More stories

  • in

    Climate and hydraulic traits interact to set thresholds for liana viability

    TRY meta-­analysisWe used the TRY plant trait database27 to identify traits that show systematic differences between the tree and liana growth forms, as a way to narrow the scope of the rest of the analysis. We chose traits to represent major trade­offs within the “economic spectrum” framework, which places plants along a spectrum of strategies from acquisitive, fast return on investment to conservative, slow return on investment according to key functional trait values30. We narrowed traits to those that had observations for at least four tree and liana species. We then compiled our dataset using the following steps during November and December 2019. For each trait, we downloaded the dataset for all species available globally and averaged the observations of the trait to the species level to avoid statistical biases introduced in our growth form comparison due to a high density of observations in a few commercially valuable species. We matched the species ID number with the most frequently used growth form identifier using the TRY “growth form” trait and kept the species with the most frequent identifier of “tree,” “liana,” or “woody vine.” We subsetted the data to keep only species with a majority of observations ascribed to the tree and liana growth forms (i.e., no herbaceous species, ferns, etc.), resulting in observations for 44,222 total species. Finally, we filtered the dataset of 44,222 species by hand to remove species misclassified as trees or lianas; species occurring entirely in temperate to boreal biomes; species from all gymnosperm lineages except the order Gnetales; and entries for taxonomic classifications broader than the genus level (e.g., taxonomic families). We found that hydraulic functional traits in the TRY database (i.e., Ks,max and P50) show systematic differences between growth forms (Supplementary Fig. 1; Supplementary Tables 3 and 4), while there is mixed evidence for differences in the acquisitiveness of trees and lianas in terms of stem anatomical traits (Supplementary Fig. 1; Supplementary Tables 3 and 4) and leaf functional traits (Supplementary Fig. 6; Supplementary Tables 3 and 4), and no evidence of differences between tropical trees and lianas with respect to root functional traits (Supplementary Fig. 7; Supplementary Tables 3 and 4).Extended meta­-analysisWe conducted an additional literature search to supplement the hydraulic trait observations from the TRY database. The additional literature search served two purposes: (1) to fill a major gap identified during our TRY analysis in terms of liana trait observations, and (2) to address the methodological inconsistency of measuring Ks,max and P50 on liana branches shorter than the longest vessel, which incorrectly measures Ks,max and P50 without accounting for end wall resistivity59,60.We conducted a literature search using Web of Science and Google Scholar. We searched the following phrases in combination with “liana:” “hydraulic conductivity,” “hydraulic trait,” “hydraulic efficiency,” and “hydraulic K.” Of the literature we found, we kept only the studies that met the following criteria: (1) reported Ks,max measurements for lianas, (2) measured Ks,max instead of computing Ks,max from xylem conduit dimensions, (3) measured Ks,max on sunlit, terminal branches of mature individuals or saplings, and (4) measured Ks,max on a branch longer than the longest vessel. We considered the authors to have used a branch length longer than maximum vessel length if the authors measured or reported maximum vessel length for the species and a longer branch was used. Because the best methodological practice for measuring P50, especially in species with long vessels, is currently a matter of debate, we additionally removed all observations of P50  > ­0.75. This filtering was performed to reduce the probability that falsely high (i.e., less negative) P50 values were retained in our analysis because of improper measurement technique and is consistent with the P50 filtering performed by Trugman et al.61. Improper measurement technique is a particular concern for lianas, whose wide and long vessels require cautious implementation of the traditional measurement techniques developed for trees. We note that retaining all liana P50 observations (i.e., not filtering out observations  > −0.75) results in a significant difference between trees and lianas (Mann­–Whitney test statistic = 1029, ntree = 61, nliana = 46, p  More

  • in

    Larix species range dynamics in Siberia since the Last Glacial captured from sedimentary ancient DNA

    Chloroplast and repetitive nuclear DNA enrichment in the sedaDNA extractsTo the best of our knowledge, we generated the first large-scale target enriched dataset using sedaDNA extracted from sediments of multiple lakes. Sequencing of two datasets produced 325.5 million (M) quality-filtered paired-end DNA sequences. The first target enriched dataset, targeting both the chloroplast and a set of nuclear genes of Larix on 64 sedaDNA extracts and 19 negative controls from seven lake sediment records resulted in 324 M quality-filtered paired-end sequences. The second target enriched dataset, targeting only the set of nuclear genes of Larix on four samples and two negative controls from an additional lake (Lake CH12) resulted in 1.5 M sequences. Quality-filtering of an additional published target enriched dataset29, targeting the Larix chloroplast genome on the same CH12 samples as applied for the second dataset, added another 54 M sequences.For the chloroplast enrichment, 390 thousand (K) sequences (1%) were classified as Larix at the genus or species level. The average coverage of bait regions was 19% at a mean sequence depth of 0.8. Sequencing of 19 library and extraction blank (negative control) samples resulted in 597 K paired-end sequences, of which 58% quality-filtered and deduplicated sequences remained. Of these, 38% were classified, with 0.03% of them (463 sequences) corresponding to the genus Larix. Negative controls from library preparation resulted in no to very few (0 to 5) sequences mapping to the Larix chloroplast reference genome. Negative controls from DNA extractions, which were in several cases pooled to one library, showed a low number of sequences mapped to Larix (0 to 94 sequences, except 237 sequences in one case). Excluding all sequences in negative controls from the sample analysis had no impact on the patterns resulting from the analysis of sample data. Detailed results and evaluation of negative controls are included in the Supplementary Information (Fig. S5) and Supplementary Data 1 and 2. Samples of all lake records with sufficient sequence coverage showed damage patterns typical of ancient DNA (see Supplementary Data 3).These results are comparable to the results obtained by Schulte et al.29, where 36% of quality-filtered sequences were classified as Viridiplantae with 9% assigned to Larix. In contrast to29, we raised the confidence threshold of taxonomic classification (a parameter defining the number of k-mers needed to produce a match against a taxon in the database), which drastically reduced the number of classified sequences, but increased the confidence in the analysis36.To analyze the enrichment obtained by the nuclear gene bait set, taxonomic classification was repeated using a plant genome database including available Pinaceae genomes. The classification resulted in 716 K sequences assigned to Larix, increasing the previous results by 325 K sequences. However, almost no sequences were mapped against the targeting baits (a maximum of five sequences for some samples). A closer inspection of unmapped sequences assigned to Larix revealed a high content of repetitive DNAs. More specifically, taxonomically classified Larix sequences could be assembled to EulaSat1, the most abundant satellite repeat in the nuclear genome of Larix32,37. This short repeat with a 173 bp long motif is arranged in large arrays of tandemly repeated motifs and is exclusively present in larches32. Analysis of modern L. sibirica, and L. gmelinii (western and eastern range) genomes reveals that EulaSat1 occurs in all species, contributing to 0.62% (L. sibirica), 2.52% (western range L. gmelinii), and 2.39% (eastern range L. gmelinii), of the genomes, respectively (Fig. S2). A comparison of the sequence proportions mapping to the repeat motif in the different datasets of Lake CH12 showed a specific enrichment of the repeat motif by the nuclear gene hybridization probe set (Fig. S3).In total, 17 K sequences mapped to the repeat motif of EulaSat1. The abundance of all sequences mapped per sample is in agreement with the abundance of sequences mapped to the chloroplast genome, confirming the general history of forest development (Fig. 2). Analysis of the nucleotide frequencies in the repeat motif showed a high constancy over all samples (Fig. S4). This suggests high conservation of the EulaSat1 motif in Siberian larches over time and space. Although satellite repeats are reported to have a high sequence turnover, for larches it has been shown that repeat profiles between two geographically well-separated species—the European larch (L. decidua) and the Japanese larch (L. kaempferi)—are very similar32. The main satellite in all larches, EulaSat1, is believed to have greatly multiplied after the split of Larix from Pseudotsuga32. Given the ongoing hybridization between the three Siberian larch species, it is not surprising to find a consistent pattern of nucleotide frequencies in all samples.Fig. 2: Comparison of target enrichment with available DNA metabarcoding and pollen datasets.From left to right: Larix-classified sequence counts mapping to (1) the Larix chloroplast and (2) the EulaSat1 satellite repeat motif, (3) percentage of Larix counts in metabarcoding data, (4) percentage of Larix pollen in pollen assemblages. All data from this study, except metabarcoding data from lakes CH1213 and Bolshoye Shchuchye55 and all pollen data except for several samples of Lake Kyutyunda which were produced in this study56,57,71. Pollen data of Lake Lama and the Holocene part of Lake Kyutyunda are based on parallel sediment cores PG1111 and PG2022, respectively. No available data are marked with crosses, asterisk marks a single Larix pollen grain found in the Bolshoye Shchuchye sediments.Full size imageOff-target sequences in target enriched datasets have already been demonstrated to be useful for the analysis of high-copy DNA such as ribosomal DNA or plastomes34,38,39. A recent study on five modern sedges showed that target enriched sequencing data originally targeting a set of gene exons can also be used to study the repetitive sequence fraction and even infer phylogenetic relationships based on repetitive sequence abundance35. Another study showed that also sequence similarities between homologous repeat motifs can be used to reconstruct phylogenetic relationships among closely related taxa40,41. In the case of Larix satellite EuLaSat1 in our study, no change in nucleotide frequencies, neither related to locations nor in time, could be detected. However, our results show that the off-target fraction in target enriched sedaDNA datasets can hold valuable information and that repeat motifs in more diverse taxon groups could even be a target for enrichment. Specifically enriching for repeat motifs in sedaDNA extracts could enable the study of satellite repeat evolution as well as giving additional information on species abundance and phylogeography.In the two target enriched datasets, sequences taxonomically classified to the genus Larix and mapping to the chloroplast and to the repeat sequence, respectively, show similar patterns of abundance (see Fig. 2). Compared with published metabarcoding and pollen data from the same locations, the Larix abundance patterns can be globally reproduced, underpinning the notion that sequence abundances in target enriched data can be used as good estimates of plant abundances. For older parts of the lake records, target enriched data show Larix where metabarcoding data were unable to detect a clear signal (see Fig. 2, lakes Billyakh, Bolshoye Shchuchye, Kyutyunda, and Lama). This shows that target enrichment is superior to metabarcoding when analyzing one taxonomic group in-depth, as it is less prone to errors by DNA degradation, which can impede primer binding if the molecule becomes too short. Also, independent of age, rare taxa mostly need multiple PCR replicates to be detected by metabarcoding42,43. Target enrichment, however, is more sensitive in identifying one focal taxon group, as the total target length can be much larger (e.g., a complete organellar genome) than for metabarcoding, and the DNA damage patterns are put to use to authenticate ancient DNA. Also, it is limited by molecule length only by the applied threshold in the bioinformatic analysis, for which we used 30 base pairs (bp) as opposed to a minimum of 85 bp molecule length for the Larix metabarcoding marker (for the plant-specific trnL g/h marker44). Similarly, compared to traditional pollen analysis, target enrichment is more accurate at tracing a specific target group, as it is not dependent on pollen productivity. Especially in the case of Larix, pollen productivity is low and preservation poor, resulting in rare findings of its pollen in the sediments22,45. This could explain why for Lake Bolshoye Shchuchye, only a single Larix pollen grain was retrieved throughout the core, whereas target enrichment and metabarcoding show a strong signal in the Holocene sediments (last ~12 ka BP). Target-enriched data also records signals in MIS 2 sediments, however, sequence counts are extremely low, and as it is the only record, where both of the other proxies fail to report a signal, it should be interpreted with caution.A wider pre-glacial distribution of L. sibirica
    Chloroplast genomes of L. gmelinii and L. sibirica differ at 157 positions, which can be used to differentiate species in target enriched sedaDNA29. Here, we applied this approach to lake sediment records, which are distributed across Siberia (Fig. 1) and have time ranges back to MIS3, and thereby were able to track species composition in space and time for wide parts of the species ranges.In lakes Billyakh and Kyutyunda, ca. 1500 km east of L. sibirica current range (Fig. 1), we found evidence for a wider distribution of L. sibirica around 32 and 34 ka BP in MIS3 (Fig. 3). Billyakh is situated in the western part of the Verkhoyansk Mountains, and Kyutyunda on the Central Siberian Plateau. Both lakes have low counts of Larix DNA sequences in their oldest samples dated to 51 ka BP (Billyakh) and 38 ka BP (Kyutyunda) with variants of L. gmelinii, but there is a sudden rise in variants attributed to L. sibirica at 34 ka BP (Billyakh) and 32 ka BP (Kyutyunda), which persists in the following samples, but strongly decreases in younger samples (Fig. 3). The rise in the L. sibirica DNA sequence variants coincides with a peak in sequence counts for Lake Kyutyunda. These signals suggest a rapid invasion of L. sibirica into the ranges of L. gmelinii in climatically favorable times and a local depletion or extinction of L. sibirica during the following harsher climates. Lake Billyakh pollen data suggest a moister and warmer climate around 50–30 ka BP than in the latter part of the Last Glacial associated with the MIS3 Interstadial in Siberia46.Fig. 3: Percentage and sequence counts at variable positions along Larix chloroplast genome assigned to species.Left: Alignment of Larix-classified DNA sequences against the chloroplast genome at the 157 variable positions between the species. For each position, the percentage of sequences assigned to a single species is displayed. Each row represents one sample named according to the calibrated age before present. Gray background indicates no coverage at the respective position. Right: Total number of sequences assigned to each of the species per sample.Full size imageStrong support for a wider pre-glacial distribution of L. sibirica comes from genetic analyses which show that it is genetically close to L. olgensis, today occurring on the Korean Peninsula and adjacent areas of China and Russia27,47. It is assumed that the L. sibirica-L. olgensis complex used to share a common range, which was disrupted and displaced when the better cold-adapted L. gmelinii expanded south and southwest during the more continental climatic conditions of the Pleistocene47,48. Furthermore, modern and ancient genetic studies suggest that the L. sibirica zone was recently invaded by L. gmelinii from the east in the hybridization zone of the species, as the climate cooled after the mid-Holocene thermal maximum13,23. Today, pure stands of L. sibirica do not form a continuous habitat, but occur in netted islands5 and morphological features of L. sibirica can be found in populations of L. gmelinii located at least a hundred kilometers east of the closest L. sibirica populations49. Macrofossil findings of L. sibirica in Scandinavia dated to the early Holocene, point to the capability of rapid long-distance jump dispersal of this species50. Fossil L. sibirica cones dated to the end of the Pliocene and in the Pleistocene have also been found far east of its current range in several river valleys including Kolyma, Aldan, and Omolon, and even in the basin of the Sea of Okhotsk9. These indicate long-distance seed dispersal by rivers which may also have assisted in successful establishment since the active-layer depth is deeper close to rivers51,52. As mentioned earlier, L. sibirica is sensitive to permafrost and waterlogged soils. A warmer phase with a deeper thawed layer above the permafrost could have enabled L. sibirica to spread and establish in regions that today are part of the geographic range of L. gmelinii, as L. sibirica is reported to have higher growth rates than L. gmelinii13.
    Larix gmelinii formed northern LGM refugia across SiberiaThe possible survival of Larix in high latitude glacial refugia during the LGM is still under discussion4,53 although more and more evidence is reported in favor of the existence of such refugia17,20,21. The question of which of the Larix species formed these populations has hitherto been unanswered, as both pollen and established metabarcoding markers are not able to distinguish between species in the genus Larix, and findings of fossilized cones identifiable to species are rare. By enriching sedaDNA extracts for chloroplast genome sequences, we are, to the best of our knowledge, for the first time, able to distinguish between L. sibirica and L. gmelinii in glacial refugial populations.From Lake Lama, located at the western margin of the Putorana Plateau (Taymyr Peninsula), we obtained a continuous record extending from 23 ka BP to today with varying sequence counts with minima around 18–17 ka BP and 13 ka BP. All samples prior to the Holocene show variations predominantly assigned to L. gmelinii (Fig. 3). Our results suggest a local survival of L. gmelinii in the vicinity of Lake Lama throughout the LGM, which is supported by low numbers of Larix pollen detected through this period. Both target enriched sequence data and pollen indicate an increase from ca. 11 ka BP54. Sparse Larix pollen in the bottom part of the record could be an indication of a possible refugial population (Fig. 2; ref. 54).In Bolshoye Shchuchye, the westernmost lake of the study, situated in the Polar Ural Mountains, all Pleistocene samples show similarly a dominance of L. gmelinii sequence variations (Fig. 3). However, sequence counts for some samples are extremely low and samples from 18 and 10 ka BP had so low counts of mapped DNA sequences that none of the variable positions between the species was covered. Although sequences mapped to the satellite repeat of Larix also showed a Pleistocene signal, this was not repeated in pollen or metabarcoding (Fig. 2) which instead indicates a treeless arctic-alpine flora for the late Pleistocene55,56. Especially for the sample of 20.4 ka, Larix sequence counts are extremely low and new investigations would be needed to confirm a local presence of Larix during the LGM.The record of Lake Billyakh situated in the western Verkhoyansk Mountain Range, likewise shows extremely low counts of sequences mapped to the reference for a range of samples with no sequences covering the studied variable sites (45, 42, and 15 ka BP, 11–56 sequences mapped to non-variable sites). However, the pollen record for the same core shows a quasi-continuous record of Larix with a gap only occurring during the early LGM46 (25–22 ka BP, Fig. 2). Considering the known short-distance dispersal ability and poor preservation of Larix pollen, this strongly supports the presumed existence of a local glacial refugium at Lake Billyakh during that time20. Our samples also show a low but steady presence of Larix throughout the rest of the record, thus making glacial survival probable. The sample closest to the LGM (24 ka BP) indicates a clear dominance of L. gmelinii type variations.The only exception to this general pattern is the record from Lake Kyutyunda, which is located on the Central Siberian Plateau west of the Verkhoyansk Mountain Range. In this record, LGM samples have extremely low counts but show variations assigned to L. sibirica and not to L. gmelinii as in the other lakes. In addition, the preceding sample dated to the MIS3 interstadial shows L. sibirica variation. A possible explanation is that relics of L. sibirica survived during the LGM, but were unable to spread after climate warming, possibly due to genetic depletion or later local extinction. The presence of reworked sediment material can also not be excluded, as suggested by reworked pollen in the record57.In conclusion, our data show almost exclusively L. gmelinii variation for samples covering the most severe LGM climate conditions. This is in agreement with the ecological characteristics describing the species as adapted to extreme cold. In contrast to L. sibirica, it can grow in dwarf forms and propagate clonally and potentially survive thousands of years of adverse climatic conditions58.Postglacial colonization history—differences among larch speciesOf great interest in the Larix history is not only the location and extent of possible high latitude glacial refugia but also if and to what extent these refugia contributed to the recolonization of Siberia after the LGM. Northern refugial populations could have functioned as kernels of postglacial population spread and recolonization, or spreading could have been driven by populations that survived in southern refugia. There are only a few studies on modern populations that report evidence for possible recolonization scenarios of Larix23,27,28. Here, we show that patterns differ between L. sibirica and L. gmelinii.In the western part of our study region, two lakes are situated in the current distribution range of L. sibirica (Figs. 1, 4): Lake Bolshoye Shchuchye in the Polar Ural Mountains and Lake Lama on the Taymyr Peninsula. Despite this, both lakes show L. gmelinii for all Pleistocene samples, and a strong signal of L. sibirica variants only in the Holocene samples, with ages of 5.1 ka BP in Lake Bolshoye Shchuchye and 9.7 ka BP in Lake Lama (Fig. 3). The peak in L. sibirica also coincides with a peak of sequence counts in the respective sample, with a Larix pollen peak in Lake Lama sediments54, and metabarcoding for Lake Bolshoye Shchuchye55. This points to a migration of L. sibirica in its current northern area of northern distribution in the course of climate warming during the early Holocene, whereas glacial refugial populations were consisting of L. gmelinii. Although the local survival of L. gmelinii around Lake Bolshoye Shchuchye remains uncertain due to extremely low sequence counts, it is clear that L. sibirica did not form a refugial population at this site.Fig. 4: Percentage of DNA sequences assigned to references displayed on the geographical locations of the lakes investigated.Samples in the same time frame are averaged. Lake names and current species ranges are annotated in the middle plots. Colors indicate current species distribution (adapted from Semerikov and Lascoux72). The base map is done with ggmap73, map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.Full size imageA range-wide genetic study of L. sibirica analyzing chlorotypes and mitotypes of individuals23 found strong indications for rapid colonization of the West Siberian Plains from populations originating from the foothills of the Sayan Mountains in the south, close to the border of Mongolia, with only limited contribution from local populations. According to our results, the local populations could have been L. gmelinii populations, while the rapid invasion could have been L. sibirica.In the eastern range of the study region, in the current range of L. gmelinii, namely at lakes Emanda, Satagay, and Malaya Chabyda, genetic variations throughout the records are less pronounced. Of the three lake records, only that from Lake Emanda reaches back beyond the LGM, but with a sampling gap for the time of the LGM. Therefore, it remains uncertain whether populations survived the LGM locally, or whether they were invaded or replaced by populations coming from the south with Holocene warming. The restricted variations throughout the record, however, hint at stable populations, which is supported by scarce pollen findings (Fig. 2).Our data suggest that postglacial recolonization of L. sibirica was not started from high latitude glacial refugia, but from southern populations. In contrast, northern glacial populations of L. gmelinii could have potentially enhanced rapid dispersal after the LGM in their current area of distribution.Environment likely plays a more important role than historical factorsThe current boundaries of boreal Larix species arranged from west to east suggest a possible strong influence of the historical species distribution on the current distribution, whereas the gradient of increasing continental climate towards the east assumes a strong influence on the environment. By tracking species distribution in the past, spanning the time of the strongly adverse climate of the LGM, we can give hitherto unprecedented insights into species distribution history.Several lines of evidence suggest a strong influence of the environment on species distribution: (1) Signals for L. sibirica appeared in its current area of distribution as late as the Holocene warming, whereas cold Pleistocene samples are dominated by L. gmelinii type variation; (2) in lakes far east of its modern range, signals of variation typical for L. sibirica coincide with peaks in sequence counts (29 ka BP, Lake Billyakh; 32 ka BP Lake Kyutyunda), which point to more forested vegetation around the lakes and consequently a more favorable climate at that time; and (3) samples dated to the severely cold LGM are dominated by variations of the L. gmelinii type.This is in accordance with the different ecological characteristics described for the species. L. sibirica is sensitive to permafrost and only occurs outside of the zone of continuous permafrost5. In addition, L. sibirica achieves substantially higher growth rates and longer growth periods than L. gmelinii9,13 and can also produce more than twice as many seeds5. This potentially gives L. sibirica the ability to quickly react to climate change and outcompete the other species when the climate becomes more favorable.In contrast, L. gmelinii is adapted to extremely low soil and air temperatures and is able to grow on permafrost with very shallow thaw depths. It’s distribution almost completely coincides with continuous permafrost5, and even a restriction to permafrost areas is discussed as it does not grow well in field trials on warmer soils or where there is a small temperature gradient between air and soil9. Due to this ecology, L. gmelinii is more likely to survive in a high latitude refugium, even during the severe continental climate of the LGM, which was most probably connected to continuous permafrost of low active-layer depths.A study combining mitochondrial barcoding on sedaDNA and a modeling approach on Larix distribution in the Taymyr region around Lake CH12 concluded that the distributions of L. gmelinii and L. sibirica are most strongly influenced by stand density and thus by competition between the species, with L. gmelinii outcompeting L. sibirica at high stand densities13. As our study includes sediment cores reaching further back in time, we see a different trend. Instead of L. gmelinii, it was L. sibirica, which dominated samples with high sequence counts, suggesting high stand density and a more favorable climate. A possible explanation for the different outcomes is the use of different organelle genomes. Epp et al.13 used a marker representing the mitochondrial genome, which is known to introgress more rapidly and as a consequence might show a long past species history59,60.Our findings have potentially important implications for the projections of vegetation-climate feedback. A warming climate in conjunction with a greater permafrost thaw depth could enable the replacement of L. gmelinii by L. sibirica. In contrast to L. gmelinii, L. sibirica is not known to stabilize permafrost thus potentially further promoting permafrost thaw and with it the release of greenhouse gases, creating positive feedback on global warming11. On the other hand, the substantially higher growth rates of L. sibirica in comparison to L. gmelinii would increase carbon sequestration, thus mitigating global warming13. This shows the importance of understanding species-specific reactions to climate change, which can result in great shifts in distribution. Target enrichment applied on sedaDNA is able to reveal the impact of past climate change on populations and the increasing availability of modern reference genomes will further enhance its value of information. More

