More stories

  • in

    The skilled ecosystem engineers with big teeth and paddle tails

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Municipal biowaste treatment plants contribute to the contamination of the environment with residues of biodegradable plastics with putative higher persistence potential

    Choice of biowaste treatment plants and sample identifiersCompost samples were collected from four central municipal biowaste treatment plants (denominated as #1 to #4) in Baden-Wurttemberg, Germany (Table 1). All plants used a state-of-the-art two-stage biowaste treatment process comprising of (a) anaerobic digestion/biogas production and (b) subsequent composting of the solid digestate to produce a high-quality mature compost sold for direct use as fertilizer in agriculture. The composts were regularly analyzed by an independent laboratory for quality and residual contamination and consistently fulfilled the quality requirements of the label RAL-GZ 251 Gütezeichen Kompost of the German Bundesgütegemeinschaft Kompost e.V. (www.gz-kompost.de). Plants #1 and #3 produce in addition a liquid fertilizer, which is separated from the solid digestate at the end of stage a) by press filtration and which is also intended for direct use on agricultural soil (replacement of liquid manure). In case of plants #1, #3, and #4 up to 25 wt% of shrub/tree cuttings were added to the solid digestate for composting. All plants used sieving (typically with a 12 or a 20 mm mesh) at the end of the process to assure the necessary purity of their finished composts. Whenever technically possible, we as well took samples of the pre-compost immediately before this final sieving step to evaluate its contribution to the removal of residual BPD fragments. For analysis, composts were passed consecutively through two sieves with mesh sizes of 5 mm and 1 mm, yielding two fragment preparations for IR-analysis namely a > 5 mm fraction corresponding to the contamination by residual “macroplastic” (5 mm is a commonly used upper size limit for “microplastic”, anything larger is macroplastic) and a 1–5 mm fraction corresponding to the regulatory relevant residual contamination by microplastic. The lower limit of 1 mm rather than 2 mm was chosen in anticipation of the expected changes in regulation, where the replacement of the 2 mm limit by a 1 mm limit is imminent.Table 1 Technical data of the investigated plants and incidence of BDP fragments in the sampled composts.Full size tableOccurrence of plastic fragments  > 1 mm in the sampled compostsComposting times of 5–9 weeks were used in the investigated plants (Table 1), which is shorter than the 12 weeks indicated in EN 13432 for the 90% disintegration of a compostable plastic material, but a realistic time span for state-of-the-art technical waste treatment. Since we were not in a position to estimate the quantity of BDP entering the plants, since for technical reasons we were unable to obtain a representative sample, we cannot say, whether any residual BDP detected by us in the finished composts was due to a yet incomplete disintegration process or whether it corresponds to the 10% material still permissible by EN 13432 even after the full composting step. However, in 7 out of the 12 sampled composts and pre-composts fragments with chemical signatures corresponding to the BDPs poly (lactic acid) (PLA) and poly (butylene-adipate-co-terephthalate) (PBAT) were identified in the > 5 mm and/or the 1–5 mm sieving fractions using FTIR analysis3 (Fig. 1; Table 1). All recovered fragments appeared to stem from foils, bags or packaging, since they were thin compared to their length and width (see Suppl Figure S1 for typical examples). Fragments with overlapping signatures, most likely PBAT/PLA mixtures or blends, were also found (see Suppl Figure S2 for the interpretation of the spectra). In addition, the recorded BDP fragment spectra (Fig. 1A) showed high similarity to the FTIR spectra of commercial compostable bags sold in the vicinity of the biowaste treatment plants (Fig. 1B), which together with the geometry of the recovered fragments led us to assuming that the majority of the BDP entered the biowaste in the form of such bags.Figure 1FTIR spectra of BDP fragments from composts and commercial bags. (A) BDP fragments recovered from the composts and (B) the commercial compostable bags. Fragments were coded as follows: p or f for pre-compost or finished compost, followed by the plant number (#1 to #4), an indication of the size fraction ( > 5 mm or 1–5 mm) in which the fragment was found, and finally, the fragment number. Fragment F#1_5mm_4 therefore represents the 4th fragment collected in the  > 5 mm size fraction from the finished compost of plant number 1. Bags were arbitrarily numbered 1–10, see Suppl Table S1 for supplier information. The spectra (in grey) of the reference materials for PLA and PBAT are given as basis for the interpretation. Spectra in red refer to test samples consisting only of PBAT, while those in blue indicate samples composed of PBAT/PLA mixtures.Full size imageThe BDP fragments were found alongside fragments of commodity plastics (mostly PE) in all cases. Finished composts tended to contain fewer and smaller fragments than the corresponding pre-composts. The final sieving of the pre-composts to prepare the finished composts hence appears to be quite effective in removing such fragments, in particular those from the > 5 mm size fraction (Table 1) and for that reason has become state-of-the-art in preparing quality composts (contamination by plastic fragments > 2 mm of less than 0.1 wt%). Given that the size of the fragments is a crucial factor regarding ecological risk, we analyzed the sizes (length Î width) of the BDP fragments in comparison to that of the plastic fragments with signatures of commodity plastics such as PE (Fig. 2). BDP fragments found in a given compost sample tended to be smaller than the fragments stemming from non-BDP materials, which may indicate that BDPs degrade faster or tend to disintegrate into tinier particles than commodity plastics. This may also explain why in the compost from plant #2, no BDP fragments were found in the particle fraction retained by the 5 mm sieve ( > 5 mm fraction), while 19 such particles were found in the fraction then retained by the 1 mm sieve (1–5 mm fraction). Interestingly, plant #2 is the only one included in our study that uses no mechanical breakdown of the incoming biowaste. This reduces the mechanical stress on the incoming material. Mechanical stress can alter the properties of plastic foils such as the crystallinity whereby crystallinity has been shown to influence the biological degradation of BDP such as PLA7.Figure 2Size distribution of plastic fragments  > 1 mm. (A) Fragments found in the finished compost from plant #1, (B) in the finished compost from plant #2, and (C) in the pre-compost from plant #3. For reasons of statistical relevance, only samples containing more than 20 BDP fragments per kg of compost were included in the analysis.Full size imageMaterial characteristics of BDP fragments in comparison to those of commercial biodegradable bagsIn order to verify whether the BDP fragments recovered from the composts differed from the compostable bags in any parameter with possible relevance for biodegradation and environmental impact16, the physico-chemical properties of bags and fragments were studied in detail. Since we wanted to have a maximum of information of the BDP fragments, size/weight was a limiting factor in selecting fragments for analysis. Fragments of at least 1 mg were required for the FT-IR analysis. 5 mg-fragments could be analyzed in addition by 1H-NMR, while the full set of analytics (FT-IR, 1H-NMR, and DSC) required at least 10 mg of sample.For insight into the chemical composition, 1H-NMR spectra of the commercial bags and all suitable BDP fragments were compared (Fig. 3). In case of material mixtures and blends, the 1H-NMR analysis allows quantification of the PBAT/PLA weight ratio in the materials and also of the ratio of the butylene terephthalate (BT) and butylene adipate (BA) units in the involved PBAT polyesters.Figure 31H NMR spectra of BDP fragments from composts and commercial bags. (A) BDP fragments recovered from the composts and (B) the commercial compostable bags. Fragments were coded as follows: p or f for pre-compost or finished compost, followed by the plant number (#1 to #4), an indication of the size fraction ( > 5 mm or 1–5 mm) in which the fragment was found, and finally, the fragment number. Bags were arbitrarily numbered 1–10, see Suppl Table S1 for supplier information. The spectra (in grey) of the reference materials for PLA and PBAT are given as basis for the interpretation. Spectra in red refer to test samples consisting only of PBAT, while those in blue indicate samples composed of PBAT/PLA mixtures. (C) Chemical structures of PLA and PBAT, chemical shifts of the protons are assigned as indicated in the reference spectra in (B).Full size imageThe 1H-NMR spectra corroborate the FTIR measurements in that all investigated commercial bags were made from PBAT/PLA mixtures of varied composition (Table 2). By comparison, some of the fragments, for instance, f#1_5mm_4, appeared to consist of only PBAT. Other fragments, e.g., f#1_1mm_9, were mixtures of PLA and PBAT (Table 2). However, even in the case of PBAT/PLA mixtures, the average PBAT content tended to be higher in the fragments than in the bags, while the BT/BA monomer ratio in the respective PBATs, was also significantly higher in the fragments than in the bags. If we assume the fragments to stem from similar compostable bags as the ones included in our comparison, this would mean that during composting of such a bag, the PLA degrades more quickly than the PBAT, whereas within a given PBAT polyester, the BA unit is more easily degraded than the BT unit. Evidence can indeed be found in the pertinent literature that PLA has faster biodegradation kinetics than PBAT, while BT is more resistant to mineralization than BA17,18.Table 2 Composition of commercial compostable bags and BDP fragments recovered from the composts as analyzed by 1H-NMR.Full size tableNext, differential scanning calorimetry (DSC) was used to analyze fragments compared to commercial bags in regard to the presence of amorphous vs. crystalline domains, a parameter expected to affect biodegradation kinetics and therefore the putative environmental impact of the produced microplastic16 upon release into the environment with the composts. Whereas amorphous domains show glass transition, crystalline domains show melting, both of which can be discerned by the respective phase transition enthalpy in the DSC curves (Fig. 4).Figure 4DSC curves of BDP fragments and compostable bags #1 and #7. Curves for the reference materials (in grey) for PLA and PBAT are given for comparison. Curves were recorded during the first heating run (temperature range: − 50 °C to 200 °C, heating rate: 10 °C min−1). (A) and (B) curves in red refer to test samples consisting only of PBAT, while those in blue indicate samples composed of PBAT/PLA mixtures. Fragments were coded as follows: p or f for pre-compost or finished compost, followed by the plant number (#1 to #4), an indication of the size fraction ( > 5 mm or 1–5 mm) in which the fragment was found, and finally, the fragment number.Full size imageThe curve for the reference PBAT shows a glass transition temperature (Tg) of − 29 °C and a broad melting range between 100 and 140 °C for the crystalline domains, while that of the PLA reference shows a glass transition temperature of 58 °C and a narrower melting peak between 144 °C and 162 °C. The curve for commercial bag #1, which had a comparatively high PLA content, shows a pronounced melting peak in the expected range; the same is the case for fragment p#3_5mm_1 and to a lesser extent for fragment p#3_5mm_9, two fragments, which also have high PLA contents. The DSC curves of the other fragments and bag #1 are undefined in comparison, which is due to their high PBAT content. According to the DSC curves, most of the investigated materials are semicrystalline, i.e., contain both amorphous (glass transition) and crystalline (melting) domains. However, the DCS data alone allow only a qualitative discussion of the differences between fragments and bags.To obtain quantitative data on the crystallinity differences, wide angle X-ray scattering (WAXS) spectra were recorded. WAXS requires fragments at least 3 cm long, which restricted the number of fragment samples to three, all of which were found in pre-compost samples. The corresponding curves are shown in Fig. 5A–C. The spectra of the commercial biodegradable bags are shown in Suppl Figure S3. Foils were in addition prepared by heat pressing from the reference materials for PLA and PBAT in order to include them into the WAXS measurements (Fig. 5D). While the foils produced from the PBAT reference material produced crystallinity peaks at 16.2°, 17.3°, 20.4°, 23.2°, and 24.8°, the foil prepared from the PLA reference material showed only an amorphous halo at 15.5° and 31.5°, which is in accordance with values published in the literature19. A more pronounced crystallinity peak was obtained in the case of an additionally annealed PLA foil.Figure 5WAXS curves with Lorenz fitting for (A) fragment p#3_5mm_1, (B) fragment p#3_5mm_9, and (C) fragment p#4_5mm_2. (D) WAXS curves for foils produced from the PBAT and PLA reference materials; the percent values indicate the crystallinity. The dash lines are the fitting peak curves for the XRD spectrum. Crystallinity can be obtained by dividing the integration area of the fitted peaks by the integration area of the entire spectrum. Fragments were coded as follows: p or f for pre-compost or finished compost, followed by the plant number (#1 to #4), an indication of the size fraction ( > 5 mm or 1–5 mm) in which the fragment was found, and finally, the fragment number.Full size imageIn case of the fragments and bags, the peaks of PLA and PBAT overlapped to some extent in the WAXS spectra, but by conducting Lorenz fitting using Origin software, the overall crystallinity could be calculated as follows:$$chi = { 1}00% , *{text{ Aa}}/left( {{text{Aa }} + {text{ Ac}}} right)$$where χ is the crystallinity and Aa and Ac represent the areas of the amorphous and crystalline peaks.Using this equation, crystallinities of 55% (fragments p#3_5mm_1), 34% (p#3_5mm_9), and 34% (p#4_5mm_2) were calculated for the fragments. The foils prepared in house for the reference materials had similar crystallinities (43% in case of the annealed PLA foil and 26% of the PBAT foil), while the simple PLA foil was amorphous. By comparison, for eight of the commercial bags, crystallinities in the range from 1% to 7% were calculated, whereas these values were 14% and 15% for the remaining two bag types (Suppl Figure S3).The high crystallinity of the larger fragments recovered from the pre-compost samples suggests that crystalline domains of BDP materials may indeed disintegrate more slowly than the amorphous ones, as prior studies on microbial biodegradation have suggested7,8. Admittedly, such large fragments per se would not enter the environment, since the final sieving step used to prepare the finished composts is quite efficient at removing them. However, it is tempting to extrapolate that residual BDP in general are remnants of the more crystal domains of the original material, even though experimental proof of this assumption is at present not possible. 10 wt% of a BDP bag is allowed to remain after standard composting. It is usually assumed that any such residues continue to degrade with comparable speed. However, should these residues correspond to the more crystalline domains, rather than degrading with similar speed as the bulk material, the more crystalline fragments can be expected to persist for a much longer and at present unpredictable length of time in the environment, e.g. when applied to the soil with the composts; in particular, when they are also enriched in PBAT and BT units as suggested by our analysis of the chemical composition. Data from the use of biodegradable foils in agriculture show that the degradation in the environment may take years20. Altogether this may have unforeseen economic and environmental consequences, especially when considering the high fraction of BDP fragments < 5 mm. Putative consequences include changes in soil properties, the soil microbiome and therefore in plant performance21, a factor indispensable for worldwide nutrition.Residues of BDP fragments  1 mm were found in the collected LF samples. This is hardly surprising, given that the LF is produced by press filtration of the digestate after the anaerobic stage. Such a filtration step can be expected to retain fragments > 1 mm in the produced filter cake, which goes into the composting step, leaving the filtrate, i.e. the LF, essentially free of such particles. Anaerobic digestion is currently not assumed to contribute significantly to the degradation of BDP17,22, but the process conditions (mixing, pumping) may promote breakdown of larger fragments, particularly when additives such as plasticizers23 leach out of the material.Since the residual solids content of the LF is low (plant #1: 8.6 wt%, plant #3: 5.8 wt%), a combination of enzymatic-oxidative treatment and µFTIR imaging originally developed for environmental samples from aqueous systems24,25 could be adapted for the analysis (size and chemical signature) of particles in the LF down to a size of 10 µm. The corresponding data are compiled in Table 3. In all cases, residual fragments from PBAT-based polymers represented the dominant plastic fraction in the investigated samples; i.e. approximately 53% of all plastic particles in the LF from plant #1 (11,520 BDP particles per liter) and 65% in the case of plant #3 (12,480 BDP particles per liter). Liquid manure is applied several times a year to fields at a concentration of 2–3 L m−2. According to our analysis > 20,000 BDP microparticles of a size ranging from 10 µm to 500 µm enter each m2 of agricultural soil whenever LF is applied on agricultural surfaces.Table 3 Microplastic fragments (BDP/all) found per liter of liquid fertilizer.Full size tableDue to the complexity of the matrix, a similar analysis of individual plastic fragments  1 mm. Six compost samples representing the more contaminated ones based on the content of fragments > 1 mm, namely, f#1, f#2, p#3, f#3, p#4 and f#4 (nomenclature: f or p for finished or pre-compost, followed by plant number), were extracted with a 90/10 vol% chloroform/methanol mixture. The amounts of PBAT and PLA in the obtained extracts were then quantified via 1H-NMR (Table 4). Briefly, the intensity of characteristic signals in the extract spectra of the compost samples (see Suppl Figure S4) were compared to peak intensities produced by calibration standards of the pure polymer dissolved at a known concentration in the chloroform/methanol. All samples and standards were normalized using the 1,2-dichloroethan signal at 3.73 ppm as internal standard. See also Suppl Figure S5 for an exemplification of the quantification of the PBAT/PLA ratios. Based on the amounts of PBAT and PLA extracted from a known amount of compost, the total mass concentration (wt% dry weight) of these polymers in the composts was calculated.Table 4 Evidence of PBAT and PLA residues caused by fragments  2 mm. Moreover, residues of PBAT and PLA were found in all investigated compost samples, including the finished compost from plant #4, which had shown no contamination by larger BPD fragments (Table 1). The pre-compost from that plant had shown a few contaminating BDP fragments in the > 5 mm fraction. However, in regard to the fragments More

