More stories

  • in

    Ordering and topological defects in social wasps’ nests

    Camazine, S. et al. Self-organization in Biological Systems (Princeton University Press, Princeton, 2001).
    Google Scholar 
    Tschinkel, W. R. The nest architecture of the Florida harvester ant, Pogonomyrmex badius. J. Insect Sci. 4(1), 21 (2004).MathSciNet 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reid, C. R. et al. Army ants dynamically adjust living bridges in response to a cost-benefit trade-off. Proc. Natl. Acad. Sci. 112(49), 15113–15118 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grassé, P. P. Termitology. Termite anatomy-physiology-biology-systematics. Vol. II. Colony foundation-construction. Termitology. Termite anatomy-physiology-biology-systematics. Vol. II. Colony foundation-construction. Masson, Paris, (1984).Theraulaz, G., Bonabeau, E. & Deneubourg, J. L. The mechanisms and rules of coordinated building in social insects (In Information Processing in Social Insects, Birkhäuser, Basel, 1999).Hansell, M. & Hansell, M. H. Animal Architecture (Oxford University Press, Oxford, 2005).Book 

    Google Scholar 
    Peters, J. M., Peleg, O. & Mahadevan, L. Collective ventilation in honeybee nests. J. R. Soc. Interface 16(150), 20180561 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grassé, P. P. La reconstruction du nid et les coordinations interindividuelles chezBellicositermes natalensis etCubitermes sp. la théorie de la stigmergie: Essai d’interprétation du comportement des termites constructeurs. Insectes Sociaux, 6(1):41–80 (1959).Theraulaz, G. & Bonabeau, E. Coordination in Distributed Building. Science 269(5224), 686–688 (1995).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bonabeau, E., Theraulaz, G., Deneubourg, J. L. & Camazine, S. Self-organization in social insects. Trends Ecol. Evol. 12(5), 188–193 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Khuong, A. et al. Stigmergic construction and topochemical information shape ant nest architecture. Proc. Natl. Acad. Sci. 113(5), 1303–1308 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pénzes, Z. & Karsai, I. Round shape combs produced by Stigmergic scripts in social wasp. Proc. Eur. Conf. Artif. Life 93, 896–905 (1993).
    Google Scholar 
    Karsai, I. Decentralized control of construction behavior in paper wasps: an overview of the Stigmergy Approach. Artif. Life 5(2), 117–136 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Perna, A. & Theraulaz, G. When social behaviour is moulded in clay: On growth and form of social insect nests. J. Exp. Biol. 220(1), 83–91 (2017).PubMed 
    Article 

    Google Scholar 
    Gallo, V. & Chittka, L. Cognitive Aspects of Comb-Building in the Honeybee?. Front. Psychol. 9, 900 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hales, T. C. The Honeycomb Conjecture. Discrete Comput. Geom. 25(1), 1–22 (2001).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Tóth, L. F. What the bees know and what they do not know. Bull. Am. Math. Soc. 70(4), 468–481 (1964).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Jeanne, R. L. The Adaptiveness of Social Wasp Nest Architecture. Q. Rev. Biol. 50(3), 267–287 (1975).Article 

    Google Scholar 
    Karsai, I. & Pénzes, Z. Optimality of cell arrangement and rules of thumb of cell initiation in Polistes dominulus: A modeling approach. Behav. Ecol. 11(4), 387–395 (1999).Article 

    Google Scholar 
    Pirk, C., Hepburn, H., Radloff, S. & Tautz, J. Honeybee combs: construction through a liquid equilibrium process? Naturwissenschaften, 91(7) (2004).Karihaloo, B. L., Zhang, K. & Wang, J. Honeybee combs: How the circular cells transform into rounded hexagons. J. R. Soc. Interface 10(86), 20130299 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bauer, D. & Bienefeld, K. Hexagonal comb cells of honeybees are not produced via a liquid equilibrium process. Naturwissenschaften 100(1), 45–49 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Mermin, N. D. The topological theory of defects in ordered media. Rev. Mod. Phys. 51(3), 591–648 (1979).ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar 
    Bhattacharjee, S. M. Use of Topology in physical problems. In Topology and Condensed Matter Physics (eds Bhattacharjee, S. M. et al.) 171–216 (Springer, Singapore, 2017).MATH 
    Chapter 

    Google Scholar 
    Griffin, S. M. & Spaldin, N. A. On the relationship between topological and geometric defects. J. Phys.: Condens. Matter 29(34), 343001 (2017).
    Google Scholar 
    Harris, W. F. Disclinations. Sci. Am. 237(6), 130–145 (1977).MathSciNet 
    Article 

    Google Scholar 
    de Gennes, P.-G. The Physics of liquid crystals (Clarendon Press, Oxford, 1979).
    Google Scholar 
    Iorio, A. & Sen, S. Virus Structure: From Crick and Watson to a New Conjecture. In arXiv 0707, 3690 (2007).Lee, K. C., Yu, Q. & Erb, U. Mesostructure of Ordered Corneal Nano-nipple Arrays: The Role of 5–7 Coordination Defects. Sci. Rep. 6(1), 28342 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stone, A. J. & Wales, D. J. Theoretical studies of icosahedral C60 and some related species. Chem. Phys. Lett. 128(5), 501–503 (1986).ADS 
    CAS 
    Article 

    Google Scholar 
    Ma, J., Alfè, D., Michaelides, A. & Wang, E. Stone-Wales defects in graphene and other planar sp2 -bonded materials. Phys. Rev. B 80(3), 033407 (2009).ADS 
    Article 
    CAS 

    Google Scholar 
    Heggie, M. I., Haffenden, G. L., Latham, C. D. & Trevethan, T. The Stone-Wales transformation: From fullerenes to graphite, from radiation damage to heat capacity. Philos.Trans. Royal Soc. A Math. Phys. Eng. Sci. 374(2076), 20150317 (2016).ADS 
    Article 
    CAS 

    Google Scholar 
    Eberhard, M. J. W. The Social Biology of Polistine Wasps. Misc. Publ. Museum Zoology Univ. Michigan 140, 110 (1969).
    Google Scholar 
    Jeanne, R. L. A latitudinal gradient in rates of ant predation. Ecology 60(6), 1211–1224 (1979).Article 

    Google Scholar 
    Seeley, T. & Heinrich, B. (1981). Regulation of temperature in the nests of social insects. John Wiley and Sons, Inc, pp. 224–234.Wenzel, J. W. Evolution of nest architecture. In The Social Biology Wasps (eds Ross, K. G. & Matthews, R. W.) 480–519 (Cornell University Press, Ithaca, New York, 1991).
    Google Scholar 
    Karsai, I. & Pénzes, Z. (1998). Nest shapes in paper wasps: Can the variability of forms be deduced from the same construction algorithm? Proceedings of the Royal Society of London. Series B: Biological Sciences, 265(1402):1261–1268.Carpenter, J. M. Phylogeny and biogeography of Polistes. In Natural History and Evolution of Paper-Wasps (eds Turillazzi, S. & Eberhard, M. J. W.) 18–57 (Oxford University Press, Oxford, Newyork, 1996).
    Google Scholar 
    Ceccolini, F. New records and distribution update of Polistes (Gyrostoma) wattii Cameron, 1900 (Hymenoptera: Vespidae: Polistinae). Caucasian Entomol. Bull. 15(2), 323–326 (2019).Article 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baddeley, A., Rubak, E. & Turner, R. Spatial Point Patterns: Methodology and Applications with R (Chapman and Hall/CRC Press, London, 2015).MATH 
    Book 

    Google Scholar 
    Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Bond-orientational order in liquids and glasses. Phys. Rev. B 28(2), 784–805 (1983).ADS 
    CAS 
    Article 

    Google Scholar 
    Schilling, T., Pronk, S., Mulder, B. & Frenkel, D. Monte Carlo study of hard pentagons. Phys. Rev. E 71(3), 036138 (2005).ADS 
    Article 
    CAS 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/ (2020).Bishop, M. & Bruin, C. The pair correlation function: A probe of molecular order. Am. J. Phys. 52(12), 1106–1108 (1984).ADS 
    CAS 
    Article 

    Google Scholar 
    Fleury, P. A. Phase Transitions, Critical Phenomena, and Instabilities. Science 211, 125–131 (1981).ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Wenzel, J. W. Endogenous factors, external cues, and eccentric construction in Polistes annularis (Hymenoptera: Vespidae). J. Insect Behavior 2(5), 679–699 (1989).Article 

    Google Scholar 
    Zsoldos. Effect of topological defects on graphene geometry and stability. Nanotechnol. Sci. Appl., p. 101 (2010).Ophus, C., Shekhawat, A., Rasool, H. & Zettl, A. Large-scale experimental and theoretical study of graphene grain boundary structures. Phys. Rev. B 92(20), 205402 (2015).ADS 
    Article 
    CAS 

    Google Scholar 
    Kosterlitz, J. M. (2016). Commentary on ‘Ordering, metastability and phase transitions in two-dimensional systems’ J M Kosterlitz and D J Thouless (1973 J. Phys. C: Solid State Phys. 6 1181-203)-the early basis of the successful Kosterlitz-Thouless theory. Journal of Physics: Condensed Matter28:481001.Hepburn, H. R. & Whiffler, L. A. Construction defects define pattern and method in comb building by honeybees. Apidologie 22(4), 381–388 (1991).Article 

