Shellman-Reeve, J. S. Courting strategies and conflicts in a monogamous, biparental termite. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 266, 137–144 (1999).Article
Google Scholar
Boomsma, J. J. Beyond promiscuity: mate-choice commitments in social breeding. Philos. Trans. R. Soc. B: Biol. Sci. 368 (2013).Nichols, H. J. The causes and consequences of inbreeding avoidance and tolerance in cooperatively breeding vertebrates. J. Zool. 303, 1–14 (2017).Article
Google Scholar
Clutton-Brock, T. H. Female transfer and inbreeding avoidance in social mammals. Nature 337, 70–72 (1989).CAS
Article
PubMed
Google Scholar
Wolff, J. O. Parents suppress reproduction and stimulate dispersal in opposite-sex juvenile white-footed mice. Nature 359, 409–410 (1992).CAS
Article
PubMed
Google Scholar
Abbott, D. In Primate Social Conflict (eds W. A. Mason & S. P. Mendoza) 331–372 (State University of New York Press, 1993).Koenig, W. D., Haydock, J. & Stanback, M. T. Reproductive roles in the cooperatively breeding acorn woodpecker: incest avoidance versus reproductive competition. Am. Nat. 151, 243–255 (1998).CAS
Article
PubMed
Google Scholar
Hanby, J. P. & Bygott, J. D. Emigration of subadult lions. Anim. Behav. 35, 161–169 (1987).Article
Google Scholar
Brooked, M. G., Rowley, I., Adams, M. & Baverstock, P. R. Promiscuity: an inbreeding avoidance mechanism in a socially monogamous species? Behav. Ecol. Sociobiol. 26, 191–199 (1990).Article
Google Scholar
Amos, B., Schlotterer, C. & Tautz, D. Social structure of pilot whales revealed by analytical DNA proftling. Science 260, 670–672 (1993).CAS
Article
PubMed
Google Scholar
Sillero-Zubiri, C., Gottelli, D. & Macdonald, D. W. Male philopatry, extra-pack copulations and inbreeding avoidance in Ethiopian wolves (Canis simensis). Behav. Ecol. Sociobiol. 38, 331–340 (1996).Article
Google Scholar
Husseneder, C., Simms, D. M. & Ring, D. R. Genetic diversity and genotypic differentiation between the sexes in swarm aggregations decrease inbreeding in the Formosan subterranean termite. Insectes Sociaux 53, 212–219 (2006).Article
Google Scholar
Blouin, S. F. & Blouin, M. Inbreeding avoidance behaviors. Trends Ecol. Evol. 3, 230–233 (1988).CAS
Article
PubMed
Google Scholar
Pusey, A. & Wolf, M. Inbreeding avoidance in animals. Trends Ecol. Evol. 11, 201–206 (1996).CAS
Article
PubMed
Google Scholar
Gerlach, G. & Lysiak, N. Kin recognition and inbreeding avoidance in zebrafish, Danio rerio, is based on phenotype matching. Anim. Behav. 71, 1371–1377 (2006).Article
Google Scholar
Hurst, J. L. et al. Individual recognition in mice mediated by major urinary proteins. Nature 414, 631–634 (2001).CAS
Article
PubMed
Google Scholar
Vargo, E. L. & Husseneder, C. In Biology of termites: A modern synthesis (eds D.E. Bignell, Yves Roisin, & Nathan Lo) 133–164 (Springer, 2011).Shellman-Reeve, J. S. Dynamics of biparental care in the dampwood termite, Zootermopsis nevadensis (Hagen): response to nitrogen availability. Behav. Ecol. Sociobiol. 26, 389–397 (1990).Article
Google Scholar
Cole, E. L., Ilieş, I. & Rosengaus, R. B. Competing physiological demands during incipient colony foundation in a social insect: consequences of pathogenic stress. Front. Ecol. Evol. 6 (2018).Traniello, J. F. A., Rosengaus, R. B. & Savoie, K. The development of immunity in a social insect: evidence for the group facilitation of disease resistance. Proc. Natl Acad. Sci. 99, 6838–6842 (2002).CAS
Article
PubMed
PubMed Central
Google Scholar
Cremer, S., Armitage, S. A. O. & Schmid-Hempel, P. Social immunity. Curr. Biol. 17, R693–R702 (2007).CAS
Article
PubMed
Google Scholar
Rosengaus, R. B., Traniello, J. F. A. & Bulmer, M. In biology of termites: a modern synthesis (eds D. E. Bignell, Yves Roisin & Nathan Lo) 165–191 (Springer, 2011).Cole, E. L., Bayne, H. & Rosengaus, R. B. Young but not defenceless: antifungal activity during embryonic development of a social insect. R. Soc. Open Sci. 7, 191418–191418 (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
