More stories

  • in

    SEM/EDX analysis of stomach contents of a sea slug snacking on a polluted seafloor reveal microplastics as a component of its diet

    Derraik, J. G. The pollution of the marine environment by plastic debris: A review. Mar. Pollut. Bull. 44(9), 842–852 (2002).CAS 
    PubMed 

    Google Scholar 
    Gregory, M. R. Environmental implications of plastic debris in marine settings—Entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos. Trans. R. Soc. B Biol. Sci. 364(1526), 2013–2025 (2009).
    Google Scholar 
    Claessens, M., Van Cauwenberghe, L., Vandegehuchte, M. B. & Janssen, C. R. New techniques for the detection of microplastics in sediments and field collected organisms. Mar. Pollut. Bull. 70(1–2), 227–233 (2013).CAS 
    PubMed 

    Google Scholar 
    Auta, H. S., Emenike, C. U. & Fauziah, S. H. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environ. Int. 102, 165–176 (2017).CAS 
    PubMed 

    Google Scholar 
    Zobkov, M. B. & Esiukova, E. E. Microplastics in a Marine Environment: Review of Methods for Sampling, Processing, and Analyzing Microplastics in Water, Bottom Sediments, and Coastal Deposits (2018).Coyle, R., Hardiman, G. & O’Driscoll, K. Microplastics in the marine environment: A review of their sources, distribution processes, uptake and exchange in ecosystems. Case Stud. Chem. Environ. Eng. 2, 100010 (2020).
    Google Scholar 
    Barnes, D. K., Galgani, F., Thompson, R. C. & Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 1985–1998 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    GESAMP. Sources, Fate and Effects of Microplastics in the Marine Environment: Part 2 of a Global Assessment. A Report to Inform the Second United Nations Environment Assembly, 220 (Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection, 2016).
    Google Scholar 
    Kroon, F. J., Motti, C. E., Jensen, L. H. & Berry, K. L. Classification of marine microdebris: A review and case study on fish from the Great Barrier Reef, Australia. Sci. Rep. 8(1), 1–15. https://doi.org/10.1038/s41598-018-34590-6 (2018).CAS 
    Article 

    Google Scholar 
    Cole, M., Lindeque, P., Halsband, C. & Galloway, T. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 62(12), 2588–2597 (2011).CAS 
    PubMed 

    Google Scholar 
    Cole, M. A novel method for preparing microplastic fibers. Sci. Rep. 6(1), 1–7. https://doi.org/10.1038/srep34519 (2016).CAS 
    Article 

    Google Scholar 
    Costa, M. et al. On the importance of size of plastic fragments and pellets on the strandline: A snapshot of a Brazilian beach. Environ. Monit. Assess. 168, 299–304 (2010).PubMed 

    Google Scholar 
    Kershaw, P. J. et al. (eds) GESAMP Guidelines or the Monitoring and Assessment of Plastic Litter and Microplastics in the Ocean, Rep. Stud. GESAMP No. 99 130 (IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP/ISA Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection, 2019).
    Google Scholar 
    Lusher, A. L., Welden, N. A., Sobral, P. & Cole, M. Sampling, isolating and identifying microplastics ingested by fish and invertebrates. Anal. Methods 9, 1346 (2017).
    Google Scholar 
    Lusher, A., Bråte, I. L. N., Hurley, R., Iversen, K. & Olsen, M. Testing of Methodology for Measuring Microplastics in Blue Mussels (Mytilus spp) and Sediments, and Recommendations for Future Monitoring of Microplastics (R & D-project) (2017).Laist, D. W. Impacts of marine debris: Entanglement of marine life in marine debris including a comprehensive list of species with entanglement and ingestion records. In Marine debris, 99–139 (Springer, 1997).Denuncio, P. et al. Plastic ingestion in Franciscana dolphins, Pontoporia blainvillei (Gervais and d’Orbigny, 1844), from Argentina. Mar. Pollut. Bull. 62(8), 1836–1841 (2011).CAS 
    PubMed 

    Google Scholar 
    Do Sul, J. A. I., Santos, I. R., Friedrich, A. C., Matthiensen, A. & Fillmann, G. Plastic pollution at a sea turtle conservation area in NE Brazil: Contrasting developed and undeveloped beaches. Estuar. Coasts 34(4), 814–823 (2011).
    Google Scholar 
    Lazar, B. & Gračan, R. Ingestion of marine debris by loggerhead sea turtles, Caretta caretta, in the Adriatic Sea. Mar. Pollut. Bull. 62(1), 43–47 (2011).CAS 
    PubMed 

    Google Scholar 
    Poppi, L. et al. Post-mortem investigations on a leatherback turtle Dermochelys coriacea stranded along the Northern Adriatic coastline. Dis. Aquat. Org. 100(1), 71–76 (2012).
    Google Scholar 
    Van Franeker, J. A. et al. Monitoring plastic ingestion by the northern fulmar Fulmarus glacialis in the North Sea. Environ. Pollut. 159(10), 2609–2615 (2011).PubMed 

    Google Scholar 
    Betts, K. Why Small Plastic Particles May Pose a Big Problem in the Oceans 8995–8995 (ACS Publications, 2008).
    Google Scholar 
    Cefas, L. Programme 8: Bass gillnet selectivity. Fish. Sci. 09 (2008).Priscilla, V., Sedayu, A. & Patria, M. P. Microplastic abundance in the water, seagrass, and sea hare Dolabella auricularia in Pramuka Island, Seribu Islands, Jakarta Bay, Indonesia. J. Phys. Conf. Ser. 1402, 033073. https://doi.org/10.1088/1742-6596/1402/3/033073 (2019).Article 

    Google Scholar 
    Graham, E. R. & Thompson, J. T. Deposit-and suspension-feeding sea cucumbers (Echinodermata) ingest plastic fragments. J. Exp. Mar. Biol. Ecol. 368(1), 22–29 (2009).
    Google Scholar 
    Thompson, R. C. et al. Lost at sea: Where is all the plastic? Science 304(5672), 838–838 (2004).CAS 
    PubMed 

    Google Scholar 
    Hämer, J., Gutow, L., Köhler, A. & Saborowski, R. Fate of microplastics in the marine isopod Idotea emarginata. Environ. Sci. Technol. 48(22), 13451–13458 (2014).ADS 
    PubMed 

    Google Scholar 
    Setälä, O., Fleming-Lehtinen, V. & Lehtiniemi, M. Ingestion and transfer of microplastics in the planktonic food web. Environ. Pollut. 185, 77–83 (2014).PubMed 

    Google Scholar 
    Cole, M. et al. Microplastics alter the properties and sinking rates of zooplankton faecal pellets. Environ. Sci. Technol. 50(6), 3239–3246 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gutow, L., Eckerlebe, A., Giménez, L. & Saborowski, R. Experimental evaluation of seaweeds as a vector for microplastics into marine food webs. Environ. Sci. Technol. 50(2), 915–923 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Naji, A., Nuri, M. & Vethaak, A. D. Microplastics contamination in molluscs from the northern part of the Persian Gulf. Environ. Pollut. 235, 113–120 (2018).CAS 
    PubMed 

    Google Scholar 
    Ding, J. et al. Detection of microplastics in local marine organisms using a multi-technology system. Anal. Methods 11(1), 78–87 (2019).CAS 

    Google Scholar 
    Gniadek, M. & Dąbrowska, A. The marine nano-and microplastics characterisation by SEM-EDX: The potential of the method in comparison with various physical and chemical approaches. Mar. Pollut. Bull. 148, 210–216 (2019).CAS 
    PubMed 

    Google Scholar 
    Dąbrowska, A. A roadmap for a plastisphere. Mar. Pollut. Bull. 167, 112322 (2021).PubMed 

    Google Scholar 
    Ebere, E. C. & Ngozi, V. E. Microplastics, an emerging concern: A review of analytical techniques for detecting and quantifying microplatics. Anal. Methods Environ. Chem. J. 2(2), 13–30 (2019).
    Google Scholar 
    Mariano, S., Tacconi, S., Fidaleo, M., Rossi, M. & Dini, L. Micro and nanoplastics identification: Classic methods and innovative detection techniques. Front. Toxicol. https://doi.org/10.3389/ftox.2021.636640 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ferrante, M. et al. Microplastics in fillets of Mediterranean seafood. A risk assessment study. Environ. Res. 204, 112247 (2022).CAS 
    PubMed 

    Google Scholar 
    Li, J. et al. Characterization, source, and retention of microplastic in sandy beaches and mangrove wetlands of the Qinzhou Bay, China. Mar. Pollut. Bull. 136, 401–406 (2018).CAS 
    PubMed 

    Google Scholar 
    Liu, J. et al. Pollution characteristics of microplastics in mollusks from the coastal Area of Yantai. China. Bull. Environ. Contamin. Toxicol. 107, 1–7 (2021).
    Google Scholar 
    Tarjuelo, I., Posada, D., Crandall, K., Pascual, M. & Turon, X. Cryptic species of Clavelina (Ascidiacea) in two different habitats: Harbours and rocky littoral zones in the northwestern Mediterranean. Mar. Biol. 139(3), 455–462 (2001).
    Google Scholar 
    Brunetti, R. & Mastrototaro, F. Botrylloides pizoni, a new species of Botryllinae (Ascidiacea) from the Mediterranean Sea R. Zootaxa 3258(1), 28–36 (2012).
    Google Scholar 
    Beli, E. et al. The zoogeography of extant rhabdopleurid hemichordates (Pterobranchia: Graptolithina), with a new species from the Mediterranean Sea. Invertebr. Syst. 32(1), 100–110 (2018).
    Google Scholar 
    Chimienti, G., Angeletti, L., Furfaro, G., Canese, S. & Taviani, M. Habitat, morphology and trophism of Tritonia callogorgiae sp. nov., a large nudibranch inhabiting Callogorgia verticillata forests in the Mediterranean Sea. Deep Sea Res. I Oceanogr. Res. Pap. 165, 103364 (2020).
    Google Scholar 
    Furfaro, G. & Mariottini, P. A new Dondice Marcus Er. 1958 (Gastropoda: Nudibranchia) from the Mediterranean Sea reveals interesting insights into the phylogenetic history of a group of Facelinidae taxa. Zootaxa 4731(1), 1–22. https://doi.org/10.11646/zootaxa.4731.1.1 (2020).Article 

    Google Scholar 
    Cózar, A. et al. Plastic accumulation in the Mediterranean Sea. PLoS ONE 10(4), e0121762. https://doi.org/10.1371/journal.pone.0121762 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sharma, S., Sharma, V. & Chatterjee, S. Microplastics in the Mediterranean Sea: Sources, pollution intensity, sea health, and regulatory policies. Front. Mar. Sci. 8, 634934. https://doi.org/10.3389/fmars.2021.634934 (2021).Article 

    Google Scholar 
    Pinardi, N. & Masetti, E. Variability of the large scale general circulation of the Mediterranean Sea from observations and modelling: A review. Palaeogeogr. Palaeoclimatol. Palaeoecol. 158(3–4), 153–173 (2000).
    Google Scholar 
    Suaria, G. et al. The Mediterranean Plastic soup: Synthetic polymers in Mediterranean surface waters. Sci. Rep. 6(1), 1–10 (2016).
    Google Scholar 
    Vianello, A. et al. Microplastic particles in sediments of Lagoon of Venice, Italy: First observations on occurrence, spatial patterns and identification. Estuar. Coast. Shelf. Sci. 130, 54–61. https://doi.org/10.1016/j.ecss.2013.03.022 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Parenzan, P. Il Mar Piccolo di Taranto. Ciem. Comm. Taranto (1984).Cavallo, R. A. & Stabili, L. Presence of vibrios in seawater and Mytilus galloprovincialis (Lam.) from the Mar Piccolo of Taranto (Ionian Sea). Water Res. 36(15), 3719–3726 (2002).CAS 
    PubMed 

    Google Scholar 
    Cardellicchio, N. et al. Organic pollutants (PAHs, PCBs) in sediments from the Mar Piccolo in Taranto (Ionian Sea, Southern Italy). Mar. Pollut. Bull. 55(10–12), 451–458 (2007).CAS 
    PubMed 

    Google Scholar 
    Cardellicchio, N., Annicchiarico, C., Di Leo, A., Giandomenico, S. & Spada, L. The Mar Piccolo of Taranto: An interesting marine ecosystem for the environmental problems studies. Environ. Sci. Pollut. Res. 23(13), 12495–12501 (2016).
    Google Scholar 
    Tursi, A. et al. Mega-litter and remediation: The case of Mar Piccolo of Taranto (Ionian Sea). Rendiconti Lincei. Sci. Fisiche e Nat. 29(4), 817–824 (2018).
    Google Scholar 
    Mastrototaro, F. et al. Benthic diversity of the soft bottoms in a semi-enclosed basin of the Mediterranean Sea. Marine Biological Association of the United Kingdom. J. Mar. Biol. Assoc. U.K. 88(2), 247 (2008).
    Google Scholar 
    Li, J. et al. Using mussel as a global bioindicator of coastal microplastic pollution. Environ. Pollut. 244, 522–533 (2019).CAS 
    PubMed 