    Google Scholar 
    Smith, M. L., Napp, N. & Petersen, K. H. Imperfect comb construction reveals the architectural abilities of honeybees. Proc. Natl. Acad. Sci. 118(31), e2103605118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nazzi, F. The hexagonal shape of the honeycomb cells depends on the construction behavior of bees. Sci. Rep. 6(1), 28341 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tarnai, T. Buckling patterns of shells and spherical honeycomb structures. Symmetry, pp. 639–652 (1989).Downing, H. & Jeanne, R. The regulation of complex building behaviour in the paper wasp, Polistes fuscatus (Insecta, Hymenoptera, Vespidae). Anim. Behav. 39(1), 105–124 (1990).Article 

    Google Scholar  More

  • in

    Flow patterns in circular fish tanks and its relations with flow rate and nozzle features

    Rotational velocityFigure 3 shows the effect of flow rate, nozzle diameter and number of nozzles on the rotational velocity of water in a circular tank. The results indicate that the rotational velocity increases with increasing flow rates and deceasing nozzle diameter. It could be seen that, the rotational velocity decreased from 10.1 to 5.0 cm s−1, when the nozzle diameter increased from 10 to 20 mm, respectively for 5 nozzles used, and it decreased from 5.1 to 4.0 cm s−1, when the nozzle diameter increased from 10 to 15 mm, respectively, for 10 nozzles used with 5 m3 h−1 flow rate. At 15 m3 h−1, the rotational velocity was decreased from 23.5 to 17.5, 12.0 to 7.5, 10.0 to 6.9, 7.6 to 4.7 and 5.9 to 4.0 cm s−1 when the nozzle diameter increased from 10 to 20 mm, respectively, for 5, 10, 15, 20 and 25 nozzles, respectively. The results also indicate that when the nozzle diameter increased from 20 to 25 mm, the rotational velocity decreased from 19.0 to 16.5, 12.0 to 10.0 and 7.1 to 5.5 cm s−1 for 3, 6 and 9 nozzles, respectively, with 15 m3 h−1 flow rate.Figure 3Effect of flow rate, nozzle diameter and number of nozzles on the rotational velocity of water in a circular tank.Full size imageAt 30 m3 h−1 flow rate, the highest value of the rotational velocity was 33.5 cm s−1 was found for 5 nozzles and 10 mm nozzle diameter. While, the lowest value of the rotational velocity was 7.3 cm s−1 was found for 25 nozzles and 25 mm nozzle diameter. At 45 m3 h−1 flow rate, the rotational velocity ranged from 11.0 to 49.9 cm s−1 for all treatments under study.At 60 m3 h−1 flow rate, the rotational velocity deceased from 61.0 to 50.1, 47.7 to 34.0, 36.3 to 23.0, 23.5 to 17.5, 21.0 to 15.0 and 17.0 to 11.5 cm s−1 when the nozzle diameter increased from 10 to 20 mm, respectively at 5, 10, 15, 20, 25 and 30 number of nozzles. The results also indicate that, when the nozzle diameter increased from 20 to 25 mm, the rotational velocity decreased from 56.0 to 47.0, 43.0 to 33.0, 27.0 to 22.0 and 19.0 to 16.5 cm s−1 at 3, 6, 9 and 12 nozzles, respectively.At 75 m3 h−1 flow rate, the rotational velocity deceased from 60.9 to 49.1, 48.4 to 38.0, 39.0 to 30, 31.8 to 23.0, 23.5 to 17.5 and 22.0 to 15.0 cm s−1 when the nozzle diameter increased from 10 to 20 mm, respectively for 5, 10, 15, 20, 25 and 30 nozzles, respectively. The results also indicate that, when the nozzle diameter increased from 20 to 25 mm, the rotational velocity decreased from 50.48 to 43.0 to 38.5, 33.0 to 27.5 and 23.5 to 22.0 cm s−1 for 3, 6, 9 and 12 nozzles, respectively.The results also indicate that the highest values of the rotational velocities were 10.1, 23.5, 33.5, 49.9, 60.9 and 61.0 cm s−1 were found for 5 nozzles and 10 mm nozzle diameter at 5, 15, 30, 45, 60 and 75 m3 h−1 flow rate, respectively. While, the lowest values of the rotational velocities were 4.0, 7.5 and 11.5 cm s−1 for 25 nozzles and 15 mm nozzle diameter at 5, 15 and 30 m3 h−1 flow rate, respectively. They were 11.5 and 15 cm s−1 were found for 30 nozzles and 15 mm nozzle diameter at 60 and 75 m3 h−1 flow rate, respectively. The velocity of water obtained seemed to be in the recommended range of safe and proper velocity for fish according to12. Due to it is effective compromise to allow heavy solids settle rapidly, yet sufficiently fast to create “good” hydraulics. Timmons and Youngs18 mentioned that the water velocity needed to maintain self-cleaning properties ranges from 3 to 40 cm s−1 varying greatly according to the physical properties of the biosolids. When fish swims at lower speed than its optimal, a large amount of energy will be used for higher spontaneous activity such as aggression. In contrast, when fish swim at higher speed than optimal, they become stressful, unstable, increase lactate production and fatigue6.Multiple regression analysis was carried out to obtain a relationship between the rotational velocity of water as dependent variable and different both of flow rate and nozzle diameter as independent variables. The best fit for this relationship with coefficient of determination of 0.95 and an error of 1.06% is in the following form:-$$ RV = 6.97 + 0.41Q – 0.19Dquad {text{R}}^{{2}} = 0.95 $$
    (3)
    where RV is the rotational velocity of water, cm s−1, Q is the water flow rate, m3 h−1, D is the nozzle diameter, mm.This equation could be applied in the range of 5 to 75 m3 h−1 water flow rate and from 10 to 25 mm of nozzle diameter.Impulse force of waterFigure 4 shows the effect of flow rate, diameter and number of nozzles on the impulse force of water in a circular tank. The results indicate that the impulse force of water increases with increasing flow rates and deceasing nozzle diameter and number of nozzles. It could be seen that, the impulse force of water decreased from 5.1 to 1.7 N, when the number of nozzles increased from 5 to 15, respectively at 10 nozzle diameter, and it decreased from 2.3 to 1.2 N, when the number of nozzles increased from 5 to 10, respectively, at 15 diameter nozzle with 5 m3 h−1 flow rate. At 15 m3 h−1, the impulse force of water was decreased from 84.7 to 9.4 N when the number of nozzles increased from 5 to 30, respectively 10 mm diameter nozzle. The results also indicate that when the number of nozzles increased from 5 to 25, the impulse force of water decreased from 14.8 to 1.4 N at 15 mm nozzle diameter, respectively, and it decreased from 9.5 to 1.9 and 5.3 to 1.3 N at 20 and 25 mm, respectively, when the number of nozzles increased from 3 to 9.Figure 4Effect of flow rate, nozzle diameter and number of nozzles on the impulse force of water in a circular tank.Full size imageAt 30 m3 h−1 flow rate, the impulse force of water deceased from 84.7 to 46.9, 56.9 to 14.8, 28.5 to 5.3, 14.9 to 3.0 and 11.8 to 2.2 N when the nozzle diameter increased from 10 to 15 mm, respectively at 5, 10, 15, 20 and 25 nozzles. The results also indicate that, when the nozzle diameter increased from 20 to 25 mm, the impulse force of water decreased from 21.4 to 14.9, 14.8 to 5.4, 5.3 to 2.2 and 2.3 to 1.9 N for 3, 6, 9 and 12 nozzles, respectively.At 45 m3 h−1 flow rate, the impulse force of water was ranged from 2.1 to 111.2 N for all treatments under this study. Also, at 60 m3 h−1 flow rate, the impulse force of water ranged from 5.1 to 151.3 N for all treatments under this study. At 75 m3 h−1 flow rate, the highest value of the impulse force of water 211.2 N was found for 5 numbers of nozzles and 10 mm nozzle diameter, respectively. While, the lowest value of the impulse force of water was 9.1 N was found for 12 nozzles and 25 mm nozzle diameter, respectively.The results also indicate that the highest value of the impulse force of water 211.2 N was found for 5 nozzles and 10 mm nozzle diameter at 75 m3 h−1 flow rate, respectively. While, the lowest value of the impulse force of water was 1.2 N was found for 10 nozzles and 15 mm nozzle diameter at 5 m3 h−1 flow rate, respectively.The results indicated that, the relationship between the rotational velocity and impulse force of water is linear relationship at the same treatments. When the rotational velocity increased from 10.7 to 37.6, 8.1 to 28.8, 10.2 to 36.0 and 11.0 to 31.9 cm s−1, the impulse force of water increased from 3.1 to 106.6, 1.8 to 31.1, 1.3 to 32.5 and 1.4 to 22.8 N, respectively, at the same treatments. The trend of these results agreed with those obtained by19.Multiple regression analysis was carried out to obtain a relationship between the impulse force of water as dependent variable and different both of flow rate and nozzle diameter as independent variables. The best fit for this relationship with coefficient of determination of 0.88 and an error of 2.13% is in the following form:-$$ F_{i} = 38.18 + 0.67Q – 2.35Dquad {text{R}}^{{2}} = 0.88 $$
    (4)
    This equation could be applied in the range of 5 to 75 m3 h−1 water flow rate and from 10 to 25 mm of nozzle diameter.Average velocity of waterFigure 5 shows the effect of flow rate, diameter and number of nozzles on the average velocity of water in a circular tank. The results indicate that the average velocity of water increases with increasing flow rates and deceasing nozzle diameter and number of nozzles. It could be seen that, the average velocity of water decreased from 3.32 to 1.59 cm s−1, when the number of nozzles increased from 5 to 15, respectively at 10 nozzle diameter, and it decreased from 1.13 to 1.07 cm s−1, when the number of nozzles increased from 5 to 10, respectively, at 15 diameter nozzle with 5 m3 h−1 flow rate. At 15 m3 h−1, the average velocity of water was decreased from 12.03 to 4.33 cm s−1 when the number of nozzles increased from 5 to 30, respectively 10 mm diameter nozzle. The results also indicate that when the number of nozzles increased from 5 to 25, the average velocity of water decreased from 6.93 to 2.89 cm s−1 at 15 mm nozzle diameter, respectively, and it decreased from 7.55 to 4.00 and 4.89 to 2.95 cm s−1 at 20 and 25 mm, respectively, when the number of nozzles increased from 3 to 9.Figure 5Effect of flow rate, nozzle diameter and number of nozzles on the average velocity of water in a circular tank.Full size imageAt 30 m3 h−1 flow rate, the highest value of the average velocity of water 18.51 cm s−1 was found for 5 nozzles and 10 mm nozzle diameter. While, the lowest value of the average velocity of water was 4.65 cm s−1 was found for 12 nozzles and 25 mm nozzle diameter. At 45 m3 h−1 flow rate, the average velocity of water ranged from 6.66 to 23.26 for all treatments under study, also, at 60 m3 h−1 flow rate, the average velocity of water ranged from 9.23 to 34.82 for all treatments under study. At 75 m3 h−1 flow rate, the average velocity of water ranged from 10.00 to 48.76 for all treatment of this study.The results also indicate that the highest value of the average velocity of water 48.76 cm s−1 was found for 5 nozzles and 10 mm nozzle diameter at 75 m3 h−1 flow rate, respectively. While, the lowest value of the average velocity of water was 1.07 cm s−1 was found for 10 nozzles and 15 mm nozzle diameter at 5 m3 h−1 flow rate, respectively. These results agreed with those obtained by18,20. Fish distribution in the circular tank is influenced by the heterogeneity of water velocity in the area between inlet flow and the center of the tank9. Fish distribution in the circular tank is mostly concentrated in the area between high and low velocity area. The high velocity area will be avoided by most fishes as it requires high swimming energy, while dead volumes (low velocity area) are unfavorable condition for fish (low DO and higher metabolites accumulation)21.Multiple regression analysis was carried out to obtain a relationship between the average velocity of water as dependent variable and different both of flow rate and nozzle diameter as independent variables. The best fit for this relationship with coefficient of determination of 0.91 and an error of 1.48% is in the following form:$$ V_{avg} = 6.53 + 0.26Q – 0.37Dquad {text{R}}^{{2}} = 0.91 $$
    (5)
    This equation could be applied in the range of 5 to 75 m3 h−1 water flow rate and from 10 to 25 mm of nozzle diameter. More

