Runham, N. A study of the replacement mechanism of the pulmonate radula. J. Cell Sci. 3(66), 271â277 (1963).ArticleÂ
Google ScholarÂ
Runham, N. & Isarankura, K. Studies on radula replacement. Malacologia 5, 73 (1966).
Google ScholarÂ
Mackenstedt, U. & MĂ€rkel, K. Radular structure and function. In The Biology of Terrestrial Molluscs (ed. Barker, G. M.) 213â236 (CABI Publishing, Oxon, United Kingdom, 2001).ChapterÂ
Google ScholarÂ
Crampton, D. M. Functional anatomy of the buccal apparatus of Onchidoris bilamellata (Mollusca: Opisthobranchia). Trans. Zool. Soc. Lond. 34(1), 45â86 (1977).ArticleÂ
Google ScholarÂ
Steneck, R. S. & Watling, L. Feeding capabilities and limitation of herbivorous molluscs: A functional group approach. Mar. Biol. 68(3), 299â319 (1982).ArticleÂ
Google ScholarÂ
Jensen, K. R. Evolution of the sacoglossa (Mollusca, Opisthobranchia) and the ecological associations with their food plants. Evol. Ecol. 11, 301â335 (1997).ArticleÂ
Google ScholarÂ
Nishi, M. & Kohn, A. J. Radular teeth of Indo-Pacific molluscivorous species of Conus: A comparative analysis. J. Molluscan Stud. 65(4), 483â497 (1999).ArticleÂ
Google ScholarÂ
Duda, T. F., Kohn, A. J. & Palumbi, S. R. Origins of diverse feeding ecologies within Conus, a genus of venomous marine gastropods. Biol. J. Linn. Soc. Lond. 73, 391â409 (2001).ArticleÂ
Google ScholarÂ
von Rintelen, T., Wilson, A. B., Meyer, A. & Glaubrecht, M. Escalation and trophic specialization drive adaptive radiation of freshwater gastropods in ancient lakes on Sulawesi, Indonesia. Proc. R. Soc. B 271, 2541â2549 (2004).ArticleÂ
Google ScholarÂ
Ekimova, I. et al. Diet-driven ecological radiation and allopatric speciation result in high species diversity in a temperate-cold water marine genus Dendronotus (Gastropoda: Nudibranchia). Mol. Phylogenet. Evol. 141, 106609 (2019).PubMedÂ
ArticleÂ
Google ScholarÂ
Mikhlina, A., Ekimova, I. & Vortsepneva, E. Functional morphology and post-larval development of the buccal complex in Eubranchus rupium (Nudibranchia: Aeolidia: Fionidae). Zoology 143, 125850 (2020).PubMedÂ
ArticleÂ
Google ScholarÂ
Krings, W. Trophic specialization of paludomid gastropods from ‘ancient’ Lake Tanganyika reflected by radular tooth morphologies and material properties, Thesis, UniversitĂ€t Hamburg (2020).Krings, W., BrĂŒtt, J.-O., Gorb, S. N. & Glaubrecht, M. Tightening it up: Diversity of the chitin anchorage of radular-teeth in paludomid freshwater-gastropods. Malacologia 63(1), 77â94 (2020).ArticleÂ
Google ScholarÂ
Bleakney, J. S. Indirect evidence of a morphological response in the radula of Placida dendritica (Alder & Hancock, 1843) (Opisthobranchia: Ascoglossa/ Sacoglossa) to different algae prey. Veliger 33(1), 111â115 (1990).
Google ScholarÂ
Jensen, K. R. Morphological adaptations and plasticity of radular teeth of the Sacoglossa (= Ascoglossa) (Mollusca: Opisthobranchia) in relation to their food plants. Biol. J. Linn. Soc. Lond. 48, 135â155 (1993).ArticleÂ
Google ScholarÂ
Reid, D. G. & Mak, Y.-M. Indirect evidence for ecophenotypic plasticity in radular dentition of Littorina species (Gastropoda: Littorinidae). J. Molluscan Stud. 65, 355â370 (1999).ArticleÂ
Google ScholarÂ
Padilla, D. K., Dilger, E. K. & Dittmann, D. E. Phenotypic plasticity of feeding structures in species of Littorina. Am. Zool. 40, 1161 (2000).
Google ScholarÂ
Ito, A., Ilano, A. S., Goshima, S. & Nakao, S. Seasonal and tidal height variations in body weight and radular length in Nodilittorina radiata (Eydoux and Souleyet, 1852). J. Molluscan Stud. 68, 197â203 (2002).ArticleÂ
Google ScholarÂ
Padilla, D. K. Form and function of radular teeth of herbivorous molluscs: Focus on the future. Am. Malacol. Bull. 18(1/2), 163â168 (2003).