    Google Scholar 
    Corami, F. et al. Evidence of small microplastics (< 100 μm) ingestion by Pacific oysters (Crassostrea gigas): A novel method of extraction, purification, and analysis using Micro-FTIR. Mar. Pollut. Bull. 160, 111606 (2020).CAS  PubMed  Google Scholar  De-la-Torre, G. E., Apaza-Vargas, D. M. & Santillán, L. L. Microplastic ingestion and feeding ecology in three intertidal mollusk species from Lima, Peru. Rev. Biol. Mar. Oceanogr. 55(2), 167–171 (2020). Google Scholar  Jiang, Y. et al. A review of microplastic pollution in seawater, sediments and organisms of the Chinese coastal and marginal seas. Chemosphere 286, 131677 (2021).ADS  PubMed  Google Scholar  Haszprunar, G. The heterobranchia—A new concept of the phylogeny of the higher Gastropoda. J. Zool. Syst. Evol. Res. 23(1), 15–37 (1985). Google Scholar  Wägele, H., Klussmann-Kolb, A., Vonnemann, V. & Medina, M. Heterobranchia I: The Opisthobranchia. In Phylogeny and Evolution of the Mollusca (eds Ponder, W. F. & Lindberg, D.) 385–408 (University of California Press, 2008). Google Scholar  Prkic, J. et al. First record of Calma gobioophaga Calado and Urgorri, 2002 (Gastropoda: Nudibranchia) in the Mediterranean Sea. Mediterr. Mar. Sci. 15(2), 423–428 (2014). Google Scholar  Furfaro, G., Trainito, E., De Lorenzi, F., Fantin, M. & Doneddu, M. Tritonia nilsodhneri Marcus Ev., 1983 (Gastropoda, Heterobranchia, Tritoniidae): First records for the Adriatic Sea and new data on ecology and distribution of Mediterranean populations. Acta Adriat. 58, 2 (2017). Google Scholar  Thompson, T. E. Studies on ontogeny of Tritonia hombergi Cuvier (Gastropoda: Opisthobranchia). Philos. Trans. R. Soc. Lond. B 245, 171–218. https://doi.org/10.1098/rstb.1962.0009 (1962).ADS  Article  Google Scholar  Cattaneo-Vietti, R., Angelini, S. & Bavestrello, G. Skin and gut spicules in Discodoris atromaculata (Bergh, 1880) (Mollusca: Nudibranchia). Bollettino Malacol. 28, 173–180 (1993). Google Scholar  Cattaneo-Vietti, R., Angelini, S., Gaggero, L. & Lucchetti, G. Mineral composition of nudibranch spicules. J. Molluscan Stud. 61(3), 331–337. https://doi.org/10.1093/mollus/61.3.331 (1995).Article  Google Scholar  Garese, A., García-Matucheski, S., Acuña, F. H. & Muniain, C. Feeding behavior of Spurilla sp. (Mollusca: Opisthobranchia) with a description of the kleptocnidae sequestered from its sea anemone prey. Zool. Stud. 51(7), 905–912 (2012).CAS  Google Scholar  Braga, T. et al. Bursatella leachii from Mar Menor as a source of bioactive molecules: Preliminary evaluation of the nutritional profile, in vitro biological activities and fatty acids contents. J. Aquat. Food Prod. Technol. 26(10), 1337–1350 (2017).CAS  Google Scholar  Willis, T. J. et al. Kleptopredation: A mechanism to facilitate planktivory in a benthic mollusc. Biol. Let. 13, 20170447. https://doi.org/10.1098/rsbl.2017.0447 (2017).Article  Google Scholar  Goodheart, J. A. et al. Comparative morphology and evolution of the cnidosac in Cladobranchia (Gastropoda: Heterobranchia: Nudibranchia). Front. Zool. 15(1), 1–18. https://doi.org/10.1186/s12983-018-0289-2 (2018).CAS  Article  Google Scholar  Marin, A. & Ros, J. Chemical defenses in Sacoglossan Opisthobranchs: Taxonomic trends and evolutive implications. Sci. Mar. 67(Suppl. 1), 227–241 (2004). Google Scholar  Wägele, H., Ballestero, M. & Avila, C. Defensive glandular structures in opisthobranch molluscs—From histology to ecology. Oceanogr. Mar. Biol. Annu. Rev. 44, 197–276 (2006). Google Scholar  Pavlik, J. R. Antipredatory defensive roles of natural products from marine invertebrates. In Handbook of Marine Natural Products Vol. 12 (eds Fattorusso, E. et al.) 677–710 (Springer, 2012). Google Scholar  Avila, C., Nuñez-Pons, L. & Moles, J. From the tropics to the poles chemical defense strategies in sea slugs (Mollusca: Heterobranchia). In Chemical Ecology: The Ecological Impact of Marine Natural Products (eds Puglisi, M. P. & Becerro, M. A.) 93 (CRC Press, 2018). Google Scholar  Capper, A., Tibbetts, I. R., O’Neil, J. M. & Shaw, G. R. The fate of Lyngbya majuscula toxins in three potential consumers. J. Chem. Ecol. 31(7), 1595–1606 (2005).CAS  PubMed  Google Scholar  Dean, L. J. & Prinsep, M. R. The chemistry and chemical ecology of nudibranchs. Nat. Prod. Rep. 34(12), 1359–1390 (2017).CAS  PubMed  Google Scholar  Simmons, T. L., Andrianasolo, E., McPhail, K., Flatt, P. & Gerwick, W. H. Marine natural products as anticancer drugs. Mol. Cancer Ther. 4(2), 333–342 (2005).CAS  PubMed  Google Scholar  Klussmann-Kolb, A. Phylogeny of the Aplysiidae (Gastropoda, Opisthobranchia) with new aspects of the evolution of seahares. Zool. Scr. 33, 439–462 (2004). Google Scholar  Willan, R. C. Phylogenetic systematics of the Notaspidea (Opisthobranchia) with reappraisal of families and genera. Am. Malacol. Bull. 5, 215–241 (1987). Google Scholar  Medina, M. & Walsh, P. J. Molecular systematics of the order Anaspidea based on mitochondrial DNA sequences (12S, 16S, and COI). Mol. Phylogenet. Evol. 15, 41–58 (2000).CAS  PubMed  Google Scholar  Furfaro, G., De Matteo, S., Mariottini, P. & Giacobbe, S. Ecological notes of the alien species Godiva quadricolor (Gastropoda: Nudibranchia) occurring in Faro Lake (Italy). J. Nat. Hist. 52(11–12), 645–657 (2018). Google Scholar  Appleton, D. R., Sewell, M. A., Berridge, M. V. & Copp, B. R. A new biologically active malyngamide from a New Zealand collection of the sea hare Bursatella leachii. J. Nat. Prod. 65(4), 630–631 (2002).CAS  PubMed  Google Scholar  Rajaganapathi, J., Kathiresan, K. & Singh, T. P. Purification of anti-HIV protein from purple fluid of the sea hare Bursatella leachii de Blainville. Mar. Biotechnol. 4(5), 447–453 (2002).CAS  Google Scholar  Suntornchashwej, S., Chaichit, N., Isobe, M. & Suwanborirux, K. Hectochlorin and morpholine derivatives from the Thai Sea Hare, Bursatella leachii. J. Nat. Prod. 68(6), 951–955 (2005).CAS  PubMed  Google Scholar  Dhahri, M. et al. Extraction, characterization, and anticoagulant activity of a sulfated polysaccharide from Bursatella leachii viscera. ACS Omega 5(24), 14786–14795 (2020).CAS  PubMed  PubMed Central  Google Scholar  Clarke, C. L. The population dynamics and feeding preferences of Bursatella leachii (Opisthobranchia: Anaspidea) in northeast Queensland, Australia. Rec. West. Austral. Museum Suppl. 69, 11–21 (2006). Google Scholar  Blainville, H. M. D. de. Bursatella, p. 138, in: Dictionnaire des Sciences Naturelles (F. Cuvier, ed.), Vol. 5, Supplément. Levrault, Strasbourg & Le Normant, Paris (1817).Trainito, E. & Doneddu, M. Nudibranchi del Mediterraneo 2nd edn, 192 (Il Castello, 2014). Google Scholar  Zbyszewski, M., Corcoran, P. L. & Hockin, A. Comparison of the distribution and degradation of plastic debris along shorelines of the Great Lakes, North America. J. Great Lakes Res. 40(2), 288–299 (2014).CAS  Google Scholar  Wang, Z. M., Wagner, J., Ghosal, S., Bedi, G. & Wall, S. SEM/EDS and optical microscopy analyses of microplastics in ocean trawl and fish guts. Sci. Total Environ. 603, 616–626 (2017).ADS  PubMed  Google Scholar  Gewert, B., Plassmann, M. & MacLeod, M. Pathways for degradation of plastic polymers floating in the marine environment. Environ. Sci. Process. Impacts 17, 1513–1521 (2015).CAS  PubMed  Google Scholar  Gewert, B., Plassmann, M., Sandblom, O. & MacLeod, M. Identification of chain scission products released to water by plastic exposed to ultraviolet light. Environ. Sci. Technol. Lett. 5, 272–276 (2018).CAS  Google Scholar  Lang, M. et al. Fenton aging significantly affects the heavy metal adsorption capacity of polystyrene microplastics. Sci. Total Environ. 722, 137762 (2020).ADS  CAS  PubMed  Google Scholar  Ding, L., Mao, R., Ma, S., Guo, X. & Zhu, L. High temperature depended on the ageing mechanism of microplastics under different environmental conditions and its effect on the distribution of organic pollutants. Water Res. 174, 115634 (2020).CAS  PubMed  Google Scholar  Wang, F. et al. The influence of polyethylene microplastics on pesticide residue and degradation in the aquatic environment. J. Hazard. Mater. 394, 122517 (2020).CAS  PubMed  Google Scholar  Ouyang, Z. et al. The aging behavior of polyvinyl chloride microplastics promoted by UV-activated persulfate process. J. Hazard. Mater. 424, 127461 (2022).CAS  PubMed  Google Scholar  Dehaut, A. et al. Microplastics in seafood: Benchmark protocol for their extraction and characterization. Environ. Pollut. 215, 223–233 (2016).CAS  PubMed  Google Scholar  Besley, A., Vijver, M. G., Behrens, P. & Bosker, T. A standardized method for sampling and extraction methods for quantifying microplastics in beach sand. Mar. Pollut. Bull. 114(1), 77–83 (2017).CAS  PubMed  Google Scholar  Karami, A. et al. A high-performance protocol for extraction of microplastics in fish. Sci. Total Environ. 578, 485–494 (2017).ADS  CAS  PubMed  Google Scholar  Caron, A. G. et al. Ingestion of microplastic debris by green sea turtles (Chelonia mydas) in the Great Barrier Reef: Validation of a sequential extraction protocol. Mar. Pollut. Bull. 127, 743–751 (2018).CAS  PubMed  Google Scholar  Piarulli, S. et al. Microplastic in wild populations of the omnivorous crab Carcinus aestuarii: A review and a regional-scale test of extraction methods, including microfibres. Environ. Pollut. 251, 117–127 (2019).CAS  PubMed  Google Scholar  Pfohl, P. et al. Microplastic extraction protocols can impact the polymer structure. Microplast. Nanoplast. 1(1), 1–13 (2021). Google Scholar  Qiu, Q. et al. Extraction, enumeration and identification methods for monitoring microplastics in the environment. Estuar. Coast. Shelf Sci. 176, 102–109 (2016).ADS  CAS  Google Scholar  Lusher, A. L., Munno, K., Hermabessiere, L. & Carr, S. Isolation and extraction of microplastics from environmental samples: An evaluation of practical approaches and recommendations for further harmonization. Appl. Spectrosc. 74(9), 1049–1065 (2020).ADS  CAS  PubMed  Google Scholar  Bellasi, A., Binda, G., Pozzi, A., Boldrocchi, G. & Bettinetti, R. The extraction of microplastics from sediments: An overview of existing methods and the proposal of a new and green alternative. Chemosphere 278, 130357 (2021).ADS  CAS  PubMed  Google Scholar  Essa, A. M. & Khallaf, M. K. Antimicrobial potential of consolidation polymers loaded with biological copper nanoparticles. BMC Microbiol. 16(1), 1–8 (2016). Google Scholar  Etcheverry, M., Ferreira, M. L., Capiati, N. J., Pegoretti, A. & Barbosa, S. E. Strengthening of polypropylene–glass fiber interface by direct metallocenic polymerization of propylene onto the fibers. Compos. A Appl. Sci. Manuf. 39(12), 1915–1923 (2008). Google Scholar  Ivanič, A., Kravanja, G., Kidess, W., Rudolf, R. & Lubej, S. The influences of moisture on the mechanical, morphological and thermogravimetric properties of mineral wool made from basalt glass fibers. Materials 13(10), 2392 (2020).ADS  PubMed Central  Google Scholar  Kavad, B. V., Pandey, A. B., Tadavi, M. V. & Jakharia, H. C. A review paper on effects of drilling on glass fiber reinforced plastic. Procedia Technol. 14, 457–464 (2014). Google Scholar  Alsayed, S. H., Al-Salloum, Y. A. & Almusallam, T. H. Performance of glass fiber reinforced plastic bars as a reinforcing material for concrete structures. Compos. B Eng. 31(6–7), 555–567 (2000). Google Scholar  Fries, E. et al. Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environ. Sci. Process Impacts 15(10), 1949–1956 (2013).CAS  PubMed  Google Scholar  Turner, A. & Filella, M. The influence of additives on the fate of plastics in the marine environment, exemplified with barium sulphate. Mar. Pollut. Bull. 158, 111352 (2020).CAS  PubMed  Google Scholar  Barathi, M., Kumar, A. S. K. & Rajesh, N. Efficacy of novel Al–Zr impregnated cellulose adsorbent prepared using microwave irradiation for the facile defluoridation of water. J. Environ. Chem. Eng. 1(4), 1325–1335 (2013).CAS  Google Scholar  Bahsis, L. et al. Cellulose-copper as bio-supported recyclable catalyst for the clickable azide-alkyne [3+2] cycloaddition reaction in water. Int. J. Biol. Macromol. 119, 849–856 (2018).CAS  PubMed  Google Scholar  Ibrahim, N. A., Eid, B. M., Abd El-Aziz, E., Abou Elmaaty, T. M. & Ramadan, S. M. Multifunctional cellulose-containing fabrics using modified finishing formulations. RSC Adv. 7(53), 33219–33230 (2017).ADS  CAS  Google Scholar  Van, H. T., Le Sy, H., Nguyen, T. M. L. & Nguyen, D. K. Application of Mussell-derived biosorbent to remove NH 4+ from aqueous solution: Equilibrium and Kinetics. SN Appl. Sci. 3(4), 1–12 (2021). Google Scholar  Lakshmanna, B. et al. Data on Molluscan Shells in parts of Nellore Coast, southeast coast of India. Data Brief 16, 705–712 (2018).CAS  PubMed  Google Scholar  Taylor, P. D., Vinn, O., Kudryavtsev, A. & Schopf, J. W. Raman spectroscopic study of the mineral composition of cirratulid tubes (Annelida, Polychaeta). J. Struct. Biol. 171(3), 402–405 (2010).CAS  PubMed  Google Scholar  Schröder, V. et al. Micromorphological details and identification of chitinous wall structures in Rapana venosa (Gastropoda, Mollusca) egg capsules. Sci. Rep. 10(1), 1–13 (2020). Google Scholar  Ngamniyom, A., Wongroj, W., Karnchaisri, K. & Siriwattanarat, R. Ophidascaris baylisi (Nematoda: Ascarididae): Scanning electron microscopic study of the adult surface with ultrastructure and chemical composition analysis of eggshells. Sci. Technol. Asia 26, 189–198 (2021). Google Scholar  Fabra, M. et al. The plastic Trojan horse: Biofilms increase microplastic uptake in marine filter feeders impacting microbial transfer and organism health. Sci. Total Environ. 797, 149217 (2021).ADS  CAS  PubMed  Google Scholar  Jacquin, J. et al. Microbial ecotoxicology of marine plastic debris: A review on colonization and biodegradation by the “Plastisphere”. Front. Microbiol. 10, 865 (2019).PubMed  PubMed Central  Google Scholar  More

  • in

    Comparative metagenomics reveals expanded insights into intra- and interspecific variation among wild bee microbiomes

    Engel, M. S. A new interpretation of the oldest fossil bee (Hymenoptera: Apidae). Am. Mus. Novit. 3296, 1–11 (2000).Article 

    Google Scholar 
    Michener, C. D. The Bees of the World 2nd edn, (John Hopkins University Press, 2007).Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B. 274, 303–313 (2007).PubMed 
    Article 

    Google Scholar 
    Fürst, M., McMahon, D. P., Osborne, J. L., Paxton, R. J. & Brown, M. J. F. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506, 364–366 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    McMahon, D. P., Wilfert, L., Paxton, R. J. & Brown, M. J. F. Emerging viruses in bees: from molecules to ecology. Adv. Virus Res. 101, 251–291 (2015).Article 

    Google Scholar 
    Koch, H., Abrol, D. P., Li, J. & Schmid-Hempel, P. Diversity of evolutionary patterns of bacterial gut associates of corbiculate bees. Mol. Ecol. 22, 2028–2044 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    McFrederick, Q. S. et al. Environment or kin: whence do bees obtain acidophilic bacteria? Mol. Ecol. 21, 1754–1768 (2012).PubMed 
    Article 

    Google Scholar 
    McFrederick, Q. S., Wcislo, W. T., Hout, M. C. & Mueller, U. G. Host species and developmental stage, but not host social structure, affects bacterial community structure in social polymorphic bees. FEMS Microbiol. Ecol. 88, 398–406 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    McFrederick, Q. S. et al. Flowers and wild megachilid bees share microbes. Microb. Ecol. 73, 188–200 (2017).PubMed 
    Article 

    Google Scholar 
    Jones, J. C. et al. The gut microbiome is associated with behavioural task in honey bees. Insectes Sociaux 65, 419–429 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kristensen, T. N., Schonherz, A., Rohde, P. D., Sorensen, J. G. & Loeschcke, V. Strong experimental support for the hologenome hypothesis revealed from Drosophila melanogaster selection lines. bioRxiv https://doi.org/10.1101/2021.09.09.459587 (2021)Bovo, S., Utzeri, V. J., Ribani, A., Cabbri, R. & Fontanesi, L. Shotgun sequencing of honey DNA can describe honey bee derived environmental signatures and the honey bee hologenome complexity. Sci. Rep. 10, 1–17 (2020).Article 
    CAS 

    Google Scholar 
    Dharampal, P. S., Carlson, C., Currie, C. R. & Steffan, S. A. Pollen-borne microbes shape bee fitness. Proc. R. Soc. B. 286, 20182894 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Graystock, P., Rehan, S. M. & McFrederick, Q. S. Hunting for healthy microbiomes: determining the core microbiomes of Ceratina, Megalopta, and Apis bees and how they associate with microbes in bee collected pollen. Conserv. Genet. 18, 701–711 (2017).Article 

    Google Scholar 
    Engel, P. et al. The bee microbiome: impact on bee health and model for evolution and ecology of host-microbe interactions. MBio 7, e02164–15 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Voulgari-Kokota, A., McFrederick, Q. S., Steffan-Dewenter, I. & Keller, A. Drivers, diversity, and functions of the solitary-bee microbiota. Trends Microbiol 27, 1034–1044 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rothman, J. A., Leger, L., Graystock, P., Russell, K. & McFrederick, Q. S. The bumble bee microbiome increases survival of bees exposed to selenate toxicity. Environ. Microbiol. 21, 3417–3429 (2019).CAS 
    Article 

    Google Scholar 
    Engel, P., Martinson, V. G. & Moran, N. A. Functional diversity within the simple gut microbiota of the honey bee. PNAS 109, 11002–11007 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Engel, P. & Moran, N. A. Functional and evolutionary insights into the simple yet specific gut microbiota of the honey bee from metagenomic analysis. Gut Microbes 4, 60–65 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kwong, W. K. et al. Dynamic microbiome evolution in social bees. Sci. Adv. 3, e1600513 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Breeze, T. D., Bailey, A. P., Balcombe, K. G. & Potts, S. G. Pollination services in the UK: How important are honeybees? Agric. Ecosyst. Environ. 142, 137–143 (2011).Article 

    Google Scholar 
    Dharampal, P. S., Hetherington, M. C. & Steffan, S. A. Microbes make the meal: oligolectic bees require microbes within their host pollen to thrive. Ecol. Entomol. 45, 1418–1427 (2020).Article 

    Google Scholar 
    Keller, A. et al. (More than) hitchhikers through the network: the shared microbiome of bees and flowers. Curr. Opin. Insect 44, 8–15 (2021).Article 

    Google Scholar 
    Hugenholtz, P. & Tyson, G. W. Metagenomics. Nature 455, 481–483 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Galbraith, D. A. et al. Investigating the viral ecology of global bee communities with high- throughput metagenomics. Sci. Rep. 8, 8879 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Regan, T. et al. Characterisation of the British honey bee metagenome. Nat. Commun. 9, 1–13 (2018).CAS 
    Article 

    Google Scholar 
    Bovo, S. et al. Shotgun metagenomics of honey DNA: Evaluation of a methodological approach to describe a multi-kingdom honey bee derived environmental DNA signature. PLOS ONE 13, e0205575 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Schoonvaere, K. et al. Unbiased RNA shotgun metagenomics in social and solitary wild bees detects associations with eukaryote parasites and new viruses. PLOS ONE 11, e0168456 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cox-Foster, D. L. et al. A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318, 283–287 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rehan, S. M., Leys, R. & Schwarz, M. P. A mid-cretaceous origin of sociality in xylocopine bees with only two origins of true worker castes. PLOS ONE 7, e34690 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rehan, S. M. Small carpenter bees (Ceratina). Encyclopedia of Social Insects (ed Chris, S.) (Springer, 2020).Sakagami, S. F. & Maeta, Y. Multifemale nests and rudimentary castes in the normally solitary bee Ceratina japonica (Hymenoptera: Xylocopinae). J. Kans. Entomol. 57, 639–656 (1984).
    Google Scholar 
    Huisken, J. L., Shell, W. A., Pare, H. K. & Rehan, S. M. The influence of social environment on cooperating and conflict in an incipiently social bee, Ceratina calcarata. Behav. Ecol. 75, 74 (2021).Article 

