. 4, 1–13 (2012).
    Google Scholar 
    Chatterjee, N. et al. Effect of stocking density and journey length on the welfare of rohu (Labeo rohita Hamilton) fry. Aquac. Int. 18, 859–868 (2010).
    Google Scholar 
    Pakhira, C., Nagesh, T. S., Abraham, T. J., Dash, G. & Behera, S. Stress responses in rohu, Labeo rohita transported at different densities. Aquac. Rep. 2, 39–45 (2015).
    Google Scholar 
    Tahmasebi-Kohyani, A., Keyvanshokooh, S., Nematollahi, A., Mahmoudi, N. & Pasha-Zanoosi, H. Effects of dietary nucleotides supplementation on rainbow trout (Oncorhynchus mykiss) performance and acute stress response. Fish Physiol. Biochem. 38, 431–440 (2012).CAS 
    PubMed 

    Google Scholar 
    Montero, D. et al. Effect of vitamin E and C dietary supplementation on some immune parameters of gilthead seabream (Sparus aurata) juveniles subjected to crowding stress. Aquaculture 171, 269–278 (1999).CAS 

    Google Scholar 
    Urbinati, E. C., de Abreu, J. S., da Silva Camargo, A. C. & Parra, M. A. L. Loading and transport stress of juvenile matrinxã (Brycon cephalus, Characidae) at various densities. Aquaculture 229, 389–400 (2004).
    Google Scholar 
    Evans, D. H. Cell signaling and ion transport across the fish gill epithelium. J. Exp. Zool. 293, 336–347 (2002).CAS 
    PubMed 

    Google Scholar 
    McCormick, S. D. Endocrine control of osmoregulation in teleost fish. Am. Zool. 41, 781–794 (2001).CAS 

    Google Scholar 
    Postlethwaite, E. & McDonald, D. Mechanisms of Na+ and C-regulation in freshwater-adapted rainbow trout (Oncorhynchus mykiss) during exercise and stress. J. Exp. Biol. 198, 295–304 (1995).CAS 
    PubMed 

    Google Scholar 
    Liu, P., Du, Y., Meng, L., Li, X. & Liu, Y. Metabolic profiling in kidneys of Atlantic salmon infected with Aeromonas salmonicida based on 1H NMR. Fish Shellfish Immunol. 58, 292–301 (2016).CAS 
    PubMed 

    Google Scholar 
    Hosfeld, C. D., Hammer, J., Handeland, S. O., Fivelstad, S. & Stefansson, S. O. Effects of fish density on growth and smoltification in intensive production of Atlantic salmon (Salmo salar L.). Aquaculture 294, 236–241 (2009).
    Google Scholar 
    Wagner, E. I., Miller, S. A. & Bosakowski, T. Ammonia excretion by rainbow trout over a 24-hour period at two densities during oxygen injection. Progress. Fish-Culturist 57, 199–205 (1995).
    Google Scholar 
    Dong, J. et al. Effect of stocking density on growth performance, digestive enzyme activities, and nonspecific immune parameters of Palaemonetes sinensis. Fish Shellfish Immunol. 73, 37–41 (2018).CAS 
    PubMed 

    Google Scholar 
    Wang, Y. et al. Effects of stocking density on the growth performance, digestive enzyme activities, antioxidant resistance, and intestinal microflora of blunt snout bream (Megalobrama amblycephala) juveniles. Aquac. Res. 50, 236–246 (2019).CAS 

    Google Scholar 
    Trenzado, C. E. et al. Effect of dietary lipid content and stocking density on digestive enzymes profile and intestinal histology of rainbow trout (Oncorhynchus mykiss). Aquaculture 497, 10–16 (2018).CAS 

    Google Scholar 
    Li, X., Liu, Y. & Blancheton, J.-P. Effect of stocking density on performances of juvenile turbot (Scophthalmus maximus) in recirculating aquaculture systems. Chin. J. Oceanol. Limnol. 31, 514–522 (2013).ADS 
    CAS 

    Google Scholar 
    Ezhilmathi, S. et al. Effect of stocking density on growth performance, digestive enzyme activity, body composition and gene expression of Asian seabass reared in recirculating aquaculture system. Aquac. Res. https://doi.org/10.1111/are.15725 (2022).Article 

    Google Scholar 
    Bolasina, S., Tagawa, M., Yamashita, Y. & Tanaka, M. Effect of stocking density on growth, digestive enzyme activity and cortisol level in larvae and juveniles of Japanese flounder, Paralichthys olivaceus. Aquaculture 259, 432–443 (2006).CAS 

    Google Scholar 
    Hoseini, S. M., Hoseinifar, S. H. & Van Doan, H. Effect of dietary eucalyptol on stress markers, enzyme activities and immune indicators in serum and haematological characteristics of common carp (Cyprinus carpio) exposed to toxic concentration of ambient copper. Aquac. Res. 49, 3045–3054 (2018).CAS 

    Google Scholar 
    Ni, M. et al. Effects of stocking density on mortality, growth and physiology of juvenile Amur sturgeon (Acipenser schrenckii). Aquac. Res. 47, 1596–1604 (2016).CAS 

    Google Scholar 
    Abdel-Tawwab, M., Hagras, A. E., Elbaghdady, H. A. M. & Monier, M. N. Dissolved oxygen level and stocking density effects on growth, feed utilization, physiology, and innate immunity of Nile Tilapia, Oreochromis niloticus. J. Appl. Aquac. 26, 340–355 (2014).
    Google Scholar 
    Toko, I., Fiogbe, E. D., Koukpode, B. & Kestemont, P. Rearing of African catfish (Clarias gariepinus) and vundu catfish (Heterobranchus longifilis) in traditional fish ponds (whedos): effect of stocking density on growth, production and body composition. Aquaculture 262, 65–72 (2007).
    Google Scholar 
    Suárez, M. D. et al. Influence of dietary lipids and culture density on rainbow trout (Oncorhynchus mykiss) flesh composition and quality parameter. Aquac. Eng. 63, 16–24 (2014).
    Google Scholar 
    Santín, A., Grinyó, J., Bilan, M., Ambroso, S. & Puig, P. First report of the carnivorous sponge Lycopodina hypogea (Cladorhizidae) associated with marine debris, and its possible implications on deep-sea connectivity. Mar. Pollut. Bull. 159, 111501 (2020).PubMed 

    Google Scholar 
    Jørpeland, G., Imsland, A., Stien, L. H., Bleie, H. & Roth, B. Effects of filleting method, stress, storage and season on the quality of farmed Atlantic cod (Gadus morhua L.). Aquac. Res. 46, 1597–1607 (2015).
    Google Scholar 
    Bulow, F. J. RNA-DNA ratios as indicators of growth in fish: a review. In The Age and growth of fish (eds Summerfelt, R. C. & Hall, G. E.) 45–64 (Iowa State University Press, Ames, Iowa, 1987).
    Google Scholar 
    Regnault, M. & Luquet, P. Study by evolution of nucleic acid content of prepuberal growth in the shrimp Crangon vulgaris. Mar. Biol. 25, 291–298 (1974).CAS 

    Google Scholar 
    Tanaka, H. K. M. et al. High resolution imaging in the inhomogeneous crust with cosmic-ray muon radiography: the density structure below the volcanic crater floor of Mt. Asama, Japan. Earth Planet. Sci. Lett. 263, 104–113 (2007).ADS 
    CAS 

    Google Scholar 
    Gwak, W. S. & Tanaka, M. Developmental change in RNA: DNA ratios of fed and starved laboratory-reared Japanese flounder larvae and juveniles, and its application to assessment of nutritional condition for wild fish. J. Fish Biol. 59, 902–915 (2001).CAS 

    Google Scholar 
    Ali, M., Iqbal, R., Rana, S. A., Athar, M. & Iqbal, F. Effect of feed cycling on specific growth rate, condition factor and RNA/DNA ratio of Labeo rohita. African J. Biotechnol. 5, 1551–1556 (2006).CAS 

    Google Scholar 
    Zehra, S. & Khan, M. A. Dietary lysine requirement of fingerling Catla catla (Hamilton) based on growth, protein deposition, lysine retention efficiency, RNA/DNA ratio and carcass composition. Fish Physiol. Biochem. 39, 503–512 (2013).CAS 
    PubMed 

    Google Scholar 
    Misra, H. P. & Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 247, 3170–3175 (1972).CAS 
    PubMed 

    Google Scholar 
    Takahara, S. et al. Hypocatalasemia: a new genetic carrier state. J. Clin. Invest. 39, 610–619 (1960).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rick, W. & Stegbauer, H. P. α-Amylase measurement of reducing groups. In Methods of Enzymatic Analysis (ed. Bergmeyer, H. S.) 885–890 (Elsevier, 1974).
    Google Scholar 
    Cherry, I. S. & Crandall, L. A. Jr. The specificity of pancreatic lipase: its appearance in the blood after pancreatic injury. Am. J. Physiol. Content 100, 266–273 (1932).CAS 

    Google Scholar 
    Drapeau, G. R. [38] Protease from Staphyloccus aureus. In Methods in Enzymology (eds Jura, N. & Murphy, J. M.) 469–475 (Elsevier, 1976).
    Google Scholar 
    AOAC. Official Methods of Analysis of AOAC International. (Association of Official Analytical Chemists Washington, DC, 2005).Bosworth, B. G., Small, B. C. & Mischke, C. Effects of transport water temperature, aerator type, and oxygen level on channel catfish Ictalurus punctatus fillet quality. J. World Aquac. Soc. 35, 412–419 (2004).
    Google Scholar 
    Ma, L. Q., Qi, C. L., Cao, J. J. & Li, D. P. Comparative study on muscle texture profile and nutritional value of channel catfish (Ictalurus punctatus) reared in ponds and reservoir cages. J. Fish. China 38, 532–537 (2014).
    Google Scholar 
    APHA. Standard Methods for the Examination of Water and Wastewater. (American Public Health Association, American Water Works Association, Water Environment Federation, 2012). More

  • in

    Microbial isolates with Anti-Pseudogymnoascus destructans activities from Western Canadian bat wings

    Frick, W. F. et al. An emerging disease causes regional population collapse of a common North American bat species. Science 329, 679–682 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Froschauer, A. & Coleman, J. North American bat death toll exceeds 5.5 million from white-nose syndrome. Biol. Rep. US Fish Wildl. Serv. 2, 1–2 (2012).
    Google Scholar 
    Blehert, D. S. et al. Bat white-nose syndrome: An emerging fungal pathogen?. Science 323, 227 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meteyer, C. U. et al. Histopathologic criteria to confirm white-nose syndrome in bats. J. Vet. Diagn. Invest. 21, 411–414 (2009).PubMed 
    Article 

    Google Scholar 
    O’Donoghue, A. J. et al. Destructin-1 is a collagen-degrading endopeptidase secreted by Pseudogymnoascus destructans, the causative agent of white-nose syndrome. Proc. Natl. Acad. Sci. USA. 112, 7478–7483 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cryan, P. M., Meteyer, C. U., Boyles, J. G. & Blehert, D. S. Wing pathology of white-nose syndrome in bats suggests life-threatening disruption of physiology. BMC Biol. 8, 135 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Warnecke, L. et al. Pathophysiology of white-nose syndrome in bats: A mechanistic model linking wing damage to mortality. Biol. Lett. 9, 20130177 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Verant, M. L., Boyles, J. G., Waldrep, W., Wibbelt, G. & Blehert, D. S. Temperature-dependent growth of Geomyces destructans, the fungus that causes bat white-nose syndrome. PLoS ONE 7, e46280 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Field, K. A. et al. The white-nose syndrome transcriptome: Activation of anti-fungal host responses in wing tissue of hibernating little brown Myotis. PLoS Pathog. 11, e1005168 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Boyles, J. G. & Willis, C. K. R. Could localized warm areas inside cold caves reduce mortality of hibernating bats affected by white-nose syndrome?. Front. Ecol. Environ. 8, 92–98 (2010).Article 

    Google Scholar 
    Storm, J. J. & Boyles, J. G. Body temperature and body mass of hibernating little brown bats Myotis lucifugus in hibernacula affected by white-nose syndrome. Acta Theriol. 56, 123–127 (2011).Article 

    Google Scholar 
    Lorch, J. M. et al. First detection of bat white-nose syndrome in western North America. MSphere 1, 4 (2016).Article 
    CAS 

    Google Scholar 
    White-Nose Syndrome Response Team. Where is WNS Now? White-Nose Syndrome https://www.whitenosesyndrome.org/spreadmap (2021).Turner, G. G., Reeder, D. & Coleman, J. T. H. A five-year assessment of mortality and geographic spread of white-nose syndrome in north American bats, with a look at the future: update of white-nose syndrome in bats. Bat Res. News 52, 13 (2011).
    Google Scholar 
    Dzal, Y., McGuire, L. P., Veselka, N. & Fenton, M. B. Going, going, gone: The impact of white-nose syndrome on the summer activity of the little brown bat (Myotis lucifugus). Biol. Lett. 7, 392–394 (2011).PubMed 
    Article 

