More stories

  • in

    Regulated timber harvesting does not reduce koala density in north-east forests of New South Wales

    Slade, C. & Law, B. The other half of the coastal State Forest estate in New South Wales; The value of informal forest reserves for conservation. Aust. Zool. 39, 359–370. https://doi.org/10.7882/AZ.2016.011 (2017).Article 

    Google Scholar 
    Munks, S. A., Chuter, A. E. & Koch, A. J. ‘Off-reserve’ management in practice: Contributing to conservation of biodiversity over 30 years of Tasmania’s forest practices system. For. Ecol. Manag. 465, 117941. https://doi.org/10.1016/j.foreco.2020.117941 (2020).Article 

    Google Scholar 
    Lande, R. Demographic models of the northern spotted owl (Strix occidentalis caurina). Oecologia 75, 601–607 (1988).ADS 
    CAS 
    Article 

    Google Scholar 
    Franklin, C. M. A., Macdonald, S. E. & Nielsen, S. E. Can retention harvests help conserve wildlife? Evidence for vertebrates in the boreal forest. Ecosphere 10(3), e02632 (2019).Article 

    Google Scholar 
    McAlpine, C. A. et al. Conserving koalas: A review of the contrasting regional trends, outlooks and policy challenges. Biol. Conserv. 192, 226–236. https://doi.org/10.1016/j.biocon.2015.09.020 (2015).Article 

    Google Scholar 
    Kavanagh, R. P. & Stanton, M. A. Koalas use young Eucalyptus plantations in an agricultural landscape on the Liverpool Plains, New South Wales. Ecol. Manag. Restor. 13, 297–305. https://doi.org/10.1111/emr.12005 (2012).Article 

    Google Scholar 
    Matthews, A., Lunney, D., Gresser, S. & Maitz, W. Movement patterns of koalas in remnant forest after fire. Aust. Mammal. 38, 91–104. https://doi.org/10.1071/AM14010 (2016).Article 

    Google Scholar 
    McAlpine, C. A. et al. The importance of forest area and configuration relative to local habitat factors for conserving forest mammals: A case study of koalas in Queensland, Australia. Biol. Conserv. 132, 153–165. https://doi.org/10.1016/j.biocon.2006.03.021 (2006).Article 

    Google Scholar 
    Beyer, H. L. et al. Management of multiple threats achieves meaningful koala conservation outcomes. J. Appl. Ecol. 55, 1966–1975. https://doi.org/10.1111/1365-2664.13127 (2018).Article 

    Google Scholar 
    Kavanagh, R. P., Stanton, M. A. & Brassil, T. E. Koalas continue to occupy their previous home-ranges after selective logging in Callitris–Eucalyptus forest. Wildl. Res. 34, 94–107. https://doi.org/10.1071/WR06126 (2007).Article 

    Google Scholar 
    Kavanagh, R. P., Debus, S., Tweedie, T. & Webster, R. Distribution of nocturnal forest birds and mammals in north-eastern New South Wales: Relationships with environmental variables and management history. Wildl. Res. 22, 359–377. https://doi.org/10.1071/WR9950359 (1995).Article 

    Google Scholar 
    Roberts, P. Associations Between Koala Faecal Pellets and Trees at Dorrigo, M.Sc. Thesis (University of New England, 1998).
    Google Scholar 
    Smith, A. P. Koala conservation and habitat requirements in a timber production forest in north-east New South Wales. In Conservation of Australia’s Forest Fauna (ed. Lunney, D.) 591–611 (Royal Zoological Society of New South Wales, 2004).Chapter 

    Google Scholar 
    Radford Miller, S. Aspects of the ecology of the koala, Phascolarctos cinereus, in a tall coastal production forest in north eastern New South Wales. PhD thesis (Southern Cross University, 2012).Law, B. S. et al. Passive acoustics and sound recognition provide new insights on status and resilience of an iconic endangered marsupial (koala Phascolarctos cinereus) to timber harvesting. PLoS One 13(10), e0205075. https://doi.org/10.1371/journal.pone.0205075 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ellis, W. et al. Koala habitat use and population density: Using field data to test the assumptions of ecological models. Aust. Mammal. 35, 160–165. https://doi.org/10.1071/AM12023 (2013).Article 

    Google Scholar 
    Ashman, K. R., Rendall, A. R., Symonds, M. R. E. & Whisson, D. Understanding the role of plantations in the abundance of an arboreal folivore. Landsc. Urban Plan. 193, 103684. https://doi.org/10.1016/j.landurbplan.2019.103684 (2020).Article 

    Google Scholar 
    Cristescu, R. H., Rhodes, J., Frere, C. & Banks, P. B. Is restoring flora the same as restoring fauna? Lessons learned from koalas and mining rehabilitation. J. Appl. Ecol. 50(2), 423–431. https://doi.org/10.1111/1365-2664.12046 (2013).Article 

    Google Scholar 
    Chandler, R. B. & Royle, J. A. Spatially explicit models for inference about density in unmarked or partially marked populations. Ann. Appl. Stat. 7(2), 936–954. https://doi.org/10.1214/12-AOAS610 (2013).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    Law, B., Gonsalves, L., Burgar, J., Brassil, T., Kerr, I., Wilmott, L., Madden, K., Smith, M., Mella, V., Crowther, M., Krockenberger, M., Rus, A., Pietsch, R., Truskinger, A., Eichinski, P. & Roe, P. Validation of spatial count models to estimate koala Phascolarctos cinereus density from acoustic arrays. Wildl. Res. (in press).MacKenzie, D. I. et al. Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence (Elsevier, 2006).MATH 

    Google Scholar 
    Smith, M. Behaviour of the Koala, Phascolarctos cinereus (Goldfuss), in Captivity III. Vocalisations. Wildl. Res. 7, 13–34. https://doi.org/10.1071/WR9800013 (1980).Article 

    Google Scholar 
    Ellis, W. et al. Koala bellows and their association with the spatial dynamics of free-ranging koalas. Behav. Ecol. 22, 372–377. https://doi.org/10.1093/beheco/arq216 (2011).Article 

    Google Scholar 
    Ellis, W. et al. The role of bioacoustic signals in koala sexual selection: Insights from seasonal patterns of associations revealed with gps-proximity units. PLoS One 10(7), e0130657. https://doi.org/10.1371/journal.pone.0130657 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin, R. W. Overbrowsing and decline of a population of the koala, Phascolarctos cinereus, in Victoria II. Population condition. Aust. Wildl. Res. 12, 367–375 (1985).ADS 
    Article 

    Google Scholar 
    Penn, A. M. et al. Demographic forecasting in koala conservation. Conserv. Biol. 14(3), 629–638. https://doi.org/10.1046/j.1523-1739.2000.99385.x (2000).Article 

    Google Scholar 
    Watchorn, D. J. & Whisson, D. A. Quantifying the interactions between koalas in a high-density population during the breeding period. Aust. Mammal. 42(1), 28–37. https://doi.org/10.1071/AM18027 (2019).Article 

    Google Scholar 
    Crowther, M. S. et al. Comparison of three methods of estimating the population size of an arboreal mammal in a fragmented rural landscape. Wildl. Res. 48, 105–114. https://doi.org/10.1071/WR19148 (2020).Article 

    Google Scholar 
    Witt, R. R. et al. Real-time drone derived thermal imagery outperforms traditional survey methods for an arboreal forest mammal. PLoS One 15(11), e0242204. https://doi.org/10.1371/journal.pone.0242204 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Law, B.S, Gonsalves, L., Burgar, J., Brassil, T., Kerr I. & O’Loughlin C. Fire severity and its local extent are key to assessing impacts of Australian mega-fires on koala (Phascolarctos cinereus) density. Glob. Ecol. Biogeogr. 00, 1–13. https://doi.org/10.1111/geb.13458 (2022).Hynes, E. F., Whisson, D. A. & Di Stefano, J. Response of an arboreal species to plantation harvest. For. Ecol. Manag. 490, 119092. https://doi.org/10.1016/j.foreco.2021.119092 (2021).Article 

    Google Scholar 
    Law, B., Gonsalves, L., Burgar, J., Brassil, T., Kerr, I., O’Loughlin, C., Eichinski, P. & Roe, P. Regulated timber harvesting does not reduce koala density in north-east forests of New South Wales. Unpubl. Report to NSW (Natural Resources Commission, 2021).Phillips, S. Aversive behaviour by koalas (Phascolarctos cinereus) during the course of a music festival in northern New South Wales, Australia. Aust. Mammal. 38(2), 158–163. https://doi.org/10.1071/AM15006 (2016).Article 

    Google Scholar 
    Fedrowitz, K. et al. Can retention forestry help conserve biodiversity? A meta-analysis. J. Appl. Ecol. 51, 1669–1679. https://doi.org/10.1111/1365-2664.12289 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mori, A. S. & Kitagawa, R. Retention forestry as a major paradigm for safeguarding forest biodiversity in productive landscapes: A global meta-analysis. Biol. Conserv. 175, 65–73. https://doi.org/10.1016/j.biocon.2014.04.016 (2014).Article 

    Google Scholar 
    Law, B. et al. Development and field validation of a regional, management-scale habitat model: A koala Phascolarctos cinereus case study. Ecol. Evol. 7, 7475–7489. https://doi.org/10.1002/ece3.3300 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Phillips, S., Wallis, K. & Lane, A. Quantifying the impacts of bushfire on populations of wild koalas (Phascolarctos cinereus): Insights from the 2019/20 fire season. Ecol. Manag. Restor. 22, 80–88. https://doi.org/10.1111/emr.12458 (2021).Article 

    Google Scholar 
    Kramer, A. et al. California spotted owl habitat selection in a fire-managed landscape suggests conservation benefit of restoring historical fire regimes. For. Ecol. Manag. 479, 118576 (2021).Article 

    Google Scholar 
    Jones, G. M. et al. Megafire causes persistent loss of an old-forest species. Anim. Conserv. 24, 925–936. https://doi.org/10.1111/acv.12697 (2021).Article 

    Google Scholar 
    Hagens, S. V., Rendall, A. R. & Whisson, D. A. Passive acoustic surveys for predicting species’ distributions: Optimising detection probability. PLoS One 13(7), e0199396. https://doi.org/10.1371/journal.pone.0199396 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Law, B. et al. Using passive acoustic recording and automated call identification to survey koalas in the southern forests of New South Wales. Aust. Zool. 40, 477–486 (2019).Article 

    Google Scholar 
    Towsey, M., Planitz, B., Nantes, A., Wimmer, J. & Roe, P. A toolbox for animal call recognition. Bioacoustics 21, 107–125. https://doi.org/10.1080/09524622.2011.648753 (2012).Article 

    Google Scholar 
    Royle, J. A. & Dorazio, R. M. Parameter-expanded data augmentation for Bayesian analysis of capture–recapture models. J. Ornithol. 152(2), 521–537 (2012).Article 

    Google Scholar 
    Royle, J. A., Chandler, R. B., Sollmann, R. & Gardner, B. Spatial Capture–Recapture 1st edn. (Elsevier, 2014). https://doi.org/10.1016/B978-0-12-405939-9.00020-7.Book 

    Google Scholar 
    Clark, J. D. Comparing clustered sampling designs for spatially explicit estimation of population density. Popul. Ecol. 61(1), 93–101. https://doi.org/10.1002/1438-390X.1011 (2019).Article 

    Google Scholar 
    Sun, C. C., Fuller, A. K. & Royle, J. A. Trap configuration and spacing influences parameter estimates in spatial capture-recapture models. PLoS One 9(2), e88025. https://doi.org/10.1371/journal.pone.0088025 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Plummer, M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing, Vol. 124(125.10), pp. 1–10 (2003).Plummer, M. rjags: Bayesian graphical models using MCMC. R package version 4(6) (2016).Burgar, J. M., Stewart, F. E., Volpe, J. P., Fisher, J. T. & Burton, A. C. Estimating density for species conservation: Comparing camera trap spatial count models to genetic spatial capture-recapture models. Glob. Ecol. Conserv. 15, e00411. https://doi.org/10.1016/j.gecco.2018.e00411 (2018).Article 

    Google Scholar 
    Stewart-Oaten, A., Murdoch, W. W. & Parker, K. R. Environmental impact assessment: “Pseudoreplication” in time?. Ecology 67(4), 929–940. https://doi.org/10.2307/1939815 (1986).Article 

    Google Scholar 
    Stewart-Oaten, A. & Bence, J. R. Temporal and spatial variation in environmental impact assessment. Ecol. Monogr. 71(2), 305–339. https://doi.org/10.1890/0012-9615(2001)071[0305:TASVIE]2.0.CO;2 (2001).Article 

    Google Scholar  More

  • in

    Characterization of rice farming systems, production constraints and determinants of adoption of improved varieties by smallholder farmers of the Republic of Benin

    FAO (Food and Agricultural Organization). Food and Agricultural Organization of the United Nations. http://www.faostat.org (2020).Nouatin, G., Kougbadi, S. & Afouda, L. Analyse des contraintes de la production rizicole et les stratégies développées par les femmes de la commune de Gogounou. Ann. Sci. Agro. 12, 45–59 (2009).
    Google Scholar 
    Totin, E. et al. Barriers and opportunities for innovation in rice production in the inland valleys of Benin. NJAS-Wagen J. Life Sci. 60–63, 57–66 (2012).Article 

