More stories

  • in

    Impact of rice paddy agriculture on habitat usage of migratory shorebirds at the rice paddy scale in Korea

    Boere, G. C., Galbraith, C. A., Stroud, D. & Thompson, D. B. A. The conservation of waterbirds around the world in Waterbirds Around the World (ed. Boere, G. C., Galbraith, C. A. & Stroud, D. A.) 32–45 (The Stationery Office, Edinburgh, UK, 2007).Butchart, S. H. M. et al. Global biodiversity: Indicators of recent declines. Science 328, 1164–1168. https://doi.org/10.1126/science.1187512,Pubmed:20430971 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Nebel, S., Porter, J. L. & Kingsford, R. T. Long-term trends of shorebird populations in eastern Australia and impacts of freshwater extraction. Biol. Conserv. 141, 971–980. https://doi.org/10.1016/j.biocon.2008.01.017 (2008).Article 

    Google Scholar 
    MacKinnon, J., Verkuil, Y. I. & Murray, N. IUCN situation analysis on east and Southeast Asian intertidal habitats, with particular reference to the Yellow Sea (including the Bohai Sea). Occas. Pap. IUCN Species Surviv. Comm. 047, 70.Li, X. et al. Assessing changes of habitat quality for shorebirds in stopover sites: A case study in Yellow River Delta, China. Wetlands 39, 67–77. https://doi.org/10.1007/s13157-018-1075-9 (2019).Article 

    Google Scholar 
    Murray, N. J., Clemens, R. S., Phinn, S. R., Possingham, H. P. & Fuller, R. A. Tracking the rapid loss of tidal wetlands in the Yellow Sea. Front. Ecol. Environ. 12, 267–272. https://doi.org/10.1890/130260 (2014).Article 

    Google Scholar 
    Green, J. M. H., Sripanomyom, S., Giam, X. & Wilcove, D. S. The ecology and economics of shorebird conservation in a tropical human-modified landscape. J. Appl. Ecol. 52, 1483–1491. https://doi.org/10.1111/1365-2664.12508 (2015).Article 

    Google Scholar 
    Toral, G. M. & Figuerola, J. Unraveling the importance of rice fields for waterbird populations in Europe. Biodivers. Conserv. 19, 3459–3469. https://doi.org/10.1007/s10531-010-9907-9 (2010).Article 

    Google Scholar 
    Masero, J. A. Assessing alternative anthropogenic habitats for conserving waterbirds: salinas as buffer areas against the impact of natural habitat loss for shorebirds. Biodivers. Conserv. 12, 1157–1173. https://doi.org/10.1023/A:1023021320448 (2003).Article 

    Google Scholar 
    Athearn, N. D. et al. Variability in habitat value of commercial salt production ponds: implications for waterbird management and tidal marsh restoration planning. Hydrobiologia 697, 139–155. https://doi.org/10.1007/s10750-012-1177-y (2012).CAS 
    Article 

    Google Scholar 
    Navedo, J. G. et al. Agroecosystems and conservation of migratory waterbirds: Importance of coastal pastures and factors influencing their use by wintering shorebirds. Biodivers. Conserv. 22, 1895–1907. https://doi.org/10.1007/s10531-013-0516-2 (2013).Article 

    Google Scholar 
    Navedo, J. G., Fernández, G., Valdivia, N., Drever, M. C. & Masero, J. A. Identifying management actions to increase foraging opportunities for shorebirds at semi-intensive shrimp farms. J. Appl. Ecol. 54, 567–576. https://doi.org/10.1111/1365-2664.12735 (2017).Article 

    Google Scholar 
    Lawler, S. P. Rice fields as temporary wetlands: A review. Isr. J. Zool. 47, 513–528. https://doi.org/10.1560/X7K3-9JG8-MH2J-XGX1 (2001).Article 

    Google Scholar 
    Fasola, M. & Ruiz, X. The value of rice fields as substitutes for natural wetlands for waterbirds in the Mediterranean region. Waterbirds 19, 122–128. https://doi.org/10.2307/1521955 (1996).Article 

    Google Scholar 
    Elphick, C. S. Why study birds in rice fields?. Waterbirds 33, 1–7. https://doi.org/10.1675/063.033.s101 (2010).Article 

    Google Scholar 
    Lourenço, P. M. & Piersma, T. Stopover ecology of Black-tailed Godwits Limosa limosa limosa in Portuguese rice fields: A guide on where to feed in winter. Bird Study 55, 194–202. https://doi.org/10.1080/00063650809461522 (2008).Article 

    Google Scholar 
    Elphick, C. S. & Oring, L. W. Conservation implications of flooding rice fields on winter waterbird communities. Agric. Ecosyst. Environ. 94, 17–29. https://doi.org/10.1016/S0167-8809(02)00022-1 (2003).Article 

    Google Scholar 
    Maeda, T. Patterns of bird abundance and habitat use in rice fields of the Kanto Plain, central Japan. Ecol. Res. 16, 569–585. https://doi.org/10.1046/j.1440-1703.2001.00418.x (2001).Article 

    Google Scholar 
    Choi, S. H., Nam, H. K. & Yoo, J. C. Characteristics of population dynamics and habitat use of shorebirds in rice fields during spring migration. Korean J. Environ. Agric. 33, 334–343. https://doi.org/10.5338/KJEA.2014.33.4.334 (2014).Article 

    Google Scholar 
    Shuford, W. D., Humphrey, J. M. & Nur, N. Breeding status of the Black tern in California. West. Birds 32, 189–217 (2001).
    Google Scholar 
    Sánchez-Guzmán, J. M. et al. Identifying new buffer areas for conserving waterbirds in the Mediterranean basin: The importance of the rice fields in Extremadura, Spain. Biodivers. Conserv. 16, 3333–3344. https://doi.org/10.1007/s10531-006-9018-9 (2007).Article 

    Google Scholar 
    Rendón, M. A., Green, A. J., Aguilera, E. & Almaraz, P. Status, distribution and long-term changes in the waterbird community wintering in Doñana, south–west Spain. Biol. Conserv. 141, 1371–1388. https://doi.org/10.1016/j.biocon.2008.03.006 (2008).Article 

    Google Scholar 
    Ibáñez, C., Curcó, A., Riera, X., Ripoll, I. & Sánchez, C. Influence on birds of rice field management practices during the growing season: A review and an experiment. Waterbirds 33, 167–180. https://doi.org/10.1675/063.033.s113 (2010).Article 

    Google Scholar 
    Pierluissi, S. Breeding waterbirds in rice fields: A global review. Waterbirds 33, 123–132. https://doi.org/10.1675/063.033.0117 (2010).Article 

    Google Scholar 
    Day, J. H. & Colwell, M. A. Waterbird communities in rice fields subjected to different post-harvest treatments. Waterbirds 21, 185–197. https://doi.org/10.2307/1521905 (1998).Article 

    Google Scholar 
    Elphick, C. S. & Oring, L. W. Winter management of Californian rice fields for waterbirds. J. Appl. Ecol. 35, 95–108. https://doi.org/10.1046/j.1365-2664.1998.00274.x (1998).Article 

    Google Scholar 
    Manley, S. W., Kaminski, R. M., Reinecke, K. J. & Gerard, P. D. Waterbird foods in winter-managed ricefields in Mississippi. J. Wildl. Manag. 68, 74–83. https://doi.org/10.2193/0022-541X(2004)068[0074:WFIWRI]2.0.CO;2 (2004).Article 

    Google Scholar 
    Pernollet, C. A., Cavallo, F., Simpson, D., Gauthier-Clerc, M. & Guillemain, M. Seed density and waterfowl use of rice fields in Camargue, France. Jour. Wild. Mgmt 81, 96–111. https://doi.org/10.1002/jwmg.21167 (2017).Article 

    Google Scholar 
    Nam, H. K., Choi, S. H. & Yoo, J. C. Influence of foraging behaviors of shorebirds on habitat use in rice fields during spring migration. Korean J. Environ. Agric. 34, 178–185. https://doi.org/10.5338/KJEA.2015.34.3.35 (2015).Article 

    Google Scholar 
    Nam, H. K., Choi, S. H., Choi, Y. S. & Yoo, J. C. Patterns of waterbirds abundance and habitat use in rice fields. Korean J. Environ. Agr. 31, 359–367. https://doi.org/10.5338/KJEA.2012.31.4.359 (2012).Article 

    Google Scholar 
    Nam, H. K., Choi, Y. S., Choi, S. H. & Yoo, J. C. Distribution of waterbirds in rice fields and their use of foraging habitats. Waterbirds 38, 173–183. https://doi.org/10.1675/063.038.0206 (2015).Article 

    Google Scholar 
    Hua, N., Tan, K., Chen, Y. & Ma, Z. Key research issues concerning the conservation of migratory shorebirds in the Yellow Sea region. Bird Conserv. Int. 25, 38–52. https://doi.org/10.1017/S0959270914000380 (2015).Article 

    Google Scholar 
    Stroud, D. A. et al. The conservation and population status of the world’s waders at the turn of the millennium in. Waterbirds Around the World Conference 643–648 (The Stationery Office, Edinburgh, UK, 2006).Taft, O. W. & Haig, S. M. The value of agricultural wetlands as invertebrate resources for wintering shorebirds. Agric. Ecosyst. Environ. 110, 249–256. https://doi.org/10.1016/j.agee.2005.04.012 (2005).Article 

    Google Scholar 
    Strum, K. M. et al. Winter management of California’s rice fields to maximize waterbird habitat and minimize water use. Agric. Ecosyst. Environ. 179, 116–124. https://doi.org/10.1016/j.agee.2013.08.003 (2013).Article 

    Google Scholar 
    Dias, R. A., Blanco, D. E., Goijman, A. P. & Zaccagnini, M. E. Density, habitat use, and opportunities for conservation of shorebirds in rice fields in southeastern South America. Condor Ornithol. Appl. 116, 384–393. https://doi.org/10.1650/CONDOR-13-160.1 (2014).Article 