Google ScholarÂ
Krings, W. & Gorb, S. N. Substrate roughness induced wear pattern in gastropod radulae. Biotribology 26, 100164 (2021).ArticleÂ
Google ScholarÂ
Krings, W., Hempel, C., Siemers, L., Neiber, M. T. & Gorb, S. N. Feeding experiments on Vittina turrita (Mollusca, Gastropoda, Neritidae) reveal tooth contact areas and bent radular shape during foraging. Sci. Rep. 11, 9556 (2021).ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Lu, D. & Barber, A. H. Optimized nanoscale composite behaviour in limpet teeth. J. R. Soc. Interface 9(71), 1318â1324 (2012).PubMedÂ
ArticleÂ
Google ScholarÂ
Grunenfelder, L. K. et al. Biomineralization: Stress and damage mitigation from oriented nanostructures within the radular teeth of Cryptochiton stelleri. Adv. Funct. Mater. 24(39), 6093â6104 (2014).CASÂ
ArticleÂ
Google ScholarÂ
Barber, A. H., Lu, D. & Pugno, N. M. Extreme strength observed in limpet teeth. J. R. Soc. Interface 12(105), 20141326 (2015).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Herrera, S. A., Grunenfelder, L., Escobar, E., Wang, Q., Salinas, C., Yaraghi, N., Geiger, J., Wuhrer, R., Zavattieri, P. & Kisailus, D. Stylus support structure and function of radular teeth. In Cryptochiton Stelleri, 20th International Conference on Composite Materials Copenhagen, 19â24th July, 2015.Ukmar-Godec, T. et al. Materials nanoarchitecturing via cation-mediated protein assembly: Making limpet teeth without mineral. Adv. Mater. 29(27), 1701171 (2017).ArticleÂ
CASÂ
Google ScholarÂ
Pohl, A. et al. Radular stylus of Cryptochiton stelleri: A multifunctional lightweight and flexible fiber-reinforced composite. J. Mech. Behav. Biomed. Mater. 111, 103991 (2020).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Stegbauer, L. et al. Persistent polyamorphism in the chiton tooth: From a new biomineral to inks for additive manufacturing. PNAS 118(23), e2020160118 (2021).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Weaver, J. C. et al. Analysis of an ultra hard magnetic biomineral in chiton radular teeth. Mater. Today 13(1â2), 42â52 (2010).CASÂ
ArticleÂ
Google ScholarÂ
Wang, Q. et al. Phase transformations and structural developments in the radular teeth of Cryptochiton stelleri. Adv. Fun. Mater. 23, 2908â2917 (2013).CASÂ
ArticleÂ
Google ScholarÂ
Ukmar-Godec, T. Mineralization of goethite in limpet radular teeth. In Iron Oxides: From Nature to Applications (eds Faivre, D. & Frankel, R. B.) 207â224 (Wiley-VCH, Weinheim, 2016).ChapterÂ
Google ScholarÂ
Krings, W., BrĂŒtt, J.-O. & Gorb, S. N. Ontogeny of the elemental composition and the biomechanics of radular teeth in the chiton Lepidochitona cinerea. Under review at Frontiers in Zoology (2022).Brooker, L. R. & Shaw, J. A. The chiton radula: A unique model for biomineralization studies. In Advanced Topics in Biomineralization (ed. Seto, J.) 65â84 (Intech Open, Rijeka, Croatia, 2012).
Google ScholarÂ
Joester, D. & Brooker, L. R. The chiton radula: A model system for versatile use of iron oxides. In Iron Oxides: From Nature to Applications (ed. Seto, J.) 177â205 (Wiley-VCH, Weinheim, 2016).ChapterÂ
Google ScholarÂ
Kisailus, D. & Nemoto, M. Structural and proteomic analyses of iron oxide biomineralization in chiton teeth. In Biological Magnetic Materials and Applications (eds Matsunaga, T. et al.) 53â73 (Springer, Singapore, 2018).ChapterÂ
Google ScholarÂ
Moura, H. M. & Unterlass, M. M. Biogenic metal oxides. Biomimetics 5(2), 29 (2020).CASÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Krings, W., Kovalev, A., Glaubrecht, M. & Gorb, S. N. Differences in the Young modulus and hardness reflect different functions of teeth within the taenioglossan radula of gastropods. Zoology 137, 125713 (2019).PubMedÂ
ArticleÂ
Google ScholarÂ
Krings, W., Neiber, M. T., Kovalev, A., Gorb, S. N. & Glaubrecht, M. Trophic specialisation reflected by radular tooth material properties in an âancientâ Lake Tanganyikan gastropod species flock. BMC Ecol. Evol. 21, 35 (2021).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Krings, W., MarcĂ©-NoguĂ©, J. & Gorb, S. N. Finite element analysis relating shape, material properties, and dimensions of taenioglossan radular teeth with trophic specialisations in Paludomidae (Gastropoda). Sci. Rep. 11, 22775 (2021).ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Gorb, S. N. & Krings, W. Mechanical property gradients of taenioglossan radular teeth are associated with specific function and ecological niche in Paludomidae (Gastropoda: Mollusca). Acta Biomater. 134, 513â530 (2021).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Troschel, F. H. Das Gebiss Der Schnecken Zur BegrĂŒndung Einer NatĂŒrlichen Classification (Nicolaische Verlagsbuchhandlung, Berlin, Germany, 1863).
Google ScholarÂ
Sollas, I. B. The molluscan radula: Its chemical composition, and some points in its development. Q. J. Microsc. Sci. 51, 115â136 (1907).