  • in

    Soil quality both increases crop production and improves resilience to climate change

    Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050. The 2012 Revision (FAO, 2012).Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).CAS 
    Article 

    Google Scholar 
    Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).CAS 
    Article 

    Google Scholar 
    Chen, X. et al. Producing more grain with lower environmental costs. Nature 514, 486–489 (2014).CAS 
    Article 

    Google Scholar 
    Fan, M. S. et al. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. J. Exp. Bot. 63, 13–24 (2012).CAS 
    Article 

    Google Scholar 
    Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).CAS 
    Article 

    Google Scholar 
    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).CAS 
    Article 

    Google Scholar 
    Porter, J. R. et al. Food Security and Food Production Systems (Cambridge Univ. Press, 2014).Ray, D. K. & Foley, J. A. Increasing global crop harvest frequency: recent trends and future directions. Environ. Res. Lett. 8, 044041 (2013).Article 

    Google Scholar 
    Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 7, 5875–5895 (2015).Article 

    Google Scholar 
    Wall, D. & Six, J. Give soils their due. Science 347, 695 (2015).CAS 
    Article 

    Google Scholar 
    Ray, D. K. et al. Climate variation explains a third of global crop yield variability. Nat. Commun. 6, 5989 (2015).CAS 
    Article 

    Google Scholar 
    Battisti, D. S. & Naylor, R. L. Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323, 240–244 (2009).CAS 
    Article 

    Google Scholar 
    Nelson, G. C. et al. Climate Change: Impact on Agriculture and Costs of Adaptation (International Food Policy Research Institute, 2009).Challinor, A. J., Koehler, A. K., Ramirez-Villegas, J., Whitfield, S. & Das, B. Current warming will reduce yields unless maize breeding and seed systems adapt immediately. Nat. Clim. Change 6, 954–958 (2016).Article 

    Google Scholar 
    Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl Acad. Sci. USA 114, 9326–9331 (2017).CAS 
    Article 

    Google Scholar 
    Schlenker, W., Hanemann, M. & Fisher, A. Will US agriculture really benefit from global warming? Accounting for irrigation in the hedonic approach. Am. Econ. Rev. 95, 395–406 (2005).Article 

    Google Scholar 
    Piao, S. L. et al. The impacts of climate change on water resources and agriculture in China. Nature 467, 43–51 (2010).CAS 
    Article 

    Google Scholar 
    Ray, D. K. et al. Climate change has likely already affected global food production. PLoS ONE 14, e0217148 (2019).CAS 
    Article 

    Google Scholar 
    Ramankutty, N. et al. The global distribution of cultivable lands: current patterns and sensitivity to possible climate change. Glob. Ecol. Biogeogr. 11, 377–392 (2002).Article 

    Google Scholar 
    Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).CAS 
    Article 

    Google Scholar 
    Lobell, D. B. & Burke, M. B. On the use of statistical models to predict crop yield responses to climate change. Agr. For. Meteorol. 150, 1443–1452 (2010).Article 

    Google Scholar 
    Auffhammer, M. & Schlenker, W. Empirical studies on agricultural impacts and adaptation. Energy Econ. 46, 555–561 (2014).Article 

    Google Scholar 
    Folberth, C. et al. Uncertainty in soil data can outweigh climate impact signals in global crop yield simulations. Nat. Commun. 7, 11872 (2016).CAS 
    Article 

    Google Scholar 
    Asseng, S. et al. Uncertainty in simulating wheat yields under climate change. Nat. Clim. Change 3, 827–832 (2013).CAS 
    Article 

    Google Scholar 
    Basso, B. et al. Soil organic carbon and nitrogen feedbacks on crop yields under climate change. Agr. Environ. Lett. 3, 180026 (2018).Mϋller, C. et al. Implication of climate mitigation for future agricultural production. Environ. Res. Lett. 10, 125004 (2015).Article 

    Google Scholar 
    IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H. O. et al.) (Cambridge Univ. Press, 2022).Zhang, W. et al. Closing yield gaps in China by empowering smallholder farmers. Nature 537, 671–674 (2016).CAS 
    Article 

    Google Scholar 
    Cui, Z. L. et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 555, 363–368 (2018).CAS 
    Article 

    Google Scholar 
    Knapp, S. & van der Heijden, M. G. A. A global meta-analysis of yield stability in organic and conservation agriculture. Nat. Commun. 9, 3632 (2018).Article 
    CAS 

    Google Scholar 
    Müller, C. et al. Global Gridded Crop Model evaluation: benchmarking, skills, deficiencies and implications. Geosci. Model Dev. 10, 1403–1422 (2017).Jamieson, P. D., Porter, J. R. & Wilson, D. R. A test of the computer simulation model ARC-WHEAT on wheat crops grown in New Zealand. Field Crops Res. 27, 337–350 (1991).Article 

    Google Scholar 
    Warszawski, L. et al. The inter-sectoral impact model intercomparison project (ISI–MIP): project framework. Proc. Natl Acad. Sci. USA 111, 3228–3232 (2014).CAS 
    Article 

    Google Scholar 
    Xiong, W. et al. The Impacts of Climate Change on Chinese Agriculture—Phase II National Level Study Final Report (AEA Group, 2008).Liu, B. et al. Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat. Clim. Change 6, 1130–1136 (2016).Article 

    Google Scholar 
    Tao, F. et al. Global warming, rice production, and water use in China: developing a probabilistic assessment. Agr. For. Meteorol. 148, 94–110 (2008).Article 

    Google Scholar 
    Xiong, W. et al. Different uncertainty distribution between high and low latitudes in modelling warming impacts on wheat. Nat. Food 1, 63–69 (2020).Article 

    Google Scholar 
    Fernandez-Illescas, C. P., Porporato, A., Laio, F. & Rodriguez-Iturbe, I. The ecohydrological role of soil texture in a water-limited ecosystem. Water Resour. Res. 37, 2863–2872 (2001).Article 

    Google Scholar 
    Wang, E. L. et al. Capacity of soils to buffer impact of climate variability and value of seasonal forecasts. Agr. For. Meteorol. 149, 38–50 (2009).Article 

    Google Scholar 
    Vereecken, H. et al. Modeling soil processes: review, key challenges, and new perspectives. Vadose Zone J. 15, 1–57 (2016).Myers, R. J. K. et al. in The Biological Management of Tropical Soil Fertility (eds Woomer, P.I. & Swift, M.J.) Ch. 4 (Wiley, 1994).Smith, P. & Gregory, P. J. Climate change and sustainable food production. P. Nutr. Soc. 72, 21–28 (2013).Article 

    Google Scholar 
    Khasawneh, F. E., Sample, E. C. & Kamprath, E. J. The Role of Phosphorus in Agriculture (American Society of Agronomy, 1980).FAOSTAT (Statistics Division of the Food and Agriculture Organization of the United Nations, 2006); http://www.fao.org/faostat/en/#homeFan, M. S. et al. Plant-based assessment of inherent soil productivity and contributions to China’s cereal crop yield increase since 1980. PLoS ONE 8, e74617 (2013).CAS 
    Article 

    Google Scholar 
    Liu, X. & Chen, F. Farming System in China (China Agriculture Press, 2005).Chen, X. P. in Fertilization Technology Highlights, (ed. Zhang, F. S) Ch. 6 (Chinese Agricultural Univ. Press, 2006).Zhang, F. et al. Integrated nutrient management for food security and environmental quality in China. Adv. Agron. 116, 1–40 (2012).CAS 
    Article 

    Google Scholar 
    Bünemann, E. K. et al. Soil quality—a critical review. Soil Biol. Biochem. 120, 105–125 (2018).Article 
    CAS 

