More stories

  • in

    Genome-resolved metagenomics identifies the particular genetic traits of phosphate-solubilizing bacteria in agricultural soil

    Mogollón JM, Bouwman AF, Beusen AH, Lassaletta L, van Grinsven HJ, Westhoek H. More efficient phosphorus use can avoid cropland expansion. Nat Food. 2021;2:509–18.Article 

    Google Scholar 
    Goldhammer T, Brüchert V, Ferdelman TG, Zabel M. Microbial sequestration of phosphorus in anoxic upwelling sediments. Nat Geosci. 2010;3:557–61.CAS 
    Article 

    Google Scholar 
    Oliverio AM, Bissett A, McGuire K, Saltonstall K, Turner BL, Fierer N. The role of phosphorus limitation in shaping soil bacterial communities and their metabolic capabilities. mBio. 2020;11:e01718–20.CAS 
    Article 

    Google Scholar 
    Wu X, Rensing C, Han D, Xiao KQ, Dai Y, Tang Z, et al. Genome-resolved metagenomics reveals distinct phosphorus acquisition strategies between soil microbiomes. mSystems. 2022;7:e01107–21.PubMed Central 

    Google Scholar 
    Long XE, Yao H, Huang Y, Wei W, Zhu YG. Phosphate levels influence the utilisation of rice rhizodeposition carbon and the phosphate-solubilizing microbial community in a paddy soil. Soil Bio Biochem. 2018;118:103–14.CAS 
    Article 

    Google Scholar 
    Dai Z, Liu G, Chen H, Chen C, Wang J, Ai S, et al. Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems. ISME J. 2020;14:757–70.CAS 
    Article 

    Google Scholar 
    Liang J, Liu J, Jia P, Yang T, Zeng Q, Zhang S, et al. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. ISME J. 2020;14:1600–13.CAS 
    Article 

    Google Scholar 
    Willsky GR, Bennett RL, Malamy MH. Inorganic phosphate transport in Escherichia coli: involvement of two genes which play a role in alkaline phosphatase regulation. J Bacteriol. 1973;113:529–39.CAS 
    Article 

    Google Scholar 
    Wanner BL. Gene regulation by phosphate in enteric bacteria. J Cell Biochem. 1993;51:47–54.CAS 
    Article 

    Google Scholar 
    Li J, Lu J, Wang H, Fang Z, Wang X, Feng S, et al. A comprehensive synthesis unveils the mysteries of phosphate‐solubilizing microbes. Biol Rev. 2021;96:2771–93.Article 

    Google Scholar 
    Hessen DO, Jeyasingh PD, Neiman M, Weider LJ. Genome streamlining and the elemental costs of growth. Trends Ecol Evol. 2010;25:75–80.Article 

    Google Scholar 
    Li J, Mau RL, Dijkstra P, Koch BJ, Schwartz E, Liu XA, et al. Predictive genomic traits for bacterial growth in culture versus actual growth in soil. ISME J. 2019;13:2162–72.Article 

    Google Scholar 
    Giovannoni SJ, Cameron Thrash J, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014;8:1553–65.Article 

    Google Scholar 
    Ye L, Mei R, Liu WT, Ren H, Zhang XX. Machine learning-aided analyses of thousands of draft genomes reveal specific features of activated sludge processes. Microbiome. 2020;8:1–13.Article 

    Google Scholar 
    Farhat MB, Boukhris I, Chouayekh H. Mineral phosphate solubilization by Streptomyces sp. CTM396 involves the excretion of gluconic acid and is stimulated by humic acids. FEMS Microbiol Lett. 2015;362:1–8.Article 

    Google Scholar 
    Bücking H, Shachar-Hill Y. Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability. New Phytol. 2005;165:899–912.Article 

    Google Scholar 
    Zhang L, Xu M, Liu Y, Zhang F, Hodge A, Feng G. Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate‐solubilizing bacterium. New Phytol. 2016;210:1022–32.CAS 
    Article 

    Google Scholar 
    Spohn M, Kuzyakov Y. Phosphorus mineralization can be driven by microbial need for carbon. Soil Biol Biochem. 2013;61:69–75.CAS 
    Article 

    Google Scholar 
    Huang Y, Dai Z, Lin J, Li D, Ye H, Dahlgren RA, et al. Labile carbon facilitated phosphorus solubilization as regulated by bacterial and fungal communities in Zea mays. Soil Biol Biochem. 2021;163:108465.CAS 
    Article 

    Google Scholar 
    Yao Q, Li Z, Song Y, Wright SJ, Guo X, Tringe SG, et al. Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil. Nat Ecol Evol. 2018;2:499–509.Article 

