Regulated timber harvesting does not reduce koala density in north-east forests of New South Wales
Slade, C. & Law, B. The other half of the coastal State Forest estate in New South Wales; The value of informal forest reserves for conservation. Aust. Zool. 39, 359–370. https://doi.org/10.7882/AZ.2016.011 (2017).Article
Google Scholar
Munks, S. A., Chuter, A. E. & Koch, A. J. ‘Off-reserve’ management in practice: Contributing to conservation of biodiversity over 30 years of Tasmania’s forest practices system. For. Ecol. Manag. 465, 117941. https://doi.org/10.1016/j.foreco.2020.117941 (2020).Article
Google Scholar
Lande, R. Demographic models of the northern spotted owl (Strix occidentalis caurina). Oecologia 75, 601–607 (1988).ADS
CAS
Article
Google Scholar
Franklin, C. M. A., Macdonald, S. E. & Nielsen, S. E. Can retention harvests help conserve wildlife? Evidence for vertebrates in the boreal forest. Ecosphere 10(3), e02632 (2019).Article
Google Scholar
McAlpine, C. A. et al. Conserving koalas: A review of the contrasting regional trends, outlooks and policy challenges. Biol. Conserv. 192, 226–236. https://doi.org/10.1016/j.biocon.2015.09.020 (2015).Article
Google Scholar
Kavanagh, R. P. & Stanton, M. A. Koalas use young Eucalyptus plantations in an agricultural landscape on the Liverpool Plains, New South Wales. Ecol. Manag. Restor. 13, 297–305. https://doi.org/10.1111/emr.12005 (2012).Article
Google Scholar
Matthews, A., Lunney, D., Gresser, S. & Maitz, W. Movement patterns of koalas in remnant forest after fire. Aust. Mammal. 38, 91–104. https://doi.org/10.1071/AM14010 (2016).Article
Google Scholar
McAlpine, C. A. et al. The importance of forest area and configuration relative to local habitat factors for conserving forest mammals: A case study of koalas in Queensland, Australia. Biol. Conserv. 132, 153–165. https://doi.org/10.1016/j.biocon.2006.03.021 (2006).Article
Google Scholar
Beyer, H. L. et al. Management of multiple threats achieves meaningful koala conservation outcomes. J. Appl. Ecol. 55, 1966–1975. https://doi.org/10.1111/1365-2664.13127 (2018).Article
Google Scholar
Kavanagh, R. P., Stanton, M. A. & Brassil, T. E. Koalas continue to occupy their previous home-ranges after selective logging in Callitris–Eucalyptus forest. Wildl. Res. 34, 94–107. https://doi.org/10.1071/WR06126 (2007).Article
Google Scholar
Kavanagh, R. P., Debus, S., Tweedie, T. & Webster, R. Distribution of nocturnal forest birds and mammals in north-eastern New South Wales: Relationships with environmental variables and management history. Wildl. Res. 22, 359–377. https://doi.org/10.1071/WR9950359 (1995).Article
Google Scholar
Roberts, P. Associations Between Koala Faecal Pellets and Trees at Dorrigo, M.Sc. Thesis (University of New England, 1998).