    Google Scholar 
    Golet, G. H. et al. Using ricelands to provide temporary shorebird habitat during migration. Ecol. Appl. 28, 409–426. https://doi.org/10.1002/eap.1658,Pubmed:29205645 (2018).Article 
    PubMed 

    Google Scholar 
    Choi, G., Nam, H. K., Son, S. J., Do, M. S. & Yoo, J. C. The impact of agricultural activities on habitat use by the Wood sandpiper and Common greenshank in rice fields. Ornithol. Sci. 20, 27–37. https://doi.org/10.2326/osj.20.27 (2021).Article 

    Google Scholar 
    Choi, S. H. & Nam, H. K. Flexible behavior of the Black-tailed godwit Limosa limosa is key to successful refueling during staging at rice paddy fields in Midwestern Korea. Zool. Sci. 37, 255–262. https://doi.org/10.2108/zs190120,Pubmed:32549539 (2020).Article 

    Google Scholar 
    Cole, M. L., Leslie, D. M. Jr. & Fisher, W. L. Habitat use by shorebirds at a stopover site in the southern Great Plains. Southwest. Nat. 47, 372–378. https://doi.org/10.2307/3672495 (2002).Article 

    Google Scholar 
    Rundle, W. D. & Fredrickson, L. H. Managing seasonally flooded impoundments for migrant rails and shorebirds. Wildl. Soc. Bull., 80–87 (1981).Taylor, D. M. & Trost, C. H. Use of lakes and reservoirs by migrating shorebirds in Idaho. Gr Basin Nat. 52, 179–184 (1992).
    Google Scholar 
    Hands, H. M., Ryan, M. R. & Smith, J. W. Migrant shorebird use of marsh, Moist-Soil, and flooded agricultural habitats. Wildl. Soc. Bull. 1973–2006(19), 457–464 (1991).
    Google Scholar 
    Skagen, S. K. & Knopf, F. L. Migrating shorebirds and habitat dynamics at a prairie wetland complex. Wilson Bull., 91–105 (1994).Weber, L. M. & Haig, S. M. Shorebird use of South Carolina managed and natural coastal wetlands. J. Wildl. Manag. 60, 73–82. https://doi.org/10.2307/3802042 (1996).Article 

    Google Scholar 
    Collazo, J. A., O’Harra, D. A. & Kelly, C. A. Accessible habitat for shorebirds: factors influencing its availability and conservation implications. Waterbirds, 13–24 (2002).Helmers, D.L. Shorebird Management Manual. Western Hemisphere Shorebird Reserve Network (Manomet Cntr for Conservation Sciences, Manomet, MA, 1992).Verkuil, Y., Koolhaas, A. & Van Der Winden, J. Wind effects on prey availability: how northward migrating waders use brackish and hypersaline lagoons in the Sivash, Ukraine. Neth. J. Sea Res. 31, 359–374. https://doi.org/10.1016/0077-7579(93)90053-U (1993).Article 

    Google Scholar 
    Davis, C. A. & Smith, L. M. Ecology and management of migrant shorebirds in the Playa Lakes Region of Texas. Wildl. Monogr., 3–45 (1998).Barter, M. Shorebirds of the Yellow Sea: Importance, threats and conservation status in Wetlands Int. Global Ser. Oceania 9, 5–13.Katayama, N., Baba, Y. G., Kusumoto, Y. & Tanaka, K. A review of post-war changes in rice farming and biodiversity in Japan. Agric. Syst. 132, 73–84. https://doi.org/10.1016/j.agsy.2014.09.001 (2015).Article 

    Google Scholar 
    Mukherjee, A. Adaptiveness of cattle egret’s (Bubulcus ibis) foraging. Zoos Print J. 15, 331–333 (2000). https://doi.org/10.11609/JoTT.ZPJ.15.10.331-3.Choi, Y. S., Kim, S. S. & Yoo, J. C. Feeding activity of cattle egrets and intermediate egrets at different stages of rice culture in Korea. J. Ecol. Environ. 33, 149–155. https://doi.org/10.5141/JEFB.2010.33.2.149 (2010).Article 

    Google Scholar 
    Katayama, N., Amano, T., Fujita, G. & Higuchi, H. Spatial overlap between the intermediate egret Egretta intermedia and its aquatic prey at two spatiotemporal scales in a rice paddy landscape. Zool. Stud. 51, 1105–1112 (2013).
    Google Scholar 
    Sebastián-González, E. & Green, A. J. Reduction of avian diversity in created versus natural and restored wetlands. Ecography 39, 1176–1184. https://doi.org/10.1111/ecog.01736 (2016).Article 

    Google Scholar 
    Walton, M. E. M. et al. A model for the future: ecosystem services provided by the aquaculture activities of Veta La Palma, Southern Spain. Aquaculture 448, 382–390. https://doi.org/10.1016/j.aquaculture.2015.06.017 (2015).Article 

    Google Scholar 
    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2014).Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Lüdecke, D. sjPlot: data visualization for statistics in social science. R package version 1.6.9. org/Package=sjPlot > (2016). http://CRAN.Rproject. More

  • in

    The impact of Tamarix invasion on the soil physicochemical properties

    Mack, R. N. et al. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecol. Appl. 10(3), 689–710 (2000).
    Google Scholar 
    Pimentel, D. Biological invasionseconomic and environmental costs of alien plant, animal, and microbe species. No. 577.18 B5/2011. 2011.Jackson, T. Addressing the economic costs of invasive alien species: Some methodological and empirical issues. Int. J. Sustain. Soc. 7(3), 221–240 (2015).
    Google Scholar 
    Walker, B. H. & Steffen, W. L. Interactive and integrated effects of global change on terrestrial ecosystems. In The Terrestrial Biosphere and Global Change. Implications for Natural and Managed Ecosystems, Synthesis Volume. International Geosphere-Biosphere Program Book Series 4 (eds Walker, B. et al.) 329–375 (Cambridge University Press, 1999).
    Google Scholar 
    Wilcove, D. S., Rothstein, D., Dubow, J., Phillips, A. & Losos, E. Quantifying threats to imperiled species in the United States. Bioscience 48(8), 607–615 (1998).
    Google Scholar 
    Robinson, T. W. Introduction, Spread and Areal Extent of Saltcedar [Tamarix] in the Western States (No. 491) (US Government Printing Office, 1965).
    Google Scholar 
    Marlin, D., Newete, S. W., Mayonde, S. G., Smit, E. R. & Byrne, M. J. Invasive Tamarix (Tamaricaceae) in South Africa: Current research and the potential for biological control. Biol. Invasions 19(10), 2971–2992 (2017).
    Google Scholar 
    Pearce, C. M. & Smith, D. G. Saltcedar: Distribution, abundance, and dispersal mechanisms, northern Montana, USA. Wetlands 23(2), 215–228 (2003).
    Google Scholar 
    Newete, S. W., Mayonde, S. & Byrne, M. J. Distribution and abundance of invasive Tamarix genotypes in South Africa. Weed Res. 59(3), 191–200 (2019).CAS 

    Google Scholar 
    Chew, M. K. The monstering of tamarisk: How scientists made a plant into a problem. J. Hist. Biol. 42(2), 231–266 (2009).PubMed 

    Google Scholar 
    Richardson, D. M., Macdonald, I. A. W., Hoffmann, J. H. & Henderson, L. Alienplantinvasions. In The Vegetation of Southern Africa (eds Cowling, R. M. et al.) 535–570 (Cambridge University Press, 1997).
    Google Scholar 
    Ehrenfeld, J. G. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6(6), 503–523 (2003).CAS 

    Google Scholar 
    Haubensak, K. A., D’Antonio, C. M. & Alexander, J. Effects of nitrogen-fixing shrubs in Washington and Coastal California1. Weed Technol. 18(sp1), 1475–1479 (2004).
    Google Scholar 
    Hawkes, C. V., Wren, I. F., Herman, D. J. & Firestone, M. K. Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecol. Lett. 8(9), 976–985 (2005).PubMed 

    Google Scholar 
    Kourtev, P. S., Ehrenfeld, J. G. & Häggblom, M. Exotic plant species alter the microbial community structure and function in the soil. Ecology 83(11), 3152–3166 (2002).
    Google Scholar 
    Saggar, S., McIntosh, P. D., Hedley, C. B. & Knicker, H. Changes in soil microbial biomass, metabolic quotient, and organic matter turnover under Hieracium (H. pilosella L.). Biol. Fertility Soils 30(3), 232–238 (1999).CAS 

    Google Scholar 
    Dudley, T. L., DeLoach, C. J., Levich, J. E. & Carruthers, R. I. Saltcedar invasion of western riparian areas: Impacts and new prospects for control. Trans. N. Am. Wildlife Nat. Resources Conf. 65, 345–381 (2000).
    Google Scholar 
    Algotsson, E. Biological diversity. In Environmental Management in South Africa 2nd edn (eds Strydom, H. A. & King, N. D.) 97–125 (Juta Cape Town, 2009).
    Google Scholar 
    Mayonde, S. G., Cron, G. V., Gaskin, J. F. & Byrne, M. J. Tamarix (Tamaricaceae) hybrids: The dominant invasive genotype in Southern Africa. Biol. Invasions 18(12), 3575–3594 (2016).
    Google Scholar 
    Corbin, J. D. & D’Antonio, C. M. Effects of exotic species on soil nitrogen cycling: Implications for restoration1. Weed Technol. 18(sp1), 1464–1468 (2004).CAS 

