More stories

  • in

    Artificial shelters provide suitable thermal habitat for a cold-blooded animal

    Ellis, E. C., Beusen, A. H. W. & Goldewijk, K. K. Anthropogenic Biomes: 10,000 BCE to 2015 CE. Land. 9(5), 129 (2020).Article 

    Google Scholar 
    Seto, K. C., Guneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. PNAS. 109, 16083–8 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Doherty, T. S., Hays, G. C. & Driscoll, D. A. Human disturbance causes widespread disruption of animal movement. Nat. Ecol. Evol. 5, 513–519 (2021).PubMed 
    Article 

    Google Scholar 
    Frid, A. & Dill, L. Human-caused disturbance stimuli as a form of predation risk. Conserv. Ecol. 6, 11 (2002).
    Google Scholar 
    Rodgers, J. A. & Schwikert, S. T. Buffer-zone distances to protect foraging and loafing waterbirds from disturbance by personal watercraft and outboard-powered boats. Conserv. Bio. 16, 216–224 (2002).Article 

    Google Scholar 
    Constantine, R., Brunton, D. H. & Dennis, T. Dolphin-watching tour boats change bottlenose dolphin (Tursiops truncates) behaviour. Biol. Conserv. 117, 299–307 (2004).Article 

    Google Scholar 
    Gill, J. A., Sutherland, W. J. & Watkinson, A. R. A method to quantify the effects of human disturbance on animal populations. J. Appl. Ecol. 33, 786–792 (1996).Article 

    Google Scholar 
    King, J. M. & Heinen, J. T. An assessment of the behaviors of overwintering manatees as influenced by interactions with tourists at two sites in central Florida. Biol. Conserv 117, 227–234 (2004).Article 

    Google Scholar 
    Stockwell, C. A., Bateman, G. C. & Berger, J. Conflicts in national parks: A case study of helicopters and bighorn sheep time budgets at the Grand Canyon. Biol. Conserv 56, 317–328 (1991).Article 

    Google Scholar 
    Diamond, J. M. The design of a nature reserve system for Indone-Asian New Guinea. In Conservation Biology: The Science of Scarcity and Cliversity (ed. Soule, M.) 485–503 (Sinauer, Sunderland, Massachusetts, 1986).Ceballos, G., García, A. & Ehrlich, P. R. The sixth extinction crisis loss of animal populations and species. J. Cosmol. 8, 1821–1831 (2010).
    Google Scholar 
    Kerr, J. T. & Deguise, I. Habitat loss and the limits to endangered species recovery. Ecol. Lett. 7, 1163–1169 (2004).Article 

    Google Scholar 
    Mbora, D. N. M. & McPeek, M. A. Host density and human activities mediate increased parasite prevalence and richness in primates threatened by habitat loss and fragmentation. J. Anim. Ecol. 78, 210–218 (2009).PubMed 
    Article 

    Google Scholar 
    Low, T. The New Nature (Penguin Books Limited, 2003).
    Google Scholar 
    Baxter-Gilbert, J., Riley, J. L. & Measey, J. Fortune favors the bold toad: Urban-derived behavioral traits may provide advantages for invasive amphibian populations. Behav. Ecol. Sociobiol. 75, 130 (2021).Article 

    Google Scholar 
    Coleman, J. L. & Barclay, R. M. R. Prey availability and foraging activity of grassland bats in relation to urbanization. J. Mammal. 94, 1111–1122 (2013).Article 

    Google Scholar 
    Castellano, M. J. & Valone, T. J. Effects of livestock removal and perennial grass recovery on the lizards of a desertified arid grassland. J. Arid Environ. 66, 87e95 (2006).Article 

    Google Scholar 
    Huey, R. B. Temperature, physiology, and the ecology of reptiles. In Biology of the Reptilia (eds. Gans, C., & Pough, F.H.) Vol. 12. (Academic Press, London, 1982).White, D. et al. Assessing risks to biodiversity from future landscape change. Conserv. Biol. 11, 349360 (1997).Article 

    Google Scholar 
    Carpio, A. J., Oteros, J., Tortosa, F. S. & Guerrero-Casado, J. Land use and biodiversity patterns of the herpetofauna: The role of olive groves. Acta Oecol. 70, 103–111 (2016).Article 

    Google Scholar 
    Geyle, H. M., Tingley, R., Amey, A. P. & Chapple, D. G. Reptiles on the brink: Identifying the Australian terrestrial snake and lizard species most at risk of extinction. Pac. Conserv. Biol. 27, 3–12 (2021).Article 

    Google Scholar 
    Doherty, T. S. et al. Reptile responses to anthropogenic habitat modification: A global meta-analysis. Glob. Ecol. Biogeogr. 29(7), 1265–1279 (2020).Article 

    Google Scholar 
    Hu, Y., Doherty, T. S. & Jessop, T. S. How influential are squamate reptile traits in explaining population responses to environmental disturbances?. Wildl. Res. 47(3), 249–259 (2020).Article 

    Google Scholar 
    Poole, G. & Berman, C. An ecological perspective on in-stream temperature: natural heat dynamics and mechanisms of human-caused thermal degradation. Environ. Manag. 27, 787–802 (2001).CAS 
    Article 

    Google Scholar 
    Tang, X. et al. Human activities enhance radiation forcing through surface albedo associated with vegetation in beijing. Remote Sens. 12(5), 837 (2020).Article 

    Google Scholar 
    Barna, A., Masum, A. K. M., Hossain, M. E., Bahadur, E.H. & Alam, M. S. A study on human activity recognition using gyroscope, accelerometer, temperature and humidity data. In 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2019).Moore, M. & Seigel, R. A. No place to nest or bask: Effects of human disturbance on the nesting and basking habits of yellow-blotched map turtles (Graptemys flavimaculata). J. Biol. Conserv. 130(3), 386–393 (2006).Article 

    Google Scholar 
    Bonnet, X., Naulleau, G. & Shine, R. The dangers of leaving home: Dispersal and mortality in snakes. Biol. Conserv. 89(1), 39–50 (1999).Article 

    Google Scholar 
    Haxton, T. Road mortality of Snapping Turtles, Chelydra serpentina, in central Ontario during their nesting period. Can. Field-Nat. 114(1), 106–110 (2000).
    Google Scholar 
    Koenig, J., Shine, R. & Shea, G. L. The ecology of an Australian reptile icon: How do blue-tongued lizards (Tiliqua scincoides) survive in suburbia?. Wildl. Res. 28(3), 214–227 (2001).Article 

    Google Scholar 
    Uetz, P. How many Reptile species?. Herpetol. Rev. 31, 13–15 (2000).
    Google Scholar 
    Todd, R. L., Steven, P., Rowland, G. & Oldham, G. Herpetological observations from field expeditions to North Karnataka and Southwest Maharashtra, India. Herpetol. Bull. 112, 17–37 (2010).
    Google Scholar 
    Sathish Kumar, V. M. The conservation of Indian Reptiles: An approach with molecular aspects. Reptile Rap. 14, 2–8 (2012).
    Google Scholar 
    Berryman, A. A. & Hawkins, B. A. The refuge as an integrating concept in ecology and evolution. Oikos. 115, 92–196 (2006).Article 

    Google Scholar 
    Webb, J. K., Pringle, R. M. & Shine, R. How do nocturnal snakes select diurnal retreat sites?. Copeia 2004, 919–925 (2004).Article 

    Google Scholar 
    Skinner, M. & Miller, N. Aggregation and social interaction in garter snakes (Thamnophis sirtalis sirtalis). Behav. Ecol. Sociobiol. 74, 51 (2020).Article 

    Google Scholar 
    Aubret, F. & Shine, R. Causes and consequences of aggregation by neonatal tiger snakes (Notechis scutatus, Elapidae). Austral Ecol. 34(2), 210–217 (2009).Article 

    Google Scholar 
    Myres, B. & Eells, M. Thermal aggregation in Boa constrictor. Herpetologica 24(1), 61–66 (1968).
    Google Scholar 
    Parrish, J. K. & Edelstein-keshet, L. Coinplexity, pattern, and evolutionary trade-offs in animal aggregation. Science 284, 99–101 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Trevesa, A. Theory and method in studies of vigilance and aggregation. Anim. Behav. 60, 711–722 (2000).Article 

    Google Scholar 
    Greene, H. W. Snakes (University of California Press, 1997).Book 

    Google Scholar 
    Huey, R. B., Peterson, C. R., Arnold, S. J. & Porter, W. P. Hot rocks and not-so-hot rocks: Retreat-site selection by garter snakes and its thermal consequences. Ecology 70, 931–944 (1989).Article 

    Google Scholar 
    Christian, K. & Weavers, B. Analysis of activity and energetics of the lizard Varanus rosenbergi. Copeia 1994, 289–295 (1994).Article 

    Google Scholar 
    Autumn, K. & de Nardo, D. F. Behavioural thermoregulation increases growth rate in nocturnal lizard. J. Herpetol. 29, 157–162 (1995).Article 

    Google Scholar 
    Milne, T., Bull, C. M. & Hutchinson, M. N. Use of burrows by the endangered pygmy blue-tongue lizard, Tiliqua adelaidensis (Scincidae). Wildl. Res. 30, 523–528 (2003).Article 

    Google Scholar 
    Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. PNAS. 111, 5610–5615 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kearney, M., Shine, R. & Porter, W. P. The potential for behavioral thermoregulation to buffer ‘“cold-blooded”’ animals against climate warming. PNAS 106, 3835–3840 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stevenson, D. J., Dyer, K. J. & Willis-Stevenson, B. A. Survey and monitoring of the eastern indigo snake in georgia. Southeast. Nat. 2(3), 393–408 (2003).Article 

