Behavioural and electrophysiological responses of Philaenus spumarius to odours from conspecifics
Saponari, M., Boscia, D., Nigro, F. & Martelli, G. P. Identification of DNA sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (Southern Italy). J. Plant Pathol. 95, 668 (2013).
Google Scholar
Janse, J. D. & Obradovic, A. Xylella fastidiosa: Its biology, diagnosis, control and risks. J. Plant Pathol. 92, 35–48 (2010).
Google Scholar
EPPO EPPO Global Database (available online). https://gd.eppo.int (2022)Article
Google Scholar
Bragard, C. et al. Update of the scientific opinion on the risks to plant health posed by Xylella fastidiosa in the EU territory. EFSA J. 17, 5665 (2019).
Google Scholar
Nunney, L., Ortiz, B., Russell, S. A., Sánchez, R. R. & Stouthamer, R. The complex biogeography of the plant pathogen Xylella fastidiosa: Genetic evidence of introductions and subspecific introgression in central America. PLoS ONE 9, e112463 (2014).PubMed
PubMed Central
Article
ADS
CAS
Google Scholar
Sicard, A. et al. Introduction and adaptation of an emerging pathogen to olive trees in Italy. Microb. Genom. 7, 000735 (2021).CAS
PubMed Central
Google Scholar
Cornara, D. et al. Transmission of Xylella fastidiosa by naturally infected Philaenus spumarius (Hemiptera, Aphrophoridae) to different host plants. J. Appl. Entomol. 141, 80–87 (2017).Article
Google Scholar
Cornara, D. et al. Spittlebugs as vectors of Xylella fastidiosa in olive orchards in Italy. J. Pest Sci. 2004, 521–530 (2017).Article
Google Scholar
Bodino, N. et al. Phenology, seasonal abundance and stage-structure of spittlebug (Hemiptera: Aphrophoridae) populations in olive groves in Italy. Sci. Rep. 9, 17725 (2019).PubMed
PubMed Central
Article
ADS
CAS
Google Scholar
Di Serio, F. et al. Collection of data and information on biology and control of vectors of Xylella fastidiosa. EFSA Support. Publ. 16, 2 (2019).
Google Scholar
Bayram, A., Salerno, G., Onofri, A. & Conti, E. Lethal and sublethal effects of preimaginal treatments with two pyrethroids on the life history of the egg parasitoid Telenomus busseolae. Biocontrol 55, 697–710 (2010).CAS
Article
Google Scholar
Saponari, M., Giampetruzzi, A., Loconsole, G., Boscia, D. & Saldarelli, P. Xylella fastidiosa in olive in Apulia: Where we stand. Phytopathology 109, 175–186 (2019).CAS
PubMed
Article
Google Scholar
Virant-Doberlet, M. & Cokl, A. Vibrational communication in insects. Neotrop. Entomol. 33, 121–134 (2004).Article
Google Scholar
Avosani, S. et al. Vibrational communication and mating behavior of the meadow spittlebug Philaenus spumarius. Entomol. Gen. 40, 307–321 (2020).Article
Google Scholar
Polajnar, J., Eriksson, A., Virant-Doberlet, M. & Mazzoni, V. Mating disruption of a grapevine pest using mechanical vibrations: From laboratory to the field. J. Pest Sci. 2004(89), 909–921 (2016).Article
Google Scholar
Boullis, A. & Verheggen, F. J. Chemical ecology of aphids (Hemiptera: Aphididae). In Biology and Ecology of Aphids (ed. Vilcinskas, A.) 181–208 (CRC Press, 2016). https://doi.org/10.1201/b19967-11.Chapter
Google Scholar
Ganassi, S. et al. Evidence of a female-produced sex pheromone in the European pear psylla Cacopsylla pyri. Bull. Insectol. 71, 57–64 (2018).
