More stories

  • in

    AnimalTraits – a curated animal trait database for body mass, metabolic rate and brain size

    Westoby, M. & Wright, I. J. Land-plant ecology on the basis of functional traits. Trends Ecol. Evol. 21, 261–268 (2006).Article 

    Google Scholar 
    Chown, S. L. & Gaston, K. J. Body size variation in insects: a macroecological perspective. Biol. Rev. Camb. Philos. Soc. 85, 139–169 (2010).Article 

    Google Scholar 
    Parr, C. L. et al. GlobalAnts: a new database on the geography of ant traits (Hymenoptera: Formicidae). Insect Conserv. Divers. 10, 5–20 (2017).Article 

    Google Scholar 
    Wolff, J. O., Wierucka, K., Uhl, G. & Herberstein, M. E. Building behavior does not drive rates of phenotypic evolution in spiders. Proceedings of the National Academy of Sciences 118, e2102693118 (2021).CAS 
    Article 

    Google Scholar 
    Le Boulch, M., Déhais, P., Combes, S. & Pascal, G. The MACADAM database: a MetAboliC pAthways DAtabase for Microbial taxonomic groups for mining potential metabolic capacities of archaeal and bacterial taxonomic groups. Database 2019 (2019).Madin, J. S. et al. A synthesis of bacterial and archaeal phenotypic trait data. Scientific Data 7, 170 (2020).CAS 
    Article 

    Google Scholar 
    Lowe, E. C., Wolff, J. O. & Aceves-Aparicio, A. Towards establishment of a centralized spider traits database. The Journal of Arachnology (2020).Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).ADS 
    Article 

    Google Scholar 
    Mizerek, T. L., Baird, A. H. & Madin, J. S. Species traits as indicators of coral bleaching. Coral Reefs 37, 791–800 (2018).ADS 
    Article 

    Google Scholar 
    De Meester, G. & Huyghe, K. & Van Damme, R. Brain size, ecology and sociality: a reptilian perspective. Biol. J. Linn. Soc. Lond. 126, 381–391 (2019).Article 

    Google Scholar 
    Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A global synthesis of animal phenological responses to climate change. Nat. Clim. Chang. 8, 224–228 (2018).ADS 
    Article 

    Google Scholar 
    Makarieva, A. M. et al. Mean mass-specific metabolic rates are strikingly similar across life’s major domains: Evidence for life’s metabolic optimum. Proceedings of the National Academy of Sciences 105, 16994 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Gallagher, R. V. et al. Open Science principles for accelerating trait-based science across the Tree of Life. Nat Ecol Evol 4, 294–303 (2020).Article 

    Google Scholar 
    R Core Team. A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. (2020).Chamberlain, S. A. & Szöcs, E. taxize: taxonomic search and retrieval in R [version 2; peer review: 3 approved]. F1000Res. 2, (2013).Pebesma, E., Mailund, T. & Hiebert, J. Measurement Units in R. R J. 8, 486–494 (2016).Article 

    Google Scholar 
    Hiebert, J. udunits-2 bindings for R. (2016).Iwaniuk, A. N. & Nelson, J. E. Can endocranial volume be used as an estimate of brain size in birds? Canadian Journal of Zoology-Revue Canadienne De Zoologie 80, 16–23 (2002).Article 

    Google Scholar 
    Taylor, G. M., Nol, E. & Boire, D. Brain regions and encephalization in anurans: adaptation or stability? Brain Behav. Evol. 45, 96–109, https://doi.org/10.1159/000113543 (1995).CAS 
    Article 
    PubMed 

    Google Scholar 
    McLean, D. J. AnimalTraits (v1.0.7). Zenodo. https://doi.org/10.5281/zenodo.6468938 (2022).Christian, K. & Conley, K. Activity and Resting Metabolism of Varanid Lizards Compared With Typical Lizards. Aust. J. Zool. 42, 185–193, https://doi.org/10.1071/ZO9940185 (1994).Article 

    Google Scholar 
    Hadley, N. F., Ahearn, G. A. & Howarth, F. G. Water and metabolic relations of cave-adapted and epigean lycosid spiders in Hawaii. J. Arachnol., 215–222 (1981).Wang, L. C., Jones, D. L., MacArthur, R. A. & Fuller, W. A. Adaptation to cold: energy metabolism in an atypical lagomorph, the arctic hare (Lepus arcticus). Can. J. Zool. 51, 841–846, https://doi.org/10.1139/z73-125 (1973).CAS 
    Article 
    PubMed 

    Google Scholar 
    Nevo, E. & Shkolnik, A. Adaptive metabolic variation of chromosome forms in mole rats, Spalax. Experientia 30, 724–726, https://doi.org/10.1007/bf01924150 (1974).CAS 
    Article 
    PubMed 

    Google Scholar 
    Haim, A. Adaptive variations in heat production within Gerbils (genus Gerbillus) from different habitats. Oecologia 61, 49–52, https://doi.org/10.1007/bf00379087 (1984).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Kamel, S. & Gatten, R. E. J. Aerobic and Anaerobic Activity Metabolism of Limbless and Fossorial Reptiles. Physiol. Zool. 56, 419–429, https://doi.org/10.1086/physzool.56.3.30152607 (1983).Article 

    Google Scholar 
    Gatten, R. E. Jr. Aerobic metabolism in snapping turtles, Chelydra serpentina, after thermal acclimation. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 61, 325–337, https://doi.org/10.1016/0300-9629(78)90116-0 (1978).Article 

    Google Scholar 
    Coelho, J. R. & Moore, A. J. Allometry of resting metabolic rate in cockroaches. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 94, 587–590, https://doi.org/10.1016/0300-9629(89)90598-7 (1989).CAS 
    Article 

    Google Scholar 
    Lighton, J. & Garrigan, D. Ant breathing: testing regulation and mechanism hypotheses with hypoxia. J. Exp. Biol. 198, 1613–1620 (1995).CAS 
    Article 

    Google Scholar 
    Pettit, T. N., Ellis, H. I. & Whittow, G. C. Basal metabolic rate in tropical seabirds. The Auk 102, 172–174, https://doi.org/10.2307/4086838 (1985).Article 

    Google Scholar 
    Bozinovic, F. & Contreras, L. C. Basal rate of metabolism and temperature regulation of two desert herbivorous octodontid rodents: Octomys mimax and Tympanoctomys barrerae. Oecologia 84, 567–570, https://doi.org/10.1007/bf00328175 (1990).ADS 
    Article 
    PubMed 

    Google Scholar 
    Morrison, P. & Middleton, E. H. Body temperature and metabolism in the pigmy marmoset. Folia Primatol. 6, 70–82, https://doi.org/10.1159/000155068 (1967).CAS 
    Article 

    Google Scholar 
    Bartholomew, G. A. & Casey, T. M. Body temperature and oxygen consumption during rest and activity in relation to body size in some tropical beetles. J. Therm. Biol. 2, 173–176, https://doi.org/10.1016/0306-4565(77)90026-2 (1977).Article 

    Google Scholar 
    Cortés, A., Báez, C., Rosenmann, M. & Pino, C. Body temperature, activity cycle and metabolic rate in a small nocturnal Chilean lizard, Garthia gaudichaudi (Sauria: Gekkonidae). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 109, 967–973, https://doi.org/10.1016/0300-9629(94)90245-3 (1994).Article 

    Google Scholar 
    Leitner, P. & Nelson, J. E. Body temperature, oxygen consumption and heart rate in the Australian false vampire bat, Macroderma gigas. Comp. Biochem. Physiol. 21, 65–74, https://doi.org/10.1016/0010-406X(67)90115-6 (1967).CAS 
    Article 
    PubMed 

    Google Scholar 
    Whittow, G. C., Gould, E. & Rand, D. Body temperature, oxygen consumption, and evaporative water loss in a primitive insectivore, the moon rat, Echinosorex gymnurus. J. Mammal. 58, 233–235, https://doi.org/10.2307/1379582 (1977).CAS 
    Article 
    PubMed 

    Google Scholar 
    Weathers, W. W., Koenig, W. D. & Stanback, M. T. Breeding energetics and thermal ecology of the acorn woodpecker in central coastal California. Condor, 341–359, https://doi.org/10.2307/1368232 (1990).Shelton, T. G. & Appel, A. G. Carbon dioxide release in Coptotermes formosanus Shiraki and Reticulitermes flavipes (Kollar): effects of caste, mass, and movement. J. Insect Physiol. 47, 213–224, https://doi.org/10.1016/S0022-1910(00)00111-6 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bradley, T. J., Brethorst, L., Robinson, S. & Hetz, S. Changes in the Rate of CO2 Release following Feeding in the Insect Rhodnius prolixus. Physiol. Biochem. Zool. 76, 302–309, https://doi.org/10.1086/367953 (2003).Article 
    PubMed 

    Google Scholar 
    Herreid, C. F. & Full, R. J. Cockroaches on a treadmill: aerobic running. J. Insect Physiol. 30, 395–403, https://doi.org/10.1016/0022-1910(84)90097-0 (1984).Article 

    Google Scholar 
    Arends, A. & McNab, B. K. The comparative energetics of ‘caviomorph’ rodents. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 130, 105–122, https://doi.org/10.1016/S1095-6433(01)00371-3 (2001).CAS 
    Article 

    Google Scholar 
    McNab, B. K. The comparative energetics of rigid endothermy: the Arvicolidae. J. Zool. 227, 585–606, https://doi.org/10.1111/j.1469-7998.1992.tb04417.x (1992).Article 

    Google Scholar 
    Bozinovic, F. & Rosenmann, M. Comparative energetics of South American cricetid rodents. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 91, 195–202, https://doi.org/10.1016/0300-9629(88)91616-7 (1988).CAS 
    Article 

    Google Scholar 
    Haim, A. & Skinner, J. D. A comparative study of metabolic rates and thermoregulation of two African antelopes, the steenbok Raphicerus campestris and the blue duiker Cephalophus monticola. J. Therm. Biol. 16, 145–148, https://doi.org/10.1016/0306-4565(91)90036-2 (1991).Article 

    Google Scholar 
    Else, P. L. & Hulbert, A. J. Comparison of the “mammal machine” and the “reptile machine”: energy production. Am. J. Physiol. Regul. Integr. Comp. Physiol. 240, R3–R9, https://doi.org/10.1152/ajpregu.1981.240.1.R3 (1981).CAS 
    Article 

    Google Scholar 
    Duncan, F. D. & Crewe, R. M. A comparison of the energetics of foraging of three species of Leptogenys (Hymenoptera, Formicidae). Physiol. Entomol. 18, 372–378, https://doi.org/10.1111/j.1365-3032.1993.tb00610.x (1993).Article 

    Google Scholar 
    Kurta, A. & Ferkin, M. The correlation between demography and metabolic rate: a test using the beach vole (Microtus breweri) and the meadow vole (Microtus pennsylvanicus). Oecologia 87, 102–105, https://doi.org/10.1007/bf00323786 (1991).ADS 
    Article 
    PubMed 

    Google Scholar 
    Chown, S. L. & Holter, P. Discontinuous gas exchange cycles in Aphodius fossor (Scarabaeidae): a test of hypotheses concerning origins and mechanisms. J. Exp. Biol. 203, 397–403, https://doi.org/10.1242/jeb.203.2.397 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Duncan, F. D. & Byrne, M. J. Discontinuous gas exchange in dung beetles: patterns and ecological implications. Oecologia 122, 452–458, https://doi.org/10.1007/s004420050966 (2000).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Rezende, E. L., Silva-Durán, I., Novoa, F. F. & Rosenmann, M. Does thermal history affect metabolic plasticity?: a study in three Phyllotis species along an altitudinal gradient. J. Therm. Biol. 26, 103–108, https://doi.org/10.1016/S0306-4565(00)00029-2 (2001).Article 
    PubMed 

    Google Scholar 
    Chown, S. L., Scholtz, C. H., Klok, C. J., Joubert, F. J. & Coles, K. S. Ecophysiology, range contraction and survival of a geographically restricted African dung beetle (Coleoptera: Scarabaeidae). Funct. Ecol. 9, 30–39, https://doi.org/10.2307/2390087 (1995).Article 

    Google Scholar 
    Rübsamen, U., Hume, I. D. & Rübsamen, K. Effect of ambient temperature on autonomic thermoregulation and activity patterns in the rufous rat-kangaroo (Aepyprymnus rufescens: Marsupialia). J. Comp. Physiol. 153, 175–179, https://doi.org/10.1007/bf00689621 (1983).Article 

    Google Scholar 
    Lewis, L. C., Mutchmor, J. A. & Lynch, R. E. Effect of Perezia pyraustae on oxygen consumption by the European corn borer, Ostrinia nubilalis. J. Insect Physiol. 17, 2457–2468, https://doi.org/10.1016/0022-1910(71)90093-X (1971).Article 

    Google Scholar 
    Louw, G., Young, B. & Bligh, J. Effect of thyroxine and noradrenaline on thermoregulation, cardiac rate and oxygen consumption in the monitor lizard Varanus albigularis albigularis. J. Therm. Biol. 1, 189–193, https://doi.org/10.1016/0306-4565(76)90013-9 (1976).CAS 
    Article 

    Google Scholar 
    Full, R. J., Zuccarello, D. A. & Tullis, A. Effect of variation in form on the cost of terrestrial locomotion. J. Exp. Biol. 150, 233–246 (1990).CAS 
    Article 

    Google Scholar 
    Bennett, A. F., Dawson, W. R. & Bartholomew, G. A. Effects of activity and temperature on aerobic and anaerobic metabolism in the Galapagos marine iguana. J. Comp. Physiol. 100, 317–329, https://doi.org/10.1007/bf00691052 (1975).CAS 
    Article 

    Google Scholar 
    Thompson, G. G. & Withers, P. C. Effects of body mass and temperature on standard metabolic rates for two Australian varanid lizards (Varanus gouldii and V. panoptes). Copeia, 343–350, https://doi.org/10.2307/1446195 (1992).Hack, M. A. The effects of mass and age on standard metabolic rate in house crickets. Physiol. Entomol. 22, 325–331, https://doi.org/10.1111/j.1365-3032.1997.tb01176.x (1997).ADS 
    Article 

    Google Scholar 
    Gatten, R. E. Jr. Effects of temperature and activity on aerobic and anaerobic metabolism and heart rate in the turtles Pseudemys scripta and Terrapene ornata. Comp. Biochem. Physiol., A: Mol. Integr. Physiol, https://doi.org/10.1016/0300-9629(74)90606-9 (1974).Gleeson, T. T. The effects of training and captivity on the metabolic capacity of the lizard Sceloporus occidentalis. J. Comp. Physiol. 129, 123–128, https://doi.org/10.1007/bf00798176 (1979).CAS 
    Article 

    Google Scholar 
    Bartholomew, G. A. & Lighton, J. R. Endothermy and energy metabolism of a giant tropical fly, Pantophthalmus tabaninus thunberg. J. Comp. Physiol., B 156, 461–467, https://doi.org/10.1007/bf00691031 (1986).Article 

    Google Scholar 
    Bailey, W. J., Withers, P. C., Endersby, M. & Gaull, K. The energetic costs of calling in the bushcrisket Requena verticalis (Orthoptera: Tettigoniidae: Listroscelidinae). J. Exp. Biol. 178, 21–37 (1993).Article 

    Google Scholar 
    Kotiaho, J. S. et al. Energetic costs of size and sexual signalling in a wolf spider. Proc. R. Soc. B: Biol. Sci. 265, 2203–2209, https://doi.org/10.1098/rspb.1998.0560 (1998).Article 

    Google Scholar 
    Chaplin, S. B. The energetic significance of huddling behavior in common bushtits (Psaltriparus minimus). The Auk, 424-430 (1982).Seymour, R. S., Withers, P. C. & Weathers, W. W. Energetics of burrowing, running, and free-living in the Namib Desert golden mole (Eremitalpa namibensis). J. Zool. 244, 107–117 (1998).Article 

    Google Scholar 
    Herreid, C. F., Full, R. J. & Prawel, D. A. Energetics of Cockroach Locomotion. J. Exp. Biol. 94, 189–202 (1981).Article 

    Google Scholar 
    Bartholomew, G. A., Lighton, J. R. & Louw, G. N. Energetics of locomotion and patterns of respiration in tenebrionid beetles from the Namib Desert. J. Comp. Physiol., B 155, 155–162, https://doi.org/10.1007/bf00685208 (1985).Article 

    Google Scholar 
    Lighton, J. R. B. & Gillespie, R. G. The energetics of mimicry: the cost of pedestrian transport in a formicine ant and its mimic, a clubionid spider. Physiol. Entomol. 14, 173–177, https://doi.org/10.1111/j.1365-3032.1989.tb00949.x (1989).Article 

    Google Scholar 
    Marhold, S. & Nagel, A. The energetics of the common mole rat Cryptomys, a subterranean eusocial rodent from Zambia. J. Comp. Physiol., B 164, 636–645, https://doi.org/10.1007/bf00389805 (1995).CAS 
    Article 

    Google Scholar 
    Pauls, R. W. Energetics of the red squirrel: a laboratory study of the effects of temperature, seasonal acclimatization, use of the nest and exercise. J. Therm. Biol. 6, 79–86, https://doi.org/10.1016/0306-4565(81)90057-7 (1981).ADS 
    Article 