    Google Scholar 
    Rehan, S. M., Glastad, K. M., Lawson, S. P. & Hunt, B. G. The genome and methylome of a subsocial small carpenter bee, Ceratina calcarata. GBE 8, 1401–1410 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Rehan, S. M. et al. Conserved genes underlie phenotypic plasticity in an incipiently social bee. GBE 10, 2749–2758 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arsenault, S. V., Hunt, B. G. & Rehan, S. M. The effect of maternal care on gene expression and DNA methylation in a subsocial bee. Nat. Commun. 9, 3468 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Shell, W. A. et al. Sociality sculpts similar patterns of molecular evolution in two independently evolved lineages of eusocial bees. Comms. Biol. 4, 1–9 (2021).Article 
    CAS 

    Google Scholar 
    Dew, R. M., McFrederick, Q. S. & Rehan, S. M. Diverse diets with consistent core microbiome in wild bee pollen provisions. Insects 11, 49 (2020).Article 

    Google Scholar 
    Lawson, S. P., Kennedy, K. & Rehan, S. M. Pollen composition significantly impacts development and survival of the native small carpenter bee, Ceratina calcarata. Ecol. Entomol. 46, 232–239 (2021).Article 

    Google Scholar 
    Oppenheimer, R. L., Shell, W. A. & Rehan, S. M. Phylogeography and population genetics of the Australian small carpenter bee, Ceratina australensis. Biol. J. Linn. Soc. 124, 747–755 (2018).Article 

    Google Scholar 
    McFrederick, Q. S. & Rehan, S. M. Wild bee pollen usage and microbial communities co- vary across landscapes. Microb. Ecol. 77, 513–522 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Rehan, S. M., Richards, M. H. & Schwarz, M. P. Sociality in the Australian small carpenter bee Ceratina (Neoceratina) australensis. Insectes Sociaux 57, 403–412 (2010).Article 

    Google Scholar 
    Harpur, B. A. & Rehan, S. M. Connecting social polymorphism to single nucleotide polymorphism: population genomics of the small carpenter bee, Ceratina australensis. Biol. J. Linn. Soc. 132, 945–954 (2021).Article 

    Google Scholar 
    Neu, A. T., Allen, E. E. & Roy, K. Defining and quantifying the core microbiome: challenges and prospects. PNAS 118, e2104429118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lawson, S. P., Ciaccio, K. N. & Rehan, S. M. Maternal manipulation of pollen provisions affects worker production in a small carpenter bee. Behav. Ecol. 70, 1891–1900 (2016).Article 

    Google Scholar 
    Ganeshprasad, D. N., Jani, K., Shouche, Y. S. & Sneharani, A. H. Gut bacterial inhabitants of open nested honey bee, Apis florea. Preprint at https://assets.researchsquare.com/files/rs-225332/v1/ddf21abe-2456-4f45-af61-4ba3e81d16e7.pdf?c=1641312753 (2021).Rothman, J. A., Cox-Foster, D. L., Andrikopoulos, C. & McFrederick, Q. S. Diet breadth affects bacterial identity but not diversity in the pollen provisions of closely related polylectic and oligolectic bees. Insects 11, 1–13 (2020).Article 

    Google Scholar 
    Cohen, H., McFrederick, Q. S. & Philpott, S. M. Environment shapes the microbiome of the blue orchard bee, Osmia lignaria. Microb. Ecol. 80, 897–907 (2020).PubMed 
    Article 

    Google Scholar 
    Dew, R. M., Rehan, S. M. & Schwarz, M. P. Biogeography and demography of an Australian native bee Ceratina australensis (Hymenoptera: Apidae) since the last glacial maximum. J. Hymenopt. Res. 49, 25–41 (2016).Article 

    Google Scholar 
    Pinto-Tomás, A. A. et al. Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science 326, 1120–1123 (2009).PubMed 
    Article 
    CAS 

    Google Scholar 
    Walterson, A. M. & Stavrinides, J. Pantoea insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol. Rev. 39, 968–984 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Scheiner, R., Strauß, S., Thamm, M., Farré-Armengol, G. & Junker, R. R. The bacterium Pantoea ananatis modifies behavioral responses to sugar solutions in honeybees. Insects 11, 692 (2020).PubMed Central 
    Article 

    Google Scholar 
    Leonhardt, S. D. & Kaltenpoth, M. Microbial communities of three sympatric Australian stingless bee species. Plos ONE 9, e105718 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bailey, L. & Ball, B. V. Honey Bee Pathology (Academic Press, 1991).Tham, V. L. Isolation of Streptococcus pluton from the larvae of European honey bees in Australia. Aust. Vet. J. 54, 406–407 (1978).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bowman, J. The genus Flavobacterium. Prokaryotes 7, 481–531 (2006).
    Google Scholar 
    Voordouw, G. The genus Desulovibrio: The centennial. Appl. Environ. Microbiol. 61, 2813–2819 (1995).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Singaravelen, N., Nee’man, G., Inbar, M. & Izhaki, I. Feeding responses of free-flying honeybees to secondary compounds mimicking floral nectars. J. Chem. Ecol. 31, 2791–2804 (2005).Article 
    CAS 

    Google Scholar 
    Baracchi, D., Marples, A., Jenkins, A. J., Leitch, A. R. & Chittka, L. Nicotine in floral nectar pharmacologically influences bumblebee learning of floral features. Sci. Rep. 7, 1951 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Adler, L. S. & Irwin, R. E. Ecological costs and benefits of defenses in nectar. Ecology 86, 2968–2978 (2005).Article 

    Google Scholar 
    Bally, J. et al. Nicotiana paulineana, a new Australian species in Nicotiana section Suaveolentes. Aust. Syst. Bot. 34, 477–484 (2021).Article 

    Google Scholar 
    Coenye, T. & Vandamme, P. Diversity and significance of Burkholderia species occupying diverse ecology niches. Environ. Microbiol. 5, 719–729 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Levy, A., Merritt, A. J., Aravena-Roman, M., Hodge, M. M. & Inglis, T. J. J. Expanded range of Burkholderia species in Australia. Am. J. Trop. Med. Hyg. 78, 599–604 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kaltenpoth, M. & Flórez, L. V. Versatile and dynamic symbioses between insects and Burkholderia bacteria. Annu. Rev. Entomol. 65, 145–170 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Foley, K., Fazio, G., Jensen, A. B. & Hughes, W. O. H. Nutritional limitation and resistance to opportunistic Aspergillus parasites in honey bee larvae. J. Invertebr. Pathol. 111, 68–73 (2012).PubMed 
    Article 

    Google Scholar 
    Yoder, J. A. et al. Fungicide contamination reduces beneficial fungi in bee bread based on an area-wide field study in honey bee, Apis mellifera, colonies. J. Toxicol. Environ. Health Part A 76, 587–600 (2013).CAS 
    Article 

    Google Scholar 
    Yun, J.-H., Jung, M.-J., Kim, P. S. & Bae, J.-W. Social status shapes the bacterial and fungal gut communities of the honey bee. Sci. Rep. 8, 1–11 (2018).
    Google Scholar 
    Dew, R. M., Silva, D. P. & Rehan, S. M. Range expansion of an already widespread bee under climate change. GECCO 17, e00584 (2019).
    Google Scholar 
    Cambra, M., Capote, N. & Myrta, A. & Llácer, G. Plum pox virus and the estimated costs associated with sharka disease. EPPO Bull. 36, 202–204 (2006).Article 

    Google Scholar 
    Roberts, J. M. K., Ireland, K. B., Tay, W. T. & Paini, D. Honey bee-assisted surveillance for early plant virus detection. Ann. Appl. Biol. 173, 285–293 (2018).CAS 
    Article 

    Google Scholar 
    Elliott, B. et al. Pollen diets and niche overlap of honey bees and native bees in protected areas. BAAE 50, 169–180 (2021).
    Google Scholar 
    Porrini, C. et al. Use of honey bees as bioindicators of environmental pollution in Italy. in Honey bees: estimating the environmental impact of chemicals (eds Devillers, J. & Pham-Delegue, M.-H.) (Taylor & Francis Press, 2002).Kennedy, P., Higginson, A. D., Radford, A. N. & Sumner, S. Altruism in a volatile world. Nature 555, 359–362 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rubin, B. E. R., Sanders, J. G., Turner, K. M., Pierce, N. E. & Kocher, S. D. Social behaviour in bees influences the abundance of Sodalis (Enterobacteriaceae) symbionts. R. Soc. Open Sci. 5, 180369 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mohr, K. I. & Tebbe, C. C. Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environ. Microbiol. 8, 258–272 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Raymann, K. & Moran, N. A. The role of the gut microbiome in health and disease of adult honey bee workers. Curr. Opin. Insect Sci. 26, 97–104 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Amin, F. A. Z. et al. Probiotic properties of Bacillus strains isolated from stingless bee (Heterotrigona itama) honey collected across Malaysia. Int. J. Envrion. Res. Public Health 17, 1–15 (2020).
    Google Scholar 
    Takeshita, K. & Kikuchi, Y. Riptortus pedestris and Burkholderia symbiont: an ideal model system for insect-microbe symbiotic associations. Res. Microbiol. 168, 175–187 (2017).PubMed 
    Article 

    Google Scholar 
    Martinson, V. G. et al. A simple and distinctive microbiota associated with honey bees and bumble bees. Mol. Ecol. 20, 619–628 (2011).PubMed 
    Article 

    Google Scholar 
    D’Alvise, P. et al. The impact of winter feed type on intestinal microbiota and parasites in honey bees. Apidologie 49, 252–264 (2018).Article 
    CAS 

    Google Scholar 
    Wang, L. et al. Dynamic changes of gut microbial communities of bumble bee queens through important life stages. mSystems 4, e00631–19 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Kapheim, K. M., Johnson, M. M. & Jolley, M. Composition and acquisition of the microbiome in solitary, ground-nesting alkali bees. Sci. Rep. 11, 2993 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Abdelazez, A. et al. Potential benefits of Lactobacillus plantarum as probiotic and its advantages in human health and industrial applications: A review. Adv. Environ. Biol. 12, 16–27 (2018).CAS 

    Google Scholar 
    Frese, S. A. et al. The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri. PLoS Genet 7, e1001314 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Duar, R. M. et al. Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiol. Rev. 41, S27–S48 (2017).PubMed 
    Article 

    Google Scholar 
    Tejerina, M. R., Cabana, M. J. & Benitez-Ahrendts, M. R. Strains of Lactobacillus spp. reduce chalkbrood in Apis mellifera. J. Invertebr. Pathol. 178, 107521 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vásquez, A. et al. Symbionts as major modulators of insect health: Lactic acid bacteria and honeybees. PLOS ONE 7, e33188 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Voulgari-Kokota, A., Steffan-Dewenter, I. & Keller, A. Susceptibility of red mason bee larvae to bacterial threats due to microbiome exchange with imported pollen provisions. Insects 11, 1–14 (2020).Article 

    Google Scholar 
    Steffan, S. A. et al. Omnivory in bees: Elevated trophic positions among all major bee families. Am. Nat. 194, 414–421 (2019).PubMed 
    Article 

    Google Scholar 
    Hurst, P. S. Social biology of Exoneurella tridentata, an allodapine bee with morphological castes and perennial colonies. Unpublished D. Phil. Thesis (Flinders University, 2001).Chalita, M. et al. Improved metagenomic taxonomic profiling using a curated core gene- based bacterial database reveals unrecognized species in the genus Streptococcus. Pathogens 9, 204 (2021).Article 

    Google Scholar 
    Rehan, S. M. & Toth, A. L. Climbing the social ladder: molecular evolution of sociality. Trends Ecol. Evol. 30, 426–433 (2015).PubMed 
    Article 

    Google Scholar 
    Shell, W. A. & Rehan, S. M. Behavioral and genetic mechanisms of social evolution: insights from incipiently and facultatively social bees. Apidologie 49, 13–30 (2018).CAS 
    Article 

    Google Scholar 
    Kirby, K. S. Isolation and characterization of ribosomal ribonucleic acid. Biochem. J. 96, 266–269 (1956).Article 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2019).Article 
    CAS 

    Google Scholar 
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Tsilimigras, M. C. B. & Fodor, A. A. Compositional data analysis of the microbiome: fundamentals, tools, and challenges. Ann. Epidemiol. 26, 330–335 (2016).PubMed 
    Article 

    Google Scholar 
    Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res 27, 824–834 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Altschul, S. F. et al. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Oksanen, J. et al. Package ‘vegan’. Community Ecology package, version 2, 1–295 (2013).Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
    Google Scholar 
    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mina, R., Haixu, T. & Yuzhen, Y. FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Res. 38, e191 (2010).Article 
    CAS 

    Google Scholar 
    Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).Article 
    CAS 

    Google Scholar 
    Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf 9, 599 (2008).Article 
    CAS 

    Google Scholar 
    Langfelder, P. & Horvath, S. Tutorials for the WGCNA package. https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/ (2016).Liaw, A. & Wiener, M. Classification and regression by randomForest. R. N. 2, 18–22 (2002).
    Google Scholar 
    Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).Article 

    Google Scholar 
    Paluszynska, A. Structure mining and knowledge extraction from random forest with applications to The Cancer Genome Atlas project. Master’s Thesis (University of Warsaw, 2017). More

  • in

    Monitoring of benthic eukaryotic communities in two tropical coastal lagoons through eDNA metabarcoding: a spatial and temporal approximation

    Basset, A., Elliott, M., West, R. J. & Wilson, J. G. Estuarine and lagoon biodiversity and their natural goods and services. Estuar. Coast. Shelf Sci. 132, 1–4 (2013).CAS 

    Google Scholar 
    Newton, A. et al. Assessing, quantifying and valuing the ecosystem services of coastal lagoons. J. Nat. Conserv. 44, 50–65 (2018).
    Google Scholar 
    Heck, K. L., Able, K. W., Roman, C. T. & Fahay, M. P. Composition, abundance, biomass, and production of macrofauna in a New England estuary: Comparisons among eelgrass meadows and other nursery habitats. Estuaries 18, 379–389 (1995).
    Google Scholar 
    Franco, A. et al. Use of shallow water habitats by fish assemblages in a Mediterranean coastal lagoon. Estuar. Coast. Shelf Sci. 66, 67–83 (2006).
    Google Scholar 
    Barbosa, F. A. R., Scarano, F. R., Sabará, M. & Esteves, F. A. Brazilian LTER: Ecosystem and biodiversity information in support of decision-making. Environ. Monit. Assess. 90, 121–133 (2004).CAS 
    PubMed 

    Google Scholar 
    Esteves, F. et al. Neotropical coastal lagoons: An appraisal of their biodiversity, functioning, threats and conservation management. Braz. J. Biol. 68, 967–981 (2008).CAS 
    PubMed 

    Google Scholar 
    Kjerfve, B. Coastal lagoons. Elsevier Oceanogr. Ser. 60, 1–8 (1994).
    Google Scholar 
    Whitfield, A. K. Coastal lagoons—Critical habitats of environmental change. Mar. Biol. Res. 7, 416–417 (2011).
    Google Scholar 
    Obolewski, K. et al. Patterns of salinity regime in coastal lakes based on structure of benthic invertebrates. PLoS ONE 13, 1–19 (2018).
    Google Scholar 
    Schallenberg, M., Hall, C. J. & Burns, C. W. Consequences of climate-induced salinity increases on zooplankton abundance and diversity in coastal lakes. Mar. Ecol. Prog. Ser. 251, 181–189 (2003).
    Google Scholar 
    Broman, E. et al. Salinity drives meiofaunal community structure dynamics across the Baltic ecosystem. Mol. Ecol. 28, 3813–3829 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Bird, E. C. F. Physical setting and geomorphology of coastal lagoons. Elsevier Oceanogr. Ser. 60, 9–39 (1994).
    Google Scholar 
    Barnes, N., Bamber, R. N., Moncrieff, C. B., Sheader, M. & Ferrero, T. J. Estuarine, Coastal and Shelf Science Meiofauna in closed coastal saline lagoons in the United Kingdom: Structure and biodiversity of the nematode assemblage. Estuar. Coast. Shelf Sci. 79, 328–340 (2008).
    Google Scholar 
    Frühe, L. et al. Supervised machine learning is superior to indicator value inference in monitoring the environmental impacts of salmon aquaculture using eDNA metabarcodes. Mol. Ecol. 00, 1–19 (2020).
    Google Scholar 
    Cordier, T. et al. Multi-marker eDNA metabarcoding survey to assess the environmental impact of three offshore gas platforms in the North Adriatic Sea (Italy). Mar. Environ. Res. 146, 24–34 (2019).CAS 
    PubMed 

    Google Scholar 
    Balzano, S., Abs, E. & Leterme, S. C. Protist diversity along a salinity gradient in a coastal lagoon. Aquat. Microb. Ecol. 74, 263–277 (2015).
    Google Scholar 
    Polinski, J. M., Bucci, J. P., Gasser, M. & Bodnar, A. G. Metabarcoding assessment of prokaryotic and eukaryotic taxa in sediments from Stellwagen Bank National Marine Sanctuary. Sci. Rep. 9, 14820 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    López-Escardó, D. et al. Metabarcoding analysis on European coastal samples reveals new molecular metazoan diversity. Sci. Rep. 8, 1–14 (2018).
    Google Scholar 
    Günther, B., Knebelsberger, T., Neumann, H., Silke, L. & Arbizu, P. M. Metabarcoding of marine environmental DNA based on mitochondrial and nuclear genes. Sci. Rep. 8, 1–13 (2018).
    Google Scholar 
    Park, D. S. & Razafindratsima, O. H. Anthropogenic threats can have cascading homogenizing effects on the phylogenetic and functional diversity of tropical ecosystems. Ecography (Cop.) 42, 148–161 (2019).
    Google Scholar 
    Pan, Y., Yang, J., McManus, G. B., Lin, S. & Zhang, W. Insights into protist diversity and biogeography in intertidal sediments sampled across a range of spatial scales. Limnol. Oceanogr. 65, 1103–1115 (2020).
    Google Scholar 
    Wangensteen, O. S., Palacín, C., Guardiola, M. & Turon, X. DNA metabarcoding of littoral hard-bottom communities: High diversity and database gaps revealed by two molecular markers. PeerJ 6, e4705 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Polanco Fernández, A. et al. Comparing environmental DNA metabarcoding and underwater visual census to monitor tropical reef fishes. Environ. DNA 3, 1–15 (2020).
    Google Scholar 
    Armeli Minicante, S. et al. Habitat heterogeneity and connectivity: Effects on the planktonic protist community structure at two adjacent coastal sites (the lagoon and the Gulf of Venice, Northern Adriatic Sea, Italy) revealed by metabarcoding. Front. Microbiol. 10, 1–16 (2019).
    Google Scholar 
    Alves-De-Souza, C. et al. Does environmental heterogeneity explain temporal β diversity of small eukaryotic phytoplankton? Example from a tropical eutrophic coastal lagoon. J. Plankton Res. 39, 698–714 (2017).
    Google Scholar 
    Grzebyk, D. et al. Insights into the harmful algal flora in northwestern Mediterranean coastal lagoons revealed by pyrosequencing metabarcodes of the 28S rRNA gene. Harmful Algae 68, 1–16 (2017).CAS 
    PubMed 