    Google Scholar  More

  • in

    A database of common vampire bat reports

    Geoffrey, E. Sur les Phyllostomes et les Megadermes, deux Genres de la famille des Chauve-souris. in Annales du Museum d’histoire (ed. Dufour, G.) vol. 15, 181 (d’Ocagne, 1810).Wilson, D. E. & Mittermeier, R. A. Bats. in Handbook of the Mammals of the World. Vol. 9. (eds. Wilson, D. E. & Mittermeier, R. A.) 1008 (Springer International Publishing, 2019).Hilaire, É. G. S., Pupuya, I. D. E., Del, R. & Higgins, L. B. O. Ampliación del rango de distribución sur de Desmodus rotundus. Boletín del Mus. Nac. Hist. Nat. 68, 5–12 (2019).
    Google Scholar 
    Kwon, M. & Gardner, A. L. Subfamily Desmodontinae. in Mammals of South America, Volume 1: Marsupials, Xenarthrans, Shrews and Bats (ed. Gardner, A. L.) 218–223 (The University of Chicago Press, 2008).Arellano-Sota, C. Vampire bat-transmitted rabies in cattle. Rev. Infect. Dis. 10, 707–709 (1988).
    Google Scholar 
    Fernandes, M. E. B., Da Costa, L. J. C., De Andrade, F. A. G. & Silva, L. P. Rabies in humans and non-human in the state of Pará, Brazilian Amazon. Brazilian J. Infect. Dis. 17, 251–253 (2013).
    Google Scholar 
    Andrade, F. A. G., Franca, E. S., Souza, V. P., Barreto, M. S. O. D. & Fernandes, M. E. B. Spatial and temporal analysis of attacks by common vampire bats (Desmodus rotundus) on humans in the rural Brazilian Amazon basin. Acta Chiropterologica 17, 393–400 (2015).
    Google Scholar 
    Greenhall, A. M., Joermann, G. & Schmidt, U. Desmodus rotundus. Mamm. Species 202, 1–6 (1983).
    Google Scholar 
    Herrera, L. G., Fleming, T. H. & Sternberg, L. S. Trophic relationships in a neotropical bat community: A preliminary study using carbon and nitrogen isotopic signatures. Trop. Ecol. 39, 23–29 (1998).
    Google Scholar 
    Dantas Torres, F., Valença, C. & De Andrade Filho, G. V. First record of Desmodus rotundus in urban area from the city of Olinda, Pernambuco, Northeastern Brazil: A case report. Rev. Inst. Med. Trop. Sao Paulo 47, 107–108 (2005).PubMed 

    Google Scholar 
    Flores-Crespo, R. & Arellano-Sota, C. Biology and control of the vampire bat. in The natural history of rabies (ed. Baer, G. M.) 461–476 (CRC Press Inc, 1991).Flores-Crespo, R. & Arellano-Sota, C. Biology and control of the vampire bat. Nat. Hist. Rabies, 2nd Ed. 10, 461–476 (2017).
    Google Scholar 
    Bolívar-Cimé, B., Flores-Peredo, R., García-Ortíz, S. A., Murrieta-Galindo, R. & Laborde, J. Influence of landscape structure on the abundance of Desmodus rotundus (Geoffroy 1810) in Northeastern Yucatan, Mexico. Ecosistemas y Recur. Agropecu. 6, 263 (2019).
    Google Scholar 
    Koopman, K. F. Systematics and distribution. in Natural History of Vampire Bats (eds. Greenhall, A. M. & Schmidt, U.) 4–28 (CRC Press, 1988).Dalquest, W. W. Natural history of the vampire bats of Eastern Mexico. Am. Midl. Nat. 53, 79–87 (1955).
    Google Scholar 
    Kalko, E. K. V. & Handley, C. O. Neotropical bats in the canopy: Diversity, community structure, and implications for conservation. Plant Ecol. 153, 319–333 (2001).
    Google Scholar 
    García-Morales, R., Badano, E. I. & Moreno, C. E. Response of neotropical bat assemblages to human land use. Conserv. Biol. 27, 1096–1106 (2013).PubMed 

    Google Scholar 
    Barquez, R.M., Perez, S., Miller, B. & Diaz, M. M. Desmodus rotundus. The IUCN Red List of Threatened Species 2015 e.T6510A21979045, https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T6510A21979045.en (2015).Becker, D. J. et al. Genetic diversity, infection prevalence, and possible transmission routes of Bartonella spp. in vampire bats. PLoS Negl. Trop. Dis. 12, e0006786 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Brandão, P. E. et al. A coronavirus detected in the vampire bat Desmodus rotundus. Brazilian J. Infect. Dis. 12, 466–468 (2008).
    Google Scholar 
    Alves, R. S. et al. Detection of coronavirus in vampire bats (Desmodus rotundus) in southern Brazil. Transbound. Emerg. Dis. 00, 1–6 (2021).
    Google Scholar 
    Rocha, F. & Dias, R. A. The common vampire bat Desmodus rotundus (Chiroptera: Phyllostomidae) and the transmission of the rabies virus to livestock: A contact network approach and recommendations for surveillance and control. Prev. Vet. Med. 174, e104809 (2020).
    Google Scholar 
    Raoult, D. et al. Diagnosis of 22 new cases of Bartonella endocarditis. Ann. Intern. Med. 125, 646–652 (1996).CAS 
    PubMed 