    Google Scholar 
    Brush, A. H. Energetics, temperature regulation and circulation in resting, active and defeathered California quail, Lophortyx californicus. Comp. Biochem. Physiol. 15, 399–421, https://doi.org/10.1016/0010-406X(65)90141-6 (1965).Article 

    Google Scholar 
    Bailey, C. G. & Riegert, P. W. Energy dynamics of Encoptolophus sordidus costalis (Scudder) (Orthoptera: Acrididae) in a grassland ecosystem. Can. J. Zool. 51, 91–100, https://doi.org/10.1139/z73-014 (1973).Article 

    Google Scholar 
    Prinzinger, R., Lübben, I. & Schuchmann, K.-L. Energy metabolism and body temperature in 13 sunbird species (Nectariniidae). Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 92, 393–402, https://doi.org/10.1016/0300-9629(89)90581-1 (1989).Article 

    Google Scholar 
    Baudinette, R. V. Energy metabolism and evaporative water loss in the California ground squirrel. J. Comp. Physiol. 81, 57–72, https://doi.org/10.1007/bf00693550 (1972).Article 

    Google Scholar 
    May, M. L. Energy metabolism of dragonflies (Odonata: Anisoptera) at rest and during endothermic warm-up. J. Exp. Biol. 83, 79–94 (1979).Article 

    Google Scholar 
    Baudinette, R. V., Churchill, S. K., Christian, K. A., Nelson, J. E. & Hudson, P. J. Energy, water balance and the roost microenvironment in three Australian cave-dwelling bats (Microchiroptera). J. Comp. Physiol., B 170, 439–446, https://doi.org/10.1007/s003600000121 (2000).CAS 
    Article 

    Google Scholar 
    Withers, P. C. Energy, Water, and Solute Balance of the Ostrich Struthio camelus. Physiol. Zool. 56, 568–579, https://doi.org/10.1086/physzool.56.4.30155880 (1983).Article 

    Google Scholar 
    Hadley, N. F., Quinlan, M. C. & Kennedy, M. L. Evaporative Cooling in the Desert Cicada: Thermal Efficiency and Water/Metabolic Costs. J. Exp. Biol. 159, 269–283, https://doi.org/10.1242/jeb.159.1.269 (1991).Article 

    Google Scholar 
    Dunson, W. A. & Bramham, C. R. Evaporative Water Loss and Oxygen Consumption of Three Small Lizards from the Florida Keys: Sphaerodactylus cinereus, S. notatus, and Anolis sagrei. Physiol. Zool. 54, 253–259, https://doi.org/10.1086/physzool.54.2.30155827 (1981).Article 

    Google Scholar 
    Wunder, B. A. Evaporative water loss from birds: effects of artificial radiation. Comp. Biochem. Physiol. 63, 493–494, https://doi.org/10.1016/0300-9629(79)90180-4 (1979).Article 

    Google Scholar 
    Maclean, G. S. Factors influencing the composition of respiratory gases in mammal burrows. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 69, 373–380, https://doi.org/10.1016/0300-9629(81)92992-3 (1981).Article 

    Google Scholar 
    Campbell, K. L., McIntyre, I. W. & MacArthur, R. A. Fasting metabolism and thermoregulatory competence of the star-nosed mole, Condylura cristata (Talpidae: Condylurinae). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 123, 293–298, https://doi.org/10.1016/S1095-6433(99)00065-3 (1999).CAS 
    Article 

    Google Scholar 
    Weathers, W. W., Paton, D. C. & Seymour, R. S. Field Metabolic Rate and Water Flux of Nectarivorous Honeyeaters. Aust. J. Zool. 44, 445–460, https://doi.org/10.1071/ZO9960445 (1996).Article 

    Google Scholar 
    Fewell, J. H., Harrison, J. F., Lighton, J. R. B. & Breed, M. D. Foraging energetics of the ant, Paraponera clavata. Oecologia 105, 419–427, https://doi.org/10.1007/bf00330003 (1996).ADS 
    Article 
    PubMed 

    Google Scholar 
    Greenstone, M. H. & Bennett, A. F. Foraging strategy and metabolic rate in spiders. Ecology 61, 1255–1259, https://doi.org/10.2307/1936843 (1980).Article 

    Google Scholar 
    Schmitz, A. Functional morphology of the respiratory organs in the cellar spider Pholcus phalangioides (Arachnida, Araneae, Pholcidae). J. Comp. Physiol., B 185, 637–646, https://doi.org/10.1007/s00360-015-0914-8 (2015).CAS 
    Article 

    Google Scholar 
    Marder, J. & Bernstein, R. Heat balance of the partridge Alectoris chukar exposed to moderate, high and extreme thermal stress. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 74, 149–154, https://doi.org/10.1016/0300-9629(83)90726-0 (1983).CAS 
    Article 

    Google Scholar 
    Lovegrove, B. G., Raman, J. & Perrin, M. R. Heterothermy in elephant shrews, Elephantulus spp. (Macroscelidea): daily torpor or hibernation? J. Comp. Physiol., B 171, 1–10, https://doi.org/10.1007/s003600000139 (2001).CAS 
    Article 

    Google Scholar 
    Zari, T. The influence of body mass and temperature on the standard metabolic rate of the herbivorous desert lizard, Uromastyx microlepis. J. Therm. Biol. 16, 129–133, https://doi.org/10.1016/0306-4565(91)90033-X (1991).Article 

    Google Scholar 
    Jensen, T. F. & Nielsen, M. G. The influence of body size and temperature on worker ant respiration. Nat. Jutl. 18, 21–25 (1975).
    Google Scholar 
    McNab, B. K. The Influence of Body Size on the Energetics and Distribution of Fossorial and Burrowing Mammals. Ecology 60, 1010–1021, https://doi.org/10.2307/1936869 (1979).Article 

    Google Scholar 
    Shillington, C. Inter-sexual differences in resting metabolic rates in the Texas tarantula, Aphonopelma anax. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 142, 439–445, https://doi.org/10.1016/j.cbpa.2005.09.010 (2005).CAS 
    Article 

    Google Scholar 
    Nespolo, R. F., Lardies, M. A. & Bozinovic, F. Intrapopulational variation in the standard metabolic rate of insects: repeatability, thermal dependence and sensitivity (Q10) of oxygen consumption in a cricket. J. Exp. Biol. 206, 4309–4315, https://doi.org/10.1242/jeb.00687 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hailey, A. & Davies, P. M. C. Lifestyle, latitude and activity metabolism of natricine snakes. J. Zool. 209, 461–476, https://doi.org/10.1111/j.1469-7998.1986.tb03604.x (1986).Article 

    Google Scholar 
    Richter, T. A., Webb, P. I. & Skinner, J. D. Limits to the distribution of the southern African ice rat (Otomys sloggetti): thermal physiology or competitive exclusion? Funct. Ecol. 11, 240–246, https://doi.org/10.1046/j.1365-2435.1997.00078.x (1997).Article 

    Google Scholar 
    Putnam, R. W. & Murphy, R. W. Low metabolic rate in a nocturnal desert lizard, Anarbylus switaki Murphy (Sauria: Gekkonidae). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 71, 119–123 (1982).Article 

    Google Scholar 
    Lighton, J. R. B. & Fielden, L. J. Mass Scaling of Standard Metabolism in Ticks: A Valid Case of Low Metabolic Rates in Sit-and-Wait Strategists. Physiol. Zool. 68, 43–62, https://doi.org/10.1086/physzool.68.1.30163917 (1995).Article 

    Google Scholar 
    Jones, D. L. & Wang, L. C.-H. Metabolic and cardiovascular adaptations in the western chipmunks, genus Eutamias. J. Comp. Physiol. 105, 219–231, https://doi.org/10.1007/bf00691124 (1976).Article 

    Google Scholar 
    Casey, T. M., Withers, P. C. & Casey, K. K. Metabolic and respiratory responses of arctic mammals to ambient temperature during the summer. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 64, 331–341, https://doi.org/10.1016/0300-9629(79)90452-3 (1979).Article 

    Google Scholar 
    Grant, G. S. & Whittow, G. C. Metabolic cost of incubation in the Laysan albatross and Bonin petrel. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 74, 77–82, https://doi.org/10.1016/0300-9629(83)90715-6 (1983).CAS 
    Article 

    Google Scholar 
    Bennett, A. F. & Gleeson, T. T. Metabolic expenditure and the cost of foraging in the lizard Cnemidophorus murinus. Copeia, 573-577, https://doi.org/10.2307/1443864 (1979).Withers, P. C., Thompson, G. G. & Seymour, R. S. Metabolic physiology of the north-western marsupial mole. Notoryctes caurinus (Marsupialia: Notoryctidae). Aust. J. Zool. 48, 241–258, https://doi.org/10.1071/ZO99073 (2000).Article 

    Google Scholar 
    Thurling, D. J. Metabolic rate and life stage of the mites Tetranychus cinnabarinus boisd. (Prostigmata) and Phytoseiulus persimilis A-H. (Mesostigmata). Oecologia 46, 391–396, https://doi.org/10.1007/BF00346269 (1980).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Vleck, C. M. & Vleck, D. Metabolic rate in five tropical bird species. Condor 81, 89–91, https://doi.org/10.2307/1367864 (1979).Article 

    Google Scholar 
    Terblanche, J. S., Jaco Klok, C., Marais, E. & Chown, S. L. Metabolic rate in the whip-spider, Damon annulatipes (Arachnida: Amblypygi). J. Insect Physiol. 50, 637-645, j.jinsphys.2004.04.010 (2004).Boyce, A. J., Mouton, J. C., Lloyd, P., Wolf, B. O. & Martin, T. E. Metabolic rate is negatively linked to adult survival but does not explain latitudinal differences in songbirds. Ecol. Lett. 23, 642–652, https://doi.org/10.1111/ele.13464 (2020).Article 
    PubMed 

    Google Scholar 
    Worthen, G. L. & Kilgore, D. L. Metabolic rate of pine marten in relation to air temperature. J. Mammal. 62, 624–628, https://doi.org/10.2307/1380410 (1981).Article 

    Google Scholar 
    Hails, C. J. The metabolic rate of tropical birds. Condor, 61–65, https://doi.org/10.2307/1367889 (1983).Terblanche, J. S., Klok, C. J. & Chown, S. L. Metabolic rate variation in Glossina pallidipes (Diptera: Glossinidae): gender, ageing and repeatability. J. Insect Physiol. 50, 419–428, https://doi.org/10.1016/j.jinsphys.2004.02.009 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Schmitz, A. Metabolic rates during rest and activity in differently tracheated spiders (Arachnida, Araneae): Pardosa lugubris (Lycosidae) and Marpissa muscosa (Salticidae). J. Comp. Physiol., B 174, 519–526, https://doi.org/10.1007/s00360-004-0440-6 (2004).CAS 
    Article 

    Google Scholar 
    Anderson, J. F. Metabolic rates of resting salticid and thomisid spiders. J. Arachnol. 129–134 (1996).Adams, N. J. & Brown, C. R. Metabolic rates of sub-Antarctic Procellariiformes: a comparative study. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 77, 169–173, https://doi.org/10.1016/0300-9629(84)90030-6 (1984).Article 

    Google Scholar 
    Morrison, P. & Ryser, F. A. Metabolism and body temperature in a small hibernator, the meadow jumping mouse, Zapus hudsonius. J. Cell. Compar. Physl. 60, 169–180, https://doi.org/10.1002/jcp.1030600206 (1962).CAS 
    Article 

    Google Scholar 
    Bieńkowski, P. & Marszałek, U. Metabolism and energy budget in the snow vole. Acta Theriol. 19, 55–67 (1974).Article 

    Google Scholar 
    Lardies, M. A., Catalán, T. P. & Bozinovic, F. Metabolism and life-history correlates in a lowland and highland population of a terrestrial isopod. Can. J. Zool. 82, 677–687, https://doi.org/10.1139/z04-033 (2004).Article 

    Google Scholar 
    Król, E. Metabolism and thermoregulation in the eastern hedgehog Erinaceus concolor. J. Comp. Physiol., B 164, 503–507, https://doi.org/10.1007/bf00714589 (1994).Article 

    Google Scholar 
    Hennemann, W. W., Thompson, S. D. & Konecny, M. J. Metabolism of Crab-Eating Foxes, Cerdocyon thous: Ecological Influences on the Energetics of Canids. Physiol. Zool. 56, 319–324, https://doi.org/10.1086/physzool.56.3.30152596 (1983).Article 

    Google Scholar 
    Lovegrove, B. G. The metabolism of social subterranean rodents: adaptation to aridity. Oecologia 69, 551–555, https://doi.org/10.1007/bf00410361 (1986).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Prinzinger, R. & Hänssler, I. Metabolism-weight relationship in some small nonpasserine birds. Experientia 36, 1299–1300, https://doi.org/10.1007/bf01969600 (1980).Article 

    Google Scholar 
    Hill, R. W. Metabolism, thermal conductance, and body temperature in one of the largest species of Peromyscus, P. pirrensis. J. Therm. Biol. 1, 109–112, https://doi.org/10.1016/0306-4565(76)90029-2 (1976).Article 

    Google Scholar 
    Saarela, S. & Hissa, R. Metabolism, thermogenesis and daily rhythm of body temperature in the wood lemming, Myopus schisticolor. J. Comp. Physiol., B 163, 546–555, https://doi.org/10.1007/bf00302113 (1993).CAS 
    Article 

    Google Scholar 
    MacMillen, R. E. Nonconformance of standard metabolic rate with body mass in Hawaiian Honeycreepers. Oecologia 49, 340–343, https://doi.org/10.1007/bf00347595 (1981).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Krog, H. & Monson, M. Notes on the metabolism of a mountain goat. Am. J. Physiol. 178, 515–516 (1954).CAS 
    Article 

    Google Scholar 
    Du Toit, J. T., Jarvis, J. U. M. & Louw, G. N. Nutrition and burrowing energetics of the Cape mole-rat Georychus capensis. Oecologia 66, 81–87, https://doi.org/10.1007/bf00378556 (1985).ADS 
    Article 
    PubMed 

    Google Scholar 
    Farrell, D. J. & Wood, A. J. The nutrition of the female mink (Mustela vison). I. The metabolic rate of the mink. Can. J. Zool. 46, 41–45, https://doi.org/10.1139/z68-008 (1968).Article 

    Google Scholar 
    Hennemann, W. W. & Konecny, M. J. Oxygen consumption in large spotted genets, Genetta tigrina. J. Mammal. 61, 747–750, https://doi.org/10.2307/1380332 (1980).Article 

    Google Scholar 
    May, M. L., Pearson, D. L. & Casey, T. M. Oxygen consumption of active and inactive adult tiger beetles. Physiol. Entomol. 11, 171–179, https://doi.org/10.1111/j.1365-3032.1986.tb00403.x (1986).Article 

    Google Scholar 
    Bartholomew, G. A. & Casey, T. M. Oxygen Consumption of Moths During Rest, Pre-Flight Warm-Up, and Flight In Relation to Body Size and Wing Morphology. J. Exp. Biol. 76, 11–25 (1978).Article 

    Google Scholar 
    MacMillen, R. E., Whittow, G. C., Christopher, E. A. & Ebisu, R. J. Oxygen consumption, evaporative water loss, and body temperature in the sooty tern. The Auk, 72–79 (1977).Francis, C. & Brooks, G. R. Oxygen consumption, rate of heart beat and ventilatory rate in parietalectomized lizards, Sceloporus occidentalis. Comp. Biochem. Physiol. 35, 463–469, https://doi.org/10.1016/0010-406X(70)90609-2 (1970).Article 

    Google Scholar 
    Tucker, V. A. Oxygen consumption, thermal conductance, and torpor in the California pocket mouse Perognathus californicus. J. Cell. Physiol. 65, 393–403, https://doi.org/10.1002/jcp.1030650313 (1965).CAS 
    Article 
    PubMed 

    Google Scholar 
    McNab, B. K. Physiological convergence amongst ant-eating and termite-eating mammals. J. Zool. 203, 485–510, https://doi.org/10.1111/j.1469-7998.1984.tb02345.x (1984).Article 

    Google Scholar 
    Genoud, M., Bonaccorso, F. J. & Anends, A. Rate of metabolism and temperature regulation in two small tropical insectivorous bats (Peropteryx macrotis and Natalus tumidirostris). Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 97, 229–234, https://doi.org/10.1016/0300-9629(90)90177-T (1990).Article 

    Google Scholar 
    Genoud, M. & Ruedi, M. Rate of metabolism, temperature regulations, and evaporative water loss in the lesser gymnure Hylomys suillus (Insectivora, Mammalia). J. Zool. 240, 309–316, https://doi.org/10.1111/j.1469-7998.1996.tb05287.x (1996).Article 

    Google Scholar 
    Ricklefs, R. E. & Matthew, K. K. Rates of oxygen consumption in four species of seabird at Palmer Station, Antarctic peninsula. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 74, 885–888, https://doi.org/10.1016/0300-9629(83)90363-8 (1983).CAS 
    Article 