    Google Scholar 
    Lallias, D. et al. Environmental metabarcoding reveals heterogeneous drivers of microbial eukaryote diversity in contrasting estuarine ecosystems. ISME J. 9, 1208–1221 (2015).PubMed 

    Google Scholar 
    Avó, A. P. et al. DNA barcoding and morphological identification of benthic nematodes assemblages of estuarine intertidal sediments: Advances in molecular tools for biodiversity assessment. Front. Mar. Sci. 4, 1–16 (2017).
    Google Scholar 
    Behera, P. et al. Salinity and macrophyte drive the biogeography of the sedimentary bacterial communities in a brackish water tropical coastal lagoon. Sci. Total Environ. 595, 472–485 (2017).CAS 
    PubMed 

    Google Scholar 
    Alsaffar, Z. et al. The role of seagrass vegetation and local environmental conditions in shaping benthic bacterial and macroinvertebrate communities in a tropical coastal lagoon. Sci. Rep. 10, 1–17 (2020).
    Google Scholar 
    Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).
    Google Scholar 
    Lara-Lara, J. Los ecosistemas marinos. Cap. Nat. Méx. 1, 135–159 (2008).
    Google Scholar 
    García-Grajales, J. & Buenrostro-Silva, A. E. Parque Nacional Lagunas de Chacahua, Oaxaca: Perspectivas a sus 75 años. Cienc. Ergo Sum. 21, 149–153 (2014).
    Google Scholar 
    Zamorano, P., Barrientos-Luján, N. A. & Ahumada-Sempoal, M. Á. Moluscos bentónicos de dos sistemas lagunares de la costa chica de Oaxaca, México y su relación con parámetros fisicoquímicos. Cienc. y Mar. 14, 13–28 (2012).
    Google Scholar 
    Sanay-González, R., MonrealGómez, M. A. & de León, D. A. S. Simulación de la circulación en el sistema lagunar Chacahua-Pastoría, Oaxaca, México. Cienc. y Mar. 10, 3–16 (2006).
    Google Scholar 
    Comisión Nacional de Acuacultura y Pesca. Obras de dragado y escolleras en Boca de Oro, laguna de Corralero, Oaxaca (2010).Sánchez-Meraz, B. & Martínez-Vega, J. A. Inmigración de Postlarvas de Camarón Litopenaeus sp. y Farfantepenaeus sp. a través la Boca El Oro del Sistema Lagunar Corralero-Alotengo, Oaxaca. Cienc. y Mar. 4, 29–46 (2000).
    Google Scholar 
    Angel-Pérez, C., Serrano-Guzmán, S. J. & Ahumada-Sempoal, M. A. Ciclo reproductivo del molusco Atrina maura (Pterioidea: Pinnidae) en un sistema lagunar costero, al sur del Pacífico tropical mexicano. Rev. Biol. Trop. 55, 839–852 (2007).PubMed 

    Google Scholar 
    Sánchez Méndez, E., Urbano Alonso, B., Sierra Hernández, S. & Garcés Salazar, J. L. Características malacológicas y sociales de la pesquería artesanal de moluscos en la Laguna de Chacahua, Oaxaca, México. Cienc. y Mar. 19, 3–11 (2015).
    Google Scholar 
    Cowart, D. A. et al. Metabarcoding is powerful yet still blind: A comparative analysis of morphological and molecular surveys of seagrass communities. PLoS ONE 10, 1–26 (2015).
    Google Scholar 
    Holman, L. E. et al. Detection of novel and resident marine species using environmental DNA metabarcoding of sediment and water. Sci. Rep. https://doi.org/10.1038/s41598-019-47899-7 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bojorges-Baños, J. C. Riqueza y diversidad de especies de aves asociadas a manglar en tres sistemas lagunares en la región costera de Oaxaca, México. Rev. Mex. Biodivers. 82, 205–215 (2011).
    Google Scholar 
    Ahumada-Sempoal, M. Á. & Ruiz-García, N. Características fisicoquímicas de la Laguna Pastoría, Oaxaca, México. Cienc. y Mar. 12, 3–17 (2008).
    Google Scholar 
    Aylagas, E., Mendibil, I., Borja, Á. & Rodríguez-ezpeleta, N. Marine sediment sample pre-processing for macroinvertebrates metabarcoding: Mechanical enrichment and homogenization. Front. Mar. Sci. 3, 1–8 (2016).
    Google Scholar 
    Hestetun, J. T., Lanzén, A., Skaar, K. S. & Dahlgren, T. G. The impact of DNA extract homogenization and replication on marine sediment metabarcoding diversity and heterogeneity. Environ. DNA 3, 997–1006 (2021).
    Google Scholar 
    Comeau, M., Li, W. K. W., Carmack, E. C. & Lovejoy, C. Arctic ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS ONE 6, 1–12 (2011).
    Google Scholar 
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 
    PubMed 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).
    Google Scholar 
    Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).CAS 
    PubMed 

    Google Scholar 
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).
    Google Scholar 
    Ratnasingham, S. & Hebert, P. D. N. BOLD: The barcode of life data system. Mol. Ecol. Notes 7, 355–364 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (2018).Anderson, M. J. Permutational multivariate analysis of variance (PERMANOVA). Wiley StatsRef Stat. Ref. Online. https://doi.org/10.1002/9781118445112.stat07841 (2017).Article 

    Google Scholar 
    Ter Braak, C. J. F. Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 1167–1179 (1986).
    Google Scholar 
    Ter Braak, C. J. F. The analysis of vegetation-environment relationships by canonical correspondence analysis*. Vegetatio 69, 69–77 (1987).
    Google Scholar 
    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statisticssofware package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
    Google Scholar 
    Coan, E. V. & Valentich-Scott, P. Bivalve Seashells of Tropical West America. Marine Bivalve Mollusks from Baja California to Northern Peru (Santa Barbara Museum of Natural History, 2012).
    Google Scholar 
    MolluscaBase. MolluscaBase. Mytella strigata (Hanley, 1843) (2022).Aylagas, E., Borja, Á., Muxika, I. & Rodríguez-ezpeleta, N. Adapting metabarcoding-based benthic biomonitoring into routine marine ecological status assessment networks. Ecol. Indic. 95, 194–202 (2018).
    Google Scholar 
    Cronin-O’Reilly, S. et al. Limited congruence exhibited across microbial, meiofaunal and macrofaunal benthic assemblages in a heterogeneous coastal environment. Sci. Rep. 8, 1–10 (2018).
    Google Scholar 
    Forster, D. et al. Benthic protists: The under-charted majority. FEMS Microbiol. Ecol. 92, 1–11 (2016).
    Google Scholar 
    Kim, H., Kim, H., Hwang, H. S. & Kim, W. Metagenomic analysis of the marine coastal invertebrates of South Korea as assessed by Ilumina MiSeq. Anim. Cells Syst. (Seoul) 21, 37–44 (2017).
    Google Scholar 
    Brannock, P. M., Wang, L., Ortmann, A. C., Waits, D. S. & Halanych, K. M. Genetic assessment of meiobenthic community composition and spatial distribution in coastal sediments along northern Gulf of Mexico. Mar. Environ. Res. 119, 166–175 (2016).CAS 
    PubMed 

    Google Scholar 
    Guardiola, M. et al. Spatio-temporal monitoring of deep-sea communities using metabarcoding of sediment DNA and RNA. PeerJ 4, e2807 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Barnes, M. A. & Turner, C. R. The ecology of environmental DNA and implications for conservation genetics. Conserv. Genet. 17, 1–17 (2016).CAS 

    Google Scholar 
    Bastida-Zavala, J. R. et al. Marine and coastal biodiversity of Oaxaca, Mexico. Check List 9, 329–390 (2013).
    Google Scholar 
    Nascimento, F. J. A., Lallias, D., Bik, H. M. & Creer, S. Sample size effects on the assessment of eukaryotic diversity and community structure in aquatic sediments using high-throughput sequencing. Sci. Rep. https://doi.org/10.1038/s41598-018-30179-1 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    In the Wrong Place: Alien Marine Crustaceans: Distribution, Biology and Impacts, Vol. 6 (2011).Rodríguez-Almaraz, G. A. & García-Madrigal, M. D. S. Crustáceos exóticos invasores. Especies Acuáticas Invasoras en México 347–371 (2014).Gómez, S., Fleeger, J. W., Rocha, A. & Foltz, D. Four new species of Cletocamptus Schmankewitsch, 1875, closely related to Cletocamptus deitersi (Richard) (Copepoda: Harpacticoida). J. Nat. Hist. 38, 2669. https://doi.org/10.1080/0022293031000156240 (2004).Article 

    Google Scholar 
    Ciros Pérez, J., Silva Briano, M. & Elías Gutierrez, M. A new species of Macrothrix (Anomopoda: Macrothricidae) from Central Mexico. Hydrobiologia 319, 159–166 (1996).
    Google Scholar 
    Fuentes-Reines, J. M., De Roa, E. Z., Morón, E., Gámez, D. & López, C. Conocimiento de la fauna de cladocera (Crustacea: Branchiopoda) de la ciénaga grande de Santa Marta, Colombia. Bol. Investig. Mar. y Costeras 41, 121–164 (2012).
    Google Scholar 
    Thakur, R. K., Jindal, R., Singh, U. B. & Ahluwalia, A. S. Plankton diversity and water quality assessment of three freshwater lakes of Mandi (Himachal Pradesh, India) with special reference to planktonic indicators. Environ. Monit. Assess. 185, 8355–8373 (2013).CAS 
    PubMed 

    Google Scholar 
    Band-Schmidt, C. J., Bustillos-Guzmán, J. J., López-Cortés, D. J., Núñez-Vázquez, E. & Hernández-Sandoval, F. E. The actual state of the study of harmful algal blooms in Mexico. Hidrobiológica 21, 381–413 (2011).
    Google Scholar 
    Maciel-Baltazar, E. Dinoflagelados (Dinoflagellata) tóxicos de la costa de Chiapas, México, Pacífico centro oriental. UNED Res. J. 7, 39–48 (2015).
    Google Scholar 
    Okolodkov, Y. B. & Gárete-Izárraga, I. An annotated checklist od dinoflagellates (Dinophyceae) from the Mexican Pacific. Acta Bot. Mex. 74, 1–154 (2006).
    Google Scholar 
    Murray, S. A. et al. A fish kill associated with a bloom of Amphidinium carterae in a coastal lagoon in Sydney, Australia. Harmful Algae 49, 19–28 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Gárate-Lizárraga, I. et al. Seasonality of the dinoflagellate Amphidinium cf. carterae (Dinophyceae: Amphidiniales) in Bahía de la Paz, Gulf of California. Mar. Pollut. Bull. 146, 532–541 (2019).PubMed 

    Google Scholar 
    Varona-Cordero, F. & Gutiérrez, J. Seasonal phytoplankton composition of two coastal lagoons of the tropical Pacific. Hidrobiológica 16, 159–174 (2006).
    Google Scholar 
    Hyeon, S. & Jin, H. Gyrodinium jinhaense n. sp., a new heterotrophic unarmored dinoflagellate from the coastal waters of Korea. J. Eukaryot. Microbiol. 66, 821–835 (2019).
    Google Scholar 
    Onuma, R., Watanabe, K. & Horiguchi, T. Pellucidodinium psammophilum gen. & sp. nov. and Nusuttodinium desymbiontum sp. nov. (Dinophyceae), two novel heterotrophs closely related to kleptochloroplastidic dinoflagellates. Phycologia 54, 192–209 (2015).
    Google Scholar 
    Elliott, M. & Whitfield, A. K. Challenging paradigms in estuarine ecology and management. Estuar. Coast. Shelf Sci. 94, 306–314 (2011).
    Google Scholar 
    Sreenivasulu, G., Jayaraju, N. & Sundara Raja, R. Physico-chemical parameters of coastal water from Tupilipalem coast, Southeast coast of India. J. Coast. Sci. 2, 34–39 (2015).
    Google Scholar 
    Landa-Jaime, V. Benthic mollusc assemblage of the Agua Dulce / El Ermitaño lagoon estuarine system, Jalisco, Mexico. Ciencias Mar. 29, 169–184 (2003).
    Google Scholar 
    Smyth, K. & Elliott, M. Effects of changing salinity on the ecology of the marine environment. In Stressors in the Marine Environment: Physiological and Ecological Responses (eds Solan, M. & Whiteley, N.) 384 (Societal Implications. Oxford University Press, 2016).
    Google Scholar 
    Rivera-Velázquez, G., Soto, L. A., Salgado-Ugarte, I. H. & Naranjo, E. J. Growth, mortality and migratory pattern of white shrimp (Litopenaeus vannamei, Crustacea, Penaeidae) in the Carretas-Pereyra coastal lagoon system, Mexico. Rev. Biol. Trop. 56, 523–533 (2008).PubMed 

    Google Scholar 
    Gainey, L. F. & Greenberg, M. J. Physiological basis of the species abundance-salinity relationship in molluscs: A speculation*. Mar. Biol. 40, 41–49 (1977).CAS 

    Google Scholar 
    Baqueiro-Cárdenas, E. R., Borabe, L. & Goldaracena-Islas, C. G. Mollusks and pollution. A review. Rev. Mex. Biodivers. 78, 1–7 (2007).
    Google Scholar 
    Purcell, J. E., Uye, S. & Lo, W. Anthropogenic causes of jellyfish blooms and their direct consequences for humans: A review. Mar. Ecol. Prog. Ser. 350, 153–174 (2007).
    Google Scholar 
    Nemcová, Y., Pusztai, M., Skaloudová, M. & Neustupa, J. Silica-scaled chrysophytes (Stramenopiles, Ochrophyta) along a salinity gradient: A case study from the Gulf of Bothnia western shore (northern Europe). Hydrobiologia 764, 187–197 (2016).
    Google Scholar 
    Li, R., Jiao, N., Warren, A. & Xu, D. Changes in community structure of active protistan assemblages from the lower Pearl River to coastal Waters of the South China Sea. Eur. J. Protistol. 63, 72–82 (2018).PubMed 

    Google Scholar 
    Kataoka, T. & Kondo, R. Estuarine, coastal and shelf science protistan community composition in anoxic sediments from three salinity-disparate Japanese lakes ☆. Estuar. Coast. Shelf Sci. 224, 34–42 (2019).CAS 

    Google Scholar 
    Sun, P. et al. Marked seasonality and high spatial variation in estuarine ciliates are driven by exchanges between the ‘abundant’ and ‘intermediate’ biospheres. Sci. Rep. https://doi.org/10.1038/s41598-017-10308-y (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Contreras, E. F. O., Castañeda, L. R., Torres, A. & Pérez, M. A. H. Problemática sobre las lagunas costeras mexicanas V, Pesquerías. ContactoSS 25, 36–46 (1998).
    Google Scholar 
    Reizopoulou, S. & Nicolaidou, A. Benthic diversity of coastal brackish-water lagoons in western Greece. Aquat. Conserv. Mar. Freshw. Ecosyst. 14, 93–102 (2004).
    Google Scholar 
    Zamorano, P., Barrientos-luján, N. A. & Ramírez-luna, S. Malacofauna del infralitoral rocoso de Agua Blanca, Santa Elena Cozoaltepec, Oaxaca. Cienc. y Mar. 12, 19–33 (2008).
    Google Scholar 
    Chávez-lópez, Y. & Cruz-gómez, C. New records of polychaetes (Annelida: Polychaeta) from three locations of Oaxaca. Mexico. 67, 157–168 (2019).
    Google Scholar 
    Thomsen, P. F. et al. Monitoring endangered freshwater biodiversity using environmental DNA. Mol. Ecol. 21, 2565–2573 (2012).CAS 
    PubMed 

    Google Scholar 
    Thomsen, P. F. & Willerslev, E. Environmental DNA—An emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18 (2015).
    Google Scholar 
    Miller, S. E., Hausmann, A., Hallwachs, W. & Janzen, D. H. Advancing taxonomy and bioinventories with DNA barcodes. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150339 (2016).
    Google Scholar  More

