More stories

  • in

    Endocranial volume increases across captive generations in the endangered Mexican wolf

    Sol, D., Bacher, S., Reader, S. M. & Lefebvre, L. Brain size predicts the success of mammal species introduced into novel environments. Am. Nat. 172(Suppl. 1), S63–S71 (2008).PubMed 
    Article 

    Google Scholar 
    González-Lagos, C., Sol, D. & Reader, S. M. Large-brained mammals live longer. J. Evol. Biol. 23, 1064–1074 (2010).PubMed 
    Article 

    Google Scholar 
    Gonda, A., Herczeg, G. & Merilä, J. Evolutionary ecology of intraspecific brain size variation: A review. Ecol. Evol. 3(8), 2751–2764 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Benson-Amram, S., Dantzer, B., Stricker, G., Swanson, E. M. & Holekamp, K. E. Brain size predicts problem-solving ability in mammalian carnivores. PNAS 113(9), 2532–2537 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Näslund, J., Aarestrup, K., Thomassen, S. T. & Johnsson, J. I. Early enrichment effects on brain development in hatchery-reared Atlantic salmon (Salmo salar): No evidence for a critical period. Can. J. Fish. Aquat. Sci. 69(9), 1481–1490 (2012).Article 

    Google Scholar 
    Logan, C. J., Kruuk, L. E. B., Stanley, R., Thompson, A. M. & Clutton-Brock, T. H. Endocranial volume is heritable and is associated with longevity and fitness in a wild mammal. R. Soc. Open Sci. 3(12), 160622 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yamaguchi, N., Kitchener, A. C., Gilissen, E. & MacDonald, D. W. Brain size of the lion (Panthera leo) and the tiger (P. tigris): Implications for intrageneric phylogeny, intraspecific differences and the effects of captivity. Biol. J. Linn. Soc. 98, 85–93 (2009).Article 

    Google Scholar 
    Turschwell, M. P. & White, C. R. The effects of laboratory housing and spatial enrichment on brain size and metabolic rate in the eastern mosquitofish Gambusia holbrooki. Biol. Open. 5(3), 205–210 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Welniak-Kaminska, M. et al. Volumes of brain structures in captive wild-type and laboratory rats: 7T magnetic resonance in vivo automatic atlas-based study. PLoS ONE 14(4), e0215348 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guay, P. J., Parrott, M. & Selwood, L. Captive breeding does not alter brain volume in a marsupial over a few generations. Zoo Biol. 31, 82–86 (2012).PubMed 
    Article 

    Google Scholar 
    Isler, K. et al. Endocranial volumes of primate species: Scaling analyses using a comprehensive and reliable data set. J. Hum. Evol. 55(6), 967–978 (2008).PubMed 
    Article 

    Google Scholar 
    Burns, J. G., Saravanan, A. & Rodd, F. H. Rearing environment affects the brain size of guppies: Lab-reared guppies have smaller brains than wild-caught guppies. Ethol. 115(2), 122–133 (2009).Article 

    Google Scholar 
    Kruska, D. On the evolutionary significance of encephalization in some eutherian mammals: Effects of adaptive radiation, domestication, and feralization. Brain Behav. Evol. 65(2), 73–108 (2005).PubMed 
    Article 

    Google Scholar 
    Logan, C. J. & Clutton-Brock, T. H. Validating methods for estimating endocranial volume in individual red deer (Cervus elaphus). Behav. Processes. 92, 143–146 (2013).PubMed 
    Article 

    Google Scholar 
    Colby, A. E., Kimock, C. M. & Higham, J. P. Endocranial volume is variable and heritable, but not related to fitness, in a free-ranging primate. Sci. Rep. 11, 1–11 (2021).Article 
    CAS 

    Google Scholar 
    Stuermer, I. W. & Wetzel, W. Early experience and domestication affect auditory discrimination learning, open field behaviour and brain size in wild Mongolian gerbils and domesticated Laboratory gerbils (Meriones unguiculatus forma domestica). Behav. Brain Res. 173, 11–21 (2006).PubMed 
    Article 

    Google Scholar 
    Agnvall, B., Bélteky, J. & Jensen, P. Brain size is reduced by selection for tameness in red junglefowl-correlated effects in vital organs. Sci. Rep. 7(3306), 1–7 (2017).CAS 

    Google Scholar 
    Röhrs, M. & Ebinger, P. Wild is not really wild: Brain weight of wild and domestic mammals. Berl. Munch. Tierarztliche Wochenschrift. 112(6–7), 234–238 (1999).
    Google Scholar 
    Smith, B. P., Lucas, T. A., Norris, R. M. & Henneberg, M. Brain size/body weight in the dingo (Canis dingo): Comparisons with domestic and wild canids. Aust. J. Zool. 65(5), 292–301 (2017).Article 

    Google Scholar 
    Roberts, T., McGreevy, P. & Valenzuela, M. Human induced rotation and reorganization of the brain of domestic dogs. PLoS ONE 5(7), e11946 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pollen, A. A. et al. Environmental complexity and social organization sculpt the brain in Lake Tanganyikan cichlid fish. Brain Behav. Evol. 70, 21–39 (2007).PubMed 
    Article 

    Google Scholar 
    Kihslinger, R. L., Lema, S. C. & Nevitt, G. A. Environmental rearing conditions produce forebrain differences in wild Chinook salmon Oncorhynchus tshawytscha. Comp. Biochem. Physiol. 145(2), 145–151 (2006).CAS 
    Article 

    Google Scholar 
    Guay, P. J. & Iwaniuk, A. N. Captive breeding reduces brain volume in waterfowl (Anseriformes). Condor 110(2), 276–284 (2008).Article 

    Google Scholar 
    Diamond, M. C., Ingham, C. A., Johnson, R. E., Bennett, E. L. & Rosenzweig, M. R. Effects of environment on morphology of rat cerebral cortex and hippocampus. J. Neurobiol. 7, 75–85 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    Courtney Jones, S. K., Munn, A. J. & Byrne, P. G. Effect of captivity on morphology: Negligible changes in external morphology mask significant changes in internal morphology. R. Soc. Open Sci. 5(5), 1–13 (2018).Article 

    Google Scholar 
    Kruska, D. & Röhrs, M. Comparative-quantitative investigations on brains of feral pigs from the Galapagos Islands and of European domestic pigs. Z. Anat. Entwicklungsgesch. 144(1), 61–73 (1974).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kruska, D. Changes of brain size in Tylopoda during phylogeny and caused by domestication. Verh. Dtsch. Zool. Ges. 75, 173–183 (1982).
    Google Scholar 
    Groves, C. P. Skull-changes due to captivity in certain Equidae. Z. Säugetierkd. 31, 44–46 (1966).
    Google Scholar 
    Groves, C. P. The skulls of Asian rhinoceroses: Wild and captive. Zoo Biol. 1, 251–261 (1982).Article 

    Google Scholar 
    Hollister, N. Some effects of environment and habit on captive lions. Proc. US. Natl. Mus. 53, 177–193 (1917).Article 

    Google Scholar 
    Price, E. O. Behavioral development in animals undergoing domestication. Appl. Anim. Behav. Sci. 65(3), 245–271 (1999).Article 

    Google Scholar 
    Wolff, J. Das Gesetz der Transformation der Knochen (A. Hirchwild, 1892).
    Google Scholar 
    Herring, S. W. Formation of the vertebrate face: Epigenetic and functional influences. Am. Zool. 33, 472–483 (1993).Article 

    Google Scholar 
    Wroe, S. & Milne, N. Convergence and remarkably consistent constraint in the evolution of carnivore skull shape. Evol. 61(5), 1251–1260 (2007).Article 

    Google Scholar 
    Damasceno, E. M., Hingst-Zaher, E. & Astúa, D. Bite force and encephalization in the Canidae (Mammalia: Carnivora). J. Zool. 290(4), 246–254 (2013).Article 

    Google Scholar 
    Van Valkenburgh, B. Deja vu: the evolution of feeding morphologies in the Carnivora. Integr. Comp. Biol. 47, 147–163 (2007).PubMed 
    Article 

    Google Scholar 
    Van Valkenburgh, B. Carnivore dental adaptations and diet: A study of trophic diversity within guilds in Carnivore behavior, ecology, and evolution (ed. Gittleman, J. L.) 410–436 (Springer Science & Business Media, 1989).Slater, G. J., Dumont, E. R. & Van Valkenburgh, B. Implications of predatory specialization for cranial form and function in canids. J. Zool. 278(3), 181–188 (2009).Article 

    Google Scholar 
    Michaud, M., Veron, G. & Fabre, A. C. Phenotypic integration in feliform carnivores: Covariation patterns and disparity in hypercarnivores versus generalists. Evol. 74(12), 2681–2702 (2020).Article 

    Google Scholar 
    O’Regan, H. J. & Kitchener, A. C. The effects of captivity on the morphology of captive, domesticated and feral mammals. Mamm. Rev. 35, 215–230 (2005).Article 

    Google Scholar 
    Kapoor, V., Antonelli, T., Parkinson, J. A. & Hartstone-Rose, A. Oral health correlates of captivity. Res. Vet. Sci. 107, 213–219 (2016).PubMed 
    Article 

    Google Scholar 
    Mitchell, D. R., Wroe, S., Ravosa, M. J. & Menegaz, R. A. More challenging diets sustain feeding performance: Applications toward the captive rearing of wildlife. Integr. Org. Biol. 3, 1–13 (2021).
    Google Scholar 
    Curtis, A. A., Orke, M., Tetradis, S. & Van Valkenburgh, B. Diet-related differences in craniodental morphology between captive-reared and wild coyotes, Canis latrans (Carnivora: Canidae). Biol. J. Linn. Soc. 123(3), 677–693 (2018).Article 

    Google Scholar 
    Siciliano-Martina, L., Light, J. E. & Lawing, A. M. Cranial morphology of captive mammals: A meta-analysis. Front. Zool. 18(4), 1–13 (2021).
    Google Scholar 
    Corruccini, R. S. & Beecher, R. M. Occlusal variation related to soft diet in a nonhuman primate. Science 218, 74–75 (1982).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ramirez Rozzi, F. V., González-José, R. & Pucciarelli, H. M. Cranial growth in normal and low-protein-fed Saimiri An environmental heterochrony. J. Hum. Evol. 49(4), 515–535 (2005).PubMed 
    Article 