    Google Scholar 
    Lasiewski, R. C. & Dawson, W. R. A Re-Examination of the Relation between Standard Metabolic Rate and Body Weight in Birds. Condor 69, 13–23, https://doi.org/10.2307/1366368 (1967).Article 

    Google Scholar 
    Goldstein, R. B. Relation of metabolism to ambient temperature in the Verdin. Condor 76, 116–119, https://doi.org/10.2307/1365995 (1974).Article 

    Google Scholar 
    Mispagel, M. E. Relation of oxygen consumption to size and temperature in desert arthropods. Ecol. Entomol. 6, 423–431, https://doi.org/10.1111/j.1365-2311.1981.tb00634.x (1981).Article 

    Google Scholar 
    Bryant, D. M., Hails, C. J. & Tatner, P. Reproductive energetics of two tropical bird species. The Auk, 25–37 (1984).Holter, P. Resource utilization and local coexistence in a guild of scarabaeid dung beetles (Aphodius spp.). Oikos 39, 213–227, https://doi.org/10.2307/3544488 (1982).Article 

    Google Scholar 
    Goldstein, D. L. & Nagy, K. A. Resource Utilization by Desert Quail: Time and Energy, Food and Water. Ecology 66, 378–387, https://doi.org/10.2307/1940387 (1985).Article 

    Google Scholar 
    Louw, G. N., Nicolson, S. W. & Seely, M. K. Respiration beneath desert sand: carbon dioxide diffusion and respiratory patterns in a tenebrionid beetle. J. Exp. Biol. 120, 443–446 (1986).Article 

    Google Scholar 
    Anderson, J. F. & Prestwich, K. N. Respiratory Gas Exchange in Spiders. Physiol. Zool. 55, 72–90, https://doi.org/10.1086/physzool.55.1.30158445 (1982).Article 

    Google Scholar 
    Meyer, E. & Phillipson, J. Respiratory metabolism of the isopod Trichoniscus pusillus provisorius. Oikos, 69–74, https://doi.org/10.2307/3544200 (1983).Duncan, F. D. & Dickman, C. R. Respiratory patterns and metabolism in tenebrionid and carabid beetles from the Simpson Desert, Australia. Oecologia 129, 509–517, https://doi.org/10.1007/s004420100772 (2001).ADS 
    Article 
    PubMed 

    Google Scholar 
    Nielsen, M. G. Respiratory rates of ants from different climatic areas. J. Insect Physiol. 32, 125–131, https://doi.org/10.1016/0022-1910(86)90131-9 (1986).Article 

    Google Scholar 
    Calder, W. A. III & Dawson, T. J. Resting metabolic rates of ratite birds: the kiwis and the emu. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 60, 479–481 (1978).Article 

    Google Scholar 
    Kawamoto, T. H., Machado, Fd. A., Kaneto, G. E. & Japyassu, H. F. Resting metabolic rates of two orbweb spiders: A first approach to evolutionary success of ecribellate spiders. J. Insect Physiol. 57, 427–432, https://doi.org/10.1016/j.jinsphys.2011.01.001 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lehmann, F. O., Dickinson, M. H. & Staunton, J. The scaling of carbon dioxide release and respiratory water loss in flying fruit flies (Drosophila spp.). J. Exp. Biol. 203, 1613–1624 (2000).CAS 
    Article 

    Google Scholar 
    Chown, S. L. et al. Scaling of insect metabolic rate is inconsistent with the nutrient supply network model. Funct. Ecol. 21, 282–290, https://doi.org/10.1111/j.1365-2435.2007.01245.x (2007).Article 

    Google Scholar 
    Bartholomew, G. A. & Lighton, J. R. B. Short Communication: Ventilation and Oxygen Consumption During Rest and Locomotion in a Tropical Cockroach, Blaberus Giganteus. J. Exp. Biol. 118, 449–454 (1985).Article 

    Google Scholar 
    Stahel, C. D., Megirian, D. & Nicol, S. C. Sleep and metabolic rate in the little penguin, Eudyptula minor. J. Comp. Physiol., B 154, 487–494, https://doi.org/10.1007/bf02515153 (1984).Article 

    Google Scholar 
    Lighton, J. R. Slow Discontinuous Ventilation in the Namib Dune-sea Ant Camponotus Detritus (Hymenoptera, Formicidae). J. Exp. Biol. 151, 71–82 (1990).Article 

    Google Scholar 
    Bech, C., Chappell, M. A., Astheimer, L. B., Londoño, G. A. & Buttemer, W. A. A ‘slow pace of life’ in Australian old-endemic passerine birds is not accompanied by low basal metabolic rates. J. Comp. Physiol., B 186, 503–512, https://doi.org/10.1007/s00360-016-0964-6 (2016).CAS 
    Article 

    Google Scholar 
    Young, S. R. & Block, W. Some factors affecting metabolic rate in an Antarctic mite. Oikos, 178–185, https://doi.org/10.2307/3544180 (1980).Wang, L. C.-H. & Hudson, J. W. Some physiological aspects of temperature regulation in the normothermic and torpid hispid pocket mouse, Perognathus hispidus. Comp. Biochem. Physiol. 32, 275–293, https://doi.org/10.1016/0010-406X(70)90941-2 (1970).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bedford, G. S. & Christian, K. A. Standard metabolic rate and preferred body temperatures in some Australian pythons. Aust. J. Zool. 46, 317–328, https://doi.org/10.1071/ZO98019 (1999).Article 

    Google Scholar 
    Vogt, J. T. & Appel, A. G. Standard metabolic rate of the fire ant, Solenopsis invicta Buren: effects of temperature, mass, and caste. J. Insect Physiol. 45, 655–666, https://doi.org/10.1016/S0022-1910(99)00036-0 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Thompson, G., Heger, N., Heger, T. & Withers, P. Standard metabolic rate of the largest Australian lizard, Varanus giganteus. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 111, 603–608, https://doi.org/10.1016/0300-9629(95)00055-C (1995).Article 

    Google Scholar 
    Vitali, S. D., Withers, P. C. & Richardson, K. C. Standard metabolic rates of three nectarivorous meliphagid passerine birds. Aust. J. Zool. 47, 385–391, https://doi.org/10.1071/ZO99023 (1999).Article 

    Google Scholar 
    Dawson, T. J., Grant, T. R. & Fanning, D. Standard Metabolism of Monotremes and the Evolution of Homeothermy. Aust. J. Zool. 27, 511–515, https://doi.org/10.1071/ZO9790511 (1979).Article 

    Google Scholar 
    Al-Sadoon, M. K. & Abdo, N. M. Temperature effects on oxygen consumption of two nocturnal geckos, Ptyodactylus hasselquistii (Donndorff) and Bunopus tuberculatus (Blanford) (Reptilia: Gekkonidae) in Saudi Arabia. J. Comp. Physiol., B 159, 1–4, https://doi.org/10.1007/bf00692676 (1989).ADS 
    Article 

    Google Scholar 
    Roxburgh, L. & Perrin, M. R. Temperature regulation and activity pattern of the round-eared elephant shrew Macroscelides proboscideus. J. Therm. Biol. 19, 13–20, https://doi.org/10.1016/0306-4565(94)90004-3 (1994).Article 

    Google Scholar 
    Wang, L. C.-H. & Hudson, J. W. Temperature regulation in normothermic and hibernating eastern chipmunk, Tamias striatus. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 38, 59–90, https://doi.org/10.1016/0300-9629(71)90098-3 (1971).CAS 
    Article 

    Google Scholar 
    Rfinking, L. N., Kilgore, D. L. Jr, Fairbanks, E. S. & Hamilton, J. D. Temperature regulation in normothermic black-tailed prairie dogs, Cynomys ludovicianus. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 57, 161–165, https://doi.org/10.1016/0300-9629(77)90368-1 (1977).Article 

    Google Scholar 
    Chew, R. M., Lindberg, R. G. & Hayden, P. Temperature regulation in the little pocket mouse, Perognathus longimembris. Comp. Biochem. Physiol. 21, 487–505, https://doi.org/10.1016/0010-406X(67)90447-1 (1967).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ebisu, R. J. & Whittow, G. C. Temperature regulation in the small Indian mongoose (Herpestes auropunctatus). Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 54, 309–313, https://doi.org/10.1016/S0300-9629(76)80117-X (1976).CAS 
    Article 

    Google Scholar 
    Whittow, G. C., Scammell, C. A., Leong, M. & Rand, D. Temperature regulation in the smallest ungulate, the lesser mouse deer (Tragulus javanicus). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 56, 23–26, https://doi.org/10.1016/0300-9629(77)90436-4 (1977).CAS 
    Article 

    Google Scholar 
    Fusari, M. H. Temperature responses of standard, aerobic metabolism by the California legless lizard, Anniella pulchra. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 77, 97–101, https://doi.org/10.1016/0300-9629(84)90018-5 (1984).CAS 
    Article 

    Google Scholar 
    Dawson, T. J. & Fanning, F. D. Thermal and energetic problems of semiaquatic mammals: a study of the Australian water rat, including comparisons with the platypus. Physiol. Zool. 54, 285–296 (1981).Article 

    Google Scholar 
    Campbell, K. L. & Hochachka, P. W. Thermal biology and metabolism of the American shrew-mole, Neurotrichus gibbsii. J. Mammal. 81, 578-585, 10.1644/1545-1542(2000)0812.0.CO;2 (2000).Hosken, D. J. Thermal Biology and Metabolism of the Greater Long-eared Bat. Nyctophilus major (Chiroptera:Vespertilionidae). Aust. J. Zool. 45, 145–156, https://doi.org/10.1071/ZO96043 (1997).Article 

    Google Scholar 
    Duxbury, K. J. & Perrin, M. Thermal biology and water turnover rate in the Cape gerbil, Tatera afra (Gerbillidae). J. Therm. Biol. 17, 199–208, https://doi.org/10.1016/0306-4565(92)90056-L (1992).Article 

    Google Scholar 
    Downs, C. T. & Perrin, M. R. The thermal biology of the white-tailed rat Mystromys albicaudatus, a cricetine relic in southern temperate African grassland. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 110, 65–69, https://doi.org/10.1016/0300-9629(94)00147-L (1995).CAS 
    Article 

    Google Scholar 
    Downs, C. T. & Perrin, M. R. The thermal biology of three southern African elephant-shrews. J. Therm. Biol. 20, 445–450, https://doi.org/10.1016/0306-4565(95)00003-F (1995).Article 

    Google Scholar 
    Maloiy, G. M. O., Kamau, J. M. Z., Shkolnik, A., Meir, M. & Arieli, R. Thermoregulation and metabolism in a small desert carnivore: the Fennec fox (Fennecus zerda)(Mammalia). J. Zool. 198, 279–291, https://doi.org/10.1111/j.1469-7998.1982.tb02076.x (1982).Article 

    Google Scholar 
    Maskrey, M. & Hoppe, P. P. Thermoregulation and oxygen consumption in Kirk’s dik-dik (Madoqua kirkii) at ambient temperatures of 10–45 °C. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 62, 827–830, https://doi.org/10.1016/0300-9629(79)90010-0 (1979).Article 

    Google Scholar 
    Kamau, J. M., Johansen, K. & Maloiy, G. Thermoregulation and standard metabolism of the slender mongoose (Herpestes sanguineus). Physiol. Zool. 52, 594–602 (1979).Article 

    Google Scholar 
    Knight, M. H. Thermoregulation in the largest African cricetid, the giant rat Cricetomys gambianus. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 89, 705–708, https://doi.org/10.1016/0300-9629(88)90856-0 (1988).CAS 
    Article 

    Google Scholar 
    Bennett, N. C., Aguilar, G. H., Jarvis, J. U. M. & Faulkes, C. G. Thermoregulation in three species of Afrotropical subterranean mole-rats (Rodentia: Bathyergidae) from Zambia and Angola and scaling within the genus Cryptomys. Oecologia 97, 222–227, https://doi.org/10.1007/bf00323153 (1994).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Casey, T. M. & Casey, K. K. Thermoregulation of Arctic Weasels. Physiol. Zool. 52, 153–164, https://doi.org/10.1086/physzool.52.2.30152560 (1979).Article 

    Google Scholar 
    Layne, J. N. & Dolan, P. G. Thermoregulation, metabolism, and water economy in the golden mouse (Ochrotomys nuttalli). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 52, 153–163, https://doi.org/10.1016/S0300-9629(75)80146-0 (1975).CAS 
    Article 

    Google Scholar 
    Roberts, J. R. & Baudinette, R. V. Thermoregulation, Oxygen Consumption and Water Turnover in Stubble Quail, Coturnix pectoralis, and King Quail, Coturnix chinensis. Aust. J. Zool. 34, 25–33, https://doi.org/10.1071/ZO9860025 (1986).Article 

    Google Scholar 
    du Plessis, A., Erasmus, T. & Kerley, G. I. Thermoregulatory patterns of two sympatric rodents: Otomys unisulcatus and Parotomys brantsii. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 94, 215–220, https://doi.org/10.1016/0300-9629(89)90538-0 (1989).Article 

    Google Scholar 
    Bradley, W. & Yousef, M. Thermoregulatory responses in the plains pocket gopher, Geomys bursarius. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 52, 35–38, https://doi.org/10.1016/S0300-9629(75)80122-8 (1975).CAS 
    Article 

    Google Scholar 
    Drent, R. H. & Stonehouse, B. Thermoregulatory responses of the Peruvian penguin, Spheniscus humboldti. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 40, 689–710, https://doi.org/10.1016/0300-9629(71)90254-4 (1971).CAS 
    Article 

    Google Scholar 
    El-Nouty, F. D., Yousef, M. K., Magdub, A. B. & Johnson, H. D. Thyroid hormones and metabolic rate in burros, Equus asinus, and llamas, Lama glama: effects of environmental temperature. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 60, 235–237, https://doi.org/10.1016/0300-9629(78)90238-4 (1978).Article 

    Google Scholar 
    Krüger, K., Prinzinger, R. & Schuchmann, K.-L. Torpor and metabolism in hummingbirds. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 73, 679–689 (1982).
    Google Scholar 
    Bartholomew, G. A. & Barnhart, M. C. Tracheal Gases, Respiratory Gas Exchange, Body Temperature and Flight in Some Tropical Cicadas. J. Exp. Biol. 111, 131–144 (1984).Article 

    Google Scholar 
    Zachariassen, K. E., Andersen, J., Maloiy, G. M. & Kamau, J. M. Transpiratory water loss and metabolism of beetles from arid areas in East Africa. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 86, 403–408, https://doi.org/10.1016/0300-9629(87)90515-9 (1987).Article 

    Google Scholar 
    Bucher, T. L. Ventilation and oxygen consumption in Amazona viridigenalis. J. Comp. Physiol., B 155, 269–276, https://doi.org/10.1007/bf00687467 (1985).ADS 
    Article 

    Google Scholar 
    Bickler, P. E. & Anderson, R. A. Ventilation, Gas Exchange, and Aerobic Scope in a Small Monitor Lizard, Varanus gilleni. Physiol. Zool. 59, 76–83, https://doi.org/10.1086/physzool.59.1.30156093 (1986).Article 

    Google Scholar 
    Seid, M. A., Castillo, A. & Wcislo, W. T. The allometry of brain miniaturization in ants. Brain Behav. Evol. 77, 5–13, https://doi.org/10.1159/000322530 (2011).Article 
    PubMed 

    Google Scholar 
    Quesada, R. et al. The allometry of CNS size and consequences of miniaturization in orb-weaving and cleptoparasitic spiders. Arthropod Struct. Dev. 40, 521–529, https://doi.org/10.1016/j.asd.2011.07.002 (2011).Article 
    PubMed 

    Google Scholar 
    Mares, S., Ash, L. & Gronenberg, W. Brain allometry in bumblebee and honey bee workers. Brain Behav. Evol. 66, 50–61, https://doi.org/10.1159/000085047 (2005).Article 
    PubMed 

    Google Scholar 
    Mlikovsky, J. Brain size and forearmen magnum area in crows and allies (Aves: Corvidae). Acta Soc. Zool. Bohem. 67, 203–211 (2003).
    Google Scholar 
    Mlikovsky, J. Brain size in birds: 4. Passeriformes. Acta Soc. Zool. Bohem. 54, 27–37 (1990).
    Google Scholar 
    Bronson, R. T. Brain weight-body weight relationships in 12 species of nonhuman primates. Am. J. Phys. Anthropol. 56, 77–81, https://doi.org/10.1002/ajpa.1330560109 (1981).Article 

    Google Scholar 
    Guay, P., Weston, M., Symonds, M. & Glover, H. Brains and bravery: Little evidence of a relationship between brain size and flightiness in shorebirds. Austral Ecol. 38, 516–522, https://doi.org/10.1111/j.1442-9993.2012.02441.x (2013).Article 