    Google Scholar 
    Tanaka, A., Saito, K., Azoma, K. & Kobayashi, K. Factors affecting variation in farm yields of irrigated lowland rice in southern-central Benin. Eur. J. Agron. 44, 46–53 (2013).Article 

    Google Scholar 
    Nonvide, G. M. A., Sarpong, D. B., Kwadzo, G.T.-M., Anim-Somuah, H. & Amoussouga, G. F. Farmers’ perceptions of irrigation and constraints on rice production in Benin: A stakeholder-consultation approach. Int. J. Water Resour. Dev. 34, 1001–1021 (2018).Article 

    Google Scholar 
    Seye, B., Arouna, A., Sall, S. N. & Ndiaye, A. A. Determinants de l’adoption des semences certifiees de varietes ameliorees du riz au Benin. J. Rech. Sci. Univ. Lomé 18, 93–106 (2016).
    Google Scholar 
    Chiambo, P. J., Coelho, J. P., Soares, F. B. & Salumbo, A. Characterization of rice production system in Camacupa and Catabola municipalities of the province of Bié in Angola. DRJAFS. 7, 250–263 (2019).
    Google Scholar 
    Kleinhenz, V., Chea, S. & Hun, N. Survey of rice cropping systems in Kampong Chhnang Province, Cambodia. Rice Sci. 20, 154–164 (2013).Article 

    Google Scholar 
    Loko, Y. L. E. et al. On-Farm Management of Rice Diversity, Varietal Preference Criteria, and Farmers’ Perceptions of the African (Oryza glaberrima Steud.) Versus Asian Rice (Oryza sativa L.) in the Republic of Benin (West Africa): Implications for Breeding and Conservation. Econ. Bot. 75, 1–29 (2021)Bello, O. L., Baiyegunhi, L. J. S. & Danso-Abbeam, G. Productivity impact of improved rice varieties’ adoption: Case of smallholder rice farmers in Nigeria. Econ. Innov. New Tech. https://doi.org/10.1080/10438599.2020.1776488 (2020).Article 

    Google Scholar 
    Gnacadja, C., Azokpota, P., Moreira, J. & Sie, M. Perceptions des producteurs et consommateurs sur le riz africain (Oryza glaberrima). Int. J. Biol. Chem. Sci. 11, 2778–2792 (2017).Article 

    Google Scholar 
    Yokouchi, T. & Saito, K. Factors affecting farmers’ adoption of NERICA upland rice varieties: The case of a seed producing village in central Benin. Food Sec. 8, 197–209 (2016).Article 

    Google Scholar 
    Chandio, A. A. & Yuansheng, J. Determinants of adoption of improved rice varieties in northern Sindh, Pakistan. Rice Sci. 25, 103–110 (2018).Article 

    Google Scholar 
    Dagnelie P. Statistiques théoriques et appliquées [Theoretical and applied statistics]. Paris, France: De Boeck & Larcier SA. (1998).Adebo, H. O. et al. Ethnobotanical Knowledge of Jute (Corchorus olitorius L.) in Benin. Eur. J. Med. Plants. 26, 1–11 (2018).INSAE (Institut National de la Statistique et de l’Analyse Économique). Principaux indicateurs sociodémographiques et économiques (RGPH-4, 2013). https://insae.bj/statistiques/enquetes-et-recensements (2016).MAEP (Ministère de l’Agriculture, de l’Elevage et de la Pêche). Plan Stratégique de Relance du Secteur Agricole. Repport, MAEP, Bénin. http://extwprlegs1.fao.org/docs/pdf/ben149176.pdf (2008).Dansi, A. et al. Traditional leafy vegetables and their use in the Benin Republic. Genet Resour Crop Evol. 55, 1239–1256 (2008).Article 

    Google Scholar 
    Keuls, M. The use of the “studentized range” in connection with an analysis of variance. Euphytica 1, 112–122 (1952).Article 

    Google Scholar 
    Xie, Y. knitr: A General-Purpose Package for Dynamic Report Generation in R. R package version 129 (2020).R Core Team. R: A Language and Environment for Statistical Computing Vienna: R Foundation for Statistical Computing. https://www.gbif.org/fr/tool/81287/r-a-language-and-environment-for-statistical-computing (2018).Fox, J. & Weisberg, S. An R Companion to Applied Regression, Third edition Sage, Thousand Oaks CA. https://socialsciences.mcmaster.ca/jfox/Books/Companion/ (2019).Oksanen, J. et al. Vegan: Community Ecology Package R package version 25-6. https://cran.r-project.org/package=vegan (2019).Robinson, D., Hayes, A. & Couch, S. Broom: Convert Statistical Objects into Tidy Tibbles R package version 070. https://cran.r-project.org/package=broom (2020).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).Book 

    Google Scholar 
    Kinkingninhoun-Mêdagbé, F. M., Diagne, A., Simtowe, F., Agboh-Noameshie, A. R. & Adégbola, P. Y. Gender discrimination and its impact on income, productivity, and technical efficiency: evidence from Benin. Agric. Human Values. 27, 57–69 (2010).Article 

    Google Scholar 
    Adétonah S. et al. Analysis of gender and governance of value chain-based systems on rice and vegetable crops in southern Benin and Mali. Open .J Soc. Sci. 3, 134–141 (2015).Le Vido, A. A. riz africain (Oryza glaberrima Steudel) dans l’agrosystème des Fon du plateau d’Abomey (Bénin) au XIXè siècle: essai d’approche historique. Rev. Iv. Hist. 20, 59–76 (2012).
    Google Scholar 
    Sakurai, T. Intensification of rainfed lowland rice production in West Africa: Present status and potential green revolution. Dev. Econ. 44, 232–251 (2006).Article 

    Google Scholar 
    Feng, S. Land rental, off-farm employment and technical efficiency of farm households in Jiangxi Province, China. NJAS 55, 363–378 (2008).
    Google Scholar 
    Affholder, F., Poeydebat, C., Corbeels, M., Scopel, E. & Tittonell, P. The yield gap of major food crops in family agriculture in the tropics: Assessment and analysis through field surveys and modelling. Field Crops Res. 143, 106–118 (2013).Article 

    Google Scholar 
    Anang, B. T. & Awuni, J. A. Effect of training on small-scale rice production in northern Ghana. APSTRACT. 12, 13–20 (2018).Article 

    Google Scholar 
    Nonvide, G. M. A. A re-examination of the impact of irrigation on rice production in Benin: An application of the endogenous switching model. Kasetsart J. Soc. Sci. 40, 657–662 (2019).
    Google Scholar 
    Osawe, O. W., Akinyosoye, V. O., Omonona, B. T., Okoruwa, V. O. & Salman, K. K. Productivity differentials in rice production systems: Evidence from rice farmers in five agroecological zones in Nigeria. J. Nutraceut. Food Sci. 2, 1–18 (2017).
    Google Scholar 
    Yabi, I. & Afouda, F. Extreme rainfall years in Benin (West Africa). Quat. Int. 262, 39–43 (2012).Article 

    Google Scholar 
    Goulart, R. Z., Reichert, J. M. & Rodrigues, M. F. Cropping poorly-drained lowland soils: Alternatives to rice monoculture, their challenges and management strategies. Agric. Syst. 177, 102715. https://doi.org/10.1016/jagsy2019102715 (2020).Dobermann, A. & Fairhurst, T. Rice: Nutrient Disorders & Nutrient Management Handbook Series, Potash & Phosphate Institute (PPI), Potash & Phosphate Institute of Canada (PPIC) and International Rice Research Institute, Philippine, 191 (2000).Roder, W., Maniphone, S. & Keoboulapha, B. Pigeon pea for fallow improvement in slash-and-burn systems in the hills of Laos?. Agrofor. Syst. 39, 45–57 (1997).Article 

    Google Scholar 
    Van Campenhout, B. The role of information in agricultural technology adoption: Experimental evidence from rice farmers in Uganda. Econ. Dev. Cult. Change 69, 1239–1272 (2021).Article 

    Google Scholar 
    Castillo, J., Kirk, G. J. D., Rivero, M. M. J., Dobermann, A. & Haefele, M. The nitrogen economy of rice-livestock systems in Uruguay. Glob. Food Sect. 30, 100566; https://doi.org/10.1016/j.gfs.2021.100566 (2021).Paman, U., Inaba, S. & Uchida, S. The mechanization of small-scale rice farming: Labor requirements and costs. Eng. Agric. Environ. Food 7, 122–126 (2014).Article 

    Google Scholar 
    Mesfin, A. H. & Zemedu, L. Choices of varieties and demand for improved rice seed in Fogera district of Ethiopia. Rice Sci. 25, 350–356 (2018).Article 

    Google Scholar 
    Chandio, A. A., Jiang, Y., Gessesse, A. T. & Dunya, R. The nexus of agricultural credit, farm size and technical efficiency in Sindh, Pakistan: A stochastic production frontier approach. J. Saudi Soc. Agric. Sci. 18(3), 348–354 (2019).
    Google Scholar 
    Naseem, A., Mhlanga, S., Diagne, A., Adegbola, P. Y. & Midingoyi, G. S. Economic analysis of consumer choices based on rice attributes in the food markets of West Africa—The case of Benin. Food Sect. 5, 575–589 (2013).Article 

    Google Scholar 
    Demont, M., Fiamohé, R. & Kinkpé, T. Comparative advantage in demand and the development of rice value chains in West Africa. World Dev. 96, 578–590 (2017).Article 

    Google Scholar 
    Zannou, A., Kpenavoun, C. S,. Saliou, I. O. & Biaou, G. Technical efficiency of irrigated rice seed farmers in Koussin-Lélé, Benin Republic. J. Dev. Agric. Econ. 10, 28–37 (2018).Ouédraogo, M. & Dakouo, D. Evaluation de l’adoption des variétés de riz NERICA dans l’Ouest du Burkina Faso. Afr. J. Agric. Resour. Econ. 12, 1–16 (2017).Article 

    Google Scholar 
    Bruce, A. K. K., Donkoh, S. A. & Ayamga, M. Improved rice variety adoption and its effects on farmers’ output in Ghana. J. Dev. Agric. Econ. 6, 242–248 (2014).Article 

    Google Scholar 
    Beke, T. E. Institutional constraints and adoption of improved rice varieties: Econometric evidence from Ivory Coast. RAEStud. 92, 117–141 (2011).Article 

    Google Scholar 
    Hagos, A. & Zemedu, L. Determinants of improved rice varieties adoption in Fogera district of Ethiopia. Sci. Technol. Arts Res. J. 4, 221–228 (2015).Reardon, T., Stamoulis, K. & Pingali, P. Rural nonfarm employment in developing countries in an era of globalization. Agric. Econ. 37, 173–183 (2007).Article 

    Google Scholar 
    Khush, G. S. Modern varieties—Their real contribution to food supply and equity. GeoJourna 35, 275–284 (1995).Bannor, R. K., Kumar, G. A. K., Oppong-Kyeremeh, H. & Wongnaa, C. A. Adoption and impact of modern rice varieties on poverty in Eastern India. Rice Sci. 27, 56–66 (2020).Article 

    Google Scholar 
    Anik, A. R. & Salam, M. D. A. Determinants of adoption of improved onion variety in Banglades. J. Agric. Environ. Int. Dev. 109, 71–88 (2015).
    Google Scholar 
    Nascente, A. S. & Kromocardi, R. Genotype selection and addition of fertilizer increases grain yield in upland rice in Suriname. Acta Amazon. 47, 185–194 (2017).Article 

    Google Scholar 
    Hossain, M. G., Sabiruzzaman, M., Islam, S., Ohtsuki, F. & Lestrel, P. E. Effect of craniofacial measures on the cephalic index of Japanese adult female students. Anthropol. Sci. 118, 117–121 (2010).Article 

    Google Scholar 
    Nonvide, G. M. A. Identification of factors affecting adoption of improved rice varieties among smallholder farmers in the municipality of Malanville, Benin. J. Agric. Sci. Technol. 22, 305–316 (2020).
    Google Scholar  More

  • in

    The macroparasite fauna of cichlid fish from Nicaraguan lakes, a model system for understanding host–parasite diversification and speciation

    Price, P. W. Evolutionary Biology of Parasites (Princeton University Press, 1980).
    Google Scholar 
    Lima, L. B., Bellay, S., Giacomini, H. C., Isaac, A. & Lima-Junior, D. P. Influence of host diet and phylogeny on parasite sharing by fish in a diverse tropical floodplain. Parasitology 143, 343–349 (2016).CAS 
    PubMed 