    Google Scholar 
    Taylor, A. B. & van Schaik, C. P. Variation in brain size and ecology in Pongo. J. Hum. Evol. 52, 59–71 (2007).PubMed 
    Article 

    Google Scholar 
    AZA Canid TAG. Large Canid (Canidae) Care Manual. (Association of Zoos and Aquariums, 2012).Mexican Wolf Species Survival Plan. Mexican Gray Wolf Husbandry Manual: Guidelines for Captive Management (2009 edition). (Mexican Wolf Species Survival Plan and U.S. Fish and Wildlife Service, 2009).Carrera, R. et al. Comparison of Mexican wolf and coyote diets in Arizona and New Mexico. The J. Wildl. Manag. 72(2), 376–381 (2008).Article 

    Google Scholar 
    Reed, J. E. et al. Diets of free-ranging Mexican gray wolves in Arizona and New Mexico. Wildl. Soc. Bull. 34(4), 1127–1133 (2006).Article 

    Google Scholar 
    Kazimierska, K., Biel, W. & Witkowicz, R. Mineral composition of cereal and cereal-free dry dog foods versus nutritional guidelines. Molecules 25(21), 1–24 (2020).Article 
    CAS 

    Google Scholar 
    Pezzali, J. G. & Aldrich, C. G. Effect of ancient grains and grain-free carbohydrate sources on extrusion parameters and nutrient utilization by dogs. J. Anim. Sci. 98(2), 3758–3767 (2019).Article 

    Google Scholar 
    Hartstone-Rose, A., Selvey, H., Villari, J. R., Atwell, M. & Schmidt, T. The three-dimensional morphological effects of captivity. PLoS ONE 9(11), 1–15 (2014).Article 
    CAS 

    Google Scholar 
    Siciliano-Martina, L., Light, J. E. & Lawing, A. M. Changes in canid cranial morphology induced by captivity and conservation implications. Biol. Conserv. 257, 109143 (2021).Article 

    Google Scholar 
    Hedrick, P. W. & Fredrickson, R. Genetic rescue guidelines with examples from Mexican wolves and Florida panthers. Conserv. Genet. 11(2), 615–626 (2010).Article 

    Google Scholar 
    Greely, S. E. Mexican Wolf, Canis lupus baileyi, International Studbook 2018. Palm Desert, California. (2018).Kalinowski, S. T., Hedrick, P. W. & Miller, P. S. No inbreeding depression observed in Mexican and red wolf captive breeding programs. Conserv. Biol. 13(6), 1371–1377 (1999).Article 

    Google Scholar 
    Sakai, S. T., Whitt, B., Arsznov, B. M. & Lundrigan, B. L. Endocranial development in the coyote (Canis latrans) and gray wolf (Canis lupus): A computed tomographic study. Brain Behav. Evol. 91(2), 1–18 (2018).Article 

    Google Scholar 
    Van Valkenburgh, B. Skeletal and dental predictors of body mass in carnivores in Body size in mammalian paleobiology: estimation and biological implications (eds. Damuth, J. & MacFadden, B. J.) (Cambridge University Press, 1990).Rohlf, F. J. TPSDig2: a program for landmark development and analysis (2001).Siciliano-Martina, L., Light, J. E., Riley, D. G. & Lawing, A. M. One of these wolves is not like the other: morphological effects and conservation implications of captivity in Mexican wolves. Anim. Conserv. 25, 77–90 (2021).Article 

    Google Scholar 
    Zelditch, M. L., Donald, L., Swiderski, H., Sheets, D. & Fink, W. L. Geometric morphometrics for biologists: a primer. (Elsevier Academic Press, 2004).Coster, A. pedigree: Pedigree functions. R package version 1.4 (2013).Traylor-Holzer, K. (ed.). PMx user’s manual. Version 1.0. Apple Valley, MN: IUCN SSC Conservation Breeding Specialist Group. (2011).Thomason, J. J. Cranial strength in relation to estimated biting forces in some Mammals. Can. J. Zool. 69, 2326–2333 (1991).Article 

    Google Scholar 
    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 9(7), 676–682 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2020).Cofran, Z. Brain size growth in wild and captive chimpanzees (Pan troglodytes). Am. J. Primat. 80(7), 1–8 (2018).Article 

    Google Scholar 
    Witzenberger, K. A. & Hochkirch, A. Ex situ conservation genetics: A review of molecular studies on the genetic consequences of captive breeding programmes for endangered animal species. Biodivers. Conserv. 20(9), 1843–1861 (2011).Article 

    Google Scholar 
    Gómez-Sánchez, D. et al. On the path to extinction: Inbreeding and admixture in a declining grey wolf population. Mole. Ecol. 27(18), 3599–3612 (2018).Article 

    Google Scholar 
    Elbroch, M. Animal skulls: a guide to North American species. (Stackpole Books, 2006).Conde, D. A., Flesness, N., Colchero, F., Jones, O. R. & Scheuerlein, A. An emerging role of zoos to conserve biodiversity. Science 331, 1390–1391 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Prado, E. L. & Dewey, K. G. Nutrition and brain development in early life. Nutr. Rev. 72(4), 267–284 (2014).PubMed 
    Article 

    Google Scholar 
    Hecht, E. E. et al. Neuromorphological changes following selection for tameness and aggression in the Russian farm-fox experiment. J. Neurosci. 41(28), 6144–6156 (2021).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Bennett, E. L., Rosenzweig, M. R. & Diamond, M. C. Rat brain: Effects of environmental enrichment on wet and dry weights. Science 163(3869), 825–826 (1969).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cummins, R. A., Walsh, R. N., Budtz-Olsen, O. E., Konstantinos, T. & Horsfall, C. R. Environmentally-induced changes in the brains of elderly rats. Nature 243(5409), 516–518 (1973).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Welch, B. L., Brown, D. G., Welch, A. S. & Lin, D. C. Isolation, restrictive confinement or crowding of rats for one year. I. Weight, nucleic acids and protein of brain regions. Brain Res. 75, 71–84 (1974).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Infected food web and ecological stability

    Dobson, A., Lafferty, K. D., Kuris, A. M., Hechinger, R. F. & Jetz, W. Homage to Linnaeus: How many parasites? How many hosts?. Proc. Natl. Acad. Sci. 105, 11482–11489 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Kuris, A. M. et al. Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454, 515–518 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Seabloom, E. W. et al. The community ecology of pathogens: Coinfection, coexistence and community composition. Ecol. Lett. 18, 401–415 (2015).Article 

    Google Scholar 
    French, R. K. & Holmes, E. C. An ecosystems perspective on virus evolution and emergence. Trends Microbiol. 28, 165–175 (2020).CAS 
    Article 

    Google Scholar 
    Hudson, P. J., Dobson, A. P. & Lafferty, K. D. Is a healthy ecosystem one that is rich in parasites?. Trends Ecol. Evol. 21, 381–385 (2006).Article 

    Google Scholar 
    Raffel, T. R., Martin, L. B. & Rohr, J. R. Parasites as predators: Unifying natural enemy ecology. Trends Ecol. Evol. 23, 610–618 (2008).Article 

    Google Scholar 
    Johnson, P. T. J. et al. When parasites become prey: Ecological and epidemiological significance of eating parasites. Trends Ecol. Evol. 25, 362–371 (2010).Article 

    Google Scholar 
    Frainer, A., McKie, B. G., Amundsen, P. A., Knudsen, R. & Lafferty, K. D. parasitism and the biodiversity-functioning relationship. Trends Ecol. Evol. 33, 260–268 (2018).Article 

    Google Scholar 
    Jephcott, T. G., Sime-Ngando, T., Gleason, F. H. & Macarthur, D. J. Host-parasite interactions in food webs: Diversity, stability, and coevolution. Food Webs 6, 1–8 (2016).Article 

    Google Scholar 
    Rohr, J. R. et al. Towards common ground in the biodiversity–disease debate. Nat. Ecol. Evol. 4, 24–33 (2020).Article 

    Google Scholar 
    Johnson, P. T. J., De Roode, J. C. & Fenton, A. Why infectious disease research needs community ecology. Science 349, 1259504 (2015).Article 

    Google Scholar 
    Marcogliese, D. J. & Cone, D. K. Food webs: A plea for parasites. Trends Ecol. Evol. 12, 320–325 (1997).CAS 
    Article 

    Google Scholar 
    Chen, H.-W. et al. Network position of hosts in food webs and their parasite diversity. Oikos 117, 1847–1855 (2008).Article 

    Google Scholar 
    Lafferty, K. D., Dobson, A. P. & Kuris, A. M. Parasites dominate food web links. Proc. Natl. Acad. Sci. USA 103, 11211–11216 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Lafferty, K. D. et al. Parasites in food webs: The ultimate missing links. Ecol. Lett. 11, 533–546 (2008).Article 

    Google Scholar 
    Dunne, J. A. The network structure of food webs. In Ecological Networks: Linking Structure to Dynamics (eds Pascual, M. & Dunne, J. A.) 27–28 (Oxford University Press, 2005).
    Google Scholar 
    Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).Article 

    Google Scholar 
    Hudson, P. J., Rizzoli, A., Grenfell, B. T., Heesterbeek, H. & Dobson, A. P. The Ecology of Wildlife Diseases. (Oxford University Press, Oxford, 2002).
    Google Scholar 
    Anderson, R. M. & May, R. M. Infectious Diseases of Humans: Dynamics and Control (Oxford University Press, 1992).
    Google Scholar 
    McCallum, H. & Dobson, A. Detecting disease and parasite threats to endangered species and ecosystems. Trends Ecol. Evol. 10, 190–194 (1995).CAS 
    Article 

    Google Scholar 
    De Castro, F. & Bolker, B. M. Parasite establishment and host extinction in model communities. Oikos 111, 501–513 (2005).Article 

    Google Scholar 
    McQuaid, C. F. & Britton, N. F. Parasite species richness and its effect on persistence in food webs. J. Theor. Biol. 364, 377–382 (2015).ADS 
    Article 

    Google Scholar 
    Holt, R. D., Dobson, A. P., Begon, M., Bowers, R. G. & Schauber, E. M. Parasite establishment in host communities. Ecol. Lett. 6, 837–842 (2003).
    Article 

    Google Scholar 
    Hatcher, M. J. & Dunn, A. M. Parasites in Ecological Communities: From Interactions to Ecosystems (Cambridge University Press, 2011).Book 