  • in

    Incorporation of machine learning and deep neural network approaches into a remote sensing-integrated crop model for the simulation of rice growth

    Jones, J. W. et al. The DSSAT cropping system model. Eur. J. Agron. 18, 235–265 (2003).Article 

    Google Scholar 
    van Diepen, C. A., Wolf, J., van Keulen, H. & Rappoldt, C. WOFOST: a simulation model of crop production. Soil Use Manag. 5, 16–24 (1989).Article 

    Google Scholar 
    Cao, J. et al. Integrating multi-source data for rice yield prediction across China using machine learning and deep learning approaches. Agric. For. Meteorol. 297, 108275 (2021).ADS 
    Article 

    Google Scholar 
    Khanal, S., Kushal, K. C., Fulton, J. P., Shearer, S. & Ozkan, E. Remote sensing in agriculture—accomplishments, limitations, and opportunities. Remote Sens. 12, 3783 (2020).ADS 
    Article 

    Google Scholar 
    Maas, S. J. Parameterised model of gramineous crop growth: II. within-season simulation calibration. Agron. J. 85, 354–358 (1993).Article 

    Google Scholar 
    Nguyen, V., Jeong, S., Ko, J., Ng, C. & Yeom, J. Mathematical integration of remotely-sensed information into a crop modelling process for mapping crop productivity. Remote Sens. 11, 2131 (2019).Article 

    Google Scholar 
    Huang, J. et al. Assimilation of remote sensing into crop growth models: current status and perspectives. Agric. For. Meteorol. 276–277, 107609 (2019).ADS 
    Article 

    Google Scholar 
    Jin, X. et al. A review of data assimilation of remote sensing and crop models. Eur. J. Agron. 92, 141–152 (2018).Article 

    Google Scholar 
    Shawon, A. R. et al. Assessment of a proximal sensing-integrated crop model for simulation of soybean growth and yield. Remote Sens. 12, 410 (2020).ADS 
    Article 

    Google Scholar 
    Shawon, A. R. et al. Two-dimensional simulation of barley growth and yield using a model integrated with remote-controlled aerial imagery. Remote Sens. 12, 3766 (2020).ADS 
    Article 

    Google Scholar 
    Shin, T. et al. Simulation of wheat productivity using a model integrated with proximal and remotely controlled aerial sensing information. Front. Plant Sci. https://doi.org/10.3389/fpls.2021.649660 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huang, J. et al. Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation. Agric. For. Meteorol. 216, 188–202 (2016).ADS 
    Article 

    Google Scholar 
    Khaki, S., Wang, L. & Archontoulis, S. V. A CNN-RNN framework for crop yield prediction. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.01750 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kim, N. et al. An artificial intelligence approach to prediction of corn yields under extreme weather conditions using satellite and meteorological data. Appl. Sci. 10, 3785 (2020).CAS 
    Article 

    Google Scholar 
    Kumar, P. et al. Comprehensive evaluation of soil moisture retrieval models under different crop cover types using C-band synthetic aperture radar data. Geocarto Int. 34, 1022–1041 (2019).Article 

    Google Scholar 
    Everingham, Y., Sexton, J., Skocaj, D. & Inman-Bamber, G. Accurate prediction of sugarcane yield using a random forest algorithm. Agron. Sustain. Dev. 36, 27 (2016).Article 

    Google Scholar 
    Feng, P., Wang, B., Li Liu, D., Waters, C. & Yu, Q. Incorporating machine learning with biophysical model can improve the evaluation of climate extremes impacts on wheat yield in south-eastern Australia. Agric. For. Meteorol. 275, 100–113 (2019).ADS 
    Article 

    Google Scholar 
    Shahhosseini, M., Hu, G., Huber, I. & Archontoulis, S. V. Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt. Sci. Rep. 11, 1606 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cai, Y. et al. Detecting in-season crop nitrogen stress of corn for field trials using UAV- and CubeSat-based multispectral sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 12, 5153–5166 (2019).ADS 
    Article 