    Google Scholar 
    Zappalorti, R. T. & Reinert, H. K. Artificial refugia as a habitat-improvement strategy for snake conservation. Contrib. Herpetol. 11, 369–375 (1994).
    Google Scholar 
    Griffith, B., Scott, J. M., Carpenter, J. W. & Reed, C. Translocation as a species conservation tool: Status and strategy. Science 245, 477–480 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mullin, S. J. Snakes Ecology and Conservation (eds. Stephen, J. M. & Richard, A. S.). (Cornell University Press, 2011).Lei, J., Booth, D. T. & Dwyer, R. G. Spatial ecology of yellow-spotted goannas adjacent to a sea turtle nesting beach. Aust. J. Zool. 65, 77–86 (2017).Article 

    Google Scholar 
    Ermi, Z. Snakes of China. (Anhui Science and Technology Press, 2006).Schulz, K. D. A Monograph of the Colubrid Snakes of the Genus Elaphe Fitzinger (Czech Republic, Koeltz Scientific Books, 1996).
    Google Scholar 
    Pallas, P. S. Reise durch verschiedene Provinzen des Russischen Reiches, Vol. 2. 744 (Kaiserl. Akad. Wiss., St. Petersburg, 1773).Auffenberg, W., Arian, Q. N. & Kurshid, N. Preferred habitat, home range and movement patterns of Varanus bengalensis in southern Pakistan. Mertensiella 2, 7–28 (1991).
    Google Scholar 
    McDiarmid, R. W. Reptile Biodiversity: Standard Methods for Inventory and Monitoring. (University of California Press, 2002).Riley, J. L., Baxter-gilbert, J. H. & Litzgus, J. D. A comparison of three external transmitter attachment methods for snakes. Wildl. Soc. Bull. 41(1), 132–139 (2017).Article 

    Google Scholar 
    Meine, C., & Archibald, G. The Cranes: Status Survey and Conservation Action Plan (IUCN, 1996).Mori, A. & Toda, M. Body temperature of subtropical snakes at night: How cold is their blood?. Curr. Herpetol. 37(2), 151–157 (2018).Article 

    Google Scholar 
    Crane, M., Silva, I., Marshall, B. M. & Strine, C. T. Lots of movement, little progress: A review of reptile home range literature. PeerJ 9, e11742 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Calabrese, J. M., Fleming, C. H. & Gurarie, E. ctmm: An R package for analyzing animal relocation data as a continuous-time stochastic process. Methods Ecol. Evol. 7, 1124–1132 (2016).Article 

    Google Scholar 
    Fleming, C. H. & Calabrese, J. M. A new kernel density estimator for accurate home-range and species-range area estimation. Methods Ecol. Evol. 8, 571–579 (2017).Article 

    Google Scholar 
    Fleming, C. H. et al. From fine-scale foraging to home ranges: A semivariance approach to identifying movement modes across spatiotemporal scales. Am. Nat. 183, 154–167 (2014).Article 

    Google Scholar 
    Fleming, C. H., Noonan, M. J., Medici, E. P. & Calabrese, J. M. Overcoming the challenge of small effective sample sizes in home-range estimation. Methods Ecol. Evol. 10, 1679–1689 (2019).Article 

    Google Scholar 
    Uhlenbeck, G. E. & Ornstein, L. S. On the theory of the Brownian motion. Phys. Rev. 36, 823 (1930).CAS 
    MATH 
    Article 

    Google Scholar 
    Bürkner, P. C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).Article 

    Google Scholar 
    Bhattacharyya, A. On a measure of divergence between two statistical populations defined by their probability distributions. News Bull. Calcutta Math. Soc. 35, 99–109 (1943).MathSciNet 
    MATH 

    Google Scholar 
    Winner, K. et al. Statistical inference for home range overlap. Methods Ecol. Evol. 9, 1679–1691 (2018).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2016). http://www.R-project.org. Accessed September 2022.Calenge, A. The package ‘“adehabitat”’ for the R software: Tool for the analysis of space and habitat use by animals. Ecol. Modell. 197, 516–519 (2006).Article 

    Google Scholar 
    Manley, B. F. J., McDonald, L. L. & Thomas, D. L. Resource Selection by Animals: Statistical Design and Analysis for Field Studies (Chapman and Hall, 1993).Book 

    Google Scholar  More

  • in

    Cophylogeny and convergence shape holobiont evolution in sponge–microbe symbioses

    Hyman, L. H. The Invertebrates: Protozoa Through Ctenophora Vol. 1 (McGraw-Hill, 1940).Taylor, M. W., Radax, R., Steger, D. & Wagner, M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. Rev. 71, 295–347 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Giles, E. C. et al. Bacterial community profiles in low microbial abundance sponges. FEMS Microbiol. Ecol. 83, 232–241 (2013).CAS 
    PubMed 

    Google Scholar 
    Gloeckner, V. et al. The HMA–LMA dichotomy revisited: an electron microscopical survey of 56 sponge species. Biol. Bull. 227, 78–88 (2014).PubMed 

    Google Scholar 
    Moitinho-Silva, L. et al. Predicting the HMA–LMA status in marine sponges by machine learning. Front. Microbiol. 8, 752 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Cárdenas, C. A. et al. High similarity in the microbiota of cold-water sponges of the genus Mycale from two different geographical areas. PeerJ 6, e4935 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Webster, N. S. & Taylor, M. W. Marine sponges and their microbial symbionts: love and other relationships. Environ. Microbiol. 14, 335–346 (2012).CAS 
    PubMed 

    Google Scholar 
    Freeman, C. J. et al. Microbial symbionts and ecological divergence of Caribbean sponges: a new perspective on an ancient association. ISME J. 14, 1571–1583 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Bell, J. J. et al. Climate change alterations to ecosystem dominance: how might sponge-dominated reefs function? Ecology 99, 1920–1931 (2018).PubMed 

    Google Scholar 
    Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science 301, 958–960 (2003).CAS 
    PubMed 

    Google Scholar 
    Lesser, M. P. Benthic–pelagic coupling on coral reefs: feeding and growth of Caribbean sponges. J. Exp. Mar. Biol. Ecol. 328, 277–288 (2006).
    Google Scholar 
    de Goeij, J. M., Lesser, M. P. & Pawlik, J. R. in Climate Change, Ocean Acidification and Sponges (eds Carballo, J. L. & Bell, J. J.) 373–410 (Springer, 2017); https://doi.org/10.1007/978-3-319-59008-0_8Pita, L., Rix, L., Slaby, B. M., Franke, A. & Hentschel, U. The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome 6, 46 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Slaby, B. M., Hackl, T., Horn, H., Bayer, K. & Hentschel, U. Metagenomic binning of a marine sponge microbiome reveals unity in defense but metabolic specialization. ISME J. 11, 2465–2478 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Moitinho-Silva, L. et al. Revealing microbial functional activities in the Red Sea sponge Stylissa carteri by metatranscriptomics. Environ. Microbiol. 16, 3683–3698 (2014).CAS 
    PubMed 

    Google Scholar 
    Weisz, J. B., Lindquist, N. & Martens, C. S. Do associated microbial abundances impact marine demosponge pumping rates and tissue densities? Oecologia 155, 367–376 (2008).PubMed 

    Google Scholar 
    Poppell, E. et al. Sponge heterotrophic capacity and bacterial community structure in high- and low-microbial abundance sponges. Mar. Ecol. 35, 414–424 (2014).
    Google Scholar 
    McFall-Ngai, M. J. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl Acad. Sci. USA 110, 3229–3236 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Douglas, A. E. Symbiosis as a general principle in eukaryotic evolution. Cold Spring Harb. Perspect. Biol. 6, a016113 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Moran, N. A. & Sloan, D. B. The hologenome concept: helpful or hollow? PLoS Biol. 13, e1002311 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Brooks, A. W., Kohl, K. D., Brucker, R. M., van Opstal, E. J. & Bordenstein, S. R. Phylosymbiosis: relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol. 14, e2000225–e2000229 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    O’Brien, P. A. et al. Diverse coral reef invertebrates exhibit patterns of phylosymbiosis. ISME J. 14, 2211–2222 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Houwenhuyse, S., Stoks, R., Mukherjee, S. & Decaestecker, E. Locally adapted gut microbiomes mediate host stress tolerance. ISME J. 15, 2401–2414 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moeller, A. H. et al. Experimental evidence for adaptation to species-specific gut microbiota in house mice. mSphere 4, e00387-19 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    van Opstal, E. J. & Bordenstein, S. R. Phylosymbiosis impacts adaptive traits in Nasonia wasps. mBio https://doi.org/10.1128/mBio.00887-19 (2019).Lim, S. J. & Bordenstein, S. R. An introduction to phylosymbiosis. Proc. R. Soc. B https://doi.org/10.1098/rspb.2019.2900 (2020).Pollock, F. J. et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat. Commun. https://doi.org/10.1038/s41467-018-07275-x (2018).Douglas, A. E. & Werren, J. H. Holes in the hologenome: why host–microbe symbioses are not holobionts. mBio 7, e02099 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hadfield, J. D., Krasnov, B. R., Poulin, R. & Nakagawa, S. A tale of two phylogenies: comparative analyses of ecological interactions. Am. Nat. 183, 174–187 (2014).PubMed 

    Google Scholar 
    Hill, M. S. et al. Reconstruction of family-level phylogenetic relationships within Demospongiae (Porifera) using nuclear encoded housekeeping genes. PLoS ONE 8, e50437 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Redmond, N. E. et al. Phylogeny and systematics of Demospongiae in light of new small-subunit ribosomal DNA (18S) sequences. Int. Comp. Biol. 53, 388–415 (2013).CAS 

    Google Scholar 
    Worheide, G. et al. in Advances in Marine Biology: Advances in Sponge Science Vol. 61 (eds Becerro, M. A. et al.) 1–78 (Elsevier, 2012).Schuster, A. et al. Divergence times in demosponges (Porifera): first insights from new mitogenomes and the inclusion of fossils in a birth–death clock model. BMC Evol. Biol. 18, 114 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Stanley, G. D. & Fautin, D. G. Paleontology and evolution. Orig. Mod. Corals Sci. 291, 1913–1914 (2001).CAS 