    Google Scholar 
    Dobson, A. Population dynamics of pathogens with multiple host species. Am. Nat. 164, S64–S78 (2004).Article 

    Google Scholar 
    McCann, K., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    Neutel, A. M., Heesterbeek, J. A. P. & de Ruiter, P. C. Stability in real food webs: Weak links in long loops. Science 296, 1120–1123 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    Chen, X. & Cohen, J. E. Transient dynamics and food–web complexity in the Lotka–Volterra cascade model. Proc. R. Soc. Lond. Ser. B Biol. Sci. 268, 869–877 (2001).CAS 
    Article 

    Google Scholar 
    May, R. M. Stability in multispecies community models. Math. Biosci. 12, 59–79 (1971).MathSciNet 
    Article 

    Google Scholar 
    May, R. M. Will a large complex system be stable?. Nature 238, 413–414 (1972).ADS 
    CAS 
    Article 

    Google Scholar 
    Hilker, F. M. & Schmitz, K. Disease-induced stabilization of predator-prey oscillations. J. Theor. Biol. 255, 299–306 (2008).ADS 
    MathSciNet 
    Article 

    Google Scholar 
    Hethcote, H. W., Wang, W., Han, L. & Ma, Z. A predator–prey model with infected prey. Theor. Popul. Biol. 66, 259–268 (2004).Article 

    Google Scholar 
    Kooi, B. W., van Voorn, G. A. K. & Das, K. P. Stabilization and complex dynamics in a predator-prey model with predator suffering from an infectious disease. Ecol. Complex. 8, 113–122 (2011).Article 

    Google Scholar 
    Winemiller, K. O. Spatial and temporal variation in tropical fish trophic networks. Ecol. Monogr. 60, 331–367 (1990).Article 

    Google Scholar 
    Paine, R. T. Food-web analysis through field measurement of per capita interaction strength. Nature 355, 73–75 (1992).ADS 
    Article 

    Google Scholar 
    Wootton, J. T. Estimates and tests of per capita interaction strength: Diet, abundance, and impact of intertidally foraging birds. Ecol. Monogr. 67, 45–64 (1997).Article 

    Google Scholar 
    Cohen, J. E., Briand, F. & Newman, C. M. Community Food Webs: Data and Theory (Springer, 1990).Book 

    Google Scholar 
    Mougi, A. Diversity of biological rhythm and food web stability. Biol. Lett. 17, 20200673 (2021).Article 

    Google Scholar  More

  • in

    Changing surface ocean circulation caused the local demise of echinoid Scaphechinus mirabilis in Taiwan during the Pleistocene–Holocene transition

    Hu, C.-H. in Introduction to Roadside Geology of Ten Field Geology Excursion Routes in Northern Taiwan (ed Taiwan Normal University Department of Earth Science) 63–100 (Taiwan Normal University, 1987).Hu, C.-H. Fossil molluscs of Tongxiao Formation (Pleistocene), Longgang area, Miaoli County. Atlas Fossil Mollusca Taiwan 2, 689–754 (1992).
    Google Scholar 
    Hu, C.-H. Fossil molluscs of Tongxiao Formation (Pleistocene) in Baishatun and Touwo, Tongxiao village, Miaoli County. Atlas Fossil Mollusca Taiwan 1, 175–314 (1991).
    Google Scholar 
    Hayasaka, I. & Morishita, A. Notes on some fossil echinoids of Taiwan, II. Acta Geol. Taiwan. 1, 93–110 (1947).
    Google Scholar 
    Lin, Y.-J., Fang, J.-N., Chang, C.-C., Cheng, C.-C. & Lin, J. P. Stereomic microstructure of Clypeasteroida in thin section based on new material from Pleistocene strata in Taiwan. Terr. Atmos. Ocean. Sci. J. https://doi.org/10.3319/TAO.2021.07.28.01 (2021).Article 

    Google Scholar 
    Morishita, A. in Contributions to Celebrate Prof. Ichiro Hayasaka’s 76th Birthday 109–116 (1967).Wang, C.-C., Lin, C.-F. & Li, L.-C. Measurements on Late Pleistocene sand dollar Scaphechinus mirabilis from northern Taiwan. Annu. Rep. Central Geol. Surv. 72, 49–56 (1984).
    Google Scholar 
    Nisiyama, S. The echinoid fauna from Japan and adjacent regions. Part 2. Palaeontol. Soc. Jpn. Spec. Pap. 13, 1–491 (1968).
    Google Scholar 
    Kashenko, S. D. Effects of extreme changes of sea water temperature and salinity on the development of the sand dollar Scaphechinus mirabilis. Russ. J. Mar. Biol. 35, 422–430. https://doi.org/10.1134/s1063074009050083 (2009).Article 

    Google Scholar 
    Davies, A. J. & John, C. M. The clumped (13C–18O) isotope composition of echinoid calcite: Further evidence for “vital effects” in the clumped isotope proxy. Geochim. Cosmochim. Acta 245, 172–189. https://doi.org/10.1016/j.gca.2018.07.038 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Chen, W.-S., Yeh, J.-J. & Syu, S.-J. Late Cenozoic exhumation and erosion of the Taiwan orogenic belt: New insights from petrographic analysis of foreland basin sediments and thermochronological dating on the metamorphic orogenic wedge. Tectonophysics 750, 56–69. https://doi.org/10.1016/j.tecto.2018.09.003 (2019).ADS 
    Article 

    Google Scholar 
    Peng, T.-R., Wang, C.-H. & Chen, C. T. A. Oxygen and carbon isotopic studies of fossil Mollusca in the Kuokang Shell Bed, Paishatung, Miaoli. Spec. Publ. Central Geol. Surv. 4, 307–322 (1990).
    Google Scholar 
    Lee, C.-L. Biostratigraphy and sedimentary environments of Toukoshan Formation in Baishatun area, Miaoli MS thesis, National Central University (2000).Locarnini, R. A. et al. World Ocean Atlas 2018, Volume 1: Temperature. 1–52 (NOAA, 2019).Liew, P.-M. Quaternary stratigraphy in western Taiwan: Palynological correlation. Proc. Geol. Soc. China 31, 169–180 (1988).
    Google Scholar 
    Siddall, M., Rohling, E. J., Thompson, W. G. & Waelbroeck, C. Marine isotope stage 3 sea level fluctuations: Data synthesis and new outlook. Rev. Geophys. https://doi.org/10.1029/2007rg000226 (2008).Article 

    Google Scholar 
    LeGrande, A. N. & Schmidt, G. A. Global gridded data set of the oxygen isotopic composition in seawater. Geophys. Res. Lett. https://doi.org/10.1029/2006gl026011 (2006).Article 

    Google Scholar 
    Waelbroeck, C. et al. Sea-level and deep water temperature changes derived from benthic formainifera isotopic records. Quatern. Sci. Rev. 21, 295–305 (2002).ADS 
    Article 

    Google Scholar 
    Epstein, S., Buchsbaum, R., Lowenstam, H. A. & Urey, H. C. Revised carbonate-water isotopic temperature scale. Bull. Geol. Soc. Am. 64, 1315–1326 (1963).Article 

    Google Scholar 
    Weber, J. N. & Raup, D. M. Fractionation of the stable isotopes of carbon and oxygen in marine calcareous organisms—the Echinoidea. Part II. Environmental and genetic factors. Geochim. Cosmochim. Acta 30, 705–736 (1966).ADS 
    CAS 
    Article 

    Google Scholar 
    Eiler, J. M. Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quatern. Sci. Rev. 30, 3575–3588. https://doi.org/10.1016/j.quascirev.2011.09.001 (2011).ADS 
    Article 

    Google Scholar 
    Takeda, S. Mechanism maintaining dense beds of the sand dollar Scaphechinus mirabilis in northern Japan. J. Exp. Mar. Biol. Ecol. 363, 21–27. https://doi.org/10.1016/j.jembe.2008.06.010 (2008).Article 

    Google Scholar 
    Takatsu, T., Nakatani, T., Miyamoto, T., Kooka, K. & Takahashi, T. Spatial distribution and feeding habits of Pacific cod (Gadus macrocephalus) larvae in Mutsu Bay, Japan. Fish. Oceanogr. 11, 90–101 (2002).Article 

    Google Scholar 
    Zhao, M., Huang, C.-Y. & Wei, K.-Y. A 28,000 year U37 K’ sea-surface temperature record of ODP Site 1202B, the southern Okinawa Trough. TAO 16, 45–56 (2005).ADS 
    Article 

    Google Scholar 
    Jan, S., Tseng, Y.-H. & Dietrich, D. E. Sources of water in the Taiwan Strait. J. Oceanogr. 66, 211–221 (2010).Article 

    Google Scholar 
    Liao, E., Oey, L. Y., Yan, X.-H., Li, L. & Jiang, Y. The deflection of the China Coastal Current over the Taiwan Bank in winter. J. Phys. Oceanogr. 48, 1433–1450. https://doi.org/10.1175/jpo-d-17-0037.1 (2018).ADS 
    Article 

    Google Scholar 
    Hu, J., Kawamura, H., Li, C., Hong, H. & Jiang, Y. Review on current and seawater volume transport through the Taiwan Strait. J. Oceanogr. 66, 591–610 (2010).Article 

    Google Scholar 
    Pico, T., Mitrovica, J. X., Ferrier, K. L. & Braun, J. Global ice volume during MIS 3 inferred from a sea-level analysis of sedimentary core records in the Yellow River Delta. Quatern. Sci. Rev. 152, 72–79. https://doi.org/10.1016/j.quascirev.2016.09.012 (2016).ADS 
    Article 

    Google Scholar 
    Klein, R. T., Lohmann, K. C. & Kennedy, G. L. Elemental and isotopic proxies of paleotemperature and paleosalinity: Climate reconstruction of the marginal northeast Pacific ca. 80 ka. Geology 25, 363–366 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    Jarvis, I., Trabucho-Alexandre, J., Gröcke, D. R., Uličný, D. & Laurin, J. Intercontinental correlation of organic carbon and carbonate stable isotope records: Evidence of climate and sea-level change during the Turonian (Cretaceous). Depos. Rec. 1, 53–90. https://doi.org/10.1002/dep2.6 (2016).Article 