    Google Scholar 
    Raoult, D. et al. Outcome and treatment of Bartonella endocarditis. Arch. Int. Med. 163, 226–230 (2003).
    Google Scholar 
    Neely, B. A. et al. Surveying the vampire bat (Desmodus rotundus) serum proteome: A resource for identifying immunological proteins and detecting pathogens. J. Proteome Res. 20, 2547–2559 (2021).CAS 
    PubMed 

    Google Scholar 
    Rupprecht, C. E., Hanlon, C. A. & Hemachudha, T. Rabies re-examined. Lancet Infect. Dis. 2, 327–343 (2002).PubMed 

    Google Scholar 
    World Health Organization. Rabies. WHO https://www.who.int/news-room/fact-sheets/detail/rabies (2020).Lee, D. N., Papeş, M. & Van Den Bussche, R. A. Present and potential future distribution of common vampire bats in the Americas and the associated risk to cattle. PLoS One 7, e42466 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Acha, P. N. & Malaga-Alba, A. Economic losses due to Desmodus rotundus. in Natural History of Vampire Bats (eds. Greenhall, A. M. & Schmidt, U.) 207–214 (CRC Press, 1968).Kotait, I. & Gonçalves, C. Manual Técnico MAPA – Controle da raiva dos herbívoros in Manual técnico dos herbívoros (Ministério da Agricultura, Pecuária e Abastecimento, 2009).Johnson, N., Aréchiga-Ceballos, N. & Aguilar-Setien, A. Vampire bat rabies: Ecology, epidemiology and control. Viruses 6, 1911–1928 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Blackwood, J. C., Streicker, D. G., Altizer, S. & Rohani, P. Resolving the roles of immunity, pathogenesis, and immigration for rabies persistence in vampire bats. Proc. Natl. Acad. Sci. 110, 20837–20842 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Streicker, D. G. et al. Host-pathogen evolutionary signatures reveal dynamics and future invasions of vampire bat rabies. Proc. Natl. Acad. Sci. USA 113, 10926–10931 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zarza, H., Martínez-Meyer, E., Suzán, G. & Ceballos, G. Geographic distribution of Desmodus rotundus in Mexico under current and future climate change scenarios: Implications for bovine paralytic rabies infection. Vet. Mex. 4, 3–16 (2017).
    Google Scholar 
    Hayes, M. A. & Piaggio, A. J. Assessing the potential impacts of a changing climate on the distribution of a rabies virus vector. PLoS One 13, e0192887 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Nunez, G. B., Becker, D. J., Lawrence, R. L. & Plowright, R. K. Synergistic effects of grassland fragmentation and temperature on bovine rabies emergence. EcoHealth 17, 203–216 (2020).PubMed Central 

    Google Scholar 
    da Rosa, E. S. T. et al. Bat-transmitted human rabies outbreaks, Brazilian Amazon. Emerg. Infect. Dis. 12, 1197–1202 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Rocha, S. M., de Oliveira, S. V., Heinemann, M. B. & Gonçalves, V. S. P. Epidemiological profile of wild rabies in Brazil (2002–2012). Transbound. Emerg. Dis. 64, 624–633 (2017).CAS 
    PubMed 

    Google Scholar 
    Schneider, M. C. et al. Rabies transmitted by vampire bats to humans: An emerging zoonotic disease in Latin America? Pan Am. J. Public Health. 25, 260–269 (2009).
    Google Scholar 
    VERA. Vigilancia epidemiológica de la rabia en las Américas. Organ. Panam. la Salud. 34, 14–42 (2020).
    Google Scholar 
    World Health Organization. WHO expert consultation on rabies, second report. WHO Tech. Rep. Ser. 982, 1–139 (2013).
    Google Scholar 
    Gilbert, A. T. et al. Evidence of rabies virus exposure among humans in the Peruvian Amazon. Am. J. Trop. Med. Hyg. 87, 206–215 (2012).
    Google Scholar 
    Fahl, W. O. et al. Desmodus rotundus and Artibeus spp. bats might present distinct rabies virus lineages. Brazilian J. Infect. Dis. 16, 545–551 (2012).
    Google Scholar 
    Berger, F. et al. Rabies risk: Difficulties encountered during management of grouped cases of bat bites in 2 isolated villages in French Guiana. PLoS Negl. Trop. Dis. 7, e2258 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Linhart, S. B., Flores Crespo, R. & Mitchell, G. C. Control de murciélagos vampiros por medio de un anticoagulante. Bull Pan Am Health Organ. 73, 100–109 (1972).CAS 