    Google Scholar 
    Boddy, A. M. et al. Comparative analysis of encephalization in mammals reveals relaxed constraints on anthropoid primate and cetacean brain scaling. J. Evol. Biol. 25, 981–994, https://doi.org/10.1111/j.1420-9101.2012.02491.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Stankowich, T. & Romero, A. N. The correlated evolution of antipredator defences and brain size in mammals. Proc. R. Soc. B: Biol. Sci. 284, https://doi.org/10.1098/rspb.2016.1857 (2017).Sheehan, Z. B. V., Kamhi, J. F., Seid, M. A. & Narendra, A. Differential investment in brain regions for a diurnal and nocturnal lifestyle in Australian Myrmecia ants. J. Comp. Neurol. 0, https://doi.org/10.1002/cne.24617.Bauchot, R. & Stephan, H. Données nouvelles sur l’encéphalisation des insectivores et des prosimiens. Mammalia 30, 160–196, https://doi.org/10.1515/mamm.1966.30.1.160 (1966).Article 

    Google Scholar 
    Rosenzweig, M. & Bennett, E. L. Effects of differential environments on brain weights and enzyme activities in gerbils, rats, and mice. Dev. Psychobiol. 2, 87–95, https://doi.org/10.1002/dev.420020208 (1969).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pirlot, P. & Stephan, H. Encephalization in Chiroptera. Can. J. Zool. 48, 433–444, https://doi.org/10.1139/z70-075 (1970).Article 

    Google Scholar 
    Ashwell, K. W. S. Encephalization of Australian and New Guinean marsupials. Brain Behav. Evol. 71, 181–199, https://doi.org/10.1159/000114406 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hoops, D. et al. Evidence for concerted and mosaic brain evolution in dragon lizards. Brain Behav. Evol. 90, 211–223, https://doi.org/10.1159/000478738 (2017).Article 
    PubMed 

    Google Scholar 
    Pasquet, A., Toscani, C. & Anotaux, M. Influence of aging on brain and web characteristics of an orb web spider. J. Ethol. 36, 85–91, https://doi.org/10.1007/s10164-017-0530-z (2018).Article 
    PubMed 

    Google Scholar 
    Warnke, P. Mitteilung neuer Gehirn-und Körpergewichtsbestimmungen bei Saugern. J. Psychol. Neurol. 13, 355–403 (1908).
    Google Scholar 
    Naccarati, S. On the relation between the weight of the internal secretory glands and the body weight and brain weight. Anat. Rec. 24, 254–260, https://doi.org/10.1002/ar.1090240408 (1922).Article 

    Google Scholar 
    Crile, G. & Quiring, D. P. A record of the body weight and certain organ and gland weights of 3690 animals. Ohio J. Sci. (1940).Franklin, D. C., Garnett, S. T., Luck, G. W., Gutierrez-Ibanez, C. & Iwaniuk, A. N. Relative brain size in Australian birds. Emu 114, 160–170, https://doi.org/10.1071/MU13034 (2014).Article 

    Google Scholar 
    Hrdlička, A. Weight of the brain and of the internal organs in American monkeys. With data on brain weight in other apes. Am. J. Phys. Anthropol. 8, 201–211, https://doi.org/10.1002/ajpa.1330080207 (1925).Article 

    Google Scholar 
    Stöckl, A. L., Ribi, W. A. & Warrant, E. J. Adaptations for nocturnal and diurnal vision in the hawkmoth lamina. J. Comp. Neurol. 524, 160–175, https://doi.org/10.1002/cne.23832 (2016).Article 
    PubMed 

    Google Scholar 
    Napiorkowska, T. & Kobak, J. The allometry of the central nervous system during the postembryonic development of the spider Eratigena atrica. Arthropod Struct. Dev. 46, 805–814, https://doi.org/10.1016/j.asd.2017.08.005 (2017).Article 
    PubMed 

    Google Scholar 
    El Jundi, B., Huetteroth, W., Kurylas, A. E. & Schachtner, J. Anisometric brain dimorphism revisited: Implementation of a volumetric 3D standard brain in Manduca sexta. J. Comp. Neurol. 517, 210–225, https://doi.org/10.1002/cne.22150 (2009).Article 
    PubMed 

    Google Scholar 
    Krieger, J., Sandeman, R. E., Sandeman, D. C., Hansson, B. S. & Harzsch, S. Brain architecture of the largest living land arthropod, the Giant Robber Crab Birgus latro (Crustacea, Anomura, Coenobitidae): evidence for a prominent central olfactory pathway? Front. Zool. 7, 25, https://doi.org/10.1186/1742-9994-7-25 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Powell, B. J. & Leal, M. Brain Organization and Habitat Complexity in Anolis Lizards. Brain Behav. Evol. 84, 8–18, https://doi.org/10.1159/000362197 (2014).Article 
    PubMed 

    Google Scholar 
    Platel, R. in Biology of the Reptilia 10 (eds Gans, C. G., Northcutt, R. G & Ulinski, P. S.) 147–171 (Academic Press, 1979).Van Der Woude, E., Smid, H. M., Chittka, L. & Huigens, M. E. Breaking Haller’s rule: brain-body size isometry in a minute parasitic wasp. Brain Behav. Evol. 81, 86–92, https://doi.org/10.1159/000345945 (2013).Article 
    PubMed 

    Google Scholar 
    Guay, P.-J. & Iwaniuk, A. N. Captive breeding reduces brain volume in waterfowl (Anseriformes). Condor 110, 276–284, https://doi.org/10.1525/cond.2008.8424 (2008).Article 

    Google Scholar 
    Robinson, C. D., Patton, M. S., Andre, B. M. & Johnson, M. A. Convergent evolution of brain morphology and communication modalities in lizards. Current Zoology 61, 281–291, https://doi.org/10.1093/czoolo/61.2.281 (2015).Article 

    Google Scholar 
    Kvello, P., Løfaldli, B., Rybak, J., Menzel, R. & Mustaparta, H. Digital, three-dimensional average shaped atlas of the Heliothis virescens brain with integrated gustatory and olfactory neurons. Front. Syst. Neurosci. 3, https://doi.org/10.3389/neuro.06.014.2009 (2009).Montgomery, S. H. & Merrill, R. M. Divergence in brain composition during the early stages of ecological specialization in Heliconius butterflies. J. Evol. Biol. 30, 571–582, https://doi.org/10.1111/jeb.13027 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gordon, D. G., Zelaya, A., Arganda-Carreras, I., Arganda, S. & Traniello, J. F. A. Division of labor and brain evolution in insect societies: Neurobiology of extreme specialization in the turtle ant Cephalotes varians. PLOS ONE 14, e0213618, https://doi.org/10.1371/journal.pone.0213618 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rein, K., Zöckler, M., Mader, M. T., Grübel, C. & Heisenberg, M. The Drosophila Standard Brain. Curr. Biol. 12, 227–231, https://doi.org/10.1016/S0960-9822(02)00656-5 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Shen, J.-M., Li, R.-D. & Gao, F.-Y. Effects of ambient temperature on lipid and fatty acid composition in the oviparous lizards, Phrynocephalus przewalskii. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 142, 293–301, https://doi.org/10.1016/j.cbpb.2005.07.013 (2005).CAS 
    Article 

    Google Scholar 
    Muscedere, M. L., Gronenberg, W., Moreau, C. S. & Traniello, J. F. A. Investment in higher order central processing regions is not constrained by brain size in social insects. Proc. R. Soc. B: Biol. Sci. 281, https://doi.org/10.1098/rspb.2014.0217 (2014).Platel, R. L’encéphalisation chez le Tuatara de Nouvelle-Zélande Sphenodon punctatus Gray (Lepidosauria, Sphenodonta). Etude quantifiée des principales subdivisions encéphaliques. J. Hirnforsch. 30, 325–337 (1989).CAS 
    PubMed 

    Google Scholar 
    Makarova, A. A. & Polilov, A. A. Peculiarities of the brain organization and fine structure in small insects related to miniaturization. 1. The smallest Coleoptera (Ptiliidae). Entomol. Rev. 93, 703–713, https://doi.org/10.1134/S0013873813060043 (2013).Article 

    Google Scholar 
    Bininda‐Emonds, O. R. P. Pinniped brain sizes. Mar. Mamm. Sci. 16, 469–481 (2000).Article 

    Google Scholar 
    Stafstrom, J. A., Michalik, P. & Hebets, E. A. Sensory system plasticity in a visually specialized, nocturnal spider. Sci. Rep. 7, 46627, https://doi.org/10.1038/srep46627 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    O’Donnell, S., Bulova, S. J., Barrett, M. & Fiocca, K. Size constraints and sensory adaptations affect mosaic brain evolution in paper wasps (Vespidae: Epiponini). Biol. J. Linn. Soc. 123, 302–310, https://doi.org/10.1093/biolinnean/blx150 (2018).Article 

    Google Scholar 
    Kamhi, J. F., Gronenberg, W., Robson, S. K. A. & Traniello, J. F. A. Social complexity influences brain investment and neural operation costs in ants. Proc. R. Soc. B: Biol. Sci. 283, 20161949, https://doi.org/10.1098/rspb.2016.1949 (2016).Article 

    Google Scholar 
    Kurylas, A. E., Rohlfing, T., Krofczik, S., Jenett, A. & Homberg, U. Standardized atlas of the brain of the desert locust, Schistocerca gregaria. Cell Tissue Res. 333, 125, https://doi.org/10.1007/s00441-008-0620-x (2008).Article 
    PubMed 

    Google Scholar 
    O’Donnell, S. et al. A test of neuroecological predictions using paperwasp caste differences in brain structure (Hymenoptera: Vespidae). Behav. Ecol. Sociobiol. 68, 529–536, https://doi.org/10.1007/s00265-013-1667-6 (2014).Article 

    Google Scholar 
    Weltzien, P. & Barth, F. G. Volumetric measurements do not demonstrate that the spider brain “central body” has a special role in web building. J. Morphol. 208, 91–98, https://doi.org/10.1002/jmor.1052080104 (1991).Article 
    PubMed 

    Google Scholar  More

  • in

    Personalized microbiomes in social baboons

    Sarkar, A. et al. Nat. Ecol. Evol. 4, 1020–1035 (2020).Article 

    Google Scholar 
    Tung, J. et al. eLife 4, e05224 (2015).Article 

    Google Scholar 
    Bennett, G. et al. Am. J. Primatol. 78, 883–892 (2016).CAS 
    Article 

    Google Scholar 
    Moeller, A. H. et al. Sci. Adv. 2, e1500997 (2016).Article 

    Google Scholar 
    Perofsky, A. C., Ancel Meyers, L., Abondano, L. A., Di Fiore, A. & Lewis, R. J. Mol. Ecol. 30, 6759–6775 (2021).Article 

    Google Scholar 
    Yarlagadda, K., Razik, I., Malhi, R. S. & Carter, G. G. Biol. Lett. 17, 20210389 (2021).Article 

    Google Scholar 
    Björk, J. R. et al. Nat. Ecol. Evol., https://doi.org/10.1038/s41559-022-01773-4 (2022).Blekhman, R. et al. Genome Biol. 16, 191 (2015).Article 

    Google Scholar 
    Grieneisen, L. et al. Science 186, 181–186 (2021).Article 

    Google Scholar 
    Lloyd-Price, J. et al. Nature 550, 61–66 (2017).CAS 
    Article 

    Google Scholar  More

  • in

    The microbiome of cryospheric ecosystems

    The datasetWe curated and explored 695 published 16S rRNA gene samples from cryospheric ecosystems (Methods section and Supplementary Table 7), including polar ice sheets, mountain glaciers and their proglacial lakes, permafrost soils and the coastal ocean under the influence of glacier runoff, and compared these to 3552 published 16S rRNA gene samples from non-cryospheric ecosystems, including temperate and tropical lakes and soils (Supplementary Table 7). This approach allowed us to identify and explore features specific to the cryospheric microbiome and compare it to other environmental microbiomes. However, we note a geographical bias towards polar regions in current publicly available repositories, and the paucity of alpine samples specifically highlights the need to further characterise these habitats given that they are among the most endangered cryospheric ecosystems globally. This bias is further compounded by the inconsistent methodologies applied across studies (e.g. primer pairs and sequencers used). To account for potential primer biases, we analysed two 16S rRNA primer pairs (Primer Pair 1, PP1: 341f-785r; Primer Pair 2, PP2: 515f-806r)12,13 commonly used in amplicon high-throughput sequencing. In total, this dataset contains 241,502,708 paired sequence reads, resulting in 530,254 and 410,931 amplicon sequence variants (ASVs) for PP1 and PP2, respectively. Moreover, all taxonomic analyses were performed at the genus level, to account for the limitations of 16s rRNA amplicon data. To gain deeper insights into the functional space of the cryospheric microbiome, we compared 34 published metagenomes from cryospheric ecosystems with 56 metagenomes from similar but non-cryospheric ecosystems (Fig. 1A). Given the difficulty of obtaining high-quality metagenomes from cryospheric ecosystems, we restricted our analyses to glacier surfaces, ice-covered lakes, and Antarctic soils. Although our analyses were limited to samples where raw sequence data are available (Methods section), the breadth of habitats covered are representative of the most abundant cryospheric ecosystems, e.g., glacier ice, cryoconites, subglacial lakes and sea ice. On the other hand, several niches such as glacier snow, glacier-fed rivers/streams, and the full-breadth of permafrost may not entirely be represented due to data unavailability. We reanalysed all metagenomes using the same bioinformatic pipeline (IMP3; see Methods section) to avoid analytical biases. Overall, the metagenomic analyses from 2,427,818,072 paired reads yielded 41,068,842 gene sequences. Thus, we here present a catalogue representing a snapshot of the functional diversity in the cryospheric microbiome, integrating across diverse habitats. This represents what we believe to be the first global overview of the functional repertoire of the Earth’s cryosphere compared to other ecosystems.Fig. 1: A unique cryospheric microbiome.A Geographic distribution of the 16 S rRNA gene samples for the two primer pairs (PP) and metagenomes for both cryospheric and non-cryospheric ecosystems, where GPS coordinates were available on NCBI. Symbol size denotes the number of samples per site (see Supplementary Table 7). B Phylogenetic tree based on abundant ASVs ( >0.5% relative abundance in at least one sample) in the PP1 dataset. The heatmap (inner rings) shows the presence (at a  > 0.5% relative abundance threshold) of ASVs in the four ecosystem types of the cryosphere (ice and snow, terrestrial, coastal ocean and freshwater). The barplot (outer ring) represents the coefficient for the SVM classifier analysis, highlighting discriminating ASVs. C Sorensen’s phylogenetic index of β-diversity (n1 = n2 = 84,461 for PP1, and n1 = n2 = 99,000 for PP2) and D β-MNTD calculated across pairs of samples in the cryospheric samples (Cryo-Cryo), pairs of cryospheric and non-cryospheric samples (Cryo-Others) and pairs of non-cryospheric (Others-Others) samples (sample sizes are listed in Supplementary Table 2). The top panel (shades of blue) is for PP1, the bottom one (shades of red) for PP2; two-sided Wilcoxon tests were performed to assess significance in panels C and D; the Holm method was used to correct for multiple testing (****: 0–0.0001). Boxplots depict the median and the 25th and 75th quartiles, whiskers extend to values within 1.5 times the interquartile range, and the remaining points are outliers. Effect sizes and exact p-values are available in Supplementary Table 2. Source data are provided as a Source Data file.Full size imageA cryospheric microbiomeGiven the communal constraints imposed by the harsh environment of cryospheric ecosystems (e.g., low temperature, oligotrophy), we expected them to harbour a specific microbiome. Accordingly, machine-learning classification (logistic regression models, Methods) based on community composition was able to differentiate between cryospheric and non-cryospheric microbiomes with high accuracy (balanced accuracy >0.96, Supplementary Table 1). Both primer pairs consistently yielded a high classification accuracy and especially a high precision. Interestingly, many of the discriminating cryospheric ASVs were spread widely across the bacterial tree of life (Fig. 1A and Supplementary Fig. 1).The notion that a part of the microbiome is specific to the cryosphere is also strongly supported by phylogenetic analyses of the 16 S rRNA gene amplicon dataset. First, we found higher pairwise phylogenetic overlap among cryospheric samples than among cryospheric/non-cryospheric or non-cryospheric samples (Sorensen’s index, Fig. 1C; Wilcoxon test, Holm adj. p  More

  • in

    Feature selection for global tropospheric ozone prediction based on the BO-XGBoost-RFE algorithm