    Google Scholar 
    van Klompenburg, T., Kassahun, A. & Catal, C. Crop yield prediction using machine learning: a systematic literature review. Comput. Electron. Agric. 177, 105709 (2020).Article 

    Google Scholar 
    Kamilaris, A. & Prenafeta-Boldú, F. X. Deep learning in agriculture: a survey. Comput. Electron. Agric. 147, 70–90 (2018).Article 

    Google Scholar 
    Bui, D. T., Tsangaratos, P., Nguyen, V.-T., Liem, N. V. & Trinh, P. T. Comparing the prediction performance of a deep learning neural network model with conventional machine learning models in landslide susceptibility assessment. CATENA 188, 104426 (2020).Article 

    Google Scholar 
    Sahoo, A. K., Pradhan, C. & Das, H. Performance evaluation of different machine learning methods and deep-learning based convolutional neural network for health decision making. In Nature Inspired Computing for Data Science (eds Rout, M. et al.) (Springer International Publishing, 2020).
    Google Scholar 
    Jeong, S. et al. Development of Variable Threshold Models for detection of irrigated paddy rice fields and irrigation timing in heterogeneous land cover. Agric. Water Manag. 115, 83–91 (2012).Article 

    Google Scholar 
    Peng, D., Huete, A. R., Huang, J., Wang, F. & Sun, H. Detection and estimation of mixed paddy rice cropping patterns with MODIS data. Int. J. Appl. Earth Obs. Geoinf. 13, 13–23 (2011).ADS 

    Google Scholar 
    Jeong, S., Ko, J. & Yeom, J.-M. Nationwide projection of rice yield using a crop model integrated with geostationary satellite imagery: a case study in South Korea. Remote Sens. 10, 1665 (2018).ADS 
    Article 

    Google Scholar 
    Xiao, X. et al. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sens. Environ. 100, 95–113 (2006).ADS 
    Article 

    Google Scholar 
    Ozdogan, M. & Gutman, G. A new methodology to map irrigated areas using multi-temporal MODIS and ancillary data: an application example in the continental US. Remote Sens. Environ. 112, 3520–3537 (2008).ADS 
    Article 

    Google Scholar 
    Yeom, J.-M., Jeong, S., Deo, R. C. & Ko, J. Mapping rice area and yield in northeastern Asia by incorporating a crop model with dense vegetation index profiles from a geostationary satellite. GISci. Remote Sens. 58, 1–27 (2021).Article 

    Google Scholar 
    Yeom, J.-M. et al. Monitoring paddy productivity in North Korea employing geostationary satellite images integrated with GRAMI-rice model. Sci. Rep. 8, 16121 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Jeong, S., Ko, J., Choi, J., Xue, W. & Yeom, J.-M. Application of an unmanned aerial system for monitoring paddy productivity using the GRAMI-rice model. Int. J. Remote Sens. 39, 2441–2462 (2018).Article 

    Google Scholar 
    Jeong, S. et al. Geographical variations in gross primary production and evapotranspiration of paddy rice in the Korean Peninsula. Sci. Total Environ. 714, 136632 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Roger, P., Vermote, E. & Ray, J. MODIS Surface Reflectance User’s Guide. Collection 6 (2015).Scharlemann, J. P. W. et al. Global data for ecology and epidemiology: a novel algorithm for temporal Fourier processing MODIS data. PLoS ONE 3, e1408 (2008).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pede, T. & Mountrakis, G. An empirical comparison of interpolation methods for MODIS 8-day land surface temperature composites across the conterminous Unites States. ISPRS J. Photogramm. Remote Sens. 142, 137–150 (2018).ADS 
    Article 

    Google Scholar 
    Kilibarda, M. et al. Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resolution. J. Geophys. Res. Atmos. 119, 2294–2313 (2014).ADS 
    Article 

    Google Scholar 
    Nunez, M. The development of a satellite-based insolation model for the tropical western Pacific Ocean. Int. J. Climatol. 13, 607–627 (1993).Article 

    Google Scholar 
    Otkin, J. A., Anderson, M. C., Mecikalski, J. R. & Diak, G. R. Validation of GOES-based insolation estimates using data from the U.S. Climate reference network. J. Hydrometeorol. 6, 460–475 (2005).ADS 
    Article 

    Google Scholar 
    Pinker, R. & Laszlo, I. Modeling surface solar irradiance for satellite applications on a global scale. J. Appl. Meteorol. 31, 194–211 (1992).ADS 
    Article 

    Google Scholar 
    Kawamura, H., Tanahashi, S. & Takahashi, T. Estimation of insolation over the Pacific Ocean off the Sanriku coast. J. Oceanogr. 54, 457–464 (1998).Article 

    Google Scholar 
    Yeom, J.-M., Seo, Y.-K., Kim, D.-S. & Han, K.-S. Solar radiation received by slopes using COMS imagery, a physically based radiation model, and GLOBE. J. Sens. 2016, 1–15 (2016).Article 

    Google Scholar 
    Yeom, J.-M., Han, K.-S. & Kim, J.-J. Evaluation on penetration rate of cloud for incoming solar radiation using geostationary satellite data. Asia-Pac. J. Atmos. Sci. 48, 115–123 (2012).ADS 
    Article 

    Google Scholar 
    Kawai, Y. & Kawamura, H. Validation and improvement of satellite-derived surface solar radiation over the Northwestern Pacific Ocean. J. Oceanogr. 61, 79–89 (2005).Article 

    Google Scholar 
    Tanahashi, S., Kawamura, H., Matsuura, T., Takahashi, T. & Yusa, H. A system to distribute satellite incident solar radiation in real-time. Remote Sens. Environ. 75, 412–422 (2001).ADS 
    Article 

    Google Scholar 
    Elbern, H., Schmidt, H., Talagrand, O. & Ebel, A. 4D-variational data assimilation with an adjoint air quality model for emission analysis. Environ. Model. Softw. 15, 539–548 (2000).Article 

    Google Scholar 
    Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, 1992).MATH 

    Google Scholar 
    Ko, J. et al. Simulation and mapping of rice growth and yield based on remote sensing. J. Appl. Remote Sens. 9, 096067 (2015).Article 

    Google Scholar 
    Emami Javanmard, M., Ghaderi, S. F. & Hoseinzadeh, M. Data mining with 12 machine learning algorithms for predict costs and carbon dioxide emission in integrated energy-water optimization model in buildings. Energy Convers. Manag. 238, 114153 (2021).CAS 
    Article 

    Google Scholar 
    Diebold, F. X. & Shin, M. Machine learning for regularized survey forecast combination: partially-egalitarian LASSO and its derivatives. Int. J. Forecast. 35, 1679–1691 (2019).Article 

    Google Scholar 
    Khosla, E., Dharavath, R. & Priya, R. Crop yield prediction using aggregated rainfall-based modular artificial neural networks and support vector regression. Environ. Dev. Sustain. 22, 5687–5708 (2020).Article 

    Google Scholar 
    Wang, S., Azzari, G. & Lobell, D. B. Crop type mapping without field-level labels: random forest transfer and unsupervised clustering techniques. Remote Sens. Environ. 222, 303–317 (2019).ADS 
    Article 

    Google Scholar 
    Ustuner, M. & Balik, S. F. Polarimetric target decompositions and light gradient boosting machine for crop classification: a comparative evaluation. ISPRS Int. J. Geo Inf. 8, 97 (2019).Article 

    Google Scholar 
    Jeong, S., Ko, J. & Yeom, J.-M. Predicting rice yield at pixel scale through synthetic use of crop and deep learning models with satellite data in South and North Korea. Sci. Total Environ. 802, 149726 (2022).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Nash, J. E. & Sutcliffe, J. V. River flow forecasting through conceptual models part I: a discussion of principles. J. Hydrol. 10, 282–290 (1970).ADS 
    Article 

    Google Scholar  More

  • in

    Whales from space dataset, an annotated satellite image dataset of whales for training machine learning models

    Very high-resolution (VHR) satellite imagery allows us to survey regularly remote and large areas of the ocean, difficult to access by boats or planes. The interest in using VHR satellite imagery for the study of great whales (including sperm whales and baleen whales) has grown in the past years1,2,3,4,5 since Abileah6 and Fretwell et al.7 showed its potential. This growing interest may be linked to the improvement in the spatial resolution of satellite imagery, which increased in 2014 from 46 cm to 31 cm. This upgrade enhanced the confidence in the detection of whales in satellite imagery, as more details could be seen, such as whale-defining features (e.g. flukes).Detecting whales in the imagery is either conducted manually1,4,5,7, or automatically2,3. A downside of the manual approach is that it is time-demanding, with manual counter often having to view hundred and sometimes thousands of square kilometres of open ocean. The development of automated approaches to detect whales by satellite would not only speed up this application, but also reduce the possibility of missing whales due to observer fatigue and standardize the procedure. Various automated approaches exist from pixel-based to artificial intelligence. Machine learning, an application of artificial intelligence, seems to be the most appropriate automated method to detect whales efficiently in satellite imagery2,3,8,9.In machine learning an algorithm learns how to identify features by repeatedly testing different search parameters against a training dataset10,11. Concerning whales, the algorithm needs to be trained to detect the wide variety of shapes and colour characterising whales. Shapes and colour will be influenced by the type of species, the environment (e.g. various degree of turbidity), the light conditions, and the behaviours (e.g. foraging, travelling, breaching), as different behaviours will result in different postures. The larger a training dataset is, the more accurate and transferable to other satellite images the algorithm will be. At the time of writing, such a dataset does not exist or is not publicly available.Creating a large enough dataset necessary to train algorithms to detect whales in VHR satellite imagery will require the various research groups analysing VHR satellite imagery to openly share examples of whales and non-whale objects in VHR satellite imagery, which could be facilitated by uploading such data on a central open source repository, similar to the GenBank12 for DNA code or OBIS-Seamap13 for marine wildlife observations. Ideally clipped out image chips of the whale objects would be shared as tiff files, which retains most of the characteristics of the original image. However, all VHR satellites are commercially owned, except for the Cartosat-3 owned by the government of India14, which means it is not possible to publicly share image chips as tiff file. Instead, image chips could be shared in a png or jepg format, which involve loosing some spectral information. If tiff files are required, georeferenced and labelled boxes encompassing the whale objects could also be shared, including information on the satellite imagery to allow anyone to ask the commercial providers for the exact imagery.Here we present a database of whale objects found in VHR satellite imagery. It represents four different species of whales (i.e. southern right whale, Eubalaena australis; grey whale, Eschrichtius robustus; humpback whale, Megaptera novaeangliae; fin whale, Balaenoptera physalus; Fig. 1), which were manually detected in images captured by different satellites (i.e., GeoEye-1, Quickbird-2, WorldView-2, WorldView-3). We created the database by (i) first detecting whale objects manually in satellite imagery, (ii) then we classified whale objects as either “definite”, “probable” or “possible” as in Cubaynes et al.1; and (iii) finally we created georeferenced and labelled points and boxes centered around each whale object, as well as providing image chips in a png format. With this database made publicly available, we aim to initiate the creation of a central database that can be built upon.Fig. 1Database of annotated whales detected in satellite imagery covering different species and areas. Humpback whales were detected in Maui Nui, US (a); grey whales in Laguna San Ignacio, Mexico (b); fin whales in the Pelagos Sanctuary, France, Monaco and Italy (c); southern right whales were observed in three areas, off the Peninsula Valdes, Argentina (d); off Witsand, South Africa (e); and off the Auckland Islands, New Zealand (f). The dot size represents the number of annotated whales per location. Whale silhouettes were sourced from philopic.com (the grey and humpback whales silhouettes are from Chris Luh).Full size image More