  • in

    Biotic induction and microbial ecological dynamics of Oceanic Anoxic Event 2

    The biotic induction of OAE-2The rapid proliferation of select microbial communities at 427.54 mcd likely represents a pre-OAE biotic perturbation (pre-OAE BP) presaging the protracted period of widespread marine deoxygenation during OAE-2, and progressive deoxygenation predating the +CIE7 (Fig. 4). At the beginning of the pre-OAE BP (427.54 mcd), abruptly elevated tetrapyrroles and crenarchaeol concentrations signify an abrupt increase in primary production by photoautotrophs and chemoautotrophs residing above the chemocline. Increased volumes of precipitating biogenic snow concordantly consumed oxygen, expanding the preexisting OMZ as anaerobic bacteria thrived based on accelerated obGDGTs synthesis. Euxinia did not penetrate the photic zone at the outset of the productivity bloom as isorenieratane was not detected and heightened rates of microbial sulfate reduction were seemingly transient, inferred from the DAGEs profile, and limited to pre-OAE BP initiation. The lack of a well-stratified water column, evinced by absent to low concentrations of halophilic archaeal lipids (i.e., extended archaeols), relatively low rates of microbial sulfate reduction, and a dense oxygenic microbial plate likely precluded the development of PZE initially.Establishing a definitive causal mechanism for the pre-OAE BP is difficult, but the concomitance of LIP activity with the productivity spike is intriguing. Application of a linear sedimentation rate from OAE-2 to the pre-OAE BP interval following previous works6,7 approximated the pre-OAE BP occurring 220 ± 4 kyr before OAE-2, lasting for ~100 kyr (427.54–426.88 mcd; see Estimating the duration of the pre-OAE BP in Supplementary Information for rationale and calculation). Significantly, this was roughly coincident with the onset of LIP activity (~200–300 kyr before OAE-2) inferred from marine osmium isotope stratigraphy27. Similarities in the modern planktonic community response, such as elevated productivity and compositional changes, between the 2018 Kilauea eruption28 and the pre-OAE BP reinforce inference of a potential magmatic trigger for this event (see Evidence for LIP trigger of the pre-OAE biotic perturbation in Supplementary Information for additional details).A constant, yet overall lower, nutrient and trace metal inventory6 (Fig. S4) combined with a redox-driven shift in fixed N species (from NO3− to NH4+)15, potentially leading to a fixed N shortage29 via intensified denitrification and annamox reactions30, were probable culprits in the failure to sustain prolific rates of primary production beyond 100 kyr at the Demerara Rise. The gradual decline in biomass production, indicated by decreasing tetrapyrrole and crenarchaeol profiles (Fig. 4), was accompanied by a notable shift in deep water communities. Sulfate-reducing bacteria exerted increasing predominance over methanogenic archaea, a trend coeval with the primary productivity spike and extending well into the OAE (Fig. 3). A collapse of autotrophic communities to pre-perturbation levels was concordant with the progressive shoaling of H2S-laden waters. Continued vertical migration of the chemocline intruded the photic zone, producing PZE that enabled anoxygenic photosynthesis by Chlorobiaceae (Fig. 4). Unlike the overall oscillatory character of PZE throughout the studied section, this protracted phase of PZE was sustained until the onset of OAE-2 (426.43–426.00 mcd, Figs. 3 and 4) and is approximately contemporaneous with a thallium (Tl) isotope excursion7 (426.40–426.30 mcd).The positive Tl isotope excursion represents the progressive expansion of bottom water anoxia predating OAE-2 by 43 ± 11 kyr6,7. However, evidence for a causal mechanism of pre-OAE deoxygenation remains indeterminate. Our comprehensive biomarker inventory provides an interpreted sequence of events culminating in the regional to global expansion of anoxia predating OAE-2. A protracted phase of enhanced primary productivity began ~220 ± 4 kyr prior to OAE-2, increasing localized production and export of organic carbon at Demerara Rise. Similar productivity spikes likely occurred in settings of comparable paleogeographic configuration (e.g., equatorial, continental margins/shelves), seeding the oceans with fixed carbon. Continued scavenging of marine oxygen via organic carbon remineralization resulted in OMZ expansion locally, and likely initiated oxygen drawdown in much of the proto-North Atlantic Ocean. Stratigraphic records of sulfur isotopes of pyrite (δ34Spyrite) from the proto-North Atlantic and Tethys Oceans11 validate the areal extrapolation of our interpretations. A gradual decline in δ34Spyrite values at Demerara Rise begins at 427.50 mcd, nearly identical to the onset of the pre-OAE BP (427.54 mcd, Fig. 4). Correlation of δ34Spyrite in a global transect (Western Interior Seaway, proto-North Atlantic, Tethys) revealed consistent behavior in δ34Spyrite prior to the +CIE, indicating increasingly expansive marine deoxygenation on a global scale11. Over ~100 kyr, increased regional biomass production induced pervasive marine anoxia, inhibiting Mn-oxide formation, producing the observed positive Tl isotope excursion, and ultimately, the globally observed +CIE reflecting enhanced organic carbon burial signaling the onset of OAE-2. Thus, the local biotic signal recorded at ODP Site 1258 underlines the crucial role the Demerara Rise, and similar undocumented settings, served in initiating deoxygenation of the global ocean.Microbial ecological dynamics during and after OAE-2Changes in microbial community compositions during OAE-2 were apparent, signified by a shift in the normalized total biomarker pool (Fig. 3) and variations in the absolute concentrations of individual biomarkers (Fig. 4). In general, OAE-2 was defined by an expansion and diversification of intermediate and deep water communities (426.00–423.07 mcd), followed by a period of instability leading to the termination of the OAE (423.07–422.00 mcd). Photo- and chemoautotrophs residing above the chemocline were adversely affected, evinced by relatively low, invariant tetrapyrrole and crenarchaeol profiles (Fig. 4). Based on these observations, we divided OAE-2 into two periods defined by contrasting paleoenvironmental conditions modulating the microbial inhabitants of Demerara Rise.The first period of OAE-2 (426.00–423.07 mcd, Fig. 4) was marked by the intrusion of a euxinic OMZ into the photic zone. Elevated, yet fluctuating isorenieratane concentrations suggest relatively persistent PZE of varying vertical extent, in agreement with previous investigations using biomarkers and nitrogen isotopes at nearby sites12,13,31. During this interval, microbial sulfate reduction was likely active as DAGEs continually increased, aligning with estimates of expanded seafloor euxinia32. The co-occurrence of abundant extended archaeols and isorenieratane intimates the role that density stratification served in maintaining the protracted PZE of OAE-2, substantiating concurrent findings based on neodymium33 and oxygen isotopes34. Vertical nutrient advection via upwelling35 led to preferential exposure to expanding intermediate water communities tolerant to sulfidic conditions in the OMZ. Scavenging of a potentially limited fixed N inventory30, depleted in NO3− and predominated by NH4+[ 15,29, and inhibition of efficient nutrient transfer by pronounced density stratification likely induced severe N deficiency in surface water communities, explaining the relatively muted productivity of oxygenic photoautotrophs (i.e., tetrapyrroles) and chemoautotrophs (i.e., crenarchaeol) observed (Fig. 4). The concentration and predominant utilization of fixed N in the OMZ led to the proliferation and diversification of intermediate and deep water microbial taxa, while a shoaling chemocline led to increased nutrient (i.e., fixed N) competition between photoautotrophs and retreating Thaumarchaeota as highlighted by our biomarker inventory and the nitrogen isotopic record31. These findings challenge previous interpretations of highly productive, predominantly eukaryotic primary producers reliant on the upwelling of isotopically depleted NH4+ during OAE-215. Instead, the decline of C30-17-nor-DPEP (Fig. S5; Supplementary Data 3), a source-specific tetrapyrrole diagenetically derived from algal chlorophyll-c36, and reconstructed water column conditions during OAE-2 indirectly support a rise in cyanobacteria, diazotrophs able to fix N2, in oxygenated, nutrient-depleted shallow waters. Increased cyanobacterial contribution is further supported by C and N stable isotopes16,37, as well as the prominence of potentially phylum-specific biomarkers across OAE-2 (e.g., 2-methylhopanoids6,14).Fig. 5: Contrasting biogeochemical conditions between the pre-OAE BP and OAE-2.a, b Microbial ecology and water column conditions during the pre-OAE BP, reflecting high primary production of organic carbon (a) and OAE-2, characterized by relatively lower organic carbon production, but substantially enhanced biomass preservation (b). c, d Averaged fractional abundances of individual biomarkers throughout the pre-OAE BP (c) and OAE-2 (d). Biomarker source organisms are abbreviated as follows: phytoplankton (P), ammonia oxidizing archaea (AOA), sulfur oxidizing bacteria (SOB), unknown anaerobic bacteria (UAB), sulfate reducing bacteria (SRB), halophilic archaea (HA), methanogenic archaea (MA).Full size imageA reversal from the formerly outlined conditions typified the second period of OAE-2 (423.07–421.99 mcd, Fig. 4). Destabilization of the stratified water column and reduced production of H2S led to deepening and contraction of the euxinic OMZ. The observed decline in halophilic archaea, coincident with an overall decline in Chlorobiaceae populations, is roughly coeval with positive neodymium isotopic excursions observed across the proto-North Atlantic33 attributed to the enhanced latitudinal commingling of proto-North Atlantic water masses38. Although detrimental to sustained PZE, the persistence of a well-developed anaerobic bacterial community (i.e., obGDGTs) suggests the lasting presence of a non-euxinic OMZ despite improved bottom water circulation. A premature recovery of the chemoautotrophic Thaumarchaeota, inhabiting the base of the photic zone, relative to the shallower dwelling obligately oxygenic phototrophs (Fig. 3) likely reflects reduced toxicity associated with retreating euxinic waters, lessened resource competition with [primarily] Chlorobiaceae, and a competitive advantage tied to preferential exposure to upwelled nutrients and tolerance to low O2 conditions.The termination of OAE-2 was marked by the temporary re-establishment of microbial community compositions mirroring those observed prior to the pre-OAE BP (Figs. 3 and 4). Contraction of the OMZ led to a deep chemocline, with PZE restricted to the basal photic zone as the production of reduced sulfide species diminished. The Thaumarchaeota continued the recovery initiated towards the latter half of OAE-2, accompanied by the rebounding oxygenic photoautotrophs. However, the recovery of shallow autotrophic communities was halted by an episode of PZE (421.19–421.04 mcd) based on abrupt increases in isorenieratane concentrations (Fig. 4). Temporary development of pronounced density stratification likely facilitated the accumulation of H2S in the lower to intermediate photic zone, producing the short-lived PZE episode. Interestingly, covariant responses observed in additional biomarker profiles (e.g., obGDGTs) to PZE during OAE-2 were not evident across this post-OAE interval, possibly due to the transient nature of PZE at this time. For example, the initial increase in isorenieratane concentrations at the onset of OAE-2 was not immediately accompanied by shifts in other biomarker classes (e.g., obGDGTs; Fig. 4), suggesting frequent recurrences of PZE may be required to illicit a major microbial ecological response as observed later during the OAE. Still, this brief episode of post-OAE PZE (421.19–421.04 mcd) coincides with a positive organic carbon isotope excursion9 (Fig. S5), trace metal drawdown6 (Fig. S4), and minor positive Tl isotope excursion7 at the Demerara Rise. Prior study7 tentatively attributed this interval to enhanced carbon burial during a post-OAE deoxygenation event of smaller magnitude, with subsequent work revealing continued pyrite burial post-OAE 211. Our biomarker inventory revealed some environmental consistencies (e.g., PZE) between this interval and OAE-2, but the overall biotic response to this post-OAE geochemical perturbation was relatively subdued and requires additional sampling and investigation to properly constrain.Broader implicationsThe recognition of the pre-OAE BP and evolving water column conditions at Demerara Rise highlights additional complexities of a dynamic ocean relevant to interpretations of OAE-2 and the +CIE. Enhanced, sustained, and widespread carbon burial is required to produce the +CIE used to define OAE-28,10. Still, the principal forcing, productivity or preservation, remains enigmatic as evidence for the former mounts12,39.Based on the tetrapyrrole profiles (Fig. 4) primary production was greatest during the pre-OAE BP and relatively muted throughout OAE-2 at Demerara Rise, assuming minimal alteration to the genetic tetrapyrrole stratigraphic signal. Biomass preservation was presumedly enhanced during OAE-2 through sulfurization11, as the OMZ transitioned from anoxic to euxinic and penetrated the photic zone, yet low tetrapyrrole concentrations persist. Previous work noted a similar discrepancy between preservation potential and porphyrin abundance, postulating a paucity of trace metals to chelate with the free-base porphyrins induced poor preservation as desulfurization did not reveal additional porphyrin content16. However, both the pre-OAE BP and OAE-2 were characterized by relatively depleted trace metal inventories6 (Fig. S4), yet exhibit contrasting tetrapyrrole profiles, suggesting relative changes in primary production were the predominate control on the stratigraphic distribution of tetrapyrroles across the studied interval at the Demerara Rise. The strong covariance between tetrapyrrole and crenarchaeol concentrations reinforces the interpretation tetrapyrroles faithfully reflect primary production (Fig. S6). Crenarchaeol, a biosynthetic product of chemoautotrophic archaea (Thaumarchaeota) comprising up to 20% of all archaea and bacteria in the modern ocean40, is structurally distinct from the tetrapyrroles making it likely that diagenetic alteration of the two biomarkers is not consistent in rate or form. Thus, the positive correlation between key proxies for major contributors to primary production, the photoautotrophs and chemoautotrophs, minimizes concern for the integrity of the biotic signal at Demerara Rise (see Tetrapyrroles as a record of primary production in Supplementary Information for additional details).These findings provide direct evidence for a causal mechanism resulting in both the Tl isotope excursion and +CIE as previously described. It is highly probable the pre-OAE BP was not exclusive to the Demerara Rise based on the immense and presently unconstrained organic carbon burial required to produce the +CIE10. Further characterization of comparable localities to Demerara Rise may reveal similar high productivity events, as primed, highly productive settings likely capitalized on exogenous nutrient delivery via efficient upwelling to the photic zone prior to stratification during OAE-2. Hence, OAE-2 and the +CIE were not coincident with heightened surface water productivity relative to the pre-OAE BP at the Demerara Rise. Rather, antecedent increases in primary production locally facilitated the initiation of the OAE as a mechanism to consume marine oxygen and subsequently enhance organic carbon preservation globally. This highlights how OAE-2, and perhaps other OAEs in the geologic record, were not instantaneously induced but rather a gradual transition stemming from sustained forcing(s). In addition, the occurrence of the pre-OAE BP well before the established onset of OAE-2 reveals how fluctuations in primary production can be linked to marine deoxygenation but may not necessarily be concurrent. As shown here, OAE-2 at the Demerara Rise was preceded by elevated primary production that progressively attenuated towards event onset. While the hallmark features of an OAE are well-established, further identification and refinement of trends preceding widespread anoxia in the past will improve our understanding of how marine deoxygenation develops, as well as our ability to assess planetary health today.A shift from a productivity- to preservation-dominant system during OAE-2 at Demerara Rise, and possibly similar paleogeographic settings experiencing the pre-OAE BP, facilitated substantial organic carbon burial producing the +CIE. Distinct shifts in water column chemistry and structure from the pre-OAE BP to OAE-2 imparted considerable changes on microbial life, which altered the primary driver governing biomass sequestration (Fig. 5). Yet, both intervals reveal relatively comparable carbonate-corrected total organic carbon values6 (Fig. S5), signifying enhanced preservation as a critical component of organic carbon burial during OAE-2 at Demerara Rise. Consequently, this work suggests that sustained increases in primary production prior to OAE-2 initiated and regulated pre-OAE deoxygenation, resulting in a progressive shift to preservation as the primary control on organic carbon accumulation in sediments. Expanding euxinia and attendant changes to biogeochemical cycling adversely affected primary producers while simultaneously enhancing organic matter preservation via sulfurization11. Flourishment of Thaumarchaeota in oligotrophic settings in the modern open ocean41, and lack thereof during OAE-2 based on diminished crenarchaeol concentrations, underscores the scarcity of bioessential elements (e.g., fixed N) caused by microbial utilization of electron acceptors further down the redox ladder due to intensified marine anoxia, ultimately limiting primary production. The switch from a productivity to preservation model, reconstructed using biomarkers (Fig. 5) and initially suggested based on drawdown of the trace metal inventory6, was also concomitant with relative warming4. Simulated projections of the marine microbial response to continued global warming in the future revealed similar biotic trends (e.g., decreased primary productivity) to warming-induced oceanographic changes42 (e.g., intensified stratification) observed during OAE-2. Thus, an abundance of proxy- and model-based results paired with conceptual evidence suggest relatively low production and enhanced preservation of organic carbon throughout OAE-2 at the equatorial Demerara Rise.The pre-OAE BP may foreshadow greater regional trends observed during OAE-2. Equatorial upwelling centers, like Demerara Rise, are spatially restricted and represent regions of already high primary production before OAE-2. Climatic shifts concurrent with OAE-2 may have produced favorable conditions for elevated primary productivity in regions unable to capitalize on or exposed to allochthonous nutrient delivery prior to the +CIE. While the pre-OAE BP offers a causal mechanism for the Tl isotope excursion and +CIE initiation, areal expansion of organic carbon preservation and production is necessary to sustain enhanced organic carbon burial for the duration of the +CIE.Continued development of preexisting proxies is critical to extract and clarify current understandings of major climatic events in Earth history. Although reliant on excellent preservation of the microbial signal, the analytical and interpretative approach used here enables simultaneous examination of a wide array of biomarkers, producing a more holistic reconstruction of oceanographic changes inferred from microbial ecological variations spanning the surface to the sediment. This is timely, as investigations of the sedimentary archives become increasingly valuable analogs to understand the response of modern oceans to natural and anthropogenic forcings. Similarities between the pre-OAE BP and modern, climate-driven marine deoxygenation are concerning, while particular attention to preexisting highly productive settings may hold the key to forecasting the geologically rapid transition to a global OAE. Even though natural processes are currently beyond our control, stifling anthropogenic catalysts of climate change may decelerate the unfortunate, progressive suitability of OAEs as climate analogs in the future. More

  • in

    Statistical considerations of nonrandom treatment applications reveal region-wide benefits of widespread post-fire restoration action