    Google Scholar 
    Marchante, E., Kjøller, A., Struwe, S. & Freitas, H. Soil recovery after removal of the N 2-fixing invasive Acacia longifolia: Consequences for ecosystem restoration. Biol. Invasions 11(4), 813–823 (2009).
    Google Scholar 
    Magadlela, D. & Mdzeke, N. Social benefits in the Working for Water programme as a public works initiative: Working for water. S. Afr. J. Sci. 100(1–2), 94–96 (2004).
    Google Scholar 
    Yelenik, S. G., Stock, W. D. & Richardson, D. M. Ecosystem level impacts of invasive Acacia saligna in the South African fynbos. Restor. Ecol. 12(1), 44–51 (2004).
    Google Scholar 
    Malcolm, G. M., Bush, D. S. & Rice, S. K. Soil nitrogen conditions approach preinvasion levels following restoration of nitrogen-fixing black locust (Robinia pseudoacacia) stands in a Pine-Oak Ecosystem. Restor. Ecol. 16(1), 70–78 (2008).
    Google Scholar 
    Maron, J. L. & Jefferies, R. L. Bush lupine mortality, altered resource availability, and alternative vegetation states. Ecology 80(2), 443–454 (1999).
    Google Scholar 
    AgriLASA (Agri Laboratory Association of Southern Africa). 2004. Soil handbook.Okalebo, J.R., Gathua, K.W. & Woomer, P.L. (2002). Laboratory methods of soil and plant analysis: A working manual second edition. Sacred Africa, Nairobi, 21.LECO. 2003. Truspec CN Carbon/Nitrogen Determinator Instructions Manual. LECO Corporation, St Joseph, USA.Suarez, D. L., Wood, J. D. & Lesch, S. M. Effect of SAR on water infiltration under a sequential rain–irrigation management system. Agric. Water Manag. 86(1–2), 150–164 (2006).
    Google Scholar 
    Dane, J.H., and Hopmans, JW. (2002). Water retention and storage. GC Method of soil analysis. SSSA book series. Madison, Wisconsin, USA. 1692, 671–720.Blakemore, L.C., Searle, P.L. and Daly, B.K. (1987). Methods for chemical analysis of soils. New Zealand Soil Bureau Scientific, Report 80. New Zealand, Lower Hutt: New Zealand Society of Soil Science, 103.Buckham, L.E. (2011). Contrasting growth traits and insect interactions of two Tamarix species and a hybrid (Tamaricaceae) used for mine rehabilitation in South Africa (Doctoral dissertation).Ladenburger, C. G., Hild, A. L., Kazmer, D. J. & Munn, L. C. Soil salinity patterns in Tamarix invasions in the Bighorn Basin, Wyoming, USA. J. Arid Environ. 65(1), 111–128 (2006).ADS 

    Google Scholar 
    Beukes, P. C. & Ellis, F. Soil and vegetation changes across a Succulent Karoo grazing gradient. Afr. J. Range Forage Sci. 20(1), 11–19 (2003).
    Google Scholar 
    Liu, M. et al. Monitoring the invasion of Spartina alterniflora using multi-source high-resolution imagery in the Zhangjiang Estuary, China. Remote Sensing 9(6), 539 (2017).ADS 

    Google Scholar 
    Newete, S. W., Abd Elbasit, M. A. & Araya, T. Soil salinity and moisture content under non-native Tamarix species. Int. J. Phytorem. 22(9), 931–938. https://doi.org/10.1080/15226514.2020.1774503 (2020).CAS 
    Article 

    Google Scholar 
    Whitford, W. G., Anderson, J. & Rice, P. M. Stemflow contribution to the ’fertile island’effect in creosotebush, Larrea tridentata. J. Arid Environ. 35(3), 451–457 (1997).ADS 

    Google Scholar 
    Li, C., Li, Y. & Ma, J. Spatial heterogeneity of soil chemical properties at fine scales induced by Haloxylon ammodendron (Chenopodiaceae) plants in a sandy desert. Ecol. Res. 26(2), 385–394 (2011).MathSciNet 
    CAS 

    Google Scholar 
    Sookbirsingh, R., Karina, C., Thomas, E.G. & Rusell, RC. (2010). Salt separation processes in the saltcedar Tamarix ramosissima (Lebed.). Commun Soil Sci Plant Anal. 41(10), 1271–1281.Newete, S.W., Allem, S.M., Venter, N. and Byrne, M.J. Tamarix efficiency in salt excretion and physiological tolerance to salt-induced stress in South Africa. Int. J. Phytoremediat. 1–7 (2019).Di Tomaso, J. M. Impact, biology, and ecology of saltcedar (Tamarix spp.) in the southwestern United States. Weed Technol. 12(2), 326–336 (1998).
    Google Scholar 
    Smith, S. D., Devitt, D. A., Sala, A., Cleverly, J. R. & Busch, D. E. Water relations of riparian plants from warm desert regions. Wetlands 18(4), 687–696 (1998).
    Google Scholar 
    Lesica, P. & DeLuca, T. H. Is tamarisk allelopathic?. Plant Soil 267(1–2), 357–365 (2004).CAS 

    Google Scholar 
    Bagstad, K. J., Lite, S. J. & Stromberg, J. C. Vegetation, soils, and hydrogeomorphology of riparian patch types of a dryland river. Western N. Am. Naturalist 66(1), 23–45 (2006).
    Google Scholar 
    Lehnhoff, E. A., Rew, L. J., Zabinski, C. A. & Menalled, F. D. Reduced impacts or a longer lag phase? Tamarix in the northwestern USA. Wetlands 32(3), 497–508 (2012).
    Google Scholar 
    Ye, W., Wang, H. X., Gao, J., Liu, H. J. & Yan, L. Simulation of salt ion migration in soil under reclaimed water irrigation. J. Agro-Environ. Sci. 33(5), 1007–1015 (2014).CAS 

    Google Scholar 
    Yang, S. C. et al. Characterization of soil salinization based on canonical correspondence analysis method in Gansu Yellow River irrigation district of Northwest China. Scientia Agricultura Sinica 47(1), 100–110 (2014).CAS 

    Google Scholar 
    Zhang, L. H., Chen, P. H., Li, J., Chen, X. B. & Feng, Y. Distribution of soil salt ions around Tamarix chinensis individuals in the Yellow River Delta. Acta Ecol. Sin. 36(18), 5741–5749 (2016).CAS 

    Google Scholar 
    Zhang, T., Zhan, X., He, J., Feng, H. & Kang, Y. Salt characteristics and soluble cations redistribution in an impermeable calcareous saline-sodic soil reclaimed with an improved drip irrigation. Agric. Water Manag. 197, 91–99 (2018).
    Google Scholar 
    Yin, C. H., Feng, G. U., Zhang, F., Tian, C. Y. & Tang, C. Enrichment of soil fertility and salinity by tamarisk in saline soils on the northern edge of the Taklamakan Desert. Agric. Water Manag. 97(12), 1978–1986 (2010).
    Google Scholar 
    Chaudhari, P. R., Ahire, D. V., Ahire, V. D., Chkravarty, M. & Maity, S. Soil bulk density as related to soil texture, organic matter content and available total nutrients of Coimbatore soil. Int. J. Sci. Res. Publ. 3(2), 1–8 (2013).CAS 

    Google Scholar 
    Tanveera, A., Kanth, T. A., Tali, P. A. & Naikoo, M. Relation of soil bulk density with texture, total organic matter content and porosity in the soils of Kandi Area of Kashmir valley, India. Int. Res. J. Earth Sci. 4(1), 1–6 (2016).
    Google Scholar 
    Sharma, B. & Bhattacharya, S. Soil bulk density as related to soil texture, moisture content, Ph, electrical conductivity, organic carbon, organic matter content and available macro nutrients of Pandoga sub watershed, Una District of HP (India). Int. J. Eng. Res. Dev. 13(12), 72–76 (2017).
    Google Scholar  More

  • in

    Resident birds are more behaviourally plastic than migrants

    Hall, M. J., Burns, A. L., Martin, J. M. & Hochuli, D. F. Flight initiation distance changes across landscapes and habitats in a successful urban coloniser. Urban Ecosyst. https://doi.org/10.1007/s11252-020-00969-5 (2020).Article 

    Google Scholar 
    Møller, A. P., Samia, D. S. M., Weston, M. A., Guay, P. J. & Blumstein, D. T. Flight initiation distances in relation to sexual dichromatism and body size in birds from three continents. Biol. J. Linn. Soc. 117, 823–831 (2016).
    Google Scholar 
    Morelli, F. et al. Contagious fear: Escape behavior increases with flock size in European gregarious birds. Ecol. Evol. 9, 6096–6104 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Samia, D. S. M. et al. Rural-urban differences in escape behavior of European birds across a latitudinal gradient. Front. Ecol. Evol. 5, 66 (2017).ADS 

    Google Scholar 
    Blumstein, D. T. Developing an evolutionary ecology of fear: How life history and natural history traits affect disturbance tolerance in birds. Anim. Behav. 71, 389–399 (2006).
    Google Scholar 
    McFarland, D. Oxford companion to animal behavior. (Oxford University Press, 1987).Stankowich, T. & Blumstein, D. T. Fear in animals: A meta-analysis and review of risk assessment. Proc. R. Soc. B Biol. Sci. 272, 2627–2634 (2005).
    Google Scholar 
    Lima, S. L. Maximizing feeding efficiency and minimizing time exposed to predators: a trade-off in the black-capped chickadee. Oecologia 66, 60–67 (1985).ADS 
    PubMed 