    Google Scholar 
    National Soil Survey Office. Chinese Soil (China Agriculture Press, 1998) .Jiang, R. F. & Cui, J. Y. in Fertilization Technology Highlights, (ed. Zhang, F. S.) Ch. 5 (China Agricultural Univ. Press, 2006).Cramer, W. P. & Solomon, A. M. Climatic classification and future global redistribution of agricultural land. Clim. Res. 3, 97–110 (1993).Article 

    Google Scholar 
    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).CAS 
    Article 

    Google Scholar 
    Friedman, J. H. Stochastic gradient boosting. Comput. Stat. Data 38, 367–378 (2002).Article 

    Google Scholar 
    Buston, P. M. & Elith, J. Determinants of reproductive success in dominant pairs of clownfish: a boosted regression tree analysis. J. Anim. Ecol. 80, 528–538 (2011).Article 

    Google Scholar 
    Friedman, J. H. & Meulman, J. J. Multiple additive regression trees with application in epidemiology. Stat. Med. 22, 1365–1381 (2003).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).Kuhn, M. & Johnson, K. Applied Predictive Modeling (Springer, 2013).Yang, J. M., Yang, J. Y., Liu, S. & Hoogenboom, G. An evaluation of the statistical methods for testing the performance of crop models with observed data. Agric. Syst. 127, 81–89 (2014).Article 

    Google Scholar 
    Loague, K. & Green, R. E. Statistical and graphical methods for evaluating solute transport models: overview and application. J. Contamin. Hydro. 7, 51–73 (1991).CAS 
    Article 

    Google Scholar 
    Akinremi, O. O. et al. Evaluation of LEACHMN under Dryland conditions. I. Simulation of water and solute transport. Can. J. Soil Sci. 85, 223–232 (2005).Article 

    Google Scholar 
    Palosuo, T. et al. Simulation of winter wheat yield and its variability in different climates of Europe: a comparison of eight crop growth models. Eur. J. Agron. 35, 103–114 (2011).Article 

    Google Scholar 
    Deng, N. et al. Closing yield gaps for rice self-sufficiency in China. Nat. Commun. 10, 1725 (2019).Article 
    CAS 

    Google Scholar 
    Correndo, A. A. et al. Assessing the uncertainty of maize yield without nitrogen fertilization. Field Crops Res. 260, 107985 (2021).Article 

    Google Scholar 
    Rattalino Edreira, J. I. et al. Spatial frameworks for robust estimation of yield gaps. Nat. Food 2, 773–779 (2021).Article 

    Google Scholar 
    Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).CAS 
    Article 

    Google Scholar 
    Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).Article 

    Google Scholar 
    IPCC Climate Change 2014: Climate Change: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).van Vuuren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5–31 (2011).Article 

    Google Scholar 
    Hempel, S., Frieler, K., Warszawski, L., Schewe, J. & Piontek, F. A trend-preserving bias correction—the ISI-MIP approach. Earth Syst. Dynam. 4, 219–236 (2013).Article 

    Google Scholar 
    Chen, H., Sun, J., Lin, W. & Xu, H. Comparison of CMIP6 and CMIP5 models in simulating climate extremes. Sci. Bull. 65, 1415–1418 (2020).Article 

    Google Scholar 
    China Agriculture Yearbook (China Agriculture Press, 2005). More

  • in

    A global database of woody tissue carbon concentrations

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993, https://doi.org/10.1126/science.1201609 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Pugh, T. A. M. et al. Role of forest regrowth in global carbon sink dynamics. Proceedings of the National Academy of Sciences 116, 4382–4387, https://doi.org/10.1073/pnas.1810512116 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Science Advances 2, e1501639, https://doi.org/10.1126/sciadv.1501639 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214, https://doi.org/10.1038/nature16512 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550, https://doi.org/10.1038/s41586-020-2686-x (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Lewis, S. L. et al. Increasing carbon storage in intact African tropical forests. Nature 457, 1003–1006, https://doi.org/10.1038/nature07771 (2009).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87, https://doi.org/10.1038/s41586-020-2035-0 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Nabuurs, G.-J. et al. First signs of carbon sink saturation in European forest biomass. Nature Climate Change 3, 792–796, https://doi.org/10.1038/nclimate1853 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Köhl, M. et al. Changes in forest production, biomass and carbon: results from the 2015 UN FAO Global Forest Resource Assessment. Forest Ecology and Management 352, 21–34, https://doi.org/10.1016/j.foreco.2015.05.036 (2015).Article 

    Google Scholar 
    Asner, G. P. et al. High-resolution forest carbon stocks and emissions in the Amazon. Proceedings of the National Academy of Sciences 107, 16738–16742, https://doi.org/10.1073/pnas.1004875107 (2010).ADS 
    Article 

    Google Scholar 
    Asner, G. P. Tropical forest carbon assessment: integrating satellite and airborne mapping approaches. Environmental Research Letters 4, https://doi.org/10.1088/1748-9326/4/3/034009 (2009).Xu, L. et al. Changes in global terrestrial live biomass over the 21st century. Science Advances 7, eabe9829, https://doi.org/10.1126/sciadv.abe9829 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Aalde, U. et al. in IPCC Guidelines for National Greenhouse Gas Inventories Vol. 4 (eds Eggleston, S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K.) Ch. 4 (IPPC, 2006).Brown, S. Measuring carbon in forests: current status and future challenges. Environmental Pollution 116, 363–372, https://doi.org/10.1016/s0269-7491(01)00212-3 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Woodall, C. W., Heath, L. S., Domke, G. M. & Nichols, M. C. Methods and equations for estimating aboveground volume, biomass, and carbon for trees in the U.S. forest inventory, 2010. (U.S. Department of Agriculture, Forest Service, Northern Research Station, 2011).Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proceedings of the National Academy of Sciences 108, 9899–9904, https://doi.org/10.1073/pnas.1019576108 (2011).ADS 
    Article 

    Google Scholar 
    Lamlom, S. H. & Savidge, R. A. A reassessment of carbon content in wood: variation within and between 41 North American species. Biomass Bioenergy 25, 381–388 (2003).CAS 
    Article 

    Google Scholar 
    Van Der Werf, G. R. et al. CO2 emissions from forest loss. Nature Geoscience 2, 737–738, https://doi.org/10.1038/ngeo671 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Martin, A. R., Doraisami, M. & Thomas, S. C. Global patterns in wood carbon concentration across the world’s trees and forests. Nature Geoscience 11, 915–920, https://doi.org/10.1038/s41561-018-0246-x (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Tavşanoğlu, Ç. & Pausas, J. G. A functional trait database for Mediterranean Basin plants. Scientific Data 5, 180135, https://doi.org/10.1038/sdata.2018.135 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chave, J. et al. Towards a worldwide wood economics spectrum. Ecology Letters 12, 351–366, https://doi.org/10.1111/j.1461-0248.2009.01285.x (2009).Article 
    PubMed 

    Google Scholar 
    Martin, A. R., Domke, G. M., Doraisami, M. & Thomas, S. C. Carbon fractions in the world’s dead wood. Nature Communications 12, https://doi.org/10.1038/s41467-021-21149-9 (2021).Martin, A. R. & Thomas, S. C. A Reassessment of carbon content in tropical trees. PLoS ONE 6, e23533, https://doi.org/10.1371/journal.pone.0023533 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin, A. R., Gezahegn, S. & Thomas, S. C. Variation in carbon and nitrogen concentration among major woody tissue types in temperate trees. Canadian Journal of Forest Research 45, 744–757, https://doi.org/10.1139/cjfr-2015-0024 (2015).CAS 
    Article 

    Google Scholar 
    Thomas, S. C. & Martin, A. R. Carbon content of tree tissues: a synthesis. Forests 3, 332–352, https://doi.org/10.3390/f3020332 (2012).Article 

    Google Scholar 
    Doraisami, M. et al. GLOWCAD: A global database of woody tissue carbon concentrations fractions. Dryad https://doi.org/10.5061/dryad.18931zcxk (2022)Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37, 4302–4315, https://doi.org/10.1002/joc.5086 (2017).ADS 
    Article 

    Google Scholar 
    Guerrero‐Ramírez, N. R. et al. Global root traits (GRooT) database. Global Ecology and Biogeography 30, 25–37, https://doi.org/10.1111/geb.13179 (2021).Article 

    Google Scholar 
    Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Global Change Biology 26, 119–188, https://doi.org/10.1111/gcb.14904 (2020).ADS 
    Article 
    PubMed 

    Google Scholar 
    Iversen, C. M. et al. A global Fine-Root Ecology Database to address below-ground challenges in plant ecology. New Phytologist 215, 15–26, https://doi.org/10.1111/nph.14486 (2017).Article 
    PubMed 

    Google Scholar 
    Isaac, M. E. et al. Intraspecific trait variation and coordination: Root and Leaf Economics Spectra in coffee across environmental gradients. Frontiers in Plant Science 8, https://doi.org/10.3389/fpls.2017.01196 (2017).Liu, C. et al. Variation in the functional traits of fine roots is linked to phylogenetics in the common tree species of Chinese subtropical forests. Plant and Soil 436, 347–364, https://doi.org/10.1007/s11104-019-03934-0 (2019).CAS 
    Article 

    Google Scholar 
    Wang, R. et al. Different phylogenetic and environmental controls of first‐order root morphological and nutrient traits: Evidence of multidimensional root traits. Functional Ecology 32, 29–39, https://doi.org/10.1111/1365-2435.12983 (2018).Article 

    Google Scholar 
    Minden, V. & Kleyer, M. Internal and external regulation of plant organ stoichiometry. Plant Biology 16, 897–907, https://doi.org/10.1111/plb.12155 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Alameda, D. & Villar, R. Linking root traits to plant physiology and growth in Fraxinus angustifolia Vahl. seedlings under soil compaction conditions. Environmental and Experimental Botany 79, 49–57, https://doi.org/10.1016/j.envexpbot.2012.01.004 (2012).Article 

    Google Scholar 
    Aubin, I. et al. Traits to stay, traits to move: a review of functional traits to assess sensitivity and adaptive capacity of temperate and boreal trees to climate change. Environmental Reviews 24, 164–186, https://doi.org/10.1139/er-2015-0072 (2016).Article 

    Google Scholar 
    Fernández-García, N. et al. Intrinsic water use efficiency controls the adaptation to high salinity in a semi-arid adapted plant, henna (Lawsonia inermis L.). Journal of Plant Physiology 171, 64–75, https://doi.org/10.1016/j.jplph.2013.11.004 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Grechi, I. et al. Effect of light and nitrogen supply on internal C:N balance and control of root-to-shoot biomass allocation in grapevine. Environmental and Experimental Botany 59, 139–149, https://doi.org/10.1016/j.envexpbot.2005.11.002 (2007).CAS 
    Article 

    Google Scholar 
    Ineson, P., Cotrufo, M. F., Bol, R., Harkness, D. D. & Blum, H. Quantification of soil carbon inputs under elevated CO2: C3 plants in a C4 soil. Plant and Soil 187, 345–350, https://doi.org/10.1007/bf00017099 (1995).Article 

    Google Scholar 
    Pregitzer, K. S. et al. Atmospheric CO2, soil nitrogen and turnover of fine roots. New Phytologist 129, 579–585, https://doi.org/10.1111/j.1469-8137.1995.tb03025.x (1995).Article 

    Google Scholar 
    Rohatgi, A. WebPlotDigitizer: Version 4.5. https://automeris.io/WebPlotDigitizer (2021).Harmon, M. E., Fasth, B., Woodall, C. W. & Sexton, J. Carbon concentration of standing and downed woody detritus: effects of tree taxa, decay class, position, and tissue type. Forest Ecology and Management 291, 259–267, https://doi.org/10.1016/j.foreco.2012.11.046 (2013).Article 

    Google Scholar 
    Boyle, B. H. et al. The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinformatics 14, 1-15, https://tnrs.biendata.org/ (2021).Krankina, O. N., Harmon, M. E. & Griazkin, A. V. Nutrient stores and dynamics of woody detritus in a boreal forest: modeling potential implications at the stand level. Canadian Journal of Forest Research 29, 20–32, https://doi.org/10.1139/x98-162 (1999).Article 

    Google Scholar 
    Whittaker, R. H. Classification of natural communities. Botanical Review 28, 1–239, https://doi.org/10.1007/BF02860872 (1962).Article 

    Google Scholar 
    Maiti, R. & Rodriguez, H. G. Wood carbon and nitrogen of 37 woody shrubs and trees in Tamaulipan thorn scrub, northeastern Mexico. Pakistan Journal of Botany 51, 979–984 (2019).CAS 
    Article 

    Google Scholar 
    Durkaya, A. B. D., E. Makineci, I. Orhan Aboveground biomass and carbon storage relationship of Turkish Pines. Fresenius Environmental Bulletin 24, 3573–3583 (2015).CAS 

    Google Scholar 
    Tesfaye, M. A., Bravo-Oviedo, A., Bravo, F., Pando, V. & De Aza, C. H. Variation in carbon concentration and wood density for five most commonly grown native tree species in central highlands of Ethiopia: The case of Chilimo dry Afromontane forest. Journal of Sustainable Forestry 38, 769–790, https://doi.org/10.1080/10549811.2019.1607754 (2019).Article 

    Google Scholar 
    Abdallah, M. A. B., Mata-González, R., Noller, J. S. & Ochoa, C. G. Ecosystem carbon in relation to woody plant encroachment and control: Juniper systems in Oregon, USA. Agriculture, Ecosystems & Environment 290, 106762, https://doi.org/10.1016/j.agee.2019.106762 (2020).CAS 
    Article 

    Google Scholar 
    Arias, D., Calvo-Alvarado, J., Richter, D. D. B. & Dohrenbusch, A. Productivity, aboveground biomass, nutrient uptake and carbon content in fast-growing tree plantations of native and introduced species in the Southern Region of Costa Rica. Biomass and Bioenergy 35, 1779–1788, https://doi.org/10.1016/j.biombioe.2011.01.009 (2011).CAS 
    Article 

    Google Scholar 
    Assefa, D., Godbold, D. L., Belay, B., Abiyu, A. & Rewald, B. Fine Root Morphology, Biochemistry and Litter Quality Indices of Fast- and Slow-growing Woody Species in Ethiopian Highland Forest. Ecosystems 21, 482–494, https://doi.org/10.1007/s10021-017-0163-7 (2018).CAS 
    Article 

    Google Scholar 
    Atkin, O. K., Schortemeyer, M., Mcfarlane, N. & Evans, J. R. The response of fast- and slow-growing Acacia species to elevated atmospheric CO2: an analysis of the underlying components of relative growth rate. Oecologia 120, 544–554, https://doi.org/10.1007/s004420050889 (1999).ADS 
    Article 
    PubMed 

    Google Scholar 
    Bardulis, A., Jansons, A., Bardule, A., Zeps, M. & LAzdins, A. Assessment of carbon content in root biomass in Scots Pine and silver birch young stands of Latvia. Baltic Forestry 23, 482–489 (2017).
    Google Scholar 
    Becker, G. S., Braun, D., Gliniars, R. & Dalitz, H. Relations between wood variables and how they relate to tree size variables of tropical African tree species. Trees 26, 1101–1112, https://doi.org/10.1007/s00468-012-0687-6 (2012).Article 

    Google Scholar 
    Bembenek, M. et al. Carbon content in Juvenile and mature wood of Scots Pine (Pinus sylyestris L.). Baltic Forestry 21, 279–284 (2015).
    Google Scholar 
    Bert, D. & Danjon, F. Carbon concentration variations in the roots, stem and crown of mature Pinus pinaster (Ait.). Forest Ecology and Management 222, 279–295, https://doi.org/10.1016/j.foreco.2005.10.030 (2006).Article 

    Google Scholar 
    Borden, K. A., Anglaaere, L. C. N., Adu-Bredu, S. & Isaac, M. E. Root biomass variation of cocoa and implications for carbon stocks in agroforestry systems. Agroforestry Systems 93, 369–381, https://doi.org/10.1007/s10457-017-0122-5 (2019).Article 

    Google Scholar 
    Borden, K. A., Isaac, M. E., Thevathasan, N. V., Gordon, A. M. & Thomas, S. C. Estimating coarse root biomass with ground penetrating radar in a tree-based intercropping system. Agroforestry Systems 88, 657–669, https://doi.org/10.1007/s10457-014-9722-5 (2014).Article 

