More stories

  • in

    Important marine areas for endangered African penguins before and after the crucial stage of moulting

    Game, E. T. et al. Pelagic protected areas: The missing dimension in ocean conservation. Trends Ecol. Evol. 24, 360–369 (2009).PubMed 
    Article 

    Google Scholar 
    McCauley, D. J. et al. Marine defaunation: Animal loss in the global ocean. Science 347, 1255641–1255647 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Paleczny, M., Hammill, E., Karpouzi, V. & Pauly, D. Population trend of the world’s monitored seabirds, 1950–2010. PLoS ONE 10, e0129342 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Croxall, J. P. et al. Seabird conservation status and threats: A global assessment of priorities. Bird Conserv. Int. 22, 1–34 (2012).Article 

    Google Scholar 
    Dias, M. P. et al. Threats to seabirds: A global assessment. Biol. Conserv. 237, 525–537 (2019).Article 

    Google Scholar 
    Trathan, P. N. et al. Pollution, habitat loss, fishing, and climate change as critical threats to penguins. Conserv. Biol. 29, 31–41 (2014).PubMed 
    Article 

    Google Scholar 
    Boersma, D. et al. Applying science to pressing conservation needs for penguins. Conserv. Biol. 34, 103–112 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ropert-Coudert, Y. et al. Happy feet in a hostile world? The future of penguins depends on proactive management of current and expected threats. Front. Mar. Sci. 6, 248 (2019).Article 

    Google Scholar 
    Maestro, M., Pérez-Cayeiro, M. L., Chica-Ruiz, J. A. & Reyes, H. Marine protected areas in the 21st century: Current situation and trends. Ocean Coast. Manag. 171, 28–36 (2019).Article 

    Google Scholar 
    Hays, G. C. et al. Key questions in marine megafauna movement ecology. Trends Ecol. Evol. 31, 463–475 (2016).PubMed 
    Article 

    Google Scholar 
    Boyd, C. et al. Spatial scale and the conservation of threatened species. Conserv. Lett. 1, 37–43 (2008).Article 

    Google Scholar 
    Marra, P. P., Cohen, E. B., Loss, S. R., Rutter, J. E. & Tonra, C. M. A call for full annual cycle research in animal ecology. Biol. Lett. 11, 20150552 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kürten, N. et al. High individual repeatability of the migratory behaviour of a long-distance migratory seabird. Mov. Ecol. 10, 5 (2022).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Weimerskirch, H. et al. Lifetime foraging patterns of the wandering albatross: Life on the move!. J. Exp. Mar. Biol. Ecol. 450, 68–78 (2014).Article 

    Google Scholar 
    Trebilco, R., Gales, R., Baker, G. B., Terauds, A. & Sumner, M. D. At sea movement of Macquarie Island giant petrels: Relationships with marine protected areas and Regional Fisheries Management Organisations. Biol. Conserv. 141, 2942–2958 (2008).Article 

    Google Scholar 
    Clay, T. A. et al. A comprehensive large-scale assessment of fisheries bycatch risk to threatened seabird populations. J. Appl. Ecol. 56, 1882–1893 (2019).Article 

    Google Scholar 
    Meier, R. E. et al. Tracking, feather moult and stable isotopes reveal foraging behaviour of a critically endangered seabird during the non-breeding season. Divers. Distrib. 23, 130–145 (2017).Article 

    Google Scholar 
    Frankish, C. K., Phillips, R. A., Clay, T. A., Somveille, M. & Manica, A. Environmental drivers of movement in a threatened seabird: Insights from a mechanistic model and implications for conservation. Divers. Distrib. 26, 1315–1329 (2020).Article 

    Google Scholar 
    Ratcliffe, N. et al. Changes in prey fields increase the potential for spatial overlap between gentoo penguins and a krill fishery within a marine protected area. Divers. Distrib. 27, 552–563 (2021).Article 

    Google Scholar 
    Grémillet, D. et al. Persisting worldwide seabird-fishery competition despite seabird community decline. Curr. Biol. 28, 4009–4013 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Bogdanova, M. I. et al. Multi-colony tracking reveals spatio-temporal variation in carry-over effects between breeding success and winter. Mar. Ecol. Prog. Ser. 578, 167–181 (2017).Article 
    ADS 

    Google Scholar 
    van Bemmelen, R. et al. Flexibility in otherwise consistent non-breeding movements of a long-distance migratory seabird, the long-tailed skua. Mar. Ecol. Prog. Ser. 578, 197–211 (2017).Article 
    ADS 

    Google Scholar 
    Robinson, W. M. L., Butterworth, D. S. & Plagányi, É. E. Quantifying the projected impact of the South African sardine fishery on the Robben Island penguin colony. ICES J. Mar. Sci. 72, 1882–1883 (2015).Article 

    Google Scholar 
    Sherley, R. B. et al. Bottom-up effects of a no-take zone on endangered penguin demographics. Biol. Lett. 11, 20150237 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Studholme, K. R., Hipfner, J. M., Domalik, A. D., Ivrson, S. J. & Crossin, G. T. Year-round tracking reveals multiple migratory tactics in a sentinel North Pacific seabird, Cassin’s auklet. Mar. Ecol. Prog. Ser. 619, 169–185 (2019).Article 
    ADS 

    Google Scholar 
    Salton, M., Saraux, C., Dann, P. & Chiaradia, A. Carry-over body mass effect from winter to breeding in a resident seabird, the little penguin. R. Soc. Open Sci. 2, 140390 (2015).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Barbraud, C. et al. Density dependence, prey accessibility and prey depletion by fisheries drive Peruvian seabird population dynamics. Ecography 41, 1092–1102 (2018).Article 

    Google Scholar 
    Grémillet, D. et al. Starving seabirds: Unprofitable foraging and its fitness consequences in Cape gannets competing with fisheries in the Benguela upwelling ecosystem. Mar. Biol. 163, 1–11 (2016).Article 

    Google Scholar 
    Cook, A. S. C. P., Dadam, D., Mitchell, I., Ross-Smith, V. H. & Robinson, R. A. Indicators of seabird reproductive performance demonstrate the impact of commercial fisheries on seabird populations in the North Sea. Ecol. Indic. 38, 1–11 (2014).Article 

    Google Scholar 
    Thiebot, J.-B. et al. Adjustment of pre-moult foraging strategies in Macaroni Penguins Eudyptes chrysolophus according to locality, sex and breeding status. Ibis 156, 511–522 (2014).Article 

    Google Scholar 
    Brasso, R. L. et al. Unique pattern of molt leads to low intraindividual variation in feather mercury concentrations in penguins. Environ. Toxicol. Chem. 32, 2331–2334 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cooper, J. Moult of the black-footed penguin. Int. Zoo Yearb. 18, 22–27 (1978).Article 

    Google Scholar 
    Cherel, Y., Charrassin, J. & Challet, E. Energy and protein requirements for molt in the king penguin Aptenodytes patagonicus. Am. J. Physiol. 266, R1182–R1188 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brown, C. R. Energetic cost of moult in macaroni penguins (Eudyptes chrysolophus) and rockhopper penguins (E. chrysocome). J. Comp. Physiol. B 155, 515–520 (1985).Article 

    Google Scholar 
    Dehnhard, N. et al. Survival of rockhopper penguins in times of global climate change. Aquat. Conserv. Mar. Freshw. Ecosyst. 23, 777–789 (2013).
    Google Scholar 
    Rebstock, G. & Boersma, D. Oceanographic conditions in wintering grounds affect arrival date and body condition in breeding female Magellanic penguins. Mar. Ecol. Prog. Ser. 601, 253–267 (2018).Article 
    ADS 

    Google Scholar 
    Green, J. A., Boyd, I. L., Woakes, A. J., Warren, N. L. & Butler, P. J. Evaluating the prudence of parents: Daily energy expenditure throughout the annual cycle of a free-ranging bird, the macaroni penguin Eudyptes chrysolophus. J. Avian Biol. 40, 529–538 (2009).Article 

    Google Scholar 
    Crawford, R. J. M., Makhado, A. B., Upfold, L. & Dyer, B. M. Mass on arrival of rockhopper penguins at Marion Island correlated with breeding success. Afr. J. Mar. Sci. 30, 185–188 (2008).Article 

    Google Scholar 
    Crawford, R. J. M. et al. Food habits of an endangered seabird indicate recent poor forage fish availability off western South Africa. ICES J. Mar. Sci. 76, 1344–1352 (2019).
    Google Scholar 
    Okes, N. C. et al. Competition for shifting resources in the southern Benguela upwelling: Seabirds versus purse-seine fisheries. Biol. Conserv. 142, 2361–2368 (2009).Article 

    Google Scholar 
    Campbell, K. J. et al. Local forage fish abundance influences foraging effort and offspring condition in an endangered marine predator. J. Appl. Ecol. 56, 1751–1760 (2019).Article 

    Google Scholar 
    Grémillet, D. et al. Spatial match-mismatch in the Benguela upwelling zone: Should we expect chlorophyll and sea-surface temperature to predict marine predator distributions?. J. Appl. Ecol. 45, 610–621 (2008).Article 
    CAS 

    Google Scholar 
    Sherley, R. B. et al. Metapopulation tracking juvenile penguins reveals an ecosystem-wide ecological trap. Curr. Biol. 27, 1–6 (2017).Article 
    CAS 

    Google Scholar 
    Sherley, R. B. et al. Influence of local and regional prey availability on breeding performance of African penguins Spheniscus demersus. Mar. Ecol. Prog. Ser. 473, 291–301 (2013).Article 
    ADS 

    Google Scholar 
    Cury, P. M. et al. Global seabird response to forage fish depletion—One-third for the birds. Science 334, 1703–1706 (2011).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Crawford, R. J. M. et al. Collapse of South Africa’s penguins in the early 21st century. Afr. J. Mar. Sci. 33, 139–156 (2011).Article 

    Google Scholar 
    Sherley, R. B. et al. The conservation status and population decline of the African penguin deconstructed in space and time. Ecol. Evol. 10, 8506–8516 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Weller, F. et al. A system dynamics approach to modelling multiple drivers of the African penguin population on Robben Island, South Africa. Ecol. Model. 277, 38–56 (2014).Article 

    Google Scholar 
    Pichegru, L. Increasing breeding success of an Endangered penguin: Artificial nests or culling predatory gulls?. Bird Conserv. Int. 23, 296–308 (2013).Article 

    Google Scholar 
    Weller, F. et al. System dynamics modelling of the Endangered African penguin populations on Robben and Dyer islands, South Africa. Ecol. Model. 327, 44–56 (2016).Article 

    Google Scholar 
    Pichegru, L. et al. Overlap between vulnerable top predators and fisheries in the Benguela upwelling system: Implications for marine protected areas. Mar. Ecol. Prog. Ser. 391, 199–208 (2009).Article 
    ADS 

    Google Scholar 
    Sherley, R. B. et al. Bayesian inference reveals positive but subtle effects of experimental fishery closures on marine predator demographics. Proc. R. Soc. B 285, 20172443 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pichegru, L., Grémillet, D., Crawford, R. J. M. & Ryan, P. G. Marine no-take zone rapidly benefits endangered penguin. Biol. Lett. 6, 498–501 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Weller, F. et al. Penguins’ perilous conservation status calls for complementary approach based on sound ecological principles: Reply to Butterworth et al. (2015). Ecol. Model. 337, 1–3 (2016).Article 

    Google Scholar 
    Butterworth, D. S., Plagányi, E. E., Robinson, W. M. L., Moosa, N. & de Moor, C. L. Penguin modelling approach queried. Ecol. Model. 316, 78–80 (2015).Article 

    Google Scholar 
    Pichegru, L. et al. Sex-specific foraging behaviour and a field sexing technique for Endangered African penguins. Endanger. Species Res. 19, 255–264 (2013).Article 

    Google Scholar 
    Roberts, J. African Penguin (Spheniscus demersus) Distribution During the Non-breeding Season: Preparation for, and Recovery from, a Moulting Fast (University of Cape Town, 2016).
    Google Scholar 
    Dias, M. P. et al. Identification of marine Important Bird and Biodiversity Areas for penguins around the South Shetland Islands and South Orkney Islands. Ecol. Evol. 8, 10520–10529 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lascelles, B. G. et al. Applying global criteria to tracking data to define important areas for marine conservation. Divers. Distrib. 22, 422–431 (2016).Article 

    Google Scholar 
    Department of Forestry, Fisheries and Environment, T. National data and information report for marine spatial planning: Knowledge baseline for marine spatial planning in South Africa. (2021).Kirkman, S. P. et al. Evaluating the evidence for ecological effectiveness of South Africa’s marine protected areas. Afr. J. Mar. Sci. 43, 389–412 (2021).Article 

    Google Scholar 
    Harris, L. R. et al. Practical marine spatial management of ecologically or biologically significant marine areas: Emerging lessons from evidence-based planning and implementation in a developing-world context. Front. Mar. Sci. 9, 831678 (2022).Article 

    Google Scholar 
    Whitehead, T. O., Kato, A., Ropert-Coudert, Y. & Ryan, P. G. Habitat use and diving behaviour of macaroni Eudyptes chrysolophus and eastern rockhopper E. chrysocome filholi penguins during the critical pre-moult period. Mar. Biol. 163, 19 (2016).Article 

    Google Scholar 
    Warwick-Evans, V., Downie, R., Santos, M. & Trathan, P. N. Habitat preferences of Adélie Pygoscelis adeliae and Chinstrap Penguins Pygoscelis antarctica during pre-moult in the Weddell Sea (Southern Ocean). Polar Biol. 42, 703–714 (2019).Article 

    Google Scholar 
    Green, C.-P. et al. The role of allochrony in influencing interspecific differences in foraging distribution during the non-breeding season between two congeneric crested penguin species. PLoS ONE 17, e0262901 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pütz, K., Ingham, R. J. & Smith, J. G. Satellite tracking of the winter migration of Magellanic Penguins Spheniscus magellanicus breeding in the Falkland Islands. Ibis 142, 614–622 (2000).Article 

    Google Scholar 
    Pütz, K. et al. Post-moult movements of sympatrically breeding Humboldt and Magellanic Penguins in south-central Chile. Glob. Ecol. Conserv. 7, 49–58 (2016).Article 

    Google Scholar 
    Pütz, K., Ingham, R. J., Smith, J. G. & Lüthi, B. H. Winter dispersal of rockhopper penguins Eudyptes chrysocome from the Falkland Islands and its implications for conservation. Mar. Ecol. Prog. Ser. 240, 273–284 (2002).Article 
    ADS 

    Google Scholar 
    Thiebot, J.-B., Cherel, Y., Trathan, P. N. & Bost, C. A. Coexistence of oceanic predators on wintering areas explained by population-scale foraging segregation in space or time. Ecology 93, 122–130 (2012).PubMed 
    Article 

    Google Scholar 
    Thiebot, J.-B., Bost, C.-A., Poupart, T. A., Filippi, D. & Waugh, S. M. Extensive use of the high seas by Vulnerable Fiordland Penguins across non-breeding stages. J. Ornithol. 161, 1033–1043 (2020).Article 

    Google Scholar 
    Mattern, T. et al. Marathon penguins—Reasons and consequences of long-range dispersal in Fiordland penguins/Tawaki during the pre-moult period. PLoS ONE 13, e0198688 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bost, C.-A., Thiebot, J.-B., Pinaud, D., Cherel, Y. & Trathan, P. N. Where do penguins go during the inter-breeding period? Using geolocation to track the winter dispersion of the macaroni penguin. Biol. Lett. 5, 473–476 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baylis, A. M. M., Tierney, M., Orben, R. A., González de la Peña, D. & Brickle, P. Non-breeding movements of gentoo penguins at the Falkland Islands. Ibis 163, 507–518 (2021).Article 

    Google Scholar 
    Orgeret, F. et al. Exploration during early life: Distribution, habitat and orientation preferences in juvenile king penguins. Mov. Ecol. 7, 29 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thiebot, J. B., Lescroël, A., Barbraud, C. & Bost, C. A. Three-dimensional use of marine habitats by juvenile emperor penguins Aptenodytes forsteri during post-natal dispersal. Antarct. Sci. 25, 536–544 (2013).Article 
    ADS 

    Google Scholar 
    Pütz, K. et al. Post-fledging dispersal of king penguins (Aptenodytes patagonicus) from two breeding sites in the South Atlantic. PLoS ONE 9, e97164 (2014).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    Birt, V., Birt, T., Goulet, D., Cairns, D. & Montevecchi, W. Ashmole’s halo: Direct evidence for prey depletion by a seabird. Mar. Ecol. Prog. Ser. 40, 205–208 (1987).Article 
    ADS 

    Google Scholar 
    Furness, R. W. & Birkhead, T. R. Seabird colony distributions suggest competition for food supplies during the breeding season. Nature 311, 655–656 (1984).Article 
    ADS 