Rosengaus, R. B. & Traniello, J. F. Disease susceptibility and the adaptive nature of colony demography in the dampwood termite Zootermopsis angusticollis. Behav. Ecol. Sociobiol. 50, 546–556 (2001).Article
Google Scholar
Cole, E. L. & Rosengaus, R. B. Pathogenic dynamics during colony ontogeny reinforce potential drivers of termite eusociality: mate assistance and biparental care. Front. Ecol. Evol. 7 (2019).Chouvenc, T. The relative importance of queen and king initial weights in termite colony foundation success. Insectes Sociaux 66, 177–184 (2019).Article
Google Scholar
Matsuura, K. & Kobayashi, N. Termite queens adjust egg size according to colony development. Behav. Ecol. 21, 1018–1023 (2010).Article
Google Scholar
Calleri, D. V., McGrail Reid, E., Rosengaus, R. B., Vargo, E. L. & Traniello, J. F. A. Inbreeding and disease resistance in a social insect: effects of heterozygosity on immunocompetence in the termite Zootermopsis angusticollis. Proc. R. Soc. B: Biol. Sci. 273, 2633–2640 (2006).Article
Google Scholar
DeHeer, C. J. & Vargo, E. L. An indirect test of inbreeding depression in the termites Reticulitermes flavipes and Reticulitermes virginicus. Behav. Ecol. Sociobiol. 59, 753–761 (2006).Article
Google Scholar
Aguero, C. M., Eyer, P.-A., Martin, J. S., Bulmer, M. S. & Vargo, E. L. Natural variation in colony inbreeding does not influence susceptibility to a fungal pathogen in a termite. Ecol. Evol. 11, 3072–3083 (2021).Article
PubMed
PubMed Central
Google Scholar
Aguero, C., Eyer, P. A. & Vargo, E. L. Increased genetic diversity from colony merging in termites does not improve survival against a fungal pathogen. Sci. Rep. 10, 4212 (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
Rosengaus, R. B. & Traniello, J. F. Disease risk as a cost of outbreeding in the termite Zootermopsis angusticollis. Proc. Natl Acad. Sci. 90, 6641–6645 (1993).CAS
Article
PubMed
PubMed Central
Google Scholar
Eyer, P.-A. et al. Extensive human-mediated jump dispersal within and across the native and introduced ranges of the invasive termite Reticulitermes flavipes. Mol. Ecol. 30, 3948–3964 (2021).Article
PubMed
Google Scholar
Perdereau, E. et al. Global genetic analysis reveals the putative native source of the invasive termite, Reticulitermes flavipes, in France. Mol. Ecol. 22, 1105–1119 (2013).CAS
Article
PubMed
Google Scholar
Sinotte, V. M. et al. Female-biased sex allocation and lack of inbreeding avoidance in Cubitermes termites. Ecol. Evolution 11, 5598–5605 (2021).Article
Google Scholar
Li, G., Gao, Y., Sun, P., Lei, C. & Huang, Q. Factors affecting mate choice in the subterranean termite Reticulitermes chinensis (Isoptera: Rhinotermitidae). J. Ethol. 31, 159–164 (2013).Article
Google Scholar
Aguilera-Olivares, D., Flores-Prado, L., Véliz, D. & Niemeyer, H. Mechanisms of inbreeding avoidance in the one-piece drywood termite Neotermes chilensis. Insectes Sociaux 62, 237–245 (2015).Article
Google Scholar
Miyaguni, Y., Agarie, A., Sugio, K., Tsuji, K. & Kobayashi, K. Caste development and sex ratio of the Ryukyu drywood termite Neotermes sugioi and its potential mechanisms. Sci. Rep. 11, 15037 (2021).CAS
Article
PubMed
PubMed Central
Google Scholar
Nutting, W. L. In Biology of Termites (eds Kumar Krishna & Frances M. Weesner) 233–282 (Academic Press, 1969).Fougeyrollas, R. et al. Dispersal and mating strategies in two neotropical soil-feeding termites, Embiratermes neotenicus and Silvestritermes minutus (Termitidae, Syntermitinae). Insectes Sociaux 65, 251–262 (2018).Article
Google Scholar
Shellman-Reeve, J. S. Genetic relatedness and partner preference in a monogamous, wood-dwelling termite. Anim. Behav. 61, 869–876 (2001).Article
Google Scholar
Zhang, Z.-Y. et al. Biochemical, molecular, and morphological variations of flight muscles before and after dispersal flight in a eusocial termite, Reticulitermes chinensis. Insect Sci. 28, 77–92 (2021).CAS