    Google Scholar 
    Ingersoll, T. E., Sewall, B. J. & Amelon, S. K. Improved analysis of long-term monitoring data demonstrates marked regional declines of bat populations in the eastern United States. PLoS ONE 8, e65907 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vanderwolf, K. J. & McAlpine, D. F. Hibernacula microclimate and declines in overwintering bats during an outbreak of white-nose syndrome near the northern range limit of infection in North America. Ecol. Evol. 11, 2273–2288 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boyles, J. G., Cryan, P. M., McCracken, G. F. & Kunz, T. H. Economic importance of bats in agriculture. Science 332, 41–42 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    Kunz, T. H., de Torrez, E. B., Bauer, D., Lobova, T. & Fleming, T. H. Ecosystem services provided by bats. Ann. N. Y. Acad. Sci. 1223, 1–38 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    Puig‐Montserrat, X. & Flaquer, C. Bats actively prey on mosquitoes and other deleterious insects in rice paddies: Potential impact on human health and agriculture. Pest Manag. Sci. (2020).Micalizzi, E. W. & Smith, M. L. Volatile organic compounds kill the white-nose syndrome fungus, Pseudogymnoascus destructans, in hibernaculum sediment. Can. J. Microbiol. 66, 593–599 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Padhi, S., Dias, I., Korn, V. & Bennett, J. Pseudogymnoascus destructans: Causative agent of white-nose syndrome in bats is inhibited by safe volatile organic compounds. Journal of Fungi 4, 48 (2018).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Chaturvedi, S. et al. Antifungal testing and high-throughput screening of compound library against Geomyces destructans, the etiologic agent of geomycosis (WNS) in bats. PLoS ONE 6, e17032 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cornelison, C. T. et al. A preliminary report on the contact-independent antagonism of Pseudogymnoascus destructans by Rhodococcus rhodochrous strain DAP96253. BMC Microbiol. 14, 246 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Boire, N. et al. Potent inhibition of Pseudogymnoascus destructans, the causative agent of white-nose syndrome in bats, by cold-pressed, terpeneless, Valencia orange oil. PLoS ONE 11, 1–10 (2016).Article 
    CAS 

    Google Scholar 
    Padhi, S., Dias, I. & Bennett, J. W. Two volatile-phase alcohols inhibit growth of Pseudogymnoascus destructans, causative agent of white-nose syndrome in bats. Mycology 8, 11–16 (2017).CAS 
    Article 

    Google Scholar 
    Raudabaugh, D. B. & Miller, A. N. Effect of Trans, trans-farnesol on Pseudogymnoascus destructans and several closely related species. Mycopathologia 180, 325–332 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kulhanek. The Application of Chitosan on an Experimental Infection of Pseudogymnoascus Destructans Increases Survival in Little Brown Bats. (Western Michigan University, 2016).Ghosh, S. et al. Evidence for Anti-Pseudogymnoascus destructans (Pd) activity of propolis. Antibiotics 7, 2 (2017).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bernard, R. F. & Grant, E. H. C. Identifying common decision problem elements for the management of emerging fungal diseases of wildlife. Soc. Nat. Resour. (2019).Haas, D. & Défago, G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3, 307–319 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Becker, M. H. & Harris, R. N. Cutaneous bacteria of the redback salamander prevent morbidity associated with a lethal disease. PLoS ONE 5, e10957 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gerritsen, J., Smidt, H., Rijkers, G. T. & de Vos, W. M. Intestinal microbiota in human health and disease: The impact of probiotics. Genes Nutr. 6, 209–240 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bletz, M. C. et al. Mitigating amphibian chytridiomycosis with bioaugmentation: Characteristics of effective probiotics and strategies for their selection and use. Ecol. Lett. 16, 807–820 (2013).PubMed 
    Article 

    Google Scholar 
    Becker, M. H. et al. Composition of symbiotic bacteria predicts survival in Panamanian golden frogs infected with a lethal fungus. Proc. Biol. Sci. 282, 2881 (2015).
    Google Scholar 
    Hamm, P. S. et al. Western bats as a reservoir of novel Streptomyces species with antifungal activity. Appl. Environ. Microbiol. 83, 1–10 (2017).Article 

    Google Scholar 
    Hoyt, J. R. et al. Bacteria isolated from bats inhibit the growth of Pseudogymnoascus destructans, the causative agent of white-nose syndrome. PLoS ONE https://doi.org/10.1371/journal.pone.0121329 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cheng, T. L. et al. Efficacy of a probiotic bacterium to treat bats affected by the disease white-nose syndrome. J. Appl. Ecol. 54, 701–708 (2017).Article 

    Google Scholar 
    Berg, G. & Smalla, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 68, 1–13 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Teplitski, M. & Ritchie, K. How feasible is the biological control of coral diseases?. Trends Ecol. Evol. 24, 378–385 (2009).PubMed 
    Article 

    Google Scholar 
    Clay, K. EDITORIAL: Defensive symbiosis: A microbial perspective. Funct. Ecol. 28, 293–298 (2014).Article 

    Google Scholar 
    Grice, E. A. & Segre, J. A. The skin microbiome. Nat. Rev. Microbiol. 9, 244–253 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jani, A. J. & Briggs, C. J. The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection. Proc. Natl. Acad. Sci. USA. 111, E5049–E5058 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lemieux-Labonté, V., Simard, A., Willis, C. K. R. & Lapointe, F.-J. Enrichment of beneficial bacteria in the skin microbiota of bats persisting with white-nose syndrome. Microbiome 5, 115 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Walke, J. B. et al. Most of the dominant members of amphibian skin bacterial communities can be readily cultured. Appl. Environ. Microbiol. 81, 6589–6600 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Avena, C. V. et al. Deconstructing the bat skin microbiome: Influences of the host and the environment. Front. Microbiol. 7, 1753 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Loudon, A. H. et al. Microbial community dynamics and effect of environmental microbial reservoirs on red-backed salamanders (Plethodon cinereus). ISME J. 8, 830–840 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Walke, J. B. et al. Amphibian skin may select for rare environmental microbes. ISME J. 8, 2207–2217 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Loudon, A. H. et al. Vertebrate hosts as islands: Dynamics of selection, immigration, loss, persistence, and potential function of bacteria on salamander skin. Front. Microbiol. 7, 333 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Winter, A. S. et al. Skin and fur bacterial diversity and community structure on American southwestern bats: Effects of habitat, geography and bat traits. PeerJ 5, e3944 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Perofsky, A. C., Lewis, R. J., Abondano, L. A., Di Fiore, A. & Meyers, L. A. Hierarchical social networks shape gut microbial composition in wild Verreaux’s sifaka. Proc. Biol. Sci. 284, 2274 (2017).
    Google Scholar 
    Raulo, A. et al. Social behaviour and gut microbiota in red-bellied lemurs (Eulemur rubriventer): In search of the role of immunity in the evolution of sociality. J. Anim. Ecol. 87, 388–399 (2018).PubMed 
    Article 

    Google Scholar 
    Tung, J. et al. Social networks predict gut microbiome composition in wild baboons. Elife 4, 5224 (2015).
    Google Scholar 
    Kolodny, O. et al. Coordinated change at the colony level in fruit bat fur microbiomes through time. Nat. Ecol. Evol. 3, 116–124 (2019).PubMed 
    Article 

    Google Scholar 
    Vuong, H. E., Yano, J. M., Fung, T. C. & Hsiao, E. Y. The microbiome and host behavior. Annu. Rev. Neurosci. 40, 21–49 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lausen, C. L., Nagorsen, D. N., Brigham, R. M. & Hobbs, J. Bats of British Columbia 2nd edn. (Royal BC Museum, 2022).
    Google Scholar 
    Spring Cleaning: Why Wash a Bridge? https://www.tranbc.ca/2011/06/22/spring-cleaning-why-wash-a-bridge/ (2012).Maron, P.-A. et al. High microbial diversity promotes soil ecosystem functioning. Appl. Environ. Microbiol. 84, 9 (2018).Article 

    Google Scholar 
    Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. USA. 111, 5266–5270 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Green, S. R. & Gray, P. P. A differential procedure for bacteriological studies useful in the fermentation industry. Arch. Biochem. Biophys. 32, 59–69 (1951).CAS 
    PubMed 
    Article 

    Google Scholar 
    Basu, S. et al. Evolution of bacterial and fungal growth media. Bioinformation 11, 182–184 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Medina, D. et al. Culture media and individual hosts affect the recovery of culturable bacterial diversity from amphibian skin. Front. Microbiol. 8, 1574 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Piovia-Scott, J. et al. Greater species richness of bacterial skin symbionts better suppresses the amphibian fungal pathogen Batrachochytrium dendrobatidis. Microb. Ecol. 74, 217–226 (2017).PubMed 
    Article 

    Google Scholar 
    Moeller, A. H. et al. Dispersal limitation promotes the diversification of the mammalian gut microbiota. Proc. Natl. Acad. Sci. USA. 114, 13768–13773 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ingala, M. R. et al. Comparing microbiome sampling methods in a wild mammal: Fecal and intestinal samples record different signals of host ecology, evolution. Front. Microbiol. 9, 1–10 (2018).Article 

    Google Scholar 
    Lewis, S. E. Night roosting ecology of pallid bats (Antrozous pallidus) in oregon. Am. Midl. Nat. 132, 219–226 (1994).Article 

    Google Scholar 
    Hershey, O. S. & Barton, H. A. The microbial diversity of caves. Cave Ecol. 1, 69–90. https://doi.org/10.1007/978-3-319-98852-8_5 (2018).Article 

    Google Scholar 
    British Columbia Government Mineral Inventory. https://www2.gov.bc.ca/gov/content/industry/mineral-exploration-mining/british-columbia-geological-survey/mineralinventory (2018).Weller, T. J. et al. A review of bat hibernacula across the western United States: Implications for white-nose syndrome surveillance and management. PLoS ONE 13, e0205647 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Nagorsen, D. W., Brigham, R. M., Royal British Columbia Museum. Bats of British Columbia (UBC Press, 1993).
    Google Scholar 
    Fenton, M. B., Merriam, H. G. & Holroyd, G. L. Bats of Kootenay, Glacier, and Mount Revelstoke national parks in Canada: Identification by echolocation calls, distribution, and biology. Can. J. Zool. 61, 2503–2508 (1983).Article 

    Google Scholar 
    Bernard, R. F., Foster, J. T., Willcox, E. V., Parise, K. L. & McCracken, G. F. Molecular detection of the causative agent of white-nose syndrome on rafinesque’s big-eared bats (Corynorhinus rafinesquii) and two species of migratory bats in the Southeastern USA. J. Wildl. Dis. 51, 519–522 (2015).PubMed 
    Article 

    Google Scholar 
    Lutz, H. L. et al. Ecology and host identity outweigh evolutionary history in shaping the bat microbiome. MSystems 4, 1–10 (2019).
    Google Scholar 
    Gaona, O., Gómez-Acata, E. S., Cerqueda-García, D., Neri-Barrios, C. X. & Falcón, L. I. Fecal microbiota of different reproductive stages of the central population of the lesser-long nosed bat, Leptonycteris yerbabuenae. PLoS ONE 14, e0219982 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Voigt, C. C., Caspers, B. & Speck, S. Bats, bacteria, and bat smell: Sex-specific diversity of microbes in a sexually selected scent organ. J. Mammal. 86, 745–749 (2005).Article 

    Google Scholar 
    Gharout-Sait, A. et al. Occurrence of carbapenemase-producing Klebsiella pneumoniae in bat guano. Microb. Drug Resist. 25, 1057–1062 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sánchez, C. et al. Contribution of citrate metabolism to the growth of Lactococcus lactis CRL264 at low pH. Appl. Environ. Microbiol. 74, 1136–1144 (2008).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Charyulu, E. M. & Gnanamani, A. Condition stabilization for Pseudomonas aeruginosa MTCC 5210 to yield high titers of extra cellular antimicrobial secondary metabolite using response surface methodology. Curr. Res. Bacteriol. 4, 197–213 (2010).Article 

    Google Scholar 
    Shen, Y. et al. Psychrobacillus lasiicapitis sp. nov., isolated from the head of an ant (Lasius fuliginosus). Int. J. Syst. Evol. Microbiol. 67, 4462–4467 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rodríguez, M., Reina, J. C., Béjar, V. & Llamas, I. Psychrobacillus vulpis sp. nov., a new species isolated from faeces of a red fox in Spain. Int. J. Syst. Evol. Microbiol. 70, 882–888 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Pham, V. H. T., Jeong, S.-W. & Kim, J. Psychrobacillus soli sp. nov., capable of degrading oil, isolated from oil-contaminated soil. Int. J. Syst. Evol. Microbiol. 65, 3046–3052 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kontro, M., Lignell, U., Hirvonen, M.-R. & Nevalainen, A. pH effects on 10 Streptomyces spp. growth and sporulation depend on nutrients. Lett. Appl. Microbiol. 41, 32–38 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wodzinski, R. S., Umholtz, T. E., Rundle, J. R. & Beer, S. V. Mechanisms of inhibition of Erwinia amylovora by Erw. herbicola in vitro and in vivo. J. Appl. Bacteriol. 76, 22–29 (1994).Article 