    Google Scholar 
    Carpenter-Kling, T. et al. Foraging in a dynamic environment: Response of four sympatric sub-Antarctic albatross species to interannual environmental variability. Ecol. Evol. 10, 11277–11295 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kowalczyk, N. D., Reina, R. D., Preston, T. J. & Chiaradia, A. Environmental variability drives shifts in the foraging behaviour and reproductive success of an inshore seabird. Oecologia 178, 967–979 (2015).PubMed 
    Article 
    ADS 

    Google Scholar 
    Machovsky-Capuska, G. E. et al. The nutritional nexus: Linking niche, habitat variability and prey composition in a generalist marine predator. J. Anim. Ecol. 87, 1286–1298 (2018).PubMed 
    Article 

    Google Scholar 
    Hays, G. C. et al. Translating marine animal tracking data into conservation policy and management. Trends Ecol. Evol. 34, 459–473 (2019).PubMed 
    Article 

    Google Scholar 
    Kappes, M. A. et al. Hawaiian albatrosses track interannual variability of marine habitats in the North Pacific. Prog. Oceanogr. 86, 246–260 (2010).Article 
    ADS 

    Google Scholar 
    Bost, C. A. et al. Large-scale climatic anomalies affect marine predator foraging behaviour and demography. Nat. Commun. 6, 8220 (2015).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Brown, C. J. et al. Effects of climate-driven primary production change on marine food webs: Implications for fisheries and conservation. Glob. Chang. Biol. 16, 1194–1212 (2010).Article 
    ADS 

    Google Scholar 
    Beever, E. A. et al. Behavioral flexibility as a mechanism for coping with climate change. Front. Ecol. Environ. 15, 299–308 (2017).Article 

    Google Scholar 
    McInnes, A. M., Ryan, P. G., Lacerda, M. & Pichegru, L. Targeted prey fields determine foraging effort thresholds of a marine diver: Important cues for the sustainable management of fisheries. J. Appl. Ecol. 56, 2206–2215 (2019).Article 

    Google Scholar 
    van Eeden, R., Reid, T., Ryan, P. G. & Pichegru, L. Fine-scale foraging cues for African penguins in a highly variable marine environment. Mar. Ecol. Prog. Ser. 543, 257–271 (2016).Article 
    ADS 

    Google Scholar 
    Coetzee, J. C., van der Lingen, C. D., Hutchings, L. & Fairweather, T. P. Has the fishery contributed to a major shift in the distribution of South African sardine?. ICES J. Mar. Sci. 65, 1676–1688 (2008).Article 

    Google Scholar 
    Blamey, L. K. et al. Ecosystem change in the southern Benguela and the underlying processes. J. Mar. Syst. 144, 9–29 (2015).Article 

    Google Scholar 
    Roy, C., Van Der Lingen, C. D., Coetzee, J. C. & Lutjeharms, J. R. E. Abrupt environmental shift associated with changes in the distribution of Cape anchovy Engraulis encrasicolus spawners in the southern Benguela. Afr. J. Mar. Sci. 29, 309–319 (2007).Article 

    Google Scholar 
    McInnes, A. M. et al. Small pelagic fish responses to fine-scale oceanographic conditions: Implications for the endangered African penguin. Mar. Ecol. Prog. Ser. 569, 187–203 (2017).CAS 
    Article 
    ADS 

    Google Scholar 
    Barange, M., Hampton, I. & Roel, B. A. Trends in the abundance and distribution of anchovy and sardine on the South African continental shelf in the 1990s, deduced from acoustic surveys. S. Afr. J. Mar. Sci. 21, 367–391 (1999).Article 

    Google Scholar 
    Hutchings, L. et al. Spawning on the edge: Spawning grounds and nursery areas around the southern African coastline. Mar. Freshw. Res. 53, 307–318 (2002).Article 

    Google Scholar 
    Verheye, H. M., Hutchings, L., Huggett, J. A. & Painting, S. J. Mesozooplankton dynamics in the Benguela ecosystem, with emphasis on the herbivorous copepods. S. Afr. J. Mar. Sci. 12, 561–584 (1992).Article 

    Google Scholar 
    Hutchings, L., Jarre, A., Lamont, T., van den Berg, M. & Kirkman, S. P. St Helena Bay (southern Benguela) then and now: Muted climate signals, large human impact. Afr. J. Mar. Sci. 34, 559–583 (2012).Article 

    Google Scholar 
    Goschen, W. S. & Schumann, E. H. Upwelling and the occurrence of cold water around Cape Recife, Algoa Bay, South Africa. S. Afr. J. Mar. Sci. 16, 57–67 (1995).Article 

    Google Scholar 
    Hutchings, L. et al. The Benguela Current: An ecosystem of four components. Prog. Oceanogr. 83, 15–32 (2009).Article 
    ADS 

    Google Scholar 
    Goschen, W. S., Schumann, E. H., Bernard, K. S., Bailey, S. E. & Deyzel, S. H. P. Upwelling and ocean structures off Algoa Bay and the south-east coast of South Africa. Afr. J. Mar. Sci. 34, 525–536 (2012).Article 

    Google Scholar 
    van der Lingen, C. D. Diet of sardine Sardinops sagax in the southern Benguela upwelling ecosystem. S. Afr. J. Mar. Sci. 24, 301–316 (2002).Article 

    Google Scholar 
    van der Lingen, C. D., Hutchings, L. & Field, J. G. Comparative trophodynamics of anchovy Engraulis encrasicolus and sardine Sardinops sagax in the southern Benguela: Are species alternations between small pelagic fish trophodynamically mediated?. Afr. J. Mar. Sci. 28, 465–477 (2006).Article 

    Google Scholar 
    Wright, K. L. B., Pichegru, L. & Ryan, P. G. Penguins are attracted to dimethyl sulphide at sea. J. Exp. Biol. 214, 2509–2511 (2011).PubMed 
    Article 

    Google Scholar 
    Hagen, C. et al. Evaluating the state of knowledge on fishing exclusions around major African Penguin colonies. (2014).Fort, J. et al. Multicolony tracking reveals potential threats to little auks wintering in the North Atlantic from marine pollution and shrinking sea ice cover. Divers. Distrib. 19, 1322–1332 (2013).Article 

    Google Scholar 
    Reiertsen, T. K. et al. Prey density in non-breeding areas affects adult survival of black-legged kittiwakes Rissa tridactyla. Mar. Ecol. Prog. Ser. 509, 289–302 (2014).Article 
    ADS 

    Google Scholar 
    Fayet, A. L. et al. Ocean-wide drivers of migration strategies and their influence on population breeding performance in a declining seabird. Curr. Biol. 27, 3871–3878 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Desprez, M., Jenouvrier, S., Barbraud, C., Delord, K. & Weimerskirch, H. Linking oceanographic conditions, migratory schedules and foraging behaviour during the non-breeding season to reproductive performance in a long-lived seabird. Funct. Ecol. 32, 2040–2053 (2018).Article 

    Google Scholar 
    Randall, R. M. & Randall, B. The annual cycle of the Jackass Penguin Spheniscus demersus at St Croix Island, South Africa. In Proc. Symp. Birds Sea Shore 427–450 (1981).Wolfaardt, A. C., Underhill, L. G. & Visagie, J. Breeding and moult phenology of African penguins Spheniscus demersus at Dassen Island. Afr. J. Mar. Sci. 31, 119–132 (2009).Article 

    Google Scholar 
    Crawford, R. J. M. et al. Molt of the African penguin, Spheniscus demersus, in relation to its breeding season and food availability. Acta Zool. Sin. 52, 444–447 (2006).
    Google Scholar 
    Randall, R. M. Biology of the Jackass Penguin Spheniscus demersus (L.) at St Croix, South Africa (Univeristy of Port Elizabeth, 1983).
    Google Scholar 
    Harding, C. T. Tracking African Penguins (Spheniscus demersus) Outside of the Breeding Season: Regional Effects and Fishing Pressure During the Pre-moult Period (University of Cape Town, 2013).
    Google Scholar 
    Wilson, R. P. The Jackass Penguin (Spheniscus demersus) as a pelagic predator. Mar. Ecol. Prog. Ser. 25, 219–227 (1985).Article 
    ADS 

    Google Scholar 
    Freitas, C. argosfilter: Argos locations filter. (2012).Worton, B. J. Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70, 164–168 (1989).Article 

    Google Scholar 
    Calenge, C. The package ‘adehabitat’ for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Modell. 197, 516–519 (2006).Article 

    Google Scholar 
    Vander Wal, E. & Rodgers, A. R. An individual-based quantitative approach for delineating core areas of animal space use. Ecol. Model. 224, 48–53 (2012).Article 

    Google Scholar 
    Dinno, A. dunn.test: Dunn’s Test of Multiple Comparisons Using Rank Sums (2017).Bhattacharyya, A. On a measure of divergence between two multinomial populations. Indian J. Stat. 7, 401–406 (1946).MathSciNet 
    MATH 

    Google Scholar 
    Beal, M. et al. track2KBA: An R package for identifying important sites for biodiversity from tracking data. Methods Ecol. https://doi.org/10.1111/2041-210X.13713 (2021).Article 

    Google Scholar 
    Donald, P. F. et al. Important Bird and Biodiversity Areas (IBAs): The development and characteristics of a global inventory of key sites for biodiversity. Bird Conserv. 29, 177–198 (2019).Article 

    Google Scholar 
    Handley, J. M. et al. Evaluating the effectiveness of a large multi-use MPA in protecting Key Biodiversity Areas for marine predators. Divers. Distrib. 26, 715–729 (2020).Article 

    Google Scholar 
    Strimas-Mackey, M. smoothr: Smooth and tidy spatial features. R package version 0.2.2. https://CRAN.R-project.org/package=smoothr (2018).Department of Forestry Fisheries and the Environment, T. South Africa Marine Protected Area Zonations (SAMPAZ_OR_2021_Q3). https://egis.environment.gov.za/data_egis/data_dow (2021).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing https://www.r-project.org/ (2021). More

  • in

    Animal behavior is central in shaping the realized diel light niche

    Benhamou, S. Of scales and stationarity in animal movements. Ecol. Lett. 17, 261–272 (2014).PubMed 
    Article 

    Google Scholar 
    Owen-Smith, N. Effects of temporal variability in resources on foraging behaviour. In Resource Ecology (eds. Prins, H. H. T. & Van Langevelde, F.) 159–181 (Springer Netherlands, 2008).Hutchinson, G. E. The multivariate niche. Cold Spring Harb. Symp. Quant. Biol. 22, 415–421 (1957).Article 

    Google Scholar 
    Kearney, M. Habitat, environment and niche: what are we modelling? Oikos 115, 186–191 (2006).Article 

    Google Scholar 
    Tauber, E., Last, K. S., Olive, P. J. W. & Kyriacou, C. P. Clock gene evolution and functional divergence. J. Biol. Rhythms 19, 445–458 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pilorz, V., Helfrich-Förster, C. & Oster, H. The role of the circadian clock system in physiology. Pflug. Arch. – Eur. J. Physiol. 470, 227–239 (2018).CAS 
    Article 

    Google Scholar 
    Levy, O., Dayan, T., Porter, W. P. & Kronfeld-Schor, N. Time and ecological resilience: can diurnal animals compensate for climate change by shifting to nocturnal activity? Ecol. Monogr. 89, e01334 (2019).Article 

    Google Scholar 
    Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cox, D. T. C., Gardner, A. S. & Gaston, K. J. Diel niche variation in mammals associated with expanded trait space. Nat. Commun. 12, 1753 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kronfeld-Schor, N. & Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 34, 153–181 (2003).Article 

    Google Scholar 
    Kronfeld‐Schor, N. et al. On the use of the time axis for ecological separation: diel rhythms as an evolutionary constraint. Am. Nat. 158, 451–457 (2001).PubMed 
    Article 

    Google Scholar 
    Austin, R. W. & Petzold, T. J. Spectral dependence of the diffuse attenuation coefficient of light in ocean waters. OE OPEGAR 25, 253471 (1986).Article 

    Google Scholar 
    Bandara, K., Varpe, Ø., Wijewardene, L., Tverberg, V. & Eiane, K. Two hundred years of zooplankton vertical migration research. Biol. Rev. 96, 1547–1589 (2021).PubMed 
    Article 

    Google Scholar 
    Brierley, A. S. Diel vertical migration. Curr. Biol. 24, R1074–R1076 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hays, G. C. A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. In Migrations and Dispersal of Marine Organisms 163–170 (Springer, 2003).Aumont, O., Maury, O., Lefort, S. & Bopp, L. Evaluating the potential impacts of the diurnal vertical migration by marine organisms on marine biogeochemistry. Glob. Biogeochem. Cycles https://doi.org/10.1029/2018GB005886 (2018).Article 

    Google Scholar 
    Tarrant, A. M., McNamara-Bordewick, N., Blanco-Bercial, L., Miccoli, A. & Maas, A. E. Diel metabolic patterns in a migratory oceanic copepod. J. Exp. Mar. Biol. Ecol. 545, 151643 (2021).Article 

    Google Scholar 
    Cohen, J. H. & Forward, Jr. R. B. Zooplankton diel vertical migration—a review of proximate control. In Oceanography and Marine Biology (eds Gibson, R. N., Atkinson, R. J. A. & Gordon, J. D. M.) 89–122 (CRC Press, 2009).Benoit-Bird, K. J., Au, W. W. L. & Wisdoma, D. W. Nocturnal light and lunar cycle effects on diel migration of micronekton. Limnol. Oceanogr. 54, 1789–1800 (2009).Article 

    Google Scholar 
    Last, K. S., Hobbs, L., Berge, J., Brierley, A. S. & Cottier, F. Moonlight drives ocean-scale mass vertical migration of zooplankton during the Arctic Winter. Curr. Biol. 26, 244–251 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Omand, M. M., Steinberg, D. K. & Stamieszkin, K. Cloud shadows drive vertical migrations of deep-dwelling marine life. PNAS 118, e2022977118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Strömberg, J.-O., Spicer, J. I., Liljebladh, B. & Thomasson, M. A. Northern krill, Meganyctiphanes norvegica, come up to see the last eclipse of the millennium? J. Mar. Biol. Assoc. UK 82, 919–920 (2002).Article 

    Google Scholar 
    Ludvigsen, M. et al. Use of an Autonomous Surface Vehicle reveals small-scale diel vertical migrations of zooplankton and susceptibility to light pollution under low solar irradiance. Sci. Adv. 4, eaap9887 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Häfker, N. S. et al. Circadian clock involvement in zooplankton diel vertical migration. Curr. Biol. 27, 2194–2201 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Chen, C. et al. Drosophila Ionotropic Receptor 25a mediates circadian clock resetting by temperature. Nature 527, 516–520 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Epifanio, C. E. & Cohen, J. H. Behavioral adaptations in larvae of brachyuran crabs: a review. J. Exp. Mar. Biol. Ecol. 482, 85–105 (2016).Article 

    Google Scholar 
    Sorek, M. et al. Setting the pace: host rhythmic behaviour and gene expression patterns in the facultatively symbiotic cnidarian Aiptasia are determined largely by Symbiodinium. Microbiome 6, 83 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hobbs, L., Banas, N. S., Cottier, F. R., Berge, J. & Daase, M. Eat or sleep: availability of winter prey explains mid-winter and spring activity in an Arctic Calanus population. Front. Mar. Sci. 7, 541564 (2020).Article 

    Google Scholar 
    Urmy, S. S., Horne, J. K. & Barbee, D. H. Measuring the vertical distributional variability of pelagic fauna in Monterey Bay. ICES J. Mar. Sci. 69, 184–196 (2012).Article 

    Google Scholar 
    Berge, J. et al. Arctic complexity: a case study on diel vertical migration of zooplankton. J. Plankton Res. 36, 1279–1297 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Berge, J. et al. In the dark: A review of ecosystem processes during the Arctic polar night. Prog. Oceanogr. https://doi.org/10.1016/j.pocean.2015.08.005 (2015).Article 

    Google Scholar 
    Pavlov, A. K. et al. The underwater light climate in Kongsfjorden and Its ecological implications. In The Ecosystem of Kongsfjorden, Svalbard (eds Hop, H. & Wiencke, C.) 137–170 (Springer International Publishing, 2019).Cohen, J. H. et al. Is ambient light during the high arctic polar night sufficient to act as a visual cue for Zooplankton? PLoS ONE 10, e0126247 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Veedin Rajan, V. B. et al. Seasonal variation in UVA light drives hormonal and behavioural changes in a marine annelid via a ciliary opsin. Nat. Ecol. Evol. 5, 204–218 (2021).PubMed 
    Article 

    Google Scholar 
    Vinayak, P. et al. Exquisite light sensitivity of Drosophila melanogaster cryptochrome. PLoS Genet. 9, e1003615 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Verasztó, C. et al. Ciliary and rhabdomeric photoreceptor-cell circuits form a spectral depth gauge in marine zooplankton. eLife 7, e36440 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hobbs, L. et al. A marine zooplankton community vertically structured by light across diel to interannual timescales. Biol. Lett. 17, 20200810 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Daase, M., Eiane, K., Aksnes, D. L. & Vogedes, D. Vertical distribution of Calanus spp. and Metridia longa at four Arctic locations. Mar. Biol. Res. 4, 193–207 (2008).Article 