Article
PubMed
Google Scholar
Mullins, A. J. et al. Dispersal flights of the Formosan subterranean termite (Isoptera: Rhinotermitidae). J. Econ. Entomol. 108, 707–719 (2015).Article
PubMed
Google Scholar
Goodisman, M. A. D. & Crozier, R. H. Population and colony genetic structure of the primitive termite Mastotermes Darwiniensis. Evolution 56, 70–83 (2002).Article
PubMed
Google Scholar
Schmidt, A. M., Jacklyn, P. & Korb, J. Isolated in an ocean of grass: low levels of gene flow between termite subpopulations. Mol. Ecol. 22, 2096–2105 (2013).Article
PubMed
Google Scholar
Thompson, G. J., Lenz, M., Crozier, R. H. & Crespi, B. J. Molecular-genetic analyses of dispersal and breeding behaviour in the Australian termite Coptotermes lacteus: evidence for non-random mating in a swarm-dispersal mating system. Aust. J. Zool. 55, 219–227 (2007).CAS
Article
Google Scholar
Vargo, E. L. Diversity of termite breeding systems. Insects 10, 52 (2019).Article
PubMed Central
Google Scholar
Tranter, C., LeFevre, L., Evison, S. E. F. & Hughes, W. O. H. Threat detection: contextual recognition and response to parasites by ants. Behav. Ecol. 26, 396–405 (2014).Article
Google Scholar
Hussain, A., Tian, M.-Y., He, Y.-R., Bland, J. M. & Gu, W.-X. Behavioral and electrophysiological responses of Coptotermes formosanus Shiraki towards entomopathogenic fungal volatiles. Biol. Control 55, 166–173 (2010).Article
Google Scholar
Yanagawa, A., Imai, T., Akino, T., Toh, Y. & Yoshimura, T. Olfactory cues from pathogenic fungus affect the direction of motion of termites, Coptotermes formosanus. J. Chem. Ecol. 41, 1118–1126 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
Rosengaus, R. B., James, L.-T., Hartke, T. R. & Brent, C. S. Mate preference and disease risk in Zootermopsis angusticollis (Isoptera: Termopsidae). Environ. Entomol. 40, 1554–1565 (2011).Article
PubMed
Google Scholar
Beani, L. et al. Cuticular hydrocarbons as cues of sex and health condition in Polistes dominula wasps. Insectes Sociaux 66, 543–553 (2019).Article
Google Scholar
Waser, P. M., Austad, S. N. & Keane, B. When should animals tolerate inbreeding? Am. Nat. 128, 529–537 (1986).Article
Google Scholar
Bengtsson, B. O. Avoiding inbreeding: at what cost? J. Theor. Biol. 73, 439–444 (1978).CAS
Article
PubMed
Google Scholar
Lehmann, L. & Perrin, N. Inbreeding avoidance through kin recognition: Choosy females boost male dispersal. Am. Nat. 162, 638–652 (2003).Article
PubMed
Google Scholar
Basalingappa, S. Environmental hazards to reproductives of Odontotermes assmuthi Holgrem. Indian Zool. 1, 45–50 (1970).
Google Scholar
Darlington, J., Sands, W. & Pomeroy, D. Distribution and post-settlement survival in the field by reproductive pairs of Hodotermes mossambicus hagen (isoptera, hodotermitida). Insectes Sociaux 24, 353–358 (1977).Article
Google Scholar
Dial, K. P. & Vaughan, T. A. Opportunistic predation on alate termites in Kenya. Biotropica 19, 185–187 (1987).Article
Google Scholar
Korb, J. & Salewski, V. Predation on swarming termites by birds. Afr. J. Ecol. 38, 173–174 (2000).Article
Google Scholar
Schwenke, R. A., Lazzaro, B. P. & Wolfner, M. F. ReproduCtion–immunity Trade-offs In Insects. Annu. Rev. Entomol. 61, 239–256 (2016).CAS
Article
PubMed
Google Scholar
Calleri, D. II, Rosengaus, R. & Traniello, J. A. Disease and colony foundation in the dampwood termite Zootermopsis angusticollis: The survival advantage of nestmate pairs. Naturwissenschaften 92, 300–304 (2005).CAS
Article
PubMed
Google Scholar
Fei, H. X. & Henderson, G. Comparative study of incipient colony development in the Formosan subterranean termite, Coptotermes formosanus Shiraki (Isoptera,Rhinotermitidae). Insectes Sociaux 50, 226–233 (2003).Article
Google Scholar
Rosengaus, R. B., Cornelisse, T., Guschanski, K. & Traniello, J. F. A. Inducible immune proteins in the dampwood termite Zootermopsis angusticollis. Naturwissenschaften 94, 25–33 (2007).CAS
Article
PubMed