    Google Scholar 
    Sol, D. et al. Risk-taking behavior, urbanization and the pace of life in birds. Behav. Ecol. Sociobiol. 72, 59 (2018).
    Google Scholar 
    Lockwood, R., Swaddle, J. P. & Rayner, J. M. V. Avian Wingtip Shape Reconsidered: Wingtip Shape Indices and Morphological Adaptations to Migration. J. Avian Biol. 29, 273–292 (1998).
    Google Scholar 
    Møller, A. P. Birds. in Escaping from predators: An integrative view of escape decisions and refuge use (eds. Cooper, W. E. J. & Blumstein, D. T.) 88–112 (Cambridge University Press, 2015).Møller, A. P. Flight distance of urban birds, predation and selection for urban life. Behav. Ecol. Sociobiol. 63, 63–75 (2008).
    Google Scholar 
    Fernández-Juricic, E. et al. Relationships of anti-predator escape and post-escape responses with body mass and morphology: a comparative avian study. Evol. Ecol. Res. 8, 731–752 (2006).
    Google Scholar 
    Weston, M. A., Mcleod, E. M., Blumstein, D. T. & Guay, P. J. A review of flight-initiation distances and their application to managing disturbance to Australian birds. Emu 112, 269–286 (2012).
    Google Scholar 
    Hemmingsen, A. The relation of shyness (flushing distance) to body size. Spolia Zool Musei Hauniensis 11, 74–76 (1951).
    Google Scholar 
    Blumstein, D. T. Flight-initiation distance in birds is dependent on intruder starting distance. J. Wildl. Manage. 67, 852–857 (2013).
    Google Scholar 
    Glover, H. K., Weston, M. A., Maguire, G. S., Miller, K. K. & Christie, B. A. Towards ecologically meaningful and socially acceptable buffers: Response distances of shorebirds in Victoria, Australia, to human disturbance. Landsc. Urban Plan. 103, 326–334 (2011).
    Google Scholar 
    Geist, C., Liao, J., Libby, S. & Blumstein, D. T. Does intruder group size and orientation affect flight initiation distance in birds?. Anim. Biodivers. Conserv. 28, 69–73 (2001).
    Google Scholar 
    Mikula, P. Pedestrian density influences flight distances of urban birds. Ardea 102, 53–60 (2014).
    Google Scholar 
    Piratelli, A. J., Favoretto, G. R. & de Almeida Maximiano, M. F. Factors affecting escape distance in birds. Zoologia 32, 438–444 (2015).Burger, J. & Gochfeld, M. Human activity influence and diurnal and nocturnal foraging of Sanderlings (Calidris alba). Condor 93, 259–265 (1991).
    Google Scholar 
    Møller, A. P. & Garamszegi, L. Z. Between individual variation in risk-taking behavior and its life history consequences. Behav. Ecol. 23, 843–853 (2012).
    Google Scholar 
    Ferguson, S. M., Gilson, L. N. & Bateman, P. W. Look at the time: diel variation in the flight initiation distance of a nectarivorous bird. Behav. Ecol. Sociobiol. 73, 147 (2019).
    Google Scholar 
    Garamszegi, L. Z. & Møller, A. P. Partitioning within-species variance in behaviour to within- and between-population components for understanding evolution. Ecol. Lett. 20, 599–608 (2017).PubMed 

    Google Scholar 
    Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).CAS 
    PubMed 

    Google Scholar 
    Dufour, P. et al. Reconstructing the geographic and climatic origins of long-distance bird migrations. J. Biogeogr. 47, 155–166 (2020).
    Google Scholar 
    Sol, D. et al. Evolutionary divergence in brain size between migratory and resident birds. PLoS ONE 5, e9617 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bonnet-Lebrun, A. S., Somveille, M., Rodrigues, A. S. L. & Manica, A. Exploring intraspecific variation in migratory destinations to investigate the drivers of migration. Oikos 130, 187–196 (2021).
    Google Scholar 
    Zurell, D., Gallien, L., Graham, C. H. & Zimmermann, N. E. Do long-distance migratory birds track their niche through seasons?. J. Biogeogr. 45, 1459–1468 (2018).
    Google Scholar 
    Samia, D. S. M., Nakagawa, S., Nomura, F., Rangel, T. F. & Blumstein, D. T. Increased tolerance to humans among disturbed wildlife. Nat. Commun. 6, 8877 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ydenberg, R. C. & Dill, L. M. The economics of fleeing from predators. Adv. Study Behav. 16, 229–249 (1986).
    Google Scholar 
    Cooper, W. E. J. & Blumstein, D. T. Escape behavior: importance, scope, and variables. in Escaping from predators: An integrative view of escape decisions (eds. Cooper, W. E. J. & Blumstein, D. T.) 3–14 (Cambridge University Press, 2015). https://doi.org/10.1017/CBO9781107447189.002.Sayol, F., Sol, D. & Pigot, A. L. Brain size and life history interact to predict urban tolerance in birds. Front. Ecol. Evol. 8, 58 (2020).
    Google Scholar 
    Sayol, F., Downing, P. A., Iwaniuk, A. N., Maspons, J. & Sol, D. Predictable evolution towards larger brains in birds colonizing oceanic islands. Nat. Commun. 9, 2820 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tobias, J. A. & Pigot, A. L. Integrating behaviour and ecology into global biodiversity conservation strategies. Philos. Trans. R. Soc. B Biol. Sci. 374, 20190012 (2019).
    Google Scholar 
    Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).
    Google Scholar 
    Kamilar, J. M. & Cooper, N. Phylogenetic signal in primate behaviour, ecology and life history. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120341–22012034 (2013).
    Google Scholar 
    Machado, J. P., Antunes, A., Borges, R., Gomes, C. & Rocha, A. P. Measuring phylogenetic signal between categorical traits and phylogenies. Bioinformatics https://doi.org/10.1093/bioinformatics/bty800 (2018).Article 

    Google Scholar 
    Ericson, P. G. P. et al. Diversification of Neoaves: integration of molecular sequence data and fossils. Biol. Lett. 2, 543–547 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 
    PubMed 

    Google Scholar 
    Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).CAS 

    Google Scholar 
    Revell, L. J. & Chamberlain, S. A. Rphylip: An R interface for PHYLIP R package. (2014).Blomberg, S. P. & Garland, T. Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J. Evol. Biol. 15, 899–910 (2003).
    Google Scholar 
    Keck, F., Rimet, F., Bouchez, A. & Franc, A. Phylosignal: An R package to measure, test, and explore the phylogenetic signal. Ecol. Evol. 6, 2774–2780 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Münkemüller, T. et al. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756 (2012).
    Google Scholar 
    Kot, M. Adaptation: Statistics and a null model for estimating phylogenetic effects. Syst. Zool. 39, 227–241 (1990).
    Google Scholar 
    Blomberg, S. P., Garland, T. J. & Ives, A. R. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution (N. Y.) 57, 717–745 (2003).
    Google Scholar 
    Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    McCullagh, P. & Nelder, J. A. Generalized Linear Models. (Chapman and Hall, 1989).Pinheiro, J. et al. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-140. 1–117 (2019).Nakazawa, M. ‘fmsb’ Functions for Medical Statistics Book with some Demographic Data – R package version 0.6.1. (2017).R Development Core Team. R: A language and environment for statistical computing. (2021).Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. (Springer, 2002). https://doi.org/10.1007/978-0-387-21706-2. More

  • in

    Linking transcriptional dynamics of CH4-cycling grassland soil microbiomes to seasonal gas fluxes

    Canadell JG, Monteiro PMS, Costa, MH, Cotrim da Cunha L, Cox PM, Eliseev AV, et al. Global carbon and other biogeochemical cycles and feedbacks. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, et al. editors. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press; 2021, in press.Rosentreter JA, Borges AV, Deemer BR, Holgerson MA, Liu S, Song C, et al. Half of global methane emissions come from highly variable aquatic ecosystem sources. Nat Geosci. 2021;14:225–30.CAS 

    Google Scholar 
    Saunois M, Stavert AR, Poulter B, Bousquet P, Canadell JG, Jackson RB, et al. The global methane budget 2000 – 2017. Earth Syst. Sci Data. 2020;12:1561–623.
    Google Scholar 
    Lamentowicz M, Gałka M, Pawlyta J, Lamentowicz Ł, Goslar T, Miotk-Szpiganowicz G. Climate change and human impact in the southern Baltic during the last millennium reconstructed from an ombrotrophic bog archive. Stud Quat. 2011;28:3–16.
    Google Scholar 
    Davidson NC. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar Freshw Res. 2014;65:934–41.
    Google Scholar 
    Oertel C, Matschullat J, Zurba K, Zimmermann F, Erasmi S. Greenhouse gas emissions from soils – a review. Geochemistry. 2016;76:327–52.CAS 

    Google Scholar 
    Liesack W, Schnell S, Revsbech NP. Microbiology of flooded rice paddies. FEMS Microbiol Rev. 2000;24:625–45.CAS 
    PubMed 

    Google Scholar 
    Conrad R. The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep. 2009;1:285–92.CAS 
    PubMed 

    Google Scholar 
    Lyu Z, Shao N, Akinyemi T, Whitman WB. Methanogenesis. Curr Biol. 2018;28:R727–R732.CAS 
    PubMed 

    Google Scholar 
    Kurth JM, Nobu MK, Tamaki H, de Jonge N, Berger S, Jetten MSM, et al. Methanogenic archaea use a bacteria-like methyltransferase system to demethoxylate aromatic compounds. ISME J. 2021;15:3549–65.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mayumi D, Mochimaru H, Tamaki H, Yamamoto K, Yoshioka H, Suzuki Y, et al. Methane production from coal by a single methanogen. Science. 2016;354:222–6.CAS 
    PubMed 

    Google Scholar 
    Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q. Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Chang Biol. 2013;19:1325–46.PubMed 

    Google Scholar 
    Narrowe AB, Borton MA, Hoyt DW, Smith GJ, Daly RA, Angle JC, et al. Uncovering the diversity and activity of methylotrophic methanogens in freshwater wetland soils. mSystems. 2019;4:e00320–19.PubMed 
    PubMed Central 

    Google Scholar 
    Zalman CA, Meade N, Chanton J, Kostka JE, Bridgham SD, Keller JK. Methylotrophic methanogenesis in Sphagnum-dominated peatland soils. Soil Biol Biochem. 2018;118:156–60.CAS 

    Google Scholar 
    Knief C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front Microbiol. 2015;6:1346.PubMed 
    PubMed Central 

    Google Scholar 
    Le Mer J, Roger P. Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol. 2001;37:25–50.
    Google Scholar 
    Wieczorek AS, Drake HL, Kolb S. Organic acids and ethanol inhibit the oxidation of methane by mire methanotrophs. FEMS Microbiol Ecol. 2011;77:28–39.CAS 
    PubMed 