    Google Scholar 
    Streicker, D. G. et al. Ecological and anthropogenic drivers of rabies exposure in vampire bats: Implications for transmission and control. Proc. R. Soc. B Biol. Sci. 279, 3384–3392 (2012).
    Google Scholar 
    Henry, M., Cosson, J. F. & Pons, J. M. Modelling multi-scale spatial variation in species richness from abundance data in a complex neotropical bat assemblage. Ecol. Modell. 221, 2018–2027 (2010).
    Google Scholar 
    Bárcenas-Reyes, I. et al. Comportamiento epidemiológico de la rabia paralítica bovina en la región central de México, 2001-2013. Pan Am. J. Public Health. 38, 396–402 (2015).
    Google Scholar 
    Benavides, J. A., Valderrama, W. & Streicker, D. G. Spatial expansions and travelling waves of rabies in vampire bats. Proc. R. Soc. B 283, e20160328 (2016).
    Google Scholar 
    Van de Vuurst, P. et al. Desmodus rotundus Occurrence Record Database. figshare https://doi.org/10.6084/m9.figshare.15025296.v6 (2021).Wieczorek, J. et al. Darwin core: An evolving community-developed biodiversity data standard. PLoS One 7, e29715 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robertson, T. et al. The GBIF integrated publishing toolkit: Facilitating the efficient publishing of biodiversity data on the internet. PLoS One 9, e102623 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marcial, L. H. & Hemminger, B. M. Scientific data repositories on the web: An initial survey. J. Am. Soc. Inf. Sci. Technol. 61, 2029–2048 (2010).
    Google Scholar 
    GBIF.org. GBIF Occurrence Download. Global Biodiversity Information Facility. GBIF https://doi.org/10.15468/dl.my64ap (2020).Grattarola, F. et al. Biodiversidata: An open-access biodiversity database for Uruguay. Biodivers. Data J. 7, e36226 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    CRIA. speciesLink Data Download. Centro de Referência em Informação Ambiental. https://specieslink.net/search/download/20210909104533-0016416 (2021).Cambon, J. Package ‘ tidygeocoder’. CRAN 2–13 (2021).Wickham, H., Francois, R., Henry, L. & Muller, K. Package ‘ dplyr’: A grammar of data manipulation. CRAN 3–88 (2020).R Core Team. R: A language and environment for statisitical computing. https://www.R-project.org/ (2019).Zizka, A. et al. Package ‘ CoordinateCleaner’. CRAN 13-152 (2019).Wickham, H. ggplot2: Elegant graphics for data analysis. (Springer-Verlag, 2016).ESRI Inc. ArcGIS Desktop Pro, version 2.4.3. https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview (2019). More

  • in

    Adult mosquito predation and potential impact on the sterile insect technique

    World Health Organization. World malaria report 2020: 20 years of global progress and challenges. 299 https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2020 (2020).Bhanot, K., Schroeder, D., Llewellyn, I., Luczak, N. & Munasinghe, T. Dengue spread information system (DSIS). In Proceedings of the 4th International Conference on Medical and Health Informatics 150–159 (Association for Computing Machinery, 2020). https://doi.org/10.1145/3418094.3418133.Wilson, A. L. et al. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl. Trop. Dis. 14, e0007831 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carrasco, D. et al. Behavioural adaptations of mosquito vectors to insecticide control. Curr. Opin. Insect Sci. 34, 48–54 (2019).PubMed 

    Google Scholar 
    Sokhna, C., Ndiath, M. O. & Rogier, C. The changes in mosquito vector behaviour and the emerging resistance to insecticides will challenge the decline of malaria. Clin. Microbiol. Infect. 19, 902–907 (2013).CAS 
    PubMed 

    Google Scholar 
    Flint, M. L. & Dreistadt, S. H. Natural Enemies Handbook: The Illustrated Guide to Biological Pest Control Vol. 3386 (Univ of California Press, 1998).
    Google Scholar 
    Chandra, G., Bhattacharjee, I., Chatterjee, S. N. & Ghosh, A. Mosquito control by larvivorous fish. Indian J. Med. Res. 127, 13–27 (2008).CAS 
    PubMed 

    Google Scholar 
    Dambach, P. The use of aquatic predators for larval control of mosquito disease vectors: Opportunities and limitations. Biol. Control 150, 104357 (2020).CAS 