    Google Scholar 
    Brinkmann, C. M., Marker, A. & Kurtböke, D. I. An overview on marine sponge-symbiotic bacteria as unexhausted sources for natural product discovery. Diversity 9, 40 (2017).
    Google Scholar 
    Rust, M. et al. A multiproducer microbiome generates chemical diversity in the marine sponge Mycale hentscheli. Proc. Natl Acad. Sci. USA 117, 9508–9518 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Faulkner, D. J., Harper, M. K., Haygood, M. G., Salomon, C. E. & Schmidt, E. W. in Drugs from the Sea (ed. Fusetani, N.) 107–119 (Karger, 2000).Loh, T.-L. & Pawlik, J. R. Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs. Proc. Natl Acad. Sci. USA 111, 4151–4156 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pagel, M. Detecting correlated evolution on phylogenies—a general method for the comparative analysis of discrete characters. Proc. R. Soc. Lond. B 255, 37–45 (1994).
    Google Scholar 
    Easson, C. G. & Thacker, R. W. Phylogenetic signal in the community structure of host-specific microbiomes of tropical marine sponges. Front. Microbiol. 5, 532 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Thomas, T. et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat. Commun. 7, 11870 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schöttner, S. et al. Relationships between host phylogeny, host type and bacterial community diversity in cold-water coral reef sponges. PLoS ONE 8, e55505 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Robinson, D. R. & Foulds, L. R. Comparison of phylogenetic trees. Math. Biosci. 53, 131–147 (1981).
    Google Scholar 
    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Apprill, A. The role of symbioses in the adaptation and stress responses of marine organisms. Annu. Rev. Mar. Sci. 12, 291–314 (2020).
    Google Scholar 
    Lesser, M. P., Slattery, M. & Mobley, C. Biodiversity and functional ecology of mesophotic coral reefs. Annu. Rev. Ecol. Evol. Syst. 49, 49–71 (2018).
    Google Scholar 
    Lipps, J. H. & Stanley, G. D. in Coral Reefs at the Crossroads (eds Hubbard, D. K. et al.) 175–196 (Springer, 2016); https://doi.org/10.1007/978-94-017-7567-0_8Macartney, K. J., Slattery, M. & Lesser, M. P. Trophic ecology of Caribbean sponges in the mesophotic zone. Limnol. Oceanogr. 66, 1113–1124 (2021).CAS 

    Google Scholar 
    McMurray, S. E., Stubler, A. D., Erwin, P. M., Finelli, C. M. & Pawlik, J. R. A test of the sponge-loop hypothesis for emergent Caribbean reef sponges. Mar. Ecol. Prog. Ser. 588, 1–14 (2018).CAS 

    Google Scholar 
    Olinger, L. K., Strangman, W. K., McMurray, S. E. & Pawlik, J. R. Sponges with microbial symbionts transform dissolved organic matter and take up organohalides. Front. Mar. Sci. 8, 665789 (2021).
    Google Scholar 
    Haas, A. F. et al. Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity. PLoS ONE 6, e27973 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sánchez-Baracaldo, P. Origin of marine planktonic cyanobacteria. Sci. Rep. 5, 17418 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Sanchez-Bracaldo, P., Ridgwell, A. & Raven, J. A. A neoproterozoic transition in the marine nitrogen cycle. Curr. Biol. 24, 652–657 (2014).
    Google Scholar 
    Falkowski, P. G. et al. The evolution of modern eukaryotic phytoplankton. Science 305, 354–360 (2004).CAS 
    PubMed 

    Google Scholar 
    Wang, D. et al. Coupling of ocean redox and animal evolution during the Ediacaran–Cambrian transition. Nat. Commun. 9, 2575 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Bellwood, D. R., Goatley, C. H. R. & Bellwood, O. The evolution of fishes and corals on reefs: form, function and interdependence. Biol. Rev. 92, 878–901 (2017).PubMed 

    Google Scholar 
    Ehrlich, P. R. & Raven, P. H. Butterflies and plants: a study in coevolution. Evolution 18, 586–608 (1964).
    Google Scholar 
    Després, L., David, J.-P. & Gallet, C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 22, 298–307 (2007).PubMed 

    Google Scholar 
    Richardson, K. L., Gold-Bouchot, G. & Schlenk, D. The characterization of cytosolic glutathione transferase from four species of sea turtles: loggerhead (Caretta caretta), green (Chelonia mydas), olive ridley (Lepidochelys olivacea), and hawksbill (Eretmochelys imbricata). Comp. Biochem. Physiol. C 150, 279–284 (2009).
    Google Scholar 
    Bayer, K., Jahn, M. T., Slaby, B. M., Moitinho-Silva, L. & Hentschel, U. Marine sponges as Chloroflexi hot spots: genomic insights and high-resolution visualization of an abundant and diverse symbiotic clade. mSystems 3, e00150-18 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Sachs, J. L., Skophammer, R. G., Bansal, N. & Stajich, J. E. Evolutionary origins and diversification of proteobacterial mutualists. Proc. R Soc. B https://doi.org/10.1098/rspb.2013.2146 (2014).Sachs, J. L., Skophammer, R. G. & Regus, J. U. Evolutionary transitions in bacterial symbiosis. Proc. Natl Acad. Sci. USA 108, 10800–10807 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seutin, G., White, B. N. & Boag, P. T. Preservation of avian blood and tissue samples for DNA analyses. Can. J. Zool. https://doi.org/10.1139/z91-013 (2011).Sunagawa, S. et al. Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont. BMC Genomics 10, 258 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Song, L. & Florea, L. Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads. GigaScience 4, 48 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chevreux, B., Wetter, T. & Suhai, S. Genome sequence assembly using trace signals and additional sequence information. Comput. Sci. Biol. 99, 45–56 (1999).
    Google Scholar 
    Li, W. & Godzik, A. CD-HIT: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).CAS 

    Google Scholar 
    Francis, W. R. et al. The genome of the contractile demosponge Tethya wilhelma and the evolution of metazoan neural signalling pathways. Preprint at bioRxiv https://doi.org/10.1101/120998 (2017).Altschul, S. F. A protein alignment scoring system sensitive at all evolutionary distances. J. Mol. Evol. 36, 290–300 (1993).CAS 
    PubMed 

    Google Scholar 
    Srivastava, M. et al. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466, 720–726 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Simion, P. et al. A large and consistent phylogenomic dataset supports sponges as the sister group to all other animals. Curr. Biol. https://doi.org/10.1016/j.cub.2017.02.031 (2017).Katoh, K., Misawa, K., Kuma, K.-I. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).CAS 

    Google Scholar 
    Kalyaanamoorthy, S. et al. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).CAS 

    Google Scholar 
    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 

    Google Scholar 
    Dohrmann, M. & Wörheide, G. Dating early animal evolution using phylogenomic data. Sci. Rep. 7, 3599 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Smith, S. A. & O’Meara, B. C. treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28, 2689–2690 (2012).CAS 
    PubMed 

    Google Scholar 
    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).CAS 
    PubMed 

    Google Scholar 
    Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).
    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-5 (2019).Lahti, L. et al. Tools for Microbiome Analysis in R. Microbiome package version 1.17.2 https://github.com/microbiome/microbiome (2017).Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: investigating evolutionary radiations. Bioinformatics 24, 129–131 (2008).CAS 
    PubMed 

    Google Scholar 
    Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).CAS 

    Google Scholar 
    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Google Scholar 
    Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).
    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Westbrook, A. et al. PALADIN: protein alignment for functional profiling whole metagenome shotgun data. Bioinformatics 33, 1473–1478 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Waddell, B. & Pawlik, J. R. Defenses of Caribbean sponges against invertebrate predators. I. Assays with hermit crabs. Mar. Ecol. Prog. Ser. 195, 125–132 (2000).
    Google Scholar 
    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. FEMS Microbiol. Ecol. 20, 289–290 (2004).CAS 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).
    Google Scholar 
    Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 20170213 (2017).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    System dynamics modeling of lake water management under climate change