    Google Scholar 
    Chen, P. S. M. A study of the stratigraphy and molluscan fossils of the Tunghsiao area, Miaoli, Taiwan, R.O.C.. Bull. Malacol. Republic of China 4, 63–78 (1977).
    Google Scholar 
    Chen, W.-S. & Hsu, W.-J. The Pleistocene paleoenvironmental significance of the unearthed megafauna strata in Taiwan. Bull. Central Geol. Surv. 23, 137–163 (2010).
    Google Scholar 
    Chang, C. H. et al. The first archaic Homo from Taiwan. Nat. Commun. 6, 6037. https://doi.org/10.1038/ncomms7037 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Cai, B.-Q. Fossil human humerus of Late Pleistocene from the Taiwan Straits. Acta Antrhopologica Sinica 20, 178–185 (2001).
    Google Scholar 
    Tong, H. & Patou-Mathis, M. Mammoth and other proboscideans in China during the Late Pleistocene. Deinsea 9, 421–428 (2003).
    Google Scholar 
    Koch, P. L. & Barnosky, A. D. Late quaternary extinctions: State of the debate. Annu. Rev. Ecol. Evol. Syst. 37, 215–250. https://doi.org/10.1146/annurev.ecolsys.34.011802.132415 (2006).Article 

    Google Scholar 
    Brook, B. W. & Bowman, D. M. J. S. Explaining the Pleistocene megafaunal extinctions: Models, chronologies, and assumptions. PNAS 99, 14624–14627 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of Late Pleistocene extinctions on the continents. Science 306, 70–75 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Ugan, A. & Byers, D. A global perspective on the spatiotemporal pattern of the Late Pleistocene human and woolly mammoth radiocarbon record. Quatern. Int. 191, 69–81. https://doi.org/10.1016/j.quaint.2007.09.035 (2008).Article 

    Google Scholar 
    Adlan, Q., Davies, A. J. & John, C. M. Effects of oxygen plasma ashing treatment on carbonate clumped isotopes. Rapid Commun. Mass Spectrom. 34, e8802. https://doi.org/10.1002/rcm.8802 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    John, C. M. & Bowen, D. Community software for challenging isotope analysis: First applications of “Easotope” to clumped isotopes. Rapid Commun. Mass Spectrom. 30, 2285–2300 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Bernasconi, S. M. et al. Background effects on Faraday collectors in gas-source mass spectrometry and implications for clumped isotope measurements. Rapid Commun. Mass Spectrom. 27, 603–612. https://doi.org/10.1002/rcm.6490 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Bernasconi, S. M. et al. InterCarb: A community effort to improve interlaboratory standardization of the carbonate clumped isotope thermometer using carbonate standards. Geochem. Geophys. Geosyst. 22, e2020GC009588. https://doi.org/10.1029/2020GC009588 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson, N. T. et al. Unified clumped isotope thermometer calibration (0.5–1,100°C) using carbonate-based standardization. Geophys. Res. Lett. 48, e2020GL092069 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Lee, H. et al. Young colonization history of a widespread sand dollar (Echinodermata; Clypeasteroida) in western Taiwan. Quatern. Int. 528, 120–129 (2019).Article 

    Google Scholar 
    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).CAS 
    Article 

    Google Scholar  More

  • in

    From the archive: wildlife landscapes, and retaliation against rats

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Human-ignited fires result in more extreme fire behavior and ecosystem impacts

    Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).ADS 
    Article 

    Google Scholar 
    Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    United Nations Environment Programme. Spreading like Wildfire–The Rising Threat of Extraordinary Landscape Fires. A UNEP Rapid Response Assessment. (United Nations Environment Programme, Nairobi, 2022).Williams, A. P. et al. Observed impacts of anthropogenic climate change on wildfire in California. Earth’s Future 7, 892–910 (2019).ADS 
    Article 

    Google Scholar 
    Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Dennison, P. E., Brewer, S. C., Arnold, J. D. & Moritz, M. A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 41, 2928–2933 (2014).ADS 
    Article 

    Google Scholar 
    Westerling, A. L. Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. B: Biol. Sci. 371, 20150178 (2016).Article 

    Google Scholar 
    Pyne, S. J. Fire in America: A Cultural History of Wildland and Rural Fire. (University of Washington Press, 2017).Fire and Resource Assessment Program. Fire Perimeters. Available: https://frap.fire.ca.gov/frap-projects/fire-perimeters/. (California Department of Forestry & Fire Protection, 2018).Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase Western U.S. forest wildfire activity. Science 313, 940–943 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Starrs, C. F., Butsic, V., Stephens, C. & Stewart, W. The impact of land ownership, firefighting, and reserve status on fire probability in California. Environ. Res. Lett. 13, 034025 (2018).ADS 
    Article 

    Google Scholar 
    Lydersen, J. M. et al. Evidence of fuels management and fire weather influencing fire severity in an extreme fire event. Ecol. Appl. 27, 2013–2030 (2017).Article 

    Google Scholar 
    Parsons, D. J. & DeBenedetti, S. H. Impact of fire suppression on a mixed-conifer forest. For. Ecol. Manag. 2, 21–33 (1979).Article 

    Google Scholar 
    Vose, R., Easterling, D. R., Kunkel, K. & Wehner, M. Temperature Changes in the United States. (NASA, 2017).Balch, J. K. et al. Human-started wildfires expand the fire niche across the United States. Proc. Natl Acad. Sci. USA 114, 2946–2951 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Stephens, S. L., Martin, R. E. & Clinton, N. E. Prehistoric fire area and emissions from California’s forests, woodlands, shrublands, and grasslands. For. Ecol. Manag. 251, 205–216 (2007).Article 

    Google Scholar 
    Sugihara, N. G., Van Wagtendonk, J. W., Fites-Kaufman, J., Shaffer, K. E. & Thode, A. E. Fire in California’s Ecosystems. (University of California Press, 2006).Jin, Y. et al. Identification of two distinct fire regimes in Southern California: implications for economic impact and future change. Environ. Res. Lett. 10, 094005 (2015).ADS 
    Article 

    Google Scholar 
    Trollope, W. in Ecological Effects of Fire In South African Ecosystems. 199–217 (Springer, 1984).Byram, G. M. in Forest Fire: Control and Use (ed. Davis, K. P.) 155–182 (McGraw-Hill, 1959).McLauchlan, K. K. et al. Fire as a fundamental ecological process: Research advances and frontiers. J. Ecol. https://doi.org/10.1111/1365-2745.13403 (2020).Brando, P. M. et al. Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proc. Natl Acad. Sci. USA 111, 6347–6352 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Schroeder, W., Oliva, P., Giglio, L. & Csiszar, I. A. The New VIIRS 375m active fire detection data product: Algorithm description and initial assessment. Remote Sens. Environ. 143, 85–96 (2014).ADS 
    Article 

    Google Scholar 
    Rothermel, R. C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels (USFS, 1972).Hood, S. M., Varner, J. M., van Mantgem, P. & Cansler, C. A. Fire and tree death: understanding and improving modeling of fire-induced tree mortality. Environ. Res. Lett. 13, 113004 (2018).ADS 
    Article 

    Google Scholar 
    Cattau, M. E., Wessman, C., Mahood, A., Balch, J. K. & Poulter, B. Anthropogenic and lightning‐started fires are becoming larger and more frequent over a longer season length in the USA. Glob. Ecol. Biogeogr. 29, 668–681 (2020).Article 

    Google Scholar 
    Abatzoglou, J. T., Balch, J. K., Bradley, B. A. & Kolden, C. A. Human-related ignitions concurrent with high winds promote large wildfires across the USA. Int. J. Wildland Fire 27, 377–386 (2018).Article 

    Google Scholar 
    Fried, J. S. et al. Predicting the effect of climate change on wildfire behavior and initial attack success. Clim. Change 87, 251–264 (2008).Article 

    Google Scholar 
    van Wagtendonk, J. W. The history and evolution of wildland fire use. Fire Ecol. 3, 3–17 (2007).Article 

    Google Scholar 
    Sullivan, A. L. Wildland surface fire spread modelling, 1990–2007. 2: Empirical and quasi-empirical models. Int. J. Wildland Fire 18, 369–386 (2009).Article 

    Google Scholar 
    Wang, X. et al. Projected changes in fire size from daily spread potential in Canada over the 21st century. Environ. Res. Lett. 15, 104048 (2020).ADS 
    Article 

    Google Scholar 
    Parks, S. A. et al. High-severity fire: evaluating its key drivers and mapping its probability across western US forests. Environ. Res. Lett. 13, 044037 (2018).ADS 
    Article 

    Google Scholar 
    Hantson, S. et al. The status and challenge of global fire modelling. Biogeosciences 13, 3359–3375 (2016).ADS 
    Article 

    Google Scholar 
    Reinhardt, E. D. First Order Fire Effects Model: FOFEM 4.0, User’s Guide. (Intermountain Forest and Range Experiment Station, Forest Service, US …, 1997).Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 1–11 (2015).CAS 
    Article 

    Google Scholar 
    Pateiro-Lopez, B. & Rodriguez-Casal, A. alphahull: Generalization of the Convex Hull of a Sample of Points in the Plane v. R package version 2.2 (2019).Edelsbrunner, H., Kirkpatrick, D. & Seidel, R. On the shape of a set of points in the plane. IEEE Trans. Inf. theory 29, 551–559 (1983).MathSciNet 
    Article 

    Google Scholar 
    Rodríguez Casal, A. & Pateiro López, B. Generalizing the Convex Hull of A Sample: the R Package alphahull. (2010).Bell, D. M. et al. Multiscale divergence between Landsat-and lidar-based biomass mapping is related to regional variation in canopy cover and composition. Carbon Balance Manag. 13, 15 (2018).Article 

    Google Scholar 
    Abatzoglou, J. T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 33, 121–131 (2013).Article 

    Google Scholar 
    MTBS. Monitoring Trends in Burn Severity Data Access: Fire Level Geospatial Data. (MTBS). (2018).Miller, J. D. et al. Calibration and validation of the relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA. Remote Sens. Environ. 113, 645–656 (2009).ADS 
    Article 

    Google Scholar 
    Homer, C. et al. Completion of the 2011 National Land Cover Database for the conterminous United States–representing a decade of land cover change information. Photogrammetric Eng. Remote Sens. 81, 345–354 (2015).
    Google Scholar  More

  • in

    Effect of ionic liquid on formation of copolyimide ultrafiltration membranes with improved rejection of La3+