    Google Scholar 
    Kuncharoen, N. et al. Achromobacter aloeverae sp. nov., isolated from the root of Aloe vera (L.) Burm. f. Int. J. Syst. Evol. Microbiol. 67, 37–41 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aizawa, T. et al. Curtobacterium ammoniigenes sp. nov., an ammonia-producing bacterium isolated from plants inhabiting acidic swamps in actual acid sulfate soil areas of Vietnam. Int. J. Syst. Evol. Microbiol. 57, 1447–1452 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kaira, G. S., Dhakar, K. & Pandey, A. A psychrotolerant strain of Serratia marcescens (MTCC 4822) produces laccase at wide temperature and pH range. AMB Express 5, 92 (2015).PubMed 
    Article 

    Google Scholar 
    Moon, J. & Kim, J. Isolation of Paenibacillus pinesoli sp. Nov. from forest soil in Gyeonggi-Do, Korea. J. Microbiol. 52, 273–277 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Heyrman, J. et al. Bacillus novalis sp. nov., Bacillus vireti sp. nov., Bacillus soli sp. nov., Bacillus bataviensis sp. nov. and Bacillus drentensis sp. nov., from the Drentse A grasslands. Int. J. Syst. Evol. Microbiol. 54, 47–57 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hughes, K. L. & Sulaiman, I. The ecology of Rhodococcus equi and physicochemical influences on growth. Vet. Microbiol. 14, 241–250 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schrempf, H. Recognition and degradation of chitin by streptomycetes. Antonie Van Leeuwenhoek 79, 285–289 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Seco, E. M., Cuesta, T., Fotso, S., Laatsch, H. & Malpartida, F. Two polyene amides produced by genetically modified Streptomyces diastaticus var. 108. Chem. Biol. 12, 535–543 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kembel, S. W., Wu, M., Eisen, J. A. & Green, J. L. Incorporating 16S gene copy number information improves estimates of microbial diversity and abundance. PLoS Comput. Biol. 8, e1002743 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    León, M. et al. Antifungal activity of selected indigenous pseudomonas and bacillus from the soybean rhizosphere. Int. J. Microbiol. 2009, 572049 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Hai, N. & Fotedar, R. Comparison of the effects of the prebiotics (Bio-Mos® and β-1, 3-D-glucan) and the customised probiotics (Pseudomonas synxantha and P. aeruginosa) on the culture of juvenile western king prawns (Penaeus latisulcatus Kishinouye, 1896). Aquaculture 289, 310–316 (2009).Article 
    CAS 

    Google Scholar 
    Lauer, A., Simon, M. A., Banning, J. L., Lam, B. A. & Harris, R. N. Diversity of cutaneous bacteria with antifungal activity isolated from female four-toed salamanders. ISME J. 2, 145–157 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ligon, J. M. et al. Natural products with antifungal activity fromPseudomonas biocontrol bacteria. Pest Manag. Sci. 56, 688–695 (2000).CAS 
    Article 

    Google Scholar 
    Scholz-Schroeder, B. K., Hutchison, M. L., Grgurina, I. & Gross, D. C. The contribution of syringopeptin and syringomycin to virulence of Pseudomonas syringae pv. syringae strain B301D on the basis of sypA and syrB1 biosynthesis mutant analysis. Mol. Plant Microb. Interact. 14, 336–348 (2001).CAS 
    Article 

    Google Scholar 
    Souza, J. T. & Raaijmakers, J. M. Polymorphisms within the prnD and pltC genes from pyrrolnitrin and pyoluteorin-producing Pseudomonas and Burkholderia spp. FEMS Microbiol. Ecol. 43, 21–34 (2003).PubMed 
    Article 

    Google Scholar 
    Mavrodi, D. V. et al. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J. Bacteriol. 183, 6454–6465 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Diby, P. et al. Mycolytic enzymes produced by Pseudomonas fluorescens and Trichoderma spp. against Phytophthora capsici, the foot rot pathogen of black pepper (Piper nigrum L.). Ann. Microbiol. 55, 129–133 (2005).CAS 

    Google Scholar 
    Vengust, M., Knapic, T. & Weese, J. S. The fecal bacterial microbiota of bats; Slovenia. PLoS ONE 13, e0196728 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Banskar, S., Mourya, D. T. & Shouche, Y. S. Bacterial diversity indicates dietary overlap among bats of different feeding habits. Microbiol. Res. 182, 99–108 (2016).PubMed 
    Article 

    Google Scholar 
    Wolkers-Rooijackers, J. C. M., Rebmann, K., Bosch, T. & Hazeleger, W. C. Fecal Bacterial Communities in Insectivorous Bats from the Netherlands and Their Role as a Possible Vector for Foodborne Diseases. Acta Chiropterol. 20, 475 (2019).Article 

    Google Scholar 
    Weller, T. J., Scott, S. A., Rodhouse, T. J., Ormsbee, P. C. & Zinck, J. M. Field identification of the cryptic vespertilionid bats, Myotis lucifugus and M. yumanensis. Acta Chiropt. 9, 133–147 (2007).Article 

    Google Scholar 
    Khankhet, J. et al. Clonal expansion of the Pseudogymnoascus destructans genotype in North America is accompanied by significant variation in phenotypic expression. PLoS ONE 9, e104625 (2014).Article 
    CAS 

    Google Scholar 
    McArthur, R. L., Ghosh, S. & Cheeptham, N. Improvement of protocols for the screening of biological control agents against white-nose syndrome. JEMI 2, 1–7 (2017).
    Google Scholar 
    Rajkumar, S. S. et al. Clonal genotype of Geomyces destructans among bats with white nose syndrome, New York, USA. Emerg. Infect. Dis. 17, 1273–1276 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ren, P. et al. Clonal spread of Geomyces destructans among bats, Midwestern and Southern United States. Emerg. Infect. Dis. 18, 883–885 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wilson, K. Genomc DNA extraction using the modified CTAB method. Curr. Protoc. Mol. Biol. 1, 1–2 (1997).
    Google Scholar 
    Edwards, U., Rogall, T., Blöcker, H., Emde, M. & Böttger, E. C. Isolation and direct complete nucleotide determination of entire genes: Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 17, 7843–7853 (1989).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stackebrandt, E. & Liesack, W. Handbook of New Bacterial Systematics (Springer, 1993).
    Google Scholar 
    O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinformatics 10, 421 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2015).Venables, W. N. & Ripley, B. D. Modern applied statistics with S. Stat. Comput. https://doi.org/10.1007/978-0-387-21706-2 (2002).Article 
    MATH 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Lenth, R. & Lenth, M. R. Package ‘lsmeans’. Am. Stat. 34, 216–221 (2018).
    Google Scholar 
    Kassambara, A. ggpubr:‘ggplot2’ based publication ready plots. R package version 0.1. 7 (2018). More