    Google Scholar 
    Irigoien, X., Conway, D. V. P. & Harris, R. P. Flexible diel vertical migration behaviour of zooplankton in the Irish Sea. Mar. Ecol. Prog. Ser. 267, 85–97 (2004).Article 

    Google Scholar 
    Frost, B. W. & Bollens, S. M. Variability of diel vertical migration in the marine planktonic copepod Pseudocalanus newmani in relation to its predators. Can. J. Fish. Aquat. Sci. 49, 1137–1141 (1992).Article 

    Google Scholar 
    Tarling, G. A., Jarvis, T., Emsley, S. M. & Matthews, J. B. L. Midnight sinking behaviour in Calanus finmarchicus: a response to satiation or krill predation? Mar. Ecol. Prog. Ser. 240, 183–194 (2002).Article 

    Google Scholar 
    Hays, G. C., Proctor, C. A., John, A. W. G. & Warner, A. J. Interspecific differences in the diel vertical migration of marine copepods: the implications of size, color, and morphology. Limnol. Oceanogr. 39, 1621–1629 (1994).Article 

    Google Scholar 
    Gastauer, S., Nickels, C. F. & Ohman, M. D. Body size- and season-dependent diel vertical migration of mesozooplankton resolved acoustically in the San Diego Trough. Limnol. Oceanogr. 67, 300–313 (2021).Article 

    Google Scholar 
    Hardy, A. C. & Bainbridge, R. Experimental observations on the vertical migrations of plankton animals. J. Mar. Biol. Assoc. UK 33, 409–448 (1954).Article 

    Google Scholar 
    Musilova, Z. et al. Vision using multiple distinct rod opsins in deep-sea fishes. Science 364, 588–592 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gornik, S. G. et al. Photoreceptor diversification accompanies the evolution of Anthozoa. Mol. Biol. Evol. 38, 1744–1760 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cohen, J. H. et al. Photophysiological cycles in Arctic krill are entrained by weak midday twilight during the Polar Night. PLoS Biol. 19, e3001413 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kopperud, K. L. & Grace, M. S. Circadian rhythms of retinal sensitivity in the Atlantic tarpon, Megalops atlanticus. Bull. Mar. Sci. https://doi.org/10.5343/bms.2016.1045 (2017).Article 

    Google Scholar 
    Ohguro, C., Moriyama, Y. & Tomioka, K. The compound eye possesses a self-sustaining Circadian Oscillator in the Cricket Gryllus bimaculatus. Zool. Sci. 38, 82–89 (2020).Article 

    Google Scholar 
    Brodrick, E. A., How, M. J. & Hemmi, J. M. Fiddler crab electroretinograms reveal vast circadian shifts in visual sensitivity and temporal summation in dim light. J. Exp. Biol. jeb.243693, https://doi.org/10.1242/jeb.243693 (2022).Kaartvedt, S., Røstad, A., Christiansen, S. & Klevjer, T. A. Diel vertical migration and individual behavior of nekton beyond the ocean’s twilight zone. Deep Sea Res. Part I: Oceanogr. Res. Pap. 103280, https://doi.org/10.1016/j.dsr.2020.103280 (2020).Flôres, D. E. F. L., Jannetti, M. G., Valentinuzzi, V. S. & Oda, G. A. Entrainment of circadian rhythms to irregular light/dark cycles: a subterranean perspective. Sci. Rep. 6, 34264 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hays, G. C., Kennedy, H. & Frost, B. W. Individual variability in diel vertical migration of a marine copepod: why some individuals remain at depth when others migrate. Limnol. Oceanogr. 46, 2050–2054 (2001).Article 

    Google Scholar 
    Cohen, J. H. & Forward, R. B. Jr. Photobehavior as an inducible defense in the marine copepod Calanopia americana. Limnol. Oceanogr. 50, 1269–1277 (2005).Article 

    Google Scholar 
    Kvile, K. Ø., Altin, D., Thommesen, L. & Titelman, J. Predation risk alters life history strategies in an oceanic copepod. Ecology 102, e03214 (2021).PubMed 
    Article 

    Google Scholar 
    Spaak, P. & Ringelberg, J. Differential behaviour and shifts in genotype composition during the beginning of a seasonal period of diel vertical migration. Hydrobiologia 360, 177–185 (1997).Article 

    Google Scholar 
    Buskey, E. J. & Swift, E. Behavioral responses of oceanic zooplankton to simulated bioluminescence. Biol. Bull. 168, 263–275 (1985).Article 

    Google Scholar 
    Berndt, A. et al. A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome. J. Biol. Chem. 282, 13011–13021 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Franz-Badur, S. et al. Structural changes within the bifunctional cryptochrome/photolyase CraCRY upon blue light excitation. Sci. Rep. 9, 9896 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Biscontin, A. et al. Functional characterization of the circadian clock in the Antarctic krill, Euphausia superba. Sci. Rep. 7, 17742 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Piccolin, F. et al. Photoperiodic modulation of circadian functions in Antarctic krill Euphausia superba Dana, 1850 (Euphausiacea). J. Crustacean Biol. 38, 707–715 (2018).
    Google Scholar 
    Piccolin, F., Pitzschler, L., Biscontin, A., Kawaguchi, S. & Meyer, B. Circadian regulation of diel vertical migration (DVM) and metabolism in Antarctic krill Euphausia superba. Sci. Rep. 10, 16796 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Häfker, N. S., Teschke, M., Hüppe, L. & Meyer, B. Calanus finmarchicus diel and seasonal rhythmicity in relation to endogenous timing under extreme polar photoperiods. Mar. Ecol. Prog. Ser. 603, 79–92 (2018).Article 
    CAS 

    Google Scholar 
    Häfker, N. S. et al. Calanus finmarchicus seasonal cycle and diapause in relation to gene expression, physiology, and endogenous clocks. Limnol. Oceanogr. 63, 2815–2838 (2018).Article 

    Google Scholar 
    Hüppe, L. et al. Evidence for oscillating circadian clock genes in the copepod Calanus finmarchicus during the summer solstice in the high Arctic. Biol. Lett. 16, 20200257 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Dmitrenko, I. A. et al. Sea-ice and water dynamics and moonlight impact the acoustic backscatter diurnal signal over the eastern Beaufort Sea continental slope. Ocean Sci. 16, 1261–1283 (2020).CAS 
    Article 

    Google Scholar 
    Hobbs, L., Cottier, F. R., Last, K. S. & Berge, J. Pan-Arctic diel vertical migration during the polar night. Mar. Ecol. Prog. Ser. 605, 61–72 (2018).Article 

    Google Scholar 
    Chittka, L., Stelzer, R. J. & Stanewsky, R. Daily changes in ultraviolet light levels can synchronize the circadian clock of Bumblebees (Bombus terrestris). Chronobiol. Int. 30, 434–442 (2013).PubMed 
    Article 

    Google Scholar 
    Pauers, M. J., Kuchenbecker, J. A., Neitz, M. & Neitz, J. Changes in the colour of light cue circadian activity. Anim. Behav. 83, 1143–1151 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mouland, J. W., Martial, F., Watson, A., Lucas, R. J. & Brown, T. M. Cones support alignment to an inconsistent world by suppressing mouse circadian responses to the blue colors associated with twilight. Curr. Biol. 29, 4260–4267.e4 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Walmsley, L. et al. Colour as a signal for entraining the mammalian circadian clock. PLoS Biol. 13, e1002127 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ashley, N. T., Schwabl, I., Goymann, W. & Buck, C. L. Keeping time under the midnight sun: behavioral and plasma melatonin profiles of free-living lapland longspurs (Calcarius lapponicus) during the Arctic Summer. J. Exp. Zool. Part A: Ecol. Genet. Physiol. 319, 10–22 (2013).CAS 
    Article 

    Google Scholar 
    Nordtug, T. & Melø, T. B. Diurnal variations in natural light conditions at summer time in arctic and subarctic areas in relation to light detection in insects. Ecography 11, 202–209 (1988).Article 

    Google Scholar 
    Cohen, J. H. & Forward, R. B. Jr Diel vertical migration of the marine copepod Calanopia americana. II. Proximate role of exogenous light cues and endogenous rhythms. Mar. Biol. 147, 399–410 (2005).Article 

    Google Scholar 
    Maas, A. E., Blanco-Bercial, L., Lo, A., Tarrant, A. M. & Timmins-Schiffman, E. Variations in copepod proteome and respiration rate in association with diel vertical migration and circadian cycle. Biol. Bull. 000–000, https://doi.org/10.1086/699219 (2018).Berge, J. et al. Diel vertical migration of Arctic zooplankton during the polar night. Biol. Lett. 5, 69–72 (2009).PubMed 
    Article 

    Google Scholar 
    Dale, T. & Kaartvedt, S. Diel patterns in stage-specific vertical migration of Calanus finmarchicus in habitats with midnight sun. ICES J. Mar. Sci. 57, 1800–1818 (2000).Article 

    Google Scholar 
    Hut, R. A., van Oort, B. E. H. & Daan, S. Natural entrainment without dawn and dusk: the case of the European Ground Squirrel (Spermophilus citellus). J. Biol. Rhythms 14, 290–299 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Williams, C. T., Barnes, B. M., Yan, L. & Buck, C. L. Entraining to the polar day: circadian rhythms in arctic ground squirrels. J. Exp. Biol. 220, 3095–3102 (2017).PubMed 
    Article 

    Google Scholar 
    Daan, S. et al. Lab mice in the field: unorthodox daily activity and effects of a dysfunctional circadian clock allele. J. Biol. Rhythms 26, 118–129 (2011).PubMed 
    Article 

    Google Scholar 
    Gattermann, R. et al. Golden hamsters are nocturnal in captivity but diurnal in nature. Biol. Lett. 4, 253–255 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Green, E. W. et al. Drosophila circadian rhythms in seminatural environments: Summer afternoon component is not an artifact and requires TrpA1 channels. PNAS 112, 8702–8707 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nagy, D. et al. A semi-natural approach for studying seasonal diapause in Drosophila melanogaster reveals robust photoperiodicity. J. Biol. Rhythms 33, 117–125 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Prabhakaran, P. M., De, J. & Sheeba, V. Natural conditions override differences in emergence rhythm among closely related Drosophilids. PLoS ONE 8, e83048 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ruf, F. et al. Natural Zeitgebers under temperate conditions cannot compensate for the loss of a functional circadian clock in timing of a vital behavior in Drosophila. J. Biol. Rhythms 0748730421998112, https://doi.org/10.1177/0748730421998112 (2021).Dollish, H. K., Kaladchibachi, S., Negelspach, D. C. & Fernandez, F.-X. The Drosophila circadian phase response curve to light: conservation across seasonally relevant photoperiods and anchorage to sunset. Physiol. Behav. 245, 113691 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shaw, B., Fountain, M. & Wijnen, H. Control of daily locomotor activity patterns in Drosophila suzukii by the circadian clock, light, temperature and social interactions. J. Biol. Rhythms 34, 463–481 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chiesa, J. J., Aguzzi, J., García, J. A., Sardà, F. & de la Iglesia, H. O. Light intensity determines temporal niche switching of behavioral activity in deep-water Nephrops norvegicus (Crustacea: Decapoda). J. Biol. Rhythms 25, 277–287 (2010).PubMed 
    Article 

    Google Scholar 
    DeCoursey, P. J. Light-sampling behavior in photoentrainment of a rodent circadian rhythm. J. Comp. Physiol. 159, 161–169 (1986).CAS 
    Article 

    Google Scholar 
    Heard, E. Molecular biologists: let’s reconnect with nature. Nature 601, 9 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Deines, K. L. Backscatter estimation using Broadband acoustic Doppler current profilers. In Proc. IEEE Sixth Working Conference on Current Measurement 249–253 (1999).Darnis, G. et al. From polar night to midnight sun: diel vertical migration, metabolism and biogeochemical role of zooplankton in a high Arctic fjord (Kongsfjorden, Svalbard). Limnol. Oceanogr. 62, 1586–1605 (2017).CAS 
    Article 

    Google Scholar 
    Cottier, F. R., Tarling, G. A., Wold, A. & Falk-Petersen, S. Unsynchronized and synchronized vertical migration of zooplankton in a high arctic fjord. Limnol. Oceanogr. 51, 2586–2599 (2006).Article 

    Google Scholar 
    Johnsen, G. et al. All-sky camera system providing high temporal resolution annual time series of irradiance in the Arctic. Appl. Opt. 60, 6456–6468 (2021).PubMed 
    Article 

    Google Scholar 
    Pan, X. & Zimmerman, R. C. Modeling the vertical distributions of downwelling plane irradiance and diffuse attenuation coefficient in optically deep waters. J. Geophys. Res.: Oceans 115, C08016 (2010).
    Google Scholar 
    Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).Article 

    Google Scholar 
    Tidau, S. et al. Marine artificial light at night: An empirical and technical guide. Methods Ecol. Evol. 12, 1588–1601 (2021).Article 

    Google Scholar 
    Mobley, C. D. Light and Water: Radiative Transfer in Natural Waters (Academic Press Inc, 1994).Kostakis, I. et al. Development of a bio-optical model for the Barents Sea to quantitatively link glider and satellite observations. Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci. 378, 20190367 (2020).CAS 
    Article 

    Google Scholar 
    Buskey, E. J., Baker, K. S., Smith, R. C. & Swift, E. Photosensitivity of the oceanic copepods Pleuromamma gracilis and Pleuromamma xiphias and its relationship to light penetration and daytime depth distribution. Mar. Ecol. Prog. Ser. 55, 207–216 (1989).Article 

    Google Scholar  More

  • in

    Hydrology, biogeochemistry and metabolism in a semi-arid mediterranean coastal wetland ecosystem

    Gibbs, J. P. Wetland loss and biodiversity conservation. Conserv. Biol. 14, 314–317 (2000).Article 

    Google Scholar 
    Turner, R. K. et al. Ecological-economic analysis of wetlands: Scientific integration for management and policy. Ecol. Econ. 35, 7–23 (2000).Article 

    Google Scholar 
    Zedler, J. B. & Kercher, S. Wetland resources: Status trends ecosystem services and restorability. Annu. Rev. Environ. Resour. 15, 39–74 (2005).Article 

    Google Scholar 
    Euliss, N. H., Smith, L. M., Wilcox, D. A. & Browne, B. A. Lining ecosystem processes with wetland management goals: Chartering a course for a sustainable future. Wetlands 28, 553–562 (2008).Article 

    Google Scholar 
    Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change. 26, 152–158 (2014).Article 

    Google Scholar 
    Macreadie, P. J. et al. The future of blue carbon. Nat. Commun. 10, 3998 (2019).ADS 
    Article 

    Google Scholar 
    RAMSAR. Wise use of wetlands, Ramsar Handbooks, 4th edition (2010).Kingsford, R. T., Basset, A. & Jackson, L. Wetlands: Conservation’s poor cousins. Aquat. Conserv. 26, 892–916 (2016).Article 

    Google Scholar 
    Beck, M. W., Heck, K. L. & Able, K. W. The Identification, Conservation, and Management of Estuarine and Marine Nurseries for Fish and Invertebrates: A better understanding of the habitats that serve as nurseries for marine species and the factors that create site-specific variability in nursery quality will improve conservation and management of these areas. Bioscience 51, 633–641 (2001).Article 

    Google Scholar 
    Canu, D. M. et al. Adressing sustainability of clam farming in the Venice Lagoon. Ecol. Soc. 16, 26 (2010).
    Google Scholar 
    Canu, D. M., Solidoro, C., Cossarini, G. & Giorgi, F. Effect of global change on bivalve rearing activity and the need for adaptive management. Clim. Res. 42, 13–26 (2011).Article 

    Google Scholar 
    Newton, A. et al. Anthropogenic pressures on Coastal Wetlands. Front. Ecol. Evol. 8, 144 (2020).Article 

    Google Scholar 
    Ayache, F. et al. Environmental characteristics landscape history and pressures on three coastal lagoons in the Southern Mediterranean Region: Merja Zerga (Morocco) Ghar El Melh (Tunisia) and Lake Manzala (Egypt). Hydrobiologia 622, 15–43 (2009).CAS 
    Article 

    Google Scholar 
    Solidoro, C. et al. Response of Venice Lagoon ecosystem to natural and anthropogenic pressures over the last 50 years. In Coastal Lagoons—Critical Habitats of Environmental Change (eds. Kennish, M. J. & Paerl, H. W.) 483–511 (2010).Newton, A. et al. Assessing quantifying and valuing the ecosystem services of coastal lagoons. J. Nat. Conserv. 44, 50–65 (2018).Article 

    Google Scholar 
    Newton, A. et al. An overview of ecological status vulnerability and future perspectives of European large shallow semi-enclosed coastal systems lagoons and transitional waters. Estuar. Coast. Shelf Sci. 140, 95–122 (2014).ADS 
    Article 

    Google Scholar 
    Béjaoui, B. et al. Random Forest model and TRIX used in combination to assess and diagnose the trophic status of Bizerte Lagoon, southern Mediterranean. Ecol. Indic. 71, 293–301 (2016).Article 