Google Scholar
Rosengaus, R. B., Traniello, J. F. A., Chen, T., Brown, J. J. & Karp, R. D. Immunity in a social insect. Naturwissenschaften 86, 588–591 (1999).CAS
Article
Google Scholar
Sun, Q., Haynes, K. F., Hampton, J. D. & Zhou, X. Sex-specific inhibition and stimulation of worker-reproductive transition in a termite. Sci. Nat. 104, 79 (2017).Article
CAS
Google Scholar
Eyer, P.-A. et al. Inbreeding tolerance as a pre-adapted trait for invasion success in the invasive ant Brachyponera chinensis. Mol. Ecol. 27, 4711–4724 (2018).PubMed
Google Scholar
Barrett, S. C. H. & Charlesworth, D. Effects of a change in the level of inbreeding on the genetic load. Nature 352, 522 (1991).CAS
Article
PubMed
Google Scholar
Crnokrak, P. & Spencer, C. H. B. Perspective: purging the genetic load. A review of the experimental evidence. Evolution 56, 2347–2358 (2002).Article
PubMed
Google Scholar
Day, S. B., Bryant, E. H. & Meffert, L. M. The influence of variable rates of inbreeding on fitness, environmental responsiveness, and evolutionary potential. Evolution 57, 1314–1324 (2003).Article
PubMed
Google Scholar
Syren, R. M. & Luykx, P. Permanent segmental interchange complex in the termite Incisitermes schwarzi. Nature 266, 167–168 (1977).CAS
Article
PubMed
Google Scholar
Fontana, F. Multiple reciprocal chromosomal translocations and their role in the evolution of sociality in termites. Ethol. Ecol. Evolution 3, 15–19 (1991).CAS
Article
Google Scholar
Matsuura, K. A test of the haplodiploid analogy hypothesis in the termite Reticulitermes speratus (Isoptera: Rhinotermitidae). Ann. Entomol. Soc. Am. 95, 646–649 (2002).Article
Google Scholar
Yashiro, T. et al. Enhanced heterozygosity from male meiotic chromosome chains is superseded by hybrid female asexuality in termites. Proc. Natl. Acad. Sci. 118, e2009533118 (2021).Charlesworth, B. & Wall, J. D. Inbreeding, heterozygote advantage and the evolution of neo-X and neo-Y sex chromosomes. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 266, 51–56 (1999).Article
Google Scholar
Hellemans, S. et al. Widespread occurrence of asexual reproduction in higher termites of the Termes group (Termitidae: Termitinae). BMC Evol. Biol. 19, 131 (2019).Article
PubMed
PubMed Central
Google Scholar
Vargo, E. L., Labadie, P. E. & Matsuura, K. Asexual queen succession in the subterranean termite Reticulitermes virginicus. Proc. R. Soc. B: Biol. Sci. 279, 813–819 (2012).Article
Google Scholar
Matsuura, K. et al. Queen succession through asexual reproduction in termites. Science 323, 1687–1687 (2009).CAS
Article
PubMed
Google Scholar
Cremer, S., Pull, C. D. & Fürst, M. A. Social immunity: emergence and evolution of colony-level disease protection. Annu. Rev. Entomol. 63, 105–123 (2018).CAS
Article
PubMed
Google Scholar
Van Meyel, S., Körner, M. & Meunier, J. Social immunity: why we should study its nature, evolution and functions across all social systems. Curr. Opin. Insect Sci. 28, 1–7 (2018).Article
PubMed
Google Scholar
Cotter, S. C. & Kilner, R. M. Personal immunity versus social immunity. Behav. Ecol. 21, 663–668 (2010).Article
Google Scholar
Liu, L., Zhao, X.-Y., Tang, Q.-B., Lei, C.-L. & Huang, Q.-Y. The mechanisms of social immunity against fungal infections in eusocial insects. Toxins 11, 244 (2019).CAS
Article
PubMed Central
Google Scholar
Chouvenc, T. & Su, N. Y. When subterranean termites challenge the rules of fungal epizootics. Plos One 7, e34484 (2012).CAS
Article
PubMed
PubMed Central
Google Scholar
Davis, H. E., Meconcelli, S., Radek, R. & McMahon, D. P. Termites shape their collective behavioural response based on stage of infection. Sci. Rep. 8, 14433–14433 (2018).Article
CAS
PubMed
PubMed Central
Google Scholar
Cassidy, S. T. et al. Disease defences across levels of biological organization: individual and social immunity in acorn ants. Anim. Behav. 179, 73–81 (2021).Article
Google Scholar