    Google Scholar 
    Eizaguirre, C., Lenz, T. L., Kalbe, M. & Milinski, M. Rapid and adaptive evolution of MHC genes under parasite selection in experimental vertebrate populations. Nat. Commun. 3, 1–6 (2012).
    Google Scholar 
    Bashey, F. Within-host competitive interactions as a mechanism for the maintenance of parasite diversity. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140301 (2015).
    Google Scholar 
    Jolles, J. W., Mazué, G. P. F., Davidson, J., Behrmann-Godel, J. & Couzin, I. D. Schistocephalus parasite infection alters sticklebacks’ movement ability and thereby shapes social interactions. Sci. Rep. 10, 12282 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Demandt, N. et al. Parasite-infected sticklebacks increase the risk-taking behaviour of uninfected group members. Proc. R. Soc. B Biol. Sci. 285, 20180956 (2018).
    Google Scholar 
    Poulin, R. Parasite manipulation of host behavior: An update and frequently asked questions. Adv. Study Behav. 41, 151–186 (2010).
    Google Scholar 
    Terui, A., Ooue, K., Urabe, H. & Nakamura, F. Parasite infection induces size-dependent host dispersal: Consequences for parasite persistence. Proc. R. Soc. B Biol. Sci. 284, 20171491 (2017).
    Google Scholar 
    Raeymaekers, J. A. M. et al. Contrasting parasite communities among allopatric colour morphs of the Lake Tanganyika cichlid Tropheus. BMC Evol. Biol. 13, 41 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Meyer, B. S. et al. An exploration of the links between parasites, trophic ecology, morphology, and immunogenetics in the Lake Tanganyika cichlid radiation. Hydrobiologia 832, 215–233 (2019).PubMed 

    Google Scholar 
    Gobbin, T. P. et al. Temporally consistent species differences in parasite infection but no evidence for rapid parasite-mediated speciation in Lake Victoria cichlid fish. J. Evol. Biol. 33, 556–575 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Karvonen, A., Wagner, C. E., Selz, O. M. & Seehausen, O. Divergent parasite infections in sympatric cichlid species in Lake Victoria. J. Evol. Biol. 31, 1313–1329 (2018).PubMed 

    Google Scholar 
    Bush, S. E. et al. Host defense triggers rapid adaptive radiation in experimentally evolving parasites. Evol. Lett. 3, 120–128 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Waid, R. M., Raesly, R. L., Mckaye, K. R. & McCrary, J. Zoogeografía íctica de lagunas cratéricas de Nicaragua. Encuentro 51, 65–80 (1999).
    Google Scholar 
    Barluenga, M., Stölting, K., Salzburger, W., Muschick, M. & Meyer, A. Sympatric speciation in Nicaraguan crater lake cichlid fish. Nature 439, 719–723 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Elmer, K. R., Lehtonen, T. K., Fan, S. & Meyer, A. Crater lake colonization by neotropical cichlid fishes. Evolution 67, 281–288 (2012).PubMed 

    Google Scholar 
    Kautt, A. F. et al. Contrasting signatures of genomic divergence during sympatric speciation. Nature 588, 106–111 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Elmer, K. R., Lehtonen, T. K., Kautt, A. F., Harrod, C. & Meyer, A. Rapid sympatric ecological differentiation of crater lake cichlid fishes within historic times. BMC Biol. 8, 1–15 (2010).
    Google Scholar 
    Kautt, A. F., Machado-Schiaffino, G., Torres-Dowdall, J. & Meyer, A. Incipient sympatric speciation in Midas cichlid fish from the youngest and one of the smallest crater lakes in Nicaragua due to differential use of the benthic and limnetic habitats? Ecol. Evol. 6, 5342–5357 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Barluenga, M. & Meyer, A. Phylogeography, colonization and population history of the Midas cichlid species complex (Amphilophus spp.) in the Nicaraguan crater lakes. BMC Evol. Biol. 10, 326 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Elmer, K. R., Lehtonen, T. K. & Meyer, A. Color assortative mating contributes to sympatric divergence of neotropical cichlid fish. Evolution 63, 2750–2757 (2009).PubMed 

    Google Scholar 
    Kautt, A. F., Machado-Schiaffino, G. & Meyer, A. Lessons from a natural experiment: Allopatric morphological divergence and sympatric diversification in the Midas cichlid species complex are largely influenced by ecology in a deterministic way. Evol. Lett. 2, 323–340 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Elmer, K. R., Kusche, H., Lehtonen, T. K. & Meyer, A. Local variation and parallel evolution: Morphological and genetic diversity across a species complex of neotropical crater lake cichlid fishes. Philos. Trans. R. Soc. B Biol. Sci. 365, 1763–1782 (2010).
    Google Scholar 
    Elmer, K. R. et al. Parallel evolution of Nicaraguan crater lake cichlid fishes via non-parallel routes. Nat. Commun. 5, 1–8 (2014).
    Google Scholar 
    Vanhove, M. P. M. et al. Cichlids: A host of opportunities for evolutionary parasitology. Trends Parasitol. 32, 820–832 (2016).PubMed 

    Google Scholar 
    Choudhury, A. et al. Trematode diversity in freshwater fishes of the Globe II: ‘New World’. Syst. Parasitol. 93, 271–282 (2016).PubMed 

    Google Scholar 
    Watson, D. E. Digenea of fishes from Lake Nicaragua. In Investigations of the Ichthyofauna of Nicaraguan Lakes Vol. 15 (ed. Thorson, T. B.) 251–260 (University of Nebraska Press, 1976).
    Google Scholar 
    Aguirre-Macedo, M. L. et al. Larval helminths parasitizing freshwater fishes from the Atlantic coast of Nicaragua. Comp. Parasitol. 68, 42–51 (2001).
    Google Scholar 
    Aguirre-Macedo, M. L. et al. Some adult endohelminths parasitizing freshwater fishes from the Atlantic Drainages of Nicaragua. Comp. Parasitol. 68, 190–195 (2001).
    Google Scholar 
    Mendoza-Franco, E. F., Posel, P. & Dumailo, S. Monogeneans (Dactylogyridae: Ancyrocephalinae) of freshwater fishes from the Caribbean coast of Nicaragua. Comp. Parasitol. 70, 32–41 (2003).
    Google Scholar 
    Andrade-Gómez, L., Pinacho-Pinacho, C. D. & García-Varela, M. Molecular, morphological, and ecological data of Saccocoelioides Szidat, 1954 (Digenea: Haploporidae) from Middle America supported the reallocation from Culuwiya cichlidorum to Saccocoelioides. J. Parasitol. 103, 257–267 (2017).PubMed 

    Google Scholar 
    López-Jiménez, A., Pérez-Ponce de León, G. & García-Varela, M. Molecular data reveal high diversity of Uvulifer (Trematoda: Diplostomidae) in Middle America, with the description of a new species. J. Helminthol. 92, 725–739 (2018).PubMed 

    Google Scholar 
    Vidal-Martínez, V. M., Scholz, T. & Aguirre-Macedo, M. L. Dactylogyridae of cichlid fishes from Nicaragua, Central America, with descriptions of Gussevia herotilapiae sp. n. and three new species of Sciadicleithrum (Monogenea: Ancyrocephalinae). Comp. Parasitol. 68, 76–86 (2001).
    Google Scholar 
    de Chambrier, A. & Vaucher, C. Proteocephalus gaspari n. sp. (Cestoda: Proteocephalidae), parasite de Lepisosteus tropicus (Gill.) au Lac Managua (Nicaragua). Rev. suisse Zool. 91, 229–233 (1984).
    Google Scholar 
    González-Solís, A. D. & Jiménez-García, M. I. Parasitic nematodes of freshwater fishes from two nicaraguan crater lakes. Comp. Parasitol. 73, 188–192 (2006).
    Google Scholar 
    Santacruz, A., Morales-Serna, F. N., Leal-Cardín, M., Barluenga, M. & Pérez-Ponce de León, G. Acusicola margulisae n. sp. (Copepoda: Ergasilidae) from freshwater fishes in a Nicaraguan crater lake based on morphological and molecular evidence. Syst. Parasitol. 97, 165–177 (2020).PubMed 

    Google Scholar 
    Santacruz, A., Barluenga, M. & Pérez-Ponce de León, G. Taxonomic assessment of the genus Procamallanus (Nematoda) in Middle American cichlids (Osteichthyes) with molecular data, and the description of a new species from Nicaragua and Costa Rica. Parasitol. Res. 120, 1965–1977 (2021).PubMed 

    Google Scholar 
    Bush, A. O., Lafferty, K. D., Lotz, J. M. & Shostak, A. W. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 83, 575–583 (1997).CAS 
    PubMed 

    Google Scholar 
    Rózsa, L., Reiczigel, J. & Majoros, G. Quantifying parasites in samples of hosts. J. Parasitol. 86, 228–232 (2000).PubMed 

    Google Scholar 
    Krebs, C. J. Species diversity measures. In Ecological Methodology (ed. Krebs, C. J.) (Addison-Wesley Educational Publishers, 2014).
    Google Scholar 
    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).
    Google Scholar 
    R Core Team. A language and environment for statistical computing. R Found. Stat. Comput. (2018). https://www.R-project.org.Wickham, H. Elegant Graphics for Data Analysis: ggplot2 (Springer, 2008).MATH 

    Google Scholar 
    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT-package: Interpolation and extrapolation for species diversity. Methods Ecol. Evol. 7, 1451–1456 (2016).
    Google Scholar 
    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).
    Google Scholar 
    Poulin, R. Parasite biodiversity revisited: Frontiers and constraints. Int. J. Parasitol. 44, 581–589 (2014).PubMed 

    Google Scholar 
    Salzburger, W. Understanding explosive diversification through cichlid fish genomics. Nat. Rev. Genet. 19, 705–717 (2018).CAS 
    PubMed 

    Google Scholar 
    Barluenga, M. & Meyer, A. The Midas cichlid species complex: Incipient sympatric speciation in Nicaraguan cichlid fishes? Mol. Ecol. 13, 2061–2076 (2004).CAS 
    PubMed 

    Google Scholar 
    Elmer, K. R. & Meyer, A. Adaptation in the age of ecological genomics: Insights from parallelism and convergence. Trends Ecol. Evol. 26, 298–306 (2011).PubMed 

    Google Scholar 
    Pérez-Ponce de León, G. & Choudhury, A. Biogeography of helminth parasites of freshwater fishes in Mexico: The search for patterns and processes. J. Biogeogr. 32, 645–659 (2005).
    Google Scholar 
    Blais, J. et al. MHC adaptive divergence between closely related and sympatric African cichlids. PLoS ONE 2, e734 (2007).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pariselle, A. et al. The monogenean parasite fauna of cichlids: A potential tool for host biogeography. Int. J. Evol. Biol. 2011, 1–15 (2011).
    Google Scholar 
    Aguilar-Aguilar, R., Salgado-Maldonado, G., Contreras-Medina, R. & Martínez-Aquino, A. Richness and endemism of helminth parasites of freshwater fishes in Mexico. Biol. J. Linn. Soc. 94, 435–444 (2008).
    Google Scholar 
    Dogiel, V. A. Ecology of parasites of freshwater fish. In Parasitology of Fishes (eds Dogiel, V. A. et al.) 1–47 (Edinburgh Oliver & Boyd, 1961).
    Google Scholar 
    Poulin, R. & Valtonen, E. T. The predictability of helminth community structure in space: A comparison of fish populations from adjacent lakes. Int. J. Parasitol. 32, 1235–1243 (2002).PubMed 

    Google Scholar 
    Razo-Mendivil, U., Rosas-Valdez, R. & Pérez-Ponce de León, G. A new Cryptogonimid (Digenea) from the mayan cichlid, Cichlasoma urophthalmus (Osteichthyes: Cichlidae), in several localities of the Yucatán Peninsula, Mexico. J. Parasitol. 94, 1371–1378 (2009).
    Google Scholar 
    Mendoza-Franco, E. F. et al. Occurrence of Sciadicleithrum mexicanum Kritsky, Vidal-Martinez et Rodríguez-Canul, 1994 (Monogenea: Dactylogyridae) in the Cichlid Cichlasoma urophthalmus from a flooded quarry in Yucatan, Mexico. Mem. Inst. Oswaldo Cruz 90, 319–324 (1995).
    Google Scholar 
    Blasco-Costa, I. & Poulin, R. Host traits explain the genetic structure of parasites: A meta-analysis. Parasitology 140, 1316–1322 (2013).PubMed 

    Google Scholar 
    Torchin, M. E., Lafferty, K. D., Dobson, A. P., McKenzie, V. J. & Kuris, A. M. Introduced species and their missing parasites. Nature 421, 628–630 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Salgado-Maldonado, G. et al. Helminth parasites of freshwater fishes of the Balsas River drainage basin of southwestern Mexico. Comp. Parasitol. 68, 196–203 (2001).
    Google Scholar 
    McCrary, J. K., Murphy, B. R., Stauffer, J. R. & Hendrix, S. S. Tilapia (Teleostei: Cichlidae) status in Nicaraguan natural waters. Environ. Biol. Fishes 78, 107–114 (2007).
    Google Scholar 
    García-Vásquez, A., Pinacho-Pinacho, C. D., Guzmán-Valdivieso, I., Calixto-Rojas, M. & Rubio-Godoy, M. Morpho-molecular characterization of Gyrodactylus parasites of farmed tilapia and their spillover to native fishes in Mexico. Sci. Rep. 11, 1–17 (2021).
    Google Scholar 
    Paredes-Trujillo, A., Velázquez-Abunader, I., Torres-Irineo, E., Romero, D. & Vidal-Martínez, V. M. Geographical distribution of protozoan and metazoan parasites of farmed Nile tilapia Oreochromis niloticus (L.) (Perciformes: Cichlidae) in Yucatán, México. Parasit. Vectors 9, 66 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, S. et al. Monogenean fauna of alien tilapias (Cichlidae) in south China. Parasite 26, 4 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Outa, J. O., Dos Santos, Q. M., Avenant-Oldewage, A. & Jirsa, F. Parasite diversity of introduced fish Lates niloticus, Oreochromis niloticus and endemic Haplochromis spp. of Lake Victoria. Kenya. Parasitol. Res. 120, 1583 (2021).PubMed 