Google Scholar
Smith, A. P. Koala conservation and habitat requirements in a timber production forest in north-east New South Wales. In Conservation of Australia’s Forest Fauna (ed. Lunney, D.) 591–611 (Royal Zoological Society of New South Wales, 2004).Chapter
Google Scholar
Radford Miller, S. Aspects of the ecology of the koala, Phascolarctos cinereus, in a tall coastal production forest in north eastern New South Wales. PhD thesis (Southern Cross University, 2012).Law, B. S. et al. Passive acoustics and sound recognition provide new insights on status and resilience of an iconic endangered marsupial (koala Phascolarctos cinereus) to timber harvesting. PLoS One 13(10), e0205075. https://doi.org/10.1371/journal.pone.0205075 (2018).CAS
Article
PubMed
PubMed Central
Google Scholar
Ellis, W. et al. Koala habitat use and population density: Using field data to test the assumptions of ecological models. Aust. Mammal. 35, 160–165. https://doi.org/10.1071/AM12023 (2013).Article
Google Scholar
Ashman, K. R., Rendall, A. R., Symonds, M. R. E. & Whisson, D. Understanding the role of plantations in the abundance of an arboreal folivore. Landsc. Urban Plan. 193, 103684. https://doi.org/10.1016/j.landurbplan.2019.103684 (2020).Article
Google Scholar
Cristescu, R. H., Rhodes, J., Frere, C. & Banks, P. B. Is restoring flora the same as restoring fauna? Lessons learned from koalas and mining rehabilitation. J. Appl. Ecol. 50(2), 423–431. https://doi.org/10.1111/1365-2664.12046 (2013).Article
Google Scholar
Chandler, R. B. & Royle, J. A. Spatially explicit models for inference about density in unmarked or partially marked populations. Ann. Appl. Stat. 7(2), 936–954. https://doi.org/10.1214/12-AOAS610 (2013).MathSciNet
Article
MATH
Google Scholar
Law, B., Gonsalves, L., Burgar, J., Brassil, T., Kerr, I., Wilmott, L., Madden, K., Smith, M., Mella, V., Crowther, M., Krockenberger, M., Rus, A., Pietsch, R., Truskinger, A., Eichinski, P. & Roe, P. Validation of spatial count models to estimate koala Phascolarctos cinereus density from acoustic arrays. Wildl. Res. (in press).MacKenzie, D. I. et al. Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence (Elsevier, 2006).MATH
Google Scholar
Smith, M. Behaviour of the Koala, Phascolarctos cinereus (Goldfuss), in Captivity III. Vocalisations. Wildl. Res. 7, 13–34. https://doi.org/10.1071/WR9800013 (1980).Article
Google Scholar
Ellis, W. et al. Koala bellows and their association with the spatial dynamics of free-ranging koalas. Behav. Ecol. 22, 372–377. https://doi.org/10.1093/beheco/arq216 (2011).Article
Google Scholar
Ellis, W. et al. The role of bioacoustic signals in koala sexual selection: Insights from seasonal patterns of associations revealed with gps-proximity units. PLoS One 10(7), e0130657. https://doi.org/10.1371/journal.pone.0130657 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
Martin, R. W. Overbrowsing and decline of a population of the koala, Phascolarctos cinereus, in Victoria II. Population condition. Aust. Wildl. Res. 12, 367–375 (1985).ADS
Article
Google Scholar
Penn, A. M. et al. Demographic forecasting in koala conservation. Conserv. Biol. 14(3), 629–638. https://doi.org/10.1046/j.1523-1739.2000.99385.x (2000).Article
Google Scholar
Watchorn, D. J. & Whisson, D. A. Quantifying the interactions between koalas in a high-density population during the breeding period. Aust. Mammal. 42(1), 28–37. https://doi.org/10.1071/AM18027 (2019).Article
Google Scholar
Crowther, M. S. et al. Comparison of three methods of estimating the population size of an arboreal mammal in a fragmented rural landscape. Wildl. Res. 48, 105–114. https://doi.org/10.1071/WR19148 (2020).Article
Google Scholar
Witt, R. R. et al. Real-time drone derived thermal imagery outperforms traditional survey methods for an arboreal forest mammal. PLoS One 15(11), e0242204. https://doi.org/10.1371/journal.pone.0242204 (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
Law, B.S, Gonsalves, L., Burgar, J., Brassil, T., Kerr I. & O’Loughlin C. Fire severity and its local extent are key to assessing impacts of Australian mega-fires on koala (Phascolarctos cinereus) density. Glob. Ecol. Biogeogr. 00, 1–13. https://doi.org/10.1111/geb.13458 (2022).Hynes, E. F., Whisson, D. A. & Di Stefano, J. Response of an arboreal species to plantation harvest. For. Ecol. Manag. 490, 119092. https://doi.org/10.1016/j.foreco.2021.119092 (2021).Article