  • in

    Reply to: Assessing the efficiency of Verily’s automated process for production and release of male Wolbachia-infected mosquitoes

    Crawford, J. E. et al. Efficient production of male Wolbachia-infected Aedes aegypti mosquitoes enables large-scale suppression of wild populations. Nat. Biotechnol. 38, 482–492 (2020).CAS 
    Article 

    Google Scholar 
    Xi, Z., Khoo, C. C. H. & Dobson, S. L. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 310, 326–328 (2005).CAS 
    Article 

    Google Scholar 
    Phuc, H. K. et al. Late-acting dominant lethal genetic systems and mosquito control. BMC Biol. 5, 11 (2007).Article 

    Google Scholar 
    Kandul, N. P. et al. Transforming insect population control with precision guided sterile males with demonstration in flies. Nat. Commun. 10, 84 (2019).CAS 
    Article 

    Google Scholar 
    Kyrou, K. et al. A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat. Biotechnol. 36, 1062–1066 (2018).CAS 
    Article 

    Google Scholar 
    Kittayapong, P. et al. Combined sterile insect technique and incompatible insect technique: the first proof-of-concept to suppress Aedes aegypti vector populations in semi-rural settings in Thailand. PLoS Negl. Trop. Dis. 13, e0007771 (2019).Article 

    Google Scholar 
    Zheng, X. et al. Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 572, 56–61 (2019).CAS 
    Article 

    Google Scholar 
    Ryan, P. A. et al. Establishment of wMel Wolbachia in Aedes aegypti mosquitoes and reduction of local dengue transmission in Cairns and surrounding locations in northern Queensland, Australia. Gates Open Res. 3, 1547 (2019).Article 

    Google Scholar 
    Indriani, C. et al. Reduced dengue incidence following deployments of Wolbachia-infected Aedes aegypti in Yogyakarta, Indonesia: a quasi-experimental trial using controlled interrupted time series analysis. Gates Open Res. 4, 50 (2020).Velez, I. D. et al. The impact of city-wide deployment of Wolbachia-carrying mosquitoes on arboviral disease incidence in Medellín and Bello, Colombia: study protocol for an interrupted time-series analysis and a test-negative design study. F1000Res. 8, 1327 (2020).Article 

    Google Scholar 
    Durovni, B. et al. The impact of large-scale deployment of Wolbachia mosquitoes on dengue and other Aedes-borne diseases in Rio de Janeiro and Niterói, Brazil: study protocol for a controlled interrupted time series analysis using routine disease surveillance data. F1000Res. 8, 1328 (2020).Article 

    Google Scholar 
    O’Connor, L. et al. Open release of male mosquitoes infected with a Wolbachia biopesticide: field performance and infection containment. PLoS Negl. Trop. Dis. 6, e1797 (2012).Article 

    Google Scholar 
    Nazni, W. A. et al. Establishment of Wolbachia strain wAlbB in Malaysian populations of Aedes aegypti for dengue control. Curr. Biol. 29, 4241–4248 (2019).CAS 
    Article 

    Google Scholar 
    Klassen, W. & Curtis, C. F. In: Sterile Insect Technique (eds Dyck, V. A., Hendrichs, J. & Robinson, A. S.) 3–36 (Springer-Verlag, 2005).Fried, M. Determination of sterile-insect competitiveness. J. Econ. Entomol. 64, 869–872 (1971).Article 

    Google Scholar 
    Bouyer, J. et al. Field performance of sterile male mosquitoes released from an uncrewed aerial vehicle. Sci. Robot. 5, eaba6251 (2020).Article 

    Google Scholar 
    Krafsur, E. S., Whitten, C. J. & Novy, J. E. Screwworm eradication in North and Central America. Parasitol. Today 3, 131–137 (1987).CAS 
    Article 

    Google Scholar 
    Hendrichs, J., Ortiz, G., Liedo, P. & Schwarz, A. Six years of successful medfly program in Mexico and Guatemala. In: Fruit Flies of Economic Importance (ed Cavalloro, R.) 353–365 (A. A. Balkema, 1983).Helinski, M. E. H., Parker, A. G. & Knols, B. G. J. Radiation-induced sterility for pupal and adult stages of the malaria mosquito Anopheles arabiensis. Malar. J. 5, 41 (2006).Article 

    Google Scholar 
    Helinski, M. E. H., Parker, A. G. & Knols, B. G. J. Radiation biology of mosquitoes. Malar. J. 8 Suppl 2, S6 (2009).Benedict, M. Q. & Robinson, A. S. The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends Parasitol. 19, 349–355 (2003).Article 

    Google Scholar 
    Culbert, N. J. et al. Longevity of mass-reared, irradiated and packed male Anopheles arabiensis and Aedes aegypti under simulated environmental field conditions. Parasit. Vectors 11, 603 (2018).CAS 
    Article 

    Google Scholar 
    Culbert, N. J. et al. A rapid quality control test to foster the development of genetic control in mosquitoes. Sci. Rep. 8, 16179 (2018).Article 

    Google Scholar 
    Bentley, D. R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).CAS 
    Article 

    Google Scholar 
    Carlson, R. The pace and proliferation of biological technologies. Biosecur. Bioterror. 1, 203–214 (2003).Article 

    Google Scholar 
    The Wolbachia Project–Singapore Consortium & Ching, N. L. Wolbachia-mediated sterility suppresses Aedes aegypti populations in the urban tropics. Preprint at https://www.medrxiv.org/content/10.1101/2021.06.16.21257922v1 (2021).Soh, S. et al. Economic impact of dengue in Singapore from 2010 to 2020 and the cost-effectiveness of Wolbachia interventions. PLoS Global Public Health https://doi.org/10.1371/journal.pgph.0000024 (2021). More

  • in

    Microbiomes of microscopic marine invertebrates do not reveal signatures of phylosymbiosis

    Gilbert, S. F., Sapp, J. & Tauber, A. I. A symbiotic view of life: we have never been individuals. Q. Rev. Biol. 87, 325–341 (2012).PubMed 
    Article 

    Google Scholar 
    Bass, D., Stentiford, G. D., Wang, H.-C., Koskella, B. & Tyler, C. R. The pathobiome in animal and plant diseases. Trends Ecol. Evol. 34, 996–1008 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Husnik, F. & Keeling, P. J. The fate of obligate endosymbionts: reduction, integration, or extinction. Curr. Opin. Genet. Dev. 58-59, 1–8 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Berg, G. et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 103 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kwong, W. K. & Moran, N. A. Gut microbial communities of social bees. Nat. Rev. Microbiol. 14, 374–384 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hammer, T. J., Janzen, D. H., Hallwachs, W., Jaffe, S. P. & Fierer, N. Caterpillars lack a resident gut microbiome. Proc. Nat Acad. Sci. USA 114, 9641–9646 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Holt, C. C., van der Giezen, M., Daniels, C. L., Stentiford, G. D. & Bass, D. Spatial and temporal axes impact ecology of the gut microbiome in juvenile European lobster (Homarus gammarus). ISME J. 14, 531–543 (2020).PubMed 
    Article 

    Google Scholar 
    Pollock, F. J. et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat. Commun. 9, 4921 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Thomas, T. et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat. Commun. 7, 11870 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Engelberts, J. P. et al. Characterization of a sponge microbiome using an integrative genome-centric approach. ISME J. 14, 1100–1110 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mallot, E. K. & Amato, K. R. Host specificity of the gut microbiome. Nat. Rev. Microbiol. 19, 639–653 (2021).Article 
    CAS 

    Google Scholar 
    Colston, T. J. & Jackson, C. R. Microbiome evolution along divergent branches of the vertebrate tree of life: what is known and unknown. Mol. Ecol. 25, 3776–3800 (2016).PubMed 
    Article 

    Google Scholar 
    Levin, D. et al. Diversity and functional landscapes in the microbiota of animals in the wild. Science 372, eabb5352 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nishida, A. H. & Ochman, H. Rates of gut microbiome divergence in mammals. Mol. Ecol. 27, 1884–1897 (2013).Article 

    Google Scholar 
    Brooks, A. W., Kohl, K. D., Brucker, R. M., van Opstal, E. J. & Bordenstein, S. R. Phylosymbiosis: relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol. 14, e2000225 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mazel, F. et al. Is host filtering the main driver of phylosymbiosis across the tree of life? mSystems 3, https://doi.org/10.1128/mSystems.00097-18 (2018).Lutz, H. L. et al. Ecology and host identity outweigh evolutionary history in shaping the bat microbiome. mBio 4, 6 (2019).
    Google Scholar 
    Grond, K. et al. No evidence for phylosymbiosis in Western chipmunk species. FEMS Microbiol. Ecol. 96, fiz182 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Song, S. J. et al. Comparative analyses of vertebrate gut microbiomes reveal convergence between birds and bats. mBio 11, 1 (2020).Article 

    Google Scholar 
    Trevelline, B. K., Sosa, J., Hartup, B. K. & Kohl, K. D. A bird’s-eye view of phylosymbiosis: weak signatures of phylosymbiosis among all 15 species of cranes. Proc. R. Soc. B 287, 20192988 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Youngblut, N. D. et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat. Commun. 10, 2200 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Amato, K. R. et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 13, 576–587 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moeller, A. H. et al. Social behavior shapes the chimpanzee pan-microbiome. Sci. Adv. 2, e1500997 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Eckert, E. M., Anicic, N. & Fontaneto, D. Freshwater zooplankton microbiome composition is highly flexible and strongly influenced by the environment. Mol. Ecol. 30, 1545–1558 (2021).PubMed 
    Article 