    Google Scholar 
    Smit, N. J., Malherbe, W. & Hadfield, K. A. Alien freshwater fish parasites from South Africa: Diversity, distribution, status and the way forward. Int. J. Parasitol. Parasites Wildl. 6, 386–401 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Pérez-Ponce de León, G., Lagunas-Calvo, O., García-Prieto, L., Briosio-Aguilar, R. & Aguilar-Aguilar, R. Update on the distribution of the co-invasive Schyzocotyle acheilognathi (= Bothriocephalus acheilognathi), the Asian fish tapeworm, in freshwater fishes of Mexico. J. Helminthol. 92, 279–290 (2018).PubMed 

    Google Scholar 
    Scholz, T., Šimková, A., Razanabolana, J. R. & Kuchta, R. The first record of the invasive Asian fish tapeworm (Schyzocotyle acheilognathi) from an endemic cichlid fish in Madagascar. Helminthol. 55, 84–87 (2018).CAS 

    Google Scholar 
    Acosta, A., Carvalho, E. & da Silva, R. First record of Lernaea cyprinacea (copepoda) in a native fish species from a Brazilian river. Neotrop. Helminthol. 7, 7–12 (2013).
    Google Scholar 
    Choudhury, A. et al. The invasive asian fish tapeworm, Bothriocephalus acheilognathi Yamaguti, 1934, in the chagres river/panama canal drainage, Panama. BioInvas. Rec. 2, 99–104 (2013).
    Google Scholar 
    Schatz, H. & Behan-Pelletier, V. Global diversity of oribatids (Oribatida: Acari: Arachnida). Hydrobiologia 595, 323–328 (2008).
    Google Scholar 
    Choudhury, A., Hoffnagle, T. L. & Cole, R. A. Parasites of native and nonnative fishes of the Little Colorado River, Grand Canyon, Arizona. J. Parasitol. 90, 1042–1053 (2004).PubMed 

    Google Scholar 
    Vanhove, M. P. M. Part 6: Evolutionary parasitology of African freshwater fishes—And its implications for the sustainable management of aquatic resources. In A Guide to the Parasites of African Freshwater Fishes (eds Scholz, T. et al.) 403–412 (Royal Belgian Institute of Natural Sciences, 2018).
    Google Scholar 
    Catalano, S. R., Whittington, I. D., Donnellan, S. C. & Gillanders, B. M. Parasites as biological tags to assess host population structure: Guidelines, recent genetic advances and comments on a holistic approach. Int. J. Parasitol. Parasites Wildl. 3, 220–226 (2014).PubMed 

    Google Scholar 
    Baldwin, R. E., Banks, M. A. & Jacobson, K. C. Integrating fish and parasite data as a holistic solution for identifying the elusive stock structure of Pacific sardines (Sardinops sagax). Rev. Fish Biol. Fish. 22, 137–156 (2011).
    Google Scholar 
    Criscione, C. D. & Blouin, M. S. Parasite phylogeographical congruence with salmon host evolutionarily significant units: Implications for salmon conservation. Mol. Ecol. 16, 993–1005 (2007).CAS 
    PubMed 

    Google Scholar 
    Vanhove, M. P. M. et al. Hidden biodiversity in an ancient lake: Phylogenetic congruence between Lake Tanganyika tropheine cichlids and their monogenean flatworm parasites. Sci. Rep. 5, 1–15 (2015).
    Google Scholar 
    Matschiner, M., Böhne, A., Ronco, F. & Salzburger, W. The genomic timeline of cichlid fish diversification across continents. Nat. Commun. 11, 1–8 (2020).
    Google Scholar 
    Choudhury, A., García-Varela, M. & Pérez-Ponce de León, G. Parasites of freshwater fishes and the Great American biotic interchange: A bridge too far? J. Helminthol. 91, 174–196 (2017).CAS 
    PubMed 

    Google Scholar 
    Mendoza-Franco, E. F. & Vidal-Martínez, V. M. Phylogeny of species of Sciadicleithrum (Monogenoidea: Ancyrocephalinae), and their historical biogeography in the Neotropics. J. Parasitol. 91, 253–259 (2005).PubMed 

    Google Scholar 
    de Chambrier, A., Pinacho-Pinacho, C. D., Hernández-Orts, J. S. & Scholz, T. T. A new genus and two new species of proteocephalidean tapeworms (Cestoda) from cichlid fish (Perciformes: Cichlidae) in the neotropics. J. Parasitol. 103, 83–94 (2017).PubMed 

    Google Scholar 
    Mendoza-Palmero, C. A., Blasco-Costa, I., Hernández-Mena, D. & Pérez-Ponce de León, G. Parasciadicleithrum octofasciatum n. gen., n. sp. (Monogenoidea: Dactylogyridae), parasite of Rocio octofasciata (Regan) (Cichlidae: Perciformes) from Mexico characterised by morphological and molecular evidence. Parasitol. Int. 66, 152–162 (2017).PubMed 

    Google Scholar 
    Pinacho-Pinacho, C. D., Hernández-Orts, J. S., Sereno-Uribe, A. L., Pérez-Ponce de León, G. & García-Varela, M. Mayarhynchus karlae n. g., n. sp. (Acanthocephala: Neoechinorhynchidae), a parasite of cichlids (Perciformes: Cichlidae) in southeastern Mexico, with comments on the paraphyly of Neoechynorhynchus Stiles & Hassall, 1905. Syst. Parasitol. 94, 351–365 (2017).PubMed 

    Google Scholar 
    Razo-Mendivil, U., Vázquez-Domínguez, E., Rosas-Valdez, R., Pérez-Ponce de León, G. & Nadler, S. A. Phylogenetic analysis of nuclear and mitochondrial DNA reveals a complex of cryptic species in Crassicutis cichlasomae (Digenea: Apocreadiidae), a parasite of Middle-American cichlids. Int. J. Parasitol. 40, 471–486 (2010).CAS 
    PubMed 

    Google Scholar 
    Razo-Mendivil, U., Rosas-Valdez, R., Rubio-Godoy, M. & Pérez-Ponce de León, G. The use of mitochondrial and nuclear sequences in prospecting for cryptic species in Tabascotrema verai (Digenea: Cryptogonimidae), a parasite of Petenia splendida (Cichlidae) in Middle America. Parasitol. Int. 64, 173–181 (2015).CAS 
    PubMed 

    Google Scholar 
    Pinacho-Pinacho, C. D., García-Varela, M., Sereno-Uribe, A. L. & Pérez-Ponce de León, G. A hyper-diverse genus of acanthocephalans revealed by tree-based and non-tree-based species delimitation methods: Ten cryptic species of Neoechinorhynchus in Middle American freshwater fishes. Mol. Phylogenet. Evol. 127, 30–45 (2018).PubMed 

    Google Scholar 
    Martínez-Aquino, A. et al. Detecting a complex of cryptic species within Neoechinorhynchus golvani (Acanthocephala: Neoechinorhynchidae) inferred from ITSs and LSU rDNA gene sequences. J. Parasitol. 95, 1040–1047 (2009).PubMed 

    Google Scholar  More

  • in

    NetGAM: Using generalized additive models to improve the predictive power of ecological network analyses constructed using time-series data