  • in

    Strategic planning to mitigate mining impacts on protected areas in the Brazilian Amazon

    Adams, V. M., Iacona, G. D. & Possingham, H. P. Weighing the benefits of expanding protected areas versus managing existing ones. Nat. Sustain. 2, 404–411 (2019).Article 

    Google Scholar 
    Blicharska, M. et al. Biodiversity’s contributions to sustainable development. Nat. Sustain. 2, 1083–1093 (2019).Article 

    Google Scholar 
    Hanson, J. O. et al. Global conservation of species’ niches. Nature 580, 232–234 (2020).CAS 
    Article 

    Google Scholar 
    Sonter, L. J., Barrett, D. J., Soares-filho, B. S. & Moran, C. J. Global demand for steel drives extensive land-use change in Brazil’ s Iron Quadrangle. Glob. Environ. Change 26, 63–72 (2014).Article 

    Google Scholar 
    Siqueira-Gay, J., Soares-Filho, B., Sánchez, L. E., Oviedo, A. & Sonter, L. J. Proposed legislation to mine Brazil’s Indigenous lands will threaten Amazon forests and their valuable ecosystem services. One Earth 3, 356–362 (2020).Article 

    Google Scholar 
    El Bizri, H. R., Macedo, J. C. B. M., Plaglia, A. P. & Morcatty, T. Q. Mining undermining Brazil’s environment. Science 353, 2–3 (2016).Article 

    Google Scholar 
    Ferreira, J. et al. Brazil’s environmental leadership at risk. Science 346, 706–707 (2014).CAS 
    Article 

    Google Scholar 
    Rudke, A. P. et al. Impact of mining activities on areas of environmental protection in the southwest of the Amazon: a GIS- and remote sensing-based assessment. J. Environ. Manage. 263, 110392 (2020).Article 

    Google Scholar 
    Naughton-Treves, L. & Holland, M. B. Losing ground in protected areas? Science 364, 832–833 (2019).CAS 
    Article 

    Google Scholar 
    Kroner, R. E. G. et al. The uncertain future of protected lands and waters. Science 364, 881–886 (2019).Article 
    CAS 

    Google Scholar 
    Pack, S. M. et al. Protected area downgrading, downsizing, and degazettement (PADDD) in the Amazon. Biol. Conserv. 197, 32–39 (2016).Article 

    Google Scholar 
    PADDDtracker.org Data Release Version 2.0 (Conservation International and World Wildlife Fund, 2019); https://doi.org/10.5281/zenodo.3371733Bebbington, A. J., Humphreys, D., Aileen, L., Rogan, J. & Agrawal, S. Resource extraction and infrastructure threaten forest cover and community rights. Proc. Natl Acad. Sci. USA 115, 13164–13173 (2018).CAS 
    Article 

    Google Scholar 
    Paiva, P. F. P. R. et al. Deforestation in protect areas in the Amazon: a threat to biodiversity. Biodivers. Conserv. 29, 19–38 (2020).Article 

    Google Scholar 
    Boldy, R., Santini, T., Annandale, M., Erskine, P. D. & Sonter, L. J. Understanding the impacts of mining on ecosystem services through a systematic review. Extr. Ind. Soc. https://doi.org/10.1016/j.exis.2020.12.005 (2020).Murguía, D. I., Bringezu, S. & Schaldach, R. Global direct pressures on biodiversity by large-scale metal mining: spatial distribution and implications for conservation. J. Environ. Manage. 180, 409–420 (2016).Article 

    Google Scholar 
    Kobayashi, H., Watando, H. & Kakimoto, M. A global extent site-level analysis of land cover and protected area overlap with mining activities as an indicator of biodiversity pressure. J. Clean. Prod. 84, 459–468 (2014).Article 

    Google Scholar 
    Craig, M. D., White, D. A., Stokes, V. L. & Prince, J. Can postmining revegetation create habitat for a threatened mammal? Ecol. Manage. Restor. 18, 149–155 (2017).Article 

    Google Scholar 
    Sonter, L. J. et al. Mining drives extensive deforestation in the Brazilian Amazon. Nat. Commun. 8, 1013 (2017).Article 
    CAS 

    Google Scholar 
    Siqueira-Gay, J., Sonter, L. J. & Sánchez, L. E. Exploring potential impacts of mining on forest loss and fragmentation within a biodiverse region of Brazil’s northeastern Amazon. Resour. Policy 67, 101662 (2020).Article 

    Google Scholar 
    Siqueira-Gay, J. & Sánchez, L. E. Keep the Amazon niobium in the ground. Environ. Sci. Policy 111, 1–6 (2020).CAS 
    Article 

    Google Scholar 
    Mascia, M. B. & Pailler, S. Protected area downgrading, downsizing, and degazettement (PADDD) and its conservation implications. Conserv. Lett. 4, 9–20 (2011).Article 

    Google Scholar 
    Raiter, K. G., Possingham, H. P., Prober, S. M. & Hobbs, R. J. Under the radar: mitigating enigmatic ecological impacts. Trends Ecol. Evol. 29, 635–644 (2014).Article 

    Google Scholar 
    Whitehead, A. L., Kujala, H. & Wintle, B. A. Dealing with cumulative biodiversity impacts in strategic environmental assessment: a new frontier for conservation planning. Conserv. Lett. 10, 195–204 (2017).Article 

    Google Scholar 
    Jenner, N. Making Mining ‘Forest-Smart’: Executive Summary Report (World Bank, 2019); http://documents.worldbank.org/curated/en/369711560319906622/Making-Mining-Forest-Smart-Executive-Summary-ReportRenca: Situação legal dos direitos minerários da reserva nacional do cobre (WWF, 2017).Soares-Filho, B. S., Cerqueira, G. C. & Pennachin, C. L. DINAMICA—a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecol. Modell. 154, 217–235 (2002).Article 

    Google Scholar 
    Strand, J. et al. Spatially explicit valuation of the Brazilian Amazon forest’s ecosystem services. Nat. Sustain. 1, 657–664 (2018).Article 

    Google Scholar 
    Barber, C. P., Cochrane, M. A., Souza, C. M. & Laurance, W. F. Roads, deforestation, and the mitigating effect of protected areas in the Amazon. Biol. Conserv. 177, 203–209 (2014).Article 

    Google Scholar 
    Rorato, A. C. et al. Brazilian Amazon Indigenous peoples threatened by mining bill. Environ. Res. Lett. 15, 1040a3 (2020).Article 