    Google Scholar 
    Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–228 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bik, H. M. Microbial metazoa are microbes too. mSystems 4, e00109–e00119 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schuelke, T., Pereira, T. J., Hardy, S. M. & Bik, H. M. Nematode-associated microbial taxa do not correlate with host phylogeny, geographic region or feeding morphology in marine sediment habitats. Mol. Ecol. 27, 1930–1951 (2018).PubMed 
    Article 

    Google Scholar 
    Guidetti, R. et al. Further insights in the Tardigrada microbiome: phylogenetic position and prevalence of infection of four new Alphaproteobacteria putative endosymbionts. Zool. J. Linn. Soc. 188, 925–937 (2020).Article 

    Google Scholar 
    Giere, O. Meiobenthology (Springer-Verlag, 2009).Laumer, C. E. et al. Revisiting metazoan phylogeny with genomic sampling of all phyla. Proc. R. Soc. B 286, 20190831 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hammer, T. J., Sanders, J. G. & Fierer, N. Not all animals need a microbiome. FEMS Microbiol. Lett. 366, fnz117 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alejandre-Colomo, C. et al. Cultivable Winogradskyella species are genomically distinct from the sympatric abundant candidate species. ISME Commun. 1, 51 (2021).Article 

    Google Scholar 
    Husnik, F. et al. Bacterial and archaeal symbioses with protists. Curr. Biol. 31, R862–R877 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Salje, J. Cells within cells: Rickettsiales and the obligate intracellular bacterial lifestyle. Nat. Rev. Microbiol. 19, 375–390 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Neave, M. J., Apprill, A., Ferrier-Pagès, C. & Voolstra, C. R. Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas. Appl. Microbiol. Biotechnol. 100, 8315–8324 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Weiland-Bräuer, N. et al. Composition of bacterial communities associated with Aurelia aurita changes with compartment, life stage, and population. Appl. Environ. Microbiol. 81, 6038–6052 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bik, E. M. et al. Marine mammals harbor unique microbiotas shaped by and yet distinct from the sea. Nat. Commun. 7, 10516 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burns, A. R. et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 10, 655–664 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    McFall-Ngai, M. Adaptive immunity: care for the community. Nature 445, 153 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ruehland, C. & Dubilier, N. Gamma- and epsilonproteobacterial ectosymbionts of a shallow-water marine worm are related to deep-sea hydrothermal vent ectosymbionts. Environ. Microbiol. 12, 2312–2326 (2010).CAS 
    PubMed 

    Google Scholar 
    Gruber-Vodicka, H. R. et al. Two intracellular and cell-type specific bacterial symbionts in the placozoan Trichoplax H2. Nat. Microbiol. 4, 1465–1474 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schockaert, E. R. in Methods for the Examination of Organismal Diversity in Soils and Sediments (ed. Hall, G. S.) 211–225 (CABI, 1996).Higgins, R. P. in Introduction to the Study of Meiofauna (eds. Higgins, R. P. and Thiel, H.) 328–331 (SIP, 1988).Schram, M. D. & Davison, P. G. Irwin Loops—a history and method of constructing homemade loops. Trans. Kans. Acad. Sci. 115, 35–40 (1903).Article 

    Google Scholar 
    Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bower, S. M. et al. Preferential PCR amplification of parasitic protistan small subunit rDNA from metazoan tissues. J. Eukaryot. Microbiol. 51, 325–332 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Comeau, A. M., Li, W. K. W., Tremblay, J.-E., Carmack, E. C. & Lovejoy, C. Arctic ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS ONE 6, e27492 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, R.-Y. et al. Design of targeted primers based on 16S rRNA sequences in meta-transcriptomic datasets and identification of a novel taxonomic group in the Asgard archaea. BMC Microbiol. 20, 25 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lane, D. J. in Nucleic Acid Techniques in Bacterial Systematics (eds Stackebrandt, E. & Goodfellow, M) 115–175 (Wiley, 1991).Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Marcel, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10 (2011).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).Callahan, B. J. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).Love, M. I., Huber, W. & Anders, S. Moderate estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).Kurtz, Z. D. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput. Biol. 11, e1004226 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Csardi, G. & Nepusz, T. The igraph Software Package for Complex Network Research (InterJournal, 2006).Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Kolde, R. pheatmap: pretty heatmaps. R package version 1.0.12 https://CRAN.R-project.org/package=pheatmap (2015).Lin, H. & Das Peddada, S. Analysis of composition of microbiomes with bias correction. Nat. Commun. 11, 3514 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oksanen, J. vegan: Community Ecology Package. R package version 2.5.7 https://CRAN.R-project.org/package=vegan (2020).Rouse, G., Pleijel, F. & Tilic, E. Annelida (Oxford Univ. Press, 2022).Ahmed, M. & Holovachov, O. Twenty years after De Ley and Blaxter—How far did we progress in understanding the phylogeny of the phylum Nematoda? Animals 11, 3479 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Steenkiste, N. W. L., Herbert, E. R. & Leander, B. S. Species diversity in the marine microturbellarian Astrotorhynchus bifidus sensu lato (Platyhelminthes: Rhabdocoela) from the Northeast Pacific Ocean. Mol. Phylogenet. Evol. 120, 259–273 (2018). More

  • in

    Determinants of variability in signature whistles of the Mediterranean common bottlenose dolphin

    Wilkins, M. R., Seddon, N. R. & Safran, R. J. Evolutionary divergence in acoustic signals: causes and consequences. Trends Ecol. Evol. 28, 156–166 (2013).PubMed 
    Article 

    Google Scholar 
    Wei, C. Sound production and propagation in cetacean. In Neuroendocrine Regulation of Animal Vocalization (eds Rosenfeld, C. S. & Hoffmann, F.) 267–291 (Academic Press, 2021).Chapter 

    Google Scholar 
    Nakakara, F. Social functions of cetacean acoustic communication. Fish. Sci. 68, 298–301 (2002).Article 

    Google Scholar 
    Caldwell, M. C. & Caldwell, D. K. Vocalization of naive captive dolphins in small groups. Science 159, 1121–1123 (1968).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Caldwell, M. C., Caldwell, D. K. & Tyack, P. L. Review of the signature-whistle-hypothesis for the Atlantic bottlenose dolphin. In The bottlenose dolphin (eds Leatherwood, S. & Reeves, R. R.) 199–234 (Academic Press, 1990).Chapter 

    Google Scholar 
    Ford, J. B. Vocal traditions among resident killer whales (Orcinus orca) in coastal waters of British Columbia. Can. J. Zool. 69, 1454–1483 (1991).Article 

    Google Scholar 
    Weilgart, L. & Whitehead, H. Group-specific dialects and geographical variation in coda repertoire in South Pacific sperm whales. Behav. Ecol. Sociobiol. 40, 277–285 (1997).Article 

    Google Scholar 
    Deeck, V. B., Ford, J. K. B. & Spong, P. Dialect change in resident killer whales: implications for vocal learning and cultural transmission. Anim. Behav. 60, 629–638 (2000).Article 

    Google Scholar 
    Chen, Z. & Wiens, J. J. The origins of acoustic communication in vertebrates. Nat. Commun. 11, 369 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morton, E. S. Sources of selection on avian sounds. Am. Nat. 109, 17–34 (1975).ADS 
    Article 

    Google Scholar 
    Irwin, D. E., Thimgan, M. P. & Irwin, J. H. Call divergence is correlated with geographic and genetic distance in greenish warblers (Phylloscopus trochiloides): A strong role for stochasticity in signal evolution?. J. Evol. Biol. 21, 435–448 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Campbell, P. et al. Geographic variation in the songs of Neotropical singing mice: Testing the relative importance of drift and local adaptation. Evol. 64, 1955–1972 (2010).
    Google Scholar 
    Connor, R. C., Wells, R. S., Mann, J. & Read, A. J. The bottlenose dolphin: Social relationships in a fission-fusion society. In Cetacean societies: Field studies of dolphins and whales (eds Mann, J. et al.) 91–126 (University of Chicago Press, Chicago, 2000).
    Google Scholar 
    Janik, V. M. & Sayigh, L. S. Communication in bottlenose dolphins: 50 years of signature whistle research. J. Comp. Physiol. A https://doi.org/10.1007/s00359-013-0817-7 (2013).Article 

    Google Scholar 
    MacFarlane, N. et al. Signature whistles facilitate reunions and/or advertise identity in Bottlenose Dolphins. JASA 141, 3543 (2017).Article 

    Google Scholar 
    Buckstaff, K. C. Effects of watercraft noise on the acoustic behaviour of bottlenose dolphins, Tursiops truncatus, in Sarasota Bay, Florida. Mar. Mam. Sci. 20, 709–725 (2004).Article 

    Google Scholar 
    Cook, M. L. H., Sayigh, L. S., Blum, J. E. & Wells, R. S. Signature-whistle production in undisturbed free-ranging bottlenose dolphins (Tursiops truncatus). Proc. R. Soc. Lond. B. 271, 1043–1049 (2004).Article 

    Google Scholar 
    Watwood, S. L., Owen, E. C. G., Tyack, P. L. & Wells, R. S. Signature whistle use by temporarily restrained and free-swimming bottlenose dolphins, Tursiops truncatus. Anim. Behav. 69, 1373–1386 (2005).Article 

    Google Scholar 
    Sayigh, L. S., Tyack, P. L., Wells, R. S., Scott, M. D. & Irvine, A. B. Sex difference in signature whistle production of free-ranging bottle-nosed dolphins, Tursiops-truncatus. Beh. Ecol. Soc. 36, 171–177 (1995).Article 

    Google Scholar 
    Tyack, P. L. & Sayigh, L. S. Vocal learning in cetaceans. In Social influences on vocal development (eds Snowdon, C. T. & Hausberger, M.) 208–233 (Cambridge University Press, 1997).Chapter 

    Google Scholar 
    Miksis, J. L., Tyack, P. & Buck, J. R. Captive dolphins, Tursiops truncatus, develop signature whistles that match acoustic features of human-made model sounds. JASA 112, 728–739 (2002).Article 

    Google Scholar 
    Fripp, D. et al. Bottlenose dolphin (Tursiops truncatus) calves appear to model their signature whistles on the signature whistles of community members. Anim. Cogn. 8, 17–26 (2005).PubMed 
    Article 

    Google Scholar 
    Janik, V. M. & Slater, P. J. B. Context-specific use suggests that bottlenose dolphin signature whistles are cohesion calls. Anim. Behav. 56, 829–838 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sayigh, L. S., Tyack, P. L., Wells, R. S. & Scott, M. D. Signature whistles of free-ranging bottlenose dolphins, Tursiops truncatus: mother offspring comparisons. Behav. Ecol. Sociobiol. 26, 247–260 (1990).Article 