Google Scholar
Tabata, J. & Ichiki, R. T. Sex pheromone of the cotton mealybug, Phenacoccus solenopsis, with an unusual cyclobutane structure. J. Chem. Ecol. 42, 1193–1200 (2016).CAS
PubMed
Article
Google Scholar
Millar, J. G. Pheromones of true bugs. Top. Curr. Chem. 240, 37–84 (2000).Article
CAS
Google Scholar
Khrimian, A. et al. Discovery of the aggregation pheromone of the brown marmorated stink bug (Halyomorpha halys) through the creation of stereoisomeric libraries of 1-Bisabolen-3-ols. J. Nat. Prod. 77, 1708–1717 (2014).CAS
PubMed
Article
Google Scholar
Borges, M., Blassioli-Moraes, M. C., Laumann, R. A. & Čokl, A. Suggestions for neotropic stink bug pest status and control. In Stink Bugs: Biorational Control Based on Communication Processes (eds Cokl, A. & Borges, M.) 246–254 (CRC Press, 2017). https://doi.org/10.1201/9781315120713.Chapter
Google Scholar
Ranieri, E., Ruschioni, S., Riolo, P., Isidoro, N. & Romani, R. Fine structure of antennal sensilla of the spittlebug Philaenus spumarius L. (Insecta: Hemiptera: Aphrophoridae). I. Chemoreceptors and thermo-/hygroreceptors. Arthropod Struct. Dev. 45, 432–439 (2016).PubMed
Article
Google Scholar
Germinara, G. S. et al. Antennal olfactory responses of adult meadow spittlebug, Philaenus spumarius, to volatile organic compounds (VOCs). PLoS ONE 12, e0190454 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
Ganassi, S. et al. Electrophysiological and behavioural response of Philaenus spumarius to essential oils and aromatic plants. Sci. Rep. 10, 3114 (2020).CAS
PubMed
PubMed Central
Article
ADS
Google Scholar
Nault, L. R., Wood, T. K. & Goff, A. M. Treehopper (Membracidae) alarm pheromones. Nature 249, 387–388 (1974).CAS
PubMed
Article
ADS
Google Scholar
Chen, X. & Liang, A. P. Identification of a self-regulatory pheromone system that controls nymph aggregation behavior of rice spittlebug Callitettix versicolor. Front. Zool. 12, 10 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
Liang, A. P. A new structure on the frons of male adults of the Asian rice spittlebug Callitettix versicolor (Hemiptera: Auchenorrhyncha: Cercopidae). Zootaxa 4801, 591–599 (2020).Article
Google Scholar
Cocroft, R. B. & Rodríguez, R. L. The behavioral ecology of insect vibrational communication. Bioscience 55, 323–334 (2005).Article
Google Scholar
Mazzoni, V. et al. Mating disruption by vibrational signals: state of the field and perspectives. In Biotremology: Studying Vibrational Behavior (eds Hill, P. S. M. et al.) 331–354 (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-22293-2_17.Chapter
Google Scholar
Bachmann, G. E. et al. Male sexual behavior and pheromone emission is enhanced by exposure to guava fruit volatiles in Anastrepha fraterculus. PLoS ONE 10, e0124250 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
Frati, F., Salerno, G., Conti, E. & Bin, F. Role of the plant–conspecific complex in host location and intra-specific communication of Lygus rugulipennis. Physiol. Entomol. 33, 129–137 (2008).Article
Google Scholar
Frati, F. et al. Vicia faba–Lygus rugulipennis interactions: Induced plant volatiles and sex pheromone enhancement. J. Chem. Ecol. 35, 201–208 (2009).CAS
PubMed
Article
Google Scholar
Lubanga, U. K., Guédot, C., Percy, D. M. & Steinbauer, M. J. Semiochemical and vibrational cues and signals mediating mate finding and courtship in Psylloidea (Hemiptera): A synthesis. Insects 5, 577–595 (2014).PubMed
PubMed Central
Article
Google Scholar
Borges, M. & Blassioli-Moraes, M. C. The semiochemistry of Pentatomidae. In Stink Bugs: Biorational Control Based on Communication Processes 95–124 (CRC Press, 2017). https://doi.org/10.1201/9781315120713.Chapter
Google Scholar
Yin, L. & Maschwitz, U. Sexual pheromone in the green house whitefly Trialeurodes vaporariorum Westw. Zeitschrift für Angew. Entomol. 95, 439–446 (1983).Article
Google Scholar
Dawson, G. W. et al. Identification of an aphid sex pheromone. Nature 325, 614–616 (1987).CAS
Article
ADS
Google Scholar
Zanardi, O. Z. et al. Putative sex pheromone of the Asian citrus psyllid, Diaphorina citri, breaks down into an attractant. Sci. Rep. 8, 455 (2018).PubMed
PubMed Central
Article
ADS
CAS
Google Scholar
Sevarika, M., di Giulio, A., Rondoni, G., Conti, E. & Romani, R. Morpho-functional analysis of the head glands in three Auchenorrhynca species and their possible biological significance. bioRxiv 03.03.482260 (2022).Mazzoni, V. et al. Use of substrate-borne vibrational signals to attract the brown marmorated stink bug Halyomorpha halys. J. Pest Sci. 2004, 1219–1229 (2017).Article
Google Scholar
Avosani, S., Franceschi, P., Ciolli, M., Verrastro, V. & Mazzoni, V. Vibrational playbacks and microscopy to study the signalling behaviour and female physiology of Philaenus spumarius. J. Appl. Entomol. https://doi.org/10.1111/jen.12874 (2021).Article
Google Scholar
Stewart, A. J. A. & Lees, D. R. Genetic control of colour polymorphism in spittlebugs (Philaenus spumarius) differs between isolated populations. Heredity (Edinb). 59, 445–448 (1987).Article
Google Scholar