    Google Scholar 
    Welte CU, Rasigraf O, Vaksmaa A, Versantvoort W, Arshad A, Op den Camp HJM, et al. Nitrate- and nitrite-dependent anaerobic oxidation of methane. Environ Microbiol Rep. 2016;8:941–55.CAS 
    PubMed 

    Google Scholar 
    Cui M, Ma A, Qi H, Zhuang X, Zhuang G. Anaerobic oxidation of methane: An ‘active’ microbial process. Microbiol Open. 2015;4:1–11.
    Google Scholar 
    Ettwig KF, Zhu B, Speth D, Keltjens JT, Jetten MSM, Kartal B. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc Natl Acad Sci USA. 2016;113:12792–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stiehl-Braun PA, Hartmann AA, Kandeler E, Buchmann N, Niklaus PA. Interactive effects of drought and N fertilization on the spatial distribution of methane assimilation in grassland soils. Glob Chang Biol 2011;17:2629–39.
    Google Scholar 
    Bodelier PLE, Meima-Franke M, Hordijk CA, Steenbergh AK, Hefting MM, Bodrossy L, et al. Microbial minorities modulate methane consumption through niche partitioning. ISME J. 2013;7:2214–28.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Karbin S, Hagedorn F, Dawes MA, Niklaus PA. Treeline soil warming does not affect soil methane fluxes and the spatial micro-distribution of methanotrophic bacteria. Soil Biol Biochem. 2015;86:164–71.CAS 

    Google Scholar 
    Stiehl-Braun PA, Powlson DS, Poulton PR, Niklaus PA. Effects of N fertilizers and liming on the micro-scale distribution of soil methane assimilation in the long-term Park Grass experiment at Rothamsted. Soil Biol Biochem. 2011;43:1034–41.CAS 

    Google Scholar 
    Menyailo OV, Hungate BA, Abraham WR, Conrad R. Changing land use reduces soil CH4 uptake by altering biomass and activity but not composition of high-affinity methanotrophs. Glob Chang Biol. 2008;14:2405–19.
    Google Scholar 
    Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, et al. Carbon and Other Biogeochemical Cycles. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, et al. editors. Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York, NY: Cambridge University Press; 2013, 465–570.Täumer J, Kolb S, Boeddinghaus RS, Wang H, Schöning I, Schrumpf M, et al. Divergent drivers of the microbial methane sink in temperate forest and grassland soils. Glob Chang Biol. 2021;27:929–40.PubMed 

    Google Scholar 
    Kolb S. The quest for atmospheric methane oxidizers in forest soils. Environ Microbiol Rep. 2009;1:336–46.CAS 
    PubMed 

    Google Scholar 
    Kolb S, Horn MA. Microbial CH4 and N2O consumption in acidic wetlands. Front Microbiol. 2012;3:78.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cai Y, Zheng Y, Bodelier PLE, Conrad R, Jia Z. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nat Commun. 2016;7:11728.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dean JF, Middelburg JJ, Röckmann T, Aerts R, Blauw LG, Egger M, et al. Methane feedbacks to the global climate system in a warmer world. Rev Geophys. 2018;56:207–50.
    Google Scholar 
    Levy-Booth DJ, Giesbrecht IJW, Kellogg CTE, Heger TJ, D’Amore DV, Keeling PJ, et al. Seasonal and ecohydrological regulation of active microbial populations involved in DOC, CO2, and CH4 fluxes in temperate rainforest soil. ISME J. 2019;13:950–63.CAS 
    PubMed 

    Google Scholar 
    Lombard N, Prestat E, van Elsas JD, Simonet P. Soil-specific limitations for access and analysis of soil microbial communities by metagenomics. FEMS Microbiol Ecol. 2011;78:31–49.CAS 
    PubMed 

    Google Scholar 
    Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol. 2016;2:16242.PubMed 

    Google Scholar 
    Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 2013;7:2061–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sukenik A, Kaplan-Levy RN, Welch JM, Post AF. Massive multiplication of genome and ribosomes in dormant cells (akinetes) of Aphanizomenon ovalisporum (Cyanobacteria). ISME J. 2012;6:670–9.CAS 
    PubMed 

    Google Scholar 
    Schwartz E, Hayer M, Hungate BA, Koch BJ, McHugh TA, Mercurio W, et al. Stable isotope probing with 18O-water to investigate microbial growth and death in environmental samples. Curr Opin Biotechnol. 2016;41:14–18.CAS 
    PubMed 

    Google Scholar 
    Angel R, Conrad R. Elucidating the microbial resuscitation cascade in biological soil crusts following a simulated rain event. Environ Microbiol. 2013;15:2799–815.CAS 
    PubMed 

    Google Scholar 
    Papp K, Mau RL, Hayer M, Koch BJ, Hungate BA, Schwartz E. Quantitative stable isotope probing with H218O reveals that most bacterial taxa in soil synthesize new ribosomal RNA. ISME J. 2018;12:3043–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Urich T, Lanzén A, Qi J, Huson DH, Schleper C, Schuster SC. Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS One. 2008;3:e2527.PubMed 
    PubMed Central 

    Google Scholar 
    Peng J, Wegner CE, Liesack W. Short-term exposure of paddy soil microbial communities to salt stress triggers different transcriptional responses of key taxonomic groups. Front Microbiol. 2017;8:400.PubMed 
    PubMed Central 

    Google Scholar 
    Peng J, Wegner CE, Bei Q, Liu P, Liesack W. Metatranscriptomics reveals a differential temperature effect on the structural and functional organization of the anaerobic food web in rice field soil. Microbiome. 2018;6:169.PubMed 
    PubMed Central 

    Google Scholar 
    Abdallah RZ, Wegner CE, Liesack W. Community transcriptomics reveals drainage effects on paddy soil microbiome across all three domains of life. Soil Biol Biochem. 2019;132:131–42.CAS 

    Google Scholar 
    Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional: and this is not optional. Front Microbiol. 2017;8:2224.PubMed 
    PubMed Central 

    Google Scholar 
    Moran MA, Satinsky B, Gifford SM, Luo H, Rivers A, Chan LK, et al. Sizing up metatranscriptomics. ISME J. 2013;7:237–43.CAS 
    PubMed 

    Google Scholar 
    Gifford SM, Sharma S, Rinta-Kanto JM, Moran MA. Quantitative analysis of a deeply sequenced marine microbial metatranscriptome. ISME J. 2011;5:461–72.PubMed 

    Google Scholar 
    Söllinger A, Tveit AT, Poulsen M, Noel SJ, Bengtsson M, Bernhardt J, et al. Holistic assessment of rumen microbiome dynamics through quantitative metatranscriptomics reveals multifunctional redundancy during key steps of anaerobic feed degradation. mSystems 2018;3:e00038–18.PubMed 
    PubMed Central 

    Google Scholar 
    Fischer M, Bossdorf O, Gockel S, Hänsel F, Hemp A, Hessenmöller D, et al. Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic Appl Ecol. 2010;11:473–85.
    Google Scholar 
    IUSS Working Group WRB. World reference base for soil resources 2014, update 2015 international soil classification system for naming soils and creating legends for soil maps. World Soil Resour Reports No 106. Rome: FAO; 2015.Vance ED, Brookes PC, Jenkinson DS. An extraction method for measuring soil microbial biomass C. Soil Biol Biochem. 1987;19:703–7.CAS 

    Google Scholar 
    Joergensen RG, Mueller T. The fumigation-extraction method to estimate soil microbial biomass: calibaration of the kEN value. Soil Biol Biochem. 1996;28:33–37.CAS 

    Google Scholar 
    Brookes PC, Landman A, Pruden G, Jenkinson DS. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem. 1985;17:837–42.CAS 

    Google Scholar 
    Bamminger C, Zaiser N, Zinsser P, Lamers M, Kammann C, Marhan S. Effects of biochar, earthworms, and litter addition on soil microbial activity and abundance in a temperate agricultural soil. Biol Fertil Soils. 2014;50:1189–1200.CAS 

    Google Scholar 
    Koch O, Tscherko D, Kandeler E. Seasonal and diurnal net methane emissions from organic soils of the Eastern Alps, Austria: Effects of soil temperature, water balance, and plant biomass. Arct Antarct Alp Res. 2007;39:438–48.
    Google Scholar 
    Tveit AT, Urich T, Svenning MM. Metatranscriptomic analysis of arctic peat soil microbiota. Appl Environ Microbiol. 2014;80:5761–72.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27:2957–63.PubMed 
    PubMed Central 

    Google Scholar 
    Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:863–4.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kopylova E, Noé L, Touzet H. SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–7.CAS 
    PubMed 

    Google Scholar 
    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.CAS 
    PubMed 

    Google Scholar 
    Lanzén A, Jørgensen SL, Huson DH, Gorfer M, Grindhaug SH, Jonassen I, et al. CREST – Classification resources for environmental sequence tags. PLoS One. 2012;7:e49334.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CAS 
    PubMed 

    Google Scholar 
    Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, Mitra S, et al. MEGAN community edition – interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput Biol. 2016;12:e1004957.PubMed 
    PubMed Central 

    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12:59–60.PubMed 

    Google Scholar 
    Dumont MG, Lüke C, Deng Y, Frenzel P. Classification of pmoA amplicon pyrosequences using BLAST and the lowest common ancestor method in MEGAN. Front Microbiol. 2014;5:34.PubMed Central 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2018.Oksanen J, Blanchet f. G, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community ecology package. 2020. R package version 2.5-7. https://CRAN.R-project.org/package=vegan.Graves S, Piepho H-P, Selzer L. multcompView: Visualizations of paired comparisons. 2019. R package version 0.1-8. https://CRAN.R-project.org/package=multcompView.Günther A, Barthelmes A, Huth V, Joosten H, Jurasinski G, Koebsch F, et al. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat Commun. 2020;11:1644.PubMed 
    PubMed Central 

    Google Scholar 
    IPCC Task Force on National Greenhouse Gas Inventories. Methodological guidance on lands with wet and drained soilds, and constructed wetlands for wastewater treatment. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. 2014.Tiemeyer B, Albiac Borraz E, Augustin J, Bechtold M, Beetz S, Beyer C, et al. High emissions of greenhouse gases from grasslands on peat and other organic soils. Glob Chang Biol. 2016;22:4134–49.PubMed 