    Google Scholar 
    Watwood, S. L., Tyack, P. L. & Wells, R. S. Whistle sharing in paired male bottlenose dolphins, Tursiops truncatus. Behav. Ecol. Sociobiol. 55, 531–543 (2004).Article 

    Google Scholar 
    Janik, V. M., Dehnhardt, G. & Todt, D. Signature whistle variations in a bottlenosed dolphin, Tursiops truncatus. Behav. Ecol. Sociobiol. 35, 243–248 (1994).Article 

    Google Scholar 
    Esch, H. C., Sayigh, L. S. & Wells, R. S. Quantifying parameters of bottlenose dolphin signature whistles. Mar. Mam. Sci. 24, 976–986 (2009).Article 

    Google Scholar 
    Gridley, T. Geographic and species variation in bottlenose dolphin (Tursiops spp.) signature whistle types. PhD Thesis Biology. University of St Andrews (2011).King, S. L. & Janik, V. M. Bottlenose dolphins can use learned vocal labels to address each other. Proc Natl Acad Sci USA 110, 13216–13221 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kriesell, H., Elwen, S. H., Nastasi, A. & Gridley, T. Identification and characteristics of signature whistles in wild bottlenose dolphins (Tursiops truncatus) from Namibia. PLoS ONE 9, e106317 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Luis, A. R., Couchinho, M. N. & dos Santos, M. E. Signature whistles in wild bottlenose dolphins: Long term stability and emission rates. Acta Ethol. https://doi.org/10.1007/s10211-015-0230-z (2015).Article 

    Google Scholar 
    Wang, D. W., Würsig, B. & Evans, W. E. Whistles of bottlenose dolphins: Comparisons among populations. Aquatic Mam. 21, 65–77 (1995).
    Google Scholar 
    May-Collado, L. J. & Wartzok, D. A comparison of bottlenose dolphin whistles in the Atlantic Ocean: Factors promoting whistle variation. J. Mammal. 89, 1229–1240 (2008).Article 

    Google Scholar 
    Papale, E. et al. Acoustic divergence between bottlenose dolphin whistles from the Central-Eastern North Atlantic and Mediterranean Sea. Acta Ethol. 17, 155–165 (2014).Article 

    Google Scholar 
    La Manna, G., Rako-Gospić, N., Manghi, M., Picciulin, M. & Sarà, G. Assessing geographical variation on whistle acoustic structure of three Mediterranean populations of common bottlenose dolphin (Tursiops truncatus). Beh. 154, 583–607 (2017).Article 

    Google Scholar 
    La Manna, G. et al. Whistle variation in Mediterranean common bottlenose dolphin: The role of geographical, anthropogenic, social, and behavioral factors. Ecol. Evol. 00, 1–7 (2020).
    Google Scholar 
    Natoli, A., Birkun, A., Aguilar, A., Lopez, A. & Rus Hoelzel, A. Habitat structure and the dispersal of male and female bottlenose dolphins (Tursiops truncatus) based on microsatellite and mitochon-drial DNA analyses. Proc. R. Soc. Lond. B. 272, 1217–2122 (2005).CAS 

    Google Scholar 
    Richardson, W. J., Greene, C. R., Malme, C. I. & Thomson, D. H. Marine mammals and noise (Academic Press, London, 1995).
    Google Scholar 
    Gnone, G., et al. TursioMed: An international project to assess the conservation status of the bottlenose dolphin in the Mediterranean Sea. Final Report (2019).La Manna, G. & Ronchetti, F. Relazione sul monitoraggio della presenza e distribuzione del tursiope Tursiops truncatus nell’area del nord Sardegna comprendente l’Area Marina Protetta Capo Caccia – Isola Piana. Report AMP, 42 (2018).La Manna, G., Ronchetti, F., Sarà, G., Ruiu, A. & Ceccherelli, G. Common bottlenose dolphin protection and sustainable boating: species distribution modeling for effective coastal planning. Front. Mar. Sci. 7, 542648 (2020).Article 

    Google Scholar 
    Pace, D. S. et al. An integrated approach for cetacean knowledge and conservation in the central Mediterranean Sea using research and social media data sources. Aquat. Conserv. 29, 1302–1323 (2019).Article 

    Google Scholar 
    Pace, D. S. et al. Capitoline Dolphins: Residency patterns and abundance estimate of Tursiops truncatus at the Tiber River Estuary (Mediterranean Sea). Biology 10, 275 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pulcini, M., Pace, D. S., La Manna, G., Triossi, F. & Fortuna, C. M. Distribution and abundance estimates of bottlenose dolphins (Tursiops truncatus) around Lampedusa Island (Sicily Channel, Italy). Implications for their management. J. Mar. Biol. Assoc. UK 6, 1175–1184 (2013).
    Google Scholar 
    La Manna, G., Ronchetti, F. & Sarà, G. Predicting common bottlenose dolphin habitat preference to dynamically adapt management measures from a Marine Spatial Planning perspective. Ocean Coast. Manag. 130, 317–327 (2016).Article 

    Google Scholar 
    Santostasi, N. L., Bonizzoni, S., Bearzi, G., Eddy, L. & Gimenez, O. A robust design capture-recapture analysis of abundance, survival and temporary emigration of three odontocete species in the Gulf of Corinth, Greece. PLoS ONE 11, e0166650 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bearzi, G., Bonizzoni, S. & Gonzalvo, J. Mid-distance movements of common bottlenose dolphins in the coastal waters of Greece. J. Ethol 29, 369–374 (2011).Article 

    Google Scholar 
    Bearzi, G. et al. Dolphins in a scaled-down Mediterranean: The Gulf of Corinth’s odontocetes. In Adv. Mar. Biol. Vol. 75 (eds NotarbartolodiSciara, G. et al.) 297–331 (Academic Press, 2016).
    Google Scholar 
    Pleslić, G. et al. The abundance of common bottlenose dolphins (Tursiops truncatus) in the former special marine reserve of the Cres-Lošinj Archipelago, Croatia. Aquat. Conserv. 25, 125–137 (2015).Article 

    Google Scholar 
    Rako-Gospić, N. et al. Factor associated variations in the home range of a resident Adriatic common bottlenose dolphin population. Mar. Pol. Bul. 124, 234–244 (2017).Article 
    CAS 

    Google Scholar 
    Janik, V. M., King, S. L., Sayigh, L. S. & Wells, R. S. Identifying signature whistles from recordings of groups of unrestrained bottlenose dolphins (Tursiops truncatus). Mar Mam. Sci 29, 1–14 (2013).Article 

    Google Scholar 
    La Manna, G., Manghi, M., Pavan, G., Lo Mascolo, F. & Sarà, G. Behavioural strategy of common bottlenose dolphins (Tursiops truncatus) in response to different kinds of boats in the waters of Lampedusa Island (Italy). Aquat. Conserv. 23, 745–757 (2013).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2015).
    Google Scholar 
    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. H. Mixed effects models and extensions in ecology with R, 579 (Springer, 2009).MATH 
    Book 

    Google Scholar 
    Garamszegi, L. Z. A simple statistical guide for the analysis of behaviour when data are constrained due to practical or ethical reasons. Anim. Beh. 120, 223–234 (2015).Article 

    Google Scholar 
    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–137 (2018).Janik, V. M. Source levels and the estimated active space of bottlenose dolphin (Tursiops truncatus) whistles in the Moray Firth, Scotland. J. Comp. Physiol. A Sens. Neural Behav. Physiol 186, 673–680 (2000).CAS 
    Article 

    Google Scholar 
    Quintana-Rizzo, E., Mann, D. A. & Wells, R. S. Estimated communication range of social sounds used by bottlenose dolphins (Tursiops truncatus). JASA 120, 1671–1683 (2006).Article 

    Google Scholar 
    Sayigh, L. S. Development and function of signature whistles of free ranging bottlenose dolphins, Tursiops truncatus. MIT/WHOI joint program (1992).Janik, V. M., Sayigh, L. S. & Wells, R. S. Signature whistle shape conveys identity information to bottlenose dolphins. PNAS 103, 8293–8297 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Papale, E., Gamba, M., Perez-Gil, M., Martin, V. M. & Giacoma, C. Dolphins adjust species-specific frequency parameters to compensate for increasing background noise. PLoS ONE 10, e0121711 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    La Manna, G., Rako-Gospić, N., Manghi, M. & Ceccherelli, G. Influence of environmental, social and behavioural variables on the whistling of the common bottlenose dolphin (Tursiops truncatus). Behav. Ecol. Sociobiol. 73, 12 (2019).Article 

    Google Scholar 
    Ballard, S. M. & Lee, K. M. The acoustics of marine sediments. JASA 13, 18–18 (2017).
    Google Scholar 
    Smolker, R. & Pepper, J. W. Whistle convergence among allied male bottlenose dolphins (Delphinidae, Tursiops sp). Ethology 105, 595–617 (1999).Article 

    Google Scholar 
    Sayigh, L. S., Esch, H. C., Wells, R. S. & Janik, V. M. Facts about signature whistles of bottlenose dolphins (Tursiops truncatus). Anim. Behav. 74, 1631–1642 (2007).Article 

    Google Scholar 
    Jourdan J., et al. Distribution and abundance of bottlenose dolphin (Tursiops truncatus) along French Provençal coast. In Proceeding of the 30th European Cetacean Society Conference, Madeira (2016).Labach, H. et al. Distribution and abundance of common bottlenose dolphin (Tursiops truncatus) over the French Mediterranean continental shelf. Mar. Mam. Sci. 2021, 1–11 (2021).
    Google Scholar 
    Terranova, F. et al. Signature whistles of the demographic unit of bottlenose dolphins (Tursiops truncatus) inhabiting the Eastern Ligurian Sea: characterisation and comparison with the literature. Eur. Zool. J. 88, 771–781 (2021).Article 

    Google Scholar  More

  • in

    A trait database and updated checklist for European subterranean spiders

    Zanne, A. E. et al. Fungal functional ecology: bringing a trait-based approach to plant-associated fungi. Biol. Rev. 95, 409–433 (2020).PubMed 
    Article 

    Google Scholar 
    Põlme, S. et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105, 1–16 (2020).Article 

    Google Scholar 
    Fraser, L. H. TRY—A plant trait database of databases. Glob. Chang. Biol. 26, 189–190 (2020).ADS 
    PubMed 
    Article 

    Google Scholar 
    Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188 (2020).ADS 
    PubMed 
    Article 