    Google Scholar 
    Bueno-López, S. W., García-Lucas, E. & Caraballo-Rojas, L. R. Allometric equations for total aboveground dry biomass and carbon content of Pinus occidentalis trees. Madera y Bosques 25, https://doi.org/10.21829/myb.2019.2531868 (2019).Bulmer, R. H., Schwendenmann, L. & Lundquist, C. J. Allometric models for estimating aboveground biomass, carbon and nitrogen stocks in temperate Avicennia marina forests. Wetlands 36, 841–848, https://doi.org/10.1007/s13157-016-0793-0 (2016).Article 

    Google Scholar 
    Bütler, R., Patty, L., Le Bayon, R.-C., Guenat, C. & Schlaepfer, R. Log decay of Picea abies in the Swiss Jura Mountains of central Europe. Forest Ecology and Management 242, 791–799, https://doi.org/10.1016/j.foreco.2007.02.017 (2007).Article 

    Google Scholar 
    Cao, Y. & Chen, Y. Ecosystem C:N:P stoichiometry and carbon storage in plantations and a secondary forest on the Loess Plateau, China. Ecological Engineering 105, 125–132, https://doi.org/10.1016/j.ecoleng.2017.04.024 (2017).Article 

    Google Scholar 
    Castaño-Santamaría, J. & Bravo, F. Variation in carbon concentration and basic density along stems of sessile oak (Quercus petraea (Matt.) Liebl.) and Pyrenean oak (Quercus pyrenaica Willd.) in the Cantabrian Range (NW Spain). Annals of Forest Science 69, 663–672, https://doi.org/10.1007/s13595-012-0183-6 (2012).Article 

    Google Scholar 
    Chao, K.-J. et al. Carbon concentration declines with decay class in tropical forest woody debris. Forest Ecology and Management 391, 75–85, https://doi.org/10.1016/j.foreco.2017.01.020 (2017).Article 

    Google Scholar 
    Chen, Y. et al. Nutrient limitation of woody debris decomposition in a tropical forest: contrasting effects of N and P addition. Functional Ecology 30, 295–304, https://doi.org/10.1111/1365-2435.12471 (2016).Article 

    Google Scholar 
    Correia, A. C. et al. Biomass allometry and carbon factors for a Mediterranean pine (Pinus pinea L.) in Portugal. Forest Systems 19, 418, https://doi.org/10.5424/fs/2010193-9082 (2010).Article 

    Google Scholar 
    Cousins, S. J. M., Battles, J. J., Sanders, J. E. & York, R. A. Decay patterns and carbon density of standing dead trees in California mixed conifer forests. Forest Ecology and Management 353, 136–147, https://doi.org/10.1016/j.foreco.2015.05.030 (2015).Article 

    Google Scholar 
    Craven, D. et al. Seasonal variability of photosynthetic characteristics influences growth of eight tropical tree species at two sites with contrasting precipitation in Panama. Forest Ecology and Management 261, 1643–1653, https://doi.org/10.1016/j.foreco.2010.09.017 (2011).Article 

    Google Scholar 
    Cruz, P., Bascuñan, A., Velozo, J. & Rodriguez, M. Funciones alométricas de contenido de carbono para quillay, peumo, espino y litre. Bosque (Valdivia) 36, 375–381, https://doi.org/10.4067/s0717-92002015000300005 (2015).Article 

    Google Scholar 
    Currie, W. S. & Nadelhoffer, K. J. The imprint of land-use history: patterns of carbon and nitrogen in downed woody debris at the Harvard Forest. Ecosystems 5, 446–460, https://doi.org/10.1007/s10021-002-1153-x (2002).CAS 
    Article 

    Google Scholar 
    Dong, L., Zhang, X. & Li Variation in carbon concentration and allometric equations for estimating tree carbon contents of 10 broadleaf species in natural forests in northeast China. Forests 10, 928, https://doi.org/10.3390/f10100928 (2019).Article 

    Google Scholar 
    Dossa, G. G. O., Paudel, E., Cao, K., Schaefer, D. & Harrison, R. D. Factors controlling bark decomposition and its role in wood decomposition in five tropical tree species. Scientific Reports 6, 34153, https://doi.org/10.1038/srep34153 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Durkaya, B., Durkaya, A., Makineci, E. & Ülküdür, M. Estimation of above-ground biomass and sequestered carbon of Taurus Cedar (Cedrus libani L.) in Antalya, Turkey. iForest – Biogeosciences and Forestry 6, 278–284, https://doi.org/10.3832/ifor0899-006 (2013).Article 

    Google Scholar 
    Elias, M. & Potvin, C. Assessing inter- and intra-specific variation in trunk carbon concentration for 32 neotropical tree species. Canadian Journal of Forest Research 33, 1039–1045, https://doi.org/10.1139/x03-018 (2003).Article 

    Google Scholar 
    Fang, S., Xue, J. & Tang, L. Biomass production and carbon sequestration potential in poplar plantations with different management patterns. Journal of Environmental Management 85, 672–679, https://doi.org/10.1016/j.jenvman.2006.09.014 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fonseca, W., Alice, F. E. & Rey-Benayas, J. M. Carbon accumulation in aboveground and belowground biomass and soil of different age native forest plantations in the humid tropical lowlands of Costa Rica. New Forests 43, 197–211, https://doi.org/10.1007/s11056-011-9273-9 (2012).Article 

    Google Scholar 
    Frangi, J. L., Richter, L. L., Barrera, M. D. & Aloggia, M. Decomposition of Nothofagus fallen woody debris in forests of Tierra del Fuego, Argentina. Canadian Journal of Forest Research 27, 1095–1102, https://doi.org/10.1139/x97-060 (1997).Article 

    Google Scholar 
    Freschet, G. T., Cornelissen, J. H. C., Van Logtestijn, R. S. P. & Aerts, R. Evidence of the ‘plant economics spectrum’ in a subarctic flora. Journal of Ecology 98, 362–373, https://doi.org/10.1111/j.1365-2745.2009.01615.x (2010).Article 

    Google Scholar 
    Fukatsu, E., Fukuda, Y., Takahashi, M. & Nakada, R. Clonal variation of carbon content in wood of Larix kaempferi (Japanese larch). Journal of Wood Science 54, 247–251, https://doi.org/10.1007/s10086-007-0939-z (2008).CAS 
    Article 

    Google Scholar 
    Ganamé, M., Bayen, P., Dimobe, K., Ouédraogo, I. & Thiombiano, A. Aboveground biomass allocation, additive biomass and carbon sequestration models for Pterocarpus erinaceus Poir. in Burkina Faso. Heliyon 6, e03805, https://doi.org/10.1016/j.heliyon.2020.e03805 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ganjegunte, G. K., Condron, L. M., Clinton, P. W., Davis, M. R. & Mahieu, N. Decomposition and nutrient release from radiata pine (Pinus radiata) coarse woody debris. Forest Ecology and Management 187, 197–211, https://doi.org/10.1016/s0378-1127(03)00332-3 (2004).Article 

    Google Scholar 
    Gao, B., Taylor, A. R., Chen, H. Y. H. & Wang, J. Variation in total and volatile carbon concentration among the major tree species of the boreal forest. Forest Ecology and Management 375, 191–199, https://doi.org/10.1016/j.foreco.2016.05.041 (2016).Article 

    Google Scholar 
    Gillerot, L. et al. Inter- and intraspecific variation in mangrove carbon fraction and wood specific gravity in Gazi Bay, Kenya. Ecosphere 9, e02306, https://doi.org/10.1002/ecs2.2306 (2018).Article 

    Google Scholar 
    Gómez-Brandón, M. et al. Physico-chemical and microbiological evidence of exposure effects on Picea abies – coarse woody debris at different stages of decay. Forest Ecology and Management 391, 376–389, https://doi.org/10.1016/j.foreco.2017.02.033 (2017).Article 

    Google Scholar 
    Guner, S. T. & Comez, A. Biomass equations and changes in carbon stock in afforested Black Pine (Pinus nigra Arnold. subsp. pallasiana (Lamb.) Holmboe) stands in Turkey. Fresenius Environmental Bulletin 26, 2368–2379 (2017).CAS 

    Google Scholar 
    Guo, J., Chen, G., Xie, J., Yang, Z. & Yang, Y. Patterns of mass, carbon and nitrogen in coarse woody debris in five natural forests in southern China. Annals of Forest Science 71, 585–594, https://doi.org/10.1007/s13595-014-0366-4 (2014).Article 

    Google Scholar 
    Hanpattanakit, P., Chidthaisong, A., Sanwangsri, M. & Lichaikul, N. Improving allometric equations to estimate biomass and carbon in secondary dry dipterocarp forest. Singapore SG 18, 208–211 (2016).
    Google Scholar 
    Herrero De Aza, C., Turrión, M. B., Pando, V. & Bravo, F. Carbon in heartwood, sapwood and bark along the stem profile in three Mediterranean Pinus species. Annals of Forest Science 68, 1067–1076, https://doi.org/10.1007/s13595-011-0122-y (2011).Article 

    Google Scholar 
    Huet, S., Forgeard, F. O. & Nys, C. Above- and belowground distribution of dry matter and carbon biomass of Atlantic beech (Fagus sylvatica L.) in a time sequence. Annals of Forest Science 61, 683–694, https://doi.org/10.1051/forest:2004063 (2004).CAS 
    Article 

    Google Scholar 
    Jacobs, D. F., Selig, M. F. & Severeid, L. R. Aboveground carbon biomass of plantation-grown American chestnut (Castanea dentata) in absence of blight. Forest Ecology and Management 258, 288–294, https://doi.org/10.1016/j.foreco.2009.04.014 (2009).Article 

    Google Scholar 
    Janssens, I. A. et al. Above- and belowground phytomass and carbon storage in a Belgian Scots pine stand. Annals of forest science 56, 81–90, https://doi.org/10.1051/forest:19990201 (1999).Article 

    Google Scholar 
    Jiménez Pérez, J., Treviño Garza, E. J. & Yerena Yamallel, J. I. Concentración de carbono en especies del bosque de pino-encino en la Sierra Madre Oriental. Revista mexicana de ciencias forestales 4, 50–61 (2013).Article 

    Google Scholar 
    Jomura, M. et al. Biotic and abiotic factors controlling respiration rates of above- and belowground woody debris of Fagus crenata and Quercus crispula in Japan. PLOS ONE 10, e0145113, https://doi.org/10.1371/journal.pone.0145113 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jones, D. & O’Hara, K. Variation in carbon fraction, density, and carbon density in conifer tree tissues. Forests 9, 430, https://doi.org/10.3390/f9070430 (2018).Article 

    Google Scholar 
    Jones, D. A. & O’Hara, K. L. Carbon density in managed coast redwood stands: implications for forest carbon estimation. Forestry 85, 99–110, https://doi.org/10.1093/forestry/cpr063 (2012).Article 

    Google Scholar 
    Jones, D. A. & O’Hara, K. L. The influence of preparation method on measured carbon fractions in tree tissues. Tree Physiology 36, 1177–1189, https://doi.org/10.1093/treephys/tpw051 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Joosten, R. & Schulte, A. Possible effects of altered growth behaviour of Norway Spruce (Picea abies) on carbon accounting. Climatic Change 55, 115–129, https://doi.org/10.1023/a:1020227806137 (2002).CAS 
    Article 

    Google Scholar 
    Joosten, R., Schumacher, J., Wirth, C. & Schulte, A. Evaluating tree carbon predictions for beech (Fagus sylvatica L.) in western Germany. Forest Ecology and Management 189, 87–96, https://doi.org/10.1016/j.foreco.2003.07.037 (2004).Article 

    Google Scholar 
    Kim, C., Yoo, B., Jung, S. & Lee, K. Allometric equations to assess biomass, carbon and nitrogen content of black pine and red pine trees in southern Korea. iForest – Biogeosciences and Forestry 10, 483–490, https://doi.org/10.3832/ifor2164-010 (2017).Article 

    Google Scholar 
    Kort, J. & Turnock, R. Carbon reservoirs and biomass in Canadian prairie shelterbelts. Agroforestry Systems 44, 175-186, https://doi.org/10.1023/a:1006226006785 (1998).Köster, K., Metslaid, M., Engelhart, J. & Köster, E. Dead wood basic density, and the concentration of carbon and nitrogen for main tree species in managed hemiboreal forests. Forest Ecology and Management 354, 35–42, https://doi.org/10.1016/j.foreco.2015.06.039 (2015).Article 

    Google Scholar 
    Kraenzel, M., Castillo, A., Moore, T. & Potvin, C. Carbon storage of harvest-age teak (Tectona grandis) plantations, Panama. Forest Ecology and Management 173, 213–225, https://doi.org/10.1016/s0378-1127(02)00002-6 (2003).Article 

    Google Scholar 
    Laiho, R. & Laine, J. Tree stand biomass and carbon content in an age sequence of drained pine mires in southern Finland. Forest Ecology and Management 93, 161–169, https://doi.org/10.1016/s0378-1127(96)03916-3 (1997).Article 

    Google Scholar 
    Laiho, R. & Prescott, C. E. The contribution of coarse woody debris to carbon, nitrogen, and phosphorus cycles in three Rocky Mountain coniferous forests. Canadian Journal of Forest Research 29, 1592–1603, https://doi.org/10.1139/x99-132 (1999).Article 

    Google Scholar 
    Lambert, R. L., Lang, G. E. & Reiners, W. A. Loss of mass and chemical change in decaying boles of a subalpine Balsam Fir forest. Ecology 61, 1460–1473, https://doi.org/10.2307/1939054 (1980).Article 

    Google Scholar 
    Laughlin, D. C., Leppert, J. J., Moore, M. M. & Sieg, C. H. A multi-trait test of the leaf-height-seed plant strategy scheme with 133 species from a pine forest flora. Functional Ecology 24, 493–501, https://doi.org/10.1111/j.1365-2435.2009.01672.x (2010).Article 

    Google Scholar 
    Li, X. et al. Biomass and carbon storage in an age-sequence of Korean Pine (Pinus koraiensis) plantation forests in central Korea. Journal of Plant Biology 54, 33–42, https://doi.org/10.1007/s12374-010-9140-9 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Lombardi, F. et al. Investigating biochemical processes to assess deadwood decay of Beech and Silver Fir in Mediterranean mountain forests. Annals of Forest Science 70, 101–111, https://doi.org/10.1007/s13595-012-0230-3 (2013).Article 

    Google Scholar 
    Lutter, R., Tullus, A., Kanal, A., Tullus, T. & Tullus, H. The impact of former land-use type to above- and below-ground C and N pools in short-rotation hybrid aspen (Populus tremula L. × P. tremuloides Michx.) plantations in hemiboreal conditions. Forest Ecology and Management 378, 79–90, https://doi.org/10.1016/j.foreco.2016.07.021 (2016).Article 

    Google Scholar 
    Mahmood, H. et al. Applicability of semi-destructive method to derive allometric model for estimating aboveground biomass and carbon stock in the Hill Zone of Bangladesh. Journal of Forestry Research 31, 1235–1245, https://doi.org/10.1007/s11676-019-00881-5 (2020).CAS 
    Article 

    Google Scholar 
    Maiti, R., Gonzalez Rodriguez, H. & Kumari, A. Wood density of ten native trees and shrubs and its possible relation with a few wood chemical compositions. American Journal of Plant Sciences 07, 1192–1197, https://doi.org/10.4236/ajps.2016.78114 (2016).CAS 
    Article 

    Google Scholar 
    Mäkinen, H., Hynynen, J., Siitonen, J. & Sievänen, R. Predicting The decomposition of Scots Pine, Norway Spruce, and Birch stems in Finland. Ecological Applications 16, 1865–1879, https://doi.org/10.1890/1051-0761(2006)016[1865:ptdosp]2.0.co;2 (2006).Article 
    PubMed 

    Google Scholar 
    Manuella, S. et al. Chemical transformations in downed logs and snags of mixed boreal species during decomposition. Canadian Journal of Forest Research 43, 785–798, https://doi.org/10.1139/cjfr-2013-0086 (2013).CAS 
    Article 