    Google Scholar 
    Kirschbaum MUF. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol Biochem. 1995;27:753–60.CAS 

    Google Scholar 
    Knorr W, Prentice IC, House JI, Holland EA. Long-term sensitivity of soil carbon turnover to warming. Nature 2005;433:298–301.CAS 
    PubMed 

    Google Scholar 
    Dutaur L, Verchot LV. A global inventory of the soil CH4 sink. Glob Biogeochem Cycles. 2007;21:GB4013.
    Google Scholar 
    McDaniel MD, Saha D, Dumont MG, Hernández M, Adams MA. The effect of land-use change on soil CH4 and N2O fluxes: A global meta-analysis. Ecosystems. 2019;22:1424–43.CAS 

    Google Scholar 
    Gulledge J, Schimel JP. Moisture control over atmospheric CH4 consumption and CO2 production in diverse Alaskan soils. Soil Biol Biochem. 1998;30:1127–32.CAS 

    Google Scholar 
    Tveit AT, Urich T, Frenzel P, Svenning MM. Metabolic and trophic interactions modulate methane production by Arctic peat microbiota in response to warming. Proc Natl Acad Sci USA. 2015;112:E2507–E2516.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Conrad R. Methane production in soil environments – anaerobic biogeochemistry and microbial life between flooding and desiccation. Microorganisms 2020;8:881.CAS 
    PubMed Central 

    Google Scholar 
    Lyu Z, Lu Y. Metabolic shift at the class level sheds light on adaptation of methanogens to oxidative environments. ISME J. 2018;12:411–23.PubMed 

    Google Scholar 
    Smith KS, Ingram-Smith C. Methanosaeta, the forgotten methanogen? Trends Microbiol. 2007;15:150–5.CAS 
    PubMed 

    Google Scholar 
    Whitman WB, Bowen TL, Boone DR. The methanogenic bacteria. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F editors. The prokaryotes: other major lineages of bacteria and the archaea. Berlin, Heidelberg: Springer; 2014, pp 123–63.Conrad R. Importance of hydrogenotrophic, aceticlastic and methylotrophic methanogenesis for methane production in terrestrial, aquatic and other anoxic environments: a mini review. Pedosphere. 2020;30:25–39.
    Google Scholar 
    Söllinger A, Urich T. Methylotrophic methanogens everywhere – physiology and ecology of novel players in global methane cycling. Biochem Soc Trans. 2019;47:1895–907.PubMed 

    Google Scholar 
    Yang S, Liebner S, Winkel M, Alawi M, Horn F, Dörfer C, et al. In-depth analysis of core methanogenic communities from high elevation permafrost-affected wetlands. Soil Biol Biochem. 2017;111:66–77.CAS 

    Google Scholar 
    Weil M, Wang H, Bengtsson M, Köhn D, Günther A, Jurasinski G, et al. Long-term rewetting of three formerly drained peatlands drives congruent compositional changes in pro- and eukaryotic soil microbiomes through environmental filtering. Microorganisms. 2020;8:550.CAS 
    PubMed Central 

    Google Scholar 
    Söllinger A, Seneca J, Dahl MB, Motleleng LL, Prommer J, Verbruggen E, et al. Down-regulation of the microbial protein biosynthesis machinery in response to weeks, years, and decades of soil warming. Sci Adv. 2022;8:eabm3230.PubMed 
    PubMed Central 

    Google Scholar 
    Luesken FA, Wu ML, Op den Camp HJM, Keltjens JT, Stunnenberg H, Francoijs KJ, et al. Effect of oxygen on the anaerobic methanotroph ‘Candidatus Methylomirabilis oxyfera’: Kinetic and transcriptional analysis. Environ Microbiol. 2012;14:1024–34.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baani M, Liesack W. Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc Natl Acad Sci. 2008;105:10203–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yimga MT, Dunfield PF, Ricke P, Heyer J, Liesack W. Wide distribution of a novel pmoA-like gene copy among type II methanotrophs, and its expression in Methylocystis strain SC2. Appl Environ Microbiol. 2003;69:5593–602.CAS 

    Google Scholar 
    Tveit AT, Hestnes AG, Robinson SL, Schintlmeister A, Dedysh SN, Jehmlich N, et al. Widespread soil bacterium that oxidizes atmospheric methane. Proc Natl Acad Sci USA. 2019;116:8515–24.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Freitag TE, Toet S, Ineson P, Prosser JI. Links between methane flux and transcriptional activities of methanogens and methane oxidizers in a blanket peat bog. FEMS Microbiol Ecol. 2010;73:157–65.CAS 
    PubMed 

    Google Scholar 
    Qin H, Tang Y, Shen J, Wang C, Chen C, Yang J, et al. Abundance of transcripts of functional gene reflects the inverse relationship between CH4 and N2O emissions during mid-season drainage in acidic paddy soil. Biol Fertil Soils. 2018;54:885–95.
    Google Scholar  More

  • in

    Spatial cover and carbon fluxes of urbanized Sonoran Desert biological soil crusts

    Bethany, J., Giraldo-Silva, A., Nelson, C., Barger, N. N. & Garcia-Pichel, F. Optimizing the production of nursery-based biological soil crusts for restoration of arid land soils. Appl. Environ. Microbiol. 85(15), e00735-e819 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Belnap, J. & Gardner, J. S. Soil microstructure in soils of the colorado plateau—The role of the cyanobacterium Microcoleus-vaginatus. Gt. Basin Nat. 53(1), 40–47 (1993).
    Google Scholar 
    Belnap, J. Factors influencing nitrogen fixation and nitrogen release in biological soil crusts. Ecol. Stud. Biol. Soil Crusts Struct. Funct. Manag. 150, 241–261 (2001).
    Google Scholar 
    Cameron, R. E. & Blank, G. B. Desert algae: Soil crusts and diaphanous substrata as algal habitats. Tech. Rep. Jet Propul. Lab. Calif. Technol. 32–971, 1–41 (1966).
    Google Scholar 
    Friedmann EI, Galun M. Desert algae lichens and fungi. in Desert Biology (Brown Jr, G.W. eds). Vol. 2. 165–212. (Illus Academic Press, Inc., 1974).Maier, S., Tamm, A., Wu, D.A.-O., Caesar, J., Grube, M., & Weber, B.A.-O. Photoautotrophic Organisms Control Microbial Abundance, Diversity, and Physiology in Different Types of Biological Soil Crusts. (1751–7370 (electronic)).Cable, J. M. & Huxman, T. E. Precipitation pulse size effects on Sonoran Desert soil microbial crusts. Oecologia 141(2), 317–324 (2004).ADS 
    PubMed 

    Google Scholar 
    Evans, R. D. & Johansen, J. R. Microbiotic crusts and ecosystem processes. Crit. Rev. Plant Sci. 18(2), 183–225 (1999).
    Google Scholar 
    Thompson, J. N. et al. Frontiers of ecology. Bioscience 51(1), 15–24 (2001).
    Google Scholar 
    Warren, S. D., Rosentreter, R. & Pietrasiak, N. Biological soil crusts of the Great Plains: A review. Rangel Ecol. Manag. 1(78), 213–219 (2021).
    Google Scholar 
    Warren, S. D. et al. Biological soil crust response to late season prescribed fire in a Great Basin Juniper Woodland. Rangel. Ecol. Manag. 68(3), 241–247 (2015).
    Google Scholar 
    Thomas, A. D., Hoon, S. R. & Linton, P. E. Carbon dioxide fluxes from cyanobacteria crusted soils in the Kalahari. Appl. Soil Ecol. 39, 254–263 (2008).
    Google Scholar 
    Williams, A. J., Buck, B. J. & Beyene, M. A. Biological soil crusts in the Mojave Desert, USA: Micromorphology and pedogenesis. Soil Sci. Soc. Am. J. 76(5), 1685–1695 (2012).ADS 
    CAS 

    Google Scholar 
    Belnap, J. & Lange, O. L. Ecological studies: Biological soil crusts: Structure, function, and management. Ecol. Stud. Biol. Soil Crusts Struct. Funct. Manag. 150, 1–503 (2001).
    Google Scholar 
    Jordan, W. R. I. Restoration ecology: A synthetic approach to ecological research. Rehabil. Damaged Ecosyst. 2, 373–384 (1995).
    Google Scholar 
    Nash, T. H. et al. Photosynthetic patterns of Sonoran desert lichens.1. Environmental considerations and preliminary field-measurements. Flora 172(4), 335–345 (1982).
    Google Scholar 
    St. Clair, L. L., Johansen, J. R. & Rushforth, S. R. Lichens of soil crust communities in the Intermountain Area of the western United States. Gt Basin Nat. 53(1), 5 (1993).
    Google Scholar 
    Bowker, M. A., Belnap, J. & Miller, M. E. Spatial modeling of biological soil crusts to support rangeland assessment and monitoring. Rangel. Ecol. Manag. 59(5), 519–529 (2006).
    Google Scholar 
    Mayland, H. F., McIntosh, T. H. & Fuller, W. H. Fixation of isotopic nitrogen on a semiarid soil by algal crust organisms. Soil Sci. Soc. Am. Proc. 30(1), 56 (1966).ADS 
    CAS 