    Google Scholar 
    Ramdani, M. et al. North African wetland lakes: Characterization of nine sites included in the CASSARINA Project. Aquat. Ecol. 35, 281–302 (2001).Article 

    Google Scholar 
    Junk, W. J. et al. Current state of knowledge regarding the world’s wetlands and their future under global climate change: A synthesis. Aquat. Sci. 75, 151–167 (2013).CAS 
    Article 

    Google Scholar 
    Ouni, H. et al. Numerical modeling of hydrodynamic circulation in Ichkeul Lake-Tunisia. Energy Rep. 6, 208–213 (2020).Article 

    Google Scholar 
    Hollis, G. E. et al. Modeling and management of the internationally important wetland at Garaet Ichkeul Tunisia. Numéro 4 de IWRB special publication, International Waterfowl Research Bureau, ISSN 0962–6271 Volume 4 de International Waterfowl Research Bureau Slimbridge: IWRB special publication (ed. International Waterfowl Research Bureau) 1–121 (1986).Casagranda, C. & Boudouresque, C. F. A first quantification of the overall biomass, from phytoplankton to birds, of a Mediterranean brackish lagoon: Revisiting the ecosystem of Lake Ichkeul (Tunisia). Hydrobiologia 637, 73–85 (2010).Article 

    Google Scholar 
    Hamdi, N., Touihri, M. & Charfi, F. Diagnostic Écologique du Parc National Ichkeul (Tunisie) après la construction des barrages: Cas des oiseaux d’eau. Rev. Ecol-Terre Vie. 67, 41–62 (2012).
    Google Scholar 
    UNESCO. Biosphere Reserve Information Tunisia Ichkeul, UNESCO-MAB. Biosphere Reserves Directory. (2009a).UNESCO. Ichkeul National Park http://whc.unesco.org/en/list/8/ (2009b).RAMSAR. Convention and Wetlands International. Information Sheet on Ramsar Wetlands Tunisia Ichkeul, Ramsar Sites Information Service. (2009).Tamisier, A., et al. Modelling aquatic ecosystems: Benefits, costs and risks, for a field biologist. Ichkeul Lake, Tunisia, a case study. In Limnology and Aquatic birds, Monitoring, modeling and management (eds. Comin, F. A., Herrera, J. A. & Ramirez, J.) 185–203 (2001).Giordani, G. et al. Nutrient fluxes in transitional zones of the Italian coast. LOICZ Reports & Studies No. 28, ii+157 pages, LOICZ, Texel, the Netherlands. (2005).Thomson, A. J., Giannopoulos, G., Pretty, J., Baggs, E. M. & Richardson, D. J. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Phil. Trans. R. Soc. B367, 1157–1168 (2012).Article 

    Google Scholar 
    Chen, N., Wu, J., Chen, Z., Lu, T. & Wang, L. Spatial-temporal variation of dissolved N2 and denitrification in an agricultural river network, southeast China. Agric. Ecosyst. Environ. 189, 1–10 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Loeks, B. M. & Cotner, J. B. Upper Midwest lakes are supersaturated with N2. Proc. Natl. Acad. Sci. USA 117, 17063–17067 (2020).Article 

    Google Scholar 
    Thomann, R. V., DiToro, D. M., Winfield, R. P. & O’Connor, D. J. Mathematical modelling of phytoplankton in Lake Ontario. Part 1. Model development and verification. U.S. Environmental Protection Agency, EPA-660/3-75-005, Corvallis, Oreg. 77 (1975).DiToro, D. M. & Connolly, J. P. Mathematical models of water quality in large lakes. Part 2: Lake Erie. U.S. Environmental Protection Agency, Duluth, Minnesota. EPA-600/3-80-065. 231. (1980)Jacobsen, O. S. & Jorgensen, S. E. A submodel for nitrogen release from sediments. Ecol. Model. 1, 147–151 (1975).CAS 
    Article 

    Google Scholar 
    Jorgensen, S. E., Kamp-Neilsen, L. & Jacobsen, O. S. A submodel for anaerobic mud-water exchange of phosphate. Ecol. Model. 1, 133–146 (1975).Article 

    Google Scholar 
    Jorgensen, S. E. An Eutrophication model for a lake. Ecol. Model. 2, 147–165 (1976).Article 

    Google Scholar 
    Jorgensen, S. E., Mejer, H. & Friis, M. Examination of a Lake model. Ecol. Model. 4, 253–278 (1978).Article 

    Google Scholar 
    Chapelle, A., Mesnage, V., Mazouni, N., Deslous-Paoli, J. M. & Picot, B. Modélisation des cycles de l’azote et du phosphore dans les sédiments d’une lagune soumise à une exploitation conchylicole. Oceanol. Acta. 17, 609–620 (1994).CAS 

    Google Scholar 
    Raillard, O. & Ménesguen, A. An ecosystem box model for estimating the carrying capacity of a macrotidal shellfish system. Mar. Ecol. Prog. Ser. 115, 117–130 (1994).ADS 
    Article 

    Google Scholar 
    Kremer, H. H. et al. Land–ocean interactions in the coastal zone: Science plan and implementation strategy, IGBP Report 51, IHDP Report 18. International Geosphere-Biosphere Programme. (2005).Strobl, R., Zaldivar, C. J., Somma, F., Stips, A. & Garcia, G. E. Application of the LOICZ Methodology to the Mediterranean Sea EUR 23936 EN. Luxembourg (Luxembourg): OPOCE. JRC52454. (2009).Swaney, D. P. & Giordani, G (Eds.). Proceedings of the LOICZ Workshop on Biogeochemical Budget Methodology and Applications, Providence RI, November 9–10, 2007. LOICZ Reports and Studies no. 37. GKSS Research Centre, Geesthacht. http://www.loicz.org/imperia/md/content/loicz/print/rsreports/biogeochemical_budget_methodology_and_applications.pdf (2011).Swaney, D. P., Smith, S. V. & Wulff, F. The LOICZ Biogeochemical Modeling Protocol and its Application to Estuarine Ecosystems. In Teratise on Estuarine and Coastal Ecosystem Science, Academic Press, Elsevier (eds. Bauer, J. E. & Bianchi, T. S.) 136–159 (2011).Glaeser, B., Kannen, A. & Kremer, H. Introduction: The future of coastal areas. Challenges for planning practice and research. Gaia-Ecol. Perspect. Sci. Soc. 18, 145–149 (2009).
    Google Scholar 
    Glaeser, B., Bruckmeier, K., Glaser, M. & Krause, G. Social-ecological systems analysis in coastal and marine areas: A path toward integration of interdisciplinary knowledge. In Current Trends in Human Ecology. Cambridge Scholars Publishing (eds. Lopes, P. & Begossi, A.) 183–203 (2009b).Glaser, M. & Glaeser, B. The social dimension in the management of social ecological change. In Treatise on Estuarine and Coastal Science, Vol. 11: Integrated Management of Estuaries and Coasts. München: Elsevier (eds. Kremer, H. & Pinckney, J.) 59 (2011).Glaser, M. & Glaeser, B. Towards a framework for cross-scale and multi-level analysis of coastal and marine social-ecological systems dynamics. Reg. Environ. Change. 14, 2039–2052 (2014).Article 

    Google Scholar 
    Vybernaite-Lubiene, I. et al. Biogeochemical budgets of nutrients and metabolism in the curonian lagoon (Southeast Baltic Sea): Spatial and temporal variations. Water 14, 164 (2022).CAS 
    Article 

    Google Scholar 
    Yazidi, A., Saidi, S., Ben, M. N. & Darragi, F. Contribution of GIS to evaluate surface water pollution by heavy metals: Case of Ichkeul Lake (Northern Tunisia). J. Afr. Earth. Sci. 134, 166–173 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Goudling, M. et al. Ecosystem-based management of Amazon fisheries and wetlands. Fish Fish. 20, 138–158 (2018).
    Google Scholar 
    Mitsch, W. J. & Gosselink, J. G. Wetlands 5th edn. (Wiley, 2015).
    Google Scholar 
    World Bank 2022.Affouri, H. & Sahraoui, O. The sedimentary organic matter from a Lake Ichkeul core (far northern Tunisia): Rock-Eval and biomarker approach. J. Afr. Earth. Sci. 129, 248–259 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Vanderkelen, I., van Lipzig, N. P. M. & Thiery, A. Modelling the water balance of Lake Victoria (East Africa)–Part 1: Observational analysis. Hydrol. Earth Syst. Sci. 22, 1–17 (2018).Article 

    Google Scholar 
    Coe, M. T. & Foley, J. A. Human and natural impacts on the water resources of the Lake Chad basin. J. Geophys. Res. Atmos. 106, 3349–3356 (2001).ADS 
    Article 

    Google Scholar 
    Gao, H., Bohn, T. J., Podest, E., McDonald, K. C. & Lettenmaier, D. P. On the causes of the shrinking of Lake Chad. Environ. Res. Lett. 6, 34021 (2011).Article 

    Google Scholar 
    Prange, M., Wilke, T. & Wesselingh, F. P. The other side of sea level change. Commun. Earth Environ. 1, 69 (2020).ADS 
    Article 

    Google Scholar 
    Glausiusz, J. Environmental Science: New life for the DeaSea?. Nature 464, 1118–1120 (2010).CAS 
    Article 

    Google Scholar 
    Gronewold, A. D. & Stow, C. A. Water Loss from the Great Lakes. Science 343, 1084–1085 (2014).ADS 
    Article 

    Google Scholar 
    Mei, X., Dai, Z., Du, J. & Chen, J. Linkage between Three Gorges Dam impacts and the dramatic recessions in China’s largest freshwater lake, Poyang Lake. Sci. Rep. 5, 18197 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Micklin, P. The aral sea disaster. Ann. Rev. Earth Planet. Sci. 35, 47–72 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Feng, L., Han, X., Hu, C. & Chen, X. Four decades of wetland changes of the largest freshwater lake in China: Possible linkage to the Three Gorges Dam?. Remote Sens. Environ. 176, 43–55 (2016).ADS 
    Article 

    Google Scholar 
    Downing, J. A. et al. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 51, 2388–2397 (2006).ADS 
    Article 

    Google Scholar 
    Awange, J. L. et al. The falling lake victoria water level: GRACE, TRIMM and CHAMP satellite analysis of the lake basin. Water Resour. Manag. 22, 775–796 (2008).Article 

    Google Scholar 
    Carroll, M. L., Townshend, R. H. G., DiMiceli, C. M., Loboda, T. & Sohlberg, R. A. Shrinkage lakes of the Artic: Spatial relationships and trajectory of change. Geophys. Res. Lett. 38, 20406 (2011).ADS 
    Article 

    Google Scholar 
    Lefebvre, G. et al. Predicting the vulnerability of seasonally-flooded wetlands to climate change across the Mediterranean Basin. Sci. Total Environ. 692, 546–555 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Touaylia, S., Ghannem, S., Toumi, H., Béjaoui, M. & Garrido, J. Assessment of heavy metals status in northern Tunisia using contamination indices: Case of the Ichkeul steams system. Int. J. Environ. Res. Public Health. 3, 209–217 (2016).
    Google Scholar 
    Aouissi, J., Benabdallah, S., Lili, C. Z. & Cudennec, C. Modelling water quality to improve agricultural practices and land management in a Tunisian catchment using soil and water assessment tool. J. Environ. Qual. 43, 18–25 (2014).Article 

    Google Scholar 
    Aouissi, J., Lili, C. Z., Benabdallah, S. & Cudennec, C. Assessing the hydrological impacts of agricultural changes upstream of the Tunisian World Heritage sea-connected Ichkeul Lake. Proc. Int. Assoc. Hydrol. Sci. 365, 61–65 (2015).
    Google Scholar 
    Fathalli, A. et al. Molecular and phylogenetic characterization of potentially toxic cyanobacteria in Tunisian freshwaters. Syst. Appl. Microbiol. 34, 303–310 (2011).CAS 
    Article 

    Google Scholar 
    Ouchir, N., Morin, S., Ben, A. L., Boughdiri, M. & Aydi, A. Periphytic diatom communities in tributaries around Lake Ichkeul, northern Tunisia: A preliminary assessment. Afr. J. Aquat. Sci. 42, 65–73 (2017).Article 

    Google Scholar 
    Chislock, M. F., Doster, E., Zitomer, R. A. & Wilson, A. E. Eutrophication: Causes, consequences, and controls in aquatic ecosystems. Nat. Educ. Knowl. 4, 10 (2013).
    Google Scholar 
    Paerl, H. W. & Huisman, J. Climate change: A catalyste for global expansion of harmful cyanobacteria blooms. Environ. Microb. Rep. 1, 27–37 (2009).CAS 
    Article 

    Google Scholar 
    Paerl, H. W., Nathan, S. H. & Calandrino, E. S. Controlling harmful cyanobacteria blooms in a world experiencing anthropogenic and climatic-induced change. Sci. Total Environ. 409, 1739–1745 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    O’Neil, J. M., Davis, T. M., Burford, M. A. & Gobler, C. J. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 14, 313–334 (2012).Article 

    Google Scholar 
    Ben, S. F. et al. Pesticides in Ichkeul Lake-Bizerte Lagoon Watershed in Tunisia: Use, occurrence, and effects on bacteria and free-living marine nematodes. Environ. Sci. Pollut. Res. 23, 36–48 (2016).Article 

    Google Scholar 
    Bourhane, Z. et al. Microbial diversity alteration reveals biomarkers of contamination in soil-river-lake continuum. J. Hazard. Mater. 421, 126789 (2022).CAS 
    Article 

    Google Scholar 
    Kolzau, S. et al. Seasonal patterns of nitrogen and phosphorus limitation in four German lakes and the predictability of limitation status from Ambient nutrient concentrations. PLoS ONE 9, e96065 (2014).ADS 
    Article 

    Google Scholar 
    Abidi, M., Ben, A. R. & Gueddari, M. Assessment of the trophic status of the South Lagoon of Tunis (Tunisia, Mediterranean Sea); a Geochemical and Statistical Approaches. J. Chem. (2018).Saunders, D. L. & Kaffl, J. Denitrification rates in the sediments of Lake Memphremagog, Canda–USA. Water Res. 35, 1897–1904 (2001).CAS 
    Article 

    Google Scholar 
    Davidson, E. A. & Seitzinger, S. The enigma of progress in denitrification research. Ecol. Appl. 16, 2057–2063 (2006).Article 

    Google Scholar 
    Medina-Galvan, J. et al. Comparing the biogeochemical functioning of two arid subtropical coastal lagoons: The effect of wastewater discharges. Ecosyst. Health Sustain. 7, 1 (2021).Article 

    Google Scholar 
    Piehler, M. F. & Smyth, A. R. Habitat-specific distinctions in estuarine denitrification affect both ecosystem function and services. Ecosphere. 2, 1–17 (2011).ADS 
    Article 

    Google Scholar 
    Loeks-Johson, B. M. & Cotner, J. B. Upper Midwest lakes are supersaturated with N2. Proc. Natl. Acad. Sci. U S A. 117, 17063–17067 (2020).Reddy, K. R., Patrick, W. H. & Lindau, C. W. Nitrification-denitrification at the plant root sediment interface in Wetlands. Limnol. Oceanogr. 34, 1004–1013 (1989).ADS 
    CAS 
    Article 

    Google Scholar 
    Adrian, A. et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 54, 2283–2297 (2009).ADS 
    Article 

    Google Scholar 
    Seo, C. D. & DeLaune, R. D. Fungal and bacterial mediated denitrification in wetlands: Influence of sediment redox condition. Water Res. 44, 2441–2450 (2010).CAS 
    Article 

    Google Scholar 
    Montzka, S. A., Dlugokencky, I. J. & Butler, J. H. Non-CO2 greenhouse gases and climate change. Nature 476, 43–50 (2011).CAS 
    Article 

    Google Scholar 
    Sferratore, A., Billen, G. & Garnier, J. The S Modeling nutrient (N, P, Si ) budget in the Seine watershed: Application of the River Strahler model using data from local to global scale resolution Modeling nutrient (N, P, Si) budget in the Seine watershed: Application of the River Strahler model using data from local to global scale resolution. Glob. Biogeochem. Cycles. 19, 20 (2005).Article 

    Google Scholar 
    Béjaoui, B. et al. 3D modeling of phytoplankton seasonal variation and nutrient budget in a Southern Mediterranean Lagoon. Mar. Pollut. Bull. 114, 962–976 (2017).Article 

    Google Scholar 
    Shaiek, M., Fassatoui, C. & Romdhane, M. S. Past and present fish species recorded in the estuarine Lake Ichkeul, northern Tunisia. Afr. J. Aquat. Sci. 41, 171–180 (2016).Article 

    Google Scholar 
    INM. Données climatiques de la région de Bizerte. Institut National de Météorologie, Tunis, Tunisie. (2017).Rodier, J. et al. L’analyse de l’eau, Eaux naturelles, eaux résiduaires, eau de mer, Dunod Paris. (1996).Lorenzen, C. J. Determination of chlorophyll and pheopigments by spectrophotometric equations. Limnol. Oceanogr. 12, 343–346 (1967).ADS 
    CAS 
    Article 