    Google Scholar 
    Villén-Pérez, S., Anaya-Valenzuela, L., Conrado da Cruz, D. & Fearnside, P. M. Mining threatens isolated Indigenous peoples in the Brazilian Amazon. Glob. Environ. Change 72, (2022).Siqueira-Gay, J. & Sánchez, L. E. The outbreak of illegal gold mining in the Brazilian Amazon boosts deforestation. Reg. Environ. Change 21, 28 (2021).Article 

    Google Scholar 
    Sonter, L. J., Dade, M. C., Watson, J. E. M. & Valenta, R. K. Renewable energy production will exacerbate mining threats to biodiversity. Nat. Commun. 11, 4174 (2020).CAS 
    Article 

    Google Scholar 
    Tallis, H., Kennedy, C. M., Ruckelshaus, M., Goldstein, J. & Kiesecker, J. M. Mitigation for one & all: an integrated framework for mitigation of development impacts on biodiversity and ecosystem services. Environ. Impact Assess. Rev. 55, 21–34 (2015).Article 

    Google Scholar 
    Bull, J. W. et al. Quantifying the “avoided” biodiversity impacts associated with economic development. Front. Ecol. Environ. https://doi.org/10.1002/fee.2496 (2022).Gastauer, M. et al. Mine land rehabilitation: modern ecological approaches for more sustainable mining. J. Clean. Prod. 172, 1409–1422 (2018).Article 

    Google Scholar 
    Souza, B. A., Rosa, J. C. S., Siqueira-Gay, J. & Sánchez, L. E. Mitigating impacts on ecosystem services requires more than biodiversity offsets. Land Use Policy 105, 105393 (2021).Article 

    Google Scholar 
    Ritter, C. D. et al. Environmental impact assessment in Brazilian Amazonia: challenges and prospects to assess biodiversity. Biol. Conserv. 206, 161–168 (2017).Article 

    Google Scholar 
    Good Practice Handbook: Cumulative Impact Assessment and Management, Guidance for the Private Sector in Emerging Markets (IFC, 2013).Gunn, J. H. & Noble, B. F. Integrating cumulative effects in regional strategic environmental assessment frameworks: lessons from practice. J. Environ. Assess. Policy Manage. 11, 267–290 (2009).Article 

    Google Scholar 
    Ferrante, L. & Fearnside, P. M. The Amazon’ s road to deforestation. Science 20, 20–22 (2020).
    Google Scholar 
    Runge, C. A., Tulloch, A. I. T., Gordon, A. & Rhodes, J. R. Quantifying the conservation gains from shared access to linear infrastructure. Conserv. Biol. 31, 1428–1438 (2017).Article 

    Google Scholar 
    Kiesecker, J. M., Copeland, H., Pocewicz, A. & McKenney, B. Development by design: blending landscape-level planning with the mitigation hierarchy. Front. Ecol. Environ. 8, 261–266 (2010).Article 

    Google Scholar 
    Heiner, M. et al. Moving from reactive to proactive development planning to conserve Indigenous community and biodiversity values. Environ. Impact Assess. Rev. 74, 1–13 (2019).Article 

    Google Scholar 
    Pfaff, A., Robalino, J., Herrera, D. & Sandoval, C. Protected areas’ impacts on Brazilian Amazon deforestation: examining conservation–development interactions to inform planning. PLoS ONE 10, 1–17 (2015).Article 
    CAS 

    Google Scholar 
    Almeida, C. A. et al. High spatial resolution land use and land cover mapping of the Brazilian Legal Amazon in 2008 using Landsat-5 / TM and MODIS data. Acta Amazon. 46, 291–302 (2008).Article 

    Google Scholar 
    Asner, G. P. & Tupayachi, R. Accelerated losses of protected forests from gold mining in the Peruvian Amazon. Environ. Res. Lett. 12, 094004 (2016).Article 

    Google Scholar 
    Boham-Carter, G. F. Geographic Information Systems for Geoscientists: Modelling with GIS (Elsevier, 1994).Soares-Filho, B., Rodrigues, H. & Follador, M. A hybrid analytical–heuristic method for calibrating land-use change models. Environ. Model. Softw. 43, 80–87 (2013).Article 

    Google Scholar 
    INPE. TerraClass https://www.terraclass.gov.br/geoportal-aml/ (2021).INPE. Slope http://www.dsr.inpe.br/topodata/acesso.php (2020).Ministério do Meio Ambiente (MMA). Conservation units http://mapas.mma.gov.br/i3geo/datadownload.htm (2022).Fundação Nacional do Índio (FUNAI). Indigenous lands http://www.funai.gov.br/index.php/shape (2021).Leite-Filho, A., Soares-filho, B. S., Davis, J. & Rodrigues, H. Dinamica EGO Guidebook (Centro de Sensoriamento Remoto, UFMG, 2020).Serviço Geológico do Brasil. Mineral deposits https://geosgb.cprm.gov.br/ (2020).Soares-Filho, B. et al. Simulating the response of land-cover changes to road paving and governance along a major Amazon highway: the Santarém-Cuiabá corridor. Glob. Change Biol. 10, 745–764 (2004).Article 

    Google Scholar 
    Centro de Sensoriamento Remoto. Biodiversity https://csr.ufmg.br/amazones/biodiversity/ (2021).Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48, 1–23 (2017).Pardini, R., de Bueno, A. A., Gardner, T. A., Prado, P. I. & Metzger, J. P. Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS ONE 5, e13666 (2010).Montibeller, B., Kmoch, A., Virro, H., Mander, Ü. & Uuemaa, E. Increasing fragmentation of forest cover in Brazil’s Legal Amazon from 2001 to 2017. Sci. Rep. 10, 5803 (2020).CAS 
    Article 

    Google Scholar 
    Cabral, A. I. R., Saito, C., Pereira, H. & Laques, A. E. Deforestation pattern dynamics in protected areas of the Brazilian Legal Amazon using remote sensing data. Appl. Geogr. 100, 101–115 (2018).Article 

    Google Scholar 
    Colson, F., Bogaert, J. & Ceulemans, R. Fragmentation in the Legal Amazon, Brazil: can landscape metrics indicate agricultural policy differences? Ecol. Indic. 11, 1467–1471 (2011).Article 

    Google Scholar 
    Monmonier, M. S. Measures of pattern complexity for choroplethic maps. Am. Cartogr. 1, 159–169 (1974).Article 

    Google Scholar 
    Werner, T. T. et al. Global-scale remote sensing of mine areas and analysis of factors explaining their extent. Glob. Environ. Change 60, 102007 (2020).Article 

    Google Scholar 
    Soares-Filho, B. et al. Roads, http://maps.csr.ufmg.br/ (2016). More

  • in

    RNA viromes from terrestrial sites across China expand environmental viral diversity

    Shi, M. et al. Redefining the invertebrate RNA virosphere. Nature 540, 539–543 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, Y.-Z., Shi, M. & Holmes, E. C. Using metagenomics to characterize an expanding virosphere. Cell 172, 1168–1172 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, C.-X. et al. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. eLife 4, e05378 (2015).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Starr, E. P., Nuccio, E. E., Pett-Ridge, J., Banfield, J. F. & Firestone, M. K. Metatranscriptomic reconstruction reveals RNA viruses with the potential to shape carbon cycling in soil. Proc. Natl Acad. Sci. USA 116, 25900–25908 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wolf, Y. I. et al. Doubling of the known set of RNA viruses by metagenomic analysis of an aquatic virome. Nat. Microbiol. 5, 1262–1270 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zayed, A. A. et al. Cryptic and abundant marine viruses at the evolutionary origins of Earth’s RNA virome. Science 376, 156–162 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Simmonds, P. et al. Virus taxonomy in the age of metagenomics. Nat. Rev. Microbiol. 15, 161–168 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Trubl, G., Hyman, P., Roux, S. & Abedon, S. T. Coming-of-age characterization of soil viruses: a user’s guide to virus isolation, detection within metagenomes, and viromics. Soil Syst. 4, 23 (2020).CAS 
    Article 

    Google Scholar 
    Jin, M. et al. Diversities and potential biogeochemical impacts of mangrove soil viruses. Microbiome 7, 58 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Trubl, G. et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems 3, e00076-18 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Steward, G. F. et al. Are we missing half of the viruses in the ocean? ISME J. 7, 672–679 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Paul, K. I., Scott Black, A. & Conyers, M. K. in Advances in Agronomy. Sparks, D.L., Vol. 78 187–214 (Elsevier, 2003).Urayama, S., Takaki, Y. & Nunoura, T. FLDS: a comprehensive dsRNA sequencing method for intracellular RNA virus surveillance. Microbes Environ. 31, 33–40 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Armbrust, E. V. The life of diatoms in the world’s oceans. Nature 459, 185–192 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wu, W., Jin, Y., Bai, F. & Jin, S. in Molecular Medical Microbiology. Tang, Y.W., Liu, D., Schwartzman, J., Sussman, M., Poxton, I., 753–767 (Elsevier, 2015).Cooney, S., O’Brien, S., Iversen, C. & Fanning, S. in Encyclopedia of Food Safety. Motarjemi, Y., 433–441 (Elsevier, 2014).Geoghegan, J. L. et al. Hidden diversity and evolution of viruses in market fish. Virus Evol. 4, vey031 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lauber, C. et al. Deciphering the origin and evolution of hepatitis B viruses by means of a family of non-enveloped fish viruses. Cell Host Microbe 22, 387–399.e6 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shi, M., Zhang, Y.-Z. & Holmes, E. C. Meta-transcriptomics and the evolutionary biology of RNA viruses. Virus Res. 243, 83–90 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Turnbull, O. M. H. et al. Meta-transcriptomic identification of divergent Amnoonviridae in Fish. Viruses 12, 1254 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Bauermann, F. V., Hause, B., Buysse, A. R., Joshi, L. R. & Diel, D. G. Identification and genetic characterization of a porcine hepe-astrovirus (bastrovirus) in the United States. Arch. Virol. 164, 2321–2326 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Oude Munnink, B. B. et al. A novel astrovirus-like RNA virus detected in human stool. Virus Evol. 2, vew005 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williamson, K. E. et al. Estimates of viral abundance in soils are strongly influenced by extraction and enumeration methods. Biol. Fertil. Soils 49, 857–869 (2013).Article 