  • in

    Convergent evolution of a labile nutritional symbiosis in ants

    Genome characteristics of ancient obligate symbiontsWe first tested the hypothesis that each of the ant lineages sequenced in our study (Cardiocondyla, Formica, and Plagiolepis) hosts its own ancient strictly vertically transmitted symbiont that have co-speciated with its host, which has been shown previously in the Camponotus- Blochmannia symbiosis [17]. To address this aim, we compared the genomes of symbionts from 13 species of ants, 8 from our study combined with 5 previously published genomes, representing four independently evolved symbioses. This includes symbionts from three Formica, two Plagiolepis, and an additional three Cardiocondyla species that we sequenced, in addition to four previously published genomes from Blochmannia, the obligate symbiont of Camponotus ants, and the one pre-existing Westeberhardia genome from Cardiocondyla obscurior [8, 18,19,20,21].We found the gene order of single copy orthologs in symbionts is highly conserved in ant species belonging to the same genus (Fig. 1). This type of structural stability of genomes is typically found in symbionts that have been strictly vertically transmitted within a matriline [22] and has been documented in the obligate symbionts of whiteflies, psyllids, cockroaches, and aphids [23,24,25,26]. In contrast, genome structure differed substantially between symbionts from different ant genera (Fig. 1, Fig. S1). We also find that the host and symbiont phylogenies are in general concordance in Cardiocondyla (TreeMap: p = 0.00100 CI95% = [0.00000, 0.00424]), and in Formica the topologies suggest co-segregation, although there were too few nodes to confirm this statistically (Fig. S2). Together, this strongly suggests the symbioses in all four ant lineages are independently acquired ancient associations that have co-speciated with their hosts.Fig. 1: Structural stability of ant symbiont genomes.A Ant lineages known to host bacteriocyte-associated symbionts (red font) and lineages not known to (black font), based on [91]. Outgroup (grey font) not examined in this study. B Visualisation of symbiont genomes showing conservation of gene order in the symbionts of ant species that belong to the same genus. Blocks show the locations of single copy orthologs in the symbiont genome, lines connect shared single copy orthologs between genomes. All genomes and annotations were generated in this study except the Blochmannia symbionts and the Westeberhardia strain from C. obscurior [8, 18,19,20,21]. *Evidence of symbionts were detected in embryos of Anoplolepis [91] but it is unclear if they are localised in bacteriocytes in larvae and adults.Full size imageIn addition, our phylogenetic analysis reveals that all four symbiont lineages originate from a single clade, the Sodalis-allied bacteria (Fig. 2). This demonstrates that ant lineages that host bacteriocytes-associated symbionts have convergently acquired related bacteria, which differs from previous findings based on limited taxa and genes [27]. All of the symbionts have evidence of advanced genome reduction, which is characterized by reduced genome size, GC content, and number of coding sequences, similar to other ancient obligate symbionts of insects [4]. The three strains of Westeberhardia we analysed have extremely small (0.45–0.53 Mb) GC depleted genomes (22–26%) that are similar to the figures reported for the strain in Cardiocondyla obscurior [8]; confirming that they have some of the smallest genomes of any known gammaproteobacterial endosymbiont (Fig. 2). By comparison, the symbionts in Formica and Plagiolepis have genomes around twice the size (1.37–1.38 Mb) and GC content (~41%) of Westeberhardia (Fig. 2) raising the possibility that they are in an earlier stage of genome reduction than both Westeberhardia and Blochmannia. The Formica and Plagiolepis symbionts have a similar size, GC range, and number of coding sequences as known obligate symbionts such as Candidatus Doolittlea endobia [28], and several Serratia symbiotica lineages that are co-obligate symbionts in aphids [29].Fig. 2: Phylogenetic origins of the bacteriocyte-associated symbionts of ants.A pruned phylogeny of gammaproteobacterial endosymbionts based on Fig. S8. The phylogeny is based on a dayhoff6 recoded amino acid alignment of 72 genes analysed using phylobayes. Bar plots represent the size (in Mbp) and GC content of symbiont genomes. Bars are colour coded to represent hypothesised relationships between symbionts and hosts. Species names highlighted in red in the phylogeny indicate the four bacteriocyte-associated symbionts of ants. Genomes sequenced and assembled for this paper are referenced as ‘novel symbiont’ lineages. Full phylogenies with node support and branch lengths are available as Fig. S8 and Fig. S9, respectively.Full size imageBacteriocyte-associated endosymbiontsUsing fluorescent in situ hybridisation, we determine whether the Sodalis-allied symbionts we sequenced are localised in bacteriocytes to confirm they are the associations first observed by Lillienstern and Jungen in the early 1900’s [10, 11].Consistent with Lilienstern’s findings [11], we found the Sodalis symbiont in Formica ants is distributed in bacteriocytes surrounding the midgut in adult queens (Fig. 3A). The symbionts are also found in eggs and ovaries of adult queens, indicating they are vertically transmitted from queens to offspring (Fig. 3B–C). Sectioning of F. cinerea larvae shows the bacteriocytes to be arranged in a single layer of cells surrounding the midgut, as well as in clusters of bacteriocytes closely situated to the midgut (Fig. 3D–D’). In adult Plagiolepis queens, the symbiont was not present in bacteriocytes around the midgut, suggesting the symbiont may play a more substantive role in larval development or pupation and then migrates to the ovaries prior to or during metamorphosis. Apart from that, the localisation of the symbiont in Plagiolepis was the same as in Formica – symbionts in larval midgut bacteriocytes, ovaries and eggs (Fig. S3) – supporting Jungen’s cytological findings [10]. Bacteriocytes are also found surrounding the midgut in Camponotus and Cardiocondyla ants [8, 30, 31] indicating the symbionts are localised in a similar manner in all four ant lineages.Fig. 3: Anatomical localisation of symbiont in Formica ants.Fluorescent in situ hybridisation (FISH) generated images showing the localisation of symbionts in Formica ants. A–C Whole mount FISH of Formica fusca: queen gut (A, crop and proventriculus on the right, midgut in the middle, hindgut and Malpighian tubules on the left), ovaries (B) and egg (C). DAPI staining of host tissue in blue, symbiont stained in red. D–D’. FISH on transverse cytological sections of Formica cinerea larva midgut. DAPI staining only, showing host nuclei of bacteriocytes in a single layer surrounding the midgut (D), and a magnified region highlighting symbionts in red localised within bacteriocytes and in a bacteriome (D’). A FISH image of the symbiont-free midgut of a Formica lemani queen is available as Fig. S11.Full size imageConservation of metabolic functions in ant endosymbiontsDespite on-going genome reduction, obligate symbionts of insects typically retain gene networks required for maintaining the symbiosis with their host, such as pathways for synthesising essential nutrients. This has resulted in the symbionts of sap- and blood-feeding insects converging on genomes that have retained the same sets of metabolic pathways – to synthesise essential nutrients missing in their hosts’ diets [32, 33]. Here we compare the metabolic pathways retained in the reduced genomes of the four bacteriocyte-associated symbionts of ants to test the hypothesis that have been acquired to perform similar functions. For this, we assess whether they have consistently retained metabolic pathways to synthesise the same key nutrients. Two major patterns stand out.The first major pattern we find is that the four ant symbionts have all retained the shikimate pathway, which produces chorismate, along with most of the steps necessary to produce tyrosine from this precursor (Tables 1 and S2). Both the symbiont of Formica and Westeberhardia each lack one of the genes required to produce tyrosine. However, in Westeberhardia it is believed the host encodes the missing gene, supplying the enzyme to fulfil the final step of the pathway [8]. Intriguingly, we find that this gene is also present in the Formica ant genomes (Fig. S4). In addition, all symbionts except Westeberhardia can produce phenylalanine which is a precursor that can be converted to tyrosine by their hosts [5, 34, 35]. Tyrosine is important for insect development as it is used to produce L-DOPA, which is a key component of insect cuticles [5]. Tyrosine is also a precursor for melanin synthesis, which is important in protection against pathogens, and plays a fundamental role in neurotransmitters and hormone production [36, 37]. In several species of ants, weevils, and other beetles, symbionts are believed to provision hosts with tyrosine, and it has been shown experimentally in several of these species that removal or inhibition of their symbionts causes cuticle development to suffer [38,39,40,41,42,43,44,45,46,47]. A thicker cuticle has been shown to help symbiont-carrying grain beetles resist desiccation [43], and defend against natural enemies [48]. However, female reproduction is delayed at higher humidity, suggesting a metabolic cost to carrying their Bacteroidetes symbiont. Tyrosine provisioning is also the likely function of Westeberhardia in Cardiocondyla ants, as this is one of the few nutrient pathways retained in this symbiont. Our analysis confirms the shikimate pathway, and the symbiont portions of the tyrosine pathway, have been retained in Westeberhardia from three phylogenetically diverse Cardiocondyla lineages, providing additional support for this hypothesis. In addition to tyrosine, most of the symbionts have retained the capacity to produce vitamin B9 (tetrahydrofolate) and all can perform the single step conversions necessary to produce alanine and glycine. However, our gene enrichment analysis indicates that tyrosine, and the associated chorismate biosynthetic process, are the only enriched vitamin or amino acid pathways that are shared by all of the symbiont genomes (Table S1). This suggests that provisioning of tyrosine by symbionts, or tyrosine precursors, is of general importance across all bacteriocyte-associated symbioses of ants.Table 1 Comparison of the retention and losses of metabolic pathways for key nutrients across ant symbionts.Full size tableThe second major pattern emerging from our comparative analysis is that there are clear differences in the pathways lost or retained across symbionts (Tables 1 and S2). This is most evident when comparing Blochmannia with Westeberhardia, the latter of which has lost the capacity to synthesise most essential nutrients. The symbionts of Formica or Plagiolepis, in contrast, have retained the capacity to synthesise many of the same amino acids and B vitamins as Blochmannia, suggesting they may perform similar functions for their hosts. However, Blochmannia has retained more biosynthetic pathways, particularly those involved in the synthesis of essential amino acids. Previous experimental studies have confirmed that Blochmannia provisions hosts with essential amino acids [1]. The absence of several core essential amino acids in the Formica and Plagiolepis symbionts may reflect differences in the dietary ecology of the different ant genera. The retention of the full complement of essential amino acids biosynthetic pathways in the highly reduced genome of Blochmannia does however indicate it plays a more substantive nutrient-provisioning role for its hosts than the other ant symbionts we investigated.Previous work on the extracellular gut symbionts of several arboreal ant lineages identified nitrogen recycling via the urease operon as a function that may be of key importance for ant symbioses [1, 2, 49, 50]. However, we do not find any evidence that the symbionts of Formica, Plagiolepis, or Cardiocondyla play a role in nitrogen recycling via the urease operon (Table 1). This suggests that nitrogen recycling may play an important role for more strictly herbivorous ants, such as Cephalotes. Our results indicate tyrosine supplementation by symbionts may be universally required for essential physiological process across a broader range of ant lineages.The origins and losses of symbioses in Formica and Cardiocondyla
    We investigated the presence of the symbiont in phylogenetically diverse Formica and Cardiocondyla species to identify the evolutionary origins and losses of the symbiosis. Although the symbiont in Plagiolepis was present in P. pygmaea and two unknown Plagiolepis species we investigated, we did not have sufficient phylogenetic sampling to assess the origins of the symbiosis.In Formica, we find the symbiont is restricted to a single clade in the paraphyletic Serviformica group (Fig. 4A). The species in this clade are socially polymorphic, forming both multi-queen and single-queen colonies [51]. Based on a previously dated phylogeny of Formica ants, we estimate the symbiosis originated approximately 12–22 million years ago [52]. In Cardiocondyla, the symbiosis is widespread throughout the genus. The prevalence of the symbiont in Cardiocondyla, in combination with its highly reduced genome, suggests it is a very old association that likely dates back to the origins of the ant genus some 50–75 million years ago [53]. The symbiont was also absent in two clades, the argentea and palearctic groups (Fig. 4B). This may represent true evolutionary losses in these clades. It may be that these losses are linked to a notable change in social structure in these two Cardiocondyla clades, having gone from the ancestral state of maintaining multi-queen colonies to single-queen colonies [54], however it is not clear how this could impact the symbiosis.Fig. 4: Phylogenetic distribution of symbionts in queens of Formica and Cardiocondyla ants.Pie charts represent the proportion of Formica (A) and Cardiocondyla (B) queens sampled that carried the symbiont (red) and those that did not (grey). Numbers represent the number of queens positive for the symbiont over the total number of queens sampled (intracolony infection frequencies in Table S5). See the supplementary material for the statistical testing of differences in prevalence within Serviformica Clade 1. The Formica phylogeny is based on [81] and the Cardiocondyla phylogeny is based on [83], with major clades highlighted. Dashed lines indicate species added to the original source phylogeny based on additional published phylogenies (specified in the Taxonomic Analysis section of the methods). Starred names are provisional names of a recognised morphospecies to be described by B. Seifert.Full size imageEvidence of variation in colony-level dependence on symbiontsObservations from individual studies on F. cinerea and F. lemani [10, 11], as well as Cardiocondyla obscurior [8], reported rare cases of ant queens not harbouring their symbionts in nature. This called into question the degree to which these insects depend on symbionts for nutrients, and whether the symbiosis may be breaking down in certain host lineages. However, given the limited number of species and populations studied, it is unclear how often colonies are maintained with uninfected queens, and whether this varies across species, suggesting species may differ in their dependence on their symbiont. To answer this question, we assessed the presence of the symbionts in 838 samples from 147 colonies of phylogenetically diverse Formica and Cardiocondyla species collected across 8 countries.Our investigation reveals the natural occurrence of uninfected queens is a widespread phenomenon in many Formica and Cardiocondyla species (Fig. 4). We confirmed the absence of symbionts in queens, and that they have not been replaced with another bacterial or fungal symbiont, using multiple approaches including diagnostic PCR, metagenomic and deep-coverage amplicon sequencing (Tables S3,  S4, Figs. S5, S6). Wolbachia was high in relative abundance, especially in Formica ants, but was not sufficiently present across samples to be a feasible replacement. There was also clear evidence of variation across host species. In Formica, queens and workers of F. fusca always carried the symbiont, whereas queens and workers of F. lemani, F. cinerea, and F. selysi showed varying degrees of individuals not carrying the symbionts (Fig. 4A, Table S5). A similar pattern can be seen in Cardiocondyla, where queens of several species, such as C. obscurior, always carry the symbiont, compared to lower incidences in other species (Fig. 4B). Klein et al [8] identified a single C. obscurior colony with uninfected queens in Japan. However, queens of this species nearly always carry the symbiont in nature.The degradation and eventual loss of symbionts from bacteriocytes has been reported in males, and in sterile castes of aphids and ants [55], which do not transmit symbionts to offspring. In reproductive females, bacteriocytes may degrade as a female ages; however, symbionts are typically retained at high bacterial loads in the ovaries, as this is required to maintain the symbionts within the germline [31]. All of the symbiotic ant species we investigated maintain multi-queen colonies, and the vast majority had at least one queen, often more, within a colony that carried the symbiont (Table S5). We hypothesize that species that maintain colonies with uninfected queens may be able to retain sufficient colony-level fitness with only a fraction of queens harbouring the symbiont and receiving its nutritive benefits.Dependence on symbionts in a socioecological contextThe retention of symbionts in queens and workers of some species, but not others, suggests species either differ in their dependence on symbiont-derived nutrients, or that symbionts have lost the capacity to make nutrients in certain host lineages. Our analysis of symbiont genomes did not reveal any structural differences, such as the disruption of metabolic pathways, which could explain differences in symbiont retention between host species (Table S2). This suggests differences in the retention of symbionts may reflect differences in host ecologies.In ants, which occupy a wide range of feeding niches, reliance on symbiont-derived nutrients will largely depend on lineage-specific feeding ecologies. For example, several species of arboreal Camponotus ants have been shown to be predominantly herbivorous [56]. Blochmannia, in turn, has retained the capacity to synthesise key nutrients lacking in their plant-based diets, such as essential amino acids [1]. Blochmannia is also always present in queens and workers [31], which is a testament to the importance of these nutrients for the survival of its primarily herbivorous host [13]. In contrast, Formica and Cardiocondyla species are thought to have a more varied diet [14]. Diet flexibility and altered foraging efforts may therefore reduce their reliance on a limited number of symbiont-derived nutrients allowing colonies of some species to persist with uninfected queens in certain contexts. Silvanid beetles and grain weevils, for example, can survive in the absence of their tyrosine-provisioning symbionts [38, 57, 58] when provided nutritionally balanced diets, in the laboratory [57] or in cereal grain elevators [59, 60]. Similarly, studies on Cardiocondyla and Camponotus ants have shown they can maintain sufficient colony health in the absence of their symbionts, if provided a balanced diet [31, 61]. It would be interesting to know whether species of Formica and Cardiocondyla that always carry the symbiont in nature, such as F. fusca and C. obscurior, have more restricted diets with less access to nutrients such as tyrosine, as this may explain their dependence on their symbiont for nutrients and tendency to harbour them in queens.Although it is unusual for bacteriocyte-associated symbionts to be absent in reproductive females, the fact that it is simultaneously occurring in phylogenetically diverse species from many locations suggests the symbiosis may have persisted in this manner over evolutionary time. Perhaps through diet flexibility colonies can be maintained with uninfected queens in some contexts, however we expect them to be disadvantaged in other ecological scenarios. Fluctuating environmental conditions may therefore eventually purge asymbiotic queens from lineages, allowing the symbiosis to be retained over longer periods of evolutionary time. The multiple-queen colony lifestyle in all symbiotic Formica and Cardiocondyla species we investigated may also provide an additional social buffer that limits the costs to individual queens being asymbiotic. Workers will still nourish larvae and queens without symbionts and colony fitness may be maintained through the reproductive output of nestmate queens that carry the symbiont. There may also be an adaptive explanation for the losses if, for example, metabolic costs to maintain the symbiosis trade off in a context dependent manner [44, 62, 63]. Under this scenario, maintaining a mix of infected and uninfected queens may benefit a colony by allowing for optimal reproduction under a broader range of environmental scenarios.Our data suggest that symbiotic relationships can evolve to solve common problems but also rapidly break down if the symbiosis is no longer required, or potentially when costs are too high [44]. We have identified tyrosine provisioning as a possible unifying function across bacteriocyte-associated symbionts of ants. But we have also shown species can vary in how much they depend on symbionts for nutrients. Our results demonstrate that ants have a unique labile symbiotic system, allowing us to better understand the evolutionary forces that influence the persistence and breakdown of long-term endosymbiotic mutualisms.
    Candidatus Liliensternia hugann and Candidatus Jungenella plagiolepisWe propose the names Candidatus Liliensternia hugann for the Sodalis-allied symbiont found in Formica. The genus name is in honour of Margarete Lilienstern who first identified the symbiont [11]. The species name is derived from the combined first names of the first authors parents. Similarly, we propose the name of Candidatus Jungenella plagiolepis for the Plagiolepis-bound symbiont. The genus name is in honour of Hans Jungen who originally discovered the symbiont [10], and the species name is derived from Plagiolepis, the genus in which the symbiont can be found. More