    Google Scholar 
    McIlvanie, S. K. Grass seedling establishment, and productivity—Overgrazed vs. protected range soils. Ecology 23(2), 228–231 (1942).
    Google Scholar 
    Webb, R. H. & Wilshire, H. G. Environmental Effects of Off-Road Vehicles : Impacts and Management in Arid Regions (Springer, 1983).
    Google Scholar 
    Zobel, D. & Antos, J. A decade of recovery of understory vegetation buried by volcanic tephra from Mount St. Helens. Ecol. Monogr. 1, 67 (1997).
    Google Scholar 
    Condon, L. & Pyke, D. Resiliency of biological soil crusts and vascular plants varies among morphogroups with disturbance intensity. Plant Soil. 12, 433 (2020).
    Google Scholar 
    Harper, K., & Marble, J. A role for nonvascular plants in management of arid and semiarid rangelands. in Vegetation Science Applications for Rangeland Analysis and Management [Internet] (Tueller, P.T., ed.). Handbook of Vegetation Science. Vol. 14. 135–169. https://doi.org/10.1007/978-94-009-3085-8_7. (Springer, 1988). Evans, R. D. & Belnap, J. Long-term consequences of disturbance on nitrogen dynamics in an arid ecosystem. Ecology 80(1), 150–160 (1999).
    Google Scholar 
    Sheridan, R. P. Impact of emissions from coal-fired electricity generating facilities on N2-fixing lichens. Bryologist 82(1), 54–58 (1979).CAS 

    Google Scholar 
    Henriksson, L. E. & Dasilva, E. J. Effects of some inorganic elements on nitrogen-fixation in blue-green-algae and some ecological aspects of pollution. Z. Allg. Mikrobiol. 18(7), 487–494 (1978).CAS 
    PubMed 

    Google Scholar 
    Freebury, C. Lichens and lichenicolous fungi of Grasslands National Park (Saskatchewan, Canada). Opusc Philolichenum 13, 102–121 (2009).
    Google Scholar 
    Szyja, M. et al. Neglected but potent dry forest players: ecological role and ecosystem service provision of biological soil crusts in the human-modified Caatinga. Front. Ecol. Evol. (Internet). https://doi.org/10.3389/fevo.2019.00482 (2019).Article 

    Google Scholar 
    Rosentreter, R. Biological soil of crusts of North American drylands: Cryptic diversity at risk. in Reference Module in Earth Systems and Environmental Sciences [Internet]. https://www.sciencedirect.com/science/article/pii/B9780128211397000738 (Elsevier, 2021). Kranz, C. N., McLaughlin, R. A., Johnson, A., Miller, G. & Heitman, J. L. The effects of compost incorporation on soil physical properties in urban soils—A concise review. J. Environ. Manag. 261, 110209 (2020).
    Google Scholar 
    Barberán, A. et al. Continental-scale distributions of dust-associated bacteria and fungi. Proc. Natl. Acad. Sci. 112(18), 5756 (2015).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kaye, J. P., Groffman, P. M., Grimm, N. B., Baker, L. A. & Pouyat, R. V. A distinct urban biogeochemistry?. Trends Ecol. Evol. 21(4), 192–199 (2006).PubMed 

    Google Scholar 
    Pavao-Zuckerman, M. A. The nature of urban soils and their role in ecological restoration in cities. Restor. Ecol. 16(4), 642–649 (2008).
    Google Scholar 
    Pouyat, R., Groffman, P., Yesilonis, I. & Hernandez, L. Soil carbon pools and fluxes in urban ecosystems. Environ. Pollut. 116, S107–S118 (2002).CAS 
    PubMed 

    Google Scholar 
    Behzad, H., Mineta, K., & Gojobori, T. Global Ramifications of Dust and Sandstorm Microbiota. (1759–6653 (electronic)).Warren, S., Clair, L. & Leavitt, S. Aerobiology and passive restoration of biological soil crusts. Aerobiologia 3, 35 (2021).
    Google Scholar 
    Hall, S. J. et al. Urbanization alters soil microbial functioning in the Sonoran Desert. Ecosystems 12(4), 654–671 (2009).CAS 

    Google Scholar 
    Ball, B. A. & Guevara, J. A. The nutrient plasticity of moss-dominated crust in the urbanized Sonoran Desert. Plant Soil. 389(1–2), 225–235 (2015).CAS 

    Google Scholar 
    Allen, C. D. Monitoring environmental impact in the Upper Sonoran lifestyle: A new tool for rapid ecological assessment. Environ. Manag. 43(2), 346–356 (2009).ADS 

    Google Scholar 
    Evans, R. A. & Love, R. M. The step-point method of sampling: A practical tool in range research. J. Range Manag. 10(5), 208–212 (1957).
    Google Scholar 
    Coulloudon, B., & National Applied Resource Sciences C. Sampling Vegetation Attributes Interagency Technical Reference [Internet]. http://www.blm.gov/nstc/library/pdf/samplveg.pdf. (Bureau of Land Management : National Business Center, 1999). Faithfull, N. T. Methods in agricultural chemical analysis: A practical handbook. Methods Agric. Chem. Anal. Pract. Handb. 1–22, 1–266 (2002).
    Google Scholar 
    Kuske, C. R., Yeager, C. M., Johnson, S., Ticknor, L. O. & Belnap, J. Response and resilience of soil biocrust bacterial communities to chronic physical disturbance in arid shrublands. ISME J. 6(4), 886–897 (2012).CAS 
    PubMed 

    Google Scholar 
    Lorenz, K. & Lal, R. Biogeochemical C and N cycles in urban soils. Environ. Int. 35(1), 1–8 (2009).CAS 
    PubMed 

    Google Scholar 
    Chamizo, S., Canton, Y., Lazaro, R., Sole-Benet, A. & Domingo, F. Crust composition and disturbance drive infiltration through biological soil crusts in semiarid ecosystems. Ecosystems 15(1), 148–161 (2012).
    Google Scholar 
    Kidron, G. J. & Gutschick, V. P. Soil moisture correlates with shrub-grass association in the Chihuahuan Desert. CATENA 107, 71–79 (2013).
    Google Scholar 
    Kidron, G. J., Monger, H. C., Vonshak, A. & Conrod, W. Contrasting effects of microbiotic crusts on runoff in desert surfaces. Geomorphology 15(139), 484–494 (2012).ADS 

    Google Scholar 
    Berdugo, M., Soliveres, S. & Maestre, F. T. Vascular plants and biocrusts modulate how abiotic factors affect wetting and drying events in drylands. Ecosystems 17, 1242 (2014).CAS 

    Google Scholar 
    Maestre, F. T. et al. Changes in biocrust cover drive carbon cycle responses to climate change in drylands. Glob Change Biol. 19, 3835 (2013).ADS 

    Google Scholar 
    Valenzuela, A. et al. Aerosol radiative forcing during African desert dust events (2005–2010) over southeastern Spain. Atmos. Chem. Phys. 12(21), 10331–10351 (2012).ADS 
    CAS 

    Google Scholar 
    Kaya, S., Basar, U. G., Karaca, M. & Seker, D. Z. Assessment of urban heat islands using remotely sensed data. Ekoloji 21(84), 107–113 (2012).
    Google Scholar 
    Demmigadams, B. et al. Effect of high light on the efficiency of photochemical energy-conversion in a variety of lichen species with green and blue-green phycobionts. Planta 180(3), 400–409 (1990).CAS 

    Google Scholar 
    Gauslaa, Y. & Rikkinen, J. What’s behind the pretty colours? A study on the photobiology of lichens. Nord. J. Bot. 17(5), 556–556 (1995).
    Google Scholar 
    Garciapichel, F. & Castenholz, R. W. Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J. Phycol. 27(3), 395–409 (1991).CAS 

    Google Scholar 
    Garcia-Pichel, F. & Castenholz, R. W. The role of sheath pigments in the adaptation of terrestrial cyanobacteria to near UV radiation. J. Phycol. 27(3 SUPPL), 24–24 (1991).
    Google Scholar 
    McDonnell, M. J. et al. Ecosystem processes along an urban-to-rural gradient. Urban Ecosyst. 1(1), 21–36 (1997).
    Google Scholar 
    Pavao-Zuckerman, M. A. & Byrne, L. B. Scratching the surface and digging deeper: Exploring ecological theories in urban soils. Urban Ecosyst. 12(1), 9–20 (2009).
    Google Scholar 
    Pavao-Zuckerman, M. A. Urban greenscape, soils, and ecosystem functioning in a semi-arid urban ecosystem. J. Nematol. 41(4), 369–370 (2009).
    Google Scholar 
    Collins, S. L. et al. Pulse dynamics and microbial processes in aridland ecosystems. J. Ecol. 96(3), 413–420 (2008).
    Google Scholar 
    Noy-Meir, I. Desert ecosystems environment and producers. In Annual Review on Ecology System (Johnston Richard, F. ed.). Vol. 4. 25–51. (Illus Map Annu Rev Inc, 1973). More

  • in

    Understanding urban plant phenology for sustainable cities and planet

    Meng, L. et al. Proc. Natl Acad. Sci. USA 117, 4228 (2020).CAS 
    Article 

    Google Scholar 
    Wohlfahrt, G., Tomelleri, E. & Hammerle, A. Nat. Ecol. Evol. 3, 1668–1674 (2019).Article 

    Google Scholar 
    Wortman, S. E. & Lovell, S. T. J. Environ. Qual. 42, 1283–1294 (2013).CAS 
    Article 

    Google Scholar 
    Su, Y. et al. Agri. For. Meterol. 280, 107765 (2020).Article 

    Google Scholar 
    Smith, I. A., Dearborn, V. K. & Hutyra, L. R. PLoS ONE 14, e0215846 (2019).Article 

    Google Scholar 
    Richardson, A. D. et al. Nature 560, 368–371 (2018).CAS 
    Article 

    Google Scholar 
    Meineke, E. K., Dunn, R. R. & Frank, S. D. Biol. Lett. 10, 20140586 (2014).Article 

    Google Scholar 
    Liu, J. et al. Tour. Manag. 70, 262–272 (2019).Article 

    Google Scholar 
    Li, X. et al. Remote Sens. Environ. 222, 267–274 (2019).CAS 
    Article 

    Google Scholar 
    Wang, S. et al. Nat. Ecol. Evol. 3, 1076–1085 (2019).Article 

    Google Scholar 
    Feeley, K. J. et al. Nat. Clim. Change 10, 965–970 (2020).CAS 
    Article 

    Google Scholar 
    Li, D. et al. Nat. Ecol. Evol. 3, 1661–1667 (2019).Article 

    Google Scholar 
    Li, X. et al. Earth Syst. Sci. Data 11, 881–894 (2019).Article 