    Google Scholar 
    Martin, A. R. & Thomas, S. C. Size-dependent changes in leaf and wood chemical traits in two Caribbean rainforest trees. Tree Physiology 33, 1338–1353, https://doi.org/10.1093/treephys/tpt085 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Martin, A. R., Thomas, S. C. & Zhao, Y. Size-dependent changes in wood chemical traits: a comparison of neotropical saplings and large trees. AoB PLANTS 5, plt039–plt039, https://doi.org/10.1093/aobpla/plt039 (2013).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Medlyn, B. E. et al. Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant, Cell & Environment 22, 1475–1495, https://doi.org/10.1046/j.1365-3040.1999.00523.x (1999).CAS 
    Article 

    Google Scholar 
    Moreira, A. B., Gregoire, T. G. & Do Couto, H. T. Z. Wood density and carbon concentration of coarse woody debris in native forests, Brazil. Forest Ecosystems 6, https://doi.org/10.1186/s40663-019-0177-z (2019).Morhart, C., Sheppard, J. P., Schuler, J. K. & Spiecker, H. Above-ground woody biomass allocation and within tree carbon and nutrient distribution of wild cherry (Prunus avium L.) – a case study. Forest Ecosystems 3, https://doi.org/10.1186/s40663-016-0063-x (2016).Northup, B. K., Zitzer, S. F., Archer, S., Mcmurtry, C. R. & Boutton, T. W. Above-ground biomass and carbon and nitrogen content of woody species in a subtropical thornscrub parkland. Journal of Arid Environments 62, 23–43, https://doi.org/10.1016/j.jaridenv.2004.09.019 (2005).ADS 
    Article 

    Google Scholar 
    Palviainen, M. & Finér, L. Decomposition and nutrient release from Norway spruce coarse roots and stumps – a 40-year chronosequence study. Forest Ecology and Management 358, 1–11, https://doi.org/10.1016/j.foreco.2015.08.036 (2015).Article 

    Google Scholar 
    Peri, P. L., Gargaglione, V., Martínez Pastur, G. & Lencinas, M. V. Carbon accumulation along a stand development sequence of Nothofagus antarctica forests across a gradient in site quality in Southern Patagonia. Forest Ecology and Management 260, 229–237, https://doi.org/10.1016/j.foreco.2010.04.027 (2010).Article 

    Google Scholar 
    Pompa-García, M. & Jurado, E. Carbon concentration in structures of Arctostaphylos pungens HBK: an alternative CO2 sink in forests. Phyton 84, 385-389 (2016).Pompa-García, M., Sigala-Rodríguez, J., Jurado, E. & Flores, J. Tissue carbon concentration of 175 Mexican forest species. iForest – Biogeosciences and Forestry 10, 754–758, https://doi.org/10.3832/ifor2421-010 (2017).Article 

    Google Scholar 
    Pompa-García, M. & Yerena-Yamalliel, J. I. Concentration of carbon in Pinus cembroides Zucc: potential source of global warming mitigation. Revista Chapingo Serie Ciencias Forestales y del Ambiente 20, 169–175, https://doi.org/10.5154/r.rchscfa.2014.04.014 (2014).Article 

    Google Scholar 
    Preston, C. M., Trofymow, J. A. & Flanagan, L. B. Decomposition, δ13C, and the “lignin paradox”. Canadian Journal of Soil Science 86, 235–245, https://doi.org/10.4141/s05-090 (2006).CAS 
    Article 

    Google Scholar 
    Preston, C. M., Trofymow, J. A. & Nault, J. R. Decomposition and change in N and organic composition of small-diameter Douglas-fir woody debris over 23 years. Canadian Journal of Forest Research 42, 1153-1167 (2012).CAS 
    Article 

    Google Scholar 
    Preston, C. M., Trofymow, J. A., Niu, J. & Fyfe, C. A. PMAS-NMR spectroscopy and chemical analysis of coarse woody debris in coastal forests of Vancouver Island. Forest Ecology and Management 111, 51–68, https://doi.org/10.1016/s0378-1127(98)00307-7 (1998).Article 

    Google Scholar 
    Rana, R., Langenfeld-Heyser, R., Finkeldey, R. & Polle, A. FTIR spectroscopy, chemical and histochemical characterisation of wood and lignin of five tropical timber wood species of the family of Dipterocarpaceae. Wood Science and Technology 44, 225–242, https://doi.org/10.1007/s00226-009-0281-2 (2010).CAS 
    Article 

    Google Scholar 
    Ray, R., Majumder, N., Chowdhury, C. & Jana, T. K. Wood chemistry and density: an analog for response to the change of carbon sequestration in mangroves. Carbohydrate Polymers 90, 102–108, https://doi.org/10.1016/j.carbpol.2012.05.001 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rodrigues, D. P., Hamacher, C., Estrada, G. C. D. & Soares, M. L. G. Variability of carbon content in mangrove species: effect of species, compartments and tidal frequency. Aquatic Botany 120, 346–351, https://doi.org/10.1016/j.aquabot.2014.10.004 (2015).CAS 
    Article 

    Google Scholar 
    Sakai, Y., Ugawa, S., Ishizuka, S., Takahashi, M. & Takenaka, C. Wood density and carbon and nitrogen concentrations in deadwood of Chamaecyparis obtusa and Cryptomeria japonica. Soil Science and Plant Nutrition 58, 526–537, https://doi.org/10.1080/00380768.2012.710526 (2012).CAS 
    Article 

    Google Scholar 
    Sandström, F., Petersson, H., Kruys, N. & Ståhl, G. Biomass conversion factors (density and carbon concentration) by decay classes for dead wood of Pinus sylvestris, Picea abies and Betula spp. in boreal forests of Sweden. Forest Ecology and Management 243, 19–27, https://doi.org/10.1016/j.foreco.2007.01.081 (2007).Article 

    Google Scholar 
    Sanquetta, M. N. I., Sanquetta, C. R., Mognon, F., Corte, A. P. D. & Maas, G. C. B. Wood density and carbon content in young teak individuals from Pará, Brazil. Científica 44, 608, https://doi.org/10.15361/1984-5529.2016v44n4p608-614 (2016).Article 

    Google Scholar 
    Schwendenmann, L. & Mitchell, N. Carbon accumulation by native trees and soils in an urban park, Auckland. New Zealand Journal of Ecology 38(20), 213–220 (2014).Setälä, H., Marshall, V. G. & Trofymow, J. A. Influence of micro- and macro-habitat factors on collembolan communities in Douglas-fir stumps during forest succession. Applied Soil Ecology 2, 227–242, https://doi.org/10.1016/0929-1393(95)00053-9 (1995).Article 

    Google Scholar 
    Sohrabi, H., Bakhtiarvand-Bakhtiari, S. & Ahmadi, K. Above- and below-ground biomass and carbon stocks of different tree plantations in central Iran. Journal of Arid Land 8, 138–145, https://doi.org/10.1007/s40333-015-0087-z (2016).Article 

    Google Scholar 
    Telmo, C., Lousada, J. & Moreira, N. Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and chemical analysis of wood. Bioresource Technology 101, 3808–3815, https://doi.org/10.1016/j.biortech.2010.01.021 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Thomas, A. L. et al. Carbon and nitrogen accumulation within four black walnut alley cropping sites across Missouri and Arkansas, USA. Agroforestry Systems 94, 1625–1638, https://doi.org/10.1007/s10457-019-00471-8 (2020).Article 

    Google Scholar 
    Thomas, S. C. & Malczewski, G. Wood carbon content of tree species in Eastern China: interspecific variability and the importance of the volatile fraction. Journal of Environmental Management 85, 659–662, https://doi.org/10.1016/j.jenvman.2006.04.022 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tolunay, D. Carbon concentrations of tree components, forest floor and understorey in young Pinus sylvestris stands in north-western Turkey. Scandinavian Journal of Forest Research 24, 394–402, https://doi.org/10.1080/02827580903164471 (2009).Article 

    Google Scholar 
    Tramoy, R., Sebilo, M., Nguyen Tu, T. T. & Schnyder, J. Carbon and nitrogen dynamics in decaying wood: paleoenvironmental implications. Environmental Chemistry 14, 9, https://doi.org/10.1071/en16049 (2017).CAS 
    Article 

    Google Scholar 
    Van Geffen, K. G., Poorter, L., Sass-Klaassen, U., Van Logtestijn, R. S. P. & Cornelissen, J. H. C. The trait contribution to wood decomposition rates of 15 Neotropical tree species. Ecology 91, 3686–3697, https://doi.org/10.1890/09-2224.1 (2010).Article 
    PubMed 

    Google Scholar 
    Wang, G. et al. Variations in the live biomass and carbon pools of Abies georgei along an elevation gradient on the Tibetan Plateau, China. Forest Ecology and Management 329, 255–263, https://doi.org/10.1016/j.foreco.2014.06.023 (2014).Article 

    Google Scholar 
    Wang, X. W., Weng, Y. H., Liu, G. F., Krasowski, M. J. & Yang, C. P. Variations in carbon concentration, sequestration and partitioning among Betula platyphylla provenances. Forest Ecology and Management 358, 344–352, https://doi.org/10.1016/j.foreco.2015.08.029 (2015).Article 

    Google Scholar 
    Watzlawick, L. F. et al. Teores de carbono em espécies da floresta ombrófila mista e efeito do grupo ecológico. Cerne 20, 613–620, https://doi.org/10.1590/01047760201420041492 (2014).Article 

    Google Scholar 
    Weber, J. C. et al. Variation in growth, wood density and carbon concentration in five tree and shrub species in Niger. New Forests 49, 35–51, https://doi.org/10.1007/s11056-017-9603-7 (2018).Article 

    Google Scholar 
    Weggler, K., Dobbertin, M., Jüngling, E., Kaufmann, E. & Thürig, E. Dead wood volume to dead wood carbon: the issue of conversion factors. European Journal of Forest Research 131, 1423–1438, https://doi.org/10.1007/s10342-012-0610-0 (2012).Article 

    Google Scholar 
    Widagdo, F. R. A., Xie, L., Dong, L. & Li, F. Origin-based biomass allometric equations, biomass partitioning, and carbon concentration variations of planted and natural Larix gmelinii in northeast China. Global Ecology and Conservation 23, e01111, https://doi.org/10.1016/j.gecco.2020.e01111 (2020).Article 

    Google Scholar 
    Wu, H. et al. Tree functional types simplify forest carbon stock estimates induced by carbon concentration variations among species in a subtropical area. Scientific Reports 7, https://doi.org/10.1038/s41598-017-05306-z (2017).Xing, Z. et al. Carbon and biomass partitioning in balsam fir (Abies balsamea). Tree Physiology 25, 1207–1217, https://doi.org/10.1093/treephys/25.9.1207 (2005).Article 
    PubMed 

    Google Scholar 
    Yang, F.-F. et al. Dynamics of coarse woody debris and decomposition rates in an old-growth forest in lower tropical China. Forest Ecology and Management 259, 1666–1672, https://doi.org/10.1016/j.foreco.2010.01.046 (2010).Article 

    Google Scholar 
    Yeboah, D., Burton, A. J., Storer, A. J. & Opuni-Frimpong, E. Variation in wood density and carbon content of tropical plantation tree species from Ghana. New Forests 45, 35–52, https://doi.org/10.1007/s11056-013-9390-8 (2014).Article 

    Google Scholar 
    Ying, J., Weng, Y., Oswald, B. P. & Zhang, H. Variation in carbon concentrations and allocations among Larix olgensis populations growing in three field environments. Annals of Forest Science 76, https://doi.org/10.1007/s13595-019-0877-0 (2019).Yuan, J., Cheng, F., Zhu, X., Li, J. & Zhang, S. Respiration of downed logs in pine and oak forests in the Qinling Mountains, China. Soil Biology and Biochemistry 127, 1–9, https://doi.org/10.1016/j.soilbio.2018.09.012 (2018).CAS 
    Article 

    Google Scholar 
    Zabek, L. M. & Prescott, C. E. Biomass equations and carbon content of aboveground leafless biomass of hybrid poplar in Coastal British Columbia. Forest Ecology and Management 223, 291–302, https://doi.org/10.1016/j.foreco.2005.11.009 (2006).Article 

    Google Scholar 
    Zhang, H., Jiang, Y., Song, M., He, J. & Guan, D. Improving understanding of carbon stock characteristics of Eucalyptus and Acacia trees in southern China through litter layer and woody debris. Scientific Reports 10, https://doi.org/10.1038/s41598-020-61476-3 (2020).Zhang, Q., Wang, C., Wang, X. & Quan, X. Carbon concentration variability of 10 Chinese temperate tree species. Forest Ecology and Management 258, 722–727, https://doi.org/10.1016/j.foreco.2009.05.009 (2009).Article 

    Google Scholar 
    Zheng, H. et al. Variation of carbon storage by different reforestation types in the hilly red soil region of southern China. Forest Ecology and Management 255, 1113–1121, https://doi.org/10.1016/j.foreco.2007.10.015 (2008).Article 

    Google Scholar 
    Zhou, L. et al. Tissue-specific carbon concentration, carbon stock, and distribution in Cunninghamia lanceolata (Lamb.) Hook plantations at various developmental stages in subtropical China. Annals of Forest Science 76, https://doi.org/10.1007/s13595-019-0851-x (2019).Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92, https://doi.org/10.1038/nature12872 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Muscarella, R. et al. The global abundance of tree palms. Global Ecology and Biogeography 29, 1495–1514, https://doi.org/10.1111/geb.13123 (2020).Article 

    Google Scholar 
    Du, H. et al. Mapping global bamboo forest distribution using multisource remote sensing data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11, 1458–1471 (2018).ADS 
    Article 

    Google Scholar 
    Iwashita, D. K., Litton, C. M. & Giardina, C. P. Coarse woody debris carbon storage across a mean annual temperature gradient in tropical montane wet forest. Forest Ecology and Management 291, 336–343, https://doi.org/10.1016/j.foreco.2012.11.043 (2013).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2021).Wikström, N., Savolainen, V. & Chase, M. W. Evolution of the angiosperms: calibrating the family tree. Proceedings of the Royal Society of London. Series B: Biological Sciences 268, 2211–2220, https://doi.org/10.1098/rspb.2001.1782 (2001).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gastauer, M. & Meira Neto, J. A. A. Updated angiosperm family tree for analyzing phylogenetic diversity and community structure. Acta Botanica Brasilica 31, 191–198, https://doi.org/10.1590/0102-33062016abb0306 (2017).Article 

    Google Scholar  More

  • in

    Viral infection changes the expression of personality traits in an insect species reared for consumption

    Koski, S. E. Broader horizons for animal personality research. Front. Ecol. Evol. 2, 70 (2014).Article 

    Google Scholar 
    Careere, C. & Eens, M. Unravelling animal personalities: How and why individuals consistently differ. Behaviour 142, 1149–1157 (2005).Article 

    Google Scholar 
    Dingemanse, N. J., Both, C., Drent, P. J. & Tinbergen, J. M. Fitness consequences of avian personalities in a fluctuating environment. Proc. R. Soc. Lond. B 271, 847–852 (2004).Article 

    Google Scholar 
    Bell, A. M. & Sih, A. Exposure to predation generates personality in three-spined sticklebacks (Gasterosteus aculeatus). Ecol. Lett. 10, 828–834 (2007).PubMed 
    Article 

    Google Scholar 
    Cavigelli, S. A. Animal personality and health. Behaviour 142, 1223–1244 (2005).Article 

    Google Scholar 
    Barber, I. & Dingemanse, N. J. Parasitism and the evolutionary ecology of animal personality. Proc. R. Soc. Lond. B 365, 4077–4088 (2010).
    Google Scholar 
    Koprivnikar, J., Gibson, C. H. & Redfern, J. C. Infectious personalities: Behavioural syndromes and disease risk in larval amphibians. Proc. R. Soc. Lond. B 279, 1544–1550 (2012).
    Google Scholar 
    Turner, J. & Hughes, W. O. H. The effect of parasitism on personality in a social insect. Behav. Proc. 157, 532–539 (2018).Article 

    Google Scholar 
    Frost, A. J., Winrow-Giffen, A., Ashley, P. J. & Sneddon, L. U. Plasticity in animal personality traits: Does prior experience alter the degree of boldness?. Proc. Biol. Sci. 274, 333–339 (2007).PubMed 