    Experimental dataThe dataset used in this study is the global long-term air quality indicator data of 5577 regions from 2010 to 2014 extracted by Betancourt et al.14 based on the TOAR database (https://gitlab.jsc.fz-juelich.de/esde/machine-learning/aq-bench/-/blob/master/resources/AQbench_dataset.csv)29. As shown in Fig. 3, the monitoring sites include 15 regions, including EUR (Europe), NAM (North America), and EAS (East Asia), and are mainly distributed in NAM (North America), EUR (Europe) and EAS (East Asia). The dataset mainly includes the geographical location information of the monitoring site, such as longitude and latitude, the area to which it belongs, altitude, etc., and the site environment information, such as population density, night light intensity, and vegetation coverage. Since it is difficult to directly quantify factors such as the degree of industrial activity and the degree of human activity, environmental information such as the average light intensity at night and population density are used as proxy variables for the above factors. The ozone indicator records the hourly ozone concentration from air quality observation points in various regions and aggregates the collected ozone time series in units of one year into one indicator. Using a longer aggregation period can be used to average short-term weather fluctuations. The experimental data have a total of 35 input variables, including 4 categorical attributes and 31 continuous attributes. The predictor variable is the average ozone concentration in each region from 2010 to 2014. The specific variable names and descriptions14 are shown in the supplementary materials. A total of 4/5 of the total samples were used as the training set, and 1/5 were used as the test set.Figure 3Global distribution of monitoring sites.Full size imageResults of BO-XGBoost-RFEAccording to the XGBoost-RFE algorithm for feature selection, XGBoost-RFE combined with the cross-validation method is used to calculate the selected feature set in each RFE stage for fivefold cross-validation, and the mean absolute error (MAE) is used as the evaluation criterion to finally determine the number of features with the lowest mean absolute error (MAE). At the same time, the Bayesian optimization algorithm is used to adjust the hyper-parameters of XGBoost-RFE, and then the feature subset with the lowest cross-validation mean absolute error (MAE) is obtained. The main parameters of the XGBoost model in this article include the learning_rate, n_estimators, max_depth, gamma, reg_alpha, reg_lambda, colsample_bytree, and subsample. All parameters used in the model are shown in the supplementary material. Within the given parameter range, the Bayesian optimization algorithm is used, the mean absolute error (MAE) of the XGBoost-RFE fivefold cross-validation is used as the objective function, and the number of iterations is controlled to be 100. We obtained the hyperparameter combination corresponding to the lowest MAE and the corresponding optimal feature subset. The iterative process of Bayesian optimization is shown in Fig. 4.Figure 4Iterative process of Bayesian optimization.Full size imageThe parameter range and optimized value of XGBoost-RFE are shown in Table 1. The XGBoost-RFE feature selection results under the above optimized hyperparameters are shown in Fig. 5. The number of features in the feature subset with the lowest mean absolute error is 22, and the MAE is 2.410.Table 1 Main hyper-parameter range and optimized value.Full size tableFigure 5XGBoost-RFE feature selection results: Cross-validation MAE under optimal hyperparameter combination.Full size imageAdditionally, the XGBoost-RFE feature selection model without Bayesian optimization is compared with the algorithm in this study. The default parameters of the underlying model XGBoost are set to learning_rate as 0.3, max_depth as 6, gamma as 0, colsample_bytree as 1, subsample as 1, reg_alpha as 1, and reg_lambda as 0. The comparison results are shown in Table 2. The results show that the XGBoost-RFE cross-validation MAE without parameter tuning is larger than that of the algorithm in this study, and the dimension of the feature subset obtained is also higher than that of the algorithm in this study.Table 2 Comparison of MAE and feature num before and after BO.Full size tablePrediction resultsTo test the prediction accuracy of the prediction model with the optimal subset obtained by BO-XGBoost-RFE, three indexes, MAE, RMSE and R2, are used to evaluate the prediction results, and the expressions are as follows:$$begin{array}{*{20}c} {MAE = frac{1}{n}mathop sum limits_{i = 1}^{n} left| {left( {y_{i} – widehat{{y_{i} }}} right)} right|} \ end{array}$$
    (8)
    $$begin{array}{*{20}c} {RMSE = sqrt {frac{1}{n}mathop sum limits_{i = 1}^{n} left( {y_{i} – widehat{{y_{i} }}} right)^{2} } } \ end{array}$$
    (9)
    $$begin{array}{*{20}c} {R^{2} = 1 – frac{{mathop sum nolimits_{i = 1}^{n} left( {widehat{{y_{i} }} – y_{i} } right)^{2} }}{{mathop sum nolimits_{i = 1}^{n} left( {y_{i} – overline{{y_{i} }} } right)^{2} }}} \ end{array}$$
    (10)
    n indicates the number of samples, yi is the true value, (widehat{{y_{i} }}) is the predicted value and (overline{{y_{i} }}) indicates the mean value of the predicted value.The XGBoost-RFE feature selection algorithm based on Bayesian optimization in this study is compared with feature selection using full features and features selected by the Pearson correlation coefficient, which measures the correlation between two variables. In this study, the correlation with predictor variables was selected to be less than 0.1, and the variables with correlations greater than 0.9 were deleted to avoid multicollinearity.XGBoost, random forest, support vector regression machine, and KNN algorithms were used to predict ozone concentration with full features, features selected by Pearson’s correlation coefficient, and features based on BO-XGBoost-RFE. According to the evaluation indicators described above, the comparison of the prediction performance results of the three algorithms before and after dimensionality reduction can be obtained. The MAE, RMSE and R2 results of each prediction model are shown in Table 3.Table 3 MAE, RMSE and R2 of each prediction model.Full size tableAmong the four prediction models, random forest has the lowest MAE and RMSE and the highest R2 based on three different dimensions of data and therefore has the best prediction performance. The prediction accuracy of all four prediction models based on Pearson correlation is lower than that based on BO-XGBoost-RFE, indicating that only selecting features by correlation cannot accurately extract important variables. Although the RMSE of the support vector regression model based on BO-XGBoost-RFE is slightly lower than the RMSE based on full features, the prediction accuracy of XGBoost, RF, KNN after feature selection of BO-XGBoost-RFE is higher than that based on full features and Pearson correlation. Among the four prediction models, random forest has obtained the highest prediction accuracy. The MAE based on BO-XGBoost-RFE is 5.0% and 1.4% lower than that based on the Pearson correlation coefficient and the full-feature-based model, and the RMSE is reduced by 5.1%, 1.8%, R2 improved by 4.3%, 1.4%. Additionally, the XGBoost model achieved the greatest improvement in accuracy. The MAE was reduced by 5.9% and 1.7%, the RMSE was reduced by 5.2% and 1.7%, and the R2 was improved by 4.9% and 1.4% compared with the Pearson correlation coefficient-based and full-feature-based models, respectively. This indicates that feature selection based on BO-XGBoost-RFE effectively extracts important features, improves prediction accuracy based on multiple prediction models, and has better dimensionality reduction performance.Figure 6 shows the importance of each feature obtained by using the random forest prediction model, reflecting the degree of influence of each variable on the prediction results of the global multi-year average near-ground ozone concentration. The most important variables that affect the prediction results according to the ranking of feature importance are altitude, relative altitude, and latitude, followed by night light intensity within a radius of 5 km, population density and nitrogen dioxide concentration, while the proxy variables for vegetation cover have a relatively weak effect on the prediction of ozone concentration.Figure 6Feature importance in random forest.Full size image More

  • in

    Dental macrowear reveals ecological diversity of Gorilla spp.

    Fossey, D. & Harcourt, D. H. Feeding ecology of free-ranging mountain gorilla (Gorilla gorilla beringei). In Primate ecology (ed. Clutton-Brock, T. H.) 415–447 (Academy Press, New York, 1977).Watts, D. P. Composition and variability of mountain gorilla diets in the central Virungas. Am. J. Primatol. 7, 323–356 (1984).PubMed 
    Article 

    Google Scholar 
    Watts, D. Comparative socio-ecology of gorillas. In Great Ape Societies (eds. McGrew, W. C., Marchant, L. F. & Nishida, T.) 16–28 (Cambridge University Press, Cambridge, 1986).Doran, D. M. & McNeilage, A. Gorilla ecology and behavior. Evol. Anthropol. 6, 120–131 (1988).Article 

    Google Scholar 
    Xue, Y. et al. Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding. Science 348, 242–245 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mittermeier, R. A., Rylands, A. B. & Wilson, D. E. Handbook of the mammals of the world. Primates Vol. 3 (Lynx Edicions, 2013).
    Google Scholar 
    Groves, C. Primate Taxonomy (Smithsonian Institution Press, 2001).
    Google Scholar 
    Cooksey, K. E. & Morgan, D. B. Gorilla (Gorilla). In The International encyclopedia of primatology, Vol. 1 (ed. Fuentes, A.) 472–477 (Wiley, Hoboken, 2017).McFarland, K. L. Ecology of cross river gorillas (Gorilla gorilla diehli) on Afi mountain, Cross River State, Nigeria. Ph.D. Dissertation. City University of New York, USA (2007).Rogers, M. E., Maisels, F., Wiliamson, E. A., Fernandez, M. & Tutin, C. E. G. Gorilla diet in the Lopé Reserve, Gabon: a nutritional analysis. Oecologia 84, 326–339 (1990).ADS 
    Article 

    Google Scholar 
    van Casteren, A., Wright, E., Kupczik, K. & Robbins, M. M. Unexpected hard-object feeding in Western lowland gorillas. Am. J. Phys. Anthropol. 170, 433–438 (2019).PubMed 
    Article 

    Google Scholar 
    Masi, S., Cipolletta, C. & Robbins, M. M. Western lowland gorillas (Gorilla gorilla gorilla) change their activity patterns in response to frugivory. Am. J. Primatol. 71, 91–100 (2009).PubMed 
    Article 

    Google Scholar 
    Yamagiwa, J., Basabose, A. K., Kaleme, K. & Yumoto, T. Diet of grauer’s gorillas in montane forest of Kahuzi, Democratic Republic of Congo. Int. J. Primatol. 26, 1345–1373 (2005).Article 

    Google Scholar 
    Grueter, C. C. et al. Long-term temporal and spatial dynamics of food availability for endangered mountain gorillas in Volcanoes National Park, Rwanda. Am. J. Primatol. 75, 267–280 (2013).PubMed 
    Article 

    Google Scholar 
    Ostrofsky, K. R. & Robbins, M. M. Fruit-feeding and activity patterns of mountain gorillas (Gorilla beringei beringei) in Bwindi Impenetrable National Park, Uganda. Am. J. Phys. Anthropol. 173, 3–20 (2020).PubMed 
    Article 

    Google Scholar 
    Berthaume, M. A. Tooth cusp sharpness as a dietary correlate in great apes. Am. J. Phys. Anthropol. 153, 226–235 (2014).PubMed 
    Article 

    Google Scholar 
    King, S. J. et al. Dental senescence in a long-lived primate links infant survival to rainfall. Proc. Natl. Acad. Sci. USA 102, 16579–16583 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Berthaume, M. A. & Schroer, K. Extant ape dental topography and its implications for reconstructing the emergence of early Homo. J. Hum. Evol. 112, 15–29 (2017).PubMed 
    Article 

    Google Scholar 
    Sheine, W. S. & Kay, R. F. An analysis of chewed food particle size and its relationship to molar structure in the primates Cheirogaleus medius and Galago senegalensis and the insectivoran Tupaia glis. Am. J. Phys. Anthropol. 47, 15–20 (1977).Article 

    Google Scholar 
    Galbany, J., Estebaranz, F., Martínez, L. M. & Pérez-Pérez, A. Buccal dental microwear variability in extant African Hominoidea: taxonomy versus ecology. Primates 50, 221–230 (2009).PubMed 
    Article 

    Google Scholar 
    Scott, R. S., Teaford, M. F. & Ungar, P. S. Dental microwear texture and anthropoid diets. Am. J. Phys. Anthropol. 147, 551–579 (2012).PubMed 
    Article 

    Google Scholar 
    Teaford, M. F. & Oyen, O. J. In vivo and in vitro turnover in dental microwear. Am. J. Phys. Anhtropol. 80, 447–460 (1989).CAS 
    Article 

    Google Scholar 
    Stuhlträger, J. et al. Dental wear patterns reveal dietary ecology and season of death in a historical chimpanzee population. PLoS ONE 16, e0251309 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Elgart, A. A. Dental wear, wear rate, and dental disease in the African apes. Am. J. Primatol. 72, 481–491 (2010).PubMed 

    Google Scholar 
    Berthaume, M. A. Food mechanical properties and dietary ecology. Am. J. Phys. Anhtropol. 159, 79–104 (2016).Article 

    Google Scholar 
    Galbany, J. et al. Tooth wear and feeding ecology in mountain gorillas from Volcanoes National Park, Rwanda. Am. J. Phys. Anhtropol. 159, 457–465 (2016).Article 

    Google Scholar 
    Janis, C. M. The correlation between diet and dental wear in herbivorous mammals, and its relationship to the determination of diets of extinct species, in Evolutionary paleobiology of behavior and coevolution (ed. Boucot, A. J.) 241–259 (Elsevier, Amsterdam, 1990).Knight-Sadler, J. & Fiorenza, L. Tooth wear inclination in great ape molars. Folia Primatol. 88, 223–236 (2017).Article 

    Google Scholar 
    Kullmer, O. et al. Technical note: Occlusal fingerprint analysis: Quantification of tooth wear pattern. Am. J. Phys. Anthropol. 139, 600–605 (2009).PubMed 
    Article 

    Google Scholar 
    Fiorenza, L. et al. Molar macrowear reveals Neanderthal eco-geographical dietary variation. PLoS ONE 6, e14769 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fiorenza, L., Benazzi, S., Oxilia, G. & Kullmer, O. Functional relationship between dental macrowear and diet in Late Pleistocene and recent modern human populations. Int. J. Osteoarchaeol. 28, 153–161 (2018).Article 

    Google Scholar 
    Fiorenza, L. et al. The functional role of the Carabelli trait in early and late hominins. J. Hum. Evol. 145, 102816 (2020).PubMed 
    Article 

    Google Scholar 
    Fiorenza, L. & Kullmer, O. Occlusion in an adult male gorilla with a supernumerary maxillary premolar. Int. J. Primatol. 37, 762–777 (2016).Article 

    Google Scholar 
    Kullmer, O., Menz, U., & Fiorenza, L. Occlusal fingerprint analysis (OFA) reveal dental occlusal behaviour in primate teeth. In T. Martin & W. von Koenigswald (Eds.), T Martin, W von Koenigswald, K-H Südekum), Mammalian teeth: form and function. (pp. 25–43). Munich, Germany: Dr. F. Pfeil (2020)Stuhlträger, J. et al. Dental wear patterns reveal dietary ecology and season of death in a historical chimpanzee population. PLoS ONE 16, e0251309 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fiorenza, L., Benazzi, S., Estalrrich, A., & Kullmer, O. Diet and cultural diversity in Neanderthals and modern humans from dental macrowear analyses. In C. Schmidt & J. T. Watson (Eds.), Dental wear in evolutionary and biocultural contexts (pp. 39–72). London, UK: Academic Press (2020).M’Kirera, F. & Ungar, P. S. Occlusal relief changes with molar wear in Pan troglodytes troglodytes and Gorilla gorilla gorilla. Am. J. Primatol. 60, 31–41 (2003).PubMed 
    Article 

    Google Scholar 
    Galbany, J. et al. Age-related tooth wear differs between forest and savanna primates. PLoS ONE 9, e94938 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Leigh, S. R. & Shea, B. T. Ontogeny and the evolution of adult body size dimorphism in apes. Am. J. Primatol. 36, 37–60 (1995).PubMed 
    Article 

    Google Scholar 
    Watts, D. P. Environmental influences on mountain gorilla time budgets. Am. J. Primatol. 15, 195–211 (1988).PubMed 
    Article 

    Google Scholar 
    Doran, D. M. et al. Western lowland gorilla diet and resource availability: New evidence, cross-site comparisons, and reflections on indirect sampling methods. Am. J. Primatol. 58, 91–116 (2002).PubMed 
    Article 

    Google Scholar 
    Zanolli, C. et al. Evidence of increased hominid diversity in the Early and Middle Pleistocene of Indonesia. Nat. Ecol. Evol. 3, 755–764 (2019).PubMed 
    Article 

    Google Scholar 
    Krueger, K. L., Scott, J. R., Kay, R. F. & Ungar, P. S. Dental microwear textures of “phase I” and “phase II” facets. Am. J. Phys. Anthropol. 137, 485–490 (2008).PubMed 
    Article 

    Google Scholar 
    Kay, R. F. & Hiiemae, K. M. Jaw movement and tooth use in recent and fossil primates. Am. J. Phys. Anthropol. 40, 227–256 (1974).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wall, C. E., Vinyard, C. J., Johnson, K. R., Williams, S. H. & Hylander, W. L. Phase II jaw movements and masseter muscle activity during chewing in Papio anubis. Am. J. Phys. Anthropol. 129, 215–224 (2006).PubMed 
    Article 

    Google Scholar 
    Glowacka, H. et al. Toughness of the Virunga mountain gorilla (Gorilla beringei beringei) diet across an altitudinal gradient. Am. J. Primatol. 79, e22661 (2017).Article 

    Google Scholar 
    Cooper, J. E. & Hull, G. Gorilla pathology and health (Academic Press, 2017).
    Google Scholar 
    Hammerton, R., Hunt, K. A. & Riley, L. M. An investigation into keeper opinions of great apes diet and abnormal behaviour. J. Zoo Aquar. Res. 7, 170–178 (2019).
    Google Scholar 
    Kay, R. F. Mastication, molar tooth structure and diet in primates. Ph.D. thesis, Yale University, New Haven, CT (1973).Smith, B. H. Patterns of molar wear in hunter-gatherers and agriculturalists. Am. J. Phys. Anhtropol. 63, 39–56 (1984).CAS 
    Article 