    Google Scholar 
    Román, M. O. et al. Remote Sens. Environ. 210, 113–143 (2018).Article 

    Google Scholar 
    Li, X. et al. Remote Sens. Environ. 215, 74–84 (2018).Article 

    Google Scholar  More

  • in

    The citizens who chart changing climate

    Jean Combes’s love of nature as a child led her to note the signs of starting spring. Her long-term records are now part of a vital growing citizen science dataset that starkly shows how climate change is shifting the timing of the natural world.For people living in colder parts of the world, watching for the first signs of spring — from the opening of snowdrops and daffodils, to birds building their nests, to the return of bees and butterflies — is a common winter pastime. Jean Combes has not just been watching out for these signs, but also recording them, ever since she was a child. Taking note of the earliest emergence of leaves in springtime — first as a child of 11 years, and then continuously from the age of 20 years — Jean has now collected one of the longest continuous datasets of spring leaf-out time in the UK (see also Correspondence by Vitasse et al.). These almost 75 years of data show a clear shift that corroborates shifts now acknowledged for diverse species around the world: springtime is coming earlier, and the patterns of advance match the global trends in the changing climate. Jean’s naturalist endeavours have already earned her high honours in the form of an OBE (Order of the British Empire), and recognition of her own work is mirrored in a growing recognition of the vital role of citizen scientists in tracking the signs of our rapidly changing world.
    This is a preview of subscription content More

  • in

    System dynamics modeling of lake water management under climate change

    System dynamics methodThe SD method applies systemic processing to simulate complex non-linear dynamics and feedback. Systemic processing resorts to various tools to simulate complex system behavior and performance24. Systems evolve through states, which change with flows. An example of a state variable is water storage in the study of lakes. The SD method simulates changes in system states driven by flows and various feedbacks25.This work employs the SD method to simulate storage change in Lake Urmia in one historical period (1957–2005) and two future periods (2021–2050 and 2051–2080). The lake’s water volume is the state variable, which is governed by inflows (precipitation, surface water inflows, and groundwater inflows) and outflows (evaporation, leakage, and surface water outflows). The lake’s mass balance equation is expressed as:$$S_{t + 1} = intlimits_{t}^{t + 1} {[I_{s} – O_{s} ]ds + S_{t} }$$
    (1)
    where St+1 , St, Is, and Os denote the lake’s storage at time t + 1, the lake’s storage at time t, the inflow rate to the lake at time s (units of volume/time), and the outflow rate from the lake at time s (units of volume/time), respectively.The SD method employs the Euler and Runge Kutta methods for the solution of differential equations. The software STELLA, Vensim, Powersim, and Dynamo feature SD solvers26. This work applies the widely-used Vensim software27.Climate changeThe data sets needed for modeling Lake Urmia’s storage over the two future periods were generated after simulating the lake’s water balance during the historical period. HADCM3, a coupled atmosphere–ocean general circulation model’s (AOGCM) climate projections were used to generate precipitation and surface temperature projections over the future periods. The AOGCM data at coarse spatial scales were downscaled to the regional scale suitable for lake storage simulation. The commonly used downscaling methods are statistic and dynamic in nature28,29. This works applies the delta-change downscaling method, in which monthly temperature and precipitation differences between the future and historical are calculated by29:$$Delta T_{t} = overline{T}_{GCM,fut,t} – overline{T}_{GCM,hist,t}$$
    (2)
    $$Delta P_{t} = overline{P}_{GCM,fut,t} – overline{P}_{GCM,hist,t}$$
    (3)
    where ∆Tt denotes the difference in long-term average temperatures simulated by HADCM3 for the future ((overline{T}_{GCM,fut,t})) and historical ((overline{T}_{GCM,hist,t})) periods in month t (°C); ∆Pt represents the difference in long-term average precipitations simulated by HADCM3 for the future ((overline{P}_{GCM,fut,t})) and historical ((overline{P}_{GCM,hist,t})) periods in month t (mm). Then, ∆Tt and ∆Pt are applied to project the future downscaled data as follows29:$$T_{t} = T_{obs,t} + , Delta T_{t}$$
    (4)
    $$P_{t} = P_{obs,t} { + }Delta P_{t}$$
    (5)
    where Tobs,t, and Pobs,t denote respectively the observed temperature (°C) and precipitation (mm) in month t in the baseline period; and Tt and Pt are the downscaled temperature (°C) and precipitation (mm) in month t of the future period, respectively. Delta-change downscaling is a simple yet efficient option when it comes to spatial downscaling of climate change projections (e.g.30,31,32). The gist of this method is to replicate the changing patterns that are projected by the atmospheric ocean general circulation models (AOGCMs) to generate the climate change patterns of hydro-climatic variables on a regional scale. As such, one would simply compute the relative changes in the long-term variations of the variable that is projected by the models within the baseline and future timeframes. These relative changing patterns would be applied to the historical data to project the impact of climate change on a local scale.Rainfall-runoff modelingThe IHACRES (identification of unit hydrographs and component flows from rainfall, evapotranspiration and streamflow) model is herein applied to simulate runoff from precipitation. Ashofteh et al.33 implemented the IHACRES model to investigate the effects of climate change on reservoir performance in agricultural water supply. Ashofteh et al.34 evaluated the probability of flood occurrence in future periods with IHACRES.The IHACRES model includes a non-linear loss module and a linear unit hydrograph module. The non-linear loss module converts the observed rainfall into the effective rainfall, after which the linear unit hydrograph module converts the effective rainfall into the simulated streamflow35. Here, precipitation rk in time step k is converted to effective precipitation uk through the non-linear loss module employing a catchment wetness index sk:$$u_{k} = , s_{k} times , r_{k}$$
    (6)
    The effective precipitation is converted to the surface runoff in time step k with the linear unit hydrograph module. The parameters of this model can be set through a thorough grid numeric search and trial-and-error. Perhaps, one of the major advantages of the IHACRES model over other commonly-used rainfall-runoff models is its minimal input data requirement (i.e., air temperature and precipitation)31,35.The other alternative for hydrologic simulation is to use data-driven models. Here, the multilayer perceptron (MLP), a variety of the artificial neural network (ANN) method, was also used to simulate runoff. This model consists of an inlet layer, one or several middle (hidden) layer(s), and an output layer. All of the neurons of a layer are connected to the ones in the next layer, forming a network with complete connections. The primary parameters in modeling the neural network of MLP are: (1) the number of neurons in each layer, (2) the number of layers in the network, and (3) the forcing functions. A regular MLP neural network has three layers36. The first and the third layers are respectively the system inputs and outputs. The middle layer consists of neurons that perform calculations on the inputs. Choosing the number of layers in a neural network is made by trial and error37. From a hydrological simulation standpoint the main idea behind this model is to create a suitable artificial neural network that is capable of accurately converting a set of hydro-climatic variables such as precipitation and temperature as input data into streamflow values. It should be noted that, like most data-driven models, the process of opting for a proper neural network architecture (i.e., selecting the number of layers, number of neurons, and the forcing function) is, for the most part, a trial-and-error procedure.One must objectively evaluate the performance of the hydrological models in order to opt for the setting of a suitable parameter. The root mean square error (RMSE), coefficient of determination (R2), and mean absolute error (MAE) are herein employed to assess the performance of the rainfall-runoff model. They are respectively calculated as follows:$$RMSE = sqrt {frac{{sumlimits_{t = 1}^{N} {(x_{t} – y_{t} )^{2} } }}{N}}$$
    (7)
    $$R^{2} = left( {frac{{sumnolimits_{t = 1}^{N} {(x_{t} – overline{x} ).(y_{t} – overline{y} )} }}{{sqrt {sumnolimits_{t = 1}^{N} {(x_{t} – overline{x} )^{2} } } .sqrt {sumnolimits_{t = 1}^{N} {(y_{t} – overline{y} )^{2} } } }}} right)^{2}$$
    (8)
    $$MAE = frac{{sumnolimits_{t = 1}^{N} {left| {x_{t} – y_{t} } right|} }}{N}$$
    (9)
    where xt , yt, and N denote the simulated value in time step t; the observed value in time step t; and the number data values, respectively. Large errors have a disproportionately large effect on RMSE or MAE.Performance criteriaVarious quantitative measures can be used to assess the performance of water resources systems under different strategies. When it comes to water resources planning and management, perhaps, some of the most common performance criteria are the probability-based performance criteria (PBPC) (i.e., reliability, vulnerability, and resiliency)31,38. In this context, reliability represents the probability of successful functioning of a system; resiliency measures the probability of successful functioning following a system failure; lastly, vulnerability is the severity of failure during an operation horizon39,40. The basic idea behind a performance evaluation attribute is to provide a quantitative measure to describe and assess the performance of a system. In the context of water resources planning and management, these measures have proven time and again that they can be reliable options to evaluate a set of strategic management options objectively (see, e.g.40,41,42,43, and44, just to name a few).Operating policyAny water resources system requires something called the “rule curve,” which determines how water is allocated in a given situation45. A common and effective rule curve when it comes to operation of water resource systems is the standard operation policy (SOP). SOP is a simple, and perhaps best-known real-time operation policy in water resources planning and management46. The core principle here is to minimize the water shortage at the current time step with no conservation policy (e.g., hedging rules) in place. The SOP, as a standard rule curve, determines how the operator acts to control a system at any given state of a reservoir47,48. This rule curve is established as an attempt to balance various water demands including but not limited to flood control, hydropower, water supply, and recreation49. A SOP operating system attempts to release water to meet a water demand at the current time, with no regard to the future. Thus, according to the SOP’s principle, the decision-makers, first allocate the available water to meet the demand of the stakeholder with the highest priority. After this first water demand is fully satisfied, the available water can be used for the next demand. Such an allocation process continues until no water is available.Ethics approvalAll authors accept all ethical approvals.Consent to participateAll authors consent to participate.Consent to publishAll authors consent to publish. More