    Google Scholar 
    Parsons, T. R., Maita, Y. & Lalli, C. M. A manual of chemical and biological methods for seawater analysis. Geol. Mag. 122, 570–570 (1980).
    Google Scholar 
    Redfield, A. C. The biological control of chemical factors in the environment. Sci. Prog. 11, 150–170 (1960).CAS 

    Google Scholar 
    Gordon, D. C. et al. LOICZ biogeochemical modelling guidelines. LOICZ Rep and Stud. 5, 1–96 (1996).
    Google Scholar 
    Seitzinger, S. P. Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance. Limnol. Oceanogr. 33, 702–724 (1988).ADS 
    CAS 

    Google Scholar 
    Atkinson, M. J. & Smith, S. V. C:N: P ratios of benthic marine plants. Limnol. Oceanogr. 28, 568–574 (1983).ADS 
    CAS 
    Article 

    Google Scholar 
    APHA (American Public Health Association) Standard Methods for the Examination of Water and Wastewater. 18th Edition, American Public Health Association (APHA), American Water Works Association (AWWA) and Water Pollution Control Federation (WPCF), Washington DC (1992). More

  • in

    Repeated introduction of micropollutants enhances microbial succession despite stable degradation patterns

    Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, Von Gunten U, et al. The challenge of micropollutants in aquatic systems. Science (80-). 2006;313:1072–7.Article 

    Google Scholar 
    Deblonde T, Cossu-Leguille C, Hartemann P. Emerging pollutants in wastewater: a review of the literature. Int J Hyg Environ Health. 2011;214:442–8.Article 

    Google Scholar 
    Wang M, Cernava T. Overhauling the assessment of agrochemical-driven interferences with microbial communities for improved global ecosystem integrity. Environ Sci Ecotechnol. 2020;4:100061.Article 

    Google Scholar 
    Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Zhang J, et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ. 2014;473–474:619–41.Article 

    Google Scholar 
    Wang Z, Zhang XH, Huang Y, Wang H. Comprehensive evaluation of pharmaceuticals and personal care products (PPCPs) in typical highly urbanized regions across China. Environ Pollut. 2015;204:223–32.Article 

    Google Scholar 
    Eggen RIL, Hollender J, Joss A, Schärer M, Stamm C. Reducing the discharge of micropollutants in the aquatic environment: the benefits of upgrading wastewater treatment plants. Environ Sci Technol. 2014;48:7683–9.Article 

    Google Scholar 
    Vila-Costa M, Cerro-Gálvez E, Martínez-Varela A, Casas G, Dachs J. Anthropogenic dissolved organic carbon and marine microbiomes. ISME J. 2020;14:2646–8.Article 

    Google Scholar 
    da Silva GCX, Medeiros de Abreu CH, Ward ND, Belúcio LP, Brito DC, Cunha HFA, et al. Environmental impacts of dam reservoir filling in the East Amazon. Front Water. 2020;2:11.Article 

    Google Scholar 
    Kuroda K, Murakami M, Oguma K, Muramatsu Y, Takada H, Takizawa S. Assessment of groundwater pollution in Tokyo using PPCPs as sewage markers. Environ Sci Technol. 2012;46:1455–64.Article 

    Google Scholar 
    Liu WR, Zhao JL, Liu YS, Chen ZF, Yang YY, Zhang QQ, et al. Biocides in the Yangtze River of China: spatiotemporal distribution, mass load and risk assessment. Environ Pollut. 2015;200:53–63.Article 

    Google Scholar 
    Roberts J, Kumar A, Du J, Hepplewhite C, Ellis DJ, Christy AG, et al. Pharmaceuticals and personal care products (PPCPs) in Australia’s largest inland sewage treatment plant, and its contribution to a major Australian river during high and low flow. Sci Total Environ. 2016;541:1625–37.Article 

    Google Scholar 
    Rodea-Palomares I, Gonzalez-Pleiter M, Gonzalo S, Rosal R, Leganes F, Sabater S, et al. Hidden drivers of low-dose pharmaceutical pollutant mixtures revealed by the novel GSA-QHTS screening method. Sci Adv. 2016;2:1–12.Article 

    Google Scholar 
    Yang X, Chen F, Meng F, Xie Y, Chen H, Young K, et al. Occurrence and fate of PPCPs and correlations with water quality parameters in urban riverine waters of the Pearl River Delta, South China. Environ Sci Pollut Res. 2013;20:5864–75.Article 

    Google Scholar 
    Cerro-Gálvez E, Dachs J, Lundin D, Fernández-Pinos MC, Sebastián M, Vila-Costa M. Responses of coastal marine microbiomes exposed to anthropogenic dissolved organic carbon. Environ Sci Technol. 2021;55:9609–21.Article 

    Google Scholar 
    Martinez-Varela A, Cerro-Gálvez E, Auladell A, Sharma S, Moran MA, Kiene RP, et al. Bacterial responses to background organic pollutants in the northeast subarctic Pacific Ocean. Environ Microbiol. 2021;23:4532–46.Article 

    Google Scholar 
    Bob A, Shen D, Li S, Zhang L, Rashid A, Sun Q, et al. Strong impact of micropollutants on prokaryotic communities at the horizontal but not vertical scales in a subtropical reservoir, China. Sci Total Environ. 2020;721:137767.Article 

    Google Scholar 
    Tlili A, Corcoll N, Arrhenius Å, Backhaus T, Hollender J, Creusot N, et al. Tolerance patterns in stream biofilms link complex chemical pollution to ecological impacts. Environ Sci Technol. 2020;54:10745–53.Article 

    Google Scholar 
    Chalew TEA, Halden RU. Environmental exposure of aquatic and terrestrial biota to triclosan and triclocarban. J Am Water Resour Assoc. 2009;45:4–13.Article 

    Google Scholar 
    Zhang W, Yin K, Chen L. Bacteria-mediated bisphenol A degradation. Appl Microbiol Biotechnol. 2013;97:5681–9.Article 

    Google Scholar 
    Staples CA, Dorn PB, Klecka GM, O’Block ST, Harris LR. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere. 1998;36:2149–73.Article 

    Google Scholar 
    Choi YJ, Lee LS. Aerobic soil biodegradation of bisphenol (BPA) alternatives bisphenol S and bisphenol AF compared to BPA. Environ Sci Technol. 2017;51:13698–704.Article 

    Google Scholar 
    McMurry LM, Oethinger M, Levy SB. Triclosan targets lipid synthesis [4]. Nature. 1998;394:531–2.Article 

    Google Scholar 
    Cabana H, Jiwan JLH, Rozenberg R, Elisashvili V, Penninckx M, Agathos SN, et al. Elimination of endocrine disrupting chemicals nonylphenol and bisphenol A and personal care product ingredient triclosan using enzyme preparation from the white rot fungus Coriolopsis polyzona. Chemosphere. 2007;67:770–8.Article 

    Google Scholar 
    Hu A, Ju F, Hou L, Li J, Yang X, Wang H, et al. Strong impact of anthropogenic contamination on the co-occurrence patterns of a riverine microbial community. Environ Microbiol. 2017;19:4993–5009.Article 

    Google Scholar 
    Boyd TJ, Smith DC, Apple JK, Hamdan LJ, Osburn CL, Montgomery MT. Evaluating PAH biodegradation relative to total bacterial carbon demand in coastal ecosystems: Are PAHs truly recalcitrant? In: Van Dijk T. (ed). Microbial Ecology Research Trends. Nova Science Publishers, 2008. pp 1–38.Okere UV, Cabrerizo A, Dachs J, Ogbonnaya UO, Jones KC, Semple KT. Effects of pre-exposure on the indigenous biodegradation of 14C-phenanthrene in Antarctic soils. Int Biodeterior Biodegrad. 2017;125:189–99.Article 

    Google Scholar 
    Coll C, Bier R, Li Z, Langenheder S, Gorokhova E, Sobek A. Association between aquatic micropollutant dissipation and river sediment bacterial communities. Environ Sci Technol. 2020;54:14380–92.Article 

    Google Scholar 
    Bender EA, Case TJ, Gilpin ME. Perturbation experiments in community ecology: Theory and practice. Ecology. 1984;65:1–13.Shade A, Peter H, Allison SD, Baho DL, Berga M, Bürgmann H, et al. Fundamentals of microbial community resistance and resilience. Front Microbiol. 2012;3:1–19.Article 

    Google Scholar 
    Buerger S, Spoering A, Gavrish E, Leslin C, Ling L, Epstein SS. Microbial scout hypothesis, stochastic exit from dormancy, and the nature of slow growers. Appl Environ Microbiol. 2012;78:3221–8.Article 

    Google Scholar 
    Lee SH, Sorensen JW, Grady KL, Tobin TC, Shade A. Divergent extremes but convergent recovery of bacterial and archaeal soil communities to an ongoing subterranean coal mine fire. ISME J. 2017;11:1447–59.Article 

    Google Scholar 
    Lennon JT, den Hollander F, Wilke-Berenguer M, Blath J. Principles of seed banks and the emergence of complexity from dormancy. Nat Commun. 2021;12:1–16.Article 

    Google Scholar 
    Philippot L, Griffiths BS, Langenheder S. Microbial community resilience across ecosystems and multiple disturbances. Microbiol Mol Biol Rev. 2021;85:e00026–20.Article 

    Google Scholar 
    Hu A, Li S, Zhang L, Wang H, Yang J, Luo Z, et al. Prokaryotic footprints in urban water ecosystems: a case study of urban landscape ponds in a coastal city, China. Environ Pollut. 2018;242:1729–39.Article 

    Google Scholar 
    Im J, Löffler FE. Fate of bisphenol A in terrestrial and aquatic environments. Environ Sci Technol. 2016;50:8403–16.Article 

    Google Scholar 
    Sun Q, Li M, Ma C, Chen X, Xie X, Yu CP. Seasonal and spatial variations of PPCP occurrence, removal and mass loading in three wastewater treatment plants located in different urbanization areas in Xiamen, China. Environ Pollut. 2016;208:371–81.Article 

    Google Scholar 
    Sun Q, Wang Y, Li Y, Ashfaq M, Dai L, Xie X, et al. Fate and mass balance of bisphenol analogues in wastewater treatment plants in Xiamen City, China. Environ Pollut. 2017;225:542–9.Article 

    Google Scholar 
    Sun Q, Li Y, Chou PH, Peng PY, Yu CP. Transformation of bisphenol A and alkylphenols by ammonia-oxidizing bacteria through nitration. Environ Sci Technol. 2012;46:4442–8.Article 

    Google Scholar 
    Zaayman M, Siggins A, Horne D, Lowe H, Horswell J. Investigation of triclosan contamination on microbial biomass and other soil health indicators. FEMS Microbiol Lett. 2017;364:1–6.Article 

    Google Scholar 
    Xie J, Zhao N, Zhang Y, Hu H, Zhao M, Jin H. Occurrence and partitioning of bisphenol analogues, triclocarban, and triclosan in seawater and sediment from East China Sea. Chemosphere. 2022;287:132218.Article 

    Google Scholar 
    Yamazaki E, Yamashita N, Taniyasu S, Lam J, Lam PKS, Moon HB, et al. Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India. Ecotoxicol Environ Saf. 2015;122:565–72.Article 

    Google Scholar 
    Kalyuzhny M, Shnerb NM. Dissimilarity-overlap analysis of community dynamics: opportunities and pitfalls. Methods Ecol Evol. 2017;8:1764–73.Article 

    Google Scholar 
    Wang J, Pan F, Soininen J, Heino J, Shen J. Nutrient enrichment modifies temperature-biodiversity relationships in large-scale field experiments. Nat Commun. 2016;7:1–9.
    Google Scholar 
    Hildebrand F, Tito RY, Voigt AY, Bork P, Raes J. Correction to: LotuS: an efficient and user-friendly OTU processing pipeline [Microbiome, 2, (2014), 30]. Microbiome. 2014;2:1–7.Article 

    Google Scholar 
    Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.Article 

    Google Scholar 
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high- throughput community sequencing data Intensity normalization improves color calling in SOLiD sequencing. Nat Methods. 2010;7:335–6.Article 

    Google Scholar 
    Klappenbach JA, Saxman PR, Cole JR, Schmidt TM. Rrndb: the ribosomal RNA operon copy number database. Nucleic Acids Res. 2001;29:181–4.Article 

    Google Scholar 
    Wu L, Yang Y, Chen S, Zhao M, Zhu Z, Yang S, et al. Long-term successional dynamics of microbial association networks in anaerobic digestion processes. Water Res. 2016;104:1–10.Article 

    Google Scholar 
    Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, Murray CJ, et al. Quantifying community assembly processes and identifying features that impose them. ISME J. 2013;7:2069–79.Article 

    Google Scholar 
    Stegen JC, Lin X, Fredrickson JK, Konopka AE. Estimating and mapping ecological processes influencing microbial community assembly. Front Microbiol. 2015;6:1–15.Article 

    Google Scholar 
    Webb CO, Ackerly DD, Kembel SW. Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics. 2008;24:2098–2100.Article 

    Google Scholar 
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21.Article 

    Google Scholar 
    Letunic I, Bork P. Interactive Tree of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:2–5.Article 

    Google Scholar 
    Anderson MJ. Permutation tests for univariate or multivariate analysis of variance and regression. Can J Fish Aquat Sci. 2001;58:626–39.Article 

    Google Scholar 
    Oksanen AJ, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, et al. Vegan: community ecology package. Encyclopedia of Food and Agricultural Ethics. 2019; 2395–6.Bashan A, Gibson TE, Friedman J, Carey VJ, Weiss ST, Hohmann EL, et al. Universality of human microbial dynamics. Nature. 2016;534:259–62.Article 

    Google Scholar 
    Vila JCC, Liu YY, Sanchez A. Dissimilarity–overlap analysis of replicate enrichment communities. ISME J. 2020;14:2505–13.Article 

    Google Scholar 
    Ahlmann-Eltze C, Patil I. ggsignif: significance Brackets for ‘ggplot2’. R package version 0.6.1. 2021.Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43.Article 

    Google Scholar 
    Glassman SI, Martiny JBH. Broadscale ecological patterns are robust to use of exact. mSphere. 2018;3:e00148–18.Article 

    Google Scholar 
    Lindström ES, Östman Ö. The importance of dispersal for bacterial community composition and functioning. PLoS One. 2011;6:e25883.Article 

    Google Scholar 
    Shen D, Langenheder S, Jürgens K. Dispersal modifies the diversity and composition of active bacterial communities in response to a salinity disturbance. Front Microbiol. 2018;9:2188.Article 

    Google Scholar 
    Zhou NA, Lutovsky AC, Andaker GL, Gough HL, Ferguson JF. Cultivation and characterization of bacterial isolates capable of degrading pharmaceutical and personal care products for improved removal in activated sludge wastewater treatment. Biodegradation. 2013;24:813–27.Article 

    Google Scholar 
    Thelusmond JR, Strathmann TJ, Cupples AM. Carbamazepine, triclocarban and triclosan biodegradation and the phylotypes and functional genes associated with xenobiotic degradation in four agricultural soils. Sci Total Environ. 2019;657:1138–49.Article 

    Google Scholar 
    Danzl E, Sei K, Soda S, Ike M, Fujita M. Biodegradation of bisphenol A, bisphenol F and bisphenol S in seawater. Int J Environ Res Public Health. 2009;6:1472–84.Article 

    Google Scholar 
    Zaborowska M, Wyszkowska J, Borowik A. Soil microbiome response to contamination with Bisphenol A, Bisphenol F and Bisphenol S. Int J Mol Sci. 2020;21:3529.Article 

    Google Scholar 
    Freilich S, Zarecki R, Eilam O, Segal ES, Henry CS, Kupiec M, et al. Competitive and cooperative metabolic interactions in bacterial communities. Nat Commun. 2011;2:587–9.Article 

    Google Scholar 
    Pacheco AR, Moel M, Segrè D. Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat Commun. 2019;10:103.Article 

    Google Scholar 
    Oh S, Choi D, Cha C-J. Ecological processes underpinning microbial community structure during exposure to subinhibitory level of triclosan. Sci Rep. 2019;9:4598.Article 

    Google Scholar 
    Hagberg A, Gupta S, Rzhepishevska O, Fick J, Burmølle M, Ramstedt M. Do environmental pharmaceuticals affect the composition of bacterial communities in a freshwater stream? A case study of the Knivsta river in the south of Sweden. Sci Total Environ. 2021;763:142991.Article 

    Google Scholar 
    Gao H, LaVergne JM, Carpenter CMG, Desai R, Zhang X, Gray K, et al. Exploring co-occurrence patterns between organic micropollutants and bacterial community structure in a mixed-use watershed. Environ Sci Process Impacts. 2019;21:867–80.Article 

    Google Scholar 
    Wolff D, Krah D, Dötsch A, Ghattas AK, Wick A, Ternes TA. Insights into the variability of microbial community composition and micropollutant degradation in diverse biological wastewater treatment systems. Water Res. 2018;143:313–24.Article 