    Google Scholar 
    Maier, W. & Schneck, G. Konstruktionsmorphologische Untersuchungen am Gebiß der hominoiden Primaten. Z. Morphol. Anthropol. 72, 127–169 (1981).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fiorenza, L., Benazzi, S., Tausch, J., Kullmer, O. & Schrenk, F. Identification reassessment of the isolated tooth Krapina D58 through Occlusal Fingerprint Analysis. Am. J. Phys. Anthropol. 143, 306–312 (2010).PubMed 
    Article 

    Google Scholar 
    Kullmer, O., Huck, M., Engel, K., Schrenk, F. & Bromage, T. Hominid Tooth Pattern Database (HOTPAD) derived from optical 3D topometry. In Three-dimensional imaging in paleoanthropology and prehistoric archaeology (eds. Mafart, B. & Delingette, H.) 71–82 (Acts of the XIVth UISPP Congress, BAR Int. Ser.1049, 2002).Hammer, Ø. & Harper, D. Paleontological data analysis (Blackwell Publishing, 2006).
    Google Scholar 
    Brown, M. B. & Forsythe, A. B. Robust tests for the equality of variances. J. Am. Stat. Assoc. 69, 364–367 (1974).MATH 
    Article 

    Google Scholar 
    Noguchi, K. & Gel, Y. R. Combination of Levene-type tests and a finite-intersection method for testing equality of variances against ordered alternatives. J. Nonparam. Stat. 22, 897–913 (2010).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Gastwirth, J. L., et al. Lawstat: tools for biostatistics, public policy, and law. R package version 3.4. https://CRAN.R-project.org/package=lawstat (2020).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (2021)Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.5–7. https://CRAN.R-project.org/package=vegan (2020).Martinez Arbizu, P. PairwiseAdonis: pairwise multilevel comparison using adonis. R package version 0.4 (2017).Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Palaeontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
    Google Scholar  More

  • in

    Faunal communities mediate the effects of plant richness, drought, and invasion on ecosystem multifunctional stability

    DesignPlant richness. Sixteen locally frequent native plant species in the barren mountain areas (around Taizhou University, Zhejiang, China) invaded by the exotic plant Symphyotrichum subulatum60 were selected as the native species pool. These species were chosen because they spanned the dicotyledon plant taxonomy (including 7 Orders, 10 Families, and 14 Genus, in the Class Magnoliopsida), differed widely in their functional traits (related to height, life form, dominance in local communities, and leaf habit) (Supplementary Table 3), and were occasionally found to be associated with the invasive species Symphyotrichum subulatum60 in the local secondary-succession communities. With this species pool, we were able to imitate the locally natural, spatially stochastic, compositionally ruderal, and functionally varied plant community61, which is a typical attribute of the secondary-succession communities in the local barren mountains invaded by the exotic plant Symphyotrichum subulatum. Based on this native species pool, monocultures of each species (16 total), and random mixtures of 2, 4 or 8 species (with 10, 10, or 9 distinct assemblages, respectively) were designed, creating a complete set (Fig. 1d) of 45 different plant assemblages (pots) in total. Each plant assemblage was replicated 6 times, for a total of 270 pots. To eliminate the non-random effects during the 1-year development of the 270 pots, their distributions were randomized, such that not all replicates of an assemblage were next to each other (Fig. 1d–f).DroughtAfter 1-year development of the native plant assemblages, three drought treatments (non-, moderate-, and intensive-drought) were manipulated by adjusting irrigation using automatic drip irrigation systems, with 100%, 50%, and 25% of the equivalent to the amount received in the areas where native species were collected, respectively. Two random complete sets were selected for each drought treatment, each complete set being composed of 45 different plant assemblages (Fig. 1d–f).Exotic plant invasionNine months after drought treatment, the two complete sets (Fig. 1d) of each drought treatment were randomly exposed (invasion) or not exposed to (non-invasion) the invasive species Symphyotrichum subulatum (Michx.) G. L. Nesom (Fig. 1e, f). S. subulatum, an annual herbaceous plant native to North America, is a common invasive species in the subtropical and tropical regions of China18,60, and tends to interact with the native species via, for example, competing for space and resources62,63, enriching for pathogens or herbivores, and changing soil faunal, bacterial or fungal microbiomes18,64,65.ExperimentThe experiment based on the design mentioned above was conducted at Taizhou University, Zhejiang province, China (28.66°N, 121.39°E). The seeds of the 16 native plant species (Supplementary Table 3) and the soil were collected from nearby mountain areas (Wugui, 28.65°N, 121.38°E; Baiyun, 28.67°N, 121.42°E; Beigu, 28.86°N, 121.11°E). The seed-mixtures were obtained by mixing seeds of the 16 species pro rata, in proportion to germination rates. The soil (fine-loamy, mixed, semiative, mosic, Humic Hapludults) was sieved to pass a 2-mm mesh, and thoroughly mixed. 270 plastic pots (72 cm length × 64 cm width × 42 cm depth) were prepared, and each was filled with a 27-cm soil layer, followed by a 10-cm mixture of soil and vermiculite-compost to provide water-, air- and fertility-support for germination, seedling establishment, and plant growth (Supplementary Table 4).Native plant assemblagesAll the 270 pots were placed inside a plastic shelter, which allowed for both air ventilation and protection from rain. Each pot was sown with a seed-mixture of ca. 800 seeds. One month after germination, for each pot, the undesired seedlings were removed manually according to the plant richness design (Fig. 1d–f), and thus 32 vigorous seedlings (with the same number of seedlings per species, e.g., 4 seedlings for each species of the 8-species mixtures) were spatial-evenly retained. In this manner, the plant richness was manipulated for each plant assemblage. During the development of the 270 plant assemblages, the soil volumetric water content was controlled at ca. 20%, which was similar to that of the nearby mountainous soil, using the automatic drip irrigation systems. Weeds and undesired species were removed monthly (Fig. 1f).Drought treatmentAfter 1-year development of native plant assemblages, the drought treatments (non-, moderate-, and intensive-drought) were manipulated according to the experimental design mentioned above (Fig. 1d, e). Two complete sets (Fig. 1d) of different plant assemblages (2 × 45 pots) were selected for each drought treatment. Every other week, 40 pots each drought treatment were randomly selected for measuring soil water content and soil temperature at the depth of 0–20 cm, using the ProCheck analyzer (Decagon, Pullman, Washington, USA), and irrigation was adjusted accordingly using automatic drip irrigation systems. The irrigation for non-, moderate-, or intensive-drought was adjusted to accomplish an irrigation level amounts to 100%, 50%, or 25% that of the mountain areas where seeds were collected. Because of the distinct seasonal temperature and evaporation conditions, the irrigation frequencies were approximately daily in May-September, every other day in March–April and October–December, and weekly in January–February. With this manipulation, the volumetric soil water contents of non-, moderate-, and intensive-drought were controlled within ranges of 13.8–23.4%, 6.8–13.7%, and 1.4–7.4%, respectively, throughout the manipulation of drought treatment (Fig. 1e, f). Eight months after drought introduction, fresh litter was collected form the two replicate pots of each drought treatment, and then oven-dried at 40 °C, cut into ca. 2-cm pieces, and filled into litterbags (2-g litter in each litterbag).Invasion treatmentNine months after drought introduction, one complete set (45 pots) of the plant assemblages (Fig. 1d) from each drought treatment, was chosen and exposed to invasion disturbance by sowing 50 seeds of S. subulatum in each pot, and the other was specified as the non-invasion treatment (Fig. 1e, f). The prepared litterbags were embedded under the litter-layer of each pot (5 litterbags in each pot), correspondingly.SamplingSix months after invasion introduction, one litterbag was collected for litter-fauna extraction. Nine months after invasion, five soil cores (20-cm depth) were collected with augers (6.4 cm in diameter) and mixed for extraction of soil-fauna, and measurement of soil property and enzyme activity (Fig. 1f). The aboveground biomass of both native and invasive plants in each pot was harvested, sorted to species, oven-dried to a constant mass at 80 °C, and weighed. The belowground plant biomass was also sampled, sorted to native and invasive groups, oven-dried, and weighed (Fig. 1f).Plant, litter-, and soil-faunal communitiesPlant communitySince exotic plant invasion was treated as a disturbance factor, the biomass of the invasive species S. subulatum was not included for analyses concerning plant community and ecosystem (multi)functionality. The aboveground biomasses of native plant species in each of the 270 pots were collected for plant community analysis.Litter- and soil-faunal communitiesOne litterbag or fifty grams of mixed-soil samples were used for litter- or soil-fauna extraction using a Tullgren funnel apparatus (dry funnel method)66. The obtained microarthropods were stored in 70% alcohol, identified with double-tube anatomical lens, and classified to Family level. For both litter and soil samples, the numbers (abundances) of all faunal taxa were counted for litter/soil-faunal community analysis.Phylogenetic information of plant, litter-, and soil-faunal communitiesSimilar procedures were used to construct the plant and faunal phylogenetic trees. First, protein sequences of 12 faunal mitochondrial coding genes and 16 plant plastid coding genes (Supplementary Data 1) were obtained by searching plant or faunal taxonomies from NCBI protein database (https://www.ncbi.nlm.nih.gov/protein/) with Edirect software (https://www.ncbi.nlm.nih.gov/books/NBK179288/). All available sequences at plant species level or faunal Family level were fetched. If unavailable, the missing sequences were sampled from plant genus or faunal Order level. Sequoiadendron giganteum and Echinococcus were specified as out-group references for plant and faunal trees, respectively. Then, the sequences of each plant or faunal taxon were clustered at 97% or 90% identity independently, and the centroids were used as representative markers. The markers were aligned with MUSCLE67, followed by concatenation. Finally, using MEGA X68, the maximum likelihood trees were constructed based on BioNJ initial trees69 and 500 bootstrap checking nodal support. The parameters for plant tree construction were specified as follow: 70% partial deletion (with 4824 positions retained) and the best-fit substitution model JTT + G + I + F70,71; parameters for faunal tree: 90% partial deletion (2778 positions) and LG + G + I + F model71,72. The Linux codes for processing the protein sequences were submitted to GitHub (https://github.com/YuanGe-Lab/JZW_2022/tree/main/linux)The plant and faunal taxonomies, representative markers, and marker accessions are provided as Supplementary Data 1.Ecosystem function-related variablesA total of 14 individual function-related variables were collected. These variables belonged to three functional groups: (1) biomass production, including aboveground and belowground biomass of native plants, light interception efficiency, litter-fauna abundance, and soil-fauna abundance; (2) soil properties, including contents of soil organic carbon, soil nitrogen, soil phosphorus, and GRSP (relating to soil physical properties and stocks of carbon and nutrient73); and (3) processes, including rate of litter decomposition, and activities of β-glucosidase, protease, nitrate reductase and dehydrogenase.Light interception efficiency, the fraction of incident photosynthetically active radiation (PAR) intercepted by each plant community canopy, was determined between 12:00 and 14:00 on clear days using LI-191R line PAR sensors (LI-COR Inc., NE, USA), and the mean of 4 measurements (monthly from May to August the third year; Fig. 1f) was used. Total soil organic carbon and nitrogen were measured with an elemental analyzer (vario Max; Elementar, Germany). Total soil phosphorus was determined using the molybdenum blue method with a UV–visible spectrophotometer (Shimadzu, Kyoto, Japan). GRSP was determined using the method described by Shen et al.18. Litter decomposition rate was assessed by embedding litterbags and fitting litter mass loss against decomposition time (Fig. 1f). Enzyme activities were analyzed by the spectrophotometric method using the substrates, p-Nitrophenyl-β-d-glucopyranoside (pNPG; for β-glucosidase), caseinate (protease), nitrate (nitrate reductase) and triphenyltetrazolium chloride (TTC; dehydrogenase)18.Quantifying community stability and multifunctional stabilityCommunity data was comprised of native plant biomasses or faunal abundances, and the associated phylogenetic information. Multifunctionality data was comprised of 14 function-related variables, each variable (V) being transformed (V’) using the formula ({V}^{{prime} }=frac{V-{{{{{rm{min }}}}}}left(Vright)}{{{{{{rm{sd}}}}}}left(Vright)}) to guarantee even contribution to global variance. We calculated community similarity (1 minus Weighted-UniFrac distance) and multifunctional similarity (1 minus Bray–Curtis distance), based on the community data and the multifunctionality data, respectively. The specific subsets of each symmetric similarity matrix were used to assess three different aspects of stability: (1) Invariability (against stochastic fluctuations), reflected as the pairwise similarities (1476 pairs) within treatment groups, at same plant richness*drought*invasion condition; (2) Drought resistance, the similarities (2148 pairs) between drought (moderate- and intensive-drought) and non-drought treatments, at same plant richness*invasion condition; and (3) Invasion resistance, the similarities (n = 1611 pairs) between invasion and non-invasion treatments, at same plant richness*drought condition (Supplementary Fig. 1).We also assessed the three aspects of stability of each individual function in a similar way, but by calculating the similarity using the formula ({{{{{{{mathrm{SIM}}}}}}}}_{{ij}}=1-frac{|{V}_{i}-{V}_{j}|}{{V}_{i}+{V}_{j}}) (Vi and Vj are ith and jth elements in a function vector; SIMij is the similarity between Vi and Vj).Statistics and reproducibilityPERMANOVA (10,000 randomizations) was conducted to test the influences of the manipulated factors on ecosystem multifunctionality or communities of plant, litter- and soil-fauna, using “vegan::adonis” in R74. Mantel test (10,000 randomizations; Spearman’s R) was conducted to test the community-community or the community-multifunctionality relationships, using “vegan::mantel” in R74.As each similarity-pair of each aspect of community or multifunctional stability mentioned above was in strict correspondence to single level of each manipulated factor (plant richness, drought, and invasion) (Supplementary Fig.  1), the direct/indirect effects of treatments on the community or multifunctional stability can be assessed using SEM. To test direct and indirect effects (by modulating community stability) of the manipulated factors on multifunctional stability, we built three SEMs (Fig. 1a–c) based on three different aspects of stability (i.e., invariability, drought resistance, and invasion resistance) under the conditions of corresponding parings of manipulated factors (Supplementary Fig. 1), with the LAVAAN package75. The standardized paths (direct effects) in SEMs can be conceived as the partial correlations after teasing all side effects away. Bootstrapping with 10,000 randomizations was conducted to generate the unbiased mean effect. The significance of effect was tested using a Mantel-like permutation (10,000 randomizations) test76, where the null hypotheses (H0) were that the independent factors plant richness, drought, and invasion, had no direct/indirect effects (effect = 0) on multifunctional stability. Based on H0, permutation procedure was conducted by permuting the index of dependent factors (both columns and rows of a symmetric matrix; Supplementary Fig. 1) simultaneously to gain null models and null effects. p-values (probability of H0 acceptance) were calculated as the percentage of observed positive (or negative) effect that was greater (or less) than the null effects. We also assessed the direct and indirect effects of factors on the stability of each individual function based on the same SEMs, to consolidate our findings on multifunctional stability. The R codes and examples solving the permutation test for the significance of effects derived from SEMs that based on multidimensional similarity (or distance) were submitted to GitHub (https://github.com/YuanGe-Lab/JZW_2022/tree/main/R). All the analyses were conducted using R (https://www.r-project.org).Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Population density mediates induced immune response, but not physiological condition in a well-adapted urban bird

    Marzluff, J. M. Worldwide urbanization and its effects on birds. In Avian Ecology and Conservation in an Urbanizing World (eds Marzluff, J. et al.) 19–47 (Springer, Boston, 2001).Chapter 

    Google Scholar 
    McKinney, M. L. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).Article 

    Google Scholar 
    Luniak, M. Synurbization–adaptation of animal wildlife to urban development in Proceedings 4th international urban wildlife symposium (eds. Shaw, W., Harris, L.,Vandruff, L.) 50–55 (University of Arizona, Tucson, ARI, 2004).Isaksson, C. Impact of urbanization on birds in Bird Species how they arise, modify and vanish (ed. Tietze D. T.) 235–257 (Springer, 2018).Minias, P. Successful colonization of a novel urban environment is associated with an urban behavioural syndrome in a reed-nesting waterbird. Ethology 121, 1178–1190 (2015).Article 

    Google Scholar 
    Møller, A. P. et al. Urban habitats and feeders both contribute to flight initiation distance reduction in birds. Behav. Ecol. 26, 861–865 (2015).Article 

    Google Scholar 
    Jokimäki, J. & Suhonen, J. Distribution and habitat selection of wintering birds in urban environments. Landsc. Urban Plan. 39, 253–263 (1998).Article 

    Google Scholar 
    Francis, R. A. & Chadwick, M. A. What makes a species synurbic?. Appl. Geogr. 32, 514–521 (2012).Article 

    Google Scholar 
    Møller, A. P. et al. High urban population density of birds reflects their timing of urbanization. Oecologia 170, 867–875 (2012).PubMed 
    Article 
    ADS 

    Google Scholar 
    Tella, J. L. et al. Offspring body condition and immunocompetence are negatively affected by high breeding densities in a colonial seabird: A multiscale approach. Proc. R. Soc. B 268, 1455–1461 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Savoca, M. S., Bonter, D. N., Zuckerberg, B., Dickinson, J. L. & Ellis, J. C. Nesting density is an important factor affecting chick growth and survival in the Herring Gull. Condor 113, 565–571 (2011).Article 