    Baker, R. W. Membrane Technology and Applications. 3rd edn. ISBN 9780470743720. (Wiley, 2012).Wang, L. K., Chen, J. P., Hung, Y.-T., Shammas, N. K. Membrane and Desalination Technologies. ISBN 978-1-58829-940-6. (Humana Press, 2011).Mahmoudi, E. et al. Enhancing morphology and separation performance of polyamide 6,6 membranes by minimal incorporation of silver decorated graphene oxide nanoparticles. Sci. Rep. 9, 1216. https://doi.org/10.1038/s41598-018-38060-x (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Penkova, A. V., Dmitrenko, M. E., Ermakov, S. S., Toikka, A. M. & Roizard, D. Novel green PVA-fullerenol mixed matrix supported membranes for separating water-THF mixtures by pervaporation. Environ. Sci. Pollut. Res. 25, 20354–20362. https://doi.org/10.1007/s11356-017-9063-9 (2018).CAS 
    Article 

    Google Scholar 
    Atlaskin, A. A. et al. Comprehensive experimental study of membrane cascades type of “continuous membrane column” for gases high-purification. J. Membr. Sci. 572, 92–101. https://doi.org/10.1016/j.memsci.2018.10.079 (2019).CAS 
    Article 

    Google Scholar 
    Koyuncu, I., Sengur, R., Turken, T., Guclu, S., & Pasaoglu, M.E. Advances in water treatment by microfiltration, ultrafiltration, and nanofiltration. in Advances in Membrane Technologies for Water Treatment (eds. Basile, A., Cassano, A., Rastogi, N. K.). 83–128. (Elsevier, 2015).Van der Bruggen, B. Microfiltration, ultrafiltration, nanofiltration, reverse osmosis, and forward osmosis in Fundamental Modelling of Membrane Systems, Membrane and Process Performance (ed. Luis, P.). 25–70. (Elsevier, 2018).Al Aani, S., Mustafa, T. N. & Hilal, N. Ultrafiltration membranes for wastewater and water process engineering: A comprehensive statistical review over the past decade. J. Water Process Eng. 35, 101241. https://doi.org/10.1016/j.jwpe.2020.101241 (2020).Article 

    Google Scholar 
    Polotskaya, G. A., Goikhman, M. Y., Podeshvo, I. V., Polotsky, A. E. & Cherkasov, A. N. Polybenzoxazinoneimides and their prepolymers as promising membrane materials. Desalination 200, 46–48 (2006).CAS 
    Article 

    Google Scholar 
    Ulbricht, M. Advanced functional polymer membranes. Polymer 47, 2217–2262. https://doi.org/10.1016/j.polymer.2006.01.084 (2006).CAS 
    Article 

    Google Scholar 
    Siagian, U. W. R. et al. High-performance ultrafiltration membrane: Recent progress and its application for wastewater treatment. Curr. Pollut. Rep. 7, 448–462. https://doi.org/10.1007/s40726-021-00204-5 (2021).CAS 
    Article 

    Google Scholar 
    Polotskaya, G. A., Meleshko, T. K., Gofman, I. V., Polotsky, A. E. & Cherkasov, A. N. Polyimide ultrafiltration membranes with high thermal stability and chemical durability. Sep. Sci. Technol. 44, 3814–3831. https://doi.org/10.1080/01496390903256166 (2009).CAS 
    Article 

    Google Scholar 
    Ohya, H., Kudryavtsev, V. V., & Semenova, S. I. Polyimide Membranes. Vol. 314. (Gordon & Breach Publishers, 1996).Liu, R., Qiao, X. & Chung, T.-S. The development of high performance P84 co-polyimide hollow fibers for pervaporation dehydration of isopropanol. Chem. Eng. Sci. 60, 6674–6686. https://doi.org/10.1016/j.ces.2005.05.066 (2005).CAS 
    Article 

    Google Scholar 
    Yang, C. et al. Preparation and characterization of acid and solvent resistant polyimide ultrafiltration membrane. Appl. Surf. Sci. 483, 278–284. https://doi.org/10.1016/j.apsusc.2019.03.226 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Pulyalina, AYu., Polotskaya, G. A. & Toikka, A. M. Membrane materials based on polyheteroarylenes and their application for pervaporation. Russ. Chem. Rev. 85(1), 81–98 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Volgin, I. V. et al. Transport properties of thermoplastic R-BAPB polyimide: Molecular dynamics simulations and experiment. Polymers 11, 1775. https://doi.org/10.3390/polym11111775 (2019).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Pulyalina, A. et al. Preparation and characterization of methanol selective membranes based on polyheteroarylene–Cu(I) complexes for purification of methyl tertiary butyl ether. Polym. Int. 66(12), 1873–1882. https://doi.org/10.1002/pi.5463 (2017).CAS 
    Article 

    Google Scholar 
    Pulyalina, A. et al. Sorption and transport of aqueous isopropanol solutions in polyimide-poly(aniline-co-anthranilic acid) composites. Russ. J. Appl. Chem. 84(5), 840–846. https://doi.org/10.1134/S107042721105017X (2011).CAS 
    Article 

    Google Scholar 
    Pulyalina, A. et al. Novel approach to determination of sorption in pervaporation process: A case study of isopropanol dehydration by polyamidoimide urea membranes. Sci. Rep. 7, 8415. https://doi.org/10.1038/s41598-017-08420-0 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Helali, N., Shamaei, L., Rastgar, M. & Sadrzadeh, M. Development of layer-by-layer assembled polyamide-imide membranes for oil sands produced water treatment. Sci. Rep. 11, 8098. https://doi.org/10.1038/s41598-021-87601-4 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Polotskaya, G. et al. Asymmetric membranes based on copolyheteroarylenes with imide, biquinoline, and oxazinone units: Formation and characterization. Polymers 11(10), 1542. https://doi.org/10.3390/polym11101542 (2019).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Volgin, I. V. Transport properties of thermoplastic R-BAPB polyimide: Molecular dynamics simulations and experiment. Polymers 11(11), 1775. https://doi.org/10.3390/polym11111775 (2019).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    White, L. S. Transport properties of a polyimide solvent resistant nanofiltration membrane. J. Membr. Sci. 205, 191–202 (2005).Article 

    Google Scholar 
    Barsema, J. N., Kapantaidakis, G. C., van der Vegt, N. F. A., Koops, G. H. & Wessling, M. Preparation and characterization of highly selective dense and hollow fiber asymmetric membranes based on BTDA-TDI/MDI co-polyimide. J. Membr. Sci. 216, 195–205. https://doi.org/10.1016/S0376-7388(03)00071-1 (2003).CAS 
    Article 

    Google Scholar 
    Pulyalina, A., Polotskaya, G., Rostovtseva, V., Pientka, Z. & Toikka, A. Improved hydrogen separation using hybrid membrane composed of nanodiamonds and P84 copolyimide. Polymers 10, 828. https://doi.org/10.3390/polym10080828 (2018).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Qiao, X. & Chung, T.-S. Fundamental characteristics of sorption, swelling, and permeation of P84 co-polyimide membranes for pervaporation dehydration of alcohols. Ind. Eng. Chem. Res. 44, 8938–8943. https://doi.org/10.1021/ie050836g (2005).CAS 
    Article 

    Google Scholar 
    Mangindaan, D. W., Shi, G. M. & Chung, T.-S. Pervaporation dehydration of acetone using P84 co-polyimide flat sheet membranes modified by vapor phase crosslinking. J. Membr. Sci. 458, 76–85 (2014).CAS 
    Article 

    Google Scholar 
    Hua, D., Ong, Y. K., Wang, Y., Yang, T. & Chung, T.-S. ZIF-90/P84 mixed matrix membranes for pervaporation dehydration of isopropanol. J. Membr. Sci. 453, 155–167. https://doi.org/10.1016/j.memsci.2013.10.059 (2014).CAS 
    Article 

    Google Scholar 
    Pulyalina, AYu., Putintseva, M. N., Polotskaya, G. A., Rostovtseva, V. A. & Toikka, A. M. Pervaporation purification of oxygenate from an ethyl tert-butyl ether/ethanol azeotropic mixture. Membr. Membr. Technol. 1(2), 99–106. https://doi.org/10.1134/S2517751619020082 (2019).CAS 
    Article 

    Google Scholar 
    Ren, J. & Li, Z. Development of asymmetric BTDA-TDI/MDI (P84) copolyimide flat sheet and hollow fiber membranes for ultrafiltration: Morphology transition and membrane performance. Desalination 285, 336–344. https://doi.org/10.1016/j.desal.2011.10.024 (2012).CAS 
    Article 

    Google Scholar 
    Ren, J., Li, Z., Wong, F.-S. & Li, D. Development of asymmetric BTDA-TDI/MDI (P84) co-polyimide hollow fiber membranes for ultrafiltration: The influence of shear rate and approaching ratio on membrane morphology and performance. J. Membr. Sci. 248, 177–188. https://doi.org/10.1016/j.memsci.2004.09.031 (2005).CAS 
    Article 

    Google Scholar 
    Yusoff, I. I. et al. Durable pressure filtration membranes based on polyaniline-polyimide P84 blends. Polym. Eng. Sci. 5(S1), E82–E92 (2019).Article 

    Google Scholar 
    Grosso, V. et al. Polymeric and mixed matrix polyimide membranes. Sep. Purif. Technol. 132, 684–696 (2014).CAS 
    Article 

    Google Scholar 
    Renner, R. Ionic liquids: An industrial cleanup solution. Environ. Sci. Technol. 35, 410a–413a (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    Wanga, H. H. A novel green solvent alternative for polymeric membrane preparation via nonsolvent-induced phase separation (NIPS). J. Membr. Sci. 574, 44–54 (2019).Article 

    Google Scholar 
    Lessan, F. & Foudazi, R. Effect of [EMIM][BF4] ionic liquid on the properties of ultrafiltration membranes. Polymer 210, 122977 (2020).CAS 
    Article 

    Google Scholar 
    Xing, D. Y., Peng, N. & Chung, T.-S. Formation of cellulose acetate membranes via phase inversion using ionic liquid, [BMIM]SCN, as the solvent. Ind. Eng. Chem. Res. 49, 8761–8769 (2010).CAS 
    Article 