Google ScholarÂ
Jones, E., McCance, R. & Shackleton, L. The role of iron and silica in the structure of the radular teeth of certain marine molluscs. J. Exp. Biol. 12(1), 59â64 (1935).CASÂ
ArticleÂ
Google ScholarÂ
Tillier, S. & Cuif, J.-P. Lâanimal-conodonte est-il un Mollusque Aplacophore. C. R. Acad. Sci. SĂ©r. 2 MĂ©c. Phys. Chim. Sci. Univ. Sci. Terre 303(7), 627â632 (1986).Cruz, R., Lins, U. & Farina, M. Minerals of the radular apparatus of Falcidens sp. (Caudofoveata) and the evolutionary implications for the phylum mollusca. Biol. Bull. 194(2), 224â230 (1998).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Smith, I. F. Lepidochitona cinerea, identification and biology, 2020. https://doi.org/10.13140/RG.2.2.28288.58889.Smith, I. F. Acanthochitona fascicularis (Linnaeus, 1767), identification and biology, 2020. https://doi.org/10.13140/RG.2.2.10640.64005.Quetglas, A., de Mesa, A., Ordines, F. & Grau, A. Life history of the deep-sea cephalopod family Histioteuthidae in the western Mediterranean. Deep Res. Part I Oceanogr. Res. Pap. 57, 999â1008 (2010).ADSÂ
ArticleÂ
Google ScholarÂ
Coelho, M., Domingues, P., Balguerias, E., Fernandez, M. & Andrade, J. P. A comparative study of the diet of Loligo vulgaris (Lamarck, 1799) (Mollusca: Cephalopoda) from the south coast of Portugal and the Saharan Bank (Central-East Atlantic). Fish. Res. 29(3), 245â255 (1997).ArticleÂ
Google ScholarÂ
Notman, G. M., McGill, R. A., Hawkins, S. J. & Burrows, M. T. Macroalgae contribute to the diet of Patella vulgata from contrasting conditions of latitude and wave exposure in the UK. Mar. Ecol. Prog. Ser. 549, 113â123 (2016).ADSÂ
CASÂ
ArticleÂ
Google ScholarÂ
Marchais, V. et al. New tool to elucidate the diet of the ormer Haliotis tuberculata (L.): Digital shell color analysis. Mar. Biol. 164, 71 (2017).ArticleÂ
Google ScholarÂ
Eichhorst, T. E. Neritidae of the World: Volume 1 and 2 (ConchBooks, 2016).Bourguignat, M. J. R. Notice Prodromique sur les Mollusques Terrestres et Fluviatiles (Savy, Paris, 1885).
Google ScholarÂ
Bourguignat, M. J. R. Iconographie Malacologiques des Animaux Mollusques Fluviatiles du Lac Tanganika (Corbeil, CrĂ©tĂ©, 1888).BookÂ
Google ScholarÂ
West, K., Michel, E., Todd, J., Brown, D. & Clabaugh, J. The gastropods of Lake Tanganyika: Diagnostic key, classification and notes on the fauna (Special publications: Societas Internationalis Limnologiae – Int. Assoc. of Theoretical and Applied Limnology, 2003)Glaubrecht, M. Adaptive radiation of thalassoid gastropods in Lake Tanganyika, East Africa: Morphology and systematization of a paludomid species flock in an ancient lake. Zoosyst. Evol. 84, 71â122 (2008).ArticleÂ
Google ScholarÂ
Moore, J. E. S. The Tanganyika Problem (Burst and Blackett, London, 1903).BookÂ
Google ScholarÂ
Leloup, E. Exploration Hydrobiologique du Lac Tanganika (1946â1947) (Bruxelles, 1953).Brown, D. Freshwater Snails of Africa and their Medical Importance (Taylor and Francis, London, 1994).BookÂ
Google ScholarÂ
Germain, L. Mollusques du Lac Tanganyika et de ses environs. Extrait des resultats secientifiques des voyages en Afrique dâEdouard Foa. Bull. Mus. Natl. Hist. Nat. 14, 1â612 (1908).
Google ScholarÂ
Coulter, G. W. Lake Tanganyika and its Life (Oxford University Press, Oxford, 1991).
Google ScholarÂ
Bandel, K. Evolutionary history of East African fresh water gastropods interpreted from the fauna of Lake Tanganyika and Lake Malawi. Zent. Geol. PalĂ€ontol. Teil I, 233â292 (1997).
Google ScholarÂ
Pilsbry, H. A. & Bequaert, J. The aquatic mollusks of the Begian Congo. With a geographical and ecological account of Congo malacology. Bull. Am. Mus. Nat. Hist. 53, 69â602 (1927).
Google ScholarÂ
Lok, A. F. S. L., Ang, W. F., Ng, P. X., Ng, B. Y. Q. & Tan, S. K. Status and distribution of Faunus ater (Linnaeus, 1758) (Mollusca: Cerithioidea) in Singapore. NiS 4, 115â121 (2011).
Google ScholarÂ
Das, R. R. et al. Limited distribution of devil snail Faunus ater (Linnaeus, 1758) in tropical mangrove habitats of India. IJMS 47(10), 2002â2007 (2018).
Google ScholarÂ
Watson, D. C. & Norton, T. A. Dietary preferences of the common periwinkle, Littorina littorea (L.). J. Exp. Mar. Biol. Ecol. 88, 193â211 (1985).ArticleÂ
Google ScholarÂ
Imrie, D. W., McCrohan, C. R. & Hawkins, S. J. Feeding behaviour in Littorina littorea: A study of the effects of ingestive conditioning and previous dietary history on food preference and rates of consumption. Hydrobiologia 193, 191â198 (1990).ArticleÂ
Google ScholarÂ
Olsson, M., SvĂ€rdh, L. & Toth, G. B. Feeding behaviour in Littorina littorea: The red seaweed Osmundea ramosissima may not prevent trematode infection. Mar. Ecol. Prog. Ser. 348, 221â228 (2007).ADSÂ
ArticleÂ
Google ScholarÂ
Lauzon-Guay, J. S. & Scheibling, R. E. Food-dependent movement of periwinkles (Littorina littorea) associated with feeding fronts. J. Shellfish Res. 28, 581â587 (2009).ArticleÂ
Google ScholarÂ
Bogan, A. E. & Hanneman, E. H. A carnivorous aquatic gastropod in the pet trade in North America: The next threat to freshwater gastropods?. Ellipsaria 15, 18â19 (2013).