    Google Scholar 
    Dingemanse, N. J. & Wolf, M. Recent models for adaptive personality differences: A review. Philos. Trans. R. Soc. B 365, 3947–3958 (2010).Article 

    Google Scholar 
    Müller, T. & Müller, C. Phenotype of a leaf beetle larva depends on host plant quality and previous test experience. Behav. Proc. 142, 40–45 (2017).Article 

    Google Scholar 
    Hart, B. L. Biological basis of behaviour in sick animals. Neurosci. Biobehav. Rev. 12, 123–137 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hart, B. L. Behavioral adaptations to pathogens and parasites: Five strategies. Neurosci. Biobehav. Rev. 14, 273–294 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Johnson, R. W. The concept of sickness behavior: A brief chronological account of four key discoveries. Vet. Immunol. Immunopathol. 87, 443–450 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Klein, S. L. Parasite manipulation of the proximate mechanisms that mediate social behavior in vertebrates. Physiol. Behav. 79, 441–449 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Boyer, N., Reale, D., Marmet, J., Pisanu, B. & Chapuis, L. Personality, space use and tick load in an introduced population of Siberian chipmunks Tanias sibiricus. J. Anim. Ecol. 79, 538–547 (2010).PubMed 
    Article 

    Google Scholar 
    Ezenwa, V. O. Host social behavior and parasitic infection: A multifactorial approach. Behav. Ecol. 15, 446–454 (2004).Article 

    Google Scholar 
    Finkemeier, M. A., Langbein, J. & Puppe, B. Personality research in mammalian farm animals: Concepts, measures and relationship to welfare. Front. Vet. Sci. 5, 131 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Huntingford, F. & Adams, C. Behavioural syndromes in farmed fish: Implications for production and welfare. Behaviour 142, 1207–1221 (2005).Article 

    Google Scholar 
    Berggren, Å., Jansson, A. & Low, M. Approaching ecological sustainability in the emerging insects-as-food industry. Trends Ecol. Evol. 34, 132–138 (2019).PubMed 
    Article 

    Google Scholar 
    Dochtermann, N. A. & Nelson, A. B. Multiple facets of exploratory behavior in house crickets (Acheta domesticus): Split personalities or simply different behaviors?. Ethology 120, 1110–1117 (2014).Article 

    Google Scholar 
    van Huis, A. & Tomberlin, J. K. Future prospects. In Insects as Food Feed: From Production to Consumption (eds van Huis, A. & Tomberlin, J. K.) 430–445 (Wageningen Academic Publishers, 2017).Szelei, J. et al. Susceptibility of North-American and European crickets to Acheta domesticus densovirus (AdDNV) and associated epizootics. J. Invert. Pathol 106, 394–399 (2011).CAS 
    Article 

    Google Scholar 
    Eilenberg, J., Vlak, J. M., Nielsen-LeRoux, C., Cappellozza, S. & Jensen, A. B. Diseases in insects produced for food and feed. J. Insects Food Feed 1, 87–102 (2015).Article 

    Google Scholar 
    Raubenheimer, D. & Tucker, D. Associative learning by locusts: Pairing of visual cues with consumption of protein and carbohydrate. Anim. Behav. 54, 1449–1459 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mallory, H. S., Howard, A. F. & Weiss, M. R. Timing of environmental enrichment affects memory in the house cricket, Acheta domesticus. PLoS One 11, e0152245 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sih, A., Bell, A. M., Johnson, J. C. & Ziemba, R. E. Behavioral syndromes: An integrative overview. Q. Rev. Biol. 79, 241–277 (2004).PubMed 
    Article 

    Google Scholar 
    Siva-Jothy, J. A. & Vale, P. F. Viral infection causes sex-specific changes in fruit fly social aggregation behaviour. Biol. Lett. 15, 20190344 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Houte, S., Ros, V. I. D. & Van Oers, M. M. Walking with insects: Molecular mechanisms behind parasitic manipulation of host behaviour. Mol. Ecol. 22, 3458–3475 (2013).PubMed 
    Article 

    Google Scholar 
    Vale, P. F., Siva-Jothy, J. A., Morrill, A. & Forbes, M. R. The influence of parasites. In Insect Behavior: From Mechanisms to Ecological and Evolutionary Consequences (eds Córdoba-Aguilar, A., González-Tokman, D. & González-Santoyo, I) (Oxford University Press, 2018).de Roode, J. C. & Lefèvre, T. Behavioral Immunity in Insects. Insects 3, 789–820 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kutzer, M. A. M. & Armitage, S. A. O. Maximising fitness in the face of parasites: A review of host tolerance. Zoology 119, 281–289 (2016).PubMed 
    Article 

    Google Scholar 
    Vossen, L. E., Roman, E. & Jansson, A. Fasting increases shelter use in house crickets (Acheta domestica). J. Insects Food Feed 8, 5–8 (2021).Article 

    Google Scholar 
    Schutgens, M., Cook, B., Gilbert, F. & Behnke, J. M. Behavioural changes in the flour beetle Tribolium confusum infected with the spirurid nematode Protospirura muricola. J. Helminthol. 89, 68–79 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kazlauskas, N., Klappenbach, M., Depino, A. M. & Locatelli, F. F. Sickness behavior in honey bees. Front. Physiol. 7, 261 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stahlschmidt, Z. R. & Adamo, S. A. Context dependency and generality of fever in insects. Naturwissenschaften 100, 691–696 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, S. Y. S., Tattersall, G. J. & Koprivnikar, J. Trematode parasite infection affects temperature selection in aquatic host snails. Physiol. Biochem. Zool. 92, 71–79 (2019).PubMed 
    Article 

    Google Scholar 
    Berggren, Å., Jansson, A. & Low, M. Using current systems to inform rearing facility design in the insects-as-food industry. J. Insects Food Feed. 4, 167–170 (2018).Article 

    Google Scholar 
    Marshall, J. A. & Haes, E. C. M. Grasshoppers and Allied Insects of Great Britain and Ireland (Harley Books, Essex) (1988).GBIF Secretariat. Acheta domesticus (Linnaeus, 1758). GBIF Backbone Taxonomy. Checklist dataset. https://doi.org/10.15468/39omei accessed via GBIF.org on 12 Jan 2022 (2021).Holst, K. T. The Saltatoria (Bush-crickets, Crickets and Grasshoppers) of Northern Europe (E J Brill, 1986).Ingrisch, S. & Köhler, G. Die heuschrecken mitteleuropas. (Westarp Wissenschaften, 1998).Booth, D. T. & Kiddell, K. Temperature and the energetics of development in the house cricket (Acheta domesticus). J. Insect Physiol. 53, 950–953 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ghouri, A. S. K. & McFarlane, J. E. Observations on the development of crickets. Can. Entomol. 90, 158–165 (1958).Article 

    Google Scholar 
    Semberg, E. et al. Diagnostic protocols for the detection of Acheta domesticus densovirus (AdDV) in cricket frass. J. Virol. Methods 264, 61–64 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bergoin, M. & Tijssen, P. Parvoviruses of arthropods. In Encyclopedia of Virology. 76–85 (2008).Cotmore, S. F. et al. The family Parvoviridae. Arch. Virol. 159, 1239–1247 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Styer, E. L. & Hamm, J. J. Report of a densovirus in a commercial cricket operation in the southeastern United States. J. Invert. Pathol. 58, 283–285 (1991).Article 

    Google Scholar 
    Weissman, D. B., Gray, D. A., Pham, H. T. & Tijssen, P. Billions and billions sold: Pet-feeder crickets (Orthoptera: Gryllidae), commercial crickets farms, an epizootic densovirus, and government regulations make for a potential disaster. Zootaxa 3504, 67–88 (2012).Article 

    Google Scholar 
    Maciel-Vergara, G. & Ros, V. I. D. Viruses of insects reared for food and feed. J. Invert. Pathol. 147, 60–75 (2017).Article 

    Google Scholar 
    Liu, K. et al. The Acheta domesticus densovirus, isolated from the European house cricket, has evolved an expression strategy unique among parvoviruses. J. Virol. 85, 10069–10078 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, Y. et al. Densovirus crosses the insect midgut by transcytosis and disturbs the epithelial barrier function. J. Virol. 87, 12380–12391 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    de Miranda, J. R. et al. Virus diversity and loads in crickets reared for feed: Implications for husbandry. Front. Vet. Sci. 8, 642085 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    de Miranda, J. R., Granberg, F., Onorati, P., Jansson, A. & Berggren, Å. Virus prospecting in crickets: discovery and strain divergence of a novel Iflavirus in wild and cultivated Acheta domesticus. Viruses 13, 364 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Niemelä, P., Vainikka, A., Hedrick, A. & Kortet, R. Integrating behaviour with life history: Boldness of the field cricket, Gryllus integer, during ontogeny. Funct. Ecol. 26, 450–456 (2012).Article 

    Google Scholar 
    Hedrick, A. V. Crickets with extravagant mating songs compensate for predation risk with extra caution. Proc. R. Soc. Lond. B 267, 671–675 (2000).CAS 
    Article 

    Google Scholar 
    Hedrick, A. V. & Kortet, R. Hiding behaviour in two cricket populations that differ in predation pressure. Anim. Behav. 72, 1111–1118 (2006).Article 

    Google Scholar 
    Kortet, R. & Hedrick, A. V. A behavioural syndrome in the field cricket Gryllus integer: Intrasexual aggression is correlated with activity in a novel environment. Biol. J. Linnean Soc. 91, 475–482 (2007).Article 

    Google Scholar 
    Fisher, D. N., David, M., Rodríguez-Muñoz, R. & Tregenza, T. Lifespan and age, but not residual reproductive value or condition, are related to behaviour in wild field crickets. Ethology 124, 338–346 (2018).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).Plummer, M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In: Proceedings of the 3rd International Workshop on Distributed Statistical Computing. Vienna, Austria (2003).Le Galliard, J. F., Paquet, M., Cisel, M. & Montes-Poloni, L. Personality and the pace-of-life syndrome: Variation and selection on exploration, metabolism and locomotor performances. Funct. Ecol. 27, 136–144 (2013).Article 

    Google Scholar 
    Roche, D. G., Careau, V. & Binning, S. A. Demystifying animal ‘personality’ (or not): Why individual variation matters to experimental biologists. J. Exp. Biol. 219, 3832–3843 (2016).PubMed 

    Google Scholar 
    Low, M. et al. The importance of accounting for larval detectability in mosquito habitat-association studies. Malar. J. 15, 1–9 (2016).Article 

    Google Scholar  More

  • in

    Synchronous vegetation response to the last glacial-interglacial transition in northwest Europe

    Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).Article 

    Google Scholar 
    Heiri, O. et al. Validation of climate model-inferred regional temperature change for late-glacial Europe. Nat. Commun. 5, 1–7 (2014).Article 
    CAS 

    Google Scholar 
    Muschitiello, F. et al. Fennoscandian freshwater control on Greenland hydroclimate shifts at the onset of the Younger Dryas. Nat. Commun. 6, 1–8 (2015).Article 
    CAS 

    Google Scholar 
    Renssen, H. et al. Multiple causes of the Younger Dryas cold period. Nat. Geosci. 8, 946–949 (2015).CAS 
    Article 

    Google Scholar 
    Mangerud, J. The discovery of the Younger Dryas, and comments on the current meaning and usage of the term. Boreas 50, 1–5 (2021).Article 

    Google Scholar 
    Cheng, H. et al. Timing and structure of the Younger Dryas event and its underlying climate dynamics. Proc. Natl. Acad. Sci. USA 117, 23408–23417 (2020).CAS 
    Article 

    Google Scholar 
    van Hoesel, A., Hoek, W. Z., Pennock, G. M. & Drury, M. R. The Younger Dryas impact hypothesis: a critical review. Quat. Sci. Rev. 83, 95–114 (2014).Article 

    Google Scholar 
    Partin, J. W. et al. Gradual onset and recovery of the Younger Dryas abrupt climate event in the tropics. Nat. Commun. 6, 1–9 (2015).Article 

    Google Scholar 
    Reinig, F. et al. Precise date for the Laacher See eruption synchronizes the Younger Dryas. Nature 595, 66–69 (2021).CAS 
    Article 

    Google Scholar 
    Ammann, B. et al. Quantification of biotic responses to rapid climatic changes around the Younger Dryas — a synthesis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 159, 313–347 (2000).Article 

    Google Scholar 
    Hoek, W. Z. Vegetation response to the ∼ 14.7 and ∼ 11.5 ka cal. BP climate transitions: is vegetation lagging climate? Glob. Planet. Change 30, 103–115 (2001).Article 

    Google Scholar 
    Litt, T. et al. Correlation and synchronisation of Lateglacial continental sequences in northern central Europe based on annually laminated lacustrine sediments. Quat. Sci. Rev. 20, 1233–1249 (2001).Article 

    Google Scholar 
    Muschitiello, F. & Wohlfarth, B. Time-transgressive environmental shifts across Northern Europe at the onset of the Younger Dryas. Quat. Sci. Rev. 109, 49–56 (2015).Article 

    Google Scholar 
    Nakagawa, T. et al. The spatio-temporal structure of the Lateglacial to early Holocene transition reconstructed from the pollen record of Lake Suigetsu and its precise correlation with other key global archives: implications for palaeoclimatology and archaeology. Glob. Planet. Change 202, 103493 (2021).Article 

    Google Scholar 
    Ammann, B. et al. Vegetation responses to rapid warming and to minor climatic fluctuations during the Late-Glacial Interstadial (GI-1) at Gerzensee (Switzerland). Palaeogeogr. Palaeoclimatol. Palaeoecol. 391, 40–59 (2013).Article 

    Google Scholar 
    Engels, S. et al. Subdecadal‐scale vegetation responses to a previously unknown late‐Allerød climate fluctuation and Younger Dryas cooling at Lake Meerfelder Maar (Germany). J. Quat. Sci 31, 741–752 (2016).Article 

    Google Scholar 
    Van Raden, U. J. et al. High-resolution late-glacial chronology for the Gerzensee lake record (Switzerland): δ18O correlation between a Gerzensee-stack and NGRIP. Palaeogeogr. Palaeoclimatol. Palaeoecol. 391, 13–24 (2013).Article 

    Google Scholar 
    Blaga, C. I., Reichart, G.-J., Lotter, A. F., Anselmetti, F. S. & Sinninghe Damsté, J. S. A TEX86 lake record suggests simultaneous shifts in temperature in Central Europe and Greenland during the last deglaciation. Geophys. Res. Lett. 40, 948–953 (2013).Article 

    Google Scholar 
    Rach, O., Brauer, A., Wilkes, H. & Sachse, D. Delayed hydrological response to Greenland cooling at the onset of the Younger Dryas in western Europe. Nat. Geosci. 7, 109 (2014).CAS 
    Article 

    Google Scholar 
    Strogatz, S. H. Exploring complex networks. Nature 410, 268–276 (2001).CAS 
    Article 

    Google Scholar 
    Doncaster, C. P. et al. Early warning of critical transitions in biodiversity from compositional disorder. Ecology 97, 3079–3090 (2016).Article 

    Google Scholar 
    Jones, G. et al. The Lateglacial to early Holocene tephrochronological record from Lake Hämelsee, Germany: a key site within the European tephra framework. Boreas 47, 28–40 (2018).Article 

    Google Scholar 
    Blaga, C. I., Reichart, G.-J., Heiri, O. & Damsté, J. S. S. Tetraether membrane lipid distributions in water-column particulate matter and sediments: a study of 47 European lakes along a north–south transect. J. Paleolimnol. 41, 523–540 (2009).Article 

    Google Scholar 
    Bechtel, A., Smittenberg, R. H., Bernasconi, S. M. & Schubert, C. J. Distribution of branched and isoprenoid tetraether lipids in an oligotrophic and a eutrophic Swiss lake: insights into sources and GDGT-based proxies. Org. Geochem. 41, 822–832 (2010).CAS 
    Article 

    Google Scholar 
    Lowe, J. et al. On the timing of retreat of the Loch Lomond (‘Younger Dryas’) Readvance icefield in the SW Scottish Highlands and its wider significance. Quat. Sci. Rev. 219, 171–186 (2019).Article 