    Google Scholar 
    Durmaz, E. N. & Çulfaz-Emecen, P. Z. Cellulose-based membranes via phase inversion using [EMIM]OAc-DMSO mixtures as solvent. Chem. Eng. Sci. 178, 93–103 (2018).CAS 
    Article 

    Google Scholar 
    Grekov, K. B. Electronic Waste and Safety Problems (in Rus.). ISBN 9785891601796. (SUT, 2018).Svittsov, A. A. & Abylgaziev, TZh. Micellarly enhanced (reagent) ultrafiltration. Russ. Chem. Rev. 60(11), 1280–1283 (1991).ADS 
    Article 

    Google Scholar 
    Petrov, S. & Stoichev, P. A. Reagent ultrafiltration purification of water contaminated with reactive dyes. Filtr. Sep. https://doi.org/10.1016/S0015-1882(02)80229-4 (2002).Article 

    Google Scholar 
    Leonard, M. A. & West, T. S. Chelating reactions of 1,2-dihydroxyanthraquinon-3-ylmethyl-amine-NN-diacetic acid with metal cations in aqueous media. J. Chem. Soc. 866, 4477–4486. https://doi.org/10.1039/jr9600004477 (1960).Article 

    Google Scholar 
    Marczenko, Z., & Balcerzak, M. Fluorine. in Separation, Preconcentration and Spectrophotometry in Inorganic Analysis (ed. Kloczko, E.). 189–197. (Elsevier, 2000).Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620. https://doi.org/10.1039/B810189B (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Frisch, M. J. et al. Gaussian 09, Revision C.01. (Gaussian, Inc., 2010).Ochterski, J. W. Thermochemistry in Gaussian. https://gaussian.com/thermo/ (2000).Cherkasov, A. N. A rapid analysis of ultrafiltration membrane structure. Sep. Sci. Tech. 40, 2775–2801. https://doi.org/10.1080/01496390500333111 (2005).CAS 
    Article 

    Google Scholar 
    Zheng, Q.-Z. The relationship between porosity and kinetics parameter of membrane formation in PSF ultrafiltration membrane. J. Membr. Sci. 286, 7–11 (2006).CAS 
    Article 

    Google Scholar 
    Barton, A. F. M. CRC Handbook of Solubility Parameter. Vol. 768. (CRC Press, 1991).Tan, X. & Rodrigue, D. A review on porous polymeric membrane preparation. Part I: Production techniques with polysulfone and poly (vinylidene fluoride). Polymers 11, 1160 (2019).Article 

    Google Scholar 
    Mulder, M. H. V. Phase Inversion Membranes. Membrane Preparation. Vol. 3331. (Academic Press, 2000).Quijada-Maldonado, E. Pilot plant study on the extractive distillation of toluene–methylcyclohexane mixtures using NMP and the ionic liquid [hmim][TCB] as solvents. Sep. Purif. Technol. 166, 196–204 (2016).CAS 
    Article 

    Google Scholar 
    Polotskaya, G. A. et al. Aromatic copolyamides with anthrazoline units in the backbone: Synthesis, characterization, pervaporation application. Polymers 8(10), 362. https://doi.org/10.3390/polym8100362 (2016).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Mao, J. X. Interactions in 1-ethyl-3-methyl imidazolium tetracyanoborate ion pair: Spectroscopic and density functional study. J. Mol. Struct. 1038, 12–18 (2013).ADS 
    CAS 
    Article 

    Google Scholar  More

  • in

    Intolerant baboons avoid observer proximity, creating biased inter-individual association patterns

    All research methods included in this study were performed in accordance with the relevant guidelines and regulations, under ZA/LP/81996 research permit, with ethical approval from the Animal Welfare Ethical Review Board (AWERB) at Durham University. The authors confirm the study was carried out in compliance with ARRIVE guidelines.All inter-individual association data was collected between June 2018 and June 2019 on a wild habituated group of Afro-montane chacma baboons in the western Soutpansberg Mountains, South Africa (central coordinates S29.44031°, E23.02217°) (for study site description see2). The study group was habituated circa 2005 and was the focus of intermittent research attention until 2014. The study area experienced long-term anthropogenic activities (local farming, forestry, and residences) prior to 2005, as such, consistent interactions with humans have been ongoing with this population for some time. From 2007 onwards numerous researchers were able to collect expansive datasets on the study group (e.g. Refs.17,18), indicating that habituation was at a typical level found elsewhere (also validated by AA and RH, who had researched chacma baboons elsewhere). From 2014 the group received full day (dawn until dusk) follows 3–4 days a week, with occasional gaps of up to 5 weeks in duration. These gaps did not appear to effect habituation levels, likely due to the presence of other researchers at the field site who always tried to act benignly when encountering the habituated group. The follow schedule was designed so that the study group retained as much of their natural interactions with predators as possible by ensuring the baboons spent significant time without observers who may influence the frequency and nature of predator–prey interactions19.The study site was located in a private nature reserve and the study group was not hunted during observation gaps or engaged in any conflict with humans, other than occasionally being scared (chasing, yelling, throwing stones etc.) from a small plantation by local workers, usually resulting in alarm barks and fleeing responses. However, the study group appeared adept at recognising the differences between researchers and these threats20. The majority of the study group’s home-range typically overlapped with the core area of the Lajuma Research Centre, and as a result, interactions with staff living in the area, unfamiliar researchers, and tourists were frequent. However, the baboons had not engaged in ‘raiding’ residences, threatening humans, or any other potentially negative symptom of habituation before the end of this study.Sampling methodology for proximity associations30-s focal sampling was used to collect proximity associations between all group members (excluding infants). All data was collected between June and December 2018 and January and June 2019; the majority of 2018s data was collected during the wet season, whilst most of 2019s data was collected during the dry season. To account for time of day, each day was split into four time-periods that were seasonally adjusted ensuring each period accounted for 25% of the current day length. A randomly ordered list of individuals was produced for each day, the first individual identified from the top 15 (approx. 20% of group size) individuals on the list was sampled immediately. Individuals could only be sampled once per time period per day, and a maximum of twice total per day. All individuals received at least 14 focal observations per time period (56 total) across the study period (see below for how we handled uneven sampling for some individuals). A video camera was used by AA (the only observer to collect this data) to record all focal observations (Panasonic HC-W580 Camcorder). At the end of the 30-s focal observation the identities of all neighbouring conspecifics within 5 m, 2.5 m, 1 m, and touching the focal animal were recorded (audibly by AA). We chose the end of the focal observation to record this data as this was most likely to reflect the conditions during the focal, i.e., the observer had been in proximity for at least 30 s.Neighbour information was extracted from video footage and entered manually by AA and AW. Data was split into separate years to reflect an observation gap of several weeks and to understand whether there was consistency in the hypothesized effects through time and to reflect underlying differences in environmental conditions during the two study periods; during the dry season fruits and seeds are scarce and day lengths are several hours shorter than in the wet season such that day journey lengths are often shorter in the dry season and animals are much more sedentary which could impact inter-individual spacings. In 2018 each individual was sampled between 28 and 30 times; 28 focals were randomly selected from each individual to make sampling even. For 2019 there were between 25 and 27 focals per individual; 25 samples of each individual were randomly selected. Observations were undertaken at a range of distances. For both years the median end observer distance was 4.5 m; data was thus split into close focal observations of less than or equal to 4.5 m (2018: n = 918, 2019: n = 809), and observations greater than 4.5 m (2018: n = 902 2019: n = 816). See supporting information Table S1 for summary statistics of the observation distances of each individual.We did not make any attempt to record our focal data evenly across the various habitats at our field site (see Supporting information text S1 for complete habitat descriptions) as our previous research indicated there was little difference in general spatial cohesion/inter-individual proximity patterns across these habitats (see Supporting information text S2 and Table S2). As a result, we considered it unlikely that there were fundamental differences in inter-individual association patterns across habitats, or that observers struggled to reliably detect or identify neighbours in dense habitats. We do acknowledge, however, that there will always be an element of bias with such methods, as observations were avoided, aborted, or excluded if visual obstructions (e.g., cliffs, rocks, walls, buildings, very dense vegetation etc.) prohibited accurate assessments; the observations used in the current study are from occasions when these factors were not an issue.During this study the group contained between 85 and 92 individuals. Age-sex class was defined according to secondary sexual characteristics (e.g., testes descending/enlarging, sexual swelling, canine eruption) and changes in pelage throughout juvenile development (see Supporting information text S3 for full descriptions). All 65 non-infant individuals that were present during 2017 (when displacement tolerances were calculated) and still remaining in the group by the end of 2019 were used in this study (4 individuals from the prior FID study were no longer present). There were a high number of births between 2018 and 2019, but none were independent by the time either of our sampling periods begun in 2018 or 2019. There was no immigration of foreign individuals, but two individuals disappeared, both during the 2018 focal sampling period. As a result, we had a very consistent pool of individuals to sample from during this study. We removed all data associated with the two individuals who disappeared as their occurrences as neighbours would have been poorly sampled (due to missing more than half the study) relative to the rest of the group which would have led to statistical biases21.Flight initiation distance procedureIndividual displacement tolerance estimates were previously quantified in our previous research2 using a flight initiation distance (FID) procedure22 that was completed between October 2017 and April 2018, prior and independent to the commencement of proximity association focal sampling in June 2018. Individual baboons were approached by an observer, and the distance at which the animal displaced away from the observer measured (see Supporting information Table S2 for summary statistics). This procedure was repeated 24 times for each individual baboon, with approaches spread evenly across two observers differing in familiarity. At the beginning of each approach we also recorded several behavioural, social, and environmental factors that could have hypothetically influenced an individual’s FID2 including whether the animal was engaged (e.g., digging or grooming) or not engaged (e.g., resting, chewing food, being groomed), habitat type (open/closed: see Supporting text S1), whether the animal was on the ground or sat on a low branch or rock within 50 cm of the ground, the number of conspecifics within 5 m of the focal animal, and whether there had been any external events within the preceding 5 min (e.g., alarm calls, aggressions, encountering another group or predator). During the approach, we also recorded the visual orientation distance (the distance at which the focal animal directed its line of vision towards the head of the approaching observer) and whether one of the focal animal’s neighbours had displaced/fled before the focal animal. Although all but neighbour flee first and external events showed some importance for predicting looking (see Table S4), FID was found to be distinct amongst individuals and repeatable within each individual, evidence that displacement tolerance may be an individual level trait2. Full details of methods, statistical analysis, and results (including comparison to the original model) for this updated model are in Supporting information text S4, with model summary results for the previous and updated models in Tables S3 and S4.The notion of an observer approaching a habituated primate may be considered atypical or likely to result in habituation/sensitization effects or agonistic behaviours being directed towards the approaching observers. However, our previous study2 showed that almost all approaches resulted in the animal passively relocating (98.85%), a very benign response identical to the behaviours of subordinate baboons displacing away from dominant conspecifics. This suggests that in this group, observers may be considered equivalent to a high-level social threat2. Throughout observation periods on habituated animals, observers are likely to approach or displace animals either incidentally or accidentally multiple times throughout the day, especially during lengthy focal observations. As such, the approach methodology is unlikely to represent a stimulus outside of the norm for our study animals. This may explain why displacement responses were so passive and why there was no evidence of habituation or sensitization effects across the group or individually through a range of temporal periods2 or after life-threatening events20. As a result, our situation was possible without risk of causing stress or anxiety in the study subjects, eliciting agonistic behaviours towards observers, or interfering with their prior habituation levels.Statistical analysisInfluence of tolerance and observer distance on inter-individual association patternsQuantifying displacement toleranceTo quantify displacement tolerance towards observers we extracted the individual conditional modes from the updated FID model using the ranef function in brms. Conditional modes are often referred to as Best Linear Unbiased Predictors (BLUPs) and are the difference between the predicted mean population-level response for a given set of treatments (i.e., population-level effects) and the predicted responses for each individual, and therefore infer the extent to which each individual differs from the population mean. The conditional modes and their associated standard deviations can be found in supporting information Table S5.To validate that the conditional modes from the updated model were both representative of the individual’s flight responses and in line with the estimates produced from our previous study2 we performed additional tests. Firstly, we performed a Pearson’s correlation between the conditional modes from the updated model and the conditional modes from the previous article. Individual tolerance estimates were consistent (r(63) = 0.915, p  More