    System dynamics methodThe SD method applies systemic processing to simulate complex non-linear dynamics and feedback. Systemic processing resorts to various tools to simulate complex system behavior and performance24. Systems evolve through states, which change with flows. An example of a state variable is water storage in the study of lakes. The SD method simulates changes in system states driven by flows and various feedbacks25.This work employs the SD method to simulate storage change in Lake Urmia in one historical period (1957–2005) and two future periods (2021–2050 and 2051–2080). The lake’s water volume is the state variable, which is governed by inflows (precipitation, surface water inflows, and groundwater inflows) and outflows (evaporation, leakage, and surface water outflows). The lake’s mass balance equation is expressed as:$$S_{t + 1} = intlimits_{t}^{t + 1} {[I_{s} – O_{s} ]ds + S_{t} }$$
    (1)
    where St+1 , St, Is, and Os denote the lake’s storage at time t + 1, the lake’s storage at time t, the inflow rate to the lake at time s (units of volume/time), and the outflow rate from the lake at time s (units of volume/time), respectively.The SD method employs the Euler and Runge Kutta methods for the solution of differential equations. The software STELLA, Vensim, Powersim, and Dynamo feature SD solvers26. This work applies the widely-used Vensim software27.Climate changeThe data sets needed for modeling Lake Urmia’s storage over the two future periods were generated after simulating the lake’s water balance during the historical period. HADCM3, a coupled atmosphere–ocean general circulation model’s (AOGCM) climate projections were used to generate precipitation and surface temperature projections over the future periods. The AOGCM data at coarse spatial scales were downscaled to the regional scale suitable for lake storage simulation. The commonly used downscaling methods are statistic and dynamic in nature28,29. This works applies the delta-change downscaling method, in which monthly temperature and precipitation differences between the future and historical are calculated by29:$$Delta T_{t} = overline{T}_{GCM,fut,t} – overline{T}_{GCM,hist,t}$$
    (2)
    $$Delta P_{t} = overline{P}_{GCM,fut,t} – overline{P}_{GCM,hist,t}$$
    (3)
    where ∆Tt denotes the difference in long-term average temperatures simulated by HADCM3 for the future ((overline{T}_{GCM,fut,t})) and historical ((overline{T}_{GCM,hist,t})) periods in month t (°C); ∆Pt represents the difference in long-term average precipitations simulated by HADCM3 for the future ((overline{P}_{GCM,fut,t})) and historical ((overline{P}_{GCM,hist,t})) periods in month t (mm). Then, ∆Tt and ∆Pt are applied to project the future downscaled data as follows29:$$T_{t} = T_{obs,t} + , Delta T_{t}$$
    (4)
    $$P_{t} = P_{obs,t} { + }Delta P_{t}$$
    (5)
    where Tobs,t, and Pobs,t denote respectively the observed temperature (°C) and precipitation (mm) in month t in the baseline period; and Tt and Pt are the downscaled temperature (°C) and precipitation (mm) in month t of the future period, respectively. Delta-change downscaling is a simple yet efficient option when it comes to spatial downscaling of climate change projections (e.g.30,31,32). The gist of this method is to replicate the changing patterns that are projected by the atmospheric ocean general circulation models (AOGCMs) to generate the climate change patterns of hydro-climatic variables on a regional scale. As such, one would simply compute the relative changes in the long-term variations of the variable that is projected by the models within the baseline and future timeframes. These relative changing patterns would be applied to the historical data to project the impact of climate change on a local scale.Rainfall-runoff modelingThe IHACRES (identification of unit hydrographs and component flows from rainfall, evapotranspiration and streamflow) model is herein applied to simulate runoff from precipitation. Ashofteh et al.33 implemented the IHACRES model to investigate the effects of climate change on reservoir performance in agricultural water supply. Ashofteh et al.34 evaluated the probability of flood occurrence in future periods with IHACRES.The IHACRES model includes a non-linear loss module and a linear unit hydrograph module. The non-linear loss module converts the observed rainfall into the effective rainfall, after which the linear unit hydrograph module converts the effective rainfall into the simulated streamflow35. Here, precipitation rk in time step k is converted to effective precipitation uk through the non-linear loss module employing a catchment wetness index sk:$$u_{k} = , s_{k} times , r_{k}$$
    (6)
    The effective precipitation is converted to the surface runoff in time step k with the linear unit hydrograph module. The parameters of this model can be set through a thorough grid numeric search and trial-and-error. Perhaps, one of the major advantages of the IHACRES model over other commonly-used rainfall-runoff models is its minimal input data requirement (i.e., air temperature and precipitation)31,35.The other alternative for hydrologic simulation is to use data-driven models. Here, the multilayer perceptron (MLP), a variety of the artificial neural network (ANN) method, was also used to simulate runoff. This model consists of an inlet layer, one or several middle (hidden) layer(s), and an output layer. All of the neurons of a layer are connected to the ones in the next layer, forming a network with complete connections. The primary parameters in modeling the neural network of MLP are: (1) the number of neurons in each layer, (2) the number of layers in the network, and (3) the forcing functions. A regular MLP neural network has three layers36. The first and the third layers are respectively the system inputs and outputs. The middle layer consists of neurons that perform calculations on the inputs. Choosing the number of layers in a neural network is made by trial and error37. From a hydrological simulation standpoint the main idea behind this model is to create a suitable artificial neural network that is capable of accurately converting a set of hydro-climatic variables such as precipitation and temperature as input data into streamflow values. It should be noted that, like most data-driven models, the process of opting for a proper neural network architecture (i.e., selecting the number of layers, number of neurons, and the forcing function) is, for the most part, a trial-and-error procedure.One must objectively evaluate the performance of the hydrological models in order to opt for the setting of a suitable parameter. The root mean square error (RMSE), coefficient of determination (R2), and mean absolute error (MAE) are herein employed to assess the performance of the rainfall-runoff model. They are respectively calculated as follows:$$RMSE = sqrt {frac{{sumlimits_{t = 1}^{N} {(x_{t} – y_{t} )^{2} } }}{N}}$$
    (7)
    $$R^{2} = left( {frac{{sumnolimits_{t = 1}^{N} {(x_{t} – overline{x} ).(y_{t} – overline{y} )} }}{{sqrt {sumnolimits_{t = 1}^{N} {(x_{t} – overline{x} )^{2} } } .sqrt {sumnolimits_{t = 1}^{N} {(y_{t} – overline{y} )^{2} } } }}} right)^{2}$$
    (8)
    $$MAE = frac{{sumnolimits_{t = 1}^{N} {left| {x_{t} – y_{t} } right|} }}{N}$$
    (9)
    where xt , yt, and N denote the simulated value in time step t; the observed value in time step t; and the number data values, respectively. Large errors have a disproportionately large effect on RMSE or MAE.Performance criteriaVarious quantitative measures can be used to assess the performance of water resources systems under different strategies. When it comes to water resources planning and management, perhaps, some of the most common performance criteria are the probability-based performance criteria (PBPC) (i.e., reliability, vulnerability, and resiliency)31,38. In this context, reliability represents the probability of successful functioning of a system; resiliency measures the probability of successful functioning following a system failure; lastly, vulnerability is the severity of failure during an operation horizon39,40. The basic idea behind a performance evaluation attribute is to provide a quantitative measure to describe and assess the performance of a system. In the context of water resources planning and management, these measures have proven time and again that they can be reliable options to evaluate a set of strategic management options objectively (see, e.g.40,41,42,43, and44, just to name a few).Operating policyAny water resources system requires something called the “rule curve,” which determines how water is allocated in a given situation45. A common and effective rule curve when it comes to operation of water resource systems is the standard operation policy (SOP). SOP is a simple, and perhaps best-known real-time operation policy in water resources planning and management46. The core principle here is to minimize the water shortage at the current time step with no conservation policy (e.g., hedging rules) in place. The SOP, as a standard rule curve, determines how the operator acts to control a system at any given state of a reservoir47,48. This rule curve is established as an attempt to balance various water demands including but not limited to flood control, hydropower, water supply, and recreation49. A SOP operating system attempts to release water to meet a water demand at the current time, with no regard to the future. Thus, according to the SOP’s principle, the decision-makers, first allocate the available water to meet the demand of the stakeholder with the highest priority. After this first water demand is fully satisfied, the available water can be used for the next demand. Such an allocation process continues until no water is available.Ethics approvalAll authors accept all ethical approvals.Consent to participateAll authors consent to participate.Consent to publishAll authors consent to publish. More

  • in

    The impact of Tamarix invasion on the soil physicochemical properties

    Mack, R. N. et al. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecol. Appl. 10(3), 689–710 (2000).
    Google Scholar 
    Pimentel, D. Biological invasionseconomic and environmental costs of alien plant, animal, and microbe species. No. 577.18 B5/2011. 2011.Jackson, T. Addressing the economic costs of invasive alien species: Some methodological and empirical issues. Int. J. Sustain. Soc. 7(3), 221–240 (2015).
    Google Scholar 
    Walker, B. H. & Steffen, W. L. Interactive and integrated effects of global change on terrestrial ecosystems. In The Terrestrial Biosphere and Global Change. Implications for Natural and Managed Ecosystems, Synthesis Volume. International Geosphere-Biosphere Program Book Series 4 (eds Walker, B. et al.) 329–375 (Cambridge University Press, 1999).
    Google Scholar 
    Wilcove, D. S., Rothstein, D., Dubow, J., Phillips, A. & Losos, E. Quantifying threats to imperiled species in the United States. Bioscience 48(8), 607–615 (1998).
    Google Scholar 
    Robinson, T. W. Introduction, Spread and Areal Extent of Saltcedar [Tamarix] in the Western States (No. 491) (US Government Printing Office, 1965).
    Google Scholar 
    Marlin, D., Newete, S. W., Mayonde, S. G., Smit, E. R. & Byrne, M. J. Invasive Tamarix (Tamaricaceae) in South Africa: Current research and the potential for biological control. Biol. Invasions 19(10), 2971–2992 (2017).
    Google Scholar 
    Pearce, C. M. & Smith, D. G. Saltcedar: Distribution, abundance, and dispersal mechanisms, northern Montana, USA. Wetlands 23(2), 215–228 (2003).
    Google Scholar 
    Newete, S. W., Mayonde, S. & Byrne, M. J. Distribution and abundance of invasive Tamarix genotypes in South Africa. Weed Res. 59(3), 191–200 (2019).CAS 

    Google Scholar 
    Chew, M. K. The monstering of tamarisk: How scientists made a plant into a problem. J. Hist. Biol. 42(2), 231–266 (2009).PubMed 

    Google Scholar 
    Richardson, D. M., Macdonald, I. A. W., Hoffmann, J. H. & Henderson, L. Alienplantinvasions. In The Vegetation of Southern Africa (eds Cowling, R. M. et al.) 535–570 (Cambridge University Press, 1997).
    Google Scholar 
    Ehrenfeld, J. G. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6(6), 503–523 (2003).CAS 

    Google Scholar 
    Haubensak, K. A., D’Antonio, C. M. & Alexander, J. Effects of nitrogen-fixing shrubs in Washington and Coastal California1. Weed Technol. 18(sp1), 1475–1479 (2004).
    Google Scholar 
    Hawkes, C. V., Wren, I. F., Herman, D. J. & Firestone, M. K. Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecol. Lett. 8(9), 976–985 (2005).PubMed 

    Google Scholar 
    Kourtev, P. S., Ehrenfeld, J. G. & Häggblom, M. Exotic plant species alter the microbial community structure and function in the soil. Ecology 83(11), 3152–3166 (2002).
    Google Scholar 
    Saggar, S., McIntosh, P. D., Hedley, C. B. & Knicker, H. Changes in soil microbial biomass, metabolic quotient, and organic matter turnover under Hieracium (H. pilosella L.). Biol. Fertility Soils 30(3), 232–238 (1999).CAS 