  • in

    Aurochs roamed along the SW coast of Andalusia (Spain) during Late Pleistocene

    Theodor, J. M., Erfort, J. & Métais, G. The earliest artiodactyls: Diacodexeidae, Dichobunidae, Homacodontidae, Leptochoeridae and Raoellidae. in Evolution of Artiodactyls (eds. Prothero, D.R. & Foss, S. E.). 32–58. (Johns Hopkins University, 2007).Badiola, A. et al. The role of new Iberian finds in understanding European Eocene mammalian paleobiogeography. Geol. Acta. 7(1–2), 243–258 (2009).
    Google Scholar 
    Boivin, M. et al. New material of Diacodexis (Mammalia, Artiodactyla) from the early Eocene of Southern Europe. Geobios 51(4), 285–306 (2018).Article 

    Google Scholar 
    Ellenberger, P. Sur les empreintes de pas des gros mammiféres de l’Eocene supérieur de Garrigues-Ste-Eulalie (Gard). Palaeovertebr. Mém. Jubil. R. Lavocat. 13, 37–78 (1980).
    Google Scholar 
    Santamaría, R. L. G. & Casanovas-Cladellas, M. L. Nuevos yacimientos con icnitas de mamíferos del Oligoceno de los alrededores de Agramunt (Lleida, España). Paleont. Evol. 23, 141–152 (1990).
    Google Scholar 
    Sarjeant, W. A. S. & Langston, W. Jr. Vertebrate footprints and invertebrate traces from the Chadronian (Late Eocene) of Trans-Pecos. Texas. Mem. Mus. Bull. 36, 1–86 (1994).
    Google Scholar 
    Costeur, L., Balme, C. & Legal, S. Early Oligocene mammal tracks from southeastern France. Hist. Biol. 16(4), 257–267. https://doi.org/10.1080/10420940902953197 (2009).Article 

    Google Scholar 
    Wroblewski, A.F.-J. & Gulas-Wroblewski, B. E. Earliest evidence of marine habitat use by mammals. Sci. Rep. 11, 8846. https://doi.org/10.1038/s41598-021-88412-3 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fornós, J. J. & Pons-Moya, J. Icnitas de Myotragus balearicus del yacimiento de Ses Piquetes (Santanyi, Mallorca). Bol. Soc. Hist. Nat. Balears 26, 135–144 (1982).
    Google Scholar 
    Flor, G. Estructuras de deformación por pisadas de cérvidos en la duna cementada de Gorliz (Vizcaya, N de España). Rev. Soc. Geol. Esp. 2(1–2), 23–29 (1989).
    Google Scholar 
    Fornós, J. J., Bromley, R. G., Clemmensen, L. B. & Rodríguez-Perea, A. Tracks and trackways of Myotragus balearicus Bate (Artiodactyla, Caprinae) in Pleistocene aeolianites from Mallorca (Balearic Islands, Western Mediterranean). Palaeogr. Palaeocl. Palaeoecol. 180, 277–313 (2002).ADS 
    Article 

    Google Scholar 
    Neto de Carvalho, C. Vertebrate tracksites from the Mid-Late Pleistocene eolianites of Portugal: The first record of elephant tracks in Europe. Geol. Q. 53(4), 407–414 (2009).
    Google Scholar 
    Neto de Carvalho, C., Saltão, S., Ramos, J. C. & Cachão, M. Pegadas de Cervus elaphus nos eolianitos plistocénicos da ilha do Pessegueiro (SW Alentejano, Portugal). Ciênc. Terra 5, 36–40 (2003).
    Google Scholar 
    Neto de Carvalho, C., Figueiredo, S. & Belo, J. Vertebrate tracks and trackways from the Pleistocene eolianites of SW Portugal. Commun. Geol. 103(1), 101–116 (2016).CAS 

    Google Scholar 
    Neto de Carvalho, C. et al. Paleoecological implications of large-sized wild boar tracks recorded during the Last Interglacial (MIS 5) at Huelva (SW Spain). Palaios https://doi.org/10.2110/palo.2020.058 (2020).Article 

    Google Scholar 
    Neto de Carvalho, C. et al. First vertebrate tracks and palaeoenvironment in a MIS-5 context in the Doñana National Park (Huelva, SW Spain). Quat. Sci. Rev. https://doi.org/10.1016/j.quascirev.2020.106508 (2020).Article 

    Google Scholar 
    Cardoso, J. L. Les grands mammifères du Pléistocène supérieur du Portugal. Essai de synthése. Geobios 29(2), 235–250 (1996).Article 

    Google Scholar 
    Sala, M. T. N., Pantoja, A., Arsuaga, J. L. & Algaba, M. Presencia de bisonte (Bison priscus Bojanus, 1827) y uro (Bos primigenius Bojanus, 1827) en las cuevas del Búho y de la Zarzamora (Segovia, España). Munibe 61, 43–55 (2010).
    Google Scholar 
    Figueiredo, S. D. & Sousa, M. F. O registo de bovídeos plistocénicos em Portugal. in Livro de Resumos das IV Jornadas de Arqueologia do Vale do Tejo. Vol. 10. (Centro Português de Geo-História e Pré-História, 2017).Barr, K. & Bell, M. Neolithic and Bronze age ungulate footprint-tracks of the Severn Estuary: Species, age, identification and the interpretation of husbandry practices. Environ. Archaeol. 22(1), 1–15 (2017).Article 

    Google Scholar 
    Bell, M. Making One’s Way in the World (Oxbow Books, 2020).Book 

    Google Scholar 
    Díaz-Martínez, I. et al. Multi-aged social behavior based on artiodactyl tracks in an early Miocene palustrine wetland (Ebro Basin, Spain). Sci. Rep. 10, 1099. https://doi.org/10.1038/s41598-020-57438-4 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quintana, J. Descripción de un rastro de Myotragus e icnitas de Hypnomys del yacimiento cuaternario de Ses Penyes d’es Perico (Ciutadella de Menorca, Balears). Paleont. Evol. 26–27, 271–279 (1993).
    Google Scholar 
    Muñiz, F. et al. Following the last Neanderthals: Mammal tracks in Late Pleistocene coastal dunes of Gibraltar (S Iberian Peninsula). Quat. Sci. Rev. 217, 297–309 (2019).ADS 
    Article 

    Google Scholar 
    Altuna, J. Fauna de mamíferos de los yacimientos prehistóricos de Guipúzcoa. Con catálogo de los mamíferos cuaternarios del Cantábrico y del Pirineo occidental. Munibe 24, 1–464 (1972).
    Google Scholar 
    López González, F., Vila Taboada, M. & Grandal d’Anglade. Sobre los grandes bóvidos pleistocenos (Bovidae, Mammalia) en el NO de la Península Ibérica. Cad. Lab. Xeol. Laxe 24, 57–71 (1999).Sommer, R. S., Kalbe, J., Ekström, J., Benecke, N. & Liljengren, R. Range dynamics of the reindeer in Europe during the last 25,000 years. J. Biogeogr. 41, 298–306. https://doi.org/10.1111/jbi.12193 (2014).Article 

    Google Scholar 
    Whittle, A., Antoine, S., Gardiner, N., Milles, A. & Webster, A. Two Later Bronze Age occupations and an Iron Age channel on the Gwent foreshore. Bull. Board Celt. Stud. 36, 200–223 (1989).
    Google Scholar 
    Aldhouse-Green, S. et al. Prehistoric human footprints from the Severn Estuary at Uskmouth and Magor Pill, Gwent, Wales. Archae. Cambr. 141, 4–55 (1992).
    Google Scholar 
    Allen, J. R. L. Subfossil mammalian tracks (Flandrian) in the Severn Estuary, S.W. Britain: Mechanics of formation, preservation and distribution. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 352(1352), 481–518 (1997).ADS 
    PubMed Central 
    Article 

    Google Scholar 
    Bell, M. Prehistoric coastal communities: the Mesolithic in western Britain. in CBA Research Report. Vol. 149. (Council for British Archaeology, 2007).Bell, M. The Bronze Age in the Severn estuary. in Research Report. Vol. 172. (Council for British Archaeology, 2013).Scales, R. Footprint tracks of people and animals. in Prehistoric Coastal Communities: The Mesolithic in Western Britain (ed. Bell, M.). Vol. 149. 139–147. CBA Research Report 149. (Council of British Archaeology, 2007).Roberts, G. Ephemeral, subfossil mammalian, avian and hominid footprints within Flandrian sediment exposures at Formby Point, Sefton Coast, North West England. Ichnos 16, 33–48 (2009).Article 

    Google Scholar 
    Waddington, C. Low Hauxley, Northumberland: A review of archaeological interventions and site condition. Archael. Res. Serv. 2010/25 (2010).Eadie, G. & Waddington, C. Rescue recording of an eroding inter-tidal peat bed at Lower Hauxley, Northumberland (6109). Archael. Res. Serv. 2013/17 (2013).Burns, A. The prehistoric footprints at Formby. in Sefton Coast Landscape Partnership Scheme (2014).Pandolfi, L., Petronio, C. & Salari, L. Bos primigenius Bojanus, 1827 from the Early Late Pleistocene deposit of Avetrana (southern Italy) and the variation in size of the species in southern Europe: Preliminary report. J. Geol. Res. https://doi.org/10.1155/2011/245408 (2011).Article 

    Google Scholar 
    Currant, A. P. A review of the Quaternary mammals of Gibraltar. in Neanderthals on the Edge: 150th Anniversary Conference of the Forbes’ Quarry Discovery, Gibraltar (eds. Stringer, C. B., Barton, R. N. E. & Finlayson, J.C.). 201–206. (Oxbow, 2000).Penela, A. J. M. Los grandes mamíferos del yacimiento acheulense de la Solana del Zamborino, Fonelas (Granada, España). Antr. Paleoecol. Hum. 5, 29–187 (1988).
    Google Scholar 
    Bataille, G. Prehistoric Painting. Lascaux or the Birth of Art (MacMillan, 1980).
    Google Scholar 
    Zazo, C. et al. Palaeoenvironmental evolution of the Barbate-Trafalgar coast (Cadiz) during the last ~140 ka: Climate, sea-level interactions and tectonics. Geomorphology 100, 212–222 (2008).ADS 
    Article 

    Google Scholar 
    Zazo, C. et al. Landscape evolution and geodynamic controls in the Gulf of Cadiz (Huelva coast, SW Spain) during the Late Quaternary. Geomorphology 68, 269–290. https://doi.org/10.1016/j.geomorph.2004.11.022 (2005).ADS 
    Article 

    Google Scholar 
    García de Domingo, A., González Lastra, J., Hernaiz Huerta, P. P., Zazo Cardeña, C. & Goy Goy, J. L. Mapa Geológico de la Hoja No. 1073 (Vejer de la Frontera). Mapa Geológico de España a Escala 1:50.000. Segunda Serie (MAGNA). http://info.igme.es/cartografiadigital/geologica/Magna50Hoja.aspx?Id=1073&language=es (©Instituto Geológico y Minero de España (IGME), 1990).Demathieu, G., Ginsburg, L., Guérin, C. & Truc, G. Étude paléontologique, ichnologique et paléoécologique du gisêment oligocène de Saignon (bassin d’Apt, Vaucluse). Bull. Mus. Natl. Hist. Nat. 6(2), 153–183 (1984).
    Google Scholar 
    Bang, P. & Dahlstrøm, P. Animal Tracks and Signs (Oxford University Press, 2001).
    Google Scholar 
    Wright, E. The History of the European Aurochs (Bos primigenius) from the Middle Pleistocene to Its Extinction: An Archaeological Investigation of Its Evolution, Morphological Variability and Response to Human Exploitation. (PhD. Thesis, University of Sheffield, 2013).Koenigswald, W. V., Sander, P. M. & Walders, M. The Upper Pleistocene tracksite Bottrop-Welheim (Germany). Acta Zool. Cracov. 39(1), 235–244 (1996).
    Google Scholar 
    Martínez-Navarro, B., Rook, L., Papini, M. & Libsekal, Y. A new species of bull from the Early Pleistocene paleoanthropological site of Buia (Eritrea): Parallelism on the dispersal of the genus Bos and the Acheulian culture. Quat. Intern. 212(2), 169–175. https://doi.org/10.1016/j.quaint.2009.09.003 (2010).Article 

    Google Scholar 
    Van Vuure, C. Retracing the Aurochs: History, Morphology and Ecology of an Extinct Ox (Coronet Books, 2005).
    Google Scholar 
    Franks, J. W. Interglacial deposits at Trafalgar Square, London. N. Phytologist 59(2), 145–152 (1960).Article 

    Google Scholar 
    Estévez, J. & Saña, M. Auerochsenfunde auf der Iberischen Halbinsel. in Archäologie und Biologie des Auerochsen (ed. Weniger, G.-C.) (Neanderthal Museum, 1999).Mona, S. et al. Population dynamic of the extinct European aurochs: Genetic evidence of a north-south differentiation pattern and no evidence of post-glacial expansion. BMC Evol. Biol. 10, 1–13 (2010).Article 
    CAS 