  • in

    The effects of aqueous extract from watermelon (Citrullus lanatus) peel on the growth and physiological characteristics of Dolichospermum flos-aquae

    Barrington, D. J. & Ghadouani, A. Application of hydrogen peroxide for the removal of toxic cyanobacteria and other phytoplankton from wastewater. Environ. Sci. Technol. 42, 8916–8921. https://doi.org/10.1021/es801717y (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Vikrant, K. et al. Engineered/designer biochar for the removal of phosphate in water and wastewater. Sci. Total Environ. 616–617, 1242–1260. https://doi.org/10.1016/j.scitotenv.2017.10.193 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Merel, S. et al. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ. Int. 59, 303–327. https://doi.org/10.1016/j.envint.2013.06.013 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Paerl, H. W. & Otten, T. G. Harmful cyanobacterial blooms: Causes, consequences, and controls. Microb. Ecol. 65, 995–1010. https://doi.org/10.1007/s00248-012-0159-y (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Monchamp, M. E. et al. Homogenization of lake cyanobacterial communities over a century of climate change and eutrophication. Nat. Ecol. Evol. 2, 317–324. https://doi.org/10.1038/s41559-017-0407-0 (2018).Article 
    PubMed 

    Google Scholar 
    Paerl, H. W. & Fulton, R. S. Ecology of harmful cyanobacteria. In Ecology of Harmful Algae (eds Granéli, E. & Turner, J. T.) 95–109 (Springer, 2006).Chapter 

    Google Scholar 
    Guan, Y., Zhang, M., Yang, Z., Shi, X. & Zhao, X. Intra-annual variation and correlations of functional traits in Microcystis and Dolichospermum in Lake Chaohu. Ecol. Indic. 111, 106052. https://doi.org/10.1016/j.ecolind.2019.106052 (2020).Article 

    Google Scholar 
    Zhang, M. et al. Spatial and seasonal shifts in bloom-forming cyanobacteria in Lake Chaohu: Patterns and driving factors. Phycol. Res. 64, 44–55. https://doi.org/10.1111/pre.12112 (2016).Article 

    Google Scholar 
    Krishnamurthy, T., Carmichael, W. W. & Sarver, E. W. Toxic peptides from freshwater cyanobacteria (blue-green algae) I. Isolation, purification and characterization of peptides from Microcystis aeruginosa and Anabaena flos-aquae. Toxicon 24, 865–873. https://doi.org/10.1016/0041-0101(86)90087-5 (1986).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mahmood, N. A. & Carmichael, W. W. Anatoxin-a(s), an anticholinesterase from the cyanobacterium Anabaena flos-aquae NRC 525–17. Toxicon 25, 1221–1227. https://doi.org/10.1016/0041-0101(87)90140-1 (1987).CAS 
    Article 
    PubMed 

    Google Scholar 
    Li, X., Dreher, T. W. & Li, R. An overview of diversity, occurrence, genetics and toxin production of bloom-forming Dolichospermum (Anabaena) species. Harmful Algae 54, 54–68. https://doi.org/10.1016/j.hal.2015.10.015 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Buratti, F. M. et al. Cyanotoxins: Producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch. Toxicol. 91, 1049–1130. https://doi.org/10.1007/s00204-016-1913-6 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Iredale, R. S., McDonald, A. T. & Adams, D. G. A series of experiments aimed at clarifying the mode of action of barley straw in cyanobacterial growth control. Water Res. 46, 6095–6103. https://doi.org/10.1016/j.watres.2012.08.040 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang, S. H., Zhang, S. Y. & Li, G. Acorus calamus root extracts to control harmful cyanobacteria blooms. Ecol. Eng. 94, 95–101. https://doi.org/10.1016/j.ecoleng.2016.05.053 (2016).Article 

    Google Scholar 
    Mecina, G. F. et al. Effect of flavonoids isolated from Tridax procumbens on the growth and toxin production of Microcystis aeruginosa. Aquat. Toxicol. 211, 81–91. https://doi.org/10.1016/j.aquatox.2019.03.011 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yuan, R. et al. The allelopathic effects of aqueous extracts from Spartina alterniflora on controlling the Microcystis aeruginosa blooms. Sci. Total Environ. 712, 13622. https://doi.org/10.1016/j.scitotenv.2019.136332 (2020).CAS 
    Article 

    Google Scholar 
    Tan, K. et al. A review of allelopathy on microalgae. Microbiology 165, 587–592. https://doi.org/10.1099/mic.0.000776 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mecina, G. F. et al. Response of Microcystis aeruginosa BCCUSP 232 to barley (Hordeum vulgare L.) straw degradation extract and fractions. Sci. Total. Environ. 599–600, 1837–1847. https://doi.org/10.1016/j.scitotenv.2017.05.156 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhao, W., Zheng, Z., Zhang, J., Roger, S. F. & Luo, X. Allelopathically inhibitory effects of eucalyptus extracts on the growth of Microcystis aeruginosa. Chemosphere 225, 424–433. https://doi.org/10.1016/j.chemosphere.2019.03.070 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bottino, F. et al. Effects of macrophyte leachate on Anabaena sp. and Chlamydomonas moewusii growth in freshwater tropical ecosystems. Limnology 19, 171–176. https://doi.org/10.1007/s10201-017-0532-0 (2018).CAS 
    Article 

    Google Scholar 
    Zhang, K., Yu, M., Xu, P., Zhang, S. & Benoit, G. Physiological and morphological response of Aphanizomenon flos-aquae to watermelon (Citrullus lanatus) peel aqueous extract. Aquat. Toxicol. 225, 105548. https://doi.org/10.1016/j.aquatox.2020.105548 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lichtenthaler, H. K. & Buschmann, C. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Curr. Protoc. Food Anal. Chem. 1, F4.3.1-F4.38 (2001).Article 

    Google Scholar 
    Ozaki, K. et al. Electron microscopic study on lysis of a cyanobacterium Microcystis. J. Health Sci. 55, 578–585. https://doi.org/10.1248/jhs.55.578 (2009).CAS 
    Article 

    Google Scholar 
    Staats, N., De Winder, B., Stal, L. J. & Mur, L. R. Isolation and characterization of extracellular polysaccharides from the epipelic diatoms Cylindrotheca closterium and Navicula salinarum. Eur. J. Phycol. 34, 161–169. https://doi.org/10.1080/09670269910001736212 (1999).Article 

    Google Scholar 
    Hellebust, J. & Craigie, J. (eds) Handbook of Phycological Methods. Physiological and Biochemical Methods (Cambridge University, 1978).
    Google Scholar 
    Roháček, K. & Barták, M. Technique of the modulated chlorophyll fluorescence: Basic concepts, useful parameters, and some applications. Photosynthetica 37, 339–363. https://doi.org/10.1023/A:1007172424619 (1999).Article 

    Google Scholar 
    Zhang, T. T., He, M., Wu, A. P. & Nie, L. W. Inhibitory effects and mechanisms of Hydrilla verticillata (Linn.f.) royle extracts on freshwater algae. Bull. Environ. Contam. Toxicol. 88, 477–481. https://doi.org/10.1007/s00128-011-0500-z (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhao, S., Pan, W. & Ma, C. Stimulation and inhibition effects of algae-lytic products from Bacillus cereus strain L7 on Anabaena flos-aquae. J. Appl. Phycol. 24, 1015–1021. https://doi.org/10.1007/s10811-011-9725-9 (2012).CAS 
    Article 

    Google Scholar 
    Kaminski, A. et al. Aquatic macrophyte Lemna trisulca (L.) as a natural factor for reducing anatoxin-a concentration in the aquatic environment and biomass of cyanobacterium Anabaena flos-aquae (Lyngb.) de Bréb. Algal Res. 9, 212–217. https://doi.org/10.1016/j.algal.2015.03.014 (2015).Article 

    Google Scholar 
    Gumbo, J. R., Cloete, T. E., van Zyl, G. J. J. & Sommerville, J. E. M. The viability assessment of Microcystis aeruginosa cells after co-culturing with Bacillus mycoides B16 using flow cytometry. Phys. Chem. Earth. 72–75, 24–33. https://doi.org/10.1016/j.pce.2014.09.004 (2014).Article 