    Google Scholar 
    Bajić D, Vila JCC, Blount ZD, Sánchez A. On the deformability of an empirical fitness landscape by microbial evolution. Proc Natl Acad Sci USA. 2018;115:11286–91.Article 

    Google Scholar 
    Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, et al. Patterns and Processes of Microbial Community Assembly. Microbiol Mol Biol Rev. 2013;77:342–56.Article 

    Google Scholar 
    Zhou J, Ning D. Stochastic community assembly: does it matter in microbial ecology? Microbiol Mol Biol Rev. 2017;81:1–32.Article 

    Google Scholar 
    Vellend M. Conceptual synthesis in community ecology. Q Rev Biol. 2010;85:183–206.Article 

    Google Scholar 
    Svoboda P, Lindström ES, Ahmed Osman O, Langenheder S. Dispersal timing determines the importance of priority effects in bacterial communities. ISME J. 2018;12:644–6.Article 

    Google Scholar 
    Bernstein HC. Reconciling ecological and engineering design principles for building microbiomes. mSystems. 2019;4:1–5.Article 

    Google Scholar 
    Borchert E, Hammerschmidt K, Hentschel U, Deines P. Enhancing microbial pollutant degradation by integrating eco-evolutionary principles with environmental biotechnology. Trends Microbiol. 2021;29:908–18.Article 

    Google Scholar 
    Rocca JD, Muscarella ME, Peralta AL, Izabel-Shen D, Simonin M. Guided by microbes: applying community coalescence principles for predictive microbiome engineering. mSystems. 2021;6:e00538–21.Article 

    Google Scholar 
    Nemergut DR, Knelman JE, Ferrenberg S, Bilinski T, Melbourne B, Jiang L, et al. Decreases in average bacterial community rRNA operon copy number during succession. ISME J. 2016;10:1147–56.Article 

    Google Scholar 
    Frost LS, Leplae R, Summers AO, Toussaint A, Edmonton A. Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol. 2005;3:722–32.Ullastres A, Merenciano M, Guio L, Gonz J. Transposable elements: a toolkit for stress and environmental adaptation in bacteria. Stress Environ Regul Gene Expr Adapt Bact. 2016;1:137–45.
    Google Scholar 
    Chang CY, Vila JCC, Bender M, Li R, Mankowski MC, Bassette M, et al. Engineering complex communities by directed evolution. Nat Ecol Evol. 2021;5:1011–23.Article 

    Google Scholar  More

  • in

    Asymmetric host movement reshapes local disease dynamics in metapopulations

    Ritchie, H. & Roser, M. Urbanization. Our World in Data (2018). https://ourworldindata.org/urbanization.Chen, H., Weersink, A., Beaulieu, M., Lee, Y. N. & Nagelschmitz, K. A historical review of changes in farm size in canada. Tech. Rep., University of Guelph, Institute for the Advanced Study of Food and and Agricultural Policy (2019).Gudelj, I. & White, K. Spatial heterogeneity, social structure and disease dynamics of animal populations. Theor. Popul. Biol. 66, 139–149 (2004).CAS 
    MATH 
    Article 

    Google Scholar 
    Augustin, N., Mugglestone, M. A. & Buckland, S. T. An autologistic model for the spatial distribution of wildlife. J. Appl. Ecol. 339–347 (1996).Karlsson, E. K., Kwiatkowski, D. P. & Sabeti, P. C. Natural selection and infectious disease in human populations. Nat. Rev. Genetics 15, 379–393 (2014).CAS 
    Article 

    Google Scholar 
    Fornaciari, A. Environmental microbial forensics and archaeology of past pandemics. Microbiol. Spect. 5, 5–1 (2017).Article 

    Google Scholar 
    Thèves, C., Crubézy, E. & Biagini, P. History of smallpox and its spread in human populations. Microbiol. Spect. 4, 4–4 (2016).Article 

    Google Scholar 
    Coltart, C. E., Lindsey, B., Ghinai, I., Johnson, A. M. & Heymann, D. L. The ebola outbreak, 2013–2016: old lessons for new epidemics. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160297 (2017).Article 

    Google Scholar 
    Colizza, V., Barrat, A., Barthelemy, M., Valleron, A.-J. & Vespignani, A. Modeling the worldwide spread of pandemic influenza: Baseline case and containment interventions. PLOS Med. 4, e13 (2007).Article 

    Google Scholar 
    Lüthy, I. A., Ritacco, V. & Kantor, I. N. One hundred years after the “Spanish” flu. Medicina 78, 113–118 (2018).
    Google Scholar 
    Zhang, Y., Zhang, A. & Wang, J. Exploring the roles of high-speed train, air and coach services in the spread of COVID-19 in China. Transport Policy 94, 34–42 (2020).Article 

    Google Scholar 
    Coelho, M. T. P. et al. Global expansion of COVID-19 pandemic is driven by population size and airport connections. PeerJ 8, e9708 (2020).Article 

    Google Scholar 
    Tompkins, D. M., Carver, S., Jones, M. E., Krkošek, M. & Skerratt, L. F. Emerging infectious diseases of wildlife: A critical perspective. Trends Parasitol. 31, 149–159 (2015).Article 

    Google Scholar 
    Soulsbury, C. D. & White, P. C. Human-wildlife interactions in urban areas: A review of conflicts, benefits and opportunities. Wildl. Res. 42, 541–553 (2015).Article 

    Google Scholar 
    VanderWaal, K. L. et al. Network analysis of cattle movements in Uruguay: Quantifying heterogeneity for risk-based disease surveillance and control. Prevent. Vet. Med. 123, 12–22 (2016).Article 

    Google Scholar 
    Rossi, G. et al. The potential role of direct and indirect contacts on infection spread in dairy farm networks. PLOS Comput. Biol. 13, e1005301 (2017).Article 

    Google Scholar 
    Stoddard, S. T. et al. The role of human movement in the transmission of vector-borne pathogens. PLOS Neg. Trop. Dis. 3, e481 (2009).Article 

    Google Scholar 
    Cosner, C. Models for the effects of host movement in vector-borne disease systems. Math. Biosci. 270, 192–197 (2015).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Scherer, P.C. Infection on the move: individual host movement drives disease persistence in spatially structured landscapes. Dr. rer. nat. thesis, Universität Potsdam (2019).Riley, S. Large-scale spatial-transmission models of infectious disease. Science 316, 1298–1301 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Dougherty, E. R., Seidel, D. P., Carlson, C. J., Spiegel, O. & Getz, W. M. Going through the motions: Incorporating movement analyses into disease research. Ecol. Lett. 21, 588–604 (2018).Article 

    Google Scholar 
    Daversa, D., Fenton, A., Dell, A., Garner, T. & Manica, A. Infections on the move: How transient phases of host movement influence disease spread. Proc. R. Soc. B Biol. Sci. 284, 20171807 (2017).Article 

    Google Scholar 
    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, 2001).Book 

    Google Scholar 
    Kobayashi, K. & Okumura, M. The growth of city systems with high-speed railway systems. Ann. Region. Sci. 31, 39–56 (1997).Article 

    Google Scholar 
    VanderWaal, K., Perez, A., Torremorrell, M., Morrison, R. M. & Craft, M. Role of animal movement and indirect contact among farms in transmission of porcine epidemic diarrhea virus. Epidemics 24, 67–75 (2018).Article 

    Google Scholar 
    Hanski, I. Metapopulation dynamics. Nature 396, 41–49 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    Colizza, V. & Vespignani, A. Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations. J. Theor. Biol. 251, 450–467 (2008).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Wang, L. & Li, X. Spatial epidemiology of networked metapopulation: An overview. Chin. Sci. Bull. 59, 3511–3522 (2014).Article 

    Google Scholar 
    Ruxton, G. D. Low levels of immigration between chaotic populations can reduce system extinctions by inducing asynchronous regular cycles. Proc. R. Soc. Lond. Seri. B Biol. Sci. 256, 189–193 (1994).ADS 
    Article 

    Google Scholar 
    Earn, D. J. D., Rohani, P. & Grenfell, B. T. Persistence chaos and synchrony in ecology and epidemiology. Proc. R. Soc. Lond. Seri. B Biol. Sci. 265, 7–10 (1998).CAS 
    Article 

    Google Scholar 
    Rosenzweig, M. L. Paradox of enrichment: Destabilization of exploitation ecosystems in ecological time. Science 171, 385–387 (1971).ADS 
    CAS 
    Article 

    Google Scholar 
    Hilker, F. M. & Schmitz, K. Disease-induced stabilization of predator-prey oscillations. J. Theor. Biol. 255, 299–306 (2008).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Brown, J. H. & Kodric-Brown, A. Turnover rates in insular biogeography: Effect of immigration on extinction. Ecology 58, 445–449 (1977).Article 

    Google Scholar 
    Philipson, T. Economic epidemiology and infectious diseases. Handb. Health Econ. 1, 1761–1799 (2000).Article 

    Google Scholar 
    Murdoch, W. W., Briggs, C. J. & Nisbet, R. M. Consumer-Resource Dynamics, Monographs in Population Biology Vol. 36 (Princeton University Press, 2003).
    Google Scholar 
    Murdoch, W. W. & Oaten, A. Predation and population stability. In Advances in Ecological Research, vol. 9, 1–131 (Elsevier, 1975).Bolker, B. & Grenfell, B. T. Space, persistence and dynamics of measles epidemics. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 348, 309–320 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Keeling, M. J. & Rohani, P. Estimating spatial coupling in epidemiological systems: a mechanistic approach. Ecol. Lett. 5, 20–29 (2002).Article 

    Google Scholar 
    Arino, J. Spatio-temporal spread of infectious pathogens of humans. Infect. Dis. Model. 2, 218–228 (2017).
    Google Scholar 
    Keeling, M. J. & Rohani, P. Modeling Infectious Diseases in Humans and Animals (Princeton University Press, 2011).MATH 
    Book 

    Google Scholar 
    Wilson, E. B. & Worcester, J. The spread of an epidemic. Proc. Nat. Acad. Sci. 31, 327 (1945).ADS 
    CAS 
    Article 

    Google Scholar 
    Rushton, S. & Mautner, A. The deterministic model of a simple epidemic for more than one community. Biometrika 42, 126–132 (1955).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Lourenço, J. & Recker, M. Natural, persistent oscillations in a spatial multi-strain disease system with application to dengue. PLOS Comput. Biol. 9, e1003308 (2013).ADS 
    Article 

    Google Scholar 
    Wikramaratna, P. S., Pybus, O. G. & Gupta, S. Contact between bird species of different lifespans can promote the emergence of highly pathogenic avian influenza strains. Proc. Natl. Acad. Sci. 111, 10767–10772 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Xiao, Y., Zhou, Y. & Tang, S. Modelling disease spread in dispersal networks at two levels. Math. Med. Biol. J. IMA 28, 227–244 (2011).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Arino, J., Ducrot, A. & Zongo, P. A metapopulation model for malaria with transmission-blocking partial immunity in hosts. J. Math. Biol. 64, 423–448 (2012).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    De Roos, A. M., Mccauley, E. & Wilson, W. G. Mobility versus density-limited predator-prey dynamics on different spatial scales. Proc. R. Soc. Lond. Ser. B Biol. Sci. 246, 117–122 (1991).ADS 
    Article 

    Google Scholar 
    Dey, S., Goswami, B. & Joshi, A. Effects of symmetric and asymmetric dispersal on the dynamics of heterogeneous metapopulations: Two-patch systems revisited. J. Theor. Biol. 345, 52–60 (2014).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Anderson, R. M., Jackson, H. C., May, R. M. & Smith, A. M. Population dynamics of fox rabies in Europe. Nature 289, 765–771 (1981).ADS 
    CAS 
    Article 

    Google Scholar 
    Gupta, S., Ferguson, N. & Anderson, R. Chaos persistence, and evolution of strain structure in antigenically diverse infectious agents. Science 280, 912–915 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    Holland, M. D. & Hastings, A. Strong effect of dispersal network structure on ecological dynamics. Nature 456, 792–794 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    McCann, K., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    Singh, A. & Gakkhar, S. Synchronization of chaos in a food web in ecological systems. World Acad. Sci. Eng. Technol. 70, 94–98 (2010).
    Google Scholar 
    Gotelli, N. J. Metapopulation models: The rescue effect, the propagule rain, and the core-satellite hypothesis. American Naturalist 138, 768–776 (1991).Article 

    Google Scholar 
    Heino, M., Kaitala, V., Ranta, E. & Lindström, J. Synchronous dynamics and rates of extinction in spatially structured populations. Proc. R. Soc. Lond. Ser. B Biol. Sci. 264, 481–486 (1997).ADS 
    Article 

    Google Scholar 
    Molofsky, J. & Ferdy, J.-B. Extinction dynamics in experimental metapopulations. Proc. Natl. Acad. Sci. 102, 3726–3731 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Saxena, G., Prasad, A. & Ramaswamy, R. Amplitude death: The emergence of stationarity in coupled nonlinear systems. Phys. Rep. 521, 205–228 (2012).ADS 
    Article 

    Google Scholar 
    Majhi, S. & Ghosh, D. Amplitude death and resurgence of oscillation in networks of mobile oscillators. Europhys. Lett. 118, 40002 (2017).ADS 
    Article 

    Google Scholar 
    Shen, C., Chen, H. & Hou, Z. Mobility and density induced amplitude death in metapopulation networks of coupled oscillators. Chaos 24, 043125 (2014).MATH 
    Article 

    Google Scholar 
    Karnatak, R., Ramaswamy, R. & Feudel, U. Conjugate coupling in ecosystems: Cross-predation stabilizes food webs. Chaos Solitons Fractals 68, 48–57 (2014).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Bolker, B. M. & Grenfell, B. T. Chaos and biological complexity in measles dynamics. Proc. R. Soc. Lond. Ser. B Biol. Sci. 251, 75–81 (1993).ADS 
    CAS 
    Article 

    Google Scholar 
    Olsen, L. F., Truty, G. L. & Schaffer, W. M. Oscillations and chaos in epidemics: A nonlinear dynamic study of six childhood diseases in Copenhagen, Denmark. Theor. Popul. Biol. 33, 344–370 (1988).MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar 
    Lundberg, P., Ranta, E., Ripa, J. & Kaitala, V. Population variability in space and time. Trends Ecol. Evolut. 15, 460–464 (2000).CAS 
    Article 

    Google Scholar 
    Dekker, A. Realistic social networks for simulation using network rewiring. In International Congress on Modelling and Simulation, 677–683 (2007).Milgram, S. The small world problem. Psychol. Today 2, 60–67 (1967).
    Google Scholar 
    Sallaberry, A., Zaidi, F. & Melançon, G. Model for generating artificial social networks having community structures with small-world and scale-free properties. Soc. Netw. Anal. Min. 3, 597–609 (2013).Article 

    Google Scholar 
    Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl. Acad. Sci. 104, 19891–19896 (2007).ADS 
    CAS 
    MATH 
    Article 

    Google Scholar 
    Stouffer, D. B. & Bascompte, J. Compartmentalization increases food-web persistence. Proc. Natl. Acad. Sci. 108, 3648–3652 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Girvan, M. & Newman, M. E. Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99, 7821–7826 (2002).ADS 
    MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar 
    Krause, A. E., Frank, K. A., Mason, D. M., Ulanowicz, R. E. & Taylor, W. W. Compartments revealed in food-web structure. Nature 426, 282–285 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    Rezende, E. L., Albert, E. M., Fortuna, M. A. & Bascompte, J. Compartments in a marine food web associated with phylogeny, body mass, and habitat structure. Ecol. Lett. 12, 779–788 (2009).Article 

    Google Scholar 
    Pastor-Satorras, R. & Vespignani, A. Epidemics and immunization in scale-free networks. In Handbook of Graphs and Networks, 111–130 (Wiley Online Library, 2002).Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E. & Getz, W. M. Superspreading and the effect of individual variation on disease emergence. Nature 438, 355–359 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Shirley, M. D. & Rushton, S. P. The impacts of network topology on disease spread. Ecol. Complex. 2, 287–299 (2005).Article 

    Google Scholar 
    Keeling, M. J. & Eames, K. T. Networks and epidemic models. J. R. Soc. Interface 2, 295–307 (2005).Article 

    Google Scholar 
    Godfrey, S. S., Bull, C. M., James, R. & Murray, K. Network structure and parasite transmission in a group living lizard the gidgee skink, Egernia stokesii. Behav. Ecol. Sociobiol. 63, 1045–1056 (2009).Article 

    Google Scholar 
    VanderWaal, K. L., Atwill, E. R., Hooper, S., Buckle, K. & McCowan, B. Network structure and prevalence of Cryptosporidium in Belding’s ground squirrels. Behav. Ecol. Sociobiol. 67, 1951–1959 (2013).Article 

    Google Scholar 
    Proulx, S. R., Promislow, D. E. & Phillips, P. C. Network thinking in ecology and evolution. Trends Ecol. Evolut. 20, 345–353 (2005).Article 