    Google Scholar 
    Wang, C., Liu, D. & Bai, E. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biol. Biochem. 120, 126–133 (2018).CAS 
    Article 

    Google Scholar 
    Wang, Q. et al. Effects of nitrogen and phosphorus inputs on soil bacterial abundance, diversity, and community composition in Chinese fir plantations. Front. Microbiol. 9, 1543 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Payne, S. in Viruses. Payne, S., 219–226 (Elsevier, 2017).Hillman, B. I. & Cai, G. The family Narnaviridae. Adv. Virus Res. 86, 149–176 (2013).PubMed 
    Article 

    Google Scholar 
    Wolf, Y. I. et al. Origins and evolution of the global RNA virome. mBio 9, e02329-18 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wu, F. et al. A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analysis in R. Bioinformatics 35, 526–528 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).Article 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nayfach, S. et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Almagro Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. L. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gupta, R., Jung, E. & Brunak, S. NetNGlyc 1.0 Server (2017). DTU Health Tech. http://www.cbs.dtu.dk/services/NetNGlyc/Mirdita, M. et al. Uniclust databases of clustered and deeply annotated protein sequences and alignments. Nucleic Acids Res. 45, D170–D176 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Remmert, M., Biegert, A., Hauser, A. & Söding, J. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat. Methods 9, 173–175 (2012).CAS 
    Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lagkouvardos, I., Fischer, S., Kumar, N. & Clavel, T. Rhea: a transparent and modular R pipeline for microbial profiling based on 16S rRNA gene amplicons. PeerJ 5, e2836 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McLeod, A., Xu, C. & Lai, Y. Package ‘bestglm’. CRAN. (2020).Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Global economic costs of herpetofauna invasions

    Seebens, H. et al. Projecting the continental accumulation of alien species through to 2050. Glob. Change Biol. 27(5), 970–982 (2021).ADS 

    Google Scholar 
    Bellard, C., Cassey, P. & Blackburn, T. M. Alien species as a driver of recent extinctions. Biol. Lett. 12(2), 20150623 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Walsh, J. R., Carpenter, S. R. & Vander Zanden, M. J. Invasive species triggers a massive loss of ecosystem services through a trophic cascade. Proc. Natl. Acad. Sci. 113(15), 4081–4085 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Linders, T. E. W. et al. Direct and indirect effects of invasive species: Biodiversity loss is a major mechanism by which an invasive tree affects ecosystem functioning. J. Ecol. 107(6), 2660–2672 (2019).
    Google Scholar 
    Diagne, C., Ballesteros-Mejia, L., Bodey, T., Cuthbert, R., Fantle-Lepczyk, J., Angulo, E., Dobigny, G., & Courchamp, F. Economic costs of invasive rodents worldwide: The tip of the iceberg (2021).Schaffner, F., Medlock, J. M. & Van Bortel, A. W. Public health significance of invasive mosquitoes in Europe. Clin. Microbiol. Infect. 19(8), 685–692 (2013).CAS 
    PubMed 

    Google Scholar 
    Schaffner, U. et al. Biological weed control to relieve millions from Ambrosia allergies in Europe. Nat. Commun. 11(1), 1–7 (2020).
    Google Scholar 
    Shackleton, R. T., Shackleton, C. M. & Kull, C. A. The role of invasive alien species in shaping local livelihoods and human well-being: A review. J. Environ. Manag. 229, 145–157 (2019).
    Google Scholar 
    Clavero, M. & García-Berthou, E. Invasive species are a leading cause of animal extinctions. Trends Ecol. Evol. 20(3), 110 (2005).PubMed 

    Google Scholar 
    Crystal-Ornelas, R. & Lockwood, J. L. The ‘known unknowns’ of invasive species impact measurement. Biol. Invasions 22(4), 1513–1525 (2020).
    Google Scholar 
    Florencio, M., Lobo, J. M. & Bini, L. M. Biases in global effects of exotic species on local invertebrates: A systematic review. Biol. Invasions 21(10), 3043–3061 (2019).
    Google Scholar 
    Measey, J. et al. Why have a pet amphibian? Insights from YouTube. Front. Ecol. Evol. 7, 52 (2019).
    Google Scholar 
    Ossiboff, R. J. et al. Differentiating Batrachochytrium dendrobatidis and B. salamandrivorans in amphibian chytridiomycosis using RNAScope in situ hybridization. Front. Vet. Sci. 6, 304 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Kraus, F. Alien Reptiles and Amphibians: A Scientific Compendium and Analysis, vol. 4. (Springer Science & Business Media, 2009).Kraus, F. Impacts from invasive reptiles and amphibians. Annu. Rev. Ecol. Evol. Syst. 46, 75–97 (2015).
    Google Scholar 
    Ramsay, N. F., Ng, P. K. A., O’Riordan, R. M., & Chou, L. M. The red-eared slider (Trachemys scripta elegans) in Asia: A review. Biological invaders in inland waters: Profiles, distribution, and threats 161–174 (2007).Lindsay, M. K., Zhang, Y., Forstner, M. R. & Hahn, D. Effects of the freshwater turtle Trachemys scripta elegans on ecosystem functioning: An approach in experimental ponds. Amphibia-Reptilia 34(1), 75–84 (2013).
    Google Scholar 
    Phillips, B. L. & Shine, R. An invasive species induces rapid adaptive change in a native predator: Cane toads and black snakes in Australia. Proc. R. Soc. B Biol. Sci. 273(1593), 1545–1550 (2006).
    Google Scholar 
    Shanmuganathan, T. et al. Biological control of the cane toad in Australia: A review. Anim. Conserv. 13, 16–23 (2010).
    Google Scholar 
    Smart, A. S., Tingley, R. & Phillips, B. L. Estimating the benefit of quarantine: Eradicating invasive cane toads from islands. NeoBiota 60, 117 (2020).
    Google Scholar 
    Reaser, J. K. et al. Ecological and socioeconomic impacts of invasive alien species in island ecosystems. Environ. Conserv. 34, 98–111 (2007).
    Google Scholar 
    Fritts, T. H. Economic costs of electrical system instability and power outages caused by snakes on the island of Guam. Int. Biodeterior. Biodegrad. 49(2–3), 93–100 (2002).
    Google Scholar 
    Rodda, G. H., Fritts, T. H. & Chiszar, D. The disappearance of Guam’s wildlife. Bioscience 47(9), 565–574 (1997).
    Google Scholar 
    Kraus, F. Reptiles and amphibians. In Encyclopedia of Biological Invasions 590–594. (University of California Press, 2011).Kraus, F. Global trends in alien reptiles and amphibians. Aliens Invasive Species Bull. 28, 13–18 (2009).
    Google Scholar 
    Capinha, C., Marcolin, F. & Reino, L. Human-induced globalization of insular herpetofaunas. Glob. Ecol. Biogeogr. 29(8), 1328–1349 (2020).
    Google Scholar 
    Reed, R. N. & Kraus, F. Invasive reptiles and amphibians: Global perspectives and local solutions. Anim. Conserv. 13, 3–4 (2010).
    Google Scholar 
    Wasserman, R. J., Dick, J. T., Welch, R. J., Dalu, T. & Magellan, K. Site and species selection for religious release of non-native fauna. Conserv. Biol. 33(4), 969–971 (2019).PubMed 

    Google Scholar 
    Li, X., Liu, X., Kraus, F., Tingley, R. & Li, Y. Risk of biological invasions is concentrated in biodiversity hotspots. Front. Ecol. Environ. 14(8), 411–417 (2016).
    Google Scholar 
    Bellard, C. & Jeschke, J. M. A spatial mismatch between invader impacts and research publications. Conserv. Biol. 30(1), 230–232 (2016).CAS 
    PubMed 