    Google Scholar 
    Sebastian, A., Sein, M. M., Thu, M. M. & Corbet, P. S. Suppression of Aedes aegypti (Diptera: Culicidae) using augmentative release of dragonfly larvae (Odonata: Libellulidae) with community participation in Yangon, Myanmar1. Bull. Entomol. Res. 80, 223–232 (1990).
    Google Scholar 
    Harrington, R. W. & Harrington, E. S. Effects on fishes and their forage organisms of impounding a Florida salt marsh to prevent breeding by salt marsh mosquitoes. Bull. Mar. Sci. 32, 523–531 (1982).
    Google Scholar 
    Mk, D. & Rn, P. Evaluation of mosquito fish Gambusia affinis in the control of mosquito breeding in rice fields. Indian J. Malariol. 28, 171–177 (1991).
    Google Scholar 
    Rk, S., Rc, D. & Sp, S. Laboratory studies on the predatory potential of dragon-fly nymphs on mosquito larvae. J. Commun. Dis. 35, 96–101 (2003).
    Google Scholar 
    Focks, D. A., Sackett, S. R., Dame, D. A. & Bailey, D. L. Effect of weekly releases of Toxorhynchites amboinensis (Doleschall) on Aedes aegypti (L.) (Diptera: Culicidae) in New Orleans, Louisiana. J. Econ. Entomol. 78, 622–626 (1985).CAS 
    PubMed 

    Google Scholar 
    Brodman, R. & Dorton, R. The effectiveness of pond-breeding salamanders as agents of larval mosquito control. J. Freshw. Ecol. 21, 467–474 (2006).
    Google Scholar 
    Vu, S. N., Nguyen, T. Y., Kay, B. H., Marten, G. G. & Reid, J. W. Eradication of Aedes aegypti from a village in Vietnam, using copepods and community participation. Am. J. Trop. Med. Hyg. 59, 657–660 (1998).CAS 
    PubMed 

    Google Scholar 
    Canyon, D. V. & Hii, J. L. K. The gecko: An environmentally friendly biological agent for mosquito control. Med. Vet. Entomol. 11, 319–323 (1997).CAS 
    PubMed 

    Google Scholar 
    Strickman, D., Sithiprasasna, R. & Southard, D. Bionomics of the spider, Crossopriza lyoni (Araneae, Pholcidae), a predator of dengue vectors in Thailand. J. Arachnol. 25, 194–201 (1997).
    Google Scholar 
    Tkaczenko, G., Fischer, A. & Weterings, R. Prey preference of the common house geckos Hemidactylus frenatus and Hemidactylus platyurus. Herpetol. Notes 7, 482–488 (2014).
    Google Scholar 
    Weterings, R., Umponstira, C. & Buckley, H. L. Landscape variation influences trophic cascades in dengue vector food webs. Sci. Adv. 4, eaap9534 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Weterings, R., Umponstira, C. & Buckley, H. L. Predation on mosquitoes by common Southeast Asian house-dwelling jumping spiders (Salticidae). Argy 16, 122–127 (2014).
    Google Scholar 
    Puig-Montserrat, X. et al. Bats actively prey on mosquitoes and other deleterious insects in rice paddies: Potential impact on human health and agriculture. Pest Manag. Sci. 76, 3759–3769 (2020).CAS 
    PubMed 

    Google Scholar 
    May, M. L. Odonata: Who they are and what they have done for us lately: Classification and ecosystem services of dragonflies. Insects 10, 62 (2019).PubMed Central 

    Google Scholar 
    Raghavendra, K., Sharma, P. & Dash, A. P. Biological control of mosquito populations through frogs: Opportunities & constrains. Indian J. Med. Res. 128, 22–25 (2008).CAS 
    PubMed 

    Google Scholar 
    Poulin, B., Lefebvre, G. & Paz, L. Red flag for green spray: adverse trophic effects of Bti on breeding birds. Journal
    of Applied Ecology 47, 884–889 (2010).
    Google Scholar 
    Korichi, R. et al. Ecological impact of trophic diet of mantids in Ghardaïa (Algerian Sahara). Ponte Int. Sci. Res. J. 72, 94–106 (2016).
    Google Scholar 
    Prete, F. R. The Praying Mantids (Johns Hopkins University Press, 1999).
    Google Scholar 
    Dyck, V. A., Hendrichs, J. & Robinson, A. S. Sterile Insect Technique: Principles And Practice In Area-Wide Integrated Pest Management (CRC Press, 2021).
    Google Scholar 
    Bouyer, J. & Vreysen, M. J. B. Yes, irradiated sterile male mosquitoes can be sexually competitive!. Trends Parasitol. 36, 877–880 (2020).CAS 
    PubMed 