Stewart, A. J. A. The colour/pattern polymorphism of Philaenus spumarius (L.) (Homoptera: Cercopidae) in England and Wales. Philos. Trans. R. Soc. B Biol. Sci. 351, 69–89 (1996).Article
ADS
Google Scholar
Moyal, P. et al. Origin and taxonomic status of the Palearctic population of the stem borer Sesamia nonagrioides (Lefèbvre) (Lepidoptera: Noctuidae). Biol. J. Linn. Soc. 103, 904–922 (2011).Article
Google Scholar
Glaser, N. et al. Differential expression of the chemosensory transcriptome in two populations of the stemborer Sesamia nonagrioides. Insect Biochem. Mol. Biol. 65, 28–34 (2015).CAS
PubMed
Article
Google Scholar
Bodino, N. et al. Spittlebugs of mediterranean olive groves: host-plant exploitation throughout the year. Insects 11, 130 (2020).PubMed Central
Article
Google Scholar
Cook, S. M., Khan, Z. R. & Pickett, J. A. The use of push-pull strategies in integrated pest management. Annu. Rev. Entomol. 52, 375–400 (2007).CAS
PubMed
Article
Google Scholar
Molinatto, G. et al. Biology and prevalence in Northern Italy of Verrallia aucta (Diptera, Pipunculidae), a parasitoid of Philaenus spumarius (Hemiptera, Aphrophoridae), the main vector of Xylella fastidiosa in Europe. Insects 11, 607 (2020).PubMed Central
Article
Google Scholar
Mesmin, X. et al. Ooctonus vulgatus (Hymenoptera, Mymaridae), a potential biocontrol agent to reduce populations of Philaenus spumarius (Hemiptera, Aphrophoridae) the main vector of Xylella fastidiosa in Europe. PeerJ 2020, e8591 (2020).Article
Google Scholar
Conti, E., Jones, W. A., Bin, F. & Vinson, S. B. Physical and chemical factors involved in host recognition behavior of Anaphes iole Girault, an egg parasitoid of Lygus hesperus knight (Hymenoptera: Mymaridae; Heteroptera: Miridae). Biol. Control 7, 10–16 (1996).Article
Google Scholar
Conti, E., Jones, W. A., Bin, F. & Vinson, S. B. Oviposition behavior of Anaphes iole, an egg parasitoid of Lygus hesperus (Hymenoptera: Mymaridae; Heteroptera: Miridae). Ann. Entomol. Soc. Am. 90, 91–101 (1997).Article
Google Scholar
Chiappini, E. et al. Role of volatile semiochemicals in host location by the egg parasitoid Anagrus breviphragma. Entomol. Exp. Appl. 144, 311–316 (2012).CAS
Article
Google Scholar
Conti, E. et al. Biological control of invasive stink bugs: review of global state and future prospects. Entomol. Exp. Appl. 169, 28–51 (2021).Article
Google Scholar
Rondoni, G. et al. Native egg parasitoids recorded from the invasive Halyomorpha halys successfully exploit volatiles emitted by the plant–herbivore complex. J. Pest Sci. 2004, 1087–1095 (2017).Article
Google Scholar
Rondoni, G., Ielo, F., Ricci, C. & Conti, E. Behavioural and physiological responses to prey-related cues reflect higher competitiveness of invasive vs native ladybirds. Sci. Rep. 7, 3716 (2017).PubMed
PubMed Central
Article
ADS
CAS
Google Scholar
Colazza, S. et al. Xbug, a video tracking and motion analysis system for LINUX. in XII International Entomophagous Insects Workshop. Pacific Grove, California (1999).De Cristofaro, A. et al. Electrophysiological responses of Cydia pomonella to codlemone and pear ester ethyl (E, Z)-2,4-decadienoate: Peripheral interactions in their perception and evidences for cells responding to both compounds. Bull. Insectol. 57, 137–144 (2004).
Google Scholar
Raguso, R. A. & Light, D. M. Electroantennogram responses of male Sphinx perelegans hawkmoths to floral and ‘green-leaf volatiles’. Entomol. Exp. Appl. 86, 287–293 (1998).CAS
Article
Google Scholar
Pinheiro, J. C. & Bates, D. M. Mixed-Effects Models in S and S-PLUS (Springer, 2000). https://doi.org/10.1007/b98882.Book
MATH
Google Scholar
Rondoni, G., Onofri, A. & Ricci, C. Differential susceptibility in a specialised aphidophagous ladybird, Platynaspis luteorubra (Coleoptera: Coccinellidae), facing intraguild predation by exotic and native generalist predators. Biocontrol Sci. Technol. 22, 1334–1350 (2012).Article
Google Scholar
Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer Verlag, 2009). https://doi.org/10.18637/jss.v032.b01.Book
MATH
Google Scholar
Bertoldi, V., Rondoni, G., Brodeur, J. & Conti, E. An egg parasitoid efficiently exploits cues from a coevolved host but not those from a novel host. Front. Physiol. 10, 746 (2019).PubMed
PubMed Central
Article
Google Scholar
Suh, E., Choe, D.-H., Saveer, A. M. & Zwiebel, L. J. Suboptimal larval habitats modulate oviposition of the malaria vector mosquito Anopheles coluzzii. PLoS ONE 11, e0149800 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org (2020).Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R Core Team. nlme: Linear and Nonlinear Mixed Effects Models (2020). R package version 3.1–148, https://CRAN.R-project.org/package=nlme.Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn. (Springer, 2002). https://doi.org/10.1007/978-0-387-21706-2.Book
MATH
Google Scholar
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).MATH
Book
Google Scholar
Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means (2019). R package version 1.3.2. Available online at: https://CRAN.R-project.org/package=emmeans. More