    Google Scholar 
    Fan, J., Ho, L., Hobson, P. & Brookes, J. Evaluating the effectiveness of copper sulphate, chlorine, potassium permanganate, hydrogen peroxide and ozone on cyanobacterial cell integrity. Water Res. 47, 5153–5164. https://doi.org/10.1016/j.watres.2013.05.057 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lu, Z. Studies on oxidative stress and programmed cell death of Microcystis aeruginosa induced by polyphenolic allelochemicals (D). Institute of Hydrobiology, Chinese Academy of Sciences (2014).Lu, Z. et al. Polyphenolic allelochemical pyrogallic acid induces caspase-3(like)-dependent programmed cell death in the cyanobacterium Microcystis aeruginosa. Algal Res. 21, 148–155. https://doi.org/10.1016/j.algal.2016.11.007 (2017).Article 

    Google Scholar 
    Chen, Y. et al. Vitamin C modulates Microcystis aeruginosa death and toxin release by induced Fenton reaction. J. Hazard. Mater. 321, 888–895. https://doi.org/10.1016/j.jhazmat.2016.10.010 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Latifi, A., Ruiz, M. & Zhang, C. C. Oxidative stress in cyanobacteria. FEMS Microbiol. Rev. 33, 258–278. https://doi.org/10.1111/j.1574-6976.2008.00134.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Shao, J. H., Wu, X. Q. & Li, R. H. Physiological responses of Microcystis aeruginosa PCC7806 to nonanoic acid stress. Environ. Toxicol. 24, 610–617. https://doi.org/10.1002/tox.20462 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hua, Q. et al. Allelopathic effect of the rice straw aqueous extract on the growth of Microcystis aeruginosa. Ecotox. Environ. Safe. 148, 953–959. https://doi.org/10.1016/j.ecoenv.2017.11.049 (2018).CAS 
    Article 

    Google Scholar 
    Chen, L., Wang, Y., Shi, L., Zhao, J. & Wang, W. Identification of allelochemicals from pomegranate peel and their effects on Microcystis aeruginosa growth. Environ. Sci. Pollut. Res. 26, 22389–22399. https://doi.org/10.1007/s11356-019-05507-1 (2019).CAS 
    Article 

    Google Scholar 
    Zhang, S. H., Xu, P. Y. & Chang, J. J. Physiological responses of Aphanizomenon flos-aquae under the stress of Sagittaria sagittifolia extract. Bull. Environ. Contam. Toxicol. 97, 870–875. https://doi.org/10.1007/s00128-016-1948-7 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Li, J. et al. Growth inhibition and oxidative damage of Microcystis aeruginosa induced by crude extract of Sagittaria trifolia tubers. J. Environ. Sci. 43, 40–47. https://doi.org/10.1016/j.jes.2015.08.020 (2016).CAS 
    Article 

    Google Scholar 
    Shao, J. et al. Inhibitory effects of sanguinarine against the cyanobacterium Microcystis aeruginosa NIES-843 and possible mechanisms of action. Aquat. Toxicol. 142–143, 257–263. https://doi.org/10.1016/j.aquatox.2013.08.019 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Apel, K. & Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant. Biol. 55, 373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang, S. & Benoit, G. Comparative physiological tolerance of unicellular and colonial Microcystis aeruginosa to extract from Acorus calamus rhizome. Aquat. Toxicol. 215, 105271. https://doi.org/10.1016/j.aquatox.2019.105271 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Derks, A., Schaven, K. & Bruce, D. Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change. BBA-Bioenergetics 1847, 468–485. https://doi.org/10.1016/j.bbabio.2015.02.008 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jiang, H. & Qiu, B. Photosynthetic adaptation of a bloom-forming cyanobacterium Microcystis aeruginosa (cyanophyceae) to prolonged uv-b exposure. J. Phycol. 41, 983–992. https://doi.org/10.1111/j.1529-8817.2005.00126.x (2005).Article 

    Google Scholar 
    Azizullah, A., Richter, P. & Häder, D. P. Photosynthesis and photosynthetic pigments in the flagellate Euglena gracilis: As sensitive endpoints for toxicity evaluation of liquid detergents. J. Photochem. Photobiol. B Biol. 133, 18–26. https://doi.org/10.1016/j.jphotobiol.2014.02.011 (2014).CAS 
    Article 

    Google Scholar 
    Singh, D. P., Khattar, J. I. S., Gupta, M. & Kaur, G. Evaluation of toxicological impact of cartap hydrochloride on some physiological activities of a non-heterocystous cyanobacterium Leptolyngbya foveolarum. Pestic. Biochem. Phys. 110, 63–70. https://doi.org/10.1016/j.pestbp.2014.03.002 (2014).CAS 
    Article 

    Google Scholar 
    Movasaghi, Z., Rehman, S. & Rehman, I. U. Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 42, 493–541. https://doi.org/10.1080/05704920701551530 (2007).CAS 
    Article 

    Google Scholar 
    Li, K. et al. In vivo kinetics of lipids and astaxanthin evolution in Haematococcus pluvialis mutant under 15% CO2 using Raman microspectroscopy. Bioresource Technol. 244, 1439–1444. https://doi.org/10.1016/j.biortech.2017.04.116 (2017).CAS 
    Article 

    Google Scholar 
    Beutner, S. et al. Quantitative assessment of antioxidant properties of natural colorants and phytochemicals: Carotenoids, flavonoids, phenols and indigoids. The role of beta-carotene in antioxidant functions. J. Sci. Food. Agric. 81, 559–568. https://doi.org/10.1002/jsfa.849 (2001).CAS 
    Article 

    Google Scholar 
    Kelman, D., Ben-Amotz, A. & Berman-Frank, I. Carotenoids provide the major antioxidant defence in the globally significant N2-fixing marine cyanobacterium Trichodesmiumem. Environ. Microbiol. 11, 1897–1908. https://doi.org/10.1111/j.1462-2920.2009.01913.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhou, T. et al. Growth suppression and apoptosis-like cell death in Microcystis aeruginosa by H2O2: A new insight into extracellular and intracellular damage pathways. Chemosphere 211, 1098–1108. https://doi.org/10.1016/j.chemosphere.2018.08.042 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Schreiber, U., Quayle, P., Schmidt, S., Escher, B. I. & Mueller, J. F. Methodology and evaluation of a highly sensitive algae toxicity test based on multiwell chlorophyll fluorescence imaging. Biosens. Bioelectron. 22, 2554–2563. https://doi.org/10.1016/j.bios.2006.10.018 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kumar, K. S. et al. Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence. Ecotox. Environ. Safe. 104, 51–71. https://doi.org/10.1016/j.ecoenv.2014.01.042 (2014).CAS 
    Article 

    Google Scholar 
    Maxwell, K. & Johnson, G. N. Chlorophyll fluorescence: A practical guide. J Exp Bot 51, 659–668. https://doi.org/10.1093/jxb/51.345.659 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lürling, M. & Roessink, I. On the way to cyanobacterial blooms: Impact of the herbicide metribuzin on the competition between a green alga (Scenedesmus) and a cyanobacterium (Microcystis). Chemosphere 65, 618–626. https://doi.org/10.1016/j.chemosphere.2006.01.073 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhu, J. Y., Liu, B. Y., Wang, J., Gao, Y. N. & Wu, Z. B. Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte (Myriophyllum spicatum) and its secretion. Aquat. Toxicol. 98, 196–203. https://doi.org/10.1016/j.aquatox.2010.02.011 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wan, J., Guo, P., Peng, X. & Wen, K. Effect of erythromycin exposure on the growth, antioxidant system and photosynthesis of Microcystis flos-aquae. J. Hazard. Mater. 283, 778–786. https://doi.org/10.1016/j.jhazmat.2014.10.026 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wang, R. et al. Evaluating the effects of allelochemical ferulic acid on Microcystis aeruginosa by pulse-amplitude-modulated (PAM) fluorometry and flow cytometry. Chemosphere 147, 264–271. https://doi.org/10.1016/j.chemosphere.2015.12.109 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Long, M. et al. Allelochemicals from Alexandrium minutum induce rapid inhibition of metabolism and modify the membranes from Chaetoceros muelleri. Algal Res. 35, 508–518. https://doi.org/10.1016/j.algal.2018.09.023 (2018).Article 

    Google Scholar 
    Cosgrove, J. & Borowitzka, M. A. Chloreophyll fluorescence terminology: An introduction. In Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications, Developments in Applied Phycology Vol. 4 (eds Sugget, D. J. et al.) 1–18 (Springer, 2010).
    Google Scholar 
    Kumar, K. S. & Han, T. Physiological response of Lemna species toherbicides and its probable use in toxicity testing. Toxicol. Environ. Health Sci. 2, 39–49. https://doi.org/10.1007/BF03216512 (2010).Article 

    Google Scholar 
    Ricart, M. et al. Primary and complex stressors in polluted mediterranean rivers: Pesticide effects on biological communities. J. Hydrol. 383, 52–61. https://doi.org/10.1016/j.jhydrol.2009.08.014 (2010).CAS 
    Article 

    Google Scholar 
    Deng, C., Pan, X. & Zhang, D. Influence of of loxacin on photosystems I and II activities of Microcystis aeruginosa and the potential role of cyclic electron flow. J. Biosci. Bioeng. 119, 159–164. https://doi.org/10.1016/j.jbiosc.2014.07.014 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pereira, S. et al. Complexity of cyanobacterial exopolysaccharides: Composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol. Rev. 33, 917–941. https://doi.org/10.1111/j.1574-6976.2009.00183.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gao, L. et al. Extracellular polymeric substances buffer against the biocidal effect of H2O2 on the bloom-forming cyanobacterium Microcystis aeruginosa. Water Res. 69, 51–58. https://doi.org/10.1016/j.watres.2014.10.060 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang, S. et al. Ameliorating effects of extracellular polymeric substances excreted by Thalassiosira pseudonana on algal toxicity of CdSe quantum dots. Aquat. Toxicol. 126, 214–223. https://doi.org/10.1016/j.aquatox.2012.11.012 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Henriques, I. D. S. & Love, N. G. The role of extracellular polymeric substances in the toxicity response of activated sludge bacteria to chemical toxins. Water Res. 41, 4177–4185. https://doi.org/10.1016/j.watres.2007.05.001 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zheng, S. M. et al. Role of extracellular polymeric substances on the behavior and toxicity of silver nanoparticles and ions to green algae Chlorella vulgaris. Sci. Total Environ. 660, 1182–1190. https://doi.org/10.1016/j.scitotenv.2019.01.067 (2019).CAS 
    Article 
    PubMed 

    Google Scholar  More