    Google Scholar 
    Parker, A., Vreysen, M., Bouyer, J. & Calkins, C. Sterile insect quality control/assurance. In Sterile Insect Technique: Principles And Practice In Area-Wide Integrated Pest Management 399–440 (2021).Lees, R., Carvalho, D. O. & Bouyer, J. Potential impact of integrating the sterile insect technique into the fight against disease-transmitting mosquitoes. In Sterile Insect Technique. Principles and Practice in Area-Wide Integrated Pest Management 2nd edn (eds Dyck, A. V. et al.) 1082–1118 (CRC Press, 2021).
    Google Scholar 
    Bimbilé Somda, N. S. et al. Cost-effective larval diet mixtures for mass rearing of Anopheles arabiensis Patton (Diptera: Culicidae). Parasit. Vectors 10, 619 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Bimbilé Somda, N. S. B. et al. Insects to feed insects-feeding Aedes mosquitoes with flies for laboratory rearing. Sci. Rep. 9, 1–13 (2019).
    Google Scholar 
    Maïga, H. et al. Assessment of a novel adult mass-rearing cage for Aedes albopictus (Skuse) and Anopheles arabiensis (Patton). Insects 11, 801 (2020).PubMed Central 

    Google Scholar 
    Maïga, H. et al. Reducing the cost and assessing the performance of a novel adult mass-rearing cage for the dengue, chikungunya, yellow fever and Zika vector, Aedes aegypti (Linnaeus). PLOS Negl. Trop. Dis. 13, e0007775 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Mamai, W. et al. Black soldier fly (Hermetia illucens) larvae powder as a larval diet ingredient for mass-rearing Aedes mosquitoes. Parasite 26, 57 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Mamai, W. et al. Optimization of mass-rearing methods for Anopheles arabiensis larval stages: Effects of rearing water temperature and larval density on mosquito life-history traits. J. Econ. Entomol. 111, 2383–2390 (2018).PubMed 

    Google Scholar 
    Bellini, R., Puggioli, A., Balestrino, F., Carrieri, M. & Urbanelli, S. Exploring protandry and pupal size selection for Aedes albopictus sex separation. Parasites Vectors 11, 650 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Yamada, H. et al. Genetic sex separation of the malaria vector, Anopheles arabiensis, by exposing eggs to dieldrin. Malar J. 11, 208 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Yamana, T. K. & Eltahir, E. A. B. Projected impacts of climate change on environmental suitability for malaria transmission in West Africa. Environ. Health Perspect. 121, 1179–1186 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Zacarés, M. et al. Exploring the potential of computer vision analysis of pupae size dimorphism for adaptive sex sorting systems of various vector mosquito species. Parasites Vectors 11, 656 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Culbert, N. J., Gilles, J. R. L. & Bouyer, J. Investigating the impact of chilling temperature on male Aedes aegypti and Aedes albopictus survival. PLoS ONE 14, e0221822 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Helinski, M. E., Parker, A. G. & Knols, B. G. Radiation-induced sterility for pupal and adult stages of the malaria mosquito Anopheles arabiensis. Malar J. 5, 41 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Yamada, H. et al. Identification of critical factors that significantly affect the dose-response in mosquitoes irradiated as pupae. Parasit. Vectors 12, 1–13 (2019).CAS 

    Google Scholar 
    Culbert, N. J. et al. A rapid quality control test to foster the development of the sterile insect technique against Anopheles arabiensis. Malar. J. 19, 1–10 (2020).
    Google Scholar 
    Culbert, N. J. et al. A rapid quality control test to foster the development of genetic control in mosquitoes. Sci. Rep. 8, 1–9 (2018).CAS 

    Google Scholar 
    Bouyer, J. et al. Field performance of sterile male mosquitoes released from an uncrewed aerial vehicle. Sci. Robot. 5, eaba6251 (2020).PubMed 

    Google Scholar 
    Somda, N. S. B. et al. Ecology of reproduction of Anopheles arabiensis in an urban area of Bobo-Dioulasso, Burkina Faso (West Africa): Monthly swarming and mating frequency and their relation to environmental factors. PLoS ONE 13, e0205966 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Bellini, R., Medici, A., Puggioli, A., Balestrino, F. & Carrieri, M. Pilot field trials with Aedes albopictus irradiated sterile males in Italian urban areas. J. Med. Entomol. 50, 317–325 (2013).CAS 
    PubMed 

    Google Scholar 
    Vavassori, L., Saddler, A. & Müller, P. Active dispersal of Aedes albopictus: A mark-release-recapture study using self-marking units. Parasites Vectors 12, 583 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Zheng, X. et al. Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 572, 56–61 (2019).CAS 
    PubMed 

    Google Scholar 
    Dor, A. & Liedo, P. Survival ability of Mexican fruit fly males from different strains in presence of the predatory orb-weaving spider Argiope argentata (Araneae: Araneidae). Bull. Entomol. Res. 109, 279–286 (2019).CAS 
    PubMed 

    Google Scholar 
    Rathnayake, D. N., Lowe, E. C., Rempoulakis, P. & Herberstein, M. E. Effect of natural predators on Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) control by sterile insect technique (SIT). Pest Manag. Sci. 75, 3356–3362 (2019).CAS 
    PubMed 