    Google Scholar 
    Rodríguez-Vidal, J. et al. Undrowning a lost world—The Marine isotope stage 3 landscape of Gibraltar. Geomorphology 203, 105–114 (2013).ADS 
    Article 

    Google Scholar 
    Pfeiffer, T. Systematic relationship between the Bovini with special references to the fossil taxa Bos primigenius Bojanus and Bison priscus Bojanus. in Archäologie und Biologie des Auerochsen (ed. Weniger, G.-C.). 59–70. (Neanderthal Museum, 1999).Zazula, G. D. et al. A late Pleistocene steppe bison (Bison priscus) partial carcass from Tsiigehtchic, Northwest Territories, Canada. Quat. Sci. Rev. 28(25–26), 2734–2742 (2009).ADS 
    Article 

    Google Scholar 
    Boeskorov, G. G. et al. The Yukagir Bison: The exterior morphology of a complete frozen mummy of the extinct steppe bison, Bison priscus from the early Holocene of northern Yakutia, Russia. Quat. Intern. 406, 94–110. https://doi.org/10.1016/j.quaint.2015.11.084 (2016).Article 

    Google Scholar 
    Ekström, J. The Late Quaternary History of the Urus (Bos primigenius Bojanus 1827) in Sweden. PhD. Thesis. (Lund University, 1993).Grange, T. et al. The evolution and population diversity of Bison in Pleistocene and Holocene Eurasia: Sex matters. Diversity 10(3), 65. https://doi.org/10.3390/d10030065 (2018).Article 

    Google Scholar 
    Castaños, J., Castaños, P. & Murelaga, X. First complete skull of a Late Pleistocene Steppe Bison (Bison priscus) in the Iberian Peninsula. Ameghiniana 53(5), 543–551. https://doi.org/10.5710/amgh.03.06.2016.2995 (2016).Article 

    Google Scholar 
    Álvarez-Lao, D. J., Kahlke, R.-D., García, N. & Mol, D. The Padul mammoth finds: On the southernmost record of Mammuthus primigenius in Europe and its southern spread during the Late Pleistocene. Palaeogeogr. Palaeocl. Palaeoecol. 278(1–4), 57–70 (2009).ADS 
    Article 

    Google Scholar 
    Loope, D. B. Recognizing and utilizing vertebrate tracks in cross section: Cenozoic hoofprints from Nebraska. Palaios 1, 141–151 (1986).ADS 
    Article 

    Google Scholar 
    Albarella, U., Dobney, K. & Rowley-Conwy, P. Size and shape of the Eurasian wild boar (Sus scrofa), with a view to the reconstruction of its Holocene history. Environ. Archaeol. 14, 103–136 (2009).Article 

    Google Scholar 
    Davis, S. J. M. The effects of temperature change and domestication on the body size of Late Pleistocene to Holocene mammals of Israel. Palaeobiology 7, 101–114 (1981).Article 

    Google Scholar 
    Cerilli, E. & Petronio, C. Biometrical variations of Bos primigenius Bojanus 1827 from middle Pleistocene to Holocene. in Proceedings of the International Symposium on ‘Ongulés/Ungulates’, Toulouse. 37–42. (1991).Davis, S. J. M. & Mataloto, R. Animal remains from Chalcolithic of São Pedro (Redondo, Alentejo): Evidence for a crisis in the Mesolithic. Rev. Port. Arqueol. 15, 47–85 (2012).
    Google Scholar 
    Mariezkurrena, K. & Altuna, J. Biometría y diformismo sexual en el esqueleto de Cervus elaphus würmiense, postwürmiense y actual del Cantábrico. Munibe (Antr.-Arkeol.) 35, 203–246 (1983).
    Google Scholar 
    Davis, S. J. M. The mammals and birds from the Gruta do Caldeirão, Portugal. Rev. Port. Arqueol. 5, 29–98 (2002).CAS 

    Google Scholar 
    Barr, K. Prehistoric Avian, Mammalian and H. sapiens Footprint—Tracks from Intertidal Sediments as Evidence of Human Palaeoecology. PhD. Thesis. (University of Reading, 2018).Hall, J. G. A comparative analysis of the habitat of the extinct aurochs and other prehistoric mammals in Britain. Ecography 31, 187–190 (2008).Article 

    Google Scholar 
    Bicho, N. F., Gibaja, J. F., Stiner, M. & Manne, T. L. Paléolithique supérieur au sud du Portugal: Le site du Vale do Boi. L’antropologie 114, 48–67 (2010).
    Google Scholar 
    Bicho, N. & Haws, J. The Magdelian in central and southern Portugal: Human ecology at the end of the Pleistocene. Quatern. Int. 272–273, 6–16 (2012).Article 

    Google Scholar 
    Cortés-Sánchez, M. et al. Palaeoenvironmental and cultural dynamics of the coast of Málaga (Andalusia, Spain) during the Upper Pleistocene and early Holocene. Quatern. Sci. Rev. 27, 2176–2193 (2008).ADS 
    Article 

    Google Scholar 
    Bohórquez, A. M., Ruiz, C. B., Caparrós, M. & Moigne, A. M. Una aproximación a la compreensión de la fauna de macromamiferos de la Cueva de Zafarraya (Alcaucín, Málaga). Menga Rev. Prehist. Andalucía 3, 83–105 (2012).
    Google Scholar 
    Ripoll, M. P. & Maroto, J. L. fauna mediterránea durante el Pleistoceno superior del Mediterráneo Ibérico. Kobie Serie Anejo 18, 27–38 (2021).
    Google Scholar 
    Lazo, A. Ranging behaviour of feral cattle (Bos taurus) in Doñana National Park, S.W. Spain. J. Zool. 236(3), 359–369. https://doi.org/10.1111/j.1469-7998.1995.tb02718.x (1995).Article 

    Google Scholar 
    AliceVision. Meshroom: V2021.1.0. GNU-GPL. https://alicevision.org/ (2020).OpenDroneMap Authors ODM. A Command Line Toolkit to Generate Maps, Point Clouds, 3D Models and DEMs from Drone, Balloon or Kite Images. OpenDroneMap/ODM GitHub Page. https://github.com/OpenDroneMap/WebODM (2020).Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F. & Ranzuglia, G. MeshLab: an open-source mesh processing tool. in Sixth Eurographics Italian Chapter Conference. 129–136. MeshLab V. 2020.12. https://www.meshlab.net/ (2008).CloudCompare. V2.11.0. GNU-GPL. https://www.cloudcompare.org (2020).Zhukov, S., Iones, A. & Kronin, G. An ambient light illumination model. Render. Tech. 98, 45–55 (1998).Article 

    Google Scholar 
    Vergne, R., Pacanowski, R., Barla, P., Granier, X., & Schlick, C. Radiance scaling for versatile surface enhancement. in Proceedings of the 2010 ACMSIGGRAPH Symposium on Interactive 3D Graphics and Games.143–150. (2010). More

  • in

    Reduction of microbial diversity in grassland soil is driven by long-term climate warming

    Rands, M. R. et al. Biodiversity conservation: challenges beyond 2010. Science 329, 1298–1303 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Diaz, S., Fargione, J., Chapin, F. S. III & Tilman, D. Biodiversity loss threatens human well-being. PLoS Biol. 4, e277 (2006).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science https://doi.org/10.1126/science.aai9214 (2017).IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hautier, Y. et al. Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature 508, 521–525 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bascompte, J., García, M. B., Ortega, R., Rezende, E. L. & Pironon, S. Mutualistic interactions reshuffle the effects of climate change on plants across the tree of life. Sci. Adv. 5, eaav2539 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C. & Finnegan, S. Climate change and the past, present, and future of biotic interactions. Science 341, 499–504 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).PubMed 
    Article 

    Google Scholar 
    Fei, S. et al. Divergence of species responses to climate change. Sci. Adv. 3, e1603055 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, D., Miller, J. E. D. & Harrison, S. Climate drives loss of phylogenetic diversity in a grassland community. Proc. Natl Acad. Sci. USA 116, 19989–19994 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bay, R. A. et al. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science 359, 83–86 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Xue, K. et al. Annual removal of aboveground plant biomass alters soil microbial responses to warming. mBio https://doi.org/10.1128/mBio.00976-16 (2016).Zhou, J. et al. Microbial mediation of carbon-cycle feedbacks to climate warming. Nat. Clim. Change 2, 106–110 (2012).CAS 
    Article 

    Google Scholar 
    Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Blankinship, J. C., Niklaus, P. A. & Hungate, B. A. A meta-analysis of responses of soil biota to global change. Oecologia 165, 553–565 (2011).PubMed 
    Article 

    Google Scholar 
    Guo, X. et al. Climate warming leads to divergent succession of grassland microbial communities. Nat. Clim. Change 8, 813–818 (2018).Article 

    Google Scholar 
    Guo, X. et al. Climate warming accelerates temporal scaling of grassland soil microbial biodiversity. Nat. Ecol. Evol. 3, 612–619 (2019).PubMed 
    Article 

    Google Scholar 
    Yuan, M. M. et al. Climate warming enhances microbial network complexity and stability. Nat. Clim. Change 11, 343–348 (2021).Article 

    Google Scholar 
    Thakur, M. P. et al. Climate warming promotes species diversity, but with greater taxonomic redundancy, in complex environments. Sci. Adv. 3, e1700866 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Xu, X., Sherry, R. A., Niu, S., Li, D. & Luo, Y. Net primary productivity and rain‐use efficiency as affected by warming, altered precipitation, and clipping in a mixed‐grass prairie. Glob. Change Biol. 19, 2753–2764 (2013).Article 

    Google Scholar 
    Luo, Y., Sherry, R., Zhou, X. & Wan, S. Terrestrial carbon‐cycle feedback to climate warming: experimental evidence on plant regulation and impacts of biofuel feedstock harvest. Glob. Change Biol. Bioenergy 1, 62–74 (2009).CAS 
    Article 

    Google Scholar 
    Chen, M.-M. et al. Effects of soil moisture and plant interactions on the soil microbial community structure. Eur. J. Soil Biol. 43, 31–38 (2007).CAS 
    Article 

    Google Scholar 
    Zhou, J. et al. Temperature mediates continental-scale diversity of microbes in forest soils. Nat. Commun. 7, 12083 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rousk, J. et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4, 1340–1351 (2010).PubMed 
    Article 

    Google Scholar 
    DeBruyn, J. M., Nixon, L. T., Fawaz, M. N., Johnson, A. M. & Radosevich, M. Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil. Appl. Environ. Microbiol. 77, 6295–6300 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Horn, D. J. et al. Soil microbial responses to increased moisture and organic resources along a salinity gradient in a polar desert. Appl. Environ. Microbiol. 80, 3034–3043 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Van Nuland, M. E. et al. Warming and disturbance alter soil microbiome diversity and function in a northern forest ecotone. FEMS Microbiol. Ecol. 96, fiaa108 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Reimer, L. C. et al. Bac Dive in 2022: the knowledge base for standardized bacterial and archaeal data. Nucleic Acids Res. 50, D741–D746 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).Article 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Banerjee, S. et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 13, 1722–1736 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ning, D. et al. A quantitative framework reveals ecological drivers of grassland microbial community assembly in respoÿnse to warming. Nat. Commun. 11, 4717 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tiedje, J. M. et al. Microbes and climate change: a research prospectus for the future. MBio, e00800-22 (2022). doi:10.1128/mbio.00800-22 (2022).Maestre, F. T. et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl Acad. Sci. USA 112, 15684–15689 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, D., Zhou, X., Wu, L., Zhou, J. & Luo, Y. Contrasting responses of heterotrophic and autotrophic respiration to experimental warming in a winter annual‐dominated prairie. Glob. Change Biol. 19, 3553–3564 (2013).
    Google Scholar 
    Sherry, R. A. et al. Lagged effects of experimental warming and doubled precipitation on annual and seasonal aboveground biomass production in a tallgrass prairie. Glob. Change Biol. 14, 2923–2936 (2008).Article 

    Google Scholar 
    Catchpole, W. & Wheeler, C. Estimating plant biomass: a review of techniques. Aust. J. Ecol. 17, 121–131 (1992).Article 

    Google Scholar 
    McLean, E. in Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties (ed Page, A. L.) 199–224 (1982).Buyer, J. S. & Sasser, M. High throughput phospholipid fatty acid analysis of soils. Appl. Soil Ecol. 61, 127–130 (2012).Article 

    Google Scholar 
    Zhou, J., Bruns, M. A. & Tiedje, J. M. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62, 316–322 (1996).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wu, L. et al. Phasing amplicon sequencing on Illumina Miseq for robust environmental microbial community analysis. BMC Microbiol. 15, 125 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zhou, J. et al. Reproducibility and quantitation of amplicon sequencing-based detection. ISME J. 5, 1303–1313 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Edgar, R. C. Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinformatics 34, 2371–2375 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Munoz, R. et al. Release LTPs104 of the all-species living tree. Syst. Appl. Microbiol. 34, 169–170 (2011).PubMed 
    Article 