    Our general strategy was to compare the performance of four approaches for inferring microbial associations from abundance data with overlying time-series signals. The approaches were (1) pairwise spearman correlation analysis (SCC) [1, 29], (2) Graphical lasso analysis (Glasso) [30, 31], (3) pairwise SCC analysis with a pre-processing step where seasonal and long-term splines were fit to and subtracted from each variable using a GAM (GAM-SCC), and (4) Glasso with the same GAM subtraction approach (GAM-Glasso). Our validation strategy for the GAM transformation consisted of generating mock datasets with underlying associations, masking those associations by adding seasonal and long-term signals to the abundance data, and comparing the predicted associations obtained from each network inference method to the true species-species associations.Data simulation: generating mock abundance data with time-series propertiesWe generated mock abundance datasets that had a predetermined, underlying network structure and contained long-term and seasonal species abundance patterns. First, a covariance matrix was generated to describe the relationships between species in a mock dataset (Fig. S1, Panel 1). The covariance matrices were constructed with underlying network structures that followed either a scale-free Barabási-Albert model, a random Erdős-Rényi model, or a model of network topology based on a real microbial dataset (American Gut dataset; Fig. S1) [32, 33]. The Erdős-Rényi and Barabási-Albert model datasets were generated so that each dataset contained 400 species and 200 samples, and the American Gut datasets were created so that each dataset contained 127 species and 200 samples. A random Bernoulli distribution was used to simulate the covariance matrix for the Erdős-Rényi networks. We set the probability of interactions occurring between species in a given Erdős-Rényi network to 1%. The Barabási-Albert networks were generated using the “sample_pa” function in the igraph package [34]. The “graph2prec” function in the SpiecEasi package was used to predict the covariance matrix of the American Gut dataset [33]. The covariance between species in a dataset was considered “high” or “low” when the true associations in the covariance matrix were set to 100 or 10 respectively (Fig. S1, Panel 1). These covariance matrices describe the “real”, underlying species interactions in our mock datasets.After generating a covariance matrix, the mean abundance for each species was generated from a normal distribution with a mean of 10 and a variance of 1. These mean abundance values and the covariance matrix were used to parameterize a multivariate normal distribution from which species abundance values for all 200 samples in a dataset were drawn (Fig. S1, Panel 2). The values generated from this multivariate normal distribution were the species abundance values without time-series features confounding the relationship between two associated species (Fig. S1, Panel 2).“Gradual” or “abrupt” seasonal trends were added to 0%, 25%, 50% or 100% of the species in each mock dataset. The gradual seasonal trend increased over 5 months, peaked at a specific month, and decreased over 5 months. Conversely, the abrupt seasonal signal increased over 2 months, peaked at a specific month, and decreased over 2 months (Fig. S1, Panel 3). These seasonal signals were generated by plugging a vector of consecutive integers of length 200 (Nt) into the gradual (Eq. (1)) or abrupt (Eq. (2)) seasonal equations (Fig. S1, Panel 3)…$$Gradual:S_t = left( {frac{{cos left( {N_t ast 2 ast frac{pi }{{12}}} right)}}{2}} right) + 0.5$$
    (1)
    $$Abrupt:,S_t = left( {left( {frac{{cos left( {N_t ast 2 ast frac{pi }{{12}}} right)}}{2}} right) + 0.5} right)^{10}$$
    (2)
    where N is the random vector of consecutive integers, S is the output seasonal vector, and t is the index of vectors N and S. The starting value of vector Nt was drawn at random for each species to allow the seasonal peaks to be centered at different months. Each element in the seasonal vector (St) was then multiplied by the corresponding element in the abundance vector (Xt) of a specific species to obtain mock species abundance values with a gradual or abrupt seasonal trend (Fig. S1, Panel 3).A long-term time-series trend was added to the abundance values of 0% or 50% of the species in the mock datasets (Fig. S1, Panel 4). When a long-term signal was applied to 50% of the species in a dataset, half of the species were randomly selected to have this long-term trend. Then, a vector of linear values was generated following Eq. (3) such that…$$Long – term,trend:,L_t = pm mleft( {L_{t – 1}} right) + 0.01$$
    (3)
    where Lt is the point in the line at the next time point and m is the slope of the line. The slope parameter (m) was generated from a random normal distribution with a mean of 0.01 and a variance of 0.01. The slope parameter (m) was also multiplied by −1 half of the time to ensure that half of the long-term trends increased over time and half decreased over time (Fig. S1, Panel 4). After generating the vector of linear values (Lt), each element of this vector was added to each element of the abundance vector (Xt) of a specific species to simulate long-term time-series trends (Fig. S1, Panel 4).Time-series predictor columns were added to each dataset after applying monthly and long-term abundance trends to a portion of the species in the mock datasets. The predictors that were used in the downstream GAM-based data transformation were the month of the year (i.e., 1–12) and the day of the time-series (i.e., 1–200). In total, we generated 100 mock datasets for every combination of conditions (84 combinations total; Table S1), resulting in 8400 mock time-series datasets that were used in the downstream count data transformation, GAM subtraction, and network analysis procedures.Data simulation: Simulating count data from abundance valuesThe 8400 time-series datasets that were generated using the methods described above were transformed to make the abundance values resemble high-throughput sequencing data because microbial time-series sampling efforts are often processed using such molecular methods (e.g., tag-sequencing, meta-omics). Analysis of high-throughput sequencing data is complicated by the compositional (i.e., relative) nature of the data and by the high number of zeros that may be prevalent in a dataset (i.e., zero-inflation; see Supplementary Information) [35, 36]. Relative abundances of different species in natural communities are also highly skewed, so that relatively few species constitute most of the organisms in a sample although many rare species are also present [37, 38]. Therefore, species abundances were first exponentiated to increase the prevalence of abundant species and to decrease the prevalence of rare species (Fig. S1, Panel 5). The exponentiated species abundance values were then converted to relative abundance values by dividing each species count by the sum of all species counts in a sample (Fig. S1, Panel 6). The resulting relative abundance values and time-series predictor variables were used in data normalization and GAM-transformation steps prior to carrying out the network analyses.Network inference: Count data normalization and GAM transformationSeveral steps were taken to back out the species-species relationships in the mock datasets. We advocate these steps to infer network structure from a real time-series dataset. A centered log-ratio (CLR) transformation was first applied to the species relative abundance values to normalize the mock species abundance data across samples using the “clr” function in the compositions package in R (Fig. 1) [39]. This transformation step is important to avoid spurious inferences induced by the inherent compositionality of relative abundance data [31, 33, 36]. In addition to the CLR transformation used in our main network iterations, we carried out additional network iterations using the modified CLR [40], cumulative sum scaling [41], and total sum scaling [42] transformations (see Supplementary Information). In all cases, the normalized dataset was copied, with one copy subjected to a subsequent GAM transformation, and the other one not GAM-transformed.Fig. 1: Steps used to carry out the GAM-based transformation of time-series species abundance data prior to carrying out pairwise spearman correlation (SCC) and graphical lasso (Glasso) ecological network analyses.The raw, species abundance data were first CLR-transformed (1). Generalized additive models (GAMs) were then fit to each species in the dataset (2) and the residuals of each GAM were checked for significant autocorrelation (3). The residuals of each GAM were extracted (4) and were used as input in the SCC and Glasso network analysis methods (5). Finally, the GAM-transformed network outputs were obtained (6; see text for additional details).Full size imageThe GAM transformation was carried out by fitting GAMs to each individual species in the dataset to remove monthly signals, long-term trends, and autocorrelation from the species abundance data. These GAMs were fit using the “gamm” function in the mgcv package in R [43, 44]. The GAMs that were used included the “month of year” parameter as a cyclical spline predictor and the “day of time-series” parameter as a penalized thin-plate spline predictor (“ts” in the mgcv package; Fig. 1), which given our one-dimensional data is analogous to a natural cubic spline. In addition, the first GAM included a continuous AR1 (“corCAR1” in the mgcv package) correlation structure term in the model. This corCAR1 model was revised for specific species when the GAM could not be resolved or when significant autocorrelation was detected in the GAM residuals (Fig. 1). The GAM revision step fit 4 new GAMs with different correlation structure terms (i.e., “AR1”, “CompSymm”, “Exp”, and “Gaus”) to the species that could not be fit using the corCAR1 model or that contained significant autocorrelation in the corCAR1 GAM residuals. Then, the correlation structure term that addressed these issues for the largest number of individuals was used as the GAM model for this group of species. After fitting a GAM to all of the species in the input dataset, the residuals of each GAM were extracted and were used as the new, GAM-transformed abundance values (Fig. 1). These GAM residuals represent species abundance values with a reduced influence of time (Fig. 2) and were used as input in the downstream GAM-SCC and GAM-Glasso network analyses.Fig. 2: A conceptual figure that demonstrates how the GAM transformation can remove seasonal signals while preserving ecologically relevant species co-occurrence patterns.In this example, the co-occurrence pattern between Species A and Species B persists even after the seasonal signals are removed by the GAM transformation.Full size imageNetwork inference: Network runs and statistical analysesThe pre-processed species abundance data with and without the GAM-removal of time-series signals were used in SCC and Glasso networks in order to compare the outputs of the SCC, GAM-SCC, Glasso, and GAM-Glasso network inference approaches (Fig. 1). Additional network iterations were also carried out using the CCLasso [45] and SPRING [40] network inference approaches (see Supplementary Information). For the SCC and Glasso network iterations, a nonparanormal transformation was applied to the species abundance datasets with and without the GAM transformation using the “huge.npn” function in the huge package in R [46]. Spearman correlation networks were then constructed by calculating the correlation between every pair of species in the mock abundance datasets. A Bonferroni-corrected p value of 0.01 was used as a cutoff to identify edges in these SCC networks. The Glasso networks were constructed by testing 30 regularization parameter values (i.e., lambdas) in each network using the “batch.pulsar” (criterion = “stars”; rep.num = 50) function in the pulsar package in R [47]. The lambda that resulted in the most stable network output was selected using the StARS method [48]. Finally, the graph that resulted from the StARS output was used to obtain a species adjacency matrix for the Glasso networks.The species-species associations predicted by the SCC, GAM-SCC, Glasso, and GAM-Glasso networks were compared to the true species-species associations and the F1 scores of the network predictions were calculated. The F1 score is a measure of classification performance (presence or absence of an edge) that accounts for uneven classes, which is essential when dealing with sparse networks. The F1 scores of the GAM-transformed networks were compared to the networks that did not undergo GAM transformation using paired Wilcoxon tests with Bonferroni correction. An adjusted p value of 0.01 was used as a cutoff to identify under what circumstances the GAM significantly improved the F1 score of a Glasso or SCC network.Network inference: Comparison of predicted network structuresAdditional networks were generated using the methods described above to compare the predicted network structures obtained from the GAM-Glasso, Glasso, GAM-SCC, and SCC approaches to the real network structures. These additional networks were constructed using smaller mock datasets to allow for better visualization of the network outputs and contained species with a gradual seasonal signal and high species-species covariance (see Supplementary Information). The average clustering coefficient and the degree distribution of these additional network outputs were calculated and used for the network structure comparisons. The average clustering coefficient of a network describes the likelihood that two species that are both associated with a third species are also associated with each other [49], and in a sense describes the “clumpiness” of a network. The network degree distributions describe the probability distribution of the number of interactions per node in a network [50]. More

  • in

    Predicting the possibility of African horse sickness (AHS) introduction into China using spatial risk analysis and habitat connectivity of Culicoides

    Kumar, N. et al. Peste des petits ruminants virus infection of small ruminants: A comprehensive review. Viruses 6, 2287–2327. https://doi.org/10.3390/v6062287 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zientara, S., Weyer, C. T. & Lecollinet, S. African horse sickness. Rev. Sci. Tech. 34, 315–327. https://doi.org/10.20506/rst.34.2.2359 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rutkowska, D. A., Mokoena, N. B., Tsekoa, T. L., Dibakwane, V. S. & O’Kennedy, M. M. Plant-produced chimeric virus-like particles—A new generation vaccine against African horse sickness. BMC Vet. Res. 15, 1. https://doi.org/10.1016/j.rvsc.2010.05.031 (2019).CAS 
    Article 

    Google Scholar 
    Barnard, B. J. H. Epidemiology of African horse sickness and the role of zebra in South Africa. Arch. Virol. Suppl. 14, 13–19. https://doi.org/10.1007/978-3-7091-6823-3_3 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hamblin, C., Salt, J. S., Mellor, P. S., Graham, S. D. & Wohlsein, P. Donkeys as reservoirs of African horse sickness virus. Arch. Virol. Suppl. 14, 37–47. https://doi.org/10.1007/978-3-7091-6823-3_5 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mellor, P. S., Boorman, J. P. T. & Baylis, M. Culicoides biting midges: their role as arbovirus vectors. Annu. Rev. Entomol. 45, 307–340 (2000).CAS 
    Article 

    Google Scholar 
    Redmond, E. F., Jones, D. & Rushton, J. Economic assessment of african horse sickness vaccine impact. Equine Vet. J. https://doi.org/10.1111/j.2042-3306.1982.tb02404.x (2021).Article 
    PubMed 

    Google Scholar 
    Venter, G. J., Wright, I. M., Linde, T. C. V. D. & Paweska, J. T. The oral susceptibility of South African field populations of Culicoides to African horse sickness virus. Med. Vet. Entomol. 23, 367–378. https://doi.org/10.1111/j.1365-2915.2009.00829.x (2010).Article 

    Google Scholar 
    Mellor, P. S., Boned, J., Hamblin, C. & Graham, S. D. Isolations of African horse sickness virus from vector insects made during the 1988 epizootic in Spain. Epidemiol. Infect. 105, 447–454. https://doi.org/10.1017/s0950268800048020 (1990).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meiswinkel, R. & Paweska, J. T. Evidence for a new field Culicoides vector of African horse sickness in South Africa. Prev. Vet. Med. 60, 243–253. https://doi.org/10.1016/s0167-5877(02)00231-3 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Howell, P. G. The isolation and identification of further antigenic types of African horsesickness virus. Onderstepoort. J. Vet. Res. 29, 139–149 (1962).
    Google Scholar 
    Calisher, C. H. & Mertens, P. P. C. Taxonomy of African horse sickness viruses. Arch. Virol. Suppl. 14, 3 (1998).CAS 
    PubMed 

    Google Scholar 
    Rodriguez, M., Hooghuis, H. & Castaño, M. African horse sickness in Spain. Vet. Microbiol. 33, 129–142. https://doi.org/10.1016/0378-1135(92)90041-q (1992).CAS 
    Article 
    PubMed 

    Google Scholar 
    Howell, P. G. The 1960 epizootic of African Horsesickness in the Middle East and S.W. Asia (268KB) (268KB). J. South Afr. Vet. Med. Assoc. (1960).King, S., RajkoEnow, P., Ashby, M., Frost, L. & Batten, C. Outbreak of African Horse Sickness in Thailand, 2020. Transbound. Emerg. Dis. (2020).OIE. World Animal Health Information System. https://www.oie.int/wahis_2/public/wahid.php/Reviewreport/Review?page_refer=MapFullEventReport&reportid=33768 (2020).Castillo-Olivares, J. African horse sickness in Thailand: Challenges of Controlling an outbreak by vaccination. Equine Vet. J. (2020).Gibbens, N. Schmallenberg virus: a novel viral disease in northern Europe. Vet. Rec. 170, 58. https://doi.org/10.1136/vr.e292 (2012).Article 
    PubMed 

    Google Scholar 
    Purse, B. V., Brown, H. E., Harrup, L., Mertens, P. & Rogers, D. J. Invasion of bluetongue and other orbivirus infections into Europe: the role of biological and climatic processes. Rev. Sci. Tech. 27, 427–442 (2008).CAS 
    Article 

    Google Scholar 
    Leta, S., Fetene, E., Mulatu, T., Amenu, K. & Revie, C. W. Modeling the global distribution of Culicoides imicola: an Ensemble approach. Sci. Rep. 9, 1 (2019).CAS 
    Article 

    Google Scholar 
    Thepparat, A., Bellis, G., Ketavan, C., Ruangsittichai, J. & Apiwathnasorn, C. T. species of Culicoides Latreille (Diptera: Ceratopogonidae) newly recorded from Thailand. Zootaxa 4033, 48–56. https://doi.org/10.11646/zootaxa.4033.1.2 (2015).Article 
    PubMed 

    Google Scholar 
    Raksakoon, C. & Potiwat, R. Current arboviral threats and their potential vectors in Thailand. Pathogens 10, 80 (2021).CAS 
    Article 

    Google Scholar 
    Gao, S. et al. Transboundary spread of peste des petits ruminants virus in western China: A prediction model. PLoS ONE 16, e0257898–e0257898. https://doi.org/10.1371/journal.pone.0257898 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Joka, F. R., Van Gils, H., Huang, L. & Wang, X. High probability areas for ASF infection in china along the russian and korean borders. Transbound. Emerg. Dis. https://doi.org/10.1016/j.watres.2015.05.061.Steven et al. Opening the black box: an open-source release of Maxent. Ecography (2017).Gils, H. V., Westinga, E., Carafa, M., Antonucci, A. & Ciaschetti, G. Where the bears roam in Majella National Park, Italy. J. Nat. Conser. 22, 23–34. https://doi.org/10.1016/j.jnc.2013.08.001 (2014).Article 

    Google Scholar 
    Duque-Lazo, J., Navarro-Cerrillo, R. M., Van Gils, H. & Groen, T. A. Forecasting oak decline caused by Phytophthora cinnamomi in Andalusia : identification of priority areas for intervention. For. Ecol. Manage. 417, 122–136 (2018).Article 

    Google Scholar 
    Duque-Lazo, J., Gils, H. V., Groen, T. A. & Cerrillo, R. M. N. Transferability of species distribution models: The case of Phytophthora cinnamomi in Southwest Spain and Southwest Australia. Ecol. Model. 320, 62–70 (2016).Article 