    Google Scholar 
    Craft, M. E. & Caillaud, D. Network models: An underutilized tool in wildlife epidemiology?. Interdiscip. Perspect. Infect. Dis. 2011, (2011).Bajardi, P. et al. Human mobility networks, travel restrictions, and the global spread of 2009 h1n1 pandemic. PloS one 6, e16591 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Gog, J. R. et al. Seven challenges in modeling pathogen dynamics within-host and across scales. Epidemics 10, 45–48 (2015).Article 

    Google Scholar 
    Cen, X., Feng, Z. & Zhao, Y. Emerging disease dynamics in a model coupling within-host and between-host systems. J. Theor. Biol. 361, 141–151 (2014).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Meakin, S. R. & Keeling, M. J. Correlations between stochastic epidemics in two interacting populations. Epidemics 26, 58–67 (2019).Article 

    Google Scholar 
    Machado, G. et al. Identifying outbreaks of porcine epidemic diarrhea virus through animal movements and spatial neighborhoods. Sci. Rep. 9, 1–12 (2019).
    Google Scholar 
    Tonkin, J. D. et al. The role of dispersal in river network metacommunities: Patterns, processes, and pathways. Freshwater Biol. 63, 141–163 (2018).Article 

    Google Scholar 
    Pedersen, T. L. tidygraph: a tidy API for graph manipulation (2019). R package version 1.1.2.Rackauckas, C. & Nie, Q. Differentialequations.jl–a performant and feature-rich ecosystem for solving differential equations in Julia. J. Open Res. Softw. 5 (2017).Rackauckas, C. & Nie, Q. Confederated modular differential equation APIS for accelerated algorithm development and benchmarking. Adv. Eng. Softw. 132, 1–6 (2019).Article 

    Google Scholar 
    Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: A fresh approach to numerical computing. SIAM Rev. 59, 65–98 (2017).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2020). More

  • in

    Pingers are effective in reducing net entanglement of river dolphins

    Lal Mohan, R. S., Dey, S. C., Bairagi, S. P. & Roy, S. On a survey of the Ganges River dolphin Platanista gangetica of Bramaputra River, Assam. J. Bombay Nat. Hist. Soc. 94, 483–495 (1997).
    Google Scholar 
    Sinha, R.K., et al. Status and distribution of the Ganges susu (Platanista gangetica) in Ganges River system of India and Nepal in Biology and conservation of freshwater cetaceans in Asia (eds. Reeves, R. R., Smith, B. D. & Kasuya, T). 42–48 (Switzerland: Occasional Paper of the IUCN Species Survival Commission, 2000)Sinha, R. K. & Kannan, K. Ganges River dolphin: an overview of biology, ecology, and conservation status in India. Ambio. 43,1029–1046 (2014).
    Google Scholar 
    Anderson, J. Anatomical and Zoological Researches: Comprising an Account of the Zoological Results of the Two Expeditions to Western Yunnan in 1868 and 1875; and A Monograph of the Two Cetacean Genera, Platanista and Orcella-Vol. 1 (Text). Vol. 1 (Bernard Quaritch, 1878).Herald, E. S. et al. Blind river dolphin: first side-swimming cetacean. Science 166, 1408–1410 (1969).ADS 
    CAS 

    Google Scholar 
    Herald, E. S. Field and aquarium study of the blind River Dolphin (Platanista Gangetica) (California Academy of Sciences San Fransico Steinhart Aquarium, 1969).Pilleri, G., Zbinden, K., Gihr, M. & Kraus, C. Sonar clicks, directionality of the emission field and echolocating behaviour of the Indus dolphin (Platanista indi, Blyth, 1859). Invest. Cetacea Brain Anat. Inst. Berne Switzerl. 13–43 (1976).Jensen, F. H. et al. Clicking in shallow rivers: short-range echolocation of Irrawaddy and Ganges river dolphins in a shallow, acoustically complex habitat. PLoS ONE 8, e59284 (2013).ADS 
    CAS 

    Google Scholar 
    Pence, E.A. Monofilament gill net acoustic study. (National Mammal Laboratory, Contract 40-ABNF-5-1988,1986)Jefferson, T. A., Würsig, B. & Fertl, D. Cetacean Detection and Responses to Fishing Gear in Marine Mammal Sensory Systems (eds. Thomas, J.A., Kastelein, R.A. & Supin, A.Y.) 663–684 (Springer, 1992)
    Google Scholar 
    Mansur, E. F., Smith, B. D., Mowgli, R. M. & Diyan, M. A. A. Two incidents of fishing gear entanglement of Ganges River dolphins (Platanista gangetica gangetica) in waterways of the Sundarbans mangrove forest, Bangladesh. Aquat. Mamm. 34, 362 (2008).
    Google Scholar 
    Sinha, R. K. An alternative to dolphin oil as a fish attractant in the Ganges River system: conservation of the Ganges River dolphin.
    Biol. Conserv. 107, 253–257 https://doi.org/10.1016/S0006-3207(02)00058-7 (2002).Article 

    Google Scholar 
    Qureshi, Q. et al. Development of conservation action plan for river dolphin. 228 (Wildlife Institute of India, Dehradun, Uttarakhand, 2018).Kolipakam, V. et al. Evidence for the continued use of river dolphin oil for bait fishing and traditional medicine: implications for conservation. Heliyon 6, e04690 (2020).
    Google Scholar 
    Wakid, A. Initiative to reduce the fishing pressures in and around identified habitats of endangered Gangetic dolphin in Brahmaputra River system. (Assam, 2010).Braulik, G.T. & Smith, B.D. Platanista gangetica (amended version of 2017
    assessment). The IUCN Red List of Threatened Species, e.T41758A151913336. https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T41758A151913336.en (2019).Dawson, S. M., Northridge, S., Waples, D. & Read, A. J. To ping or not to ping: the use of active acoustic devices in mitigating interactions between small cetaceans and gillnet fisheries. Endanger. Species Res. 19, 201–221 (2013)
    Google Scholar 
    Reeves, R. R., McClellan, K. & Werner, T. B. Marine mammal bycatch in gillnet and other entangling net fisheries, 1990 to 2011. Endanger. Species Res. 20, 71–97 (2013).
    Google Scholar 
    Moore, M. J. et al. Fatally entangled right whales can die extremely slowly in OCEANS 2006. 1–3 (IEEE, 2006).Meÿer, M.A. et al. Trends and interventions in large whale entanglement along the South African coast. Afr. J. Mar. Sci. 33, 429–439 (2011).
    Google Scholar 
    Knowlton, A. R., Hamilton, P. K., Marx, M. K., Pettis, H. M. & Kraus, S. D. Monitoring North Atlantic right whale Eubalaena glacialis entanglement rates: a 30 year retrospective. Mar. Ecol. Prog. Ser. 466, 293–302 (2012).ADS 

    Google Scholar 
    Knowlton, A. R. et al. Effects of fishing rope strength on the severity of large whale entanglements. Conserv. Biol. 30, 318–328 (2016).
    Google Scholar 
    Pace, R. M. III., Cole, T. V. & Henry, A. G. Incremental fishing gear modifications fail to significantly reduce large whale serious injury rates. Endanger. Species Res. 26, 115–126 (2014).
    Google Scholar 
    Salvador, G., Kenney, J. & Higgins, J. 2008 Supplement to the Large whale gear research summary. NOAA/Fisheries Northeast Regional Office, Protected Resources Division, Gloucester, MA (2008).van der Hoop, J. M. et al. Assessment of management to mitigate anthropogenic effects on large whales. Conserv. Biol. 27, 121–133 (2013).
    Google Scholar 
    Hamilton, S. & Baker, G. B. Technical mitigation to reduce marine mammal bycatch and entanglement in commercial fishing gear: lessons learnt and future directions. Rev. Fish Biol. Fish. 29, 223–247 (2019).
    Google Scholar 
    Bordino, P., Mackay, A. I., Werner, T. B., Northridge, S. & Read, A. Franciscana bycatch is not reduced by acoustically reflective or physically stiffened gillnets. Endanger. Species Res. 21, 1–12 (2013).
    Google Scholar 
    Dawson, S. M. Incidental catch of Hector’s dolphin in inshore gillnets. Mar. Mamm. Sci. 7, 283–295 (1991).
    Google Scholar 
    Mooney, T. A., Nachtigall, P. E. & Au, W. W. Target strength of a nylon monofilament and an acoustically enhanced gillnet: predictions of biosonar detection ranges. Aquat. Mamm. 30, 220–226 (2004).
    Google Scholar 
    Northridge, S., Sanderson, D., Mackay, A. & Hammond, P. Analysis and mitigation of cetacean bycatch in UK fisheries. Final Report
    to DEFRA, Project MF0726, Sea Mammal Research Unit, School of Biology, University of St. Andrews (2003).Mangel, J. C. et al. Illuminating gillnets to save seabirds and the potential for multi-taxa bycatch mitigation. R. Soc. Open Sci. 5, 180254 (2018).ADS 

    Google Scholar 
    Stephenson, P. C. & Wells, S. Evaluation of the effectiveness of reducing dolphin catches with pingers and exclusion grids in the Pilbara trawl fishery. (Department of Fisheries, Western Australia, 2006).Santana-Garcon, J. et al. Risk versus reward: Interactions, depredation rates, and bycatch mitigation of dolphins in demersal fish trawls. Can. J. Fish. Aquat. Sci. 75, 2233–2240 (2018).
    Google Scholar 
    Carretta, J., Barlow, J. & Enriquez, L. Acoustic pingers eliminate beaked whale bycatch in a gill net fishery. Mar. Mamm. Sci. 24, 956–961 (2008).
    Google Scholar 
    Bordino, P. et al. Reducing incidental mortality of Franciscana dolphin Pontoporia blainvillei with acoustic warning devices attached to fishing nets. Mar. Mamm. Sci. 18, 833–842 (2002).
    Google Scholar 
    Khan, U. & Willems, D. Report of the Trinational workshop on the Irrawaddy Dolphin, 1st to 4th December 2020. 41 (WWF, Pakistan & Netherlands, 2021).Deori, S. et al. PINGERS: can be the eyes of blind ganges dolphins (Platanista Gangetica Gangetica, Roxburgh 1801). J. Sci. Trans. Environ. Technov. 11, 169–178 (2018).
    Google Scholar 
    Kraus, S. D. The once and future ping: challenges for the use of acoustic deterrents in fisheries. Mar. Technol. Soc. J. 33, 90 (1999).
    Google Scholar 
    Mate, B. R. & Harvey, J. T. Acoustical deterrents in marine mammal conflicts with fisheries. a workshop held February 17–18, 1986 at Newport, Oregon. NTIS, SPRINGFIELD, VA(USA) (1987).Favaro, L., Gnone, G. & Pessani, D. Postnatal development of echolocation abilities in a bottlenose dolphin (Tursiops truncatus): Temporal organization. Zoo Biol. 32, 210–215 (2013).
    Google Scholar 
    Dey, M., Krishnaswamy, J., Morisaka, T. & Kelkar, N. Interacting effects of vessel noise and shallow river depth elevate metabolic stress in Ganges river dolphins. Sci. Rep. 9, 15426. https://doi.org/10.1038/s41598-019-51664-1 (2019).ADS 

    Google Scholar 
    Kastelein, R. A. et al. Effects of acoustic alarms, designed to reduce small cetacean bycatch in gillnet fisheries, on the behaviour of North Sea fish species in a large tank. Mar. Environ. Res. 64, 160–180 (2007).CAS 

    Google Scholar 
    Kraus, S. et al. Acoustic alarms reduce porpoise mortality. Nature 388, 525 (1997).ADS 
    CAS 

    Google Scholar 
    Roberts, B. L. & Read, A. J. Field assessment of C-POD performance in detecting echolocation click trains of bottlenose dolphins (Tursiops truncatus). Mar. Mamm. Sci. 31, 169–190 (2015).
    Google Scholar 
    Wickham, H. ggplot2: elegant graphics for data analysis. (Springer-Verlag, New York, 2009).RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com/ (2021).Crawley, M. J. Statistics: An Introduction using R (Wiley, 2005).MATH 

    Google Scholar 
    Perrin, W. F., Donovan, G.P. & Barlow, J. Report of the workshop on mortality of cetaceans in passive fishing nets and traps. Rep. Int. Whal. Commn. 1–71 (Cambridge: IWC, 1994).Read, A. J., Drinker, P. & Northridge, S. Bycatch of marine mammals in US and global fisheries. Conserv. Biol. 20, 163–169 (2006).
    Google Scholar 
    Reeves, R. & Leatherwood, S. Action plan for the conservation of cetaceans: dolphins, porpoises, and whales. IUCN/SSC Cetacean Specialist Group (IUCN Cambridge, 1998).Smith, B. D. & Braulik, G. Susu and Bhulan : Platanista gangetica gangetica and P. g. minor in Encyclopedia of Marine Mammals. 1135–1139 (Academic Press Ltd – Elsevier Science Ltd, 2009).Wakid, A. Status and distribution of the endangered Gangetic dolphin (Platanista gangetica gangetica) in the Brahmaputra River within India in 2005. Curr. Sci., 97, 1143–1151 (2009).
    Google Scholar 
    D’agrosa, C., Lennert-Cody, C. E. & Vidal, O. Vaquita bycatch in Mexico’s artisanal gillnet fisheries: driving a small population to extinction. Conserv. Biol. 14, 1110–1119 (2000).
    Google Scholar 
    Jaramillo-Legorreta, A. et al. Saving the vaquita: immediate action, not more data. Conserv. Biol., 21, 1653–1655 (2007).
    Google Scholar 
    Turvey, S. T. et al. First human-caused extinction of a cetacean species?. Biol. Lett. 3, 537–540 (2007).
    Google Scholar 
    Bashir, T., Khan, A., Gautam, P. & Behera, S. K. Abundance and prey availability assessment of Ganges River dolphin (Platanista gangetica gangetica) in a stretch of Upper Ganges River, India. Aquat. Mamm. 36, 19–26 (2010).
    Google Scholar 
    Braulik, G.T. & Smith, B.D. Platanista gangetica. The IUCN Red List of Threatened Species, e.T41758A50383612. https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T41758A50383612.en (2017).Hastie, G. D., Wilson, B., Wilson, L., Parsons, K. M. & Thompson, P. M. Functional mechanisms underlying cetacean distribution patterns: hotspots for bottlenose dolphins are linked to foraging. Mar. Biol. 144, 397–403 (2004).
    Google Scholar 
    Smith, A. M. & Smith, B. D. Review of status and threats to river cetaceans and recommendations for their conservation. Environ. Rev. 6, 189–206 (1998).
    Google Scholar 
    Wedekin, L., Daura-Jorge, F., Piacentini, V. & Simões-Lopes, P. Seasonal variations in spatial usage by the estuarine dolphin, Sotalia guianensis (van Bénéden, 1864)(Cetacea; Delphinidae) at its southern limit of distribution. Brazil. J. Biol. 67, 1–8 (2007).CAS 

    Google Scholar 
    Omeyer, L. et al. Assessing the effects of banana pingers as a bycatch mitigation device for harbour porpoises (Phocoena phocoena). Front. Mar. Sci. 285 (2020).Barlow, J. & Cameron, G. A. Field experiments show that acoustic pingers reduce marine mammal bycatch in the California drift gill net fishery. Mar. Mamm. Sci. 19, 265–283 (2003).
    Google Scholar 
    Amano, M., Kusumoto, M., Abe, M. & Akamatsu, T. Long-term effectiveness of pingers on a small population of finless porpoises in Japan. Endanger. Species Res. 32, 35–40 (2017).
    Google Scholar 
    Clay, T. A., Alfaro-Shigueto, J., Godley, B. J., Tregenza, N. & Mangel, J. C. Pingers reduce the activity of Burmeister’s porpoise around small-scale gillnet vessels. Mar. Ecol. Prog. Ser. 626, 197–208 (2019).ADS 

    Google Scholar 
    Kyhn, L. A. et al. Pingers cause temporary habitat displacement in the harbour porpoise Phocoena phocoena. Mar. Ecol. Prog. Ser. 526, 253–265 (2015).ADS 