    Suding, K. Understanding successes and failures in restoration ecology. Annu. Rev. Ecol. Evol. Syst. 42, (2011).Brudvig, L. A. et al. Interpreting variation to advance predictive restoration science. J. Appl. Ecol. 54, 1018–1027 (2017).Article 

    Google Scholar 
    Germino, M. J. et al. Thresholds and hotspots for shrub restoration following a heterogeneous megafire. Landsc. Ecol. 33, 1177–1194 (2018).Article 

    Google Scholar 
    Shriver, R. K. et al. Transient population dynamics impede restoration and may promote ecosystem transformation after disturbance. Ecol. Lett. 22, 1357–1366 (2019).PubMed 
    Article 

    Google Scholar 
    Chambers, J. C. et al. Resilience and resistance of sagebrush ecosystems: implications for state and transition models and management treatments. Rangel. Ecol. Manag. 67, 440–454 (2014).Article 

    Google Scholar 
    Pilliod, D. S., Welty, J. L. & Toevs, G. R. Seventy-five years of vegetation treatments on public rangelands in the great basin of North America. Rangelands 39, 1–9 (2017).Article 

    Google Scholar 
    Applestein, C., Germino, M. J., Pilliod, D. S., Fisk, M. R. & Arkle, R. S. Appropriate sample sizes for monitoring burned pastures in sagebrush steppe: how many plots are enough, and can one size fit all? Rangel. Ecol. Manag. 71, 721–726 (2018).Article 

    Google Scholar 
    Homer, C. et al. Completion of the 2011 National Land Cover Database for the Conterminous United States-Representing a Decade of Land Cover Change Information Landsat-based mapping project. Photogramm. Eng. Remote Sens. 81, 345–354 (2015).
    Google Scholar 
    Homer, C. G., Aldridge, C. L., Meyer, D. K. & Schell, S. J. Multi-scale remote sensing sagebrush characterization with regression trees over Wyoming, USA: Laying a foundation for monitoring. Int. J. Appl. Earth Obs. Geoinf. 14, 233–244 (2012).ADS 

    Google Scholar 
    Tredennick, A. T. et al. Forecasting climate change impacts on plant populations over large spatial extents. Ecosphere 7, 1–16 (2016).Article 

    Google Scholar 
    Rigge, M. et al. Quantifying western U.S. rangelands as fractional components with multi-resolution remote sensing and in situ data. Remote Sens. 12, 1–26 (2020).Article 

    Google Scholar 
    Shi, H., Homer, C., Rigge, M., Postma, K. & Xian, G. Analyzing vegetation change in a sagebrush ecosystem using long-term field observations and Landsat imagery in Wyoming. Ecosphere 11, 1–20 (2020).Article 

    Google Scholar 
    Williamson, M. A., Schwartz, M. W. & Lubell, M. N. Spatially explicit analytical models for social–ecological systems. Bioscience 68, 885–895 (2018).
    Google Scholar 
    Reid, J. L., Fagan, M. E. & Zahawi, R. A. Positive site selection bias in meta-analyses comparing natural regeneration to active forest restoration. Sci. Adv. 4, 1–4 (2018).Article 

    Google Scholar 
    Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS One 4, 1–6 (2009).Article 
    CAS 

    Google Scholar 
    Prach, K., Šebelíková, L., Řehounková, K. & del Moral, R. Possibilities and limitations of passive restoration of heavily disturbed sites. Landsc. Res. 45, 247–253 (2020).Article 

    Google Scholar 
    Andam, K. S., Ferraro, P. J., Pfaff, A., Sanchez-Azofeifa, G. A. & Robalino, J. A. Measuring the effectiveness of protected area networks in reducing deforestation. Proc. Natl Acad. Sci. USA 105, 16089–16094 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Jones, K. W. & Lewis, D. J. Estimating the counterfactual impact of conservation programs on land cover outcomes: The role of matching and panel regression techniques. PLoS One 10, 1–22 (2015).
    Google Scholar 
    Christie, A. P. et al. Simple study designs in ecology produce inaccurate estimates of biodiversity responses. J. Appl. Ecol. 56, 2742–2754 (2019).Article 

    Google Scholar 
    Larsen, A. E., Meng, K. & Kendall, B. E. Causal analysis in control–impact ecological studies with observational data. Methods Ecol. Evol. 10, 924–934 (2019).Article 

    Google Scholar 
    Parkhurst, T., Prober, S. M., Hobbs, R. J. & Standish, R. J. Global meta-analysis reveals incomplete recovery of soil conditions and invertebrate assemblages after ecological restoration in agricultural landscapes. J. Appl. Ecol. 1–15. https://doi.org/10.1111/1365-2664.13852. (2021)Crouzeilles, R. et al. A global meta-Analysis on the ecological drivers of forest restoration success. Nat. Commun. 7, 1–8 (2016).Article 
    CAS 

    Google Scholar 
    Kettenring, K. M. & Adams, C. R. Lessons learned from invasive plant control experiments: a systematic review and meta-analysis. J. Appl. Ecol. 48, 970–979 (2011).Article 

    Google Scholar 
    Atkinson, J. & Bonser, S. P. “Active” and “passive” ecological restoration strategies in meta-analysis. Restor. Ecol. 28, 1032–1035 (2020).Article 

    Google Scholar 
    Rosenbaum, P. R. & Rubin, D. B. The central role of the propensity score in observational studies for causal effects. Biometrika 170–184. https://doi.org/10.1017/CBO9780511810725.016. (1983)Angrist, J. D., & Pischke, J. S. Mostly harmless econometrics. (Princeton University Press, 2009).Bernes, C. et al. How are biodiversity and dispersal of species affected by the management of roadsides? A systematic map. Environ. Evid. 6, 1–16 (2017).Article 

    Google Scholar 
    França, F. et al. Do space-for-time assessments underestimate the impacts of logging on tropical biodiversity? An Amazonian case study using dung beetles. J. Appl. Ecol. 53, 1098–1105 (2016).Article 

    Google Scholar 
    Davies, K. W. et al. Saving the sagebrush sea: an ecosystem conservation plan for big sagebrush plant communities. Biol. Conserv. 144, 2573–2584 (2011).Article 

    Google Scholar 
    Miller, R. F. et al. Characteristics of Sagebrush Habitats and Limitations to Long-term Conservation. Greater sage-grouse: ecology and conservation of a landscape species and its habitats. USGS Adm. Rep. (2011).Pierson, F. B. et al. Hydrologic and erosion responses of sagebrush steppe following juniper encroachment, wildfire, and tree cutting. Rangel. Ecol. Manag. 66, 274–289 (2013).Article 

    Google Scholar 
    Wijayratne, U. C. & Pyke, D. A. Burial increases seed longevity of two Artemisia tridentata (Asteraceae) subspecies. Am. J. Bot. 99, 438–447 (2012).PubMed 
    Article 

    Google Scholar 
    Pyke, D. A., Wirth, T. A. & Beyers, J. L. Does seeding after wildfires in rangelands reduce erosion or invasive species? Restor. Ecol. 21, 415–421 (2013).Article 

    Google Scholar 
    Knutson, K. C. et al. Long-term effects of seeding after wildfire on vegetation in Great Basin shrubland ecosystems. J. Appl. Ecol. 51, 1414–1424 (2014).Article 

    Google Scholar 
    Shriver, R. K. et al. Adapting management to a changing world: Warm temperatures, dry soil, and interannual variability limit restoration success of a dominant woody shrub in temperate drylands. Glob. Chang. Biol. 24, 4972–4982 (2018).PubMed 
    Article 
    ADS 

    Google Scholar 
    Eiswerth, M. E., Krauter, K., Swanson, S. R. & Zielinski, M. Post-fire seeding on Wyoming big sagebrush ecological sites: Regression analyses of seeded nonnative and native species densities. J. Environ. Manag. 90, 1320–1325 (2009).Article 

    Google Scholar 
    Arkle, R. S. et al. Quantifying restoration effectiveness using multi-scale habitat models: Implications for sage-grouse in the Great Basin. Ecosphere 5, 1–32 (2014).Article 

    Google Scholar 
    Davies, K. W. & Bates, J. D. Restoring big sagebrush after controlling encroaching western juniper with fire: aspect and subspecies effects. Restor. Ecol. 25, 33–41 (2017).Article 

    Google Scholar 
    Davies, K. W., Bates, J. D. & Boyd, C. S. Postwildfire seeding to restore native vegetation and limit exotic annuals: an evaluation in juniper-dominated sagebrush steppe. Restor. Ecol. 27, 120–127 (2019).Article 

    Google Scholar 
    Davies, K. W., Boyd, C. S., Madsen, M. D., Kerby, J. & Hulet, A. Evaluating a seed technology for Sagebrush restoration across an elevation gradient: support for Bet Hedging. Rangel. Ecol. Manag. 71, 19–24 (2018).Article 

    Google Scholar 
    Rinella, M. J. et al. High precipitation and seeded species competition reduce seeded shrub establishment during dryland restoration. Ecol. Appl. 25, 1044–1053 (2015).Davies, K. W., Boyd, C. S. & Nafus, A. M. Restoring the sagebrush component in crested wheatgrass-dominated communities. Rangel. Ecol. Manag. 66, 472–478 (2013).Article 

    Google Scholar 
    United States General Accounting. WILDLAND FIRES: Better Information Needed on Effectiveness of Emergency Stabilization and Rehabilitation Treatments. Report to Congressional Requesters. https://doi.org/10.1089/blr.2006.9996. (2003)Requena-Mullor, J. M., Maguire, K. C., Shinneman, D. J. & Caughlin, T. T. Integrating anthropogenic factors into regional-scale species distribution models—A novel application in the imperiled sagebrush biome. Glob. Chang. Biol. 00, 1–15 (2019).
    Google Scholar 
    Pyke, D. A. et al. Restoration handbook for sagebrush steppe ecosystems with emphasis on greater sage-grouse habitat—Part 3. Site level restoration decisions. U.S. Geological Survey Circular 1426 (2017).Chambers, J. C. et al. Science framework for conservation and restoration of the sagebrush biome: Linking the department of the interior’s integrated rangeland fire management strategy to long-term strategic conservation actions. USDA . Serv. – Gen. Tech. Rep. RMRS-GTR 2017, 1–217 (2017).
    Google Scholar 
    US-BLM. Burned Area Emergency Stabilization and Rehabilitation – BLM Handbook H-1742-1. 2, (2007).Pilliod, D. S. & Welty, J. L. Land Treatment Digital Library. Data Series. https://doi.org/10.3133/ds806. (2013)Bradley, B. A. et al. Cheatgrass (Bromus tectorum) distribution in the intermountain Western United States and its relationship to fire frequency, seasonality, and ignitions. Biol. Invasions 20, 1493–1506 (2018).Article 

    Google Scholar 
    Fusco, E. J., Finn, J. T., Balch, J. K., Chelsea Nagy, R. & Bradley, B. A. Invasive grasses increase fire occurrence and frequency across US ecoregions. Proc. Natl Acad. Sci. USA 116, 23594–23599 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    O’Connor, R. C. et al. Small-scale water deficits after wildfires create long-lasting ecological impacts. Environ. Res. Lett. 15, 044001 (2020).Applestein, C., Caughlin, T. T. & Germino, M. J. Weather affects post‐fire recovery of sagebrush‐steppe communities and model transferability among sites. Ecosphere 12, (2021).Cameron, A. C. & Miller, D. L. A. Practitioner’ s Guide to Cluster-Robust Inference. J. Human Resources. 50, 317–372 (2015).Oshchepkov, A. & Shirokanova, A. Bridging the gap between multilevel modeling and economic methods. Soc. Sci. Res. in press, (2022).Aldridge, C. L. & Boyce, M. S. Linking occurrence and fitness to persistence: habitat-based approach for endangered Greater Sage-Grouse. Ecol. Appl. 17, 508–526 (2007).PubMed 
    Article 

    Google Scholar 
    Allen-Diaz, B. & Bartolome, J. W. Sagebrush-grass vegetation dynamics: Comparing Classical and State-Transition models. Ecol. Appl. 8, 795–804 (1998).
    Google Scholar 
    Schlaepfer, D. R., Lauenroth, W. K. & Bradford, J. B. Natural regeneration processes in big sagebrush (Artemisia tridentata). Rangel. Ecol. Manag. 67, 344–357 (2014).Article 

    Google Scholar 
    Melgoza, G., Nowak, R. S. & Tausch, R. J. Soil water exploitation after fire: competition between Bromus tectorum (cheatgrass) and two native species. Oecologia 83, 7–13 (1990).PubMed 
    Article 
    ADS 

    Google Scholar 
    Williamson, M. A. et al. Fire, livestock grazing, topography, and precipitation affect occurrence and prevalence of cheatgrass (Bromus tectorum) in the central Great Basin, USA. Biol. Invasions 22, 663–680 (2020).Article 

    Google Scholar 
    Groves, A. M., Bauer, J. T. & Brudvig, L. A. Lasting signature of planting year weather on restored grasslands. Sci. Rep. 10, 1–10 (2020).Article 
    CAS 

    Google Scholar 
    Groves, A. M. & Brudvig, L. A. Interannual variation in precipitation and other planting conditions impacts seedling establishment in sown plant communities. Restor. Ecol. 27, 128–137 (2019).Article 

    Google Scholar 
    Werner, C. M., Stuble, K. L., Groves, A. M. & Young, T. P. Year effects: Interannual variation as a driver of community assembly dynamics. Ecology 0, 1–8 (2020).
    Google Scholar 
    Stuble, K. L., Fick, S. E. & Young, T. P. Every restoration is unique: testing year effects and site effects as drivers of initial restoration trajectories. J. Appl. Ecol. 54, 1051–1057 (2017).Article 

    Google Scholar 
    Stuble, K. L., Zefferman, E. P., Wolf, K. M., Vaughn, K. J. & Young, T. P. Outside the envelope: rare events disrupt the relationshipbetween climate factors and species interactions. Ecology 98, 1623–1630 (2017).PubMed 
    Article 

    Google Scholar 
    Hardegree, S. P. et al. Weather-Centric Rangeland Revegetation Planning. Rangel. Ecol. Manag. 71, 1–11 (2018).Article 

    Google Scholar 
    Allison, B., Cara, S-W. & Applestein, M. J., Germino Interannual variation in climate contributes to contingency in post‐fire restoration outcomes in seeded sagebrush steppe. Conservation Science and Practice https://doi.org/10.1111/csp2.12737.Callaway, B. & Sant’Anna, P. H. C. Difference-in-Differences with multiple time periods. J. Econom. 225, 200–230 (2021).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Goodman-Bacon, A. Difference-in-differences with variation in treatment timing. J. Econom. 225, 254–277 (2021).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Starrs, C. F., Butsic, V., Stephens, C. & Stewart, W. The impact of land ownership, firefighting, and reserve status on fire probability in California. Environ. Res. Lett. 13, (2018).Ferraro, P. J. & Miranda, J. J. Panel data designs and estimators as substitutes for randomized controlled trials in the evaluation of public programs. J. Assoc. Environ. Resour. Econ. 4, 281–317 (2017).
    Google Scholar 
    Schlaepfer, D. R., Lauenroth, W. K. & Bradford, J. B. Modeling regeneration responses of big sagebrush (Artemisia tridentata) to abiotic conditions. Ecol. Modell. 286, 66–77 (2014).Article 

    Google Scholar 
    Kleinhesselink, A. R. & Adler, P. B. The response of big sagebrush (Artemisia tridentata) to interannual climate variation changes across its range. Ecology 99, 1139–1149 (2018).PubMed 
    Article 

    Google Scholar 
    Brabec, M. M., Germino, M. J. & Richardson, B. A. Climate adaption and post-fire restoration of a foundational perennial in cold desert: insights from intraspecific variation in response to weather. J. Appl. Ecol. 54, 293–302 (2017).Article 

    Google Scholar 
    Eidenshink, J. C. et al. A project for monitoring trends in burn severity. Fire Ecol. 3, 3–21 (2007).Article 

    Google Scholar 
    Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. R News 5. http://cran.r-project.org/doc/Rnews/ (2005).Applestein, C. & Germino, M. J. Detecting shrub recovery in sagebrush steppe: comparing Landsat-derived maps with field data on historical wildfires. Fire Ecol. 17, (2021).Rigge, M. et al. Rangeland fractional components across the western United States from 1985 to 2018. Remote Sens. 13, 1–26 (2021).Article 

    Google Scholar 
    Hijmans, R. J. & van Etten, J. raster: Geographic analysis and modeling with raster data. (2012).U.S. Geological, S. 1/3rd arc-second Digital Elevation Models (DEMs)–USGS National Map 3DEP Downloadable Data Collection. (2017).Walkinshaw, Mike, A. T. O’Geen, D. E. B. Soil Properties. California Soil Resource Lab,McCune, B. & Keon, D. Equations for potential annual direct incident radiation and heat load. J. Veg. Sci. 13, 603–606 (2002).Article 

    Google Scholar 
    Abatzoglou, J. T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 33, 121–131 (2013).Article 

    Google Scholar 
    Ferraro, P. J. & Hanauer, M. M. Advances in measuring the environmental and social impacts of environmental programs. Annu. Rev. Environ. Resour. 39, 495–517 (2014).Article 

    Google Scholar 
    Butsic, V., Lewis, D. J., Radeloff, V. C., Baumann, M. & Kuemmerle, T. Quasi-experimental methods enable stronger inferences from observational data in ecology. Basic Appl. Ecol. 19, 1–10 (2017).Article 

    Google Scholar 
    Ho, D., Imai, K., King, G. & Stuart, E. MatchIt: nonparametric preprocessing for parametric causal inference. J. Stat. Softw. 42, 1–28, https://www.jstatsoft.org/v42/i08/ (2011).Article 