    Google Scholar 
    Diagne, C. et al. InvaCost, a public database of the economic costs of biological invasions worldwide. Sci. Data 7(1), 1–12 (2020).
    Google Scholar 
    Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nature 592(7855), 571–576 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cuthbert, R. N., Diagne, C., Haubrock, P. J., Turbelin, A. J., & Courchamp, F. Are the “100 of the world’s worst” invasive species also the costliest? Biol. Invasions 1–10 (2021).Cuthbert, R. N. et al. Global economic costs of aquatic invasive alien species. Sci. Total Environ. 775, 145238 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Haubrock, P. J. et al. Biological invasions in Singapore and Southeast Asia: Data gaps fail to mask potentially massive economic costs. NeoBiota 67, 131–152 (2021).
    Google Scholar 
    Van Wilgen, N. J., Gillespie, M. S., Richardson, D. M. & Measey, J. A taxonomically and geographically constrained information base limits non-native reptile and amphibian risk assessment: A systematic review. PeerJ 6, e5850 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Cuthbert, R. et al. Economic costs of biological invasions in the United Kingdom. Neobiota 67, 299–328 (2021).
    Google Scholar 
    Heringer, G. et al. The economic costs of biological invasions in Central and South America: A first regional assessment. NeoBiota 67, 401 (2021).
    Google Scholar 
    Paini, D. R. et al. Global threat to agriculture from invasive species. Proc. Natl. Acad. Sci. 113(27), 7575–7579 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Capinha, C. et al. Diversity, biogeography and the global flows of alien amphibians and reptiles. Divers. Distrib. 23(11), 1313–1322 (2017).
    Google Scholar 
    Kumschick, S. et al. How repeatable is the Environmental Impact Classification of Alien Taxa (EICAT)? Comparing independent global impact assessments of amphibians. Ecol. Evol. 7(8), 2661–2670 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Diagne, C., Catford, J. A., Essl, F., Nuñez, M. A. & Courchamp, F. What are the economic costs of biological invasions? A complex topic requiring international and interdisciplinary expertise. NeoBiota 63, 25 (2020).
    Google Scholar 
    Diagne, C. et al. The economic costs of biological invasions in Africa: A growing but neglected threat?. NeoBiota 67, 11–51 (2021).
    Google Scholar 
    Bradshaw, C. J. et al. Detailed assessment of the reported economic costs of invasive species in Australia. NeoBiota 67, 511–550 (2021).
    Google Scholar 
    Dorcas, M. E. et al. Severe mammal declines coincide with proliferation of invasive Burmese pythons in Everglades National Park. Proc. Natl. Acad. Sci. 109(7), 2418–2422 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mazzotti, F. J. et al. Implications of the 2013 Python Challenge® for ecology and management of Python molorus bivittatus (Burmese Python) in Florida. Southeast. Nat. 15(sp8), 63–74 (2016).
    Google Scholar 
    Smith, B. J. et al. Betrayal: Radio-tagged Burmese pythons reveal locations of conspecifics in Everglades National Park. Biol. Invasions 18(11), 3239–3250 (2016).
    Google Scholar 
    Easteal, S. The history of introductions of Bufo marinus (Amphibia: Anura); A natural experiment in evolution. Biol. J. Lin. Soc. 16(2), 93–113 (1981).
    Google Scholar 
    Haubrock, P. J., Bernery, C., Cuthbert, R. N., Liu, C., Kourantidou, M., Leroy, B., Turbelin, A., Kramer, A. M., Verbrugge, L., Diagne, C., Courchamp, F., & Gozlan, R. E. What is the recorded economic cost of alien invasive fishes worldwide? (2021).Angulo, E., Hoffmann, B., Ballesteros-Mejia, L., Taheri, A., Balzani, P., Renault, D., Cordonnier, M., Bellard, C., Diagne, C., Ahmed, D. A., Watari, Y., & Courchamp, F. Economic costs of invasive alien ants worldwide. (2021).Kouba, A., Oficialdegui, F., Cuthbert, R., Kourantidou, M., Tricarico, E., Leroy, B., Gozlan, R., Courchamp, F., & Haubrock, P. Feeling the pinch: Global economic costs of crayfish invasions and comparison with other aquatic crustaceans (2021).Dufresnes, C. et al. Cryptic invasion of Italian pool frogs (Pelophylax bergeri) across Western Europe unraveled by multilocus phylogeography. Biol. Invasions 19(5), 1407–1420 (2017).
    Google Scholar 
    Kumschick, S. et al. Impact assessment with different scoring tools: How well do alien amphibian assessments match?. NeoBiota 33, 53 (2017).
    Google Scholar 
    Crystal-Ornelas, R. et al. Economic costs of biological invasions within North America. NeoBiota 67, 485 (2021).
    Google Scholar 
    Angulo, E. et al. Non-English languages enrich scientific knowledge: The example of economic costs of biological invasions. Sci. Total Environ. 775, 144441 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Taylor, R., & Edwards, G. A review of the impact and control of cane toads in Australia with recommendations for future research and management approaches. A report to the Vertebrate Pests Committee from the National Cane Toad Taskforce (2005).Burnett, K., Pongkijvorasin, S. & Roumasset, J. Species invasion as catastrophe: The case of the brown tree snake. Environ. Resour. Econ. 51(2), 241–254 (2012).
    Google Scholar 
    Haubrock, P. J., Cuthbert, R. N., Ricciardi, A., Diagne, C., & Courchamp, F. Massive economic costs of invasive bivalves in freshwater ecosystems (2021).Pimentel, D., Zuniga, R. & Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 52(3), 273–288 (2005).
    Google Scholar 
    Fantle-Lepczyk, J. E. et al. Economic costs of biological invasions in the United States. bioRxiv 89, 89 (2021).
    Google Scholar 
    European Environment Agency. The impacts of invasive alien species in Europe. Publications Office of the European Union (2013).Measey, J. et al. Invasive amphibians in southern Africa: A review of invasion pathways. Bothalia-Afr. Biodivers. Conserv. 47(2), 1–12 (2017).
    Google Scholar 
    Anton, A., Geraldi, N. R., Ricciardi, A. & Dick, J. T. Global determinants of prey naiveté to exotic predators. Proc. R. Soc. B 287(1928), 20192978 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Rico-Sánchez, A. E. et al. Economic costs of invasive alien species in Mexico. NeoBiota 67, 459–483 (2021).
    Google Scholar 
    McNeely, J. Invasive species: A costly catastrophe for native biodiversity. Land Use Water Resour. Res. 1(1732-2016-140260) (2001).Sax, D. F. & Gaines, S. D. Species invasions and extinction: The future of native biodiversity on islands. Proc. Natl. Acad. Sci. 105, 11490–11497 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Christie, M., Fazey, I., Cooper, R., Hyde, T. & Kenter, J. O. An evaluation of monetary and non-monetary techniques for assessing the importance of biodiversity and ecosystem services to people in countries with developing economies. Ecol. Econ. 83, 67–78 (2012).
    Google Scholar 
    Essl, F. et al. Socioeconomic legacy yields an invasion debt. Proc. Natl. Acad. Sci. 108(1), 203–207 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8(1), 1–9 (2017).
    Google Scholar 
    Ahmed, D. A., Hudgins, E. J., Cuthbert, R. N., Kourantidou, M., Diagne, C., Haubrock, P. J., et al. Managing biological invasions: The cost of inaction. Biol. Invasions. 1–20. (2022).Leung, B. et al. An ounce of prevention or a pound of cure: Bioeconomic risk analysis of invasive species. Proc. R. Soc. Lond. Ser. B Biol. Sci. 269(1508), 2407–2413 (2002).
    Google Scholar 
    Haubrock, P. J. et al. Geographic and taxonomic trends of rising biological invasion costs. Sci. Total Environ. 817, 152948 (2022).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kopecký, O., Kalous, L. & Patoka, J. Establishment risk from pet-trade freshwater turtles in the European Union. Knowl. Manag. Aquat. Ecosyst. 410, 02 (2013).
    Google Scholar 
    Mohanty, N. P. & Measey, J. The global pet trade in amphibians: Species traits, taxonomic bias, and future directions. Biodivers. Conserv. 28(14), 3915–3923 (2019).
    Google Scholar 
    Altherr, S. & Lameter, K. The rush for the rare: Reptiles and amphibians in the European pet trade. Animals 10, 2085 (2020).PubMed Central 

    Google Scholar 
    Cuthbert, R. N. et al. Biological invasion costs reveal insufficient proactive management worldwide. Sci. Total Environ. 819, 153404 (2022).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ricciardi, A. Invasive species. In Ecological Systems 161–178. (Springer, 2013).Leroy, B., Kramer, A. M., Vaissière, A. C., Courchamp, F., & Diagne, C. Analysing global economic costs of invasive alien species with the invacost R package. bioRxiv (2020). More

  • in

    Photosynthetic microorganisms effectively contribute to bryophyte CO2 fixation in boreal and tropical regions

    Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, et al. Fungal biogeography. Global diversity and geography of soil fungi. Science (80-). 2014;346:1256688.Article 
    CAS 

    Google Scholar 
    Oliverio AM, Geisen S, Delgado Baquerizo M, Maestre FT, Turner BL, Fierer N. The global-scale distributions of soil protists and their contributions to belowground systems. Sci Adv. 2020;6:eaax8787.Article 
    CAS 

    Google Scholar 
    Delgado Baquerizo M, Oliverio AM, Brewer TE, Benavent-Gonzalez A, Eldridge DJ, Bardgett RD, et al. A global atlas of the dominant bacteria found in soil. Science. 2018;359:320–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bates ST, Clemente JC, Flores GE, Walters WA, Parfrey LW, Knight R, et al. Global biogeography of highly diverse protistan communities in soil. ISME J. 2012;7:652–9.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Crowther TW, van den Hoogen J, Wan J, Mayes MA, Keiser AD, Mo L, et al. The global soil community and its influence on biogeochemistry. Science. 2019;365:eaav0550.CAS 
    PubMed 
    Article 

    Google Scholar 
    Xiong W, Jousset A, Li R, Delgado-Baquerizo M, Bahram M, Logares R, et al. A global overview of the trophic structure within microbiomes across ecosystems. Environ Int. 2021;151:106438.PubMed 
    Article 