    Google Scholar 
    Oliveira, B. F., São-Pedro, V. A., Santos-Barrera, G., Penone, C. & Costa, G. C. AmphiBIO, a global database for amphibian ecological traits. Sci. Data 4, 170123 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lecocq, T. et al. TOFF, a database of traits of fish to promote advances in fish aquaculture. Sci. Data 6, 301 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648 (2009).Article 

    Google Scholar 
    Parr, C. L. et al. GlobalAnts: a new database on the geography of ant traits (Hymenoptera: Formicidae). Insect Conserv. Divers. 10, 5–20 (2017).Article 

    Google Scholar 
    Homburg, K., Homburg, N., Schäfer, F., Schuldt, A. & Assmann, T. Carabids.org – a dynamic online database of ground beetle species traits (Coleoptera, Carabidae). Insect Conserv. Divers. 7, 195–205 (2014).Article 

    Google Scholar 
    Lowe, E. C. et al. Towards establishment of a centralized spider traits database. J. Arachnol. 48 (2020).Tobias, J. A. et al. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581–597 (2022).PubMed 
    Article 

    Google Scholar 
    Mammola, S., Carmona, C. P., Guillerme, T. & Cardoso, P. Concepts and applications in functional diversity. Funct. Ecol. 35, 1869–1885 (2021).Article 

    Google Scholar 
    de Bello, F. et al. Handbook of trait-based ecology: from theory to R tools. (Cambridge University Press, 2021).Edwards, K. F. et al. Evolutionarily stable communities: a framework for understanding the role of trait evolution in the maintenance of diversity. Ecol. Lett. 21, 1853–1868 (2018).PubMed 
    Article 

    Google Scholar 
    McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).PubMed 
    Article 

    Google Scholar 
    Violle, C., Reich, P. B., Pacala, S. W., Enquist, B. J. & Kattge, J. The emergence and promise of functional biogeography. Proc. Natl. Acad. Sci. 111, 13690–13696 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kosman, E., Burgio, K. R., Presley, S. J., Willig, M. R. & Scheiner, S. M. Conservation prioritization based on trait‐based metrics illustrated with global parrot distributions. Divers. Distrib. 25, 1156–1165 (2019).Article 

    Google Scholar 
    Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).Article 

    Google Scholar 
    de Bello, F. et al. Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers. Conserv. 19, 2873–2893 (2010).Article 

    Google Scholar 
    Ficetola, G. F., Canedoli, C. & Stoch, F. The Racovitzan impediment and the hidden biodiversity of unexplored environments. Conserv. Biol. 33, 214–216 (2019).PubMed 
    Article 

    Google Scholar 
    Mammola, S. et al. Collecting eco-evolutionary data in the dark: Impediments to subterranean research and how to overcome them. Ecol. Evol. 11, 5911–5926 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mammola, S. et al. Fundamental research questions in subterranean biology. Biol. Rev. 95, 1855–1872 (2020).PubMed 
    Article 

    Google Scholar 
    Cardoso, P. Diversity and community assembly patterns of epigean vs. troglobiont spiders in the Iberian Peninsula. Int. J. Speleol. 41, 83–94 (2012).Article 

    Google Scholar 
    Fernandes, C. S., Batalha, M. A. & Bichuette, M. E. Does the cave environment reduce functional diversity? PLoS One 11, e0151958 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Saccò, M. et al. New light in the dark – a proposed multidisciplinary framework for studying functional ecology of groundwater fauna. Sci. Total Environ. 662, 963–977 (2019).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Mammola, S. & Isaia, M. Spiders in caves. Proceedings of the Royal Society B: Biological Sciences 284, 20170193 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parimuchová, A. et al. The food web in a subterranean ecosystem is driven by intraguild predation. Sci. Rep. 11, 4994 (2021).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bloom, T. et al. Discovery of two new species of eyeless spiders within a single Hispaniola cave. J. Arachnol. 42, 148–154 (2014).Article 

    Google Scholar 
    Mammola, S., Cardoso, P., Ribera, C., Pavlek, M. & Isaia, M. A synthesis on cave-dwelling spiders in Europe. J. Zool. Syst. Evol. Res. 56, 301–316 (2018).Article 

    Google Scholar 
    Mammola, S. et al. Continental data on cave-dwelling spider communities across Europe (Arachnida: Araneae). Biodivers. Data J. 7, e38492 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Milano, F. et al. Spider conservation in Europe: a review. Biol. Conserv. 256, 109020 (2021).Article 

    Google Scholar 
    Pekár, S. et al. The World Spider Trait database (WST): a centralised global open repository for curated data on spider traits. Database 2021, baab064 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ledesma, E., Jiménez-Valverde, A., de Castro, A., Aguado-Aranda, P. & Ortuño, V. M. The study of hidden habitats sheds light on poorly known taxa: spiders of the Mesovoid Shallow Substratum. Zookeys 841, 39–59 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    World Spider Catalog. World Spider Catalog. Version 23.0. Natural History Museum Bern 10.24436/2 (2022).Nentwig, W. et al. Araneae – Spider of Europe. 10.24436/1 (2021).Malumbres-Olarte, J. et al. Habitat filtering and inferred dispersal ability condition across-scale species turnover and rarity in Macaronesian island spider assemblages. J. Biogeogr. 48, 3131–3144 (2021).Article 

    Google Scholar 
    Nentwig, W., Gloor, D. & Kropf, C. Spider taxonomists catch data on web. Nature 528, 479 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Mammola, S. et al. Environmental filtering and convergent evolution determine the ecological specialization of subterranean spiders. Funct. Ecol. 34, 1064–1077 (2020).Article 

    Google Scholar 
    Mammola, S. et al. Ecological speciation in darkness? Spatial niche partitioning in sibling subterranean spiders (Araneae: Linyphiidae: Troglohyphantes). Invertebr. Syst. 32, 1069–1082 (2018).Article 

    Google Scholar 
    Huber, B. A. Cave-dwelling pholcid spiders (Araneae, Pholcidae): A review. Subterr. Biol. 26, 1–18 (2018).ADS 
    Article 

    Google Scholar 
    Arnedo, M. A., Oromí, P., Múrria, C., Macías-Hernández, N. & Ribera, C. The dark side of an island radiation: systematics and evolution of troglobitic spiders of the genus Dysdera Latreille (Araneae:Dysderidae) in the Canary Islands. Invertebr. Syst. 21, 623–660 (2007).Article 

    Google Scholar 
    Ubick, D., Paquin, P., Cushing, P. E. & Duperre, N. Spiders of North America: An Identification Manual. (Amer Arachnological Society, 2007).Cardoso, P., Pekár, S., Jocqué, R. & Coddington, J. A. Global patterns of guild composition and functional diversity of spiders. PLoS One 6, e21710 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smithers, P. The early life history and dispersal of the cave spider Meta menardi (Latreille, 1804) (Araneae: Tetragnathidae). Bull. Br. arachnol. Soc 13, 213–216 (2005).
    Google Scholar 
    Mammola, S., Hormiga, G., Arnedo, M. A. & Isaia, M. Unexpected diversity in the relictual European spiders of the genus Pimoa (Araneae:Pimoidae). Invertebr. Syst. 30, 566–587 (2016).Article 

    Google Scholar 
    Sket, B. Can we agree on an ecological classification of subterranean animals? J. Nat. Hist. 42, 1549–1563 (2008).Article 

    Google Scholar 
    Trajano, E. & de Carvalho, M. R. Towards a biologically meaningful classification of subterranean organisms: A critical analysis of the schiner-racovitza system from a historical perspective, difficulties of its application and implications for conservation. Subterr. Biol. 22, 1–26 (2017).Article 

    Google Scholar 
    Martínez, A. & Mammola, S. Specialized terminology reduces the number of citations to scientific papers. Proc. R. Soc. B Biol. Sci. 288, 20202581 (2021).Article 

    Google Scholar 
    Mammola, S. Finding answers in the dark: caves as models in ecology fifty years after Poulson and White. Ecography 42, 1331–1351 (2019).Article 

    Google Scholar 
    Mammola, S. et al. Quantifying troglomorphism in hyperspace. Arpha Conf. Abstr. 5, e82941 (2022).Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, 2016).Palacio, F. X. et al. A protocol for reproducible functional diversity analyses. EcoEvoRxiv https://doi.org/10.32942/osf.io/yt9sb (2022).Article 

    Google Scholar 
    Gower, J. C. A General Coefficient of Similarity and Some of Its Properties. Biometrics 27, 857–871 (1971).Article 

    Google Scholar 
    de Bello, F., Botta-Dukát, Z., Lepš, J. & Fibich, P. Towards a more balanced combination of multiple traits when computing functional differences between species. Methods Ecol. Evol. 12, 443–448 (2021).Article 

    Google Scholar 
    Paradis, E. & Schliep, K. Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Oksanen, J. et al. R Package vegan: community ecology package. R package version 2.5-3 (2018).R Core Team. R: A language and environment for statistical computing. (2021).Mammola, S. A trait database for European subterranean spiders, Figshare, https://doi.org/10.6084/m9.figshare.16574255 (2022).Cardoso, P. & Pekar, S. arakno – An R package for effective spider nomenclature, distribution, and trait data retrieval from online resources. J. Arachnol. 50, 30–32 (2022).Article 

    Google Scholar 
    Johnson, T. F., Isaac, N. J. B., Paviolo, A. & González-Suárez, M. Handling missing values in trait data. Glob. Ecol. Biogeogr. 30, 51–62 (2021).Article 

    Google Scholar 
    Podani, J., Kalapos, T., Barta, B. & Schmera, D. Principal component analysis of incomplete data – A simple solution to an old problem. Ecol. Inform. 61, 101235 (2021).Article 

    Google Scholar 
    Cardoso, P., Mammola, S., Rigal, F. & Carvalho, J. C. BAT: Biodiversity Assessment Tools. R package version 2.6.0 (2021).Cardoso, P., Rigal, F. & Carvalho, J. C. BAT – Biodiversity Assessment Tools, an R package for the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Methods Ecol. Evol. 6, 232–236 (2015).Article 

    Google Scholar 
    De Bello, F. et al. Quantifying the relevance of intraspecific trait variability for functional diversity. Methods Ecol. Evol. 2, 163–174 (2011).Article 

    Google Scholar 
    Violle, C. et al. The return of the variance: intraspecific variability in community ecology. Trends Ecol. Evol. 27, 244–252 (2012).PubMed 
    Article 

    Google Scholar 
    Gentile, G., Bonelli, S. & Riva, F. Evaluating intraspecific variation in insect trait analysis. Ecol. Entomol. 46, 11–18 (2020).Article 

    Google Scholar 
    Wong, M. K. L. & Carmona, C. P. Including intraspecific trait variability to avoid distortion of functional diversity and ecological inference: Lessons from natural assemblages. Methods Ecol. Evol. 12, 946–957 (2021).Article 