    Google Scholar 
    Minias, P., Włodarczyk, R. & Janiszewski, T. Opposing selective pressures may act on the colony size in a waterbird species. Evol. Ecol. 29, 283–297 (2015).Article 

    Google Scholar 
    Kamiński, M. et al. Density-dependence of nestling immune function and physiological condition in semi-precocial colonial bird: A cross-fostering experiment. Front. Zool. 18, 7 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ward, P. & Zahavi, A. The importance of certain assemblages of birds as “information-centres” for food-finding. Ibis 115, 517–534 (1973).Article 

    Google Scholar 
    Danchin, E. & Wagner, R. H. The evolution of coloniality: The emergence of new perspectives. Trends Ecol. Evol. 12, 342–347 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brown, C. R. & Brown, M. B. Coloniality in the Cliff Swallow: The Effect of Group Size on Social Behavior (University of Chicago Press, 1996).
    Google Scholar 
    Evans, J. C., Votier, S. C. & Dall, S. R. Information use in colonial living. Biol. Rev. 91, 658–672 (2016).PubMed 
    Article 

    Google Scholar 
    Brown, C. R. & Brown, M. B. Avian coloniality. In Current Ornithology (eds Brown, C. R. & Brown, M. B.) 1–82 (Springer, Boston, 2001).
    Google Scholar 
    Coulson, J. C., Duncan, N. & Thomas, C. Changes in the breeding biology of the herring gull (Larus argentatus) induced by reduction in the size and density of the colony. J. Anim. Ecol. 51, 739–756 (1982).Article 

    Google Scholar 
    Ots, I. & Horak, P. Great tits Parus major trade health for reproduction. Proc. R. Soc. B. 263, 1443–1447 (1996).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Richner, H. & Tripet, F. Ectoparasitism and the trade-off between current and future reproduction. Oikos 86, 535–538 (1999).Article 

    Google Scholar 
    Fokkema, R. W., Ubels, R. & Tinbergen, J. M. Great tits trade off future competitive advantage for current reproduction. Behav. Ecol. 27, 1656–1664 (2016).
    Google Scholar 
    Horak, P. & Leberton, J. D. Survival of adult Great Tits Parus major in relation to sex and habitat; a comparison of urban and rural populations. Ibis 140, 205–209 (1998).Article 

    Google Scholar 
    Stracey, C. M. & Robinson, S. K. Are urban habitats ecological traps for a native songbird? Season-long productivity, apparent survival, and site fidelity in urban and rural habitats. J. Avian Biol. 43, 50–60 (2012).Article 

    Google Scholar 
    Sepp, T., McGraw, K. J., Kaasik, A. & Giraudeau, M. A review of urban impacts on avian life-history evolution: Does city living lead to slower pace of life?. Glob. Change Biol. 24, 1452–1469 (2018).Article 
    ADS 

    Google Scholar 
    Phillips, J. N., Gentry, K. E., Luther, D. A. & Derryberry, E. P. Surviving in the city: Higher apparent survival for urban birds but worse condition on noisy territories. Ecosphere 9, e02440 (2018).Article 

    Google Scholar 
    Johnston, R. F. & Janiga, M. Feral Pigeons (Oxford University Press on Demand, 1995).
    Google Scholar 
    Giunchi, D., Mucci, N., Bigi, D., Mengoni, C. & Baldaccini, N. E. Feral pigeon populations: Their gene pool and links with local domestic breeds. Zoology 142, 125817 (2020).PubMed 
    Article 

    Google Scholar 
    Sol, D. Artificial selection, naturalization, and fitness: Darwin’s pigeons revisited. Biol. J. Linn. Soc. 93, 657–665 (2008).Article 

    Google Scholar 
    Giunchi, D., Albores-Barajas, Y. V., Baldaccini, N. E., Vanni, L. & Soldatini, C. Feral pigeons: Problems, dynamics and control methods. In Integrated Pest Management and Pest Control. Current and Future Tactics (eds Soloneski, S. & Larramendy, M.) 215–240 (InTechOpen, London, 2012).
    Google Scholar 
    Senar, J. C., Navalpotro, H., Pascual, J. & Montalvo, T. Nicarbazin has no effect on reducing feral pigeon populations in Barcelona. Pest Manag. Sci. 77, 131–137 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rose, E., Nagel, P. & Haag-Wackernagel, D. Spatio-temporal use of the urban habitat by feral pigeons (Columba livia). Behav. Ecol. Sociobiol. 60, 242–254 (2006).Article 

    Google Scholar 
    Corbel, H. et al. Stress response varies with plumage colour and local habitat in feral pigeons. J. Ornithol. 157, 825–837 (2016).Article 

    Google Scholar 
    Møller, A. P., Merino, S., Brown, C. R. & Robertson, R. J. Immune defense and host sociality: A comparative study of swallows and martins. Am. Nat. 158, 136–145 (2001).PubMed 
    Article 

    Google Scholar 
    Drzewińska-Chańko, J. et al. Immunocompetent birds choose larger breeding colonies. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13540 (2021).Article 
    PubMed 

    Google Scholar 
    Saino, N., Suffritti, C., Martinelli, R., Rubolini, D. & Møller, A. P. Immune response covaries with corticosterone plasma levels under experimentally stressful conditions in nestling barn swallows (Hirundo rustica). Behav. Ecol. 14, 318–325 (2003).Article 

    Google Scholar 
    Goutte, A. et al. Long-term survival effect of corticosterone manipulation in black-legged kittiwakes. Gen. Comp. Endocrinol. 167, 246–251 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Møller, A. P., Christe, P., Erritzøe, J. & Mavarez, J. Condition, disease and immune defence. Oikos 83, 301–306 (1998).Article 

    Google Scholar 
    Navarro, C., Marzal, A., De Lope, F. & Møller, A. P. Dynamics of an immune response in house sparrows Passer domesticus in relation to time of day, body condition and blood parasite infection. Oikos 101, 291–298 (2003).Article 

    Google Scholar 
    Toïgo, C., Gaillard, J. M., Van Laere, G., Hewison, M. & Morellet, N. How does environmental variation influence body mass, body size, and body condition? Roe deer as a case study. Ecography 29, 301–308 (2006).Article 

    Google Scholar 
    Jacquin, L. et al. A potential role for parasites in the maintenance of color polymorphism in urban birds. Oecologia 173, 1089–1099 (2013).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Meillère, A., Brischoux, F., Parenteau, C. & Angelier, F. Influence of urbanization on body size, condition, and physiology in an urban exploiter: A multi-component approach. PLoS ONE https://doi.org/10.1371/journal.pone.0135685 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: The scaled mass index as an alternative method. Oikos 118, 1883–1891 (2009).Article 

    Google Scholar 
    Jacquin, L. et al. Melanin-based coloration is related to parasite intensity and cellular immune response in an urban free living bird: The feral pigeon Columba livia. J. Avian Biol. 42, 11–15 (2011).Article 

    Google Scholar 
    Liker, A., Papp, Z., Bókony, V. & Lendvai, A. Z. Lean birds in the city: Body size and condition of house sparrows along the urbanization gradient. J. Anim. Ecol. 77, 789–795 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Audet, J. N., Ducatez, S. & Lefebvre, L. The town bird and the country bird: Problem solving and immunocompetence vary with urbanization. Behav. Ecol. 27, 637–644 (2016).Article 

    Google Scholar 
    Kurucz, K., Purger, J. J. & Batáry, P. Urbanization shapes bird communities and nest survival, but not their food quantity. Glob. Ecol. Conserv. 26, e01475 (2021).Article 

    Google Scholar 
    Partecke, J., Schwabl, I. & Gwinner, E. Stress and the city: Urbanization and its effects on the stress physiology in European blackbirds. Ecology 87, 1945–1952 (2006).PubMed 
    Article 

    Google Scholar 
    Bailly, J. et al. Negative impact of urban habitat on immunity in the great tit Parus major. Oecologia 182, 1053–1062 (2016).PubMed 
    Article 
    ADS 

    Google Scholar 
    Glądalski, M. et al. Differences in use of bryophyte species in tit nests between two contrasting habitats: An urban park and a forest. Eur. Zool. J. 88, 807–815 (2021).Article 

    Google Scholar 
    Tella, J. L., Scheuerlein, A. & Ricklefs, R. E. Is cell–mediated immunity related to the evolution of life-history strategies in birds?. Proc. R. Soc. B 269, 1059–1066 (2002).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brown, C. R. & Brown, M. B. Empirical measurement of parasite transmission between groups in a colonial bird. Ecology 85, 1619–1626 (2004).Article 

    Google Scholar 
    O’Brien, V. A. & Brown, C. R. Group size and nest spacing affect Buggy Creek virus (Togaviridae: Alphavirus) infection in nestling house sparrows. PLoS ONE 6, e25521 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Wilcoxen, T. E. et al. Effects of bird-feeding activities on the health of wild birds. Conserv. Physiol. 3, cov058 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Moyers, S. C., Adelman, J. S., Farine, D. R., Thomason, C. A. & Hawley, D. M. Feeder density enhances house finch disease transmission in experimental epidemics. Philos. Trans. R. Soc. B 373, 20170090 (2018).Article 
    CAS 

    Google Scholar 
    Møller, A. P. Successful city dwellers: A comparative study of the ecological characteristics of urban birds in the Western Palearctic. Oecologia 159, 849–858 (2009).PubMed 
    Article 
    ADS 

    Google Scholar 
    Watson, H., Videvall, E., Andersson, M. N. & Isaksson, C. Transcriptome analysis of a wild bird reveals physiological responses to the urban environment. Sci. Rep. 7, 44180 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Hasselquist, D. & Nilsson, J. Å. Physiological mechanisms mediating costs of immune responses: What can we learn from studies of birds?. Anim. Behav. 83, 1303–1312 (2012).Article 

    Google Scholar 
    Biard, C., Monceau, K., Motreuil, S. & Moreau, J. Interpreting immunological indices: The importance of taking parasite community into account. An example in blackbirds Turdus merula. Methods Ecol. Evol. 6, 960–972 (2015).Article 

    Google Scholar 
    Leclaire, S., Czirják, G. Á., Hammouda, A. & Gasparini, J. Feather bacterial load shapes the trade-off between preening and immunity in pigeons. BMC Evol. Biol. 15, 60 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vinkler, M., Adelman, J. S. & Ardia, D. R. Evolutionary and ecological immunology. In Avian Immunology 3rd edn (eds Kaspers, B. et al.) 519–558 (Academic Press, London, 2021).
    Google Scholar 
    Davis, A. K., Maney, D. L. & Maerz, J. C. The use of leukocyte profiles to measure stress in vertebrates: A review for ecologists. Funct. Ecol. 22, 760–772 (2008).Article 

    Google Scholar 
    Indykiewicz, P., Podlaszczuk, P., Kamiński, M., Włodarczyk, R. & Minias, P. Central–periphery gradient of individual quality within a colony of Black-headed Gulls. Ibis 161, 744–758 (2019).Article 

    Google Scholar 
    Vleck, C. M., Vertalino, N., Vleck, D. & Bucher, T. L. Stress, corticosterone, and heterophil to lymphocyte ratios in free-living Adélie penguins. Condor 102, 392–400 (2000).Article 

    Google Scholar 
    Davis, A. K., Cook, K. C. & Altizer, S. Leukocyte profiles in wild house finches with and without mycoplasmal conjunctivitis, a recently emerged bacterial disease. EcoHealth 1, 362–373 (2004).Article 

    Google Scholar 
    Lobato, E., Moreno, J., Merino, S., Sanz, J. J. & Arriero, E. Haematological variables are good predictors of recruitment in nestling pied flycatchers (Ficedula hypoleuca). Ecoscience 12, 27–34 (2005).Article 

    Google Scholar 
    Bobby Fokidis, H., Greiner, E. C. & Deviche, P. Interspecific variation in avian blood parasites and haematology associated with urbanization in a desert habitat. J. Avian Biol. 39, 300–310 (2008).Article 

    Google Scholar 
    Padgett, D. A. & Glaser, R. How stress influences the immune response. Trends Immunol. 24, 444–448 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dimitrov, S. et al. Cortisol and epinephrine control opposing circadian rhythms in T cell subsets. Blood 113, 5134–5143 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ilmonen, P., Hasselquist, D., Langefors, Å. & Wiehn, J. Stress, immunocompetence and leukocyte profiles of pied flycatchers in relation to brood size manipulation. Oecologia 136, 148–154 (2003).PubMed 
    Article 
    ADS 

    Google Scholar 
    Minias, P., Gach, K., Włodarczyk, R. & Janiszewski, T. Colony size affects nestling immune function: A cross-fostering experiment in a colonial waterbird. Oecologia 190, 333–341 (2019).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Cyr, N. E., Earle, K., Tam, C. & Romero, L. M. The effect of chronic psychological stress on corticosterone, plasma metabolites, and immune responsiveness in European starlings. Gen. Comp. Endocrinol. 154, 59–66 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schoech, S. J., Bowman, R. & Reynolds, S. J. Food supplementation and possible mechanisms underlying early breeding in the Florida Scrub-Jay (Aphelocoma coerulescens). Horm. Behav. 46, 565–573 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ibáñez-Álamo, J. D. et al. Physiological stress does not increase with urbanization in European blackbirds: Evidence from hormonal, immunological and cellular indicators. Sci. Total Environ. 721, 137332 (2020).PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar 
    Bonier, F. Hormones in the city: Endocrine ecology of urban birds. Horm. Behav. 61, 763–772 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Valdebenito, J. O. et al. Seasonal variation in sex-specific immunity in wild birds. Sci. Rep. 11, 1349 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Hetmański, T. Timing of breeding in the Feral Pigeon Columba livia f. domestica in Słupsk (NW Poland). Acta Ornithol. 39, 105–110 (2004).Article 

    Google Scholar 
    Dijkstra, C. et al. An adaptive annual rhythm in the sex of first pigeon eggs. Behav. Ecol. Sociobiol. 64, 1393–1402 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Swanson, D. L. Seasonal variation of vascular oxygen transport in the dark-eyed junco. Condor 92, 62–66 (1990).Article 

    Google Scholar 
    Niedojadlo, J., Bury, A., Cichoń, M., Sadowska, E. T. & Bauchinger, U. Lower haematocrit, haemoglobin and red blood cell number in zebra finches acclimated to cold compared to thermoneutral temperature. J. Avian Biol. 49, e01596 (2018).Article 

    Google Scholar 
    Roulin, A. Condition-dependence, pleiotropy and the handicap principle of sexual selection in melanin-based colouration. Biol. Rev. 91, 328–348 (2016).PubMed 
    Article 

    Google Scholar 
    Statistics Poland. https://stat.gov.pl/en/ (2021).Sol, D. & Senar, J. C. Urban pigeon populations: Stability, home range, and the effect of removing individuals. Can. J. Zool. 73, 1154–1160 (1995).Article 

    Google Scholar 
    Minias, P. Reproduction and survival in the city: Which fitness components drive urban colonization in a reed-nesting waterbird?. Curr. Zool. 62, 79–87 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meissner, W. & Fischer, I. Sexing of common gull, Larus canus, using linear measurements. Folia Zool. 66, 183–188 (2017).Article 

    Google Scholar 
    Haag-Wackernagel, D., Heeb, P. & Leiss, A. Phenotype-dependent selection of juvenile urban feral pigeons Columba livia. Bird Study 53, 163–170 (2006).Article 

    Google Scholar 
    Harter, T. S., Reichert, M., Brauner, C. J. & Milsom, W. K. Validation of the i-STAT and HemoCue systems for the analysis of blood parameters in the bar-headed goose, Anser indicus. Conserv. Physiol. 3, cov021 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Minias, P. The use of haemoglobin concentrations to assess physiological condition in birds: A review. Conserv. Physiol. 3, cov007 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Martin, L. B. et al. Phytohemagglutinin-induced skin swelling in birds: Histological support for a classic immunoecological technique. Funct. Ecol. 20, 290–299 (2006).Article 

    Google Scholar 
    Brown, G. P., Shilton, C. M. & Shine, R. Measuring amphibian immunocompetence: Validation of the phytohemagglutinin skin-swelling assay in the cane toad, Rhinella marina. Methods Ecol. Evol. 2, 341–348 (2011).Article 

    Google Scholar 
    Kennedy, M. W. & Nager, R. G. The perils and prospects of using phytohaemagglutinin in evolutionary ecology. Trends Ecol. Evol. 21, 653–655 (2006).PubMed 
    Article 

    Google Scholar 
    Vinkler, M., Bainová, H. & Albrecht, T. Functional analysis of the skin-swelling response to phytohaemagglutinin. Funct. Ecol. 24, 1081–1086 (2010).Article 

    Google Scholar 
    Turmelle, A. S., Ellison, J. A., Mendonça, M. T. & McCracken, G. F. Histological assessment of cellular immune response to the phytohemagglutinin skin test in Brazilian free-tailed bats (Tadarida brasiliensis). J. Comp. Physiol. B 180, 1155–1164 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Griffiths, R., Double, M. C., Orr, K. & Dawson, R. J. A DNA test to sex most birds. Mol. Ecol. 7, 1071–1075 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Çakmak, E., Akın Pekşen, Ç. & Bilgin, C. C. Comparison of three different primer sets for sexing birds. J. Vet. Diagn. Investig. 29, 59–63 (2017).Article 
    CAS 