Google ScholarÂ
Strong, E. E., Galindo, L. A. & Kantor, Y. I. Quid est Clea helena? Evidence for a previously unrecognized radiation of assassin snails (Gastropoda: Buccinoidea: Nassariidae). PeerJ 11(5), e3638 (2017).ArticleÂ
Google ScholarÂ
Himmelman, J. H. & Hamel, J. R. Diet behaviour and reproduction of the whelk Buccinum undatum in the northern Gulf of St Lawrence, eastern Canada. Mar. Biol. 116, 423â430 (1993).ArticleÂ
Google ScholarÂ
Barnes, H. & Powell, H. T. Onchidoris fusca (MĂŒller); A predator of barnacles. J. Anim. Ecol. 23(2), 361â363 (1954).ArticleÂ
Google ScholarÂ
Waters, V. L. Food-preference of the nudibranch Aeolidia papillosa, and the effect of the defenses of the prey on predation. Veliger 15(3), 174â192 (1973).
Google ScholarÂ
Edmunds, M., Potts, G., Swinfen, R. & Waters, V. The feeding preferences of Aeolidia papillosa (L.) (Mollusca, Nudibranchia). J. Mar. Biol. Assoc. U. K. 54(4), 939â947 (1974).ArticleÂ
Google ScholarÂ
Edmunds, M. Advantages of food specificity in Aeolidia papillosa. J. Molluscan Stud. 49(1), 80â81 (1983).ArticleÂ
Google ScholarÂ
SĂžrensen, C. G., Rauch, C., Pola, M. & Malaquias, M. A. E. Integrative taxonomy reveals a cryptic species of the nudibranch genus Polycera (Polyceridae) in European waters. J. Mar. Biol. Assoc. U. K. 100(5), 733â752 (2020).ArticleÂ
CASÂ
Google ScholarÂ
Forrest, J. E. On the feeding habits and the morphology and mode of functioning of the alimentary canal in some littoral dorid nudibranchiate. Mollusca. Proc. Linn. Soc. Lond. 164(2), 225â235 (1953).ArticleÂ
Google ScholarÂ
Rose, R. M. Functional morphology of the buccal mass of the nudibranch Archidoris pseudoargus. J. Zool. 165(3), 317â336 (1971).ArticleÂ
Google ScholarÂ
Faivre, D. & Ukmar-Godec, T. From bacteria to mollusks: The principles underlying the biomineralization of iron oxide materials. Angew. Chem. Int. Ed. Engl. 54(16), 4728â4747 (2015).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Towe, K. M. & Lowenstam, H. A. Ultrastructure and development of iron mineralization in the radular teeth of Cryptochiton stelleri (Mollusca). J. Ultrastruct. Res. 17(1â2), 1â13 (1967).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Evans, L. A., Macey, D. J. & Webb, J. Distribution and composition of the matrix protein in the radula teeth of the chiton Acanthopleura hirtosa. Mar. Biol. 109, 281â286 (1991).CASÂ
ArticleÂ
Google ScholarÂ
Macey, D. J. & Brooker, L. R. The junction zone: Initial site of mineralization in radula teeth of the chiton Cryptoplax striata (Mollusca: Polyplacophora). J. Morphol. 230, 33â42 (1996).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Lee, A. P. et al. In situ Raman spectroscopic studies of the teeth of the chiton Acanthopleura hirtosa. J. Biol. Inorg. Chem. 3, 614â619 (1998).CASÂ
ArticleÂ
Google ScholarÂ
Brooker, L. R. & Macey, D. J. Biomineralization in chiton teeth and its usefulness as a taxonomic character in the genus Acanthopleura Guilding, 1829 (Mollusca: Polyplacophora). Am. Malacol. Bull. 16(1/2), 203â215 (2001).
Google ScholarÂ
Lee, A. P., Brooker, L. R., Macey, D. J., Webb, J. & van Bronswijk, W. A new biomineral identified in the cores of teeth from the chiton Plaxiphora albida. J. Biol. Inorg. Chem. 8(3), 256â262 (2003).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Shaw, J. A. et al. The chiton stylus canal: An element delivery pathway for tooth cusp biomineralization. J. Morphol. 270(5), 588â600 (2009).PubMedÂ
ArticleÂ
Google ScholarÂ
Gordon, L. & Joester, D. Nanoscale chemical tomography of buried organic-inorganic interfaces in the chiton tooth. Nature 469, 194â198 (2011).ADSÂ
CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Emmanuel, S., Schuessler, J. A., Vinther, J., Matthews, A. & von Blanckenburg, F. A preliminary study of iron isotope fractionation in marine invertebrates (chitons, Mollusca) in near-shore environments. Biogeosciences 11(19), 5493â5502 (2014).ADSÂ
ArticleÂ
Google ScholarÂ
Shaw, J. A., Macey, D. J. & Brooker, L. R. Radula synthesis by three species of iron mineralizing molluscs: Production rate and elemental demand. J. Mar. Biol. Assoc. U. K. 88(3), 597â601 (2008).CASÂ
ArticleÂ
Google ScholarÂ
Brooker, L. R., Lee, A. P., Macey, D. J., van Bronswijk, W. & Webb, J. Multiple-front iron-mineralisation in chiton teeth (Acanthopleura echinata: Mollusca: Polyplacophora). Mar. Biol. 142, 447â454 (2003).CASÂ
ArticleÂ
Google ScholarÂ
Lee, A. P., Brooker, L. R., Macey, D. J., van Bronswijk, W. & Webb, J. Apatite mineralization in teeth of the chiton Acanthopleura echinata. Calcif. Tissue Int. 67, 408â415 (2000).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Brooker, L. R., Lee, A. P., Macey, D. J., Webb, J. & van Bronswijk, W. In situ studies of biomineral deposition in the radula teeth of chitons of the suborder Chitonina. Venus 65(1â2), 71â80 (2006).