    Google Scholar 
    Mammola, S., Piano, E., Malard, F., Vernon, P. & Isaia, M. Extending Janzen’s hypothesis to temperate regions: a test using subterranean ecosystems. Funct. Ecol. 33, 1638–1650 (2019).Article 

    Google Scholar 
    Kratochvíl, J. Araignées cavernicoles des îles Dalmates. Přírodovědné práce ústavů Československé Akad. Věd v Brně 12, 1–59 (1978).
    Google Scholar 
    Denny, M. The fallacy of the average: on the ubiquity, utility and continuing novelty of Jensen’s inequality. J. Exp. Biol. 220, 139–146 (2017).PubMed 
    Article 

    Google Scholar 
    Mammola, S. et al. Cave_dwelling_spiders_Europe. Figshare https://doi.org/10.6084/m9.figshare.8224025.v1 (2019).Darwin, C. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle of life. (John Murray, 1859).Wong, M. K. L., Guénard, B. & Lewis, O. T. Trait-based ecology of terrestrial arthropods. Biol. Rev. 94, 999–1022 (2019).PubMed 
    Article 

    Google Scholar 
    Lučić, I. Interview with Boris Sket: nothing has a sense in speleobiology, without a comparison of cave animals with the ‘normal’ epigean ones. Acta Carsologica 50, 5–9 (2021).Article 

    Google Scholar 
    McGill, B. J. The what, how and why of doing macroecology. Glob. Ecol. Biogeogr. 28, 6–17 (2019).Article 

    Google Scholar 
    Muscarella, R. & Uriarte, M. Do community-weighted mean functional traits reflect optimal strategies? Proc. R. Soc. B Biol. Sci. 283, 20152434 (2016).Article 

    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).Article 

    Google Scholar 
    Mammola, S. & Cardoso, P. Functional diversity metrics using kernel density n-dimensional hypervolumes. Methods Ecol. Evol. 11, 986–995 (2020).Article 

    Google Scholar 
    Mammola, S. et al. Local- versus broad-scale environmental drivers of continental β-diversity patterns in subterranean spider communities across Europe. Proc. R. Soc. B Biol. Sci. 286, 20191579 (2019).Article 

    Google Scholar 
    Graco-Roza, C. et al. Distance decay 2.0 – a global synthesis of taxonomic and functional turnover in ecological communities. Glob. Ecol. Biogeogr, in press (available at https://doi.org/10.1101/2021.03.17.435827) (2022).Gallagher, R. V. et al. A guide to using species trait data in conservation. One Earth 4, 927–936 (2021).ADS 
    Article 

    Google Scholar 
    Chichorro, F., Juslén, A. & Cardoso, P. A review of the relation between species traits and extinction risk. Biol. Conserv. 237, 220–229 (2019).Article 

    Google Scholar 
    Chichorro, F. et al. Species traits predict extinction risk across the Tree of Life. bioRxiv 2020.07.01.183053 (2020).Violle, C. et al. Functional rarity: the ecology of outliers. Trends Ecol. Evol. 32, 356–367 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carmona, C. P. et al. Erosion of global functional diversity across the tree of life. Sci. Adv. 7, eabf2675 (2021).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Loreau, M. et al. Biodiversity as insurance: from concept to measurement and application. Biol. Rev. 96, 2333–2354 (2021).PubMed 
    Article 

    Google Scholar 
    Sánchez-Fernández, D., Galassi, D. M. P., Wynne, J. J., Cardoso, P. & Mammola, S. Don’t forget subterranean ecosystems in climate change agendas. Nat. Clim. Chang. 11, 458–459 (2021).ADS 
    Article 

    Google Scholar 
    Borges, P. A. V. et al. Volcanic caves: Priorities for conserving the Azorean endemic troglobiont species. Int. J. Speleol. 41, 101–112 (2012).Article 

    Google Scholar 
    Rabelo, L. M., Souza-Silva, M. & Ferreira, R. L. Priority caves for biodiversity conservation in a key karst area of Brazil: comparing the applicability of cave conservation indices. Biodivers. Conserv. 27, 2097–2129 (2018).Article 

    Google Scholar 
    Nitzu, E. et al. Assessing preservation priorities of caves and karst areas using the frequency of endemic cave-dwelling species. Int. J. Speleol. 47, 43–52 (2018).Article 

    Google Scholar 
    Pipan, T., Deharveng, L. & Culver, D. C. Hotspots of subterranean biodiversity. Diversity 12, 209 (2020).Article 

    Google Scholar 
    Fattorini, S., Fiasca, B., Di Lorenzo, T., Di Cicco, M. & Galassi, D. M. P. A new protocol for assessing the conservation priority of groundwater-dependent ecosystems. Aquat. Conserv. Mar. Freshw. Ecosyst. 30, 1483–1504 (2020).Article 

    Google Scholar 
    Iannella, M. et al. Getting the ‘most out of the hotspot’ for practical conservation of groundwater biodiversity. Glob. Ecol. Conserv. e01844 (2021).Mazel, F. et al. Prioritizing phylogenetic diversity captures functional diversity unreliably. Nat. Commun. 9, 2888 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cadotte, M. W. & Tucker, C. M. Difficult decisions: Strategies for conservation prioritization when taxonomic, phylogenetic and functional diversity are not spatially congruent. Biol. Conserv. 225, 128–133 (2018).Article 

    Google Scholar 
    Hanson, J. O. et al. Global conservation of species’ niches. Nature 580, 232–234 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Pollock, L. J. et al. Protecting biodiversity (in all its complexity): new models and methods. Trends Ecol. Evol. 35, 1119–1128 (2020).PubMed 
    Article 

    Google Scholar 
    Mammola, S. et al. Scientists’ warning on the conservation of subterranean ecosystems. Bioscience 69, 641–650 (2019).Article 

    Google Scholar 
    Wynne, J. J. et al. A conservation roadmap for the subterranean biome. Conserv. Lett. 14, e12834 (2021).Article 

    Google Scholar 
    Mammola, S. et al. Towards evidence-based conservation of subterranean ecosystems. Biol. Rev., early view at https://doi.org/10.1111/brv.12851 (2022).Culver, D. C. & Pipan, T. The biology of caves and other subterranean habitats. (Oxford University Press, USA, 2014).Culver, D. C. & Pipan, T. Shallow Subterranean Habitats: Ecology, Evolution, and Convervation. (Oxford University Press, USA, 2014).Sobral, M. All traits are functional: an evolutionary viewpoint. Trends Plant Sci. 26, 674–676 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pipan, T. & Culver, D. C. The unity and diversity of the subterranean realm with respect to invertebrate body size. J. Cave Karst Stud. 79, 1–9 (2017).Article 

    Google Scholar 
    Elgar, M. A., Ghaffar, N. & Read, A. F. Sexual dimorphism in leg length among orb-weaving spiders: a possible role for sexual cannibalism. J. Zool. 222, 455–470 (1990).Article 

    Google Scholar 
    Deeleman-Reinhold, C. L. Revision of the cave-dwelling and related spiders of the genus Troglohyphantes Joseph (Linyphiidae), with special reference to the Yugoslav species. Opera Acad. Sci. Artium Slov. 23 (1978).Isaia, M. & Pantini, P. New data on the spider genus Troglohyphantes (Araneae, Linyphiidae) in the Italian Alps, with the description of a new species and a new synonymy. Zootaxa 2690, 1–18 (2010).Article 

    Google Scholar 
    Hagstrum, D. W. Carapace width as a tool for evaluating the rate of development of spiders in the laboratory and the field. Ann. Entomol. Soc. Am. 64, 757–760 (1971).Article 

    Google Scholar 
    Pavlek, M. & Mammola, S. Niche-based processes explaining the distributions of closely related subterranean spiders. J. Biogeogr. 48, 118–133 (2020).Article 

    Google Scholar 
    Mammola, S. Modelling the future spread of native and alien congeneric species in subterranean habitats – The case of meta cave-dwelling spiders in Great Britain. Int. J. Speleol. 46, 427–437 (2017).Article 

    Google Scholar 
    Novak, T. et al. Niche partitioning in orbweaving spiders Meta menardi and Metellina merianae (Tetragnathidae). Acta Oecologica 36, 522–529 (2010).ADS 
    Article 

    Google Scholar 
    Lunghi, E. Occurrence of the Black lace-weaver spider, Amaurobius ferox, in caves. Acta Carsologica 49, 119–124 (2020).Article 

    Google Scholar 
    Isaia, M. & Chiarle, A. Taxonomic notes on Cybaeus vignai Brignoli, 1977 (Araneae, Cybaeidae) and Dysdera cribrata Simon, 1882 (Araneae, Dysderidae) from the Italian Maritime Alps. Zoosystema 37, 45–56 (2015).Article 

    Google Scholar 
    Ledford, J. et al. Phylogenomics and biogeography of leptonetid spiders (Araneae: Leptonetidae). Invertebr. Syst. 35, 332–349 (2021).
    Google Scholar 
    Isaia, M., Mammola, S., Mazzuca, P., Arnedo, M. A. & Pantini, P. Advances in the systematics of the spider genus Troglohyphantes (Araneae, Linyphiidae). Syst. Biodivers. 15, 307–326 (2017).Article 

    Google Scholar 
    Hajer, J. & Řeháková, D. Spinning activity of the spider Trogloneta granulum (Araneae, Mysmenidae): web, cocoon, cocoon handling behaviour, draglines and attachment discs. Zoology 106, 223–231 (2003).PubMed 
    Article 

    Google Scholar 
    Huber, B. A., Pavlek, M. & Komnenov, M. Revision of the spider genus Stygopholcus (Araneae, Pholcidae), endemic to the Balkan Peninsula. Eur. J. Taxon. 752, 1–60 (2021).
    Google Scholar 
    Huber, B. A. Revision of the spider genus Hoplopholcus Kulczyński (Araneae, Pholcidae). Zootaxa 4726, 1–94 (2020).Article 

    Google Scholar 
    Cardoso, P. & Scharff, N. First record of the spider family symphytognathidae in Europe and description of Anapistula ataecina sp. n. (araneae). Zootaxa 2246, 45–57 (2009).Article 

    Google Scholar 
    Wang, C., Ribera, C. & Li, S. On the identity of the type species of the genus Telema (Araneae, Telemidae). Zookeys 251, 11–19 (2012).Article 

    Google Scholar 
    Hesselberg, T., Simonsen, D. & Juan, C. Do cave orb spiders show unique behavioural adaptations to subterranean life? A review of the evidence. Behaviour 1–28 (2019). More