    Google Scholar 
    Kral, K. The functional significance of mantis peering behaviour. Eur. J. Entomol. 109, 295–301 (2012).
    Google Scholar 
    Bond, J. G. et al. Optimization of irradiation dose to Aedes aegypti and Ae. albopictus in a sterile insect technique program. PLoS ONE 14, e0212520 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Helinski, M. E., Parker, A. G. & Knols, B. G. Radiation biology of mosquitoes. Malar. J. 8, S6 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Hurd, L. E. et al. Cannibalism reverses male-biased sex ratio in adult mantids: Female strategy against food limitation?. Oikos 69, 193–198 (1994).
    Google Scholar 
    Lawrence, S. E. Sexual cannibalism in the praying mantid, Mantis religiosa: A field study. Anim. Behav. 43, 569–583 (1992).
    Google Scholar 
    Trujillo-Jiménez, P., Castro-Franco, R., Zagal, M. & Corona, Y. The Asian house gecko Hemidactylus frenatus. (2018).Tyler, M. J. On the diet and feeding habits of Hemidactylus frenatus (Dumeril and Bibron) (Reptilia:Gekkonidae) at Rangoon, Burma. Trans. R. Soc. S. Aust. 84, 45–49 (1961).
    Google Scholar 
    Dor, A., Valle-Mora, J., Rodríguez-Rodríguez, S. E. & Liedo, P. Predation of Anastrepha ludens (Diptera: Tephritidae) by Norops serranoi (Reptilia: Polychrotidae): Functional response and evasion ability. Environ. Entomol. 43, 706–715 (2014).PubMed 

    Google Scholar 
    Schmidt, J. M., Sebastian, P., Wilder, S. M. & Rypstra, A. L. The nutritional content of prey affects the foraging of a generalist arthropod predator. PLoS ONE 7, e49223 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Turesson, H., Persson, A. & Brönmark, C. Prey size selection in piscivorous pikeperch (Stizostedion lucioperca) includes active prey choice. Ecol. Freshw. Fish 11, 223–233 (2002).
    Google Scholar 
    Collins, C. M., Bonds, J. A. S., Quinlan, M. M. & Mumford, J. D. Effects of the removal or reduction in density of the malaria mosquito, Anopheles gambiae s.l., on interacting predators and competitors in local ecosystems. Med. Vet. Entomol. 33, 1 (2019).CAS 
    PubMed 

    Google Scholar 
    FAO/IAEA. Guidelines for mark-release-recapture procedures of Aedes mosquitoes. Version 1.0. In (eds Bouyer, J. et al.) 22 (Food and Agriculture Organization of the United Nations International Atomic Energy Agency, 2020). More

  • in

    Apex scavengers from different European populations converge at threatened savannah landscapes

    Skarpe, C. Dynamics of savanna ecosystems. J. Veg. Sci. 3, 293–300 (1992).
    Google Scholar 
    Solbrig, O. T. The diversity of the savanna ecosystem. In Biodiversity and Savanna Ecosystem Processes: A Global Perspective Vol. 21 (eds Solbrig, O. T. et al.) 1–27 (Springer, Berlin, 1996).
    Google Scholar 
    Fynn, R. W. S., Augustine, D. J., Peel, M. J. S. & de Garine-Wichatitsky, M. Strategic management of livestock to improve biodiversity conservation in African savannahs: A conceptual basis for wildlife–livestock coexistence. J Appl Ecol 53, 388–397 (2016).
    Google Scholar 
    Turner, M. D. & Schlecht, E. Livestock mobility in sub-Saharan Africa: A critical review. Pastoralism 9, 13 (2019).
    Google Scholar 
    Moreno, G. et al. Exploring the causes of high biodiversity of Iberian dehesas: The importance of wood pastures and marginal habitats. Agrofor. Syst. 90, 87–105 (2015).
    Google Scholar 
    Spiegel, O. et al. Moving beyond curve fitting: Using complementary data to assess alternative explanations for long movements of three vulture species. Am. Nat. 185, E44–E54 (2015).
    Google Scholar 
    Houston, D. C. Food searching behaviour in griffon vultures. Afr. J. Ecol. 12, 63–77 (1974).
    Google Scholar 
    Fryxell, J. M. & Sinclair, A. R. E. Causes and Consequences of Migration by Large Herbivores. Trens Ecol. Evol. 3, 237–241 (1988).CAS 