    Google Scholar 
    Dudley, T. L., DeLoach, C. J., Levich, J. E. & Carruthers, R. I. Saltcedar invasion of western riparian areas: Impacts and new prospects for control. Trans. N. Am. Wildlife Nat. Resources Conf. 65, 345–381 (2000).
    Google Scholar 
    Algotsson, E. Biological diversity. In Environmental Management in South Africa 2nd edn (eds Strydom, H. A. & King, N. D.) 97–125 (Juta Cape Town, 2009).
    Google Scholar 
    Mayonde, S. G., Cron, G. V., Gaskin, J. F. & Byrne, M. J. Tamarix (Tamaricaceae) hybrids: The dominant invasive genotype in Southern Africa. Biol. Invasions 18(12), 3575–3594 (2016).
    Google Scholar 
    Corbin, J. D. & D’Antonio, C. M. Effects of exotic species on soil nitrogen cycling: Implications for restoration1. Weed Technol. 18(sp1), 1464–1468 (2004).CAS 

    Google Scholar 
    Marchante, E., Kjøller, A., Struwe, S. & Freitas, H. Soil recovery after removal of the N 2-fixing invasive Acacia longifolia: Consequences for ecosystem restoration. Biol. Invasions 11(4), 813–823 (2009).
    Google Scholar 
    Magadlela, D. & Mdzeke, N. Social benefits in the Working for Water programme as a public works initiative: Working for water. S. Afr. J. Sci. 100(1–2), 94–96 (2004).
    Google Scholar 
    Yelenik, S. G., Stock, W. D. & Richardson, D. M. Ecosystem level impacts of invasive Acacia saligna in the South African fynbos. Restor. Ecol. 12(1), 44–51 (2004).
    Google Scholar 
    Malcolm, G. M., Bush, D. S. & Rice, S. K. Soil nitrogen conditions approach preinvasion levels following restoration of nitrogen-fixing black locust (Robinia pseudoacacia) stands in a Pine-Oak Ecosystem. Restor. Ecol. 16(1), 70–78 (2008).
    Google Scholar 
    Maron, J. L. & Jefferies, R. L. Bush lupine mortality, altered resource availability, and alternative vegetation states. Ecology 80(2), 443–454 (1999).
    Google Scholar 
    AgriLASA (Agri Laboratory Association of Southern Africa). 2004. Soil handbook.Okalebo, J.R., Gathua, K.W. & Woomer, P.L. (2002). Laboratory methods of soil and plant analysis: A working manual second edition. Sacred Africa, Nairobi, 21.LECO. 2003. Truspec CN Carbon/Nitrogen Determinator Instructions Manual. LECO Corporation, St Joseph, USA.Suarez, D. L., Wood, J. D. & Lesch, S. M. Effect of SAR on water infiltration under a sequential rain–irrigation management system. Agric. Water Manag. 86(1–2), 150–164 (2006).
    Google Scholar 
    Dane, J.H., and Hopmans, JW. (2002). Water retention and storage. GC Method of soil analysis. SSSA book series. Madison, Wisconsin, USA. 1692, 671–720.Blakemore, L.C., Searle, P.L. and Daly, B.K. (1987). Methods for chemical analysis of soils. New Zealand Soil Bureau Scientific, Report 80. New Zealand, Lower Hutt: New Zealand Society of Soil Science, 103.Buckham, L.E. (2011). Contrasting growth traits and insect interactions of two Tamarix species and a hybrid (Tamaricaceae) used for mine rehabilitation in South Africa (Doctoral dissertation).Ladenburger, C. G., Hild, A. L., Kazmer, D. J. & Munn, L. C. Soil salinity patterns in Tamarix invasions in the Bighorn Basin, Wyoming, USA. J. Arid Environ. 65(1), 111–128 (2006).ADS 

    Google Scholar 
    Beukes, P. C. & Ellis, F. Soil and vegetation changes across a Succulent Karoo grazing gradient. Afr. J. Range Forage Sci. 20(1), 11–19 (2003).
    Google Scholar 
    Liu, M. et al. Monitoring the invasion of Spartina alterniflora using multi-source high-resolution imagery in the Zhangjiang Estuary, China. Remote Sensing 9(6), 539 (2017).ADS 

    Google Scholar 
    Newete, S. W., Abd Elbasit, M. A. & Araya, T. Soil salinity and moisture content under non-native Tamarix species. Int. J. Phytorem. 22(9), 931–938. https://doi.org/10.1080/15226514.2020.1774503 (2020).CAS 
    Article 

    Google Scholar 
    Whitford, W. G., Anderson, J. & Rice, P. M. Stemflow contribution to the ’fertile island’effect in creosotebush, Larrea tridentata. J. Arid Environ. 35(3), 451–457 (1997).ADS 

    Google Scholar 
    Li, C., Li, Y. & Ma, J. Spatial heterogeneity of soil chemical properties at fine scales induced by Haloxylon ammodendron (Chenopodiaceae) plants in a sandy desert. Ecol. Res. 26(2), 385–394 (2011).MathSciNet 
    CAS 

    Google Scholar 
    Sookbirsingh, R., Karina, C., Thomas, E.G. & Rusell, RC. (2010). Salt separation processes in the saltcedar Tamarix ramosissima (Lebed.). Commun Soil Sci Plant Anal. 41(10), 1271–1281.Newete, S.W., Allem, S.M., Venter, N. and Byrne, M.J. Tamarix efficiency in salt excretion and physiological tolerance to salt-induced stress in South Africa. Int. J. Phytoremediat. 1–7 (2019).Di Tomaso, J. M. Impact, biology, and ecology of saltcedar (Tamarix spp.) in the southwestern United States. Weed Technol. 12(2), 326–336 (1998).
    Google Scholar 
    Smith, S. D., Devitt, D. A., Sala, A., Cleverly, J. R. & Busch, D. E. Water relations of riparian plants from warm desert regions. Wetlands 18(4), 687–696 (1998).
    Google Scholar 
    Lesica, P. & DeLuca, T. H. Is tamarisk allelopathic?. Plant Soil 267(1–2), 357–365 (2004).CAS 

    Google Scholar 
    Bagstad, K. J., Lite, S. J. & Stromberg, J. C. Vegetation, soils, and hydrogeomorphology of riparian patch types of a dryland river. Western N. Am. Naturalist 66(1), 23–45 (2006).
    Google Scholar 
    Lehnhoff, E. A., Rew, L. J., Zabinski, C. A. & Menalled, F. D. Reduced impacts or a longer lag phase? Tamarix in the northwestern USA. Wetlands 32(3), 497–508 (2012).
    Google Scholar 
    Ye, W., Wang, H. X., Gao, J., Liu, H. J. & Yan, L. Simulation of salt ion migration in soil under reclaimed water irrigation. J. Agro-Environ. Sci. 33(5), 1007–1015 (2014).CAS 

    Google Scholar 
    Yang, S. C. et al. Characterization of soil salinization based on canonical correspondence analysis method in Gansu Yellow River irrigation district of Northwest China. Scientia Agricultura Sinica 47(1), 100–110 (2014).CAS 

    Google Scholar 
    Zhang, L. H., Chen, P. H., Li, J., Chen, X. B. & Feng, Y. Distribution of soil salt ions around Tamarix chinensis individuals in the Yellow River Delta. Acta Ecol. Sin. 36(18), 5741–5749 (2016).CAS 

    Google Scholar 
    Zhang, T., Zhan, X., He, J., Feng, H. & Kang, Y. Salt characteristics and soluble cations redistribution in an impermeable calcareous saline-sodic soil reclaimed with an improved drip irrigation. Agric. Water Manag. 197, 91–99 (2018).
    Google Scholar 
    Yin, C. H., Feng, G. U., Zhang, F., Tian, C. Y. & Tang, C. Enrichment of soil fertility and salinity by tamarisk in saline soils on the northern edge of the Taklamakan Desert. Agric. Water Manag. 97(12), 1978–1986 (2010).
    Google Scholar 
    Chaudhari, P. R., Ahire, D. V., Ahire, V. D., Chkravarty, M. & Maity, S. Soil bulk density as related to soil texture, organic matter content and available total nutrients of Coimbatore soil. Int. J. Sci. Res. Publ. 3(2), 1–8 (2013).CAS 

    Google Scholar 
    Tanveera, A., Kanth, T. A., Tali, P. A. & Naikoo, M. Relation of soil bulk density with texture, total organic matter content and porosity in the soils of Kandi Area of Kashmir valley, India. Int. Res. J. Earth Sci. 4(1), 1–6 (2016).
    Google Scholar 
    Sharma, B. & Bhattacharya, S. Soil bulk density as related to soil texture, moisture content, Ph, electrical conductivity, organic carbon, organic matter content and available macro nutrients of Pandoga sub watershed, Una District of HP (India). Int. J. Eng. Res. Dev. 13(12), 72–76 (2017).
    Google Scholar  More

  • in

    Resident birds are more behaviourally plastic than migrants

    Hall, M. J., Burns, A. L., Martin, J. M. & Hochuli, D. F. Flight initiation distance changes across landscapes and habitats in a successful urban coloniser. Urban Ecosyst. https://doi.org/10.1007/s11252-020-00969-5 (2020).Article 

    Google Scholar 
    Møller, A. P., Samia, D. S. M., Weston, M. A., Guay, P. J. & Blumstein, D. T. Flight initiation distances in relation to sexual dichromatism and body size in birds from three continents. Biol. J. Linn. Soc. 117, 823–831 (2016).
    Google Scholar 
    Morelli, F. et al. Contagious fear: Escape behavior increases with flock size in European gregarious birds. Ecol. Evol. 9, 6096–6104 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Samia, D. S. M. et al. Rural-urban differences in escape behavior of European birds across a latitudinal gradient. Front. Ecol. Evol. 5, 66 (2017).ADS 