Google ScholarÂ
van der Wal, P. Structure and formation of the magnetite-bearing cap of the polyplacophoran tricuspid radula teeth. In Iron Biominerals (eds Frankel, R. B. & Blakemore, R. P.) 221â229 (Plenum Press, New York, 1990).
Google ScholarÂ
Saunders, M., Kong, C., Shaw, J. A. & Clode, P. L. Matrix-mediated biomineralization in marine mollusks: A combined transmission electron microscopy and focused ion beam approach. Microsc. Microanal. 17, 220â225 (2011).ADSÂ
CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Lowenstam, H. A. Phosphatic hard tissues of marine invertebrates, their nature and mechanical function, and some fossil implications. Chem. Geol. 9, 153â166 (1972).ADSÂ
CASÂ
ArticleÂ
Google ScholarÂ
Macey, D. J., Webb, J. & Brooker, L. R. The structure and synthesis of biominerals in chiton teeth. Bull. Inst. OcĂ©anogr. (Monaco) 4(1), 191â197 (1994).
Google ScholarÂ
Lowenstam, H. A. & Weiner, S. Transformation of amorphous calcium phosphate to crystalline dahllite in the radula teeth of chitons. Science 227, 51â52 (1985).ADSÂ
CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Lowenstam, H. A. & Weiner, S. Mollusca. In On biomineralization (eds Lowenstam, H. A. & Weiner, S.) 88â305 (Oxford University Press, Oxford, 1989).ChapterÂ
Google ScholarÂ
Evans, L. A. & Alvarez, R. Characterization of the calcium biomineral in the radular teeth of Chiton pelliserpentis. J. Biol. Inorg. Chem. 4(2), 166â170 (1999).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Evans, L. A., Macey, D. J. & Webb, J. Calcium biomineralization in the radula teeth of the chiton, Acanthopleura hirtosa. Calcif. Tissue Int. 51, 78â82 (1992).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Kim, K. S., Webb, J., Macey, D. J. & Cohen, D. D. Compositional changes during biomineralization of the radula of the chiton Clavarizona hirtosa. J. Inorg. Biochem. 28(2â3), 337â345 (1986).CASÂ
ArticleÂ
Google ScholarÂ
Runham, N. W. The histochemistry of the radula of Patella vulgata. Q. J. Microsc. Sci. 102(3), 371â380 (1961).
Google ScholarÂ
Runham, N. W., Thronton, P. R., Shaw, D. A. & Wayte, R. C. The mineralization and hardness of the radular teeth of the limpet Patella vulgate L. Z. Zellforsch. 99, 608â626 (1969).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Grime, G. et al. Biological applications of the Oxford scanning proton microprobe. Trends Biochem. Sci. 10(1), 6â10 (1985).CASÂ
ArticleÂ
Google ScholarÂ
St Pierre, T. G. et al. Iron oxide biomineralization in the radula teeth of the limpet Patella vulgata; Mössbauer spectroscopy and high resolution transmission electron microscopy studies. Proc. R. Soc. B 228, 31â42 (1986).ADSÂ
CASÂ
Google ScholarÂ
Mann, S., Perry, C. C., Webb, J., Luke, B. & Williams, R. J. P. Structure, morphology, composition and organization of biogenic minerals in limpet teeth. Proc. R. Soc. B 227(1247), 179â190 (1986).ADSÂ
CASÂ
Google ScholarÂ
van der Wal, P. Structural and material design of mature mineralized radula teeth of Patella vulgata (Gastropoda). J. Ultrastruct. Mol. Struct. Res. 102(2), 147â161 (1989).ArticleÂ
Google ScholarÂ
Huang, C., Li, C.-W., Deng, M. & Chin, T. Magnetic properties of goethite in radulae of limpets. IEEE Trans. Magn. 28(5), 2409â2411 (1992).ADSÂ
CASÂ
ArticleÂ
Google ScholarÂ
Rinkevich, B. Major primary stages of biomineralization in radular teeth of the limpet Lottia gigantea. Mar. Biol. 117, 269â277 (1993).ArticleÂ
Google ScholarÂ
Liddiard, K. J., Hockridge, J. G., Macey, D. J., Webb, J. & van Bronswijk, W. Mineralisation in the teeth of the limpets Patelloida alticostata and Scutellastra laticostata (Mollusca: Patellogastropoda). Molluscan Res. 24, 21â31 (2004).CASÂ
ArticleÂ
Google ScholarÂ
Cruz, R. & Farina, M. Mineralization of major lateral teeth in the radula of a deep-sea hydrothermal vent limpet (Gastropoda: Neolepetopsidae). Mar. Biol. 147, 163â168 (2005).CASÂ
ArticleÂ
Google ScholarÂ
Davies, M. S., Proudlock, D. J. & Mistry, A. Metal concentrations in the radula of the common limpet, Patella vulgata L., from 10 sites in the UK. Ecotoxicology 14(4), 465â475 (2005).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Sone, E. D., Weiner, S. & Addadi, L. Biomineralization of limpet teeth: A cryo-TEM study of the organic matrix and the onset of mineral deposition. J. Struct. Biol. 158, 428â444 (2007).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Hua, T.-E. & Li, C.-W. Silica biomineralization in the radula of a limpet Notoacmea schrenckii (Gastropoda: Acmaeidae). Zool. Stud. 46(4), 379â388 (2007).CASÂ
Google ScholarÂ