    Google Scholar 
    Zeng, Z., Gao, S., Wang, H.-N., Huang, L.-Y. & Wang, X.-L. A predictive analysis on the risk of peste des petits ruminants in livestock in the Trans-Himalayan region and validation of its transboundary transmission paths. PLoS ONE 16, e0257094–e0257094. https://doi.org/10.1371/journal.pone.0257094 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Joka, F. R., Wang, H., van Gils, H. & Wang, X. Could wild boar be the Trans-Siberian transmitter of African swine fever?. Transbound. Emerg. Dis. https://doi.org/10.1111/tbed.13814 (2020).Article 
    PubMed 

    Google Scholar 
    Robin, M., Page, P., Archer, D. & Baylis, M. African horse sickness: The potential for an outbreak in disease-free regions and current disease control and elimination techniques. Equine Vet. J. 48, 659–669. https://doi.org/10.1111/evj.12600 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Maclachlan, N. J. & Guthrie, A. J. Re-emergence of bluetongue, African horse sickness, and other Orbivirus diseases. Vet. Res. 41, 35. https://doi.org/10.1051/vetres/2010007 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    M. et al. African horse sickness: The potential for an outbreak in disease-free regions and current disease control and elimination techniques. Equine Vet. J. https://doi.org/10.1111/evj.12600 (2016).Eagles, D., Melville, L., Weir, R. & Davis, S. Long-distance aerial dispersal modelling of Culicoides biting midges: case studies of incursions into Australia. BMC Vet. Res. 10, 1. https://doi.org/10.1186/1746-6148-10-135 (2014).Article 

    Google Scholar 
    Pedgley, D. E. & Tucker, M. R. Possible spread of African horse sickness on the wind. J. Hygiene 79, 279–298 (1977).CAS 
    Article 

    Google Scholar 
    Riddin, M. A., Venter, G. J., Labuschagne, K. & Villet, M. H. Culicoides species as potential vectors of African horse sickness virus in the southern regions of South Africa. Med. Vet. Entomol. 33, 1 (2019).Article 

    Google Scholar 
    Carpenter, S., Mellor, P. S., Fall, A. G., Garros, C. & Venter, G. J. African horse sickness Virus: History, transmission, and current status. Annu. Rev. Entomol. 62, 343–358. https://doi.org/10.1146/annurev-ento-031616-035010 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    https://www.oie.int/wahis_2/public/wahid.php/Countryinformation/Countryreports. (Accessed 12 August 2020).OIE. African horse sickness(updated April 2013). OIE Technical Disease Cards, Paris, France: World Organisation for Animal Health. (2013).Ciss, M. et al. Ecological niche modelling to estimate the distribution of Culicoides, potential vectors of bluetongue virus in Senegal. BMC Ecology 19, doi:https://doi.org/10.1186/s12898-019-0261-9 (2019).Harrup, L. E. et al. Does covering of farm-associated Culicoides larval habitat reduce adult populations in the United Kingdom?. Vet. Parasitol. 201, 137–145. https://doi.org/10.1016/j.vetpar.2013.11.028 (2013).Article 
    PubMed 

    Google Scholar 
    Hoch, A. L., Roberts, D. R. & Pinheiro, F. P. Host-seeking behavior and seasonal abundance of Culicoides paraensis (Diptera: Ceratopogonidae) in Brazil. J. Am. Mosq. Control Assoc. 6, 110–114 (1990).CAS 
    PubMed 

    Google Scholar 
    Carpenter, S., Groschup, M. H., Garros, C., Felippe-Bauer, M. L. & Purse, B. V. Culicoides biting midges, arboviruses and public health in Europe. Antiviral Res. 100, 102–113. https://doi.org/10.1016/j.antiviral.2013.07.020 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Carpenter, S., Wilson, A., Barber, J., Veronesi, E. & Gubbins, S. Temperature Dependence of the Extrinsic Incubation Period of Orbiviruses in Culicoides Biting Midges. PLoS ONE 6, e27987. https://doi.org/10.1371/journal.pone.0027987 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yanase, T. et al. Molecular Identification of Field-CollectedCulicoidesLarvae in the Southern Part of Japan. J. Med. Entomol. (2013).Meiswinkel, R. Afrotropical Culicoides: C (Avaritia) miombo sp. nov., a widespread species closely allied to C. (A.) imicola Kieffer, 1913 (Diptera: Ceratopogonidae). Onderstepoort. J. Vet. Res. 58, 155–170 (1991).Sloyer, K. E. et al. Ecological niche modeling the potential geographic distribution of four Culicoides species of veterinary significance in Florida, USA. PLoS ONE 14, 1 (2019).Article 

    Google Scholar 
    Reynolds, D. R., Chapman, J. W. & Harrington, R. The migration of insect vectors of plant and animal viruses. Adv. Virus Res. 67, 453–517 (2006).CAS 
    Article 

    Google Scholar 
    L. et al. Investigating Incursions of Bluetongue Virus Using a Model of Long-Distance Culicoides Biting Midge Dispersal. Transbound. Emerg. Dis. https://doi.org/10.1111/j.1865-1682.2012.01345.x (2013).Notice of the general office of the Ministry of agriculture and rural areas and the general office of the State General Administration of sports on printing and distributing the national horse industry development plan (2020–2025). (Animal Husbandry and Veterinary Bureau, 2020.09.29). More

  • in

    Macroalgae and interspecific alarm cues regulate behavioral interactions between sea urchins and sea cucumbers

    Lawrence, J.M. Sea urchins: biology and ecology. Amsterdam, The Netherlands: Elsevier B.V. (2020)Purcell, S.W., Samyn, Y. & Conand, C. Commercially important sea cucumbers of the world. Rome, Italy: FAO. (2012)Yorke, C. E., Page, H. M. & Miller, R. J. Sea urchins mediate the availability of kelp detritus to benthic consumers. Proc. R. Soc. B. 286(1906), 20190846 (2019).CAS 
    Article 

    Google Scholar 
    Dethier, M. N. et al. Feces as food: The nutritional value of urchin feces and implications for benthic food webs. J. Exp. Mar. Biol. Ecol. 514, 95–102 (2019).Article 

    Google Scholar 
    Purcell, S. W. et al. Ecological roles of exploited sea cucumbers. Oceanogr. Mar. Biol. 54, 367–386 (2017).
    Google Scholar 
    Hamel, J. F. & Mercier, A. Early development, settlement, growth, and spatial distribution of the sea cucumber Cucumaria frondosa (Echinodermata: Holothuroidea). Can. J. Fish. Aquat. Sci. 53(2), 253–271 (1996).Article 

    Google Scholar 
    Grosso, L. et al. Integrated Multi-Trophic Aquaculture (IMTA) system combining the sea urchin Paracentrotus lividus, as primary species, and the sea cucumber Holothuria tubulosa as extractive species. Aquaculture 534, 736268 (2021)Gabara, S.S., Konar, B.H. & Edwards, M.S. Biodiversity loss leads to reductions in community-wide trophic complexity. Ecosphere 12(2), e03361 (2021)Duffy, J. E. et al. The functional role of biodiversity in ecosystems: Incorporating trophic complexity. Ecol. Lett. 10(6), 522–538 (2010).ADS 
    Article 

    Google Scholar 
    Miller, R. J. et al. Giant kelp, Macrocystis pyrifera, increases faunal diversity through physical engineering. Proc. R. Soc. B. 285(1874), 20172571 (2018).Article 

    Google Scholar 
    Soulsby, P. G., Lowthion, D. & Houston, M. Effects of macroalgal mats on the ecology of intertidal mudflats. Mar. Pollut. Bull. 13(5), 162–166 (1982).Article 

    Google Scholar 
    Filbee-Dexter, K. & Scheibling, R.E. Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Mar. Ecol.: Prog. Ser. 495(1), 1–25 (2014)Hendler, G., Miller, J. E., Pawson, D. L. & Kier, P. M. Sea stars, sea urchins and allies: echinoderms of Florida and the Caribbean (Smithsonian Institution Press, 1995).
    Google Scholar 
    James, D. B. Sea cucumber and sea urchin resources. CMFRI Bull. 34, 85–93 (1983).
    Google Scholar 
    Muthiga, N.A. & Kawaka, J.A. The effects of temperature and light on the gametogenesis and spawning of four sea urchin and one sea cucumber species on coral reefs in Kenya. Proceedings of the 11th international coral reef symposium. Fort Lauderdale, Florida pp 356–360 (2008)Byrnes, J., Cardinale, B. & Reed, D. Interactions between sea urchin grazing and prey diversity on temperate rocky reef communities. Ecology 94(7), 1636–1646 (2013).Article 

    Google Scholar 
    Vanderklift, M.A. & Kendrick, G.A. Contrasting influence of sea urchins on attached and drift macroalgae. Mar. Ecol.: Prog. Ser. 299, 101–110 (2005)Duggins, D. O. Interspecific facilitation in a guild of benthic marine herbivores. Oecologia 48(2), 157–163 (1981).ADS 
    Article 

    Google Scholar 
    Bonaviri, C. et al. Fish versus starfish predation in controlling sea urchin populations in Mediterranean rocky shores. Mar. Ecol.: Prog. Ser. 382(1), 129–138 (2009)Purcell, S. W. & Simutoga, M. Spatio-temporal and size-dependent variation in the success of releasing cultured sea cucumbers in the wild. Rev. Fish. Sci. 16, 204–214 (2008).Article 

    Google Scholar 
    Scheibling, R. E. & Robinson, M. C. Settlement behaviour and early post-settlement predation of the sea urchin Strongylocentrotus droebachiensis. J. Exp. Mar. Biol. Ecol. 365(1), 59–66 (2008).Article 

    Google Scholar 
    Francour, P. Predation on holothurians: a literature review. Invertebr. Biol. 116(1), 52–60 (1997).Article 

    Google Scholar 
    Scheibling, R. E. & Hamm, J. Interactions between sea urchins (Strongylocentrotus droebachiensis) and their predators in field and laboratory experiments. Mar. Biol. 110(1), 105–116 (1991).Article 

    Google Scholar 
    Bartumeus, F., Romero, J. & Alcoverro, T. The scent of fear makes sea urchins go ballistic. Mov. Ecol. 9(1), 1–12 (2021).Article 

    Google Scholar 
    Campbell, A.C. & Coppard, S., Tudor-Thomas CD. Escape and aggregation responses of three echinoderms to conspecific stimuli. Biol. Bull. 201(2), 175–185 (2001)Chi, X. et al. Conspecific alarm cues are a potential effective barrier to regulate foraging behavior of the sea urchin Mesocentrotus nudus. Mar. Environ. Res. 171(8), 105476 (2021)Chi, X. et al. Foraging behavior of the sea urchin Mesocentrotus nudus exposed to conspecific alarm cues in various conditions. Sci. Rep. 11(1), 1–6 (2021).Article 

    Google Scholar 
    Zhadan, P.M. & Vaschenko, M.A. Long-term study of behaviors of two cohabiting sea urchin species, Mesocentrotus nudus and Strongylocentrotus intermedius, under conditions of high food quantity and predation risk in situ. PeerJ 7(1), e8087 (2019)Bshary, R. & Noë, R. Red colobus and Diana monkeys provide mutual protection against predators. Anim. Behav. 54(6), 1461–1474 (1997).CAS 
    Article 

    Google Scholar 
    Peres, C. A. Anti-predation benefits in a mixed-species group of Amazonian tamarins. Folia Primatol. 61(2), 61–76 (1993).CAS 
    Article 

    Google Scholar 
    Fuji, A. Ecological studies on the growth and food consumption of Japanese common littoral sea urchin, Strongylocentrotus intermedius (A. Agassiz). Mem. Fac. Fish. Hokkaido Univ. 15(2), 83–160 (1967)Chang, Y., Ding, J., Song, J. & Yang, W. Biology and aquaculture of sea cucumbers and sea urchins (Ocean Press, 2004).
    Google Scholar 
    Yang, H., Hamel, J. F. & Mercier, A. The sea cucumber Apostichopus japonicus: history, biology and aquaculture (Elsevier Inc., 2015).
    Google Scholar 
    Zhao, C. et al. Carryover effects of short-term UV-B radiation on fitness related traits of the sea urchin Strongylocentrotus intermedius. Ecotoxicol. Environ. Saf. 164, 659–664 (2018).CAS 
    Article 

    Google Scholar 
    Zhang, L. et al. Effects of long-term elevated temperature on covering, sheltering and righting behaviors of the sea urchin Strongylocentrotus intermedius. PeerJ 5, e3122 (2017)Zhao, C. et al. Effects of covering behavior and exposure to a predatory crab Charybdis japonica on survival and HSP70 expression of juvenile sea urchins Strongylocentrotus intermedius. PloS One 9(5), e97840 (2014)Kawai, T. & Agatsuma, Y. Predators on released seed of the sea urchin Strongylocentrotus intermedius at Shiribeshi, Hokkaido, Japan. Fish. Sci. (Tokyo, Jpn.) 62(2), 317–318 (1996)Hatanaka, H. Experimental studies on the predation of juvenile sea cucumber, Stichopus japonicus by sea star Asterina pectinifera. Aquacult. Sci. 42(4), 563–566 (1994).
    Google Scholar 
    Guidetti, P. & Mori, M. Morpho-functional defences of Mediterranean sea urchins, Paracentrotus lividus and Arbacia lixula, against fish predators. Mar. Biol. 147(3), 797–802 (2005).Article 