    Google Scholar 
    Blumstein, D. T. Developing an evolutionary ecology of fear: How life history and natural history traits affect disturbance tolerance in birds. Anim. Behav. 71, 389–399 (2006).
    Google Scholar 
    McFarland, D. Oxford companion to animal behavior. (Oxford University Press, 1987).Stankowich, T. & Blumstein, D. T. Fear in animals: A meta-analysis and review of risk assessment. Proc. R. Soc. B Biol. Sci. 272, 2627–2634 (2005).
    Google Scholar 
    Lima, S. L. Maximizing feeding efficiency and minimizing time exposed to predators: a trade-off in the black-capped chickadee. Oecologia 66, 60–67 (1985).ADS 
    PubMed 

    Google Scholar 
    Sol, D. et al. Risk-taking behavior, urbanization and the pace of life in birds. Behav. Ecol. Sociobiol. 72, 59 (2018).
    Google Scholar 
    Lockwood, R., Swaddle, J. P. & Rayner, J. M. V. Avian Wingtip Shape Reconsidered: Wingtip Shape Indices and Morphological Adaptations to Migration. J. Avian Biol. 29, 273–292 (1998).
    Google Scholar 
    Møller, A. P. Birds. in Escaping from predators: An integrative view of escape decisions and refuge use (eds. Cooper, W. E. J. & Blumstein, D. T.) 88–112 (Cambridge University Press, 2015).Møller, A. P. Flight distance of urban birds, predation and selection for urban life. Behav. Ecol. Sociobiol. 63, 63–75 (2008).
    Google Scholar 
    Fernández-Juricic, E. et al. Relationships of anti-predator escape and post-escape responses with body mass and morphology: a comparative avian study. Evol. Ecol. Res. 8, 731–752 (2006).
    Google Scholar 
    Weston, M. A., Mcleod, E. M., Blumstein, D. T. & Guay, P. J. A review of flight-initiation distances and their application to managing disturbance to Australian birds. Emu 112, 269–286 (2012).
    Google Scholar 
    Hemmingsen, A. The relation of shyness (flushing distance) to body size. Spolia Zool Musei Hauniensis 11, 74–76 (1951).
    Google Scholar 
    Blumstein, D. T. Flight-initiation distance in birds is dependent on intruder starting distance. J. Wildl. Manage. 67, 852–857 (2013).
    Google Scholar 
    Glover, H. K., Weston, M. A., Maguire, G. S., Miller, K. K. & Christie, B. A. Towards ecologically meaningful and socially acceptable buffers: Response distances of shorebirds in Victoria, Australia, to human disturbance. Landsc. Urban Plan. 103, 326–334 (2011).
    Google Scholar 
    Geist, C., Liao, J., Libby, S. & Blumstein, D. T. Does intruder group size and orientation affect flight initiation distance in birds?. Anim. Biodivers. Conserv. 28, 69–73 (2001).
    Google Scholar 
    Mikula, P. Pedestrian density influences flight distances of urban birds. Ardea 102, 53–60 (2014).
    Google Scholar 
    Piratelli, A. J., Favoretto, G. R. & de Almeida Maximiano, M. F. Factors affecting escape distance in birds. Zoologia 32, 438–444 (2015).Burger, J. & Gochfeld, M. Human activity influence and diurnal and nocturnal foraging of Sanderlings (Calidris alba). Condor 93, 259–265 (1991).
    Google Scholar 
    Møller, A. P. & Garamszegi, L. Z. Between individual variation in risk-taking behavior and its life history consequences. Behav. Ecol. 23, 843–853 (2012).
    Google Scholar 
    Ferguson, S. M., Gilson, L. N. & Bateman, P. W. Look at the time: diel variation in the flight initiation distance of a nectarivorous bird. Behav. Ecol. Sociobiol. 73, 147 (2019).
    Google Scholar 
    Garamszegi, L. Z. & Møller, A. P. Partitioning within-species variance in behaviour to within- and between-population components for understanding evolution. Ecol. Lett. 20, 599–608 (2017).PubMed 

    Google Scholar 
    Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).CAS 
    PubMed 

    Google Scholar 
    Dufour, P. et al. Reconstructing the geographic and climatic origins of long-distance bird migrations. J. Biogeogr. 47, 155–166 (2020).
    Google Scholar 
    Sol, D. et al. Evolutionary divergence in brain size between migratory and resident birds. PLoS ONE 5, e9617 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bonnet-Lebrun, A. S., Somveille, M., Rodrigues, A. S. L. & Manica, A. Exploring intraspecific variation in migratory destinations to investigate the drivers of migration. Oikos 130, 187–196 (2021).
    Google Scholar 
    Zurell, D., Gallien, L., Graham, C. H. & Zimmermann, N. E. Do long-distance migratory birds track their niche through seasons?. J. Biogeogr. 45, 1459–1468 (2018).
    Google Scholar 
    Samia, D. S. M., Nakagawa, S., Nomura, F., Rangel, T. F. & Blumstein, D. T. Increased tolerance to humans among disturbed wildlife. Nat. Commun. 6, 8877 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ydenberg, R. C. & Dill, L. M. The economics of fleeing from predators. Adv. Study Behav. 16, 229–249 (1986).
    Google Scholar 
    Cooper, W. E. J. & Blumstein, D. T. Escape behavior: importance, scope, and variables. in Escaping from predators: An integrative view of escape decisions (eds. Cooper, W. E. J. & Blumstein, D. T.) 3–14 (Cambridge University Press, 2015). https://doi.org/10.1017/CBO9781107447189.002.Sayol, F., Sol, D. & Pigot, A. L. Brain size and life history interact to predict urban tolerance in birds. Front. Ecol. Evol. 8, 58 (2020).
    Google Scholar 
    Sayol, F., Downing, P. A., Iwaniuk, A. N., Maspons, J. & Sol, D. Predictable evolution towards larger brains in birds colonizing oceanic islands. Nat. Commun. 9, 2820 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tobias, J. A. & Pigot, A. L. Integrating behaviour and ecology into global biodiversity conservation strategies. Philos. Trans. R. Soc. B Biol. Sci. 374, 20190012 (2019).
    Google Scholar 
    Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).
    Google Scholar 
    Kamilar, J. M. & Cooper, N. Phylogenetic signal in primate behaviour, ecology and life history. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120341–22012034 (2013).
    Google Scholar 
    Machado, J. P., Antunes, A., Borges, R., Gomes, C. & Rocha, A. P. Measuring phylogenetic signal between categorical traits and phylogenies. Bioinformatics https://doi.org/10.1093/bioinformatics/bty800 (2018).Article 

    Google Scholar 
    Ericson, P. G. P. et al. Diversification of Neoaves: integration of molecular sequence data and fossils. Biol. Lett. 2, 543–547 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 
    PubMed 

    Google Scholar 
    Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).CAS 

    Google Scholar 
    Revell, L. J. & Chamberlain, S. A. Rphylip: An R interface for PHYLIP R package. (2014).Blomberg, S. P. & Garland, T. Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J. Evol. Biol. 15, 899–910 (2003).
    Google Scholar 
    Keck, F., Rimet, F., Bouchez, A. & Franc, A. Phylosignal: An R package to measure, test, and explore the phylogenetic signal. Ecol. Evol. 6, 2774–2780 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Münkemüller, T. et al. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756 (2012).
    Google Scholar 
    Kot, M. Adaptation: Statistics and a null model for estimating phylogenetic effects. Syst. Zool. 39, 227–241 (1990).
    Google Scholar 
    Blomberg, S. P., Garland, T. J. & Ives, A. R. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution (N. Y.) 57, 717–745 (2003).
    Google Scholar 
    Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    McCullagh, P. & Nelder, J. A. Generalized Linear Models. (Chapman and Hall, 1989).Pinheiro, J. et al. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-140. 1–117 (2019).Nakazawa, M. ‘fmsb’ Functions for Medical Statistics Book with some Demographic Data – R package version 0.6.1. (2017).R Development Core Team. R: A language and environment for statistical computing. (2021).Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. (Springer, 2002). https://doi.org/10.1007/978-0-387-21706-2. More

  • in

    The great acceleration of plant phenological shifts

    Kaplan, J. O., Krumhardt, K. M. & Zimmermann, N. Quat. Sci. Rev. 28, 3016–3034 (2009).Article 

    Google Scholar 
    Zheng, Z. et al. Proc. Natl Acad. Sci. USA 118, e2022210118 (2021).CAS 
    Article 

    Google Scholar 
    Lewis, S. L. & Maslin, M. A. Nature 519, 171–180 (2015).CAS 
    Article 

    Google Scholar 
    Steffen, W. et al. Anthr. Rev. 2, 81–98 (2015).
    Google Scholar 
    Ripple, W. J. et al. BioScience 70, 8–12 (2020).
    Google Scholar 
    Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. Nat. Clim. Change 8, 224–228 (2018).Article 

    Google Scholar 
    Vitasse, Y. et al. Biol. Rev. 96, 1816–1835 (2021).Article 

    Google Scholar 
    Aono, Y. & Kazui, K. Int. J. Climatol. 28, 905–914 (2008).Article 

    Google Scholar 
    Sparks, T. H. & Carey, P. D. J. Ecol. 83, 321–329 (1995).Article 

    Google Scholar 
    Ge, Q. et al. J. Geophys. Res. Biogeosci. 119, 301–311 (2014).Article 

    Google Scholar 
    IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).Post, E., Steinman, B. A. & Mann, M. E. Sci. Rep. 8, 3927 (2018).Article 

    Google Scholar 
    Primack, R. B. & Miller-Rushing, A. J. Bioscience 62, 170–181 (2012).Article 

    Google Scholar 
    Kharouba, H. M. et al. Proc. Natl Acad. Sci. USA 115, 5211–5216 (2018).CAS 
    Article 

    Google Scholar 
    Richardson, A. D. et al. Agric. For. Meteorol. 169, 156–173 (2013).Article 

    Google Scholar 
    Parker, D. E., Legg, T. P. & Folland, C. K. Int. J. Climatol. 12, 317–342 (1992).Article 