Google Scholar
Law, B., Gonsalves, L., Burgar, J., Brassil, T., Kerr, I., O’Loughlin, C., Eichinski, P. & Roe, P. Regulated timber harvesting does not reduce koala density in north-east forests of New South Wales. Unpubl. Report to NSW (Natural Resources Commission, 2021).Phillips, S. Aversive behaviour by koalas (Phascolarctos cinereus) during the course of a music festival in northern New South Wales, Australia. Aust. Mammal. 38(2), 158–163. https://doi.org/10.1071/AM15006 (2016).Article
Google Scholar
Fedrowitz, K. et al. Can retention forestry help conserve biodiversity? A meta-analysis. J. Appl. Ecol. 51, 1669–1679. https://doi.org/10.1111/1365-2664.12289 (2014).Article
PubMed
PubMed Central
Google Scholar
Mori, A. S. & Kitagawa, R. Retention forestry as a major paradigm for safeguarding forest biodiversity in productive landscapes: A global meta-analysis. Biol. Conserv. 175, 65–73. https://doi.org/10.1016/j.biocon.2014.04.016 (2014).Article
Google Scholar
Law, B. et al. Development and field validation of a regional, management-scale habitat model: A koala Phascolarctos cinereus case study. Ecol. Evol. 7, 7475–7489. https://doi.org/10.1002/ece3.3300 (2017).Article
PubMed
PubMed Central
Google Scholar
Phillips, S., Wallis, K. & Lane, A. Quantifying the impacts of bushfire on populations of wild koalas (Phascolarctos cinereus): Insights from the 2019/20 fire season. Ecol. Manag. Restor. 22, 80–88. https://doi.org/10.1111/emr.12458 (2021).Article
Google Scholar
Kramer, A. et al. California spotted owl habitat selection in a fire-managed landscape suggests conservation benefit of restoring historical fire regimes. For. Ecol. Manag. 479, 118576 (2021).Article
Google Scholar
Jones, G. M. et al. Megafire causes persistent loss of an old-forest species. Anim. Conserv. 24, 925–936. https://doi.org/10.1111/acv.12697 (2021).Article
Google Scholar
Hagens, S. V., Rendall, A. R. & Whisson, D. A. Passive acoustic surveys for predicting species’ distributions: Optimising detection probability. PLoS One 13(7), e0199396. https://doi.org/10.1371/journal.pone.0199396 (2018).Article
PubMed
PubMed Central
Google Scholar
Law, B. et al. Using passive acoustic recording and automated call identification to survey koalas in the southern forests of New South Wales. Aust. Zool. 40, 477–486 (2019).Article
Google Scholar
Towsey, M., Planitz, B., Nantes, A., Wimmer, J. & Roe, P. A toolbox for animal call recognition. Bioacoustics 21, 107–125. https://doi.org/10.1080/09524622.2011.648753 (2012).Article
Google Scholar
Royle, J. A. & Dorazio, R. M. Parameter-expanded data augmentation for Bayesian analysis of capture–recapture models. J. Ornithol. 152(2), 521–537 (2012).Article
Google Scholar
Royle, J. A., Chandler, R. B., Sollmann, R. & Gardner, B. Spatial Capture–Recapture 1st edn. (Elsevier, 2014). https://doi.org/10.1016/B978-0-12-405939-9.00020-7.Book
Google Scholar
Clark, J. D. Comparing clustered sampling designs for spatially explicit estimation of population density. Popul. Ecol. 61(1), 93–101. https://doi.org/10.1002/1438-390X.1011 (2019).Article
Google Scholar
Sun, C. C., Fuller, A. K. & Royle, J. A. Trap configuration and spacing influences parameter estimates in spatial capture-recapture models. PLoS One 9(2), e88025. https://doi.org/10.1371/journal.pone.0088025 (2014).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Plummer, M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing, Vol. 124(125.10), pp. 1–10 (2003).Plummer, M. rjags: Bayesian graphical models using MCMC. R package version 4(6) (2016).Burgar, J. M., Stewart, F. E., Volpe, J. P., Fisher, J. T. & Burton, A. C. Estimating density for species conservation: Comparing camera trap spatial count models to genetic spatial capture-recapture models. Glob. Ecol. Conserv. 15, e00411. https://doi.org/10.1016/j.gecco.2018.e00411 (2018).Article
Google Scholar
Stewart-Oaten, A., Murdoch, W. W. & Parker, K. R. Environmental impact assessment: “Pseudoreplication” in time?. Ecology 67(4), 929–940. https://doi.org/10.2307/1939815 (1986).Article
Google Scholar
Stewart-Oaten, A. & Bence, J. R. Temporal and spatial variation in environmental impact assessment. Ecol. Monogr. 71(2), 305–339. https://doi.org/10.1890/0012-9615(2001)071[0305:TASVIE]2.0.CO;2 (2001).Article
Google Scholar More