    Google Scholar 
    Sugimatsu, H. et al. Study of acoustic characteristics of Ganges river dolphin calf using echolocation clicks recorded during long-term in-situ observation in 2012 OCEANS. 1–7 (IEEE, 2012).Ayadi, A., Ghorbel, M. & Bradai, M. N. Do pingers reduce interactions between bottlenose dolphins and trammel nets around the Kerkennah Islands (Central Mediterranean Sea)?. Cahiers Biol. Mar. 54, 375–383 (2013).
    Google Scholar 
    Carretta, J. V. & Barlow, J. Long-term effectiveness, failure rates, and “dinner bell” properties of acoustic pingers in a gillnet fishery. Mar. Technol. Soc. J. 45, 7–19 (2011).
    Google Scholar 
    Read, A. J., Waples, D. M., Urian, K. W. & Swanner, D. Fine-scale behaviour of bottlenose dolphins around gillnets. Proc. R. Soc. Lond. Ser. B Biol. Sci. 270, S90–S92 (2003).
    Google Scholar 
    Olesiuk, P. F., Nichol, L. M., Sowden, M. J. & Ford, J. K. Effect of the sound generated by an acoustic harassment device on the relative abundance and distribution of harbor porpoises (Phocoena phocoena) in Retreat Passage, British Columbia. Mar. Mamm. Sci. 18, 843–862 (2002).
    Google Scholar 
    Cox, T. M., Read, A. J., Solow, A. & Tregenza, N. Will harbour porpoises (Phocoena phocoena) habituate to pingers?. J. Cetacean Res. Manag. 3, 81–86 (2001).
    Google Scholar 
    Bruno, C. A. et al. Acoustic deterrent devices as mitigation tool to prevent dolphin-fishery interactions in the Aeolian Archipelago (Southern Tyrrhenian Sea, Italy). Mediterr. Mar. Sci. 22, 408–421 (2021).
    Google Scholar 
    Enger, P. S. Frequency discrimination in teleosts—central or peripheral in Hearing and sound communication in fishes (eds. Tavolga, W. N. et al.) 243–255 (Springer-Verlag, New York, 1981).
    Google Scholar 
    Halvorsen, M. B., Casper, B. M., Matthews, F., Carlson, T. J. & Popper, A. N. Effects of exposure to pile-driving sounds on the lake sturgeon, Nile tilapia and hogchoker. Proc. R. Soc. B Biol. Sci. 279, 4705–4714 (2012).
    Google Scholar 
    Ladich, F. Sound communication in fishes and the influence of ambient and anthropogenic noise. Bioacoustics 17, 34–38 (2008).
    Google Scholar 
    McCauley, R. D., Fewtrell, J. & Popper, A. N. High intensity anthropogenic sound damages fish ears. J. Acoust. Soc. Am. 113, 638–642 (2003).ADS 

    Google Scholar 
    Slabbekoorn, H. et al. A noisy spring: the impact of globally rising underwater sound levels on fish. Trends Ecol. Evol. 25, 419–427 (2010).
    Google Scholar 
    Gazo, M., Gonzalvo, J. & Aguilar, A. Pingers as deterrents of bottlenose dolphins interacting with trammel nets. Fish. Res. 92, 70–75 (2008).
    Google Scholar 
    Waples, D. M. et al. A field test of acoustic deterrent devices used to reduce interactions between bottlenose dolphins and a coastal gillnet fishery. Biol. Conserv. 157, 163–171 (2013).
    Google Scholar 
    Leaper, R. & Calderan, S. Review of methods used to reduce risks of cetacean bycatch and entanglements. CMS Tech. Ser. 38 (UNEP/CMS Secretariat, Bonn, Germany, 2018). More

  • in

    Low level of anthropization linked to harsh vertebrate biodiversity declines in Amazonia

    Study areaThe study was conducted on two rivers in north-eastern Amazonia sensu lato, including the Guiana Shield and the Amazon River drainage (Fig. 2). The climate of the entire study area is homogeneous and the region is covered by dense, uniform lowland primary rainforest51. The altitude is in the range of 0–860 m a.s.l. The regional climate is equatorial, and the annual rainfall ranges from 3600 mm in the northeast to 2000 mm in the southwest. The Maroni River is 612 km long from its source to its estuary, and its watershed covers a surface of >68,000 km2 in Suriname and French Guiana. The Oyapock River (length, 404 km; area, 26,800 km2) is located in the state of Amapa in Brazil and in French Guiana.The foregoing river basins host nearly 400 freshwater fish species and more than 180 mammal species52,53. Most of the mammal species have a large distribution range, covering the entire study area53. The fish species have a less homogeneous distribution and a distinct upstream-downstream composition gradient54,55. Here, only large rivers were considered and most fish species were widespread over the whole study area. As habitat availability increases with river size, species richness is expected to increase upstream to dowsntream31,32. The Oyapock and Maroni river basins are among the last remaining wilderness areas on Earth17. Nevertheless, ecological disturbances are increasing there because of a growing human population and the development of small-scale gold mining activity. These disturbances have caused limited but diffuse deforestation23,56. The deforested areas currently comprise 0.67% of all Maroni and Oyapock catchments.SamplingEnvironmental DNA (eDNA) was collected from water samples at 74 locations (hereafter, sites) along the main channel and the large tributaries of the Maroni and Oyapock rivers (Fig. 2). Thirty-seven sites were sampled at each river basin. The minimum and maximum distances between adjacent sites were 1.07 and 50.20 km, respectively. The mean and median distances between adjacent sites were 10.18 and 9.14 km, respectively, and the standard deviation (SD) was 7.79 km. The sites were located from sea level to 157 m a.s.l. At all sites, the river was wider than 20 m and deeper than 1 m (Strahler orders 4–8; Supplementary Fig. 5). The physicochemical properties of the water slightly varied among sites. The temperature, pH, and conductivity were in the ranges of 28.4–33.2 °C, 6.5–7.6, and 16.9–54.6 µS/cm, respectively, at all sites except two estuarine locations where the conductivity was relatively high because of seawater incursion (Supplementary Data 2).The eDNA samples were collected during the dry seasons (October–November) of 2017 and 2018 for Maroni and Oyapock, respectively. At both rivers, the sites were sequentially sampled from downstream to upstream at a rate of 1–4 sites per day depending on the distance and travel time between sites. Following the protocol of ref. 45, we collected the eDNA by filtering two replicates of 34 L of water per site. A peristaltic pump (Vampire Sampler; Buerkle GmbH, Bad Bellingen, Germany) and single-use tubing were used to pump the water into a single-use filtration capsule (VigiDNA, pore size 0.45 μm; filtration surface 500 cm2, SPYGEN, Bourget-du-Lac, France). The tubing input was placed a few centimetres below the water surface in zones with high water flow as recommended by Cilleros et al.43. Sampling was performed in turbulent areas with rapid hydromorphologic units to ensure optimal eDNA homogeneity throughout the water column. To avoid eDNA cross-contamination among sites, the operator remained on emerging rocks downstream from the filtration area. At the end of filtration, the capsule was voided, filled with 80 mL CL1 preservation buffer (SPYGEN), and stored in the dark up to one month before the DNA extraction. No permits were required for the eDNA sampling and the access to all sites was legally permitted. The study complies with access and benefit permits ABSCH-IRCC-FR-246820-1 and ABSCH-IRCC-FR-245902-1, authorizing collection, transport and analysis of all environmental DNA samples used in this study.Laboratory procedures and bioinformatic analysesFor the DNA extraction, each filtration capsule was agitated on an S50 shaker (Ingenieurbüro CAT M. Zipperer GmbH, Ballrechten-Dottingen, Germany) at 800 rpm for 15 min, decanted into a 50 mL tube, and centrifuged at 15,000 × g and 6 °C for 15 min. The supernatant was removed with a sterile pipette, leaving 15 mL of liquid at the bottom of the tube. Subsequently, 33 mL of ethanol and 1.5 mL of 3 M sodium acetate were added to each 50 mL tube, and the mixtures were stored at −20 °C for at least one night. The tubes were then centrifuged at 15,000 × g and 6 °C for 15 min, and the supernatants were discarded. Then, 720 µL of ATL buffer from a DNeasy Blood & Tissue Extraction Kit (Qiagen, Hilden, Germany) was added. The tubes were vortexed, and the supernatants were transferred to 2 mL tubes containing 20 µL proteinase K. The tubes were then incubated at 56 °C for 2 h. DNA extraction was performed using a NucleoSpin Soil kit (Macherey-Nagel GmbH, Düren, Germany) starting from step six of the manufacturer’s instructions. Elution was performed by adding 100 µL of SE buffer twice. After the DNA extraction, the samples were tested for inhibition by qPCR following the protocol in ref. 57. Briefly, quantitative PCR was performed in duplicate for each sample. If at least one of the replicates showed a different Ct (Cycle threshold) than expected (at least 2 Cts), the sample was considered inhibited and diluted 5-fold before the amplification.For the fish, the “teleo” primers58 (forward: 3ʹ-ACACCGCCCGTCACTCT-5ʹ; reverse: 3ʹ-CTTCCGGTACACTTACCATG-5ʹ) were used as they efficiently discriminated local fish species43,45. For the mammals, the 12S-V5 vertebrate marker59 (forward: 3ʹ-TAGAACAGGCTCCTCTAG-5ʹ; reverse: 3ʹ-TTAGATACCCCACTATGC-5ʹ) was used as it also effectively distinguishes local mammal species44,60. The DNA amplifications were performed in a final volume of 25 μL containing 1 U AmpliTaq Gold DNA Polymerase (Applied Biosystems, Foster City, CA, USA), 0.2 μM of each primer, 10 mM Tris-HCl, 50 mM KCl, 2.5 mM MgCl2, 0.2 mM of each dNTP, and 3 μL DNA template. Human blocking primer was added to the mixture for the “teleo”58 (5′-ACCCTCCTCAAGTATACTTCAAAGGAC-C3-3′) and the “12S-V5” primers61 (5′-CTATGCTTAGCCCTAAACCTCAACAGTTAAATCAACAAAACTGCT-C3-3′) at final concentrations of 4 μM and 0.2 μg/μL bovine serum albumin (BSA; Roche Diagnostics, Basel, Switzerland). Twelve PCR replicates were performed per field sample. The forward and reverse primer tags were identical within each PCR replicate. The PCR mixture was denatured at 95 °C for 10 min, followed by 50 cycles of 30 s at 95 °C, 30 s at 55 °C for the “teleo” primers and 50 °C for the 12S-V5 primers, 1 min at 72 °C, and a final elongation step at 72 °C for 7 min. This step was conducted in a dedicated room for DNA amplification that is kept under negative air pressure and is physically separated from the DNA extraction rooms maintained under positive air pressure. The purified PCR products were pooled in equal volumes to achieve an expected sequencing depth of 500,000 reads per sample before DNA library preparation.For the fish analyses, 10 libraries were prepared using a PCR-free library protocol (https://www.fasteris.com/metafast) at Fasteris, Geneva, Switzerland. Four libraries were sequenced on an Illumina HiSeq 2500 (2 × 125 bp) (Illumina, San Diego, CA, USA) with a HiSeq SBS Kit v4 (Illumina), three were sequenced on a MiSeq (2 × 125 bp) (Illumina) with a MiSeq Flow Cell Kit Version3 (Illumina), and three libraries were sequenced on a NextSeq (2 × 150 bp + 8) (Illumina) with a NextSeq Mid kit (Illumina). The libraries run on the NextSeq were equally distributed in four lanes. Sequencing was performed according to the manufacturer’s instructions at Fasteris. For the mammal analyses, eight libraries were prepared using a PCR-free library protocol (https://www.fasteris.com/metafast) at Fasteris. Two libraries were sequenced on an Illumina HiSeq 2500 (2 × 125 bp) (Illumina) using a HiSeq Rapid Flow Cell v2 and a HiSeq Rapid SBS Kit v2 (Illumina), three libraries were prepared on a MiSeq (2 × 125 bp) (Illumina) with a MiSeq Flow Cell Kit Version3 (Illumina), and three libraries were prepared using a NextSeq (2 × 150 bp + 8) (Illumina) and a NextSeq Mid kit (Illumina). The libraries run on the NextSeq were equally distributed in four lanes. As different sequencing platforms were used (MiSeq and NextSeq for the Maroni and HiSeq 2500 and MiSeq for the Oyapock; Supplementary Fig. 6 and Supplementary Data 3), the possible influences of the platforms on the sequencing results were verified. To this end, we compared the differences in species numbers between the sample replicates assigned to the same platform (accounting for replicate effect only) against those of the sample replicates assigned to different platforms (accounting for replicate and platform effects). As there were more sites with their two replicates sequenced with the same platform than sites with their replicates sequenced with different platforms (see Supplementary Fig. 6), sites with replicates on the same platform were randomly selected for the comparisons. We repeated this procedure 50 times. The number of species between replicates sequenced on the same platform and those sequenced on different platforms did not differ for >98.5% of all fish and mammal samples (Supplementary Fig. 7 and Supplementary Note 2). Similar to these results, a previous study on 16 S rRNA amplicon has shown that the samples were not influenced by the Illumina sequencing platform used62.To monitor for contaminants, 13 negative extraction controls were performed for each of the primers (“teleo” and “12S-V5”); one control was amplified twice. All of them were amplified and sequenced by the same methods as the samples and in parallel to them. Therefore, for the negative extraction controls, 168 amplifications were prepared with the “teleo” primers (13 negative controls; one amplified and sequenced twice) and 156 amplifications with the “12S-V5” primers (13 negative controls). Fourteen negative PCR controls (ultrapure water; 12 replicates) were amplified and sequenced in parallel to the samples. Eight were amplified with the “teleo” primers and six were amplified with the “12S-V05” primers. Thus, for the PCR negative controls, there were 96 amplifications with the “teleo” primers and 72 amplifications with the Vert01 primers. Sequencing information for the controls is shown in Supplementary Data 3c.An updated version of the reference database from ref. 43 was used. There were 265 Guianese species for the fish analyses (ref. 47). The GenBank nucleotide database was consulted, but it contained little information on the Guianese fish species. Most of the sequences were derived from ref. 43. For the mammal analyses, the vertebrate database was built using ecoPCR software63 from the releases 134 and 138 of the European Nucleotide Archive (ENA), for the Maroni and Oyapock river samples, respectively. The two releases were compared, and it was established that the new mammal species added to each version did not originate from French Guiana. Hence, the results were not influenced by the EMBL release number. The relevant metabarcoding fragment was extracted from this database with ecoPCR63 and OBITools64. Therefore, the reference database comprised the local database of French Guianese mammals60, which references 576 specimens from 164 species as well as all available vertebrate species in EMBL.The sequence reads were analyzed with the OBITools package according to the protocol described by Valentini et al.58. Briefly, the forward and reverse reads were assembled with the illuminapairedend programme. The ngsfilter programme was then used to assign the sequences to each sample. A separate dataset was created for each sample by splitting the original dataset into several files with obisplit. Sequences shorter than 20 bp or occurring less than 10 times per sample were discarded. The obiclean program was used to identify amplicon sequence variants (ASVs) that have likely arisen due to PCR or sequencing errors. It uses the information of sequence counts and sequence similarities to classify whether a sequence is a variant (“internal”) of a more abundant (“head”) ASV64. After this step, we matched the ASV with the reference database to obtain the taxonomic assignation for each ASV. Sequences labelled by the obiclean programme as ‘internal’’ and probably corresponding to PCR errors were discarded. The ecotag programme was then used for taxonomic assignment of molecular operational taxonomic units (MOTUs). The taxonomic assignments from ecotag were corrected to avoid overconfidence in assignments. Species-level assignments were validated only for ≥98% sequence identity with the reference database. Sequences below this threshold were discarded.Measuring disturbance intensity using GIS dataIn riverine systems, the disturbances may accumulate because of hydrologic connectivity, which is the downstream transfer of matter and pollutants4. Hence, the upstream sub-basin drainage network was considered to determine the size of the upstream sub-basin affecting local biodiversity (Fig. 1). The sub-basins were delineated by applying a flow accumulation algorithm to the SRTM global 30 m digital elevation model65. Deforestation was measured over 14 upstream spatial extents with radii of 0.5, 1.5, 3, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, and 90 km for each sampling site. Then, these 14 upstream spatial extents were intersected with the sub-basin drainage network. In addition, mammals and fish can also be affected by disturbances other than those mediated by hydrologic connectivity. Thus, deforestation was also measured upstream and downstream from the eDNA sampling sites using the same foregoing 14 radii.At each sampling site, deforestation intensity was quantified for each of the 14 spatial extents. We summed upstream (only accounting for disturbances mediated by river hydrologic connectivity) or upstream and downstream (not only considering disturbances mediated by hydrologic connectivity) deforested surfaces from Landsat satellite image datasets. Forest loss surfaces were obtained from the Global Forest Change dataset66. The Global Forest Change dataset identifies areas deforested between 2001 and 2017 on a 30 m spatial scale. To incorporate deforested areas prior to 2000, tree canopy cover data for that year were also used. Except for river courses, all pixels with More

  • in

    Revisiting biocrystallization: purine crystalline inclusions are widespread in eukaryotes

    We express our gratitude to Lukáš Falteisek, Richard Dorrell, Jan Petrášek, Stanislav Volsobě, Kateřina Schwarzerová and Jana Krtková for constructive discussions. English has been kindly corrected by William Bourland. Furthermore, we thank to Dovilė Barcytė, William Bourland, Antonio Calado, Dora Čertnerová, Yana Eglit, Ivan Fiala, Martina Hálová, Miroslav Hyliš, Dagmar Jirsová, Petr Kaštánek, Viktorie Kolátková, Alena Kubátová, Alexander Kudryavtsev, Frederik Leliaert, Julius Lukeš, Jan Mach, Joost Mansour, Jan Mourek, Yvonne Němcová, Fabrice Not, Vladimír Scholtz, Alastair Simpson, Pavel Škaloud, Jan Šťastný, Róbert Šuťák, Daria Tashyreva, Dana Savická, Jan Šobotník, Zdeněk Verner, Jan Votýpka for kindly providing cultures and taxonomic identifications. More