Krings, W. et al. In slow motion: Radula motion pattern and forces exerted to the substrate in the land snail Cornu aspersum (Mollusca, Gastropoda) during feeding. R. Soc. Open Sci. 6(7), 2054â5703 (2019).ArticleÂ
CASÂ
Google ScholarÂ
Mikovari, A. et al. Radula development in the giant key-hole limpet Megathura crenulate. J. Shellfish Res. 34(3), 893â902 (2015).ArticleÂ
Google ScholarÂ
Ukmar-Godec, T., Kapun, G., Zaslansky, P. & Faivre, D. The giant keyhole limpet radular teeth: A naturally-grown harvest machine. J. Struct. Biol. 192, 392â402 (2015).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Macey, D. J., Brooker, L. R. & Cameron, V. Mineralisation in the teeth of the gastropod mollusc Nerita atramentosa. Molluscan Res. 18(1), 33â41 (1997).ArticleÂ
Google ScholarÂ
Barkalova, V. O., Fedosov, A. E. & Kantor, Y. I. Morphology of the anterior digestive system of tonnoideans (Gastropoda: Caenogastropoda) with an emphasis on the foregut glands. Molluscan Res. 36, 54â73 (2016).ArticleÂ
Google ScholarÂ
Ponte, G. & Modica, M. V. Salivary glands in predatory mollusks: Evolutionary considerations. Front. Physiol. 8, 580 (2017).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Haszprunar, G. On the origin and evolution of major gastropod groups, with special reference to the Streptoneura. J. Molluscan Stud. 54, 367â441 (1988).ArticleÂ
Google ScholarÂ
Sasaki, T. Comparative anatomy and phylogeny of the recent Archaeogastropoda (Mollusca: Gastropoda). Univ. Tokyo Bull. 38, 1â224 (1998).
Google ScholarÂ
Simone, L. R. L. Phylogeny of the Caenogastropoda (Mollusca), based on comparative morphology. Arq. Zool. 42(4), 161â323 (2011).ArticleÂ
Google ScholarÂ
Meirelles, C. A. & Matthews-Cascon, H. Relations between shell size and radula size in marine prosobranchs (Mollusca: Gastropoda). Thalassas 19(2), 45â53 (2003).
Google ScholarÂ
Peile, A. J. Some radula problems. J. Conchol. 20, 292â304 (1937).
Google ScholarÂ
Marcus, E. & Marcus, E. Mesogastropoden von der KĂŒste SĂŁo Paulos. Abh Math Naturwissenschaftlichen Kl Akad Wiss Lit Mainz 1963(1), 1â105 (1963).
Google ScholarÂ
Reid, D. G. The Littorinid Molluscs of Mangrove Forests in the Indo-Pacific Region: The Genus LITTORARIA (British Museum Natural History, London, 1986).
Google ScholarÂ
Reid, D. G. The comparative morphology, phylogeny and evolution of the gastropod family Littorinidae. Philos. Trans. R. Soc. Lond. B 324, 1â110 (1989).ADSÂ
ArticleÂ
Google ScholarÂ
Reid, D. G. & Mak, Y.-M. Indirect evidence for ecophenotypic plasticity in radular dentition of Littoraria species (Gastropoda: Littorinidae). J. Molluscan Stud. 65(3), 355â370 (1999).ArticleÂ
Google ScholarÂ
Fretter, V. & Graham, A. British Prosobranch Molluscs (The Ray Society, London, 1994).
Google ScholarÂ
Cabral, J. P. Shape and growth in European Atlantic Patella limpets (Gastropoda, Mollusca). Ecological implications for survival. Web Ecol. 7, 11â21 (2007).ArticleÂ
Google ScholarÂ
Nesson, M. H. Studies on radula tooth mineralization in the Polyplacophora, thesis, California Institute of Technology, Pasadena, USA (1969).Shaw, J. A., Brooker, L. R. & Macey, D. J. Radular tooth turnover in the chiton Acanthopleura hirtosa (Blainville, 1825) (Mollusca: Polyplacophora). Molluscan Res. 22, 93â99 (2002).ArticleÂ
Google ScholarÂ
Isarankura, K. & Runham, N. Studies on the replacement of the gastropod radula. Malacologia 7(1), 71â91 (1968).
Google ScholarÂ
Padilla, D. K., Dittman, D. E., Franz, J. & Sladek, R. Radular production rates in two species of Lacuna Turton (Gastropoda: Littorinidae). J. Molluscan Stud. 62(3), 275â280 (1996).ArticleÂ
Google ScholarÂ
Runham, N. W. Rate of replacement of the molluscan radula. Nature 194, 992â993 (1962).ADSÂ
ArticleÂ
Google ScholarÂ
Mackenstedt, U. & MĂ€rkel, K. Experimental and comparative morphology of radula renewal in pulmonates (Mollusca, Gastropoda). Zoomorphology 107(4), 209â239 (1987).ArticleÂ
Google ScholarÂ
Mischor, B. & MĂ€rkel, K. Histology and regeneration of the radula of Pomacea bridgesi (Gastropoda, Prosobranchia). Zoomorphology 104, 42â66 (1984).ArticleÂ
Google ScholarÂ
Fujioka, Y. Seasonal aberrant radular formation in Thais bronni (Dunker) and T. clavigera (KĂŒster) (Gastropoda: Muricidae). J. Exp. Mar. Biol. Ecol. 90(1), 43â54 (1985).ArticleÂ
Google ScholarÂ
Liu, Z., Meyers, M. A., Zhang, Z. & Ritchie, R. O. Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications. Progr. Mater. Sci. 88, 467â498 (2017).CASÂ
ArticleÂ
Google ScholarÂ
Vincent, J. F. V. The hardness of the tooth of Patella vulgata L. Radula: A Reappraisal. J. Molluscan Stud. 46, 129â133 (1980).