    Google Scholar 
    Singh BK, Bardgett RD, Smith P, Reay DS. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol. 2010;8:779–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nowicka B, Kruk J. Powered by light: Phototrophy and photosynthesis in prokaryotes and its evolution. Microbiol Res. 2016;186-7:99–118.Article 
    CAS 

    Google Scholar 
    Hamard S, Céréghino R, Barret M, Sytiuk A, Lara E, Dorrepaal E, et al. Contribution of microbial photosynthesis to peatland carbon uptake along a latitudinal gradient. J Ecol. 2021;109:3424–41.CAS 
    Article 

    Google Scholar 
    Seppey CVW, Singer D, Dumack K, Fournier B, Belbahri LL, Mitchell EAD, et al. Distribution patterns of soil microbial eukaryotes suggests widespread algivory by phagotrophic protists as an alternative pathway for nutrient cycling. Soil Biol Biochem. 2017;112:68–76.CAS 
    Article 

    Google Scholar 
    Schmidt O, Dyckmans J, Schrader S. Photoautotrophic microorganisms as a carbon source for temperate soil invertebrates. Biol Lett. 2016;12:20150646.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Halvorson HM, Barry JR, Lodato MB, Findlay RH, Francoeur SN, Kuehn KA. Periphytic algae decouple fungal activity from leaf litter decomposition via negative priming. Funct Ecol. 2019;33:188–201.PubMed 
    Article 

    Google Scholar 
    Wyatt KH, Turetsky MR. Algae alleviate carbon limitation of heterotrophic bacteria in a boreal peatland. J Ecol. 2015;103:1165–71.CAS 
    Article 

    Google Scholar 
    Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, et al. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci. 2012;5:459–62.CAS 
    Article 

    Google Scholar 
    Jassey VEJ, Walcker R, Kardol P, Geisen S, Heger T, Lamentowicz M, et al. Contribution of soil algae to the global carbon cycle. New Phytol. 2022;234:64–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    Tahon G, Tytgat B, Willems A. Diversity of phototrophic genes suggests multiple bacteria may be able to exploit sunlight in exposed soils from the Sør Rondane Mountains, East Antarctica. Front Microbiol. 2016;7:2026.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maier S, Tamm A, Wu D, Caesar J, Grube M, Weber B. Photoautotrophic organisms control microbial abundance, diversity, and physiology in different types of biological soil crusts. ISME J. 2018;12:1032–46.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Büdel B. Ecology and diversity of rock-inhabiting cyanobacteria in tropical regions. Eur J Phycol. 1999;34:361–70.Article 

    Google Scholar 
    Hamard S, Küttim M, Céréghino R, Jassey VEJ. Peatland microhabitat heterogeneity drives phototrophic microbes distribution and photosynthetic activity. Environ Microbiol. 2021;23:6811–27.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cano-Díaz C, Maestre FT, Eldridge DJ, Singh BK, Bardgett RD, Fierer N, et al. Contrasting environmental preferences of photosynthetic and non-photosynthetic soil cyanobacteria across the globe. Glob Ecol Biogeogr. 2020;29:2025–38.Article 

    Google Scholar 
    Rodriguez-Caballero E, Belnap J, Büdel B, Crutzen PJ, Andreae MO, Pöschl U, et al. Dryland photoautotrophic soil surface communities endangered by global change. Nat Geosci. 2018;11:185–9.CAS 
    Article 

    Google Scholar 
    Pointing SB, Belnap J. Microbial colonization and controls in dryland systems. Nat Rev Microbiol. 2012;10:551–62.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bates ST, Clemente JC, Flores GE, Walters WA, Parfrey LW, Knight R, et al. Global biogeography of highly diverse protistan communities in soil. ISME J. 2013;7:652–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Küttim L, Küttim M, Puusepp L, Sugita S. The effects of ecotope, microtopography and environmental variables on diatom assemblages in hemiboreal bogs in Northern Europe. Hydrobiologia. 2017;792:137–49.Article 
    CAS 

    Google Scholar 
    Mahé F, de Vargas C, Bass D, Czech L, Stamatakis A, Lara E, et al. Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat Ecol Evol. 2017;1:91.PubMed 
    Article 

    Google Scholar 
    Lindo Z, Gonzalez A. The Bryosphere: An Integral and Influential Component of the Earth’s Biosphere. Ecosystems. 2010;13:612–27.Article 

    Google Scholar 
    Sporn SG, Bos MM, Kessler M, Gradstein SR. Vertical distribution of epiphytic bryophytes in an Indonesian rainforest. Biodivers Conserv. 2010;19:745–60.Article 

    Google Scholar 
    Cornelissen JHC, Lang SI, Soudzilovskaia NA, During HJ. Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Ann Bot. 2007;99:987–1001.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Breemen N. How Sphagnum bogs down other plants. Trends Ecol Evol. 1995;10:270–5.PubMed 
    Article 

    Google Scholar 
    Jonsson M, Kardol P, Gundale MJ, Bansal S, Nilsson M-C, Metcalfe DB, et al. Direct and Indirect Drivers of Moss Community Structure, Function, and Associated Microfauna Across a Successional Gradient. Ecosystems. 2014;18:1–16.
    Google Scholar 
    Bragina A, Berg C, Cardinale M, Shcherbakov A, Chebotar V, Berg G. Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle. ISME J. 2012;6:802–13.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bay G, Nahar N, Oubre M, Whitehouse MJ, Wardle DA, Zackrisson O, et al. Boreal feather mosses secrete chemical signals to gain nitrogen. New Phytol. 2013;200:54–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kip N, van Winden JF, Pan Y, Bodrossy L, Reichart G-J, Smolders AJP, et al. Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems. Nat Geosci. 2010;3:617–21.CAS 
    Article 

    Google Scholar 
    Lindo Z, Nilsson M-C, Gundale MJ. Bryophyte-cyanobacteria associations as regulators of the northern latitude carbon balance in response to global change. Glob Chang Biol. 2013;19:2022–35.PubMed 
    Article 

    Google Scholar 
    Jassey VEJ, Shimano S, Dupuy C, Toussaint M-L, Gilbert D. Characterizing the feeding habits of the testate amoebae Hyalosphenia papilio and Nebela tincta along a narrow ‘fen-bog’ gradient using digestive vacuole content and 13C and 15N isotopic analyses. Protist. 2012;163:451–64.PubMed 
    Article 

    Google Scholar 
    Raanan H, Oren N, Treves H, Keren N, Ohad I, Berkowicz SM, et al. Towards clarifying what distinguishes cyanobacteria able to resurrect after desiccation from those that cannot: The photosynthetic aspect. Biochim Biophys Acta – Bioenerg. 2016;1857:715–22.CAS 
    Article 

    Google Scholar 
    Puente-Sánchez F, Arce-Rodríguez A, Oggerin M, García-Villadangos M, Moreno-Paz M, Blanco Y, et al. Viable cyanobacteria in the deep continental subsurface. Proc Natl Acad Sci USA. 2018;115:10702–7.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Küttim M, Küttim L, Ilomets M, Laine AM. Controls of Sphagnum growth and the role of winter. Ecol Res. 2020;35:219–34.Article 
    CAS 

    Google Scholar 
    Jassey VEJ, Chiapusio G, Mitchell EAD, Binet P, Toussaint M-L, Gilbert D. Fine-scale horizontal and vertical micro-distribution patterns of testate amoebae along a narrow Fen/Bog gradient. Microb Ecol. 2011;61:374–85.PubMed 
    Article 

    Google Scholar 
    Wilken S, Huisman J, Naus-Wiezer S, Van Donk E. Mixotrophic organisms become more heterotrophic with rising temperature. Ecol Lett. 2012;16:225–33.PubMed 
    Article 

    Google Scholar 
    Jassey VEJ, Signarbieux C. Effects of climate warming on Sphagnumphotosynthesis in peatlands depend on peat moisture and species‐specific anatomical traits. Glob Chang Biol. 2019;182:12–65.
    Google Scholar 
    McDonald D, Price MN, Goodrich J, Nawrocki EP, Desantis TZ, Probst A, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2011;6:610–8. 2012 63PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lozupone CA, Stombaugh J, Gonzalez A, Ackermann G, Wendel D, Vázquez-Baeza Y, et al. Meta-analyses of studies of the human microbiota. Genome Res. 2013;23:1704–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pawluczyk M, Weiss J, Links MG, Egaña Aranguren M, Wilkinson MD, Egea-Cortines M. Quantitative evaluation of bias in PCR amplification and next-generation sequencing derived from metabarcoding samples. Anal Bioanal Chem. 2015;407:1841–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ramirez KS, Knight CG, de Hollander M, Brearley FQ, Constantinides B, Cotton A, et al. Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nat Microbiol. 2018;3:189–96.CAS 
    PubMed 
    Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2019.Opelt K, Berg C, Schönmann S, Eberl L, Berg G. High specificity but contrasting biodiversity of Sphagnum-associated bacterial and plant communities in bog ecosystems independent of the geographical region. ISME J. 2007;1:502–16.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hamard S, Robroek BJM, Allard P-M, Signarbieux C, Zhou S, Saesong T, et al. Effects of Sphagnum Leachate on Competitive Sphagnum Microbiome Depend on Species and Time. Front Microbiol. 2019;10:3317.Article 