    Google Scholar 
    Joly, K. et al. Longest terrestrial migrations and movements around the world. Sci. Rep. 9, 15333 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Naveh, Z. Mediterranean ecosystems and vegetation types in California and Israel. In Transdisciplinary Challenges in Landscape Ecology and Restoration Ecology. Landscape Series, vol 6. (Springer, Dordrecht, 1967), vol 48, pp. 445–459.Pereira, P. M. & Pires da Fonseca, M. Nature vs. nurture: The making of the montado ecosystem. Conserv. Ecol. 7, 7 (2003).
    Google Scholar 
    Blondel, J. The ‘design’ of Mediterranean landscapes: A millennial story of humans and ecological systems during the historic period. Hum. Ecol. 34, 713–729 (2006).
    Google Scholar 
    Díaz, M., Campos, P. & Pulido, F. J. The Spanish dehesas: A diversity of land use and wildlife. In Farming and birds in Europe: The Common Agricultural Policy and its implications for bird conservation (eds Pain, D. & Pienkowski, M.) 178–209 (Academic Press, London, 1997).
    Google Scholar 
    Campos, P. et al. Mediterranean Oak Woodland Working Landscapes: Dehesas of Spain and Ranchlands of California (Springer, 2013).
    Google Scholar 
    Plieninger, T. & Bieling, C. Resilience and the Cultural Landscape: Understanding and Managing Change in Human-Shaped Environments (Cambridge University Press, 2012).
    Google Scholar 
    Lomba, A. et al. Back to the future: Rethinking socioecological systems underlying high nature value farmlands. Front. Ecol. Environ. 18, 36–42 (2020).
    Google Scholar 
    Ogada, D. et al. Another continental vulture crisis: Africa’s vultures collapsing toward extinction. Conserv. Lett. 9, 89–97 (2016).ADS 

    Google Scholar 
    Buechely, E. & Şekercioğlu, Ç. H. The avian scavenger crisis: Looming extinctions, trophic cascades, and loss of critical ecosystem functions. Biol. Conserv. 198, 220–228 (2016).
    Google Scholar 
    Safford, R. et al. Vulture conservation: The case for urgent action. Bird Conserv. Int. 29, 1–9 (2019).
    Google Scholar 
    García-Alfonso, M., Donázar, J. A., Serrano, D. Individual and environmental drivers of resource use in endangered vulture: Integrating movement, spatial and social ecology. PhD Thesis. Universidad de Sevilla, Seville, Spain.Ogada, D. L., Keesing, F. & Virani, M. Z. Dropping dead: Causes and consequences of vulture population declines worldwide. Ann. NY Acad. Sci. 1249, 57–71 (2012).ADS 
    PubMed 

    Google Scholar 
    Blanco, G., Cortés-Avizanda, A., Frías, Ó., Arrondo, E. & Donázar, J. A. Livestock farming practices modulate vulture diet-disease interactions. Glob. Ecol. 17, e00518 (2019).
    Google Scholar 
    Olea, P. P., Mateo-Tomas, P. & Sánchez Zapata, J. A. Carrion Ecology and Management (Springer Nature, 2019).
    Google Scholar 
    Montsarrat, S. et al. How predictability of feeding patches affects home range and foraging habitat selection in avian social scavengers?. PLoS ONE 8, e53077 (2013).ADS 

    Google Scholar 
    Arrondo, E. et al. Invisible barriers: Differential sanitary regulations constrain vulture movements across country borders. Biol. Conserv. 219, 46–52 (2018).
    Google Scholar 
    Houston, D. C. Breeding of the white-backed and Rüppell’s griffon vultures, Gyps africanus and G. rueppellii. Ibis 118, 14–40 (1976).
    Google Scholar 
    Houston, D. C. A change in the breeding season of Rüppell’s griffon vultures Gyps rueppellii in the Serengeti in response to changes in ungulate populations. Ibis 132, 36–41 (1990).
    Google Scholar 
    Kendall, C. J., Virani, M. Z., Hopcraft, J. G. C., Bildstein, K. L. & Rubenstein, D. I. African vultures don’t follow migratory herds: Scavenger habitat use is not mediated by prey abundance. PLoS ONE 9, e83470 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carrete, M. & Donázar, J. A. Application of central-place foraging theory shows the importance of Mediterranean dehesas for the conservation of the cinereous vulture, Aegypius monachus. Biol. Conserv. 126, 582–590 (2005).
    Google Scholar 
    Martín-Díaz, P. et al. Rewilding processes shape the use of Mediterranean landscapes by an avian top scavenger. Sci. Rep. 10, 2853 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Botha, A. et al. Multi-species action plan to conserve African-Eurasian vultures (vulture MSAP). CMS Raptors MOU Technical Publication 5, 2–162 (2017).
    Google Scholar 
    Cortés-Avizanda, A. et al. Supplementary feeding and endangered avian scavengers: Benefits, caveats, and controversies. Front. Ecol. Environ. 14, 191–199 (2016).
    Google Scholar 
    Fluhr, J., Benhamou, S., Riotte-Lambert, L. & Duriez, O. Assessing the risk for an obligate scavenger to be dependent on predictable feeding sources. Biol. Conserv. 215, 92–98