Google ScholarÂ
Evans, L. A., Macey, D. J. & Webb, J. Characterization and structural organization of the organic matrix of radula teeth of the chiton Acanthopleura hirtosa. Philos. Trans. R. Soc. Lond. B 329, 87â96 (1990).ADSÂ
ArticleÂ
Google ScholarÂ
Evans, L. A., Macey, D. J. & Webb, J. Matrix heterogeneity in the radular teeth of the chiton Acanthopleura hirtosa. Acta Zool. 75(1), 75â79 (1994).ArticleÂ
Google ScholarÂ
Wealthall, R. J., Brooker, L. R., Macey, D. J. & Griffin, B. J. Fine structure of the mineralized teeth of the chiton Acanthopleura echinata (Mollusca: Polyplacophora). J. Morphol. 265, 165â175 (2005).PubMedÂ
ArticleÂ
Google ScholarÂ
Krings, W., Kovalev, A. & Gorb, S. N. Influence of water content on mechanical behaviour of gastropod taenioglossan radulae. Proc. R. Soc. B 288, 20203173 (2021).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Krings, W., Kovalev, A. & Gorb, S. N. Collective effect of damage prevention in taenioglossan radular teeth is related to the ecological niche in Paludomidae (Gastropoda: Cerithioidea). Acta Biomater. 135, 458â472 (2021).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Radwin, G. E. & Wells, H. W. Comparative radular morphology and feeding habits of muricid gastropods from the Gulf of Mexico. Bull. Mar. Sci. 18(1), 72â85 (1968).
Google ScholarÂ
GrĂŒnbaum, D. & Padilla, D. K. An integrated modeling approach to assessing linkages between environment, organism, and phenotypic plasticity. Integr. Comp. Biol. 54(2), 323â335 (2014).PubMedÂ
ArticleÂ
Google ScholarÂ
Scheel, C., Gorb, S. N., Glaubrecht, M. & Krings, W. Not just scratching the surface: Distinct radular motion patterns in Mollusca. Biol. Open 9, bio055699 (2020).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Gray, J. On the division of ctenobranchous gasteropodous Mollusca into larger groups and families. Ann. Mag. Nat. Hist. 11(2), 124â133 (1853).ArticleÂ
Google ScholarÂ
Hyman, L. H. Mollusca I. Aplacophora polyplacophora monoplacophora. Gastropoda, the coelomate bilateria. The invertebrates 6 (McGraw-Hill Book Company, New York, 1967).
Google ScholarÂ
Nixon, M. A nomenclature for the radula of the Cephalopoda (Mollusca) â living and fossil. J. Zool. 236, 73â81 (1995).ArticleÂ
Google ScholarÂ
Haszprunar, G. & Götting, K. J. Mollusca, Weichtiere. In Spezielle Zoologie Teil Einzeller und wirbellose Tiere (eds Westheide, W. & Rieger, R.) 305â362 (Springer, Berlin, Germany, 2007).
Google ScholarÂ
Lowenstam, H. A. Magnetite in denticle capping in recent chitons (Polyplacophora). Geol. Soc. Am. Bull. 73, 435â438 (1962).ADSÂ
CASÂ
ArticleÂ
Google ScholarÂ
Kirschvink, J. L. & Lowenstam, H. A. Mineralization and magnetization of chiton teeth: Paleomagnetic, sedimentalogic and biologic implications of organic magnetite. EPSL 44, 193â204 (1979).ADSÂ
ArticleÂ
Google ScholarÂ
Han, Y. et al. Magnetic and structural properties of magnetite in radular teeth of chiton Acanthochiton rubrolinestus. Bioelectromagnetics 32, 226â233 (2011).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Nemoto, M. et al. Integrated transcriptomic and proteomic analyses of a molecular mechanism of radular teeth biomineralization in Cryptochiton stelleri. Sci. Rep. 9, 856 (2019).ADSÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
CASÂ
Google ScholarÂ
McCoey, J. M. et al. Quantum magnetic imaging of iron biomineralization in teeth of the chiton Acanthopleura hirtosa. Small Methods 4, 1900754 (2020).CASÂ
ArticleÂ
Google ScholarÂ
Lowenstam, H. A. Lepidocrocite, an apatite mineral, and magnetite in teeth of chitons (Polyplacophora). Science 56, 1373â1375 (1967).ADSÂ
ArticleÂ
Google ScholarÂ
Brooker, L. R., Lee, A. P., Macey, D. J. & Webb, J. Molluscan and other marine teeth. In Encyclopedia of Materials: Science and Technology (eds Buschow, K. H. J. et al.) 5186â5189 (Elsevier Science Ltd., Oxford, 2001).ChapterÂ
Google ScholarÂ
Shaw, J. A. et al. Ultrastructure of the epithelial cells associated with tooth biomineralization in the chiton Acanthopleura hirtosa. Microsc. Microanal. 15(2), 154â165 (2009).ADSÂ
CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Creighton, T. E. Protein folding coupled to disulphide bond formation. Biol. Chem. 378(8), 731â744 (1997).CASÂ
PubMedÂ
Google ScholarÂ
Harding, M. M. Metal-ligand geometry relevant to proteins and in proteins: Sodium and potassium. Acta Cryst. D 58, 872â874 (2002).ArticleÂ
CASÂ
Google ScholarÂ
Hayes, T. The influence of diet on local distributions of Cypraea. Pac. Sci. 37(1), 27â36 (1983).