    Google Scholar 
    Kaiser, H. F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 20, 141–151 (1960).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    Jaeger, B. C., Edwards, L. J., Das, K. & Sen, P. K. An R 2 statistic for fixed effects in the generalized linear mixed model. J. Appl. Stat. 44, 1086–1105 (2017).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Johnson, P. C. Extension of Nakagawa & Schielzeth’s R2GLMM to random slopes models. Methods Ecol. Evol. 5, 944–946 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bartoń, K. MuMIn: Multi-model inference. R package ver. 1.43.17. CRAN: The Comprehensive R Archive Network, Berkeley, CA, USA. https://CRAN.R-project.org/package=MuMIn (2020).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar 
    Kahle, D. J. & Wickham, H. ggmap: Spatial visualization with ggplot2. R J. 5, 144–161 (2013).Article 

    Google Scholar  More

  • in

    Cover crop-driven shifts in soil microbial communities could modulate early tomato biomass via plant-soil feedbacks

    Mariotte, P. et al. Plant–soil feedback: Bridging natural and agricultural sciences. Trends Ecol. Evol. 33, 129–142 (2018).PubMed 
    Article 

    Google Scholar 
    Daryanto, S., Fu, B., Wang, L., Jacinthe, P. A. & Zhao, W. Quantitative synthesis on the ecosystem services of cover crops. Earth-Sci. Rev. 185, 357–373 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Shackelford, G. E., Kelsey, R. & Dicks, L. V. Effects of cover crops on multiple ecosystem services: Ten meta-analyses of data from arable farmland in California and the Mediterranean. Land Use Policy 88, 104204 (2019).Article 

    Google Scholar 
    McDaniel, M. D., Tiemann, L. K. & Grandy, A. S. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol. Appl. 24, 560–570 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wittwer, R. A., Dorn, B., Jossi, W. & van der Heijden, M. G. A. A. Cover crops support ecological intensification of arable cropping systems. Sci. Rep. 7, 41911 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chahal, I. & Van Eerd, L. L. Cover crops increase tomato productivity and reduce nitrogen losses in a temperate humid climate. Nutr. Cycl. Agroecosyst. 119, 195–211 (2021).CAS 
    Article 

    Google Scholar 
    Belfry, K. D., Trueman, C., Vyn, R. J., Loewen, S. A. & Van Eerd, L. L. Winter cover crops on processing tomato yield, quality, pest pressure, nitrogen availability, and profit margins. PLoS ONE 12, 1–17 (2017).Article 
    CAS 

    Google Scholar 
    Wall, L. G. et al. Changes of paradigms in agriculture soil microbiology and new challenges in microbial ecology. Acta Oecologica 95, 68–73 (2019).ADS 
    Article 

    Google Scholar 
    Schmidt, R., Gravuer, K., Bossange, A. V., Mitchell, J. & Scow, K. Long-term use of cover crops and no-till shift soil microbial community life strategies in agricultural soil. PLoS ONE 13, 1–19 (2018).
    Google Scholar 
    Schmidt, R., Mitchell, J. & Scow, K. Cover cropping and no-till increase diversity and symbiotroph:saprotroph ratios of soil fungal communities. Soil Biol. Biochem. 129, 99–109 (2019).CAS 
    Article 

    Google Scholar 
    Ali, A. et al. Hiseq base molecular characterization of soil microbial community, diversity structure, and predictive functional profiling in continuous cucumber planted soil affected by diverse cropping systems in an intensive greenhouse region of Northern China. Int. J. Mol. Sci. 20, 2619 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Kim, N., Zabaloy, M. C., Guan, K. & Villamil, M. B. Do cover crops benefit soil microbiome? A meta-analysis of current research. Soil Biol. Biochem. 142, 107701 (2020).CAS 
    Article 

    Google Scholar 
    Vukicevich, E., Lowery, T., Bowen, P., Úrbez-Torres, J. R. & Hart, M. Cover crops to increase soil microbial diversity and mitigate decline in perennial agriculture. A review. Agron. Sustain. Dev. 36, 1–14 (2016).CAS 
    Article 

    Google Scholar 
    Nevins, C. J., Nakatsu, C. & Armstrong, S. Characterization of microbial community response to cover crop residue decomposition. Soil Biol. Biochem. 127, 39–49 (2018).CAS 
    Article 

    Google Scholar 
    Peralta, A. L., Sun, Y., McDaniel, M. D. & Lennon, J. T. Crop rotational diversity increases disease suppressive capacity of soil microbiomes. Ecosphere 9, e02235 (2018).Article 

    Google Scholar 
    Cloutier, M. L. et al. Fungal community shifts in soils with varied cover crop treatments and edaphic properties. Sci. Rep. 10, 1–15 (2020).Article 
    CAS 

    Google Scholar 
    Finney, D. M., Buyer, J. S. & Kaye, J. P. Living cover crops have immediate impacts on soil microbial community structure and function. J. Soil Water Conserv. 72, 361–373 (2017).Article 

    Google Scholar 
    Calderón, F. J., Nielsen, D., Acosta-Martínez, V., Vigil, M. F. & Lyon, D. Cover crop and irrigation effects on soil microbial communities and enzymes in semiarid agroecosystems of the central great plains of North America. Pedosphere 26, 192–205 (2016).Article 
    CAS 

    Google Scholar 
    Romdhane, S. et al. Cover crop management practices rather than composition of cover crop mixtures affect bacterial communities in no-till agroecosystems. Front. Microbiol. 10, 1–11 (2019).Article 

    Google Scholar 
    Blanco-Canqui, H. & Lal, R. Crop residue removal impacts on soil productivity and environmental quality. CRC. Crit. Rev. Plant Sci. 28, 139–163 (2009).CAS 
    Article 

    Google Scholar 
    Turmel, M. S., Speratti, A., Baudron, F., Verhulst, N. & Govaerts, B. Crop residue management and soil health: A systems analysis. Agric. Syst. 134, 6–16 (2015).Article 

    Google Scholar 
    Yang, Q., Wang, X. & Shen, Y. Comparison of soil microbial community catabolic diversity between rhizosphere and bulk soil induced by tillage or residue retention. J. Soil Sci. Plant Nutr. https://doi.org/10.4067/S0718-95162013005000017 (2013).Article 

    Google Scholar 
    Tang, H. et al. Tillage and crop residue incorporation effects on soil bacterial diversity in the double-cropping paddy field of southern China. Arch. Agron. Soil Sci. 67, 435–446 (2021).CAS 
    Article 

    Google Scholar 
    Zhang, Y. et al. Long-term harvest residue retention could decrease soil bacterial diversities probably due to favouring oligotrophic lineages. Microb. Ecol. 76, 771–781 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, C. et al. Straw retention efficiently improves fungal communities and functions in the fallow ecosystem. BMC Microbiol. 21, 52 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chahal, I. & Van Eerd, L. L. Cover crop and crop residue removal effects on temporal dynamics of soil carbon and nitrogen in a temperate, humid climate. PLoS ONE 15, e0235665 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chahal, I. & Van Eerd, L. L. Evaluation of commercial soil health tests using a medium-term cover crop experiment in a humid, temperate climate. Plant Soil 427, 351–367 (2018).CAS 
    Article 

    Google Scholar 
    Ruis, S. J. & Blanco-Canqui, H. Cover crops could offset crop residue removal effects on soil carbon and other properties: A review. Agron. J. 109, 1785–1805 (2017).CAS 
    Article 

    Google Scholar 
    Zhao, M. et al. Intercropping affects genetic potential for inorganic nitrogen cycling by root-associated microorganisms in Medicago sativa and Dactylis glomerata. Appl. Soil Ecol. 119, 260–266 (2017).ADS 
    Article 

    Google Scholar 
    Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science (80-). 304, 1629–1633 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Xiong, C. et al. Host selection shapes crop microbiome assembly and network complexity. New Phytol. 229, 1091–1104 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    McDaniel, M. D., Grandy, A. S., Tiemann, L. K. & Weintraub, M. N. Eleven years of crop diversification alters decomposition dynamics of litter mixtures incubated with soil. Ecosphere 7, e01426 (2016).Article 

    Google Scholar 
    Buyer, J. S., Teasdale, J. R., Roberts, D. P., Zasada, I. A. & Maul, J. E. Factors affecting soil microbial community structure in tomato cropping systems. Soil Biol. Biochem. 42, 831–841 (2010).CAS 
    Article 

    Google Scholar 
    Fernandez-Gnecco, G. et al. Microbial community analysis of soils under different soybean cropping regimes in the Argentinean south-eastern Humid Pampas. FEMS Microbiol. Ecol. 97, 1–14 (2021).Article 
    CAS 

    Google Scholar 
    Semenov, M. V., Krasnov, G. S., Semenov, V. M. & van Bruggen, A. H. C. Long-term fertilization rather than plant species shapes rhizosphere and bulk soil prokaryotic communities in agroecosystems. Appl. Soil Ecol. 154, 103641 (2020).Article 

    Google Scholar 
    White, C. M. & Weil, R. R. Forage radish cover crops increase soil test phosphorus surrounding radish taproot holes. Soil Sci. Soc. Am. J. 75, 121–130 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Schulz, M., Marocco, A., Tabaglio, V., Macias, F. A. & Molinillo, J. M. G. Benzoxazinoids in rye allelopathy—From discovery to application in sustainable weed control and organic farming. J. Chem. Ecol. 39, 154–174 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cheng, F. & Cheng, Z. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front. Plant Sci. 6, 1020 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Thapa, V. R., Ghimire, R., Acosta-Martínez, V., Marsalis, M. A. & Schipanski, M. E. Cover crop biomass and species composition affect soil microbial community structure and enzyme activities in semiarid cropping systems. Appl. Soil Ecol. 157, 103735 (2021).Article 

    Google Scholar 
    Drost, S. M., Rutgers, M., Wouterse, M., de Boer, W. & Bodelier, P. L. E. Decomposition of mixtures of cover crop residues increases microbial functional diversity. Geoderma 361, 114060 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Di Rauso Simeone, G., Müller, M., Felgentreu, C. & Glaser, B. Soil microbial biomass and community composition as affected by cover crop diversity in a short-term field experiment on a podzolized Stagnosol-Cambisol. J. Plant Nutr. Soil Sci. 183, 539–549 (2020).Article 
    CAS 

    Google Scholar 
    Maul, J. E. et al. Microbial community structure and abundance in the rhizosphere and bulk soil of a tomato cropping system that includes cover crops. Appl. Soil Ecol. 77, 42–50 (2014).Article 

    Google Scholar 
    Huang, J. et al. Allocation and turnover of rhizodeposited carbon in different soil microbial groups. Soil Biol. Biochem. 150, 107973 (2020).CAS 
    Article 

    Google Scholar 
    Strickland, M. S. & Rousk, J. Considering fungal:bacterial dominance in soils—Methods, controls, and ecosystem implications. Soil Biol. Biochem. 42, 1385–1395 (2010).CAS 
    Article 

    Google Scholar 
    Leff, J. W. et al. Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. ISME J. 12, 1794–1805 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Milcu, A. et al. Functionally and phylogenetically diverse plant communities key to soil biota. Ecology 94, 1878–1885 (2013).PubMed 
    Article 

    Google Scholar 
    Lozupone, C. A., Hamady, M., Kelley, S. T. & Knight, R. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microbiol. 73, 1576–1585 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lay, C.-Y., Hamel, C. & St-Arnaud, M. Taxonomy and pathogenicity of Olpidium brassicae and its allied species. Fungal Biol. 122, 837–846 (2018).PubMed 
    Article 

    Google Scholar 
    Liu, L., Zhu, K., Wurzburger, N. & Zhang, J. Relationships between plant diversity and soil microbial diversity vary across taxonomic groups and spatial scales. Ecosphere 11, e02999 (2020).
    Google Scholar 
    Hartwright, L. M., Hunter, P. J. & Walsh, J. A. A comparison of Olpidium isolates from a range of host plants using internal transcribed spacer sequence analysis and host range studies. Fungal Biol. 114, 26–33 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barel, J. M. et al. Winter cover crop legacy effects on litter decomposition act through litter quality and microbial community changes. J. Appl. Ecol. 56, 132–143 (2019).CAS 
    Article 

    Google Scholar 
    Austin, E. E., Wickings, K., McDaniel, M. D., Robertson, G. P. & Grandy, A. S. Cover crop root contributions to soil carbon in a no-till corn bioenergy cropping system. GCB Bioenergy 9, 1252–1263 (2017).CAS 
    Article 

    Google Scholar 
    Bai, Z., Liang, C., Bodé, S., Huygens, D. & Boeckx, P. Phospholipid 13C stable isotopic probing during decomposition of wheat residues. Appl. Soil Ecol. 98, 65–74 (2016).Article 

    Google Scholar 
    Põlme, S. et al. FungalTraits: A user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105, 1–16 (2020).Article 

    Google Scholar 
    Pepe, A., Giovannetti, M. & Sbrana, C. Lifespan and functionality of mycorrhizal fungal mycelium are uncoupled from host plant lifespan. Sci. Rep. 8, 1–10 (2018).
    Google Scholar 
    Frey, S. D. Mycorrhizal fungi as mediators of soil organic matter dynamics. Annu. Rev. Ecol. Evol. Syst. 50, 237–259 (2019).Article 

    Google Scholar 
    Saleem, M., Hu, J. & Jousset, A. More than the sum of its parts: Microbiome biodiversity as a driver of plant growth and soil health. Annu. Rev. Ecol. Evol. Syst. 50, 145–168 (2019).Article 

    Google Scholar 
    Wei, Z. et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 5, 1–12 (2019).
    Google Scholar 
    Ozimek, E. & Hanaka, A. Mortierella species as the plant growth-promoting fungi present in the agricultural soils. Agriculture 11, 7 (2020).Article 
    CAS 

    Google Scholar 
    Li, F. et al. Mortierella elongata’s roles in organic agriculture and crop growth promotion in a mineral soil. L. Degrad. Dev. 29, 1642–1651 (2018).Article 

    Google Scholar 
    Sansinenea, E. Bacillus spp.: As plant growth-promoting bacteria. in Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms: Discovery and Applications 225–237 (Springer, 2019). https://doi.org/10.1007/978-981-13-5862-3_11.Palaniyandi, S. A., Yang, S. H., Zhang, L. & Suh, J.-W. Effects of actinobacteria on plant disease suppression and growth promotion. Appl. Microbiol. Biotechnol. 97, 9621–9636 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jung, M.-Y. et al. Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities. ISME J. 16, 272–283 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhong, Y. et al. Microbial community assembly and metabolic function during wheat straw decomposition under different nitrogen fertilization treatments. Biol. Fertil. Soils 56, 697–710 (2020).CAS 
    Article 

    Google Scholar 
    Liu, X. et al. Decomposing cover crops modify root-associated microbiome composition and disease tolerance of cash crop seedlings. Soil Biol. Biochem. 160, 108343 (2021).CAS 
    Article 

    Google Scholar 
    Larkin, R. P., Griffin, T. S. & Honeycutt, C. W. Rotation and cover crop effects on soilborne potato diseases, tuber yield, and soil microbial communities. Plant Dis. 94, 1491–1502 (2010).PubMed 
    Article 

    Google Scholar 
    van der Putten, W. H., Bradford, M. A., Brinkman, E. P., van de Voorde, T. F. J. & Veen, G. F. Where, when and how plant–soil feedback matters in a changing world. Funct. Ecol. 30, 1109–1121 (2016).Article 

    Google Scholar 
    Menalled, U. D., Seipel, T. & Menalled, F. D. Farming system effects on biologically mediated plant–soil feedbacks. Renew. Agric. Food Syst. 36, 1–7 (2021).Article 

    Google Scholar 
    Fierer, N. & Jackson, J. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl. Environ. Microbiol. 71, 4117 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vainio, E. J. & Hantula, J. Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol. Res. 104, 927–936 (2000).CAS 
    Article 

    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications (eds Innis, M. A. et al.) 315–322 (Academic Press, 1990).

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rivers, A. R., Weber, K. C., Gardner, T. G., Liu, S. & Armstrong, S. D. ITSxpress: Software to rapidly trim internally transcribed spacer sequences with quality scores for marker gene analysis. F1000Research 7, 1418 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Abarenkov, K. et al. UNITE QIIME release for Fungi. https://doi.org/10.15156/bio/786385 (2020).R Core Team. R: A Language and Environment for Statistical Computing. (2020).Oksanen, J. et al. vegan: Community Ecology Package. (2020).Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. (PRIMER-E, 2008).Anderson, M. J. & Willis, T. J. Canonical analysis of principal coordinates: A useful method of constrained ordination for ecology. Ecology 84, 511–525 (2003).Article 

    Google Scholar 
    Cáceres, M. D. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).PubMed 
    Article 

    Google Scholar 
    Fernandes, A. D. et al. Unifying the analysis of high-throughput sequencing datasets: Characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome 2, 15 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More