    Google Scholar 
    Nuccio, E. E. et al. Climate and edaphic controllers influence rhizosphere community assembly for a wild annual grass. Ecology 97, 1307–1318 (2016).PubMed 
    Article 

    Google Scholar 
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2018).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Oliverio, A. M. et al. The global-scale distributions of soil protists and their contributions to belowground systems. Sci. Adv. 6, eaax8787 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andrews, S. FastQC: A Quality Control Tool For High Throughput Sequence Data (Babraham Bioinformatics, 2010).Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Patel, R. K. & Jain, M. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE 7, e30619 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Huson, D. H., Auch, A. F., Qi, J. & Schuster, S. C. MEGAN analysis of metagenomic data. Genome Res. 17, 377–386 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    R Core Team. R: A Language And Environment For Statistical Computing (R Foundation for Statistical Computing, 2014).Oksanen, J. et al. Package ‘vegan’. Community Ecology Package v.2 (2013).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage Publications, 2018).Barton, K. & Barton, M. K. Package ‘MuMIn’ v.1.18 (2015).Carver, R. Practical Data Analysis with JMP (SAS Institute, 2019).Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).Article 

    Google Scholar 
    Rosseel, Y. lavaan: An R Package for Structural Equation Modeling and More v.0.4-9 (BETA) (Ghent University, 2011). More

  • in

    Fleshy red algae mats act as temporary reservoirs for sessile invertebrate biodiversity

    Jones, C. G. et al. A framework for understanding physical ecosystem engineering by organisms. Oikos 119, 1862–1869 (2010).Article 

    Google Scholar 
    Kovalenko, K. E., Thomaz, S. M. & Warfe, D. M. Habitat complexity: approaches and future directions. Hydrobiologia 685, 1–17 (2012).Article 

    Google Scholar 
    Graham, N. A. J. & Nash, K. L. The importance of structural complexity in coral reef ecosystems. Coral Reefs 32, 315–326 (2013).Article 

    Google Scholar 
    Reid, W. V. Biodiversity hotspots. Trends Ecol. Evol. 13, 275–280 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Montefalcone, M., Morri, C., Peirano, A., Albertelli, G. & Bianchi, C. N. Substitution and phase shift within the Posidonia oceanica seagrass meadows of NW Mediterranean Sea. Estuar. Coast. Shelf Sci. 75, 63–71 (2007).Article 

    Google Scholar 
    Pergent, G. et al. Climate change and Mediterranean seagrass meadows: a synopsis for environmental managers. Mediterranean Mar. Sci. 15, 462–473 (2014).Article 

    Google Scholar 
    Berke, S. K. Functional groups of ecosystem engineers: a proposed classification with comments on current issues. Integr. Comp. Biol. 50, 147–157 (2010).Article 
    PubMed 

    Google Scholar 
    Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373 (1994).Article 

    Google Scholar 
    Meybeck, M. The global change of continental aquatic systems: dominant impacts of human activities. Water Sci. Technol. 49, 73–83 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Halpern, B. S., Selkoe, K. A., Micheli, F. & Kappel, C. V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 21, 1301–1315 (2007).Article 
    PubMed 

    Google Scholar 
    Duarte, C. M. Global change and the future ocean: a grand challenge for marine sciences. Front. Mar. Sci. 1, 1–16 (2014).Article 

    Google Scholar 
    Sunday, J. M. et al. Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nat. Clim. Chang. 7, 81–85 (2017).CAS 
    Article 

    Google Scholar 
    Conversi, A. et al. A holistic view of marine regime shifts. Philos. Trans. R. Soc. B Biol. Sci. 370, 1–8 (2015).Article 

    Google Scholar 
    Rocha, J., Yletyinen, J., Biggs, R., Blenckner, T. & Peterson, G. Marine regime shifts: drivers and impacts on ecosystems services. Philos. Trans. R. Soc. B Biol. Sci. 370, 1–12 (2015).Article 

    Google Scholar 
    Chase, J. M., Blowes, S. A., Knight, T. M., Gerstner, K. & May, F. Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 584, 238–243 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Cocito, S. Bioconstruction and biodiversity: their mutual influence. Sci. Mar. 68, 137–144 (2004).Article 

    Google Scholar 
    Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Keppel, G. et al. Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 21, 393–404 (2012).Article 

    Google Scholar 
    Coll, M. et al. The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS One 5, e11842 (2010).Bertolino, M. et al. Changes and stability of a Mediterranean hard bottom benthic community over 25 years. J. Mar. Biol. Assoc. U. Kingd. 96, 341–350 (2016).Article 

    Google Scholar 
    Hemminga, M. A. & Duarte, C. M. Seagrass Ecology (Cambridge University Press, 2000). https://doi.org/10.1017/CBO9780511525551.Nellemann, C. et al. Blue Carbon – The Role of Healthy Oceans in Binding Carbon. A Rapid Response Assessment (GRID-Arendal, 2009).Ondiviela, B. et al. The role of seagrasses in coastal protection in a changing climate. Coast. Eng. 87, 158–168 (2014).Article 

    Google Scholar 
    Romero, J., Pérez, M., Mateo, M. A. & Sala, E. The belowground organs of the Mediterranean seagrass Posidonia oceanica as a biogeochemical sink. Aquat. Bot. 47, 13–19 (1994).Article 

    Google Scholar 
    Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl Acad. Sci. USA. 106, 12377–12381 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tyler-Walters, H. Loose-lying mats of Phyllophora crispa on infralittoral muddy sediment. Mar. Inf. Netw. Biol. Sensit. Key Inf. Rev. 1–16 https://doi.org/10.17031/marlinhab.187.1 (2016).Bonifazi, A. et al. Unusual algal turfs associated with the rhodophyta Phyllophora crispa: benthic assemblages along a depth gradient in the Central Mediterranean Sea. Estuar. Coast. Shelf Sci. 185, 77–93 (2017).Article 

    Google Scholar 
    Navone, A., Bianchi, C. N., Orru, P. & Ulzega, A. Saggio di cartografia geomorfologica e bionomica nel parco marino di Tavolara-Capo Coda Cavallo. Oebalia 17, 469–478 (1992).Guiry, M. Macroalgae of Rhodophycota, Phaeophycota, Chlorophycota, and two genera of Xanthophycota. in European Register of Marine Species: A Check-list of the Marine Species in Europe and a Bibliography of Guides to their Identification. Collection Patrimoines Naturels (eds. Costello, M. J., Emblow, C. & White, R.) 20e38 (Collection Patrimoines Naturels, 2001).Zaitsev, Y. An Introduction to the Black Sea Ecology (Smil Edition and Publishing Agency ltd, 2008).Berov, D., Todorova, V., Dimitrov, L., Rinde, E. & Karamfilov, V. Distribution and abundance of phytobenthic communities: Implications for connectivity and ecosystem functioning in a Black Sea Marine Protected Area. Estuar. Coast. Shelf Sci. 200, 234–247 (2018).Article 

    Google Scholar 
    Bunker, F., Brodie, J. A., Maggs, C. A. & Bunker, A. R. Seaweeds of Britain and Ireland. (Wild Nature Press, 2017).Schmidt, N., El-Khaled, Y. C., Rossbach, F. I. & Wild, C. Fleshy red algae mats influence their environment in the Mediterranean Sea. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.721626 (2021).Rossbach, F. I., Casoli, E., Beck, M. & Wild, C. Mediterranean red macro algae mats as habitat for high abundances of serpulid polychaetes. Diversity 13, 265 (2021).Article 

    Google Scholar 
    Virnstein, R. W., & Carbonara, P. A. Seasonal abundance and distribution of drift algae and seagrasses in the mid-Indian river lagoon, Florida. Aquat. Bot. 23, 67–82 (1985).Article 

    Google Scholar 
    Norkko, J., Bonsdorff, E. & Norkko, A. Drifting algal mats as an alternative habitat for benthic invertebrates: species specific response to a transient resource. J. Exp. Mar. Bio. Ecol. 248, 79–104 (2000).CAS 
    Article 

    Google Scholar 
    Salovius, S., Nyqvist, M. & Bonsdorff, E. Life in the fast lane: macrobenthos use temporary drifting algal habitats. J. Sea Res. 53, 169–180 (2005).Article 

    Google Scholar 
    Arroyo, N. L., Aarnio, K., Mäensivu, M. & Bonsdorff, E. Drifting filamentous algal mats disturb sediment fauna: Impacts on macro-meiofaunal interactions. J. Exp. Mar. Bio. Ecol. 420–421, 77–90 (2012).Article 

    Google Scholar 
    McNeil, M. et al. Inter-reef Halimeda algal habitats within the Great Barrier Reef support a distinct biotic community and high biodiversity. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01400-8 (2021).Nelson, T. A. et al. Ecological and physiological controls of species composition in green macroalgal blooms. Ecology 89, 1287–1298 (2008).Article 
    PubMed 

    Google Scholar 
    Coffin, M. R. S. et al. Are floating algal mats a refuge from hypoxia for estuarine invertebrates? PeerJ 5, e3080 (2017).Barnes, R. S. K. Context dependency in the effect of Ulva-induced loss of seagrass cover on estuarine macrobenthic abundance and biodiversity. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 163–174 (2019).Article 

    Google Scholar 
    Hull, S. C. Macroalgal mats and species abundance: a field experiment. Estuar. Coast. Shelf Sci. 25, 519–532 (1987).Article 

    Google Scholar 
    Bohórquez, J. et al. Effects of green macroalgal blooms on the meiofauna community structure in the Bay of Cádiz. Mar. Pollut. Bull. 70, 10–17 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Miller, R. J. et al. Giant kelp, Macrocystis pyrifera, increases faunal diversity through physical engineering. Proc. R. Soc. B Biol. Sci. 285, 20172571 (2018).Teagle, H. & Smale, D. A. Climate-driven substitution of habitat-forming species leads to reduced biodiversity within a temperate marine community. Divers. Distrib. 24, 1367–1380 (2018).Article 

    Google Scholar 
    Dean, R. L. & Connell, J. H. Marine invertebrates in an algal succession. I. Variations in abundance and diversity with succession. J. Exp. Mar. Bio. Ecol. 109, 195–215 (1987).Article 

    Google Scholar 
    Buia, M. C., Gambi, M. C. & Zupo, V. Structure and functioning of Mediterranean seagrass ecosystems: an overview. Biol. Mar. Mediterr. 7, 167–190 (2000).
    Google Scholar 
    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).Article 

    Google Scholar 
    Hill, M. O. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432 (1973).Article 

    Google Scholar 
    Chao, A. et al. Quantifying sample completeness and comparing diversities among assemblages. Ecol. Res. 35, 292–314 (2020).Article 

    Google Scholar 
    El-Khaled, Y. C. et al. Fleshy Red Algae Mats Act as Temporary Reservoir for Sessile Invertebrate Biodiversity – Raw Data for Biodiversity Analysis, Species List and Detailed Output Data from iNext Procedure. https://doi.org/10.5281/zenodo.5653358 (2021).Viaroli, P. et al. Community shifts, alternative stable states, biogeochemical controls and feedbacks in eutrophic coastal lagoons: a brief overview. Aquat. Conserv. Mar. Freshw. Ecosyst. 18, S105–S117 (2008).Article 

    Google Scholar 
    Viaroli, P., Azzoni, R., Bartoli, M., Giordani, G. & Tajé, L. Evolution of the trophic conditions and dystrophic outbreaks in the Sacca di Goro Lagoon (Northern Adriatic Sea). in Mediterranean Ecosystems (eds. Farranda, F., Guglielmo, L. & Spezie, G.) 467–475 (Springer, 2001). https://doi.org/10.1007/978-88-470-2105-1_59.Axelsson, L. Changes in pH as a measure of photosynthesis by marine macroalgae. Mar. Biol. 97, 287–294 (1988).Article 

    Google Scholar 
    Morel, F. & Hering, J. G. Acids and bases. Alkalinity and pH in natural waters. in Principles and Applications of Aquatic Chemistry (eds. Morel, F. & Hering, J. G.) 127–178 (Wiley, New York, 1983).Dalla Via, J. et al. Light gradients and meadow structure in Posidonia oceanica: ecomorphological and functional correlates. Mar. Ecol. Prog. Ser. 163, 267–278 (1998).Article 

    Google Scholar 
    Enríquez, S. & Pantoja-Reyes, N. I. Form-function analysis of the effect of canopy morphology on leaf self-shading in the seagrass Thalassia testudinum. Oecologia 145, 235–243 (2005).Article 
    PubMed 

    Google Scholar 
    Ryland, J. S. Bryozoans (Hutchinson Unviersity Library, 1970).McKinney, F. K. & Jackson, J. B. C. Bryozoan Evolution (University of Chicago Press, 1991).Mullineaux, L. S. & Garland, E. D. Larval recruitment in response to manipulated field flows. Mar. Biol. 116, 667–683 (1993).Article 