    Google Scholar 
    Guo, S. & Fraser, M. Propensity score analysis: statistical methods and applications. (Sage Publications, 2010).Puhani, P. A. The treatment effect, the cross difference, and the interaction term in nonlinear “difference-in-differences” models. Econ. Lett. 115, 85–87 (2012).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Schlaepfer, D. R., Lauenroth, W. K. & Bradford, J. B. Effects of ecohydrological variables on current and future ranges, local suitability patterns, and model accuracy in big sagebrush. Ecography (Cop.). 35, 374–384 (2012).Article 

    Google Scholar 
    Stan Development Team. RStan: the R interface to Stan. R package version 2.16.2. http://mc-stan.org (2020).Bürkner, P. C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, (2017).Mahr, T. & Gabry, J. bayesplot: Plotting for Bayesian Models. https://mc-stan.org/bayesplot/ R package version (2021).Kay, M. tidybayes: Tidy Data and Geoms for Bayesian Models. https://doi.org/10.5281/zenodo.1308151 R package version 3.0.1. (2021).Simler-Williamson, A. & Germino, M. J. Data associated with “Statistical consideration of nonrandom treatment applications reveal region-wide benefits of widespread post-fire restoration action”. https://doi.org/10.25338/B8W63R (2022).Simler‐Williamson, A. B. R code associated with “Statistical consideration of nonrandom treatment applications reveal region-wide benefits of widespread post-fire restoration action”. https://doi.org/10.5281/zenodo.6565074 (2022). More

  • in

    Assessing the impact of land use land cover change on regulatory ecosystem services of subtropical scrub forest, Soan Valley Pakistan

    FAO. Global Forest Resource Assessment 2020—Key Findings (FAO, 2020).
    Google Scholar 
    Rasmussen, L. V. et al. A combination of methods needed to assess the actual use of provisioning ecosystem services. Ecosyst. Serv. 17, 75–86 (2016).Article 

    Google Scholar 
    Pan, Y. et al. A large and persistent carbon sink in the World’s Forests. Science 333, 988 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Gao, J., Tang, X. G., Lin, S. Q. & Bian, H. Y. The influence of land use change on key ecosystem services and their relationships in a mountain region from past to future (1995–2050). Forests 12, 616 (2021).Article 

    Google Scholar 
    Rodríguez-Echeverry, J., Echeverría, C., Oyarzún, C. & Morales, L. Impact of land-use change on biodiversity and ecosystem services in the Chilean temperate forests. Landsc. Ecol. 33(3), 439–453 (2018).Article 

    Google Scholar 
    Hoque, M. Z., Islam, I., Ahmed, M., Hasan, S. S. & Prodhan, F. A. Spatio-temporal changes of land use land cover and ecosystem service values in coastal Bangladesh. Egypt. J. Remote Sens. Space Sci. 25(1), 173–180 (2022).
    Google Scholar 
    Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).Article 

    Google Scholar 
    Sil, Â. et al. Analysing carbon sequestration and storage dynamics in a changing mountain landscape in Portugal: Insights for management and planning. Int. J. Biodivers. Sci. Ecosyst. Serv. Manage. 13(2), 82–104 (2017).Article 

    Google Scholar 
    Xu, Y., Tang, H., Wang, B. & Chen, J. Effects of land-use intensity on ecosystem services and human well-being: A case study in Huailai County, China. Environ. Earth. Sci. 75(5), 416 (2016).Article 

    Google Scholar 
    Liang, Y., Liu, L. & Huang, J. Integrating the SD-CLUE-S and InVEST models into assessment of oasis carbon storage in northwestern China. PLoS ONE 12(2), e0172494 (2017).Article 

    Google Scholar 
    Zhao, M. et al. Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models. Ecol. Indic. 98, 29–38 (2019).Article 

    Google Scholar 
    Leh, M. D., Matlock, M. D., Cummings, E. C. & Nalley, L. L. Quantifying and mapping multiple ecosystem services change in West Africa. Agric. Ecosyst. Environ. 165, 6–18 (2013).Article 

    Google Scholar 
    Zhao, Z. et al. Assessment of carbon storage and its influencing factors in Qinghai-Tibet Plateau. Sustainability 10(6), 1864 (2018).Article 

    Google Scholar 
    Fu, Q. et al. Scenario analysis of ecosystem service changes and interactions in a mountain-oasis-desert system: A case study in Altay Prefecture, China. Sci. Rep. 8(1), 1–13 (2018).ADS 

    Google Scholar 
    Li, Z., Cheng, X. & Han, H. Future impacts of land use change on ecosystem services under different scenarios in the ecological conservation area, Beijing, China. Forests 11(5), 584 (2020).CAS 
    Article 

    Google Scholar 
    Liu, H., Xiao, W., Li, Q., Tian, Y. & Zhu, J. Spatio-temporal change of multiple ecosystem services and their driving factors: A case study in Beijing, China. Forests 13(2), 260 (2022).CAS 
    Article 

    Google Scholar 
    Nizami, S. M. The inventory of the carbon stocks in sub tropical forests of Pakistan for reporting under Kyoto Protocol. J. For. Res. 23(3), 377–384 (2012).CAS 
    Article 

    Google Scholar 
    Ghafoor, G. Z., Sharif, F., Khan, A. U., Shahzad, L. & Hayyat, M. U. Assessment of tree biomass carbon stock of subtropical scrub forest, Soan valley Pakistan. App. Ecol. Environ. Res. 18(2), 2231–2245 (2020).Article 

    Google Scholar 
    Siddiq, Z. et al. Models to estimate the above and below ground carbon stocks from a subtropical scrub forest of Pakistan. Glob. Ecol. Conserv. 27, e01539 (2021).Article 

    Google Scholar 
    Ali, A., Ashraf, M. I., Gulzar, S. & Akmal, M. Estimation of forest carbon stocks in temperate and subtropical mountain systems of Pakistan: Implications for REDD+ and climate change mitigation. Environ. Monit. Assess. 192(3), 1–13 (2020).Article 

    Google Scholar 
    Mannan, A. et al. Application of land-use/land cover changes in monitoring and projecting forest biomass carbon loss in Pakistan. Glob. Ecol. Conserv. 17, e00535 (2019).Article 

    Google Scholar 
    Khan, A. U. et al. Piloting restoration initiatives in subtropical scrub forest: Specifying areas asserting adaptive management. Environ. Monit. Assess. 191(11), 675 (2019).Article 

    Google Scholar 
    Mohajane, M. et al. Land use/land cover (LULC) using Landsat data series (MSS, TM, ETM+ and OLI) in Azrou Forest, in the Central Middle Atlas of Morocco. Environments 5(12), 131 (2018).Article 

    Google Scholar 
    Brown, J. NDVI, the foundation for remote sensing phenology. In USGS Remote Sensing Phenology: Vegetation Indices (2015).Liping, C., Yujun, S. & Saeed, S. Monitoring and predicting land use and land cover changes using remote sensing and GIS techniques—A case study of a hilly area, Jiangle, China. PLoS ONE 13(7), e0200493 (2018).Article 

    Google Scholar 
    Ricke, K., Drouet, L., Caldeira, K. & Tavoni, M. Country-level social cost of carbon. Nat. Clim. Change 8(10), 895–900 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Salehi, M. H., Beni, O. H., Harchegani, H. B., Borujeni, I. E. & Motaghian, H. R. Refining soil organic matter determination by loss-on-ignition. Pedosphere 21(4), 473–482 (2011).Article 

    Google Scholar 
    Tivet, F. et al. Soil carbon inventory by wet oxidation and dry combustion methods: Effects of land use, soil texture gradients, and sampling depth on the linear model of C-equivalent correction factor. Soil Sci. Soc. Am. J. 76(3), 1048–1059 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Government of Punjab. The Punjab Forest (Amendment) Act, 2010 (Government of the Punjab, 2010).
    Google Scholar 
    Kamwi, J. M., Kaetsch, C., Graz, F. P., Chirwa, P. & Manda, S. Trends in land use and land cover change in the protected and communal areas of the Zambezi Region, Namibia. Environ. Monit. Assess. 189(5), 242 (2017).Article 

    Google Scholar 
    Negassa, M. D., Mallie, D. T. & Gemeda, D. O. Forest cover change detection using Geographic Information Systems and remote sensing techniques: A spatio-temporal study on Komto Protected forest priority area, East Wollega Zone, Ethiopia. Environ. Syst. Res. 9(1), 1 (2020).Article 

    Google Scholar 
    Government of Punjab. Punjab Development Statistics 2007. Burreau of Statistics (Government of the Punjab, 2007).
    Google Scholar 
    Government of Punjab. Punjab Development Statistics 2013. Burreau of Statistics (Government of the Punjab, 2013).
    Google Scholar 
    Government of Punjab. Punjab Development Statistics 2019. Burreau of Statistics (Government of the Punjab, 2019).
    Google Scholar 
    Dunn, R. J. H., Stanitski, D. M., Gobron, N. & Willett, K. M. State of the climate in 2019: Global climate. Special online supplement to the B. Am. Meteorol. Soc. 101(8), S9. https://doi.org/10.1175/BAMS-D-20-0104.1 (2020).Article 

    Google Scholar 
    Gray, S. B. & Brady, S. M. Plant developmental responses to climate change. Dev. Biol. 419(1), 64–77 (2016).CAS 
    Article 

    Google Scholar 
    Ghafoor, G. Z. et al. Effect of climate warming on seedling growth and biomass accumulation of Acacia modesta and Olea ferruginea in a subtropical scrub forest of Pakistan. Écoscience 29, 1–14 (2021).
    Google Scholar 
    Bibi, S., Sultana, J., Sultana, H. & Malik, R. N. Ethnobotanical uses of medicinal plants in the highlands of Soan valley, salt range, Pakistan. J. Ethnopharmacol. 155(1), 352–361 (2014).Article 

    Google Scholar 
    Chaudhry, Q. U. Z. Climate Change Profile of Pakistan (Asian Development Bank, 2017).
    Google Scholar 
    Shaheen, H. et al. Carbon stocks assessment in subtropical forest types of Kashmir Himalayas. Pak. J. Bot. 48, 2351–2357 (2016).CAS 

    Google Scholar 
    Arunyawat, S. & Shrestha, R. P. Assessing land use change and its impact on ecosystem services in Northern Thailand. Sustainability 8(8), 768 (2016).Article 

    Google Scholar 
    Sing, L., Metzger, M. J., Paterson, J. S. & Ray, D. A review of the effects of forest management intensity on ecosystem services for northern European temperate forests with a focus on the UK. For. Int. J. For. Res. 91(2), 151–164 (2018).
    Google Scholar  More

  • in

    Regional and seasonal partitioning of water and temperature controls on global land carbon uptake variability

    Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).ADS 
    Article 

    Google Scholar 
    Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).ADS 
    Article 

    Google Scholar 
    Rayner, P. J. et al. Interannual variability of the global carbon cycle (1992-2005) inferred by inversion of atmospheric CO2 and δ13CO2 measurements. Glob. Biogeochem. Cycles 22, 1–12 (2008).Article 
    CAS 

    Google Scholar 
    Piao, S. et al. Interannual variation of terrestrial carbon cycle: Issues and perspectives. Glob. Chang. Biol. 26, 300–318 (2020).ADS 
    PubMed 
    Article 

    Google Scholar 
    Betts, R. A. et al. A successful prediction of the record CO2 rise associated with the 2015/2016 El Niño. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170301 (2018).Article 
    CAS 

    Google Scholar 
    Keeling, C. D., Whorf, T. P., Wahlen, M. & van der Plichtt, J. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375, 666–670 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Fang, Y. et al. Global land carbon sink response to temperature and precipitation varies with ENSO phase. Environ. Res. Lett. 12, 064007 (2017).ADS 
    Article 

    Google Scholar 
    Humphrey, V. et al. Soil moisture–atmosphere feedback dominates land carbon uptake variability. Nature 592, 65–69 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jung, M. et al. Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature 541, 516–520 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, W. et al. Variations in atmospheric CO2 growth rates coupled with tropical temperature. Proc. Natl Acad. Sci. USA 110, 13061–13066 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, X. et al. A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature 506, 212–215 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Marcolla, B., Rödenbeck, C. & Cescatti, A. Patterns and controls of inter-annual variability in the terrestrial carbon budget. Biogeosciences 14, 3815–3829 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Yin, Y. et al. Changes in the response of the northern hemisphere carbon uptake to temperature over the last three decades. Geophys. Res. Lett. 45, 4371–4380 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Rödenbeck, C., Zaehle, S., Keeling, R. & Heimann, M. How does the terrestrial carbon exchange respond to inter-annual climatic variations? A quantification based on atmospheric CO2 data. Biogeosciences 15, 2481–2498 (2018).ADS 
    Article 
    CAS 

    Google Scholar 
    Palmer, P. I. et al. Net carbon emissions from African biosphere dominate pan-tropical atmospheric CO2 signal. Nat. Commun. 10, 1–9 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    Fan, L. et al. Satellite-observed pantropical carbon dynamics. Nat. Plants 5, 944–951 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hu, L. et al. Enhanced North American carbon uptake associated with El Niño. Sci. Adv. 5, 1–11 (2019).ADS 

    Google Scholar 
    Liu, Z. et al. Increased high-latitude photosynthetic carbon gain offset by respiration carbon loss during an anomalous warm winter to spring transition. Glob. Chang. Biol. 26, 682–696 (2020).ADS 
    PubMed 
    Article 

    Google Scholar 
    Reichstein, M. et al. Determinants of terrestrial ecosystem carbon balance inferred from European eddy covariance flux sites. Geophys. Res. Lett. 34, 1–5 (2007).Article 

    Google Scholar 
    Shiga, Y. P. et al. Forests dominate the interannual variability of the North American carbon sink. Environ. Res. Lett. 13, 084015 (2018).ADS 
    Article 
    CAS 

    Google Scholar 
    Wang, X., Ciais, P., Wang, Y. & Zhu, D. Divergent response of seasonally dry tropical vegetation to climatic variations in dry and wet seasons. Glob. Chang. Biol. 24, 4709–4717 (2018).ADS 
    PubMed 
    Article 

    Google Scholar 
    Wolf, S. et al. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proc. Natl Acad. Sci. USA 113, 5880–5885 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu, J. et al. Detecting drought impact on terrestrial biosphere carbon fluxes over contiguous US with satellite observations. Environ. Res. Lett. 13, 095003 (2018).ADS 
    Article 
    CAS 

    Google Scholar 
    Bastos, A. et al. Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Sci. Adv. 6, eaba2724 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chevallier, F. et al. Inferring CO2 sources and sinks from satellite observations: Method and application to TOVS data. J. Geophys. Res. 110, D24309 (2005).ADS 
    Article 
    CAS 

    Google Scholar 
    Rödenbeck, C., Houweling, S., Gloor, M. & Heimann, M. CO2 flux history 1982-2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmos. Chem. Phys. 3, 1919–1964 (2003).ADS 
    Article 

    Google Scholar 
    Chevallier, F. et al. Objective evaluation of surface- and satellite-driven carbon dioxide atmospheric inversions. Atmos. Chem. Phys. 19, 14233–14251 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Rödenbeck, C., Zaehle, S., Keeling, R. & Heimann, M. The European carbon cycle response to heat and drought as seen from atmospheric CO2 data for 1999–2018. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190506 (2020).Article 
    CAS 

    Google Scholar 
    Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).ADS 
    Article 

    Google Scholar 
    Jung, M. et al. Scaling carbon fluxes from eddy covariance sites to globe: Synthesis and evaluation of the FLUXCOM approach. Biogeosciences 17, 1343–1365 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Humphrey, V. & Gudmundsson, L. GRACE-REC: a reconstruction of climate-driven water storage changes over the last century. Earth Syst. Sci. Data 11, 1153–1170 (2019).Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhou, S., Zhang, Y., Williams, A. P. & Gentine, P. Projected increases in intensity, frequency, and terrestrial carbon costs of compound drought and aridity events. Sci. Adv. 5, 1–9 (2019).CAS 

    Google Scholar 
    Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Turetsky, M. R. et al. Permafrost collapse is accelerating carbon release. Nature 569, 32–34 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, Z. L. et al. Changes in net ecosystem exchange of CO2 in Arctic and their relationships with climate change during 2002–2017. Adv. Clim. Chang. Res. 12, 475–481 (2021).Article 

    Google Scholar 
    Walker, D. A. et al. The Circumpolar Arctic vegetation map. J. Veg. Sci. 16, 267–282 (2005).Article 

    Google Scholar 
    Virkkala, A. M. et al. Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties. Glob. Chang. Biol. 27, 4040–4059 (2021).PubMed 
    Article 

    Google Scholar 
    Randazzo, N. A. et al. Higher autumn temperatures lead to contrasting CO2 flux responses in boreal forests versus tundra and shrubland. Geophys. Res. Lett. 48, e2021GL093843 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Richardson, A. D. et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos. Trans. R. Soc. B Biol. Sci. 365, 3227–3246 (2010).Article 

    Google Scholar 
    Piao, S. et al. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nat. Clim. Chang. 7, 359–363 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445 (2017).PubMed 
    Article 

    Google Scholar 
    Tramontana, G. et al. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosciences 13, 4291–4313 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Randerson, J. T., Field, C. B., Fung, I. Y. & Tans, P. P. Increases in early season ecosystem uptake explain recent changes in the seasonal cycle of atmospheric CO2 at high northern latitudes. Geophys. Res. Lett. 26, 2765–2768 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Black, T. A. et al. Increased carbon sequestration by a boreal deciduous forest in years with a warm spring. Geophys. Res. Lett. 27, 1271–1274 (2000).ADS 
    Article 

    Google Scholar 
    Wang, T. et al. Emerging negative impact of warming on summer carbon uptake in northern ecosystems. Nat. Commun. 9, 1–7 (2018).ADS 
    Article 
    CAS 

    Google Scholar 
    Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 772–779 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seneviratne, S. I. et al. Investigating soil moisture-climate interactions in a changing climate: a review. Earth-Sci. Rev. 99, 125–161 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Buermann, W. et al. Recent shift in Eurasian boreal forest greening response may be associated with warmer and drier summers. Geophys. Res. Lett. 41, 1995–2002 (2014).ADS 
    Article 