    Google Scholar  More

  • in

    Wildmeat consumption and child health in Amazonia

    Milner-Gulland, E. J. & Bennett, E. L. Wild meat: The bigger picture. Trends Ecol. Evol. 18, 351–357 (2003).
    Google Scholar 
    Van Vliet, N. et al. Bushmeat and human health: Assessing the evidence in tropical and sub-tropical forests. Ethnobio. Conserv. 6, 3. https://doi.org/10.15451/ec2017-04-6.3-1-45 (2017).Article 

    Google Scholar 
    Ingram, D. J. et al. Wild meat is still on the menu: Progress in wild meat research, policy, and practice from 2002 to 2020. Annu. Rev. Environ. Resour. 46, 221–254. https://doi.org/10.1146/annurev-environ-041020-063132 (2021).Article 

    Google Scholar 
    Golden, C. D., Fernald, L. C. H., Brashares, J. S., Rasolofoniaina, B. J. R. & Kremen, C. Benefits of wildlife consumption to child nutrition in a biodiversity hotspot. P. Natl. Acad. Sci. 108, 19653–19656 (2011).ADS 
    CAS 

    Google Scholar 
    Roe, D. et al. Beyond banning wildlife trade: COVID-19, conservation and development. World Dev. 136, 105121. https://doi.org/10.1016/j.worlddev.2020.105121 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhou, W., Orrick, K., Lim, A. & Dove, M. Reframing conservation and development perspectives on bushmeat. Environ. Res. Lett. 17, 011001. https://doi.org/10.1088/1748-9326/ac3db1 (2021).ADS 
    Article 

    Google Scholar 
    Cawthorn, D.-M. & Hoffman, L. C. The bushmeat and food security nexus: A global account of the contributions, conundrums and ethical collisions. Food Res. Int. 76, 906–925 (2015).PubMed Central 

    Google Scholar 
    Antunes, A. P. et al. A conspiracy of silence: Subsistence hunting rights in the Brazilian Amazon. Land Use Policy 84, 1–11 (2019).
    Google Scholar 
    Friant, S. et al. Eating bushmeat improves food security in a biodiversity and infectious disease “Hotspot”. EcoHealth 17, 125–138 (2020).PubMed 

    Google Scholar 
    Fa, J. E., Currie, D. & Meeuwig, J. Bushmeat and food security in the Congo Basin: Linkages between wildlife and people’s future. Environ. Conserv. 30, 71–78 (2003).
    Google Scholar 
    Borgerson, C., Razafindrapaoly, B., Rajaona, D., Rasolofoniaina, B. J. R. & Golden, C. D. Food insecurity and the unsustainable hunting of wildlife in a UNESCO world heritage site. Front. Sustain. Food Syst. 3, 99. https://doi.org/10.3389/fsufs.2019.00099 (2019).Article 

    Google Scholar 
    Booth, H. et al. Investigating the risks of removing wild meat from global food systems. Curr. Biol. 31, 1788–1797. https://doi.org/10.1016/j.cub.2021.01.079 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Vliet, N., Nebesse, C. & Nasi, R. Bushmeat consumption among rural and urban children from Province Orientale, Democratic Republic of Congo. Oryx 49, 165–174 (2015).
    Google Scholar 
    Sirén, A. & Machoa, J. Fish, wildlife, and human nutrition in tropical forests: A fat gap?. Interciencia 33, 186–193 (2008).
    Google Scholar 
    Sarti, F. M. et al. Beyond protein intake: Bushmeat as source of micronutrients in the Amazon. E&S 20, 22 (2015).
    Google Scholar 
    Hoffman, L. C. What is the role and contribution of meat from wildlife in providing high quality protein for consumption?. Anim. Front. 2, 15 (2012).
    Google Scholar 
    Fa, J. E. et al. Disentangling the relative effects of bushmeat availability on human nutrition in central Africa. Sci. Rep. 5, 8168. https://doi.org/10.1038/srep08168 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Castro, T. G., Baraldi, L. G., Muniz, P. T. & Cardoso, M. A. Dietary practices and nutritional status of 0–24-month-old children from Brazilian Amazonia. Public Health Nutr. 12, 2335–2342 (2009).CAS 
    PubMed 

    Google Scholar 
    Mintz, S. W. & Du Bois, C. M. The anthropology of food and eating. Annu. Rev. Anthropol. 31, 99–119 (2002).
    Google Scholar 
    Lokossou, Y. U. A., Tambe, A. B., Azandjèmè, C. & Mbhenyane, X. Socio-cultural beliefs influence feeding practices of mothers and their children in Grand Popo, Benin. J. Health Popul. Nutr. 40, 33 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Murphy, S. P. & Allen, L. H. Nutritional importance of animal source foods. J. Nutr. 133, 3932S-3935S (2003).CAS 
    PubMed 

    Google Scholar 
    Neumann, C. G. et al. Animal source foods improve dietary quality, micronutrient status, growth and cognitive function in Kenyan School Children: Background, study design and baseline findings. J. Nutr. 133, 3941S-3949S (2003).CAS 
    PubMed 

    Google Scholar 
    Desalegn, A., Mossie, A. & Gedefaw, L. Nutritional iron deficiency anemia: Magnitude and its predictors among school age children, Southwest Ethiopia: A community based cross-sectional study. PLoS ONE 9, e114059 (2014).ADS 
    PubMed Central 

    Google Scholar 
    Safiri, S. et al. Burden of anemia and its underlying causes in 204 countries and territories, 1990–2019: Results from the Global Burden of Disease Study 2019. J. Hematol. Oncol. 14, 185 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Vos, T. et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1545–1602 (2016).
    Google Scholar 
    Investing in the future: a united call to action on vitamin and mineral deficiencies: global report, 2009. (Micronutrient Initiative, 2009).Walker, S. P. et al. Child development: Risk factors for adverse outcomes in developing countries. Lancet 369, 145–157 (2007).PubMed 

    Google Scholar 
    Saloojee, H. & Pettifor, J. M. Iron deficiency and impaired child development: The relation may be causal, but it may not be a priority for intervention. BMJ 323, 1377–1378 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Neumann, C., Harris, D. M. & Rogers, L. M. Contribution of animal source foods in improving diet quality and function in children in the developing world. Nutr. Res. 22, 193–220 (2002).CAS 

    Google Scholar 
    Haileselassie, M. et al. Why are animal source foods rarely consumed by 6–23 months old children in rural communities of Northern Ethiopia? A qualitative study. PLoS ONE 15, e0225707 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Victor, R., Baines, S. K., Agho, K. E. & Dibley, M. J. Factors associated with inappropriate complementary feeding practices among children aged 6–23 months in Tanzania: Complementary feeding practices in Tanzania. Matern. Child Nutr. 10, 545–561 (2014).PubMed 

    Google Scholar 
    Morsello, C. et al. Cultural attitudes are stronger predictors of bushmeat consumption and preference than economic factors among urban Amazonians from Brazil and Colombia. E&S 20, 21 (2015).
    Google Scholar 
    Parry, L., Barlow, J. & Pereira, H. Wildlife Harvest and Consumption in Amazonia’s Urbanized Wilderness: Wildlife consumption in urbanized Amazonia. Conserv. Lett. 7, 565–574 (2014).
    Google Scholar 
    Chaves, W. A., Wilkie, D. S., Monroe, M. C. & Sieving, K. E. Market access and wild meat consumption in the central Amazon, Brazil. Biol. Conserv. 212, 240–248 (2017).
    Google Scholar 
    Dufour, D. L., Piperata, B. A., Murrieta, R. S. S., Wilson, W. M. & Williams, D. D. Amazonian foods and implications for human biology. Ann. Hum. Biol. 43, 330–348 (2016).PubMed 

    Google Scholar 
    Piperata, B. A. Nutritional status of Ribeirinhos in Brazil and the nutrition transition. Am. J. Phys. Anthropol. 133, 868–878 (2007).PubMed 

    Google Scholar 
    Garcia, M. T., Granado, F. S. & Cardoso, M. A. Alimentação complementar e estado nutricional de crianças menores de dois anos atendidas no Programa Saúde da Família em Acrelândia, Acre, Amazônia Ocidental Brasileira. Cad. Saúde Pública 27, 305–316 (2011).PubMed 

    Google Scholar 
    Marques, R. C., Bernardi, J. V. E., Dorea, C. C. & Dórea, J. G. Intestinal parasites, anemia and nutritional status in young children from transitioning Western Amazon. IJERPH 17, 577 (2020).PubMed Central 

    Google Scholar 
    Granado, F. S., Augusto, R. A., Muniz, P. T. & Cardoso, M. A. Team, the A. S. Anaemia and iron deficiency between 2003 and 2007 in Amazonian children under 2 years of age: Trends and associated factors. Public Health Nutr. 16, 1751–1759 (2013).PubMed 

    Google Scholar 
    Nogueira-de-Almeida, C. A. et al. Prevalence of childhood anaemia in Brazil: Still a serious health problem: A systematic review and meta-analysis. Public Health Nutr. 24, 6450–6465. https://doi.org/10.1017/S136898002100286X (2021).Article 
    PubMed 

    Google Scholar 
    de Souza, A. A., Mingoti, S. A., Paes-Sousa, R. & Heller, L. Combination of conditional cash transfer program and environmental health interventions reduces child mortality: An ecological study of Brazilian municipalities. BMC Public Health 21, 627 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Ferreira, H. S. et al. Prevalence of anaemia in Brazilian children in different epidemiological scenarios: An updated meta-analysis. Public Health Nutr. 24, 2171–2184 (2021).PubMed 