Google ScholarÂ
Padilla, D. K. The importance of form: Differences in competitive ability, resistance to consumers and environmental stress in an assemblage of coralline algae. J. Exp. Mar. Biol. Ecol. 79(2), 105â127 (1984).ArticleÂ
Google ScholarÂ
Kesler, D. H., Jokinen, E. H. & Munns, W. R. Jr. Trophic preferences and feeding morphology of two pulmonate snail species from a small New England pond, USA. Can. J. Zool. 64, 2570â2575 (1986).ArticleÂ
Google ScholarÂ
Blinn, W., Truitt, R. E. & Pickart, A. Feeding ecology and radular morphology of the freshwater limpet Ferrissia fragilis. J. N. Am. Benthol. Soc. 8(3), 237â242 (1989).ArticleÂ
Google ScholarÂ
Hawkins, S. J. et al. A comparison of feeding mechanisms in microphagous, herbivorous, intertidal, prosobranchs in relation to resource partitioning. J. Molluscan Stud. 55(2), 151â165 (1989).ArticleÂ
Google ScholarÂ
Franz, C. J. Feeding patterns of Fissurella species on Isla de Margarita, Venezuela: Use of radulae and food passage rates. J. Molluscan Stud. 56(1), 25â35 (1990).ArticleÂ
Google ScholarÂ
Thompson, R. C., Johnson, L. E. & Hawkins, S. J. A method for spatial and temporal assessment of gastropod grazing intensity in the field: The use of radula scrapes on wax surfaces. J. Exp. Mar. Biol. Ecol. 218(1), 63â76 (1997).ArticleÂ
Google ScholarÂ
Iken, K. Feeding ecology of the Antarctic herbivorous gastropod Laevilacunaria antarctica Martens. J. Exp. Mar. Biol. Ecol. 236(1), 133â148 (1999).ArticleÂ
Google ScholarÂ
Forrest, R. E., Chapman, M. G. & Underwood, A. J. Quantification of radular marks as a method for estimating grazing of intertidal gastropods on rocky shores. J. Exp. Mar. Biol. Ecol. 258(2), 155â171 (2001).PubMedÂ
ArticleÂ
Google ScholarÂ
Dimitriadis, V. K. Structure and function of the digestive system in Stylommatophora. In The Biology of Terrestrial Molluscs (ed. Barker, G. M.) 237â258 (CABI Publishing, Wallingford, UK, 2001).ChapterÂ
Google ScholarÂ
Speiser, B. Food and feeding behaviour. In The Biology of Terrestrial Molluscs (ed. Barker, G. M.) 259â288 (CABI Publishing, Wallingford, UK, 2001).ChapterÂ
Google ScholarÂ
Sitnikova, T. et al. Resource partitioning in endemic species of Baikal gastropods indicated by gut contents, stable isotopes and radular morphology. Hydrobiologia 682, 75â90 (2012).CASÂ
ArticleÂ
Google ScholarÂ
Bergmeier, F. S., Ostermair, L. & Jörger, K. M. Specialized predation by deep-sea Solenogastres revealed by sequencing of gut contents. Curr. Biol. 31(13), R836âR837 (2021).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Goodheart, J. A., Bazinet, A. L., ValdĂ©s, Ă., Collins, A. G. & Cummings, M. P. Prey preference follows phylogeny: Evolutionary dietary patterns within the marine gastropod group Cladobranchia (Gastropoda: Heterobranchia: Nudibranchia). BMC Evol. Biol. 17, 221 (2017).PubMedÂ
PubMed CentralÂ
ArticleÂ
CASÂ
Google ScholarÂ
Padilla, D. K. Structural resistance of algae to herbivores. A biomechanical approach. Mar. Biol. 90, 103â109 (1985).ArticleÂ
Google ScholarÂ
Padilla, D. K. Algal structural defenses: Form and calcification in resistance to tropical limpets. Ecology 70(4), 835â842 (1989).ArticleÂ
Google ScholarÂ
Wilson, A. B., Glaubrecht, M. & Meyer, A. Ancient lakes as evolutionary reservoirs: Evidence from the thalassoid gastropods of Lake Tanganyika. Proc. R. Soc. B 271(1538), 529â536 (2004).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Ponder, W. & Lindberg, D. R. Phylogeny and Evolution of the Mollusca (University of California Press, Berkeley, California, 2008).BookÂ
Google ScholarÂ
Jörger, K. M. et al. On the origin of Acochlidia and other enigmatic euthyneuran gastropods, with implications for the systematics of Heterobranchia. BMC Evol. Biol. 10, 323 (2010).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Kocot, K. et al. Phylogenomics reveals deep molluscan relationships. Nature 477, 452â456 (2011).ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Kocot, K. M., Poustka, A. J., Stöger, I., Halanych, K. M. & Schrödl, M. New data from Monoplacophora and a carefully-curated dataset resolve molluscan relationships. Sci. Rep. 10, 101 (2020).ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Smith, S. et al. Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature 480, 364â367 (2011).ADSÂ
CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Haszprunar, G. & Wanninger, A. Molluscs. Curr Biol. 22(13), R510-514 (2012).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Wanninger, A. & Wollesen, T. The evolution of molluscs. Biol. Rev. 94, 102â115 (2019).ArticleÂ
Google ScholarÂ
Irisarri, I., Uribe, J. E., Eernisse, D. J. & Zardoya, R. A mitogenomic phylogeny of chitons (Mollusca: Polyplacophora). BMC Evol. Biol. 20, 22 (2020).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google Scholar More