    Google Scholar 
    Qian, P. Y., Rittschof, D. & Sreedhar, B. Macrofouling in unidirectional flow: miniature pipes as experimental models for studying the interaction of flow and surface characteristics on the attachment of barnacle, bryozoan and polychaete larvae. Mar. Ecol. Prog. Ser. 207, 109–121 (2000).Article 

    Google Scholar 
    Qian, P. Y., Rittschof, D., Sreedhar, B. & Chia, F. S. Macrofouling in unidirectional flow: miniature pipes as experimental models for studying the effects of hydrodynamics on invertebrate larval settlement. Mar. Ecol. Prog. Ser. 191, 141–151 (1999).Article 

    Google Scholar 
    Judge, M. L. & Craig, S. F. Positive flow dependence in the initial colonization of a fouling community: results from in situ water current manipulations. J. Exp. Mar. Bio. Ecol. 210, 209–222 (1997).Article 

    Google Scholar 
    Rossbach, F. I., Casoli, E., Beck, M. & Wild, C. Mediterranean red macro algae mats as habitat for high abundances of serpulid polychaetes. Diversity 40, 1–13 (2021).Cummings, V., Vopel, K. & Thrush, S. Terrigenous deposits in coastal marine habitats: influences on sediment geochemistry and behaviour of post-settlement bivalves. Mar. Ecol. Prog. Ser. 383, 173–185 (2009).CAS 
    Article 

    Google Scholar 
    Rodolfo-Metalpa, R., Lombardi, C., Cocito, S., Hall-Spencer, J. M. & Gambi, M. C. Effects of ocean acidification and high temperatures on the bryozoan Myriapora truncata at natural CO2 vents. Mar. Ecol. 31, 447–456 (2010).CAS 

    Google Scholar 
    Gacia, E. & Duarte, C. M. Sediment retention by a Mediterranean Posidonia oceanica meadow: the balance between deposition and resuspension. Estuar. Coast. Shelf Sci. 52, 505–514 (2001).Article 

    Google Scholar 
    Gacia, E., Granata, T. C. & Duarte, C. M. An approach to measurement of particle flux and sediment retention within seagrass (Posidonia oceanica) meadows. Aquat. Bot. 65, 255–268 (1999).Article 

    Google Scholar 
    Hendriks, I. E., Sintes, T., Bouma, T. J. & Duarte, C. M. Experimental assessment and modeling evaluation of the effects of the seagrass Posidonia oceanica on flow and particle trapping. Mar. Ecol. Prog. Ser. 356, 163–173 (2008).Article 

    Google Scholar 
    Prathep, A., Marrs, R. H. & Norton, T. A. Spatial and temporal variations in sediment accumulation in an algal turf and their impact on associated fauna. Mar. Biol. 142, 381–390 (2003).Article 

    Google Scholar 
    Piazzi, L. & Ceccherelli, G. Alpha and beta diversity in Mediterranean macroalgal assemblages: relevancy and type of effect of anthropogenic stressors vs natural variability. Mar. Biol. 167, 1–10 (2020).Article 

    Google Scholar 
    Lavender, J. T., Dafforn, K. A., Bishop, M. J. & Johnston, E. L. Small-scale habitat complexity of artificial turf influences the development of associated invertebrate assemblages. J. Exp. Mar. Bio. Ecol. 492, 105–112 (2017).Article 

    Google Scholar 
    Thomsen, M. S., de Bettignies, T., Wernberg, T., Holmer, M. & Debeuf, B. Harmful algae are not harmful to everyone. Harmful Algae 16, 74–80 (2012).Article 

    Google Scholar 
    Mateo, M. A., Romero, J., Pérez, M., Littler, M. M., & Littler, D. S. Dynamics of millenary organic deposits resulting from the growth of the Mediterranean seagrass Posidonia oceanica. Estuar. Coast. Shelf Sci. 44, 103–110 (1997).Article 

    Google Scholar 
    Infantes, E., Terrados, J., Orfila, A., Cañellas, B. & Álvarez-Ellacuria, A. Wave energy and the upper depth limit distribution of Posidonia oceanica. Bot. Mar. 52, 419–427 (2009).Article 

    Google Scholar 
    Procaccini, G. et al. The seagrasses of the Western Mediterranean. in World Atlas of Seagrasses (eds. Green, E. P. & Short, F. T.) 48–58 (University of California Press, 2003).Geist, J. & Hawkins, S. J. Habitat recovery and restoration in aquatic ecosystems: current progress and future challenges. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 942–962 (2016).Article 

    Google Scholar 
    Orth, R. J., Luckenbach, M. L., Marion, S. R., Moore, K. A. & Wilcox, D. J. Seagrass recovery in the Delmarva Coastal Bays, USA. Aquat. Bot. 84, 26–36 (2006).Article 

    Google Scholar 
    Mason, R., Hock, K. & Mumby, P. J. Identification of important source reefs for Great Barrier Reef Recovery following the 2016-17 Thermal Stress Events. Rep. to Natl. Environ. Sci. Progr. p. 11 (2018).Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    McCall, B. D. & Pennings, S. C. Disturbance and recovery of salt marsh arthropod communities following BP Deepwater Horizon oil spill. PLoS One 7, 1–7 (2012).Article 
    CAS 

    Google Scholar 
    Bianchi, C. N. et al. Hard bottoms. Mediterr. Mar. Benthos a Man. Methods its Sampl. study 6, 185–215 (2004).
    Google Scholar 
    Orth, R. J., Heck, K. L. & van Montfrans, J. Faunal communities in seagrass beds: a review of the influence of plant structure and prey characteristics on predator-prey relationships. Estuaries 7, 339–350 (1984).Article 

    Google Scholar 
    Bianchi, C. N., Bedulli, D., Morri, C., Occhipinti Ambrogi, A. L’herbier de Posidonies: Ecosystème ou carrefour écoéthologique? In International Workshop Posidonia Oceanica Beds. (eds. Boudouresque, C. F., Meinesz, A., Fresi, E. & Gravez, V.) (GIS Posidonie, Marseille, 1989).Piazzi, L., Balata, D. & Ceccherelli, G. Epiphyte assemblages of the Mediterranean seagrass Posidonia oceanica: An overview. Mar. Ecol. 37, 3–41 (2016).Article 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing (2017).RStudio Team. RStudio: Integrated Development for R (2020).Ogle, D. H., Wheeler, P. & Dinno, A. FSA: Fisheries Stock Analysis. R package version 0.8.22 (2021).Colwell, R. K. et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 5, 3–21 (2012).Article 

    Google Scholar 
    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag New York, 2009).Daraghmeh, N. & El-Khaled, Y. C. iNEXT4steps workflow for biodiversity assessment and comparison. protocols.io 1–5 (2021) https://doi.org/10.17504/protocols.io.bu6fnzbn.Chao, A. & Jost, L. Estimating diversity and entropy profiles via discovery rates of new species. Methods Ecol. Evol. 6, 873–882 (2015).Article 

    Google Scholar 
    Chao, A., & Ricotta, C. Quantifying evenness and linking it to diversity, beta diversity, and similarity. Ecology 100, 1–15 (2019).Article 

    Google Scholar 
    Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).Article 

    Google Scholar 
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 
    Clarke, K. R. & Gorley, R. N. PRIMER v6: Use manual/Tutorial. PRIMER-E:Plymouth (2006).Anderson, M., Gorley, R. & Clarke, K. PERMANOVA+ for PRIMER. Guide to Software and Statistical Methods (2008).Rasband, W. ImageJ (1997).Buia, M. C. M. C., Gambi, M. C. & Dappiano, M. Seagrass systems. Biol. Mar. Mediterr. 11, 133–183 (2004).
    Google Scholar 
    Naumann, M. S., Niggl, W., Laforsch, C., Glaser, C. & Wild, C. Coral surface area quantification-evaluation of established techniques by comparison with computer tomography. Coral Reefs 28, 109–117 (2009).Article 

    Google Scholar 
    Klain, D. A. An intuitive derivation of Heron’s formula. Am. Math. Mon. 111, 709–712 (2004).Article 

    Google Scholar 
    Duggins, D. O., Eckman, J. E. & Sewell, A. T. Ecology of understory kelp environments. II. Effects of kelps on recruitment of benthic invertebrates. J. Exp. Mar. Bio. Ecol. 143, 27–45 (1990).Article 

    Google Scholar 
    Eckman, J. E., Duggins, D. O. & Sewell, A. T. Ecology of under story kelp environments. I. Effects of kelps on flow and particle transport near the bottom. J. Exp. Mar. Bio. Ecol. 129, 173–187 (1989).Article 

    Google Scholar 
    Mabrouk, L., Ben Brahim, M., Hamza, A. & Bradai, M. N. Diversity and temporal fluctuations of epiphytes and sessile invertebrates on the rhizomes Posidonia oceanica in a seagrass meadow off Tunisia. Mar. Ecol. 35, 212–220 (2014).Article 

    Google Scholar 
    Verdura, J. et al. Biodiversity loss in a Mediterranean ecosystem due to an extreme warming event unveils the role of an engineering gorgonian species. Sci. Rep. 9, 1–11 (2019).CAS 
    Article 

    Google Scholar 
    Ballesteros, E. Mediterranean coralligenous assemblages: a synthesis of present knowledge. in Oceanography and Marine Biology: An Annual Review (eds. Gibson, R. N., Atkinson, R. J. A. & Gordon, J. D. M.) 123–195 (Taylor & Francis, 2006).Ballesteros, E. et al. Deep-water stands of Cystoseira zosteroides C. Agardh (Fucales, Ochrophyta) in the Northwestern Mediterranean: insights into assemblage structure and population dynamics. Estuar. Coast. Shelf Sci. 82, 477–484 (2009).Article 

    Google Scholar 
    Cleary, D. F. R. et al. Variation in the composition of corals, fishes, sponges, echinoderms, ascidians, molluscs, foraminifera and macroalgae across a pronounced in-to-offshore environmental gradient in the Jakarta Bay–Thousand Islands coral reef complex. Mar. Pollut. Bull. 110, 701–717 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Milne, R. & Griffiths, C. Invertebrate biodiversity associated with algal turfs on a coral-dominated reef. Mar. Biodivers. 44, 181–188 (2014).Article 

    Google Scholar 
    Mortensen, P. B. & Fosså, J. H. Species diversity and spatial distribution of invertebrates on deep–water Lophelia reefs in Norway. Proc. 10th Int. Coral Reef. Symp. 1868, 1849–1868 (2006).
    Google Scholar 
    Henry, L. A., Davies, A. J. & Roberts, J. M. Beta diversity of cold-water coral reef communities off western Scotland. Coral Reefs 29, 427–436 (2010).Article 

    Google Scholar 
    Farnsworth, E. J. & Ellison, A. M. Scale-dependent spatial and temporal variability in biogeography of mangrove root epibiont communities. Ecol. Monogr. 66, 45–66 (1996).Article 

    Google Scholar 
    Graham, M. H. Effects of local deforestation on the diversity and structure of southern California giant kelp forest food webs. Ecosystems 7, 341–357 (2004).Article 

    Google Scholar 
    Gutt, J., Sirenko, B. I., Arntz, W. E., Smirnov, I. S. & Broyer, C. D. E. Biodiversity of the Weddell Sea: macrozoobenthic species (demersal fish included) sampled during the expedition ANT Xllll3 (EASIZ I) with RV ‘Polarstern’. Ber. Polarforsch. Meeresforsch. 372, 118 (2000).
    Google Scholar  More

  • in

    Sniffing out forest fungi

    Truffles are socially and economically important in parts of Croatia. They can be worth up to €5,000 (US$5,300) per kilogram. The truffle industry and related tourism provides jobs, supplements incomes and boosts local economies. It’s not just about money, however; many people just love being out in the forest looking for them.My fascination with fungi began at the age of six, when my father and grandfather began taking me out to hunt for game and to collect mushrooms near our home in Istria. Today, I focus mainly on truffles and other hypogeous fungi, which produce their fruiting bodies underground. I spend 50–100 days a year in the field with my dogs, collecting samples and data on the life cycles, ecology and geographical spread of fungi across Croatia. Here, I’m with my dog Masha. I love the work.Thirty years ago, rainfall used to be more predictable across the year in Istria. Now, the climate is more extreme, and includes droughts. Truffles require a specific amount of water to grow. And warm winters have increased the population of wild boars, which damage the soil and eat the truffles. The truffles are becoming harder to find.Truffle plantations could take the pressure off natural habitats. There, the soil water content can be controlled, agricultural methods can be used to enhance production and boars can be kept out. We’re studying the viability of farming black truffles, in part by experimenting with different ways to inoculate tree seedlings with their spores.We’re using DNA barcoding to identify fungi in soil from their spores and root-like mycelium in protected areas. We’re finding that there are often many more species present than previously thought.Our comparisons of areas with and without truffles could help to reveal why they grow in some areas but not others. Our work is also helping to show the importance of biodiversity in places such as the Adriatic islands of Brijuni National Park. More