    Google Scholar 
    Leite, M. S. et al. Prevalence of anemia and associated factors among indigenous children in Brazil: Results from the First National Survey of Indigenous People’s Health and Nutrition. Nutr. 12, 69 (2013).
    Google Scholar 
    WHO, W. H. O. Prevalence of anaemia in children aged 6–59 months (%). https://www.who.int/data/gho/data/indicators/indicator-details/GHO/prevalence-of-anaemia-in-children-under-5-years-(-) (2021).Schreiner, M. A Poverty Probability Index (PPI®) for Brazil (2008). (2010).Walzer, C. COVID-19 and the curse of piecemeal perspectives. Front. Vet. Sci. 7, 582983 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Carignano, T. P., Morsello, C. & Parry, L. Rural-urban mobility influences wildmeat access and consumption in the Brazilian Amazon. Oryx (In press).Ferreira, M. U. et al. Anemia and iron deficiency in school children, adolescents, and adults: A community-based study in Rural Amazonia. Am. J. Public Health 97, 237–239 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    de Castro, T. G., Silva-Nunes, M., Conde, W. L., Muniz, P. T. & Cardoso, M. A. Anemia e deficiência de ferro em pré-escolares da Amazônia Ocidental brasileira: Prevalência e fatores associados. Cad. Saúde Pública 27, 131–142 (2011).PubMed 

    Google Scholar 
    Cotta, R. M. M. et al. Social and biological determinants of iron deficiency anemia. Cad. Saúde Pública 27, s309–s320 (2011).PubMed 

    Google Scholar 
    Chaves, W. A., Valle, D., Tavares, A. S., Morcatty, T. Q. & Wilcove, D. S. Impacts of rural to urban migration, urbanization, and generational change on consumption of wild animals in the Amazon. Conserv. Biol. 35, 1186–1197. https://doi.org/10.1111/cobi.13663 (2020).Article 

    Google Scholar 
    El Bizri, H. R. et al. Urban wild meat consumption and trade in central Amazonia. Conserv. Biol. 34, 438–448 (2020).PubMed 

    Google Scholar 
    Chaves, W. A., Valle, D., Tavares, A. S., von Mühlen, E. M. & Wilcove, D. S. Investigating illegal activities that affect biodiversity: The case of wildlife consumption in the Brazilian Amazon. Ecol. Appl. 31, e02402. https://doi.org/10.1002/eap.2402 (2021).Article 
    PubMed 

    Google Scholar 
    Chaves, W. A., Monroe, M. C. & Sieving, K. E. Wild meat trade and consumption in the Central Amazon, Brazil. Hum. Ecol. 47, 733–746 (2019).
    Google Scholar 
    Ohl-Schacherer, J. et al. The sustainability of subsistence hunting by matsigenka native communities in Manu National Park, Peru. Conserv. Biol. 21, 1174–1185 (2007).PubMed 

    Google Scholar 
    Shaffer, C. A., Yukuma, C., Marawanaru, E. & Suse, P. Assessing the sustainability of Waiwai subsistence hunting in Guyana by comparison of static indices and spatially explicit, biodemographic models. Anim. Conserv. 21, 148–158 (2018).
    Google Scholar 
    Pesquisa de orçamentos familiares, 2008–2009. (IBGE, 2010).Aguiar, J. P. L. Tabela de composição de alimentos da Amazônia. Acta Amaz 26, 121–126 (1996).
    Google Scholar 
    de Bruyn, J. et al. Food composition tables in resource-poor settings: exploring current limitations and opportunities, with a focus on animal-source foods in sub-Saharan Africa. Br. J. Nutr. 116, 1709–1719 (2016).PubMed Central 

    Google Scholar 
    World Bank. Poverty and Shared Prosperity 2020: Reversals of Fortune. (World Bank, 2020).Coad, L. M. et al. Toward a Sustainable, Participatory and Inclusive Wild Meat Sector. (Center for International Forestry Research (CIFOR) https://doi.org/10.17528/cifor/007046 (2019).Cowlishaw, G., Mendelson, S. & Rowcliffe, J. M. Evidence for post-depletion sustainability in a mature bushmeat market. J. Appl. Ecol. 42, 460–468 (2005).
    Google Scholar 
    Carignano Torres, P., Morsello, C., Parry, L. & Pardini, R. Forest cover and social relations are more important than economic factors in driving hunting and bushmeat consumption in post-frontier Amazonia. Biol. Conserv. 253, 108823. https://doi.org/10.1016/j.biocon.2020.108823 (2021).Article 

    Google Scholar 
    Nunes, A. V., Oliveira-Santos, L. G. R., Santos, B. A., Peres, C. A. & Fischer, E. Socioeconomic drivers of hunting efficiency and use of space by traditional Amazonians. Hum. Ecol. 48, 307–315 (2020).
    Google Scholar 
    Freitas, C. T. et al. Co-management of culturally important species: A tool to promote biodiversity conservation and human well-being. People Nat. 2, 61–81 (2020).
    Google Scholar 
    Campos-Silva, J. V., Peres, C. A., Antunes, A. P., Valsecchi, J. & Pezzuti, J. Community-based population recovery of overexploited Amazonian wildlife. PECON 15, 266–270 (2017).
    Google Scholar 
    Nunes, A. V., Peres, C. A., de Constantino, P. A. L., Santos, B. A. & Fischer, E. Irreplaceable socioeconomic value of wild meat extraction to local food security in rural Amazonia. Biol. Conserv. 236, 171–179 (2019).
    Google Scholar 
    Balarajan, Y., Ramakrishnan, U., Özaltin, E., Shankar, A. H. & Subramanian, S. Anaemia in low-income and middle-income countries. Lancet 378, 2123–2135 (2011).PubMed 

    Google Scholar 
    Mendes, M. M. et al. Association between iron deficiency anaemia and complementary feeding in children under 2 years assisted by a Conditional Cash Transfer programme. Public Health Nutr. 24, 4080–4090 (2021).PubMed 

    Google Scholar 
    Brondízio, E. S., de Lima, A. C. B., Schramski, S. & Adams, C. Social and health dimensions of climate change in the Amazon. Ann. Hum. Biol. 43, 405–414 (2016).PubMed 

    Google Scholar 
    Ingram, D. J. Wild meat in changing times. J. Ethnobiol. 40, 117 (2020).
    Google Scholar 
    Nunes, A. V., Guariento, R. D., Santos, B. A. & Fischer, E. Wild meat sharing among non-indigenous people in the southwestern Amazon. Behav. Ecol. Sociobiol. 73, 26 (2019).
    Google Scholar 
    Parry, L. et al. Social vulnerability to climatic shocks is shaped by urban accessibility. Ann. Am. Assoc. Geogr. 108, 125–143 (2018).
    Google Scholar 
    IBGE, I. B. de G. e E. Censo Demográfico 2010. (2010).IBGE, I. B. de G. e E. Estimativas da população residente para os municípios e para as unidades da federação com data de referência em 1o de julho de 2019. (2019).Cardoso, M. A., Scopel, K. K. G., Muniz, P. T., Villamor, E. & Ferreira, M. U. Underlying factors associated with anemia in amazonian children: A population-based cross-sectional study. PLOS ONE 7, e36341 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mattiello, V. et al. Diagnosis and management of iron deficiency in children with or without anemia: consensus recommendations of the SPOG Pediatric Hematology Working Group. Eur. J. Pediatr. 179, 527–545 (2020).PubMed 

    Google Scholar 
    R Core Team. R: The R project for statistical computing. (2015).Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009). https://doi.org/10.1007/978-0-387-87458-6.Book 
    MATH 

    Google Scholar 
    Devereux, S. Social Protection for Rural Poverty Reduction. Rural Transformations Technical Series 1 (2016).Barton, K. Mu-MIn: Multi-model Inference. R Package Version 0.12.2/r18. (2009).Burnham, K. P., Anderson, D. R. & Burnham, K. P. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    Berti, P. R. Intrahousehold distribution of food: A review of the literature and discussion of the implications for food fortification programs. Food Nutr. Bull. 33, S163–S169 (2012).PubMed 

    Google Scholar 
    Piperata, B. A., Schmeer, K. K., Hadley, C. & Ritchie-Ewing, G. Dietary inequalities of mother–child pairs in the rural Amazon: Evidence of maternal-child buffering?. Soc. Sci. Med. 96, 183–191 (2013).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Understanding urban plant phenology for sustainable cities and planet

    Meng, L. et al. Proc. Natl Acad. Sci. USA 117, 4228 (2020).CAS 
    Article 

    Google Scholar 
    Wohlfahrt, G., Tomelleri, E. & Hammerle, A. Nat. Ecol. Evol. 3, 1668–1674 (2019).Article 

    Google Scholar 
    Wortman, S. E. & Lovell, S. T. J. Environ. Qual. 42, 1283–1294 (2013).CAS 
    Article 

    Google Scholar 
    Su, Y. et al. Agri. For. Meterol. 280, 107765 (2020).Article 

    Google Scholar 
    Smith, I. A., Dearborn, V. K. & Hutyra, L. R. PLoS ONE 14, e0215846 (2019).Article 

    Google Scholar 
    Richardson, A. D. et al. Nature 560, 368–371 (2018).CAS 
    Article 

    Google Scholar 
    Meineke, E. K., Dunn, R. R. & Frank, S. D. Biol. Lett. 10, 20140586 (2014).Article 

    Google Scholar 
    Liu, J. et al. Tour. Manag. 70, 262–272 (2019).Article 

    Google Scholar 
    Li, X. et al. Remote Sens. Environ. 222, 267–274 (2019).CAS 
    Article 

    Google Scholar 
    Wang, S. et al. Nat. Ecol. Evol. 3, 1076–1085 (2019).Article 

    Google Scholar 
    Feeley, K. J. et al. Nat. Clim. Change 10, 965–970 (2020).CAS 
    Article 

    Google Scholar 
    Li, D. et al. Nat. Ecol. Evol. 3, 1661–1667 (2019).Article 

    Google Scholar 
    Li, X. et al. Earth Syst. Sci. Data 11, 881–894 (2019).Article 

    Google Scholar 
    Román, M. O. et al. Remote Sens. Environ. 210, 113–143 (2018).Article 

    Google Scholar 
    Li, X. et al. Remote Sens. Environ. 215, 74–84 (2018).Article 

    Google Scholar  More