López-Uribe, M. M., Sconiers, W. B., Frank, S. D., Dunn, R. R. & Tarpy, D. R. Reduced cellular immune response in social insect lineages. Biol. Lett. 12, 20150984 (2016).Article
CAS
PubMed
PubMed Central
Google Scholar
He, S. et al. Evidence for reduced immune gene diversity and activity during the evolution of termites. Proc. R. Soc. B: Biol. Sci. 288, 20203168 (2021).Article
Google Scholar
Viljakainen, L. et al. Rapid evolution of immune proteins in social insects. Mol. Biol. Evol. 26, 1791–1801 (2009).CAS
Article
PubMed
Google Scholar
Meusemann, K., Korb, J., Schughart, M. & Staubach, F. No evidence for single-copy immune-gene specific signals of selection in termites. Front. Ecol. Evol. 8 (2020).Otani, S., Bos, N. & Yek, S. H. Transitional complexity of social insect immunity. Front. Ecol. Evol. 4 (2016).Barribeau, S. M. et al. A depauperate immune repertoire precedes evolution of sociality in bees. Genome Biol. 16, 83 (2015).Article
CAS
PubMed
PubMed Central
Google Scholar
de Boer, R. A., Vega-Trejo, R., Kotrschal, A. & Fitzpatrick, J. L. Meta-analytic evidence that animals rarely avoid inbreeding. Nat. Ecol. Evol. 5, 949–964 (2021).Article
PubMed
Google Scholar
Szulkin, M., Stopher, K. V., Pemberton, J. M. & Reid, J. M. Inbreeding avoidance, tolerance, or preference in animals? Trends Ecol. Evol. 28, 205–211 (2013).Article
PubMed
Google Scholar
Fox, C. W. & Reed, D. H. Inbreeding depression increases with environmental stress: an experimental study and meta-analysis. Evol. 65, 246–258 (2011).Article
Google Scholar
Kokko, H., Ots, I. & Tregenza, T. When not to avoid inbreeding. Evolution 60, 467–475 (2006).Article
PubMed
Google Scholar
Zayed, A. & Packer, L. Complementary sex determination substantially increases extinction proneness of haplodiploid populations. Proc. Natl Acad. Sci. USA 102, 10742–10746 (2005).CAS
Article
PubMed
PubMed Central
Google Scholar
Ross, K. G. & Fletcher, D. J. C. Diploid male production — a significant colony mortality factor in the fire ant Solenopsis invicta (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 19, 283–291 (1986).Article
Google Scholar
Eyer, P.-A., Salin, J., Helms, A. M. & Vargo, E. L. Distinct chemical blends produced by different reproductive castes in the subterranean termite Reticulitermes flavipes. Sci. Rep. 11, 4471 (2021).CAS
Article
PubMed
PubMed Central
Google Scholar
Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).Article
PubMed
PubMed Central
Google Scholar
Queller, D. C. & Goodnight, K. F. Estimating relatedness using genetic markers. Evolution 43, 258–275 (1989).Article
PubMed
Google Scholar
Wang, J. Coancestry: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol. Ecol. Resour. 11, 141–145 (2011).Article
PubMed
Google Scholar
Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS
Article
PubMed
Google Scholar
Rosengaus, R. B., Moustakas, J. E., Calleri, D. V. & Traniello, J. F. A. Nesting ecology and cuticular microbial loads in dampwood (Zootermopsis angusticollis) and drywood termites (Incisitermes minor, I. schwarzi, Cryptotermes cavifrons). J. Insect Sci. 3, 31 (2003).Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).CAS
Article
PubMed
PubMed Central
Google Scholar
White, T. J., Burns, T., Lee, S. & Taylor, J. in PCR protocols: A guide to methods and applications (eds. M. A. Innis, D. H. Gelfand, J. J. Snisky, & T. J. White) 315–322 (Academic Press, 1990).Aguero, C. M., Eyer, P.-A., Crippen, T. L. & Vargo, E. L. Reduced environmental microbial diversity on the cuticle and in the galleries of a subterranean termite compared to surrounding soil. Microb. Ecol. 81, 1054–1063 (2021).CAS
Article
PubMed
Google Scholar
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
Hamady, M., Lozupone, C. & Knight, R. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J. 4, 17–27 (2010).CAS
Article
PubMed
Google Scholar
Therneau, T. & Grambsch, P. Modeling Survival Data: Extending the Cox Model (Springer, 2000).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article
Google Scholar More