    Google Scholar 
    Moitoza, D.J & Phillips, D.W. Prey defense, predator preference, and nonrandom diet: the interactions between Pycnopodia helianthoides and two species of sea urchins. Mar. Biol. 53(4), 299–304 (1979)Williams, J.P. et al. Sea urchin mass mortality rapidly restores kelp forest communities. Mar. Ecol.: Prog. Ser. 664, 117–131 (2021)Pearse, J. Ecological role of purple sea urchins. Science 314(5801), 940–941 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Vadas, R. L. Preferential feeding: an optimization strategy in sea urchins. Ecol. Monogr. 47(4), 337–371 (1977).Article 

    Google Scholar 
    Lowe, A. T. et al. Sedentary urchins influence benthic community composition below the macroalgal zone. Mar. Biol. 36(2), 129–140 (2015).
    Google Scholar 
    Layton, C. et al. Kelp Forest Restoration in Australia. Front. Mar. Sci. 7(74) (2020)Eger, A.M. et al. Global Kelp forest restoration: Past lessons, status, and future goals. Preprint. EcoEvoRxiv. https://doi.org/10.32942/osf.io/emaz2 (2021)Ritson-Williams, R. & Paul, V. J. Marine benthic invertebrates use multimodal cues for defense against reef fish. Mar. Ecol. Prog. Ser. 340, 29–39 (2007).ADS 
    Article 

    Google Scholar 
    Hu, F. et al. Effects of artificial reefs on selectivity and behaviors of the sea cucumber Apostichopus japonicas: New insights into the pond culture. Aquacult. Rep. 21(3), 100842 (2021)Sun, J. et al. Light intensity regulates phototaxis, foraging and righting behaviors of the sea urchin Strongylocentrotus intermedius. PeerJ 7, e8001 (2019)Bi, S., Shi, J. & Liu, A. Exploitation and utilization of Ulva lactuca L. Mod. Fish. Inf. 11, 21–23 (1993).
    Google Scholar 
    Chang, Y. Q., Wang, Z. C. & Wang, G. J. Effect of temperature and algae on feeding and growth in sea urchin Strongylocentrotus intermedius. J. Fish. China 23(1), 69–76 (1999).
    Google Scholar 
    Dumont, C., Himmelman, J.H. & Russell, M.P. Size-specific movement of green sea urchins Strongylocentrotus droebachiensis on urchin barrens in eastern Canada. Mar. Ecol.: Prog. Ser. 276, 93–101 (2004)Sun, J. et al. Interaction among sea urchins in response to food cues. Sci. Rep. 11(1), 1–9 (2021).ADS 
    Article 

    Google Scholar 
    Węglarczyk, S. Kernel density estimation and its application. ITM Web Conf. 23(2), 00037 (2018).Article 

    Google Scholar  More

  • in

    Physiological acclimatization in Hawaiian corals following a 22-month shift in baseline seawater temperature and pH

    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science (80- ). 359, 80–83 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Eakin, C. M., Sweatman, H. P. A. & Brainard, R. E. The 2014–2017 global-scale coral bleaching event: Insights and impacts. Coral Reefs 38, 539–545 (2019).ADS 

    Google Scholar 
    Glynn. Coral reef bleaching: Facts, hypotheses and implications. Glob. Chang. Biol. 2, 495–509 (1996).ADS 

    Google Scholar 
    Brown, B. E. Coral bleaching: Causes and consequences. Coral Reefs 16, 129–138 (1997).
    Google Scholar 
    Maynard, J. A. et al. Projections of climate conditions that increase coral disease susceptibility and pathogen abundance and virulence. Nat. Clim. Chang. 5, 688–694 (2015).ADS 

    Google Scholar 
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Anthony, K. R. N., Kline, D. I., Diaz-Pulido, G., Dove, S. & Hoegh-Guldberg, O. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc. Natl. Acad. Sci. U. S. A. 105, 17442–17446 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huang, H. et al. Positive and negative responses of coral calcification to elevated pCO2: Case studies of two coral species and the implications of their responses. Mar. Ecol. Prog. Ser. 502, 145–156 (2014).ADS 
    CAS 

    Google Scholar 
    Hoadley, K. D. et al. Physiological response to elevated temperature and pCO2 varies across four Pacific coral species: Understanding the unique host + symbiont response. Sci. Rep. 5, 1–15 (2015).
    Google Scholar 
    Schoepf, V. et al. Coral energy reserves and calcification in a high-CO2 world at two temperatures. PLoS One. 8, e75049 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    IPCC. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, (eds. Pörtner, H.-O. et al.) 1–36 (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2019).Bahr, K. D., Jokiel, P. L. & Rodgers, K. S. Relative sensitivity of five Hawaiian coral species to high temperature under high-pCO2 conditions. Coral Reefs 35, 729–738 (2016).ADS 

    Google Scholar 
    Dove, S. G., Brown, K. T., Van Den Heuvel, A., Chai, A. & Hoegh-Guldberg, O. Ocean warming and acidification uncouple calcification from calcifier biomass which accelerates coral reef decline. Commun. Earth Environ. 1, 1–9 (2020).
    Google Scholar 
    Chow, M. H., Tsang, R. H. L., Lam, E. K. Y. & Ang, P. O. Quantifying the degree of coral bleaching using digital photographic technique. J. Exp. Mar. Bio. Ecol. 479, 60–68 (2016).
    Google Scholar 
    Amid, C. et al. Additive effects of the herbicide glyphosate and elevated temperature on the branched coral Acropora formosa in Nha Trang, Vietnam. Environ. Sci. Pollut. Res. 25, 13360–13372 (2018).CAS 

    Google Scholar 
    Anthony, K. R. N., Connolly, S. R. & Willis, B. L. Comparative analysis of energy allocation to tissue and skeletal growth in corals. Limnol. Oceanogr. 47, 1417–1429 (2002).ADS 

    Google Scholar 
    Edmunds, P. J. & Davies, P. S. An energy budget for Porites porites (Scleractinia). Mar. Biol. 92, 339–347 (1986).
    Google Scholar 
    Stimson, J. S. Location, quantity and rate of change in quantity of lipids in tissue of Hawaiian hermatypic corals. Bull. Mar. Sci. 41, 889–904 (1987).ADS 

    Google Scholar 
    Harland, A. D., Navarro, J. C., Spencer Davies, P. & Fixter, L. M. Lipids of some Caribbean and Red Sea corals: Total lipid, wax esters, triglycerides and fatty acids. Mar. Biol. 117, 113–117 (1993).CAS 

    Google Scholar 
    Grottoli, A. G., Tchernov, D. & Winters, G. Physiological and biogeochemical responses of super-corals to thermal stress from the northern gulf of Aqaba, Red Sea. Front. Mar. Sci. 4, 1–12 (2017).
    Google Scholar 
    Rodrigues, L. J. & Grottoli, A. G. Energy reserves and metabolism as indicators of coral recovery from bleaching. Limnol. Oceanogr. 52, 1874–1882 (2007).ADS 

    Google Scholar 
    Anthony, K. R. N., Hoogenboom, M. O., Maynard, J. A., Grottoli, A. G. & Middlebrook, R. Energetics approach to predicting mortality risk from environmental stress: A case study of coral bleaching. Funct. Ecol. 23, 539–550 (2009).
    Google Scholar 
    Baumann, J. H., Grottoli, A. G., Hughes, A. D. & Matsui, Y. Photoautotrophic and heterotrophic carbon in bleached and non-bleached coral lipid acquisition and storage. J. Exp. Mar. Bio. Ecol. 461, 469–478 (2014).CAS 

    Google Scholar 
    Hughes, A. D. & Grottoli, A. G. Heterotrophic compensation: A possible mechanism for resilience of coral reefs to global warming or a sign of prolonged stress?. PLoS ONE 8, 1–10 (2013).
    Google Scholar 
    Grottoli, A. G. et al. The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob. Chang. Biol. 20, 3823–3833 (2014).ADS 
    PubMed 

    Google Scholar 
    Grottoli, A. G., Rodrigues, L. J. & Palardy, J. E. Heterotrophic plasticity and resilience in bleached corals. Nature 440, 1186–1189 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Levas, S. J. et al. Can heterotrophic uptake of dissolved organic carbon and zooplankton mitigate carbon budget deficits in annually bleached corals?. Coral Reefs 35, 495–506 (2016).ADS 

    Google Scholar 
    Jury, C. P., Delano, M. N. & Toonen, R. J. High heritability of coral calcification rates and evolutionary potential under ocean acidification. Sci. Rep. 9, 1–13 (2019).
    Google Scholar 
    Jury, C. P. & Toonen, R. J. Adaptive responses and local stressor mitigation drive coral resilience in warmer, more acidic oceans. Proc. R. Soc. B Biol. Sci. 286, 20190614 (2019).
    Google Scholar 
    Concepcion, G. T., Polato, N. R., Baums, I. B. & Toonen, R. J. Development of microsatellite markers from four Hawaiian corals: Acropora cytherea, Fungia scutaria, Montipora capitata and Porites lobata. Conserv. Genet. Resour. 2, 11–15 (2010).

    Google Scholar 
    Gorospe, K. D. & Karl, S. A. Genetic relatedness does not retain spatial pattern across multiple spatial scales: Dispersal and colonization in the coral, Pocillopora damicornis. Mol. Ecol. 22, 3721–3736 (2013).PubMed 

    Google Scholar 
    Wall, C. B., Ritson-Williams, R., Popp, B. N. & Gates, R. D. Spatial variation in the biochemical and isotopic composition of corals during bleaching and recovery. Limnol. Oceanogr. 64, 2011–2028 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bahr, K. D., Tran, T., Jury, C. P. & Toonen, R. J. Abundance, size, and survival of recruits of the reef coral Pocillopora acuta under ocean warming and acidification. PLoS ONE 15, 1–13 (2020).
    Google Scholar 
    Rogelj, J. et al. Paris agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    McLachlan, R. H., Price, J. T., Solomon, S. L. & Grottoli, A. G. Thirty years of coral heat-stress experiments: A review of methods. Coral Reefs 39, 885–902 (2020).
    Google Scholar 
    Grottoli, A. G. et al. Increasing comparability among coral bleaching experiments. Ecol. Appl. 31, e02262 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grottoli, A. G. Variability of stable isotopes and maximum linear extension in reef-coral skeletons at Kaneohe Bay, Hawaii. Mar. Biol. 135, 437–449 (1999).
    Google Scholar 
    McLachlan, R. H., Dobson, K. L., Grottoli, A. G. Quantification of Total Biomass in Ground Coral Samples. Protocols.io (2020). https://doi.org/10.17504/protocols.io.bdyai7se.McLachlan, R. H., Muñoz-Garcia, A., Grottoli, A. G. Extraction of Total Soluble Lipid from Ground Coral Samples. Protocols.io (2020). https://doi.org/10.17504/protocols.io.bc4qiyvw.McLachlan, R. H., Price, J. T., Dobson, K. L., Weisleder, N. & Grottoli, A. G. Microplate Assay for Quantification of Soluble Protein in Ground Coral Samples. Protocols.io (2020). https://doi.org/10.17504/protocols.io.bdc8i2zw.McLachlan, R. H., Juracka, C. & Grottoli, A. G. Symbiodiniaceae Enumeration in Ground Coral Samples Using Countess™ II FL Automated Cell Counter. Protocols.io (2020). https://doi.org/10.17504/protocols.io.bdc5i2y6.McLachlan, R. H. & Grottoli, A. G. Geometric Method for Estimating Coral Surface Area Using Image Analysis. Protocols.io https://doi.org/10.17504/protocols.io.bdyai7se(2021).Muscatine, L., McCloskey, L. R. & Marian, R. E. Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol. Oceanogr. 26, 601–611 (1981).ADS 
    CAS 

    Google Scholar 
    Levas, S. J. et al. Organic carbon fluxes mediated by corals at elevated pCO2 and temperature. Mar. Ecol. Prog. Ser. 519, 153–164 (2015).ADS 
    CAS 

    Google Scholar 
    Perry, C. T. et al. Loss of coral reef growth capacity to track future increases in sea level. Nature 558, 396–400 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Woodley, C. M., Burnett, A. & Downs, C. A. Epidemiological Assessment of Reproductive Condition of ESA Priority Coral (2013).Logan, C. A., Dunne, J. P., Eakin, C. M. & Donner, S. D. Incorporating adaptive responses into future projections of coral bleaching. Glob. Chang. Biol. 20, 125–139 (2014).ADS 
    PubMed 

    Google Scholar 
    Rodrigues, L. J., Grottoli, A. G. & Lesser, M. P. Long-term changes in the chlorophyll fluorescence of bleached and recovering corals from Hawaii. J. Exp. Biol. 211, 2502–2509 (2008).PubMed 

    Google Scholar 
    Rowan, H. et al. Environmental gradients drive physiological variation in Hawaiian corals. Coral Reefs 40(5), 1505–1523. https://doi.org/10.1007/s00338-021-02140-8 (2021).Article 