    Google Scholar 
    Muggeo, V. M. R. Segmented: an R package to fit regression models with broken-line relationships. R news 8, 20–25 (2008).
    Google Scholar 
    Merkt, J. & Müller, H. Varve chronology and palynology of the Lateglacial in Northwest Germany from lacustrine sediments of Hämelsee in Lower Saxony. Quat. Int. 61, 41–59 (1999).Article 

    Google Scholar 
    Litt, T. & Stebich, M. Bio-and chronostratigraphy of the lateglacial in the Eifel region, Germany. Quat. Int. 61, 5–16 (1999).Article 

    Google Scholar 
    Reimer, P. J. et al. The IntCal20 Northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).CAS 
    Article 

    Google Scholar 
    Giesecke, T. Holocene dynamics of the southern boreal forest in Sweden. The Holocene 15, 858–872 (2005).Article 

    Google Scholar 
    Müller, D. et al. New insights into lake responses to rapid climate change: the Younger Dryas in Lake Gościąż, central Poland. Boreas 50, 535–555 (2021).Article 

    Google Scholar 
    Davis, B. A. S. et al. The Eurasian Modern Pollen Database (EMPD), version 2. Earth Syst. Sci. data 12, 2423–2445 (2020).Article 

    Google Scholar 
    Neugebauer, I. et al. A Younger Dryas varve chronology from the Rehwiese palaeolake record in NE-Germany. Quat. Sci. Rev. 36, 91–102 (2012).Article 

    Google Scholar 
    Ralska-Jasiewiczowa, M. et al. Very fast environmental changes at the Pleistocene/Holocene boundary, recorded in laminated sediments of Lake Gościaż, Poland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 193, 225–247 (2003).Article 

    Google Scholar 
    Bonk, A. et al. Varve microfacies and chronology from a new sediment record of Lake Gościąż (Poland). Quat. Sci. Rev. 251, 106715 (2021).Article 

    Google Scholar 
    Brauer, A., Haug, G. H., Dulski, P., Sigman, D. M. & Negendank, J. F. W. An abrupt wind shift in western Europe at the onset of the Younger Dryas cold period. Nat. Geosci. 1, 520–523 (2008).CAS 
    Article 

    Google Scholar 
    Mekhaldi, F. et al. Radionuclide wiggle matching reveals a nonsynchronous early Holocene climate oscillation in Greenland and western Europe around a grand solar minimum. Clim. Past 16, 1145–1157 (2020).Article 

    Google Scholar 
    Mayfield, R. J. et al. Metrics of structural change as indicators of chironomid community stability in high latitude lakes. Quat. Sci. Rev. 249, 106594 (2020).Article 

    Google Scholar 
    van der Knaap, W. O. & Van Leeuwen, J. F. N. Climate-pollen relationships AD 1901–1996 in two small mires near the forest limit in the northern and central Swiss Alps. The Holocene 13, 809–828 (2003).Article 

    Google Scholar 
    Bazelmans, J. et al. Environmental changes in the late Allerød and early Younger Dryas in the Netherlands: a multiproxy high-resolution record from a site with two Pinus sylvestris populations. Quat. Sci. Rev. 272, 107199 (2021).Article 

    Google Scholar 
    Birks, H. H., Battarbee, R. W. & Birks, H. J. B. The development of the aquatic ecosystem at Kråkenes Lake, western Norway, during the late glacial and early Holocene-a synthesis. J. Paleolimnol 23, 91–114 (2000).Article 

    Google Scholar 
    Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).Article 

    Google Scholar 
    Lohne, Ø. S., Mangerud, J. A. N. & Birks, H. H. IntCal13 calibrated ages of the Vedde and Saksunarvatn ashes and the Younger Dryas boundaries from Kråkenes, western Norway. J. Quat. Sci 29, 506–507 (2014).Article 

    Google Scholar 
    Lohne, Ø. S., Mangerud, J. A. N. & Birks, H. H. Precise 14 C ages of the Vedde and Saksunarvatn ashes and the Younger Dryas boundaries from western Norway and their comparison with the Greenland Ice Core (GICC 05) chronology. J. Quat. Sci 28, 490–500 (2013).Article 

    Google Scholar 
    Wohlfarth, B. et al. Hässeldala–a key site for last termination climate events in northern Europe. Boreas 46, 143–161 (2017).Article 

    Google Scholar 
    Brauer, A. et al. High resolution sediment and vegetation responses to Younger Dryas climate change in varved lake sediments from Meerfelder Maar, Germany. Quat. Sci. Rev. 18, 321–329 (1999).Article 

    Google Scholar 
    Lane, C. S., Brauer, A., Blockley, S. P. E. & Dulski, P. Volcanic ash reveals time-transgressive abrupt climate change during the Younger Dryas. Geology 41, 1251–1254 (2013).Bronk Ramsey, C. et al. Improved age estimates for key Late Quaternary European tephra horizons in the RESET lattice. Quat. Sci. Rev. 118, 18–32 (2015).Rasmussen, S. O. et al. A new Greenland ice core chronology for the last glacial termination. J. Geophys. Res. Atmos. 111, https://doi.org/10.1029/2005JD006079 (2006).Brauer, A., Endres, C., Zolitschka, B. & Negendank, J. F. W. AMS radiocarbon and varve chronology from the annually laminated sediment record of Lake Meerfelder Maar, Germany. Radiocarbon 42, 355–368 (2000).CAS 
    Article 

    Google Scholar 
    Wulf, S. et al. Tracing the Laacher See Tephra in the varved sediment record of the Trzechowskie palaeolake in central Northern Poland. Quat. Sci. Rev. 76, 129–139 (2013).Article 

    Google Scholar 
    Brauer, A. et al. The importance of independent chronology in integrating records of past climate change for the 60–8 ka INTIMATE time interval. Quat. Sci. Rev. 106, 47–66 (2014).Article 

    Google Scholar 
    Lane, C. S. et al. The Late Quaternary tephrostratigraphy of annually laminated sediments from Meerfelder Maar, Germany. Quat. Sci. Rev. 122 192–206 (2015).Article 

    Google Scholar 
    Adolphi, F. & Muscheler, R. Synchronizing the Greenland ice core and radiocarbon timescales over the Holocene–Bayesian wiggle-matching of cosmogenic radionuclide records. Clim. Past 12, 15–30 (2016).Article 

    Google Scholar 
    Muschitiello, F. et al. Deep-water circulation changes lead North Atlantic climate during deglaciation. Nat. Commun. 10, 1–10 (2019).CAS 
    Article 

    Google Scholar 
    Adolphi, F. et al. Persistent link between solar activity and Greenland climate during the Last Glacial Maximum. Nat. Geosci. 7, 662–666 (2014).CAS 
    Article 

    Google Scholar 
    Siegenthaler, U., Heimann, M. & Oeschger, H. 14C variations caused by changes in the global carbon cycle. Radiocarbon 22, 177–191 (1980).CAS 
    Article 

    Google Scholar 
    Muscheler, R., Adolphi, F. & Svensson, A. Challenges in 14C dating towards the limit of the method inferred from anchoring a floating tree ring radiocarbon chronology to ice core records around the Laschamp geomagnetic field minimum. Earth Planet. Sci. Lett. 394, 209–215 (2014).CAS 
    Article 

    Google Scholar 
    Muschitiello, F. An improved and continuous synchronization of the Greenland ice-core and Hulu Cave U-Th timescales using probabilistic inversion. Clim. Past Discuss. 1–39 https://doi.org/10.5194/cp-2021-116 (2021).Moore, P. D., Webb, J. A. & Collison, M. E. Pollen analysis. (Blackwell scientific publications, 1991).Engels, S. et al. Haemelsee: late-glacial pollen counts. PANGAEA, https://doi.org/10.1594/PANGAEA.939693 (2021).Weltje, G. J. & Tjallingii, R. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application. Earth Planet. Sci. Lett. 274, 423–438 (2008).CAS 
    Article 

    Google Scholar 
    Heiri, O., Lotter, A. F. & Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J. Paleolimnol 25, 101–110 (2001).Article 

    Google Scholar 
    Brooks, S. J., Langdon, P. G. & Heiri, O. The identification and use of Palaearctic Chironomidae larvae in palaeoecology. Quat. Res. Assoc. Tech. Guid. i–vi. Vol. 10, 1–276 (2007).Heiri, O., Brooks, S. J., Birks, H. J. B. & Lotter, A. F. A 274-lake calibration data-set and inference model for chironomid-based summer air temperature reconstruction in Europe. Quat. Sci. Rev. 30, 3445–3456 (2011).Article 

    Google Scholar 
    Heiri, O. & Lotter, A. F. Effect of low count sums on quantitative environmental reconstructions: an example using subfossil chironomids. J. Paleolimnol 26, 343–350 (2001).Article 

    Google Scholar 
    Rach, O., Hadeen, X. & Sachse, D. An automated solid phase extraction procedure for lipid biomarker purification and stable isotope analysis. Org. Geochem. 142, 103995 (2020).CAS 
    Article 

    Google Scholar 
    Huguet, C. et al. An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Org. Geochem. 37, 1036–1041 (2006).CAS 
    Article 

    Google Scholar 
    Hopmans, E. C., Schouten, S. & Damsté, J. S. S. The effect of improved chromatography on GDGT-based palaeoproxies. Org. Geochem. 93, 1–6 (2016).CAS 
    Article 

    Google Scholar 
    Birks, H. J. B. & Birks, H. H. Biological responses to rapid climate change at the Younger Dryas—Holocene transition at Kråkenes, western Norway. The Holocene 18, 19–30 (2008).Article 

    Google Scholar 
    R CORE TEAM, A. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2012. URL http://www.R-project.org (2020).Engels, S., van Geel, B., Buddelmeijer, N. & Brauer, A. High-resolution palynological evidence for vegetation response to the Laacher See eruption from the varved record of Meerfelder Maar (Germany) and other central European records. Rev. Palaeobot. Palynol. 221, 160–170 (2015).Article 

    Google Scholar 
    Hughes, A. L. C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J. & Svendsen, J. I. The last Eurasian ice sheets–a chronological database and time‐slice reconstruction, DATED‐1. Boreas 45, 1–45 (2016).Article 

    Google Scholar  More

  • in

    Enhancing soil quality makes crop production more resilient to climate change

    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Qiao, L. et al. Soil quality both increases crop production and improves resilience to climate change. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01376-8 (2022). More

  • in

    Species- and site-specific circulating bacterial DNA in Subantarctic sentinel mussels Aulacomya atra and Mytilus platensis

    Brondizio, E. S., Settele, J., Díaz, S. & Ngo, H. T. (eds.) Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science–Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).Weiskopf, S. R. et al. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci. Total Environ. 733, 137782. https://doi.org/10.1016/j.scitotenv.2020.137782 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Turner, J. & Marshall, G. J. Climate Change in the Polar Regions (Cambridge University Press, 2011).Book 

    Google Scholar 
    Meredith, M. et al. Polar Regions. Chapter 3, IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. https://www.ipcc.ch/srocc/chapter/chapter-3-2/ (2019).Rignot, E. et al. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proc. Natl. Acad. Sci. USA 116, 1095–1103. https://doi.org/10.1073/pnas.1812883116 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Siegert, M. et al. The Antarctic Peninsula under a 1.5°C global warming scenario. Front. Environ. Sci. 7, 102. https://doi.org/10.3389/fenvs.2019.00102 (2019).Article 

    Google Scholar 
    Iz, H. B. Is the global sea surface temperature rise accelerating?. Geod. Geodyn. 9, 432–438. https://doi.org/10.1016/j.geog.2018.04.002 (2018).Article 

    Google Scholar 
    Qiu, Z. et al. Future climate change is predicted to affect the microbiome and condition of habitat-forming kelp. Proc. R. Soc. B. 286, 20181887. https://doi.org/10.1098/rspb.2018.1887 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Burge, C. A., Kim, C. J., Lyles, J. M. & Harvell, C. D. Special issue Oceans and Humans Health: The ecology of marine opportunists. Microb. Ecol. 65, 869–879. https://doi.org/10.1007/s00248-013-0190-7 (2013).Article 
    PubMed 

    Google Scholar 
    Cavicchioli, R. et al. Scientists’ warning to humanity: Microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586. https://doi.org/10.1038/s41579-019-0222-5 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harvell, C. D. et al. Emerging marine diseases–climate links and anthropogenic factors. Science 285, 1505–1510. https://doi.org/10.1126/science.285.5433.1505 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Egan, S. & Gardiner, M. Microbial dysbiosis: Rethinking disease in marine ecosystems. Front. Microbiol. 7, 991. https://doi.org/10.3389/fmicb.2016.00991 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilkins, L. G. E. et al. Host-associated microbiomes drive structure and function of marine ecosystems. PLoS Biol. 17, e3000533. https://doi.org/10.1371/journal.pbio.3000533 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seuront, L., Nicastro, K. R., Zardi, G. I. & Goberville, E. Decreased thermal tolerance under recurrent heat stress conditions explains summer mass mortality of the blue mussel Mytilus edulis. Sci. Rep. 9, 17498. https://doi.org/10.1038/s41598-019-53580-w (2019).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tsuchiya, M. Mass mortality in a population of the mussel Mytilus edulis L. caused by high temperature on rocky shores. J. Exp. Mar. Biol. Ecol. 66, 101–111. https://doi.org/10.1016/0022-0981(83)90032-1 (1983).Article 

    Google Scholar 
    Malham, S. K. et al. Summer mortality of the Pacific oyster, Crassostrea gigas, in the Irish Sea: The influence of temperature and nutrients on health and survival. Aquaculture 287, 128–138. https://doi.org/10.1016/j.aquaculture.2008.10.006 (2009).CAS 
    Article 

    Google Scholar 
    Beyer, J. et al. Blue mussels (Mytilus edulis spp.) as sentinel organisms in coastal pollution monitoring: A review. Mar. Environ. Res. 130, 338–365. https://doi.org/10.1016/j.marenvres.2017.07.024 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ladeiro, M. P. et al. Mussel as a tool to define continental watershed quality. In Organismal and Molecular Malacology (ed Ray, S.), IntechOpen. https://doi.org/10.5772/67995 (2017).Bonacci, S. et al. Esterase activities in the bivalve mollusc Adamussium colbecki as a biomarker for pollution monitoring in the Antarctic marine environment. Mar. Pollut. Bull. 49, 445–455. https://doi.org/10.1016/j.marpolbul.2004.02.033 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Storhaug, E. et al. Seasonal and spatial variations in biomarker baseline levels within Arctic populations of mussels (Mytilus spp.). Sci. Total Environ. 656, 921–936. https://doi.org/10.1016/j.scitotenv.2018.11.397 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Caza, F. et al. Liquid biopsies for omics-based analysis in sentinel mussels. PLoS ONE 14, e0223525. https://doi.org/10.1371/journal.pone.0225359 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ignatiadis, M., Sledge, G. W. & Jeffrey, S. S. Liquid biopsy enters the clinic – implementation issues and future challenges. Nat. Rev. Clin. Oncol. 18, 297–312. https://doi.org/10.1038/s41571-020-00457-x (2021).Article 
    PubMed 

    Google Scholar 
    Kowarsky, M. et al. Numerous uncharacterized and highly divergent microbes which colonize humans are revealed by circulating cell-free DNA. Proc. Natl. Acad. Sci. USA 114, 9623–9628. https://doi.org/10.1073/pnas.1707009114 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen, H. et al. Circulating microbiome DNA: An emerging paradigm for cancer liquid biopsy. Cancer Lett. 521, 82–87. https://doi.org/10.1016/j.canlet.2021.08.036 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lokmer, A. et al. Spatial and temporal dynamics of Pacific oyster hemolymph microbiota across multiple scales. Front. Microbiol. 7, 1367. https://doi.org/10.3389/fmicb.2016.01367 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lokmer, A. & Wegner, M. K. Hemolymph microbiome of Pacific oysters in response to temperature, temperature stress and infection. ISME J. 9, 670–682. https://doi.org/10.1038/ismej.2014.160 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Auguste, M. et al. Exposure to TiO2 nanoparticles induces shifts in the microbiota composition of Mytilus galloprovincialis hemolymph. Sci. Total Environ. 670, 129–137. https://doi.org/10.1016/j.scitotenv.2019.03.133 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Vezzulli, L. et al. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc. Natl. Acad. Sci. USA 113, E5062–E5071. https://doi.org/10.1073/pnas.1609157113 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Musella, M. et al. Tissue-scale microbiota of the Mediterranean mussel (Mytilus galloprovincialis) and its relationship with the environment. Sci. Total Environ. 717, 137209. https://doi.org/10.1016/j.scitotenv.2020.137209 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Féral, J.-P. et al. PROTEKER: Implementation of a submarine observatory at the Kerguelen islands (Southern Ocean). Underw. Technol. 34, 3–10. https://doi.org/10.3723/ut.34.003 (2016).Article 