    Google Scholar 
    Fu, R. et al. Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proc. Natl Acad. Sci. USA 110, 18110–18115 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, C. et al. Identifying critical climate periods for vegetation growth in the northern hemisphere. J. Geophys. Res. Biogeosci. 123, 2541–2552 (2018).Article 

    Google Scholar 
    Gloor, E. et al. Tropical land carbon cycle responses to 2015/16 El Niño as recorded by atmospheric greenhouse gas and remote sensing data. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170302 (2018).Article 
    CAS 

    Google Scholar 
    Saatchi, S. et al. Detecting vulnerability of humid tropical forests to multiple stressors. One Earth 4, 988–1003 (2021).ADS 
    Article 

    Google Scholar 
    Peylin, P. et al. Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions. Biogeosciences 10, 6699–6720 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Liu, J. et al. Carbon monitoring system flux net biosphere exchange 2020 (CMS-Flux NBE 2020). Earth Syst. Sci. Data 13, 299–330 (2021).ADS 
    Article 

    Google Scholar 
    Quetin, G. R., Bloom, A. A., Bowman, K. W. & Konings, A. G. Carbon flux variability from a relatively simple ecosystem model with assimilated data is consistent with terrestrial biosphere model estimates. J. Adv. Model. Earth Syst. 12, e2019MS001889 (2020).ADS 
    Article 

    Google Scholar 
    Schewe, J. et al. State-of-the-art global models underestimate impacts from climate extremes. Nat. Commun. 10, 1005 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gentine, P. et al. Coupling between the terrestrial carbon and water cycles – A review. Environ. Res. Lett. 14, 83003 (2019).CAS 
    Article 

    Google Scholar 
    Bastos, A. et al. Impacts of extreme summers on European ecosystems: a comparative analysis of 2003, 2010 and 2018. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190507 (2020).CAS 
    Article 

    Google Scholar 
    Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haverd, V. et al. A new version of the CABLE land surface model (Subversion revision r4601) incorporating land use and land cover change, woody vegetation demography, and a novel optimisation-based approach to plant coordination of photosynthesis. Geosci. Model Dev. 11, 2995–3026 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Melton, J. R. & Arora, V. K. Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0. Geosci. Model Dev. 9, 323–361 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Lawrence, D. M. et al. The community land model version 5: description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst. 11, 4245–4287 (2019).ADS 
    Article 

    Google Scholar 
    Tian, H. et al. North American terrestrial CO2 uptake largely offset by CH4 and N2O emissions: toward a full accounting of the greenhouse gas budget. Clim. Change 129, 413–426 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Meiyappan, P., Jain, A. K. & House, J. I. Increased influence of nitrogen limitation on CO2 emissions from future land use and land use change. Glob. Biogeochem. Cycles 29, 1524–1548 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Mauritsen, T. et al. Developments in the MPI‐M Earth system model version 1.2 (MPI‐ESM1.2) and its response to increasing CO2. J. Adv. Model. Earth Syst. 11, 998–1038 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Poulter, B., Frank, D. C., Hodson, E. L. & Zimmermann, N. E. Impacts of land cover and climate data selection on understanding terrestrial carbon dynamics and the CO2 airborne fraction. Biogeosciences 8, 2027–2036 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Lienert, S. & Joos, F. A Bayesian ensemble data assimilation to constrain model parameters and land-use carbon emissions. Biogeosciences 15, 2909–2930 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Zaehle, S. & Friend, A. D. Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates. Glob. Biogeochem. Cycles 24, 1–13 (2010).
    Google Scholar 
    Goll, D. S. et al. A representation of the phosphorus cycle for ORCHIDEE (revision 4520). Geosci. Model Dev. 10, 3745–3770 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles 19, 1–33 (2005).Article 
    CAS 

    Google Scholar 
    Walker, A. P. et al. The impact of alternative trait‐scaling hypotheses for the maximum photosynthetic carboxylation rate (Vcmax) on global gross primary production. N. Phytol. 215, 1370–1386 (2017).CAS 
    Article 

    Google Scholar 
    Joetzjer, E. et al. Improving the ISBACC land surface model simulation of water and carbon fluxes and stocks over the Amazon forest. Geosci. Model Dev. 8, 1709–1727 (2015).ADS 
    Article 

    Google Scholar 
    Kato, E., Kinoshita, T., Ito, A., Kawamiya, M. & Yamagata, Y. Evaluation of spatially explicit emission scenario of land-use change and biomass burning using a process-based biogeochemical model. J. Land Use Sci. 8, 104–122 (2013).Article 

    Google Scholar 
    Wei, Y. et al. The North American carbon program multi-scale synthesis and terrestrial model intercomparison project – Part 2: environmental driver data. Geosci. Model Dev. 7, 2875–2893 (2014).ADS 
    Article 

    Google Scholar 
    Dlugokencky, E. J., Thoning, K. W., Lang, P. M. & Tans, P. P. NOAA greenhouse gas reference from atmospheric carbon dioxide dry air mole fractions from the NOAA ESRL carbon cycle cooperative global air sampling network. ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2/flask/surface/ (2017). More

  • in

    Population dynamics of synanthropic rodents after a chemical and infrastructural intervention in an urban low-income community

    Panti-May, J. A. et al. A two-year ecological study of Norway rats (Rattus norvegicus) in a Brazilian Urban Slum. PLoS ONE 11(3), 1–12. https://doi.org/10.1371/journal.pone.0152511 (2016).CAS 
    Article 

    Google Scholar 
    Himsworth, C. G. et al. A mixed methods approach to exploring the relationship between Norway rat (Rattus norvegicus) abundance and features of the urban environment in an inner-city neighborhood of Vancouver, Canada. PLoS ONE 9(5), 97776. https://doi.org/10.1371/journal.pone.0097776 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Lambert, M. S., Quy, R. J., Smith, R. H. & Cowan, D. P. The effect of habitat management on home-range size and survival of rural Norway rat populations. J. Appl. Ecol. 45(6), 1753–1761. https://doi.org/10.1111/j.1365-2664.2008.01543.x (2008).Article 

    Google Scholar 
    Meerburg, B. G., Singleton, G. R. & Kijlstra, A. Rodent-borne diseases and their risks for public health (Vol. 7828). https://doi.org/10.1080/10408410902989837 (2009)Buckle, A. & Smith, R. Rodent Pests and Their Control 2nd edn. (CABI Press, Wallingford, 2015).Book 

    Google Scholar 
    Byers, K. A., Lee, M. J., Patrick, D. M. & Himsworth, C. G. Rats about town: A systematic review of rat movement in urban ecosystems. Front. Ecol. Evol. 7, 1–12. https://doi.org/10.3389/fevo.2019.00013 (2019).Article 

    Google Scholar 
    Carvalho-Pereira, T. et al. The helminth community of a population of Rattus norvegicus from an urban Brazilian slum and the threat of zoonotic diseases. Parasitology 145(6), 797–806. https://doi.org/10.1017/S0031182017001755 (2018).Article 
    PubMed 

    Google Scholar 
    Costa, F. et al. Patterns in Leptospira shedding in Norway rats (Rattus norvegicus) from Brazilian slum communities at high risk of disease transmission. PLoS Negl. Trop. Dis. 9(6), 1–14. https://doi.org/10.1371/journal.pntd.0003819 (2015).CAS 
    Article 

    Google Scholar 
    Parsons, M. H. et al. Rats and the COVID-19 pandemic: Early data on the global emergence of rats in response to social distancing. MedRxiv https://doi.org/10.1101/2020.07.05.20146779 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Awoniyi, A. M. et al. Effect of chemical and sanitary intervention on rat sightings in urban communities of New Providence, the Bahamas. SN Appl. Sci. 3, 495. https://doi.org/10.1007/s42452-021-04459-x (2021).CAS 
    Article 

    Google Scholar 
    Costa, F. et al. Influence of household rat infestation on leptospira transmission in the urban slum environment. PLoS Negl. Trop. Dis. 8(12), 3338. https://doi.org/10.1371/journal.pntd.0003338 (2014).Article 

    Google Scholar 
    Khalil, H. et al. Poverty, sanitation, and Leptospira transmission pathways in residents from four Brazilian slums. PLoS Negl. Trop. Dis. 15(3), 1–15. https://doi.org/10.1371/journal.pntd.0009256 (2021).Article 

    Google Scholar 
    Zeppelini, C. G. et al. Demographic drivers of Norway rat populations from urban slums in Brazil. Urban Ecosyst. https://doi.org/10.1007/s11252-020-01075-2 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    United Nations -UN. World Urbanization Prospects: The 2018 Revision. https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html. Accessed 24 Dec 2020 (2018)United Nations UN-SDG. Sustainable Development Goals: Make cities and human settlements inclusive, safe, resilient and sustainable. https://unstats.un.org/sdgs/report/2019/goal-11/#:~:text=The%20absolute%20number%20of%20people,Southern%20Asia%20(227%20million). Accessed 24 Dec 2020 (2018)Russell, J. C., Towns, D. R. & Clout, M. N. Review of rat invasion biology: Implications for island biosecurity. Sci. Conserv. 286, 1–53 (2008).
    Google Scholar 
    Minter, A. et al. Optimal control of rat-borne leptospirosis in an urban environment. Front. Ecol. Evol. 7, 1–10. https://doi.org/10.3389/fevo.2019.00209 (2019).ADS 
    Article 

    Google Scholar 
    Mathur, R. P. Effectiveness of various rodent control measures in cereal crops and plantations in India. In: Leirs H. and Schockaert E. ed. Proceedings of the International Workshop on Rodent Biology and Integrated Pest Management in Africa, 21-25 October 1996, Morogoro, Tanzania. Belg. J. Zool. 127(supplement 1), 137–144 (1997).
    Google Scholar 
    Pascal, M., Siorat, F., Lorvelec, O., Yésou, P. & Simberloff, D. A pleasing consequence of Norway rat eradication : Two shrew species recover. Divers. Distrib. 11, 193–198. https://doi.org/10.1111/j.1366-9516.2005.00137.x (2005).Article 

    Google Scholar 
    Singleton, G. R., Hinds, L. & Leirs, H. Ecologically-based management of rodent pests. Australian Centre for International Agricultural Research, (ACIAR Monograph 59), 494. (1999)Sullivan, L. M. Roof rat control around homes and other structures. Cooper. Extens. Bull. AZ 1280, 1–6 (2002).
    Google Scholar 
    Childs, J. E. Size-dependent predation on rats (Rattus norvegicus) by house cats (Felis catus) in an urban setting. J. Mammol. 67(1), 196–199 (1986).Article 

    Google Scholar 
    Davis, D. E. The characteristics of rat populations. Quart. Rev. Biol. 28, 373–401. https://doi.org/10.1086/399860 (1953).CAS 
    Article 
    PubMed 

    Google Scholar 
    Glass, G. E. et al. Trophic garnishes: Cat-Rat interactions in an urban environment. PLoS ONE 4(6), e5794. https://doi.org/10.1371/journal.pone.0005794 (2009).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lenton, G. M. Biological control of rats by owls in oil palm and other plantations. Biotrop Spec. Publ. 12, 87–94 (1980).
    Google Scholar 
    Smith, R. H. & Meyer, A. N. Rodent controlmethods: Non-chemical and non-lethal chemical, with special reference to food stores. In Rodent Pests and Their Control 2nd edn (eds Buckle, A. & Smith, R.) 81–101 (CABI International, 2015) (ISBN-13: 978-1-84593-817-8).
    Google Scholar 
    Oyedele, D. T., Sah, S. A. M., Kairuddin, L. & Ibrahim, W. M. M. W. Range measurement and a habitat suitability map for the Norway rat in a highly developed urban environment. Trop. Life Sci. Res. 26(2), 27–44 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Hansen, N., Hughes, N. K., Bryom, A. E. & Banks, P. B. Population recovery of alien black rats Rattus rattus: A test of reinvasion theory. Austral Ecol. 45, 291–304. https://doi.org/10.1111/aec.12855 (2020).Article 

    Google Scholar 
    Awoniyi, A. M. et al. Using Rhodamine B to assess the movement of small mammals in an urban slum. Methods Ecol. Evol. 12(11), 2234–2242. https://doi.org/10.1111/2041-210X.13693 (2021).Article 

    Google Scholar 
    Glass, G. E., Klein, S. L., Norris, D. E. & Gardner, L. C. Multiple paternity in urban Norway rats: Extended ranging for mates. Vector-Borne Zoonotic Dis. 16(5), 342–248. https://doi.org/10.1089/vbz.2015.1816 (2016).Article 
    PubMed 

    Google Scholar 
    Buckle, A. P. & Eason, C. T. Rodent control methods: Chemical. In Rodent Pests and Their Control 2nd edn (eds Buckle, A. & Smith, R.) 81–101 (CABI International, Wallingford, 2015) (ISBN-13: 978-1-84593-817-8).Chapter 

    Google Scholar 
    de Masi, E., Pedro, J. V. & Maria, T. P. Evaluation on the effectiveness of actions for controlling infestation by rodents in Campo Limpo region, São Paulo Municipality, Brazil Access details: Access Details: [subscription number 913003116]. Int. J. Environ. Health Res. 19(4), 291–304. https://doi.org/10.1080/09603120802592723 (2009).Article 
    PubMed 

    Google Scholar 
    Lambropoulos, A. S. et al. Rodent control in urban areas—An interdisciplinary approach. J. Environ. Health 61, 12–17 (1999).
    Google Scholar 
    Reis, R. B. et al. Impact of environment and social gradient on Leptospira infection in urban slums. PLoS Negl. Trop. Dis. 2(4), 11–18. https://doi.org/10.1371/journal.pntd.0000228 (2008).MathSciNet 
    Article 

    Google Scholar 
    Instituto Brasileiro de Geografia e Estatistica (IBGE). Accessed 15 November 2019 (2010)CDC. Integrated pest management: conducting urban rodent surveys. Centers for Disease Control and Prevention-Atlanta: US Department of Health and Human Services (2006)Hacker, K. P. et al. A comparative assessment of track plates to quantify fine scale variations in the relative abundance of Norway rats in urban slums. Urban Ecosyst. 19(2), 561–575. https://doi.org/10.1007/s11252-015-0519-8 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eyre, M. T. et al. A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: A case study of rattiness in a low-income urban Brazilian community: A multivariate geostatistical framework for combining multiple ind. J. R. Soc. Interface 17(170), 1–21. https://doi.org/10.1098/rsif.2020.0398 (2020).Article 

    Google Scholar 
    Bursac, Z., Gauss, C. H., Williams, D. K. & Hosmer, D. W. Purposeful selection of variables in logistic regression. Source Code Biol. Med. 8, 1–8. https://doi.org/10.1186/1751-0473-3-17 (2008).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: A practical information-theoretic approach (Springer, 2002).MATH 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org (2019).Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Barton, K. MuMIn: Multi-Model Inference. R package version 1.43.17. https://CRAN.R-project.org/package=MuMIn (2020)Kassambara A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 0.4.0. https://CRAN.R-project.org/package=ggpubr (2020)Richardson, J. L. et al. Using fine-scale spatial genetics of Norway rats to improve control efforts and reduce leptospirosis risk in urban slum environments. Evol. Appl. 10(4), 323–337. https://doi.org/10.1111/eva.12449 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Santos, N. D. J., Sousa, E., Reis, M. G., Ko, A. I. & Costa, F. Rat infestation associated with environmental deficiencies in an urban slum community with high risk of leptospirosis. Cad. Saúde Pública 33(2), 1–13. https://doi.org/10.1590/0102-311X00132115 (2017).CAS 
    Article 

    Google Scholar 
    Murray, M. H. & Sanchez, C. A. Urban rat exposure to anticoagulant rodenticides and zoonotic infection risk. Biol. Lett. 17, 20210311. https://doi.org/10.1098/rsbl.2021.0311 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Parsons, M. H., Banks, P. B., Deutsch, M. A., Corrigan, R. F. & Munshi-South, J. Trends in urban rat ecology: A framework to define the prevailing knowledge gaps and incentives for academia, pest management professionals (PMPs) and public health agencies to participate. J. Urban Ecol. 3(1), 1–8. https://doi.org/10.1093/jue/jux005 (2017).Article 

    Google Scholar 
    Costa, F. et al. Household rat infestation in urban slum populations: Development and validation of a predictive score for leptospirosis Household rat infestation in urban slum populations: Development and validation of a predictive score for leptospirosis. PLoS Negl. Trop. Dis. 15(3), 9154. https://doi.org/10.1371/journal.pntd.0009154 (2021).Article 

    Google Scholar 
    Mwanjabe, P. S. & Leirs, H. An early warning system for IPM-based rodent control in smallholder farming systems in Tanzania. In: Leirs, H., & Schockaert, E., ed., Proceedings of the International Workshop on Rodent Biology and Integrated Pest Management in Africa, 21-25 October 1996, Morogoro, Tanzania. Belg. J. Zool. 127(supplement 1), 4–58 (1997).
    Google Scholar 
    Richards, C. G. J. R. & Buckle, A. P. Towards integrated rodent pest management at the village level. In Control of Mammal Pests (eds Richards, C. G. J. R. & Ku, T. Y.) 293–312 (Taylor and Francis, 1987).
    Google Scholar 
    Masi, E. Socioeconomic and environmental risk factors for urban rodent infestation in Sao Paulo, Brazil. J. Pest Sci. 83(3), 231–241. https://doi.org/10.1007/s10340-010-0290-9 (2010).Article 

    Google Scholar 
    Brooks, J. E. Methods of sewer rat control. In Proceedings of the 1st Vertebrate Pest Conference. https://digitalcommons.unl.edu/vpcone/17. Accessed 20 August 2021 (1962) More