    Google Scholar 
    Houlbrèque, F. & Ferrier-Pagès, C. Heterotrophy in tropical scleractinian corals. Biol. Rev. 84, 1–17 (2009).PubMed 

    Google Scholar 
    J. T. Price, thesis, The Ohio State University (2020). More

  • in

    Climate-change-driven growth decline of European beech forests

    IPCC. IPCC Fifth Assessment Report (AR5). 10–12 (IPCC, 2014).Cailleret, M. et al. A synthesis of radial growth patterns preceding tree mortality. Glob. Chang. Biol. 23, 1675–1690 (2017).PubMed 

    Google Scholar 
    Forzieri, G. et al. Emergent vulnerability to climate-driven disturbances in European forests. Nat. Commun. 12, 1–12 (2021).
    Google Scholar 
    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science https://doi.org/10.1126/science.1155121 (2008).Article 
    PubMed 

    Google Scholar 
    Buras, A. & Menzel, A. Projecting tree species composition changes of European forests for 2061–2090 under RCP 4.5 and RCP 8.5 scenarios. Front. Plant Sci. 9, 1–13 (2019).
    Google Scholar 
    van der Maaten, E. et al. Species distribution models predict temporal but not spatial variation in forest growth. Ecol. Evol. 7, 2585–2594 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Lebaube, S., Le Goff, N. L., Ottorini, J. M. & Granier, A. Carbon balance and tree growth in a Fagus sylvatica stand. Ann. Sci. 57, 49–61 (2000).
    Google Scholar 
    Dobbertin, M. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur. J. For. Res. 124, 319–333 (2005).
    Google Scholar 
    Büntgen, U. Re-thinking the boundaries of dendrochronology. Dendrochronologia 53, 1–4 (2019).
    Google Scholar 
    Klesse, S. et al. Continental-scale tree-ring-based projection of Douglas-fir growth: Testing the limits of space-for-time substitution. Glob. Chang. Biol. 26, 5146–5163 (2020).PubMed 

    Google Scholar 
    Zhao, S. et al. The International Tree-Ring Data Bank (ITRDB) revisited: data availability and global ecological representativity. J. Biogeogr. 46, 355–368 (2019).
    Google Scholar 
    Babst, F. et al. When tree rings go global: challenges and opportunities for retro- and prospective insight. Quat. Sci. Rev. 197, 1–20 (2018).
    Google Scholar 
    Klesse, S. et al. Sampling bias overestimates climate change impacts on forest growth in the southwestern United States. Nat. Commun. 9, 1–9 (2018).
    Google Scholar 
    Yousefpour, R. et al. Realizing mitigation efficiency of European commercial forests by climate smart forestry. Sci. Rep. 8, 1–11 (2018).CAS 

    Google Scholar 
    Giesecke, T., Hickler, T., Kunkel, T., Sykes, M. T. & Bradshaw, R. H. W. Towards an understanding of the Holocene distribution of Fagus sylvatica L. J. Biogeogr. 34, 118–131 (2007).
    Google Scholar 
    Fang, J. & Lechowicz, M. J. Climatic limits for the present distribution of beech (Fagus L.) species in the world. J. Biogeogr. 33, 1804–1819 (2006).
    Google Scholar 
    Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M. & Wanner, H. European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303, 1499–1503 (2004).CAS 
    PubMed 

    Google Scholar 
    Luterbacher, J. et al. European summer temperatures since Roman times. Environ. Res. Lett. 11, 24001 (2016).Nabuurs, G. J. et al. By 2050 the mitigation effects of EU forests could nearly double through climate smart forestry. Forests 8, 1–14 (2017).
    Google Scholar 
    Walentowski, H. et al. Assessing future suitability of tree species under climate change by multiple methods: a case study in southern Germany. Ann. Res. 60, 101–126 (2017).
    Google Scholar 
    Mäkelä, A. et al. Process-based models for forest ecosystem management: current state of the art and challenges for practical implementation. Tree Physiol. 20, 289–298 (2000).PubMed 

    Google Scholar 
    Leech, S. M., Almuedo, P. L. & Neill, G. O. Assisted migration: adapting forest management to a changing climate. BC J. Ecosyst. Manag. 12, 18–34 (2011).
    Google Scholar 
    Sass-Klaassen, U. G. W. et al. A tree-centered approach to assess impacts of extreme climatic events on forests. Front. Plant Sci. 7, 1069 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Bowman, D. M. J. S., Brienen, R. J. W., Gloor, E., Phillips, O. L. & Prior, L. D. Detecting trends in tree growth: not so simple. Trends Plant Sci. 18, 11–17 (2013).CAS 
    PubMed 

    Google Scholar 
    Hacket-Pain, A. J. et al. Climatically controlled reproduction drives interannual growth variability in a temperate tree species. Ecol. Lett. 21, 1833–1844 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Dorji, Y., Annighöfer, P., Ammer, C. & Seidel, D. Response of beech (Fagus sylvatica L.) trees to competition-new insights from using fractal analysis. Remote Sens. 11, 2656 (2019).Petit-Cailleux, C. et al. Combining statistical and mechanistic models to unravel the drivers of mortality within a rear-edge beech population. bioRxiv https://doi.org/10.1101/645747 (2019).Weigel, R., Gilles, J., Klisz, M., Manthey, M. & Kreyling, J. Forest understory vegetation is more related to soil than to climate towards the cold distribution margin of European beech. J. Veg. Sci. 30, 746–755 (2019).
    Google Scholar 
    Etzold, S. et al. Nitrogen deposition is the most important environmental driver of growth of pure, even-aged and managed European forests. Forest Ecol. Manag. 458, 117762 (2020).
    Google Scholar 
    Martínez-Sancho, E. et al. The GenTree dendroecological collection, tree-ring and wood density data from seven tree species across Europe. Sci. Data 7, 1–7 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Hartl-Meier, C., Dittmar, C., Zang, C. & Rothe, A. Mountain forest growth response to climate change in the Northern Limestone Alps. Trees 28, 819–829 (2014).
    Google Scholar 
    Way, D. A. & Montgomery, R. A. Photoperiod constraints on tree phenology, performance and migration in a warming world. Plant Cell Environ. 38, 1725–1736 (2015).PubMed 

    Google Scholar 
    Martínez del Castillo, E. et al. Spatial patterns of climate – growth relationships across species distribution as a forest management tool in Moncayo Natural Park (Spain). Eur. J. Res. 138, 299 (2019).
    Google Scholar 
    Hacket-Pain, A. J., Cavin, L., Friend, A. D. & Jump, A. S. Consistent limitation of growth by high temperature and low precipitation from range core to southern edge of European beech indicates widespread vulnerability to changing climate. Eur. J. Res. 135, 897–909 (2016).
    Google Scholar 
    van der Maaten, E. Climate sensitivity of radial growth in European beech (Fagus sylvatica L.) at different aspects in southwestern Germany. Trees 26, 777–788 (2012).
    Google Scholar 
    Decuyper, M. et al. Spatio-temporal assessment of beech growth in relation to climate extremes in Slovenia – an integrated approach using remote sensing and tree-ring data. Agric. Meteorol. 287, 107925 (2020).
    Google Scholar 
    Kraus, C., Zang, C. & Menzel, A. Elevational response in leaf and xylem phenology reveals different prolongation of growing period of common beech and Norway spruce under warming conditions in the Bavarian Alps. Eur. J. Res. 135, 1011–1023 (2016).
    Google Scholar 
    Martínez del Castillo, E. et al. Living on the edge: contrasted wood-formation dynamics in Fagus sylvatica and Pinus sylvestris under mediterranean conditions. Front. Plant Sci. 7, 370 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Čufar, K. et al. Temporal shifts in leaf phenology of beech (Fagus sylvatica) depend on elevation. Trees 26, 1091–1100 (2012).
    Google Scholar 
    Bontemps, J. D., Hervé, J. C. & Dhôte, J. F. Dominant radial and height growth reveal comparable historical variations for common beech in north-eastern France. Forest Ecol. Manag. 259, 1455–1463 (2010).
    Google Scholar 
    Latte, N., Lebourgeois, F. & Claessens, H. Increased tree-growth synchronization of beech (Fagus sylvatica L.) in response to climate change in northwestern Europe. Dendrochronologia 33, 69–77 (2015).
    Google Scholar 
    Zimmermann, J., Hauck, M., Dulamsuren, C. & Leuschner, C. Climate warming-related growth decline affects Fagus sylvatica, but not other broad-leaved tree species in central european mixed forests. Ecosystems 18, 560–572 (2015).CAS 

    Google Scholar 
    Tegel, W. et al. A recent growth increase of European beech (Fagus sylvatica L.) at its Mediterranean distribution limit contradicts drought stress. Eur. J. Res. 133, 61–71 (2014).
    Google Scholar 
    Hacket-Pain, A. J. & Friend, A. D. Increased growth and reduced summer drought limitation at the southern limit of Fagus sylvatica L., despite regionally warmer and drier conditions. Dendrochronologia 44, 22–30 (2017).
    Google Scholar 
    Dulamsuren, C., Hauck, M., Kopp, G., Ruff, M. & Leuschner, C. European beech responds to climate change with growth decline at lower, and growth increase at higher elevations in the center of its distribution range (SW Germany). Trees 31, 673–686 (2017).
    Google Scholar 
    Spiecker, H., Mielikäinen, K., Köhl, M. & Skovsgaard, J. P. Growth trends in European forests: studies from 12 countries. European Forest Institute Research Report (1996).Cavin, L. & Jump, A. S. Highest drought sensitivity and lowest resistance to growth suppression are found in the range core of the tree Fagus sylvatica L. not the equatorial range edge. Glob. Chang. Biol. 23, 1–18 (2016).
    Google Scholar 
    Mette, T. et al. Climatic turning point for beech and oak under climate change in Central Europe. Ecosphere 4, 1–19 (2013).
    Google Scholar 
    Michelot, A., Simard, S., Rathgeber, C. B. K., Dufrêne, E. & Damesin, C. Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics. Tree Physiol. 32, 1033–1045 (2012).PubMed 

    Google Scholar 
    Meier, I. C. & Leuschner, C. Belowground drought response of European beech: Fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient. Glob. Chang. Biol. 14, 2081–2095 (2008).
    Google Scholar 
    Leuschner, C. & Ellenberg, H. Ecology of Central European Forests. Vegetation Ecology of Central Europe. Vol. I (Springer, 2017).Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere. 6, 1–55 (2015).
    Google Scholar 
    Pechanec, V., Purkyt, J., Benc, A., Nwaogu, C. & Lenka, Š. Ecological Informatics Modelling of the carbon sequestration and its prediction under climate change. https://doi.org/10.1016/j.ecoinf.2017.08.006 (2017).Speer, J. H. Fundamentals of Tree-Ring Research (University of Arizona Press, 2010).Biondi, F. & Qeadan, F. A theory-driven approach to tree-ring standardization: defining the biological trend from expected basal area increment. Tree-Ring Res. 64, 81–96 (2008).
    Google Scholar 
    Biondi, F. & Qeadan, F. Removing the tree-ring width biological trend using expected basal area increment. in USDA Forest Service RMRS-P-55 124–131 (2008).Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 1–20 (2017).
    Google Scholar 
    De Martonne, E. Une nouvelle fonction climatologique: L’indice d’aridité. La Meteorol. 2, 449–458 (1926).Martínez del Castillo, E., Longares, L. A., Serrano-Notivoli, R. & de Luis, M. Modeling tree-growth: assessing climate suitability of temperate forests growing in Moncayo Natural Park (Spain). Ecol. Manag. 435, 128–137 (2019).
    Google Scholar 
    Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).PubMed 

    Google Scholar 
    Calcagno, V. & Mazancourt, C. De. glmulti: an R package for easy automated model selection with (generalized) linear models. J. Stat. Softw. 34, 1–29 (2010).
    Google Scholar 
    Detry, M. A. & Ma, Y. Analyzing repeated measurements using mixed models. JAMA J. Am. Med. Assoc. 315, 407 (2016).CAS 

    Google Scholar 
    Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 2018, 1–32 (2018).
    Google Scholar 
    Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).PubMed 

    Google Scholar 
    Caudullo, G., Welk, E. & San-Miguel-Ayanz, J. Chorological maps for the main European woody species. Data Brief 12, 662–666 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 13, 3571–3605 (2020).CAS 

    Google Scholar 
    Karger, D. N. & Zimmermann, N. E. CHELSAcruts – High Resolution Temperature And Precipitation Timeseries For The 20th Century And Beyond. https://doi.org/10.16904/envidat.159 (2018).Norinder, U., Rybacka, A. & Andersson, P. L. Conformal prediction to define applicability domain – a case study on predicting ER and AR binding. SAR QSAR Environ. Res. 27, 303–316 (2016).CAS 
    PubMed 

    Google Scholar 
    Metzger, M. J., Bunce, R. G. H., Jongman, R. H. G., Mücher, C. A. & Watkins, J. W. A climatic stratification of the environment of Europe. Glob. Ecol. Biogeogr. 14, 549–563 (2005).
    Google Scholar  More