    Google Scholar 
    Spain, E. A. et al. Shallow seafloor gas emissions near Heard and McDonald Islands on the Kerguelen Plateau, southern Indian Ocean. Earth Space Sci. 7, e2019EA000695. https://doi.org/10.1029/2019EA000695 (2020).ADS 
    Article 

    Google Scholar 
    Cao, S. et al. Structure and function of the Arctic and Antarctic marine microbiota as revealed by metagenomics. Microbiome. 8, 47. https://doi.org/10.1186/s40168-020-00826-9 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, L.-Y. et al. Comparison of bacterial community in aqueous and oil phases of water-flooded petroleum reservoirs using pyrosequencing and clone library approaches. Appl. Microbiol. Biotechnol. 98, 4209–4221. https://doi.org/10.1007/s00253-013-5472-y (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gutierrez, T., Berry, D., Teske, A. & Aitken, M. D. Enrichment of Fusobacteria in sea surface oil slicks from the Deepwater Horizon oil spill. Microorganisms. 4, 24. https://doi.org/10.3390/microorganisms4030024 (2016).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Michelou, V. K., Caporaso, J. G., Knight, R. & Palumbi, S. R. The ecology of microbial communities associated with Macrocystis pyrifera. PLoS ONE 8, e67480. https://doi.org/10.1371/annotation/48e29578-a073-42e7-bca4-2f96a5998374 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Florez, J. Z. et al. Structure of the epiphytic bacterial communities of Macrocystis pyrifera in localities with contrasting nitrogen concentrations and temperature. Algal Res. 44, 101706. https://doi.org/10.1016/j.algal.2019.101706 (2019).Article 

    Google Scholar 
    Minich, J. J. et al. Elevated temperature drives kelp microbiome dysbiosis, while elevated carbon dioxide induces water microbiome disruption. PLoS ONE 13, e0192772. https://doi.org/10.1371/journal.pone.0192772 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lin, J. D., Lemay, M. A. & Parfrey, L. W. Diverse bacteria utilize alginate within the microbiome of the giant kelp Macrocystis pyrifera. Front. Microbiol. 9, 1914. https://doi.org/10.3389/fmicb.2018.01914 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pierce, M. L. & Ward, J. E. Microbial ecology of the Bivalvia, with an emphasis on the family Ostreidae. J. Shellfish Res. 37, 793–806. https://doi.org/10.2983/035.037.0410 (2018).Article 

    Google Scholar 
    Pierce, M. L. & Ward, J. E. Gut Microbiomes of the Eastern Oyster (Crassostrea virginica) and the Blue Mussel (Mytilus edulis): Temporal variation and the influence of marine aggregate-associated microbial communities. mSphere. 4, e00730-19. https://doi.org/10.1128/mSphere.00730-19 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Delille, D. & Gleizon, F. Distribution of enteric bacteria in Antarctic seawater surrounding the Port-aux-Francais permanent station (Kerguelen Island). Mar. Pollut. Bull. 46, 1179–1183. https://doi.org/10.1016/S0025-326X(03)00164-4 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Nguyen, T. V. & Alfaro, A. C. Metabolomics investigation of summer mortality in New Zealand Greenshell mussels (Perna canaliculus). Fish Shellfish Immunol. 106, 783–791. https://doi.org/10.1016/j.fsi.2020.08.022 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Vezzulli, L. et al. Comparative 16SrDNA gene-based microbiota profiles of the Pacific oyster (Crassostrea gigas) and the Mediterranean Mussel (Mytilus galloprovincialis) from a shellfish farm (Ligurian Sea, Italy). Microb. Ecol. 75, 495–504. https://doi.org/10.1007/s00248-017-1051-6 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Romalde, J. L., Diéguez, A. L., Lasa, A. & Balboa, S. New Vibrio species associated to molluscan microbiota: A review. Front. Microbiol. 4, 413. https://doi.org/10.3389/fmicb.2013.00413 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Narayan, N. R. et al. Piphillin predicts metagenomic composition and dynamics from DADA2-corrected 16S rDNA sequences. BMC Genom. 21, 56. https://doi.org/10.1186/s12864-019-6427-1 (2020).CAS 
    Article 

    Google Scholar 
    Peng, W. et al. Integrated 16S rRNA sequencing, metagenomics, and metabolomics to characterize gut microbial composition, function, and fecal metabolic phenotype in non-obese type 2 diabetic Goto-Kakizaki rats. Front. Microbiol. 10, 3141. https://doi.org/10.3389/fmicb.2019.03141 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koner, S. et al. Assessment of carbon substrate catabolism pattern and functional metabolic pathway for microbiota of limestone caves. Microorganisms 9, 1789. https://doi.org/10.21203/rs.3.rs-549787/v1 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, Y. F. et al. Temperature elevation and Vibrio cyclitrophicus infection reduce the diversity of haemolymph microbiome of the mussel Mytilus coruscus. Sci. Rep. 9, 16391. https://doi.org/10.1038/s41598-019-52752-y (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Scanes, E. et al. Climate change alters the haemolymph microbiome of oysters. Mar. Pollut. Bull. 164, 111991. https://doi.org/10.1016/j.marpolbul.2021.111991 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hylander, B. L. & Repasky, E. A. Temperature as a modulator of the gut microbiome: What are the implications and opportunities for thermal medicine?. Int. J. Hyperth. 36, 83–89. https://doi.org/10.1080/02656736.2019.1647356 (2019).CAS 
    Article 

    Google Scholar 
    Lo Giudice, A. et al. Marine bacterioplankton diversity and community composition in an antarctic coastal environment. Microb. Ecol. 63, 210–223. https://doi.org/10.1007/s00248-011-9904-x (2012).Article 
    PubMed 

    Google Scholar 
    Yumoto, I. et al. Temperature and nutrient availability control growth rate and fatty acid composition of facultatively psychrophilic Cobetia marina strain L-2. Arch. Microbiol. 181, 345–351. https://doi.org/10.1007/s00203-004-0662-8 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Weingarten, E. A., Atkinson, C. L. & Jackson, C. R. The gut microbiome of freshwater Unionidae mussels is determined by host species and is selectively retained from filtered seston. PLoS ONE 14, e0224796. https://doi.org/10.1371/journal.pone.0224796 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rosa, M., Ward, J. E. & Shumway, S. E. Selective capture and ingestion of particles by suspension-feeding bivalve molluscs: A review. J. Shellfish Res. 37, 727–746. https://doi.org/10.2983/035.037.0405 (2018).Article 

    Google Scholar 
    Griffiths, C. L. & King, J. A. Some relationships between size, food availability and energy balance in the ribbed mussel Aulacomya ater. Mar. Biol. 51, 141–149. https://doi.org/10.1007/BF00555193 (1979).Article 

    Google Scholar 
    Riisgård, H. U. Filtration rate and growth in the blue mussel, Mytilus edulis Linneaus, 1758: Dependence on algal concentration. J. Shellfish Res. 10, 29–36 (1991).
    Google Scholar 
    Sonier, R. et al. Picophytoplankton contribution to Mytilus edulis growth in an intensive culture environment. Mar. Biol. 163, 73. https://doi.org/10.1007/s00227-016-2845-7 (2016).Article 

    Google Scholar 
    Jacobs, P., Troost, K., Riegman, R. & Van der Meer, J. Length-and weight-dependent clearance rates of juvenile mussels (Mytilus edulis) on various planktonic prey items. Helgol. Mar. Res. 69, 101–112. https://doi.org/10.1007/s10152-014-0419-y (2015).ADS 
    Article 

    Google Scholar 
    Ward, J. E. & Shumway, S. E. Separating the grain from the chaff: Particle selection in suspension- and deposit-feeding bivalves. J. Exp. Mar. 300, 83–130. https://doi.org/10.1016/j.jembe.2004.03.002 (2004).Article 

    Google Scholar 
    Waite, A. M., Safi, K. A., Hall, J. A. & Nodder, S. D. Mass sedimentation of picoplankton embedded in organic aggregates. Limnol. Oceanogr. 45, 87–97. https://doi.org/10.4319/lo.2000.45.1.0087 (2000).ADS 
    Article 

    Google Scholar 
    Ward, J. E. & Kach, D. J. Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves. Mar. Environ. Res. 68, 137–142. https://doi.org/10.1016/j.marenvres.2009.05.002 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ward, J. E. Biodynamics of suspension-feeding in adult bivalve molluscs: Particle capture, processing, and fate. Invertebr. Biol. 115, 218–231. https://doi.org/10.2307/3226932 (1996).Article 

    Google Scholar 
    Rosa, M. et al. Physicochemical surface properties of microalgae and their combined effects on particle selection by suspension-feeding bivalve molluscs. J. Exp. Mar. 486, 59–68. https://doi.org/10.1016/j.jembe.2016.09.007 (2017).CAS 
    Article 

    Google Scholar 
    Allam, B. & Espinosa, E. P. Bivalve immunity and response to infections: Are we looking at the right place?. Fish Shellfish Immunol. 53, 4–12. https://doi.org/10.1016/j.fsi.2016.03.037 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Barr, J. J. et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc. Natl. Acad. Sci. USA 110, 10771–10776. https://doi.org/10.1073/pnas.1305923110 (2013).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Allam, B. & Espinosa, E. P. Mucosal immunity in mollusks. In Mucosal Health in Aquaculture (eds Beck, B. H. & Peatman, E.) 325–370 (Academic Press, 2015).Chapter 

    Google Scholar 
    Huang, J. et al. Hemocytes in the extrapallial space of Pinctada fucata are involved in immunity and biomineralization. Sci. Rep. 8, 4657. https://doi.org/10.1038/s41598-018-22961-y (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kim, H. J. et al. Isolation and characterization of two bacteriophages and their preventive effects against pathogenic Vibrio coralliilyticus causing mortality of Pacific oyster (Crassostrea gigas) larvae. Microorganisms. 8, 926. https://doi.org/10.3390/microorganisms8060926 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Ihara, H. et al. Sulfur-oxidizing bacteria mediate microbial community succession and element cycling in launched marine sediment. Front. Microbiol. 8, 152. https://doi.org/10.3389/fmicb.2017.00152 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jørgensen, B. B. & Nelson, D. C. Sulfide oxidation in marine sediments: Geochemistry meets microbiology. Geol. S. Am. S. 379, 63–81. https://doi.org/10.1130/0-8137-2379-5.63 (2004).Article 

    Google Scholar 
    Zhou, M. et al. Surface currents and upwelling in Kerguelen Plateau regions. Biogeosci. Discuss. 11, 6845–6876. https://doi.org/10.5194/bgd-11-6845-2014 (2014).ADS 
    Article 

    Google Scholar 
    Gille, S. T., Carranza, M. M., Cambra, R. & Morrow, R. Wind-induced upwelling in the Kerguelen Plateau region. Biogeosciences 11, 6389–6400. https://doi.org/10.5194/bg-11-6389-2014 (2014).ADS 
    Article 

    Google Scholar 
    Park, Y. H., Roquet, F., Durand, I. & Fuda, J. L. Large-scale circulation over and around the Northern Kerguelen Plateau. Deep Sea Res. II(55), 566–581. https://doi.org/10.1016/j.dsr2.2007.12.030 (2008).ADS 
    Article 

    Google Scholar 
    Renac, C. et al. Hydrothermal fluid interaction in basaltic lava units, Kerguelen Archipelago (SW Indian Ocean). Eur. J. 22, 215–234. https://doi.org/10.1127/0935-1221/2009/0022-1993 (2010).CAS 
    Article 

    Google Scholar 
    Vancanneyt, M. et al. Sphingomonas alaskensis sp. nov., a dominant bacterium from a marine oligotrophic environment. Int. J. Syst. Evol. 51, 73–79. https://doi.org/10.1099/00207713-51-1-73 (2001).CAS 
    Article 

    Google Scholar 
    Helmuth, B. S. & Hofmann, G. E. Microhabitats, thermal heterogeneity, and patterns of physiological stress in the rocky intertidal zone. Biol. Bull. 201, 374–384. https://doi.org/10.2307/1543615 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Testut, L., Wöppelmann, G., Simon, B. & Téchiné, P. The sea level at Port-aux-Français, Kerguelen Island, from 1949 to the present. Ocean Dyn. 56, 464–472. https://doi.org/10.1007/s10236-005-0056-8 (2006).ADS 
    Article 

    Google Scholar 
    Pohl, B. et al. Recent climate variability around the Kerguelen Islands (Southern Ocean) seen through weather regimes. J. Appl. Meteorol. Climatol. 60, 711–731. https://doi.org/10.1175/JAMC-D-20-0255.1 (2021).ADS 
    Article 

    Google Scholar 
    PROTEKER. Ilôt Channer (Passe Royale)—Sea water temperature at 5 and 13 m depth (T°C) daily average 2014–2019. https://www.proteker.net/swt-ilot-channer-passe-royale/ (2021).Caza, F. et al. Comparative analysis of hemocyte properties from Mytilus edulis desolationis and Aulacomya ater in the Kerguelen Islands. Mar. Environ. Res. 110, 174–182. https://doi.org/10.1016/j.marenvres.2015.09.003 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Caza, F., Cledon, M. & St-Pierre, Y. Biomonitoring climate change and pollution in marine ecosystems: A review on Aulacomya ater. J. Mar. Biol. 2016, 7183813. https://doi.org/10.1155/2016/7183813 (2016).Article 

    Google Scholar 
    Rey-Campos, M. et al. High individual variability in the transcriptomic response of Mediterranean mussels to Vibrio reveals the involvement of myticins in tissue injury. Sci. Rep. 9, 3569. https://doi.org/10.1038/s41598-019-39870-3 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caza, F. et al. Hemocytes released in seawater act as Trojan horses for spreading of bacterial infections in mussels. Sci. Rep. 10, 19696. https://doi.org/10.1038/s41598-020-76677-z (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yao, C. L. & Somero, G. N. Thermal stress and cellular signaling processes in hemocytes of native (Mytilus californianus) and invasive (M. galloprovincialis) mussels: Cell cycle regulation and DNA repair. Comp. Biochem. Physiol. 165, 159–168. https://doi.org/10.1016/j.cbpa.2013.02.024 (2013).CAS 
    Article 

    Google Scholar 
    Lockwood, B. L., Sanders, J. G. & Somero, G. N. Transcriptomic responses to heat stress in invasive and native blue mussels (genus Mytilus): Molecular correlates of invasive success. J. Exp. Biol. 213, 3548–3558. https://doi.org/10.1242/jeb.046094 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1. https://doi.org/10.1093/nar/gks808 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 13, 581–583. https://doi.org/10.1038/nmeth.3869 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).
    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217. https://doi.org/10.1371/journal.pone.0061217 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen, J. & Blanchet, F. G. Vegan: Community Ecology Package. 2. 3-0 (2015).Ssekagiri, A., Sloan, W. & Ijaz, U. Z. microbiomeSeq: an R package for analysis of microbial communities in an environmental context, In ISCB Africa ASBCB Conference (Kumasi, Ghana, 2017).Cao, Y. Microbiome marker: Microbiome Biomarker Analysis Toolkit. R package version 0.99.0 (2020). https://github.com/yiluheihei/microbiomeMarker. Accessed March 2022.Kanehisa, M. et al. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–D114. https://doi.org/10.1093/nar/gkr988 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Iwai, S. et al. Piphillin: Improved prediction of metagenomic content by direct inference from human microbiomes. PLoS ONE 11, e0166104. https://doi.org/10.1371/journal.pone.0166104 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dhariwal, A. et al. MicrobiomeAnalyst: A web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 45, W180–W188. https://doi.org/10.1093/nar/gkx295 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More