    Google Scholar 
    Holland-Moritz H, Stuart J, Lewis LR, Miller S, Mack MC, McDaniel SF, et al. Novel bacterial lineages associated with boreal moss species. Environ Microbiol. 2018;20:2625–38.CAS 
    PubMed 
    Article 

    Google Scholar 
    Singer D, Metz S, Unrein F, Shimano S, Mazei Y, Mitchell EAD, et al. Contrasted Micro-Eukaryotic Diversity Associated with Sphagnum Mosses in Tropical, Subtropical and Temperate Climatic Zones. Microb Ecol. 2019;78:714–24.CAS 
    PubMed 
    Article 

    Google Scholar 
    Holland-Moritz H, Stuart JEM, Lewis LR, Miller SN, Mack MC, Ponciano JM, et al. The bacterial communities of Alaskan mosses and their contributions to N2-fixation. Microbiome. 2021;9:1–14.Article 
    CAS 

    Google Scholar 
    Righetti D, Vogt M, Gruber N, Psomas A, Zimmermann NE. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci Adv. 2019;5:eaau6253.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Amend AS, Cobian GM, Laruson AJ, Remple K, Tucker SJ, Poff KE, et al. Phytobiomes are compositionally nested from the ground up. PeerJ. 2019;2019:e6609.Article 

    Google Scholar 
    Dedysh SN, Pankratov TA, Belova SE, Kulichevskaya IS, Liesack W. Phylogenetic analysis and in situ identification of Bacteria community composition in an acidic Sphagnum peat bog. Appl Environ Microbiol. 2006;72:2110–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Robroek BJM, Martí M, Svensson BH, Dumont MG, Veraart AJ, Jassey VEJ. Rewiring of peatland plant–microbe networks outpaces species turnover. Oikos. 2021;303:605–15.
    Google Scholar 
    Holland-Moritz H, Stuart J, Lewis LR, Miller S, Mack MC, Mcdaniel SF, et al. Novel bacterial lineages associated with boreal moss species. Environ Microbiol. 2018;20:2625–38.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sytiuk A, Céréghino R, Hamard S, Delarue F, Guittet A, Barel JM, et al. Predicting the structure and functions of peatland microbial communities from Sphagnum phylogeny, anatomical and morphological traits and metabolites. J Ecol. 2021;1365-2745:13728.
    Google Scholar 
    Rudolph H, Samland J. Occurrence and metabolism of sphagnum acid in the cell walls of bryophytes. Phytochemistry. 1985;24:745–9.CAS 
    Article 

    Google Scholar 
    Chiapusio G, Jassey VEJ, Bellvert F, Comte G, Weston LA, Delarue F, et al. Sphagnum species modulate their phenolic profiles and mycorrhizal colonization of surrounding Andromeda polifolia along peatland microhabitats. J Chem Ecol. 2018;27:1–12.
    Google Scholar 
    Rasmussen S, Wolff C, Rudolph H. Compartmentalization of phenolic constituents in sphagnum. Phytochemistry. 1995;38:35–39.CAS 
    Article 

    Google Scholar 
    Sytiuk A, Céréghino R, Hamard S, Delarue F, Dorrepaal E, Küttim M, et al. Biochemical traits enhance the trait concept in Sphagnum ecology. Oikos 2022;00:00.Hájek T, Ballance S, Limpens J, Zijlstra M, Verhoeven JTA. Cell-wall polysaccharides play an important role in decay resistance of Sphagnum and actively depressed decomposition in vitro. Biogeochemistry. 2011;103:45–57.Article 
    CAS 

    Google Scholar 
    Bengtsson F, Rydin Hå, Hájek T. Biochemical determinants of litter quality in 15 species of Sphagnum. Plant Soil. 2018;425:161–76.CAS 
    Article 

    Google Scholar 
    Fudyma JD, Lyon J, AminiTabrizi R, Gieschen H, Chu RK, Hoyt DW, et al. Untargeted metabolomic profiling of Sphagnum fallax reveals novel antimicrobial metabolites. Plant Direct. 2019;3:e00179–17.Article 

    Google Scholar 
    He L, Mazza Rodrigues JL, Soudzilovskaia NA, Barceló M, Olsson PA, Song C, et al. Global biogeography of fungal and bacterial biomass carbon in topsoil. Soil Biol Biochem. 2020;151:108024.CAS 
    Article 

    Google Scholar 
    Hanson CA. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol. 2012;10:497–506.CAS 
    PubMed 
    Article 

    Google Scholar 
    Waddington JM, Morris PJ, Kettridge N, Granath G, Thompson DK, Moore PA. Hydrological feedbacks in northern peatlands. Ecohydrology. 2015;8:113–27.Article 

    Google Scholar 
    Reczuga MK, Lamentowicz M, Mulot M, Mitchell EAD, Buttler A, Chojnicki B, et al. Predator–prey mass ratio drives microbial activity under dry conditions in Sphagnum peatlands. Ecol Evol. 2018;8:5752–64.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ritchie RJ. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res. 2006;89:27–41.CAS 
    PubMed 
    Article 

    Google Scholar 
    Perrine Z, Negi S, Sayre RT. Optimization of photosynthetic light energy utilization by microalgae. Algal Res. 2012;1:134–42.Article 

    Google Scholar 
    Carey CC, Ibelings BW, Hoffmann EP, Hamilton DP, Brookes JD. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res. 2012;46:1394–407.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gorbunov MY, Falkowski PG. Using chlorophyll fluorescence kinetics to determine photosynthesis in aquatic ecosystems. Limnol Ocean. 2020;66:1–13.Article 
    CAS 

    Google Scholar 
    MacIntyre HL, Kana TM, Anning T, Geider RJ. Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J Phycol. 2002;38:17–38.Article 

    Google Scholar 
    Grote EE, Belnap J, Housman DC, Sparks JP. Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: implications for global change. Glob Chang Biol. 2010;16:2763–74.Article 

    Google Scholar 
    Robarts RD, Zohary T. Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom‐forming cyanobacteria. New Zealand Journal of Marine and Freshwater Research. 1987;21:391–9.CAS 
    Article 

    Google Scholar 
    Le Quéré C, Andrew RM, Friedlingstein P, Sitch S, Pongratz J, Manning AC, et al. Global Carbon Budget 2017. Earth Syst Sci Data. 2018;10:405–48.Article 

    Google Scholar  More

  • in

    Mapping hydrologic alteration and ecological consequences in stream reaches of the conterminous United States

    Overview of hydrologic and ecological mapping protocolMapping hydrologic and ecological alteration at the stream reach level followed a 7-step process that builds upon several previously published methods (Fig. 1). The steps include: (1) compiling a nationwide dataset of streamflow gauges from the US Geological Survey (USGS) and distinguishing reference and non-reference gages and associated records21,22,23, (2) assembling stream flow records and calculating hydrologic indices23, (3) quantifying hydrologic alteration for stream gages22, (4) developing models to predict hydrologic alteration from human disturbance variables24, (5) using models to extrapolate hydrologic alteration to ungauged stream reaches24, (6) developing empirical models of fish species richness responses to hydrologic alteration17, and (7) mapping fish richness responses to ungauged stream reaches based on modeled estimates of hydrologic alteration. Methodological details are provided in each of the publications cited above; however, an overview of the steps is provided here. We elaborate more fully on the detailed methodology starting at step 3, as this reflects more of the focus of the technical validation of the dataset (Fig. 1).Fig. 1Overview of the 7-step approach used to map hydrologic alteration and ecological consequences in stream reaches of the conterminous US.Full size imageStep 1 – Compiling a nationwide streamflow datasetWe assembled streamflow information for 7,088 USGS stream gages with at least 15 years of daily discharge data as of 2010. We only included gages with at least 15 years of complete annual records (i.e., those with More

  • in

    Fire activity as measured by burned area reveals weak effects of ENSO in China

    Mixing fire occurrence with wildfire activity is problematic also when trying to draw policy conclusions. Fang et al.1 examined the temporal pattern of fire numbers between 2005-18 and concluded that the application of a fire suppression policy after 1987 has contributed to decreases in fire occurrences after 2007. However, fire suppression is an effort to mitigate the results of a fire once it has started10. Consequently, fire suppression strictly affects the burned area, and not fire occurrence. Other aspects associated with fire planning, like awareness campaigns or fire bans, may act on fire occurrence. However, any relationship between fire occurrence and fire suppression will necessarily be artefactual because the latter does not affect the former.We acknowledge that part of the discrepancy with Fang et al.1 may lie in the different scales used in these analyses. However, fire activity is a term that currently lacks a rigorous definition and should be used with caution. Fire occurrence depends primarily on the number of ignitions (along with other factors affecting fire detection such as climate, topography or vegetation), which, in turn, results from human activity1 and, in some areas, lightning11. Using fire occurrence as an indicator for fire activity is particularly problematic when comparing multiple biomes that show marked differences in fire regime, as we demonstrate here. Additionally, ENSO and fire suppression may both affect burned area, but there is currently no mechanism that can explain a mechanistic link between either of these processes and the number of fire events. Consequently, fire occurrence should not be used as a sole metric of fire activity.We additionally note that burned area is not necessarily a reliable metric of fire impacts on ecosystems and society. Significant variation in severity and intensity may occur within a fire perimeter12. Additionally, damage to people and property are not captured by this metric13. While we caution against the use of a single metric to evaluate fire activity, we hope to have demonstrated that using fire occurrence alone is particularly problematic, and that the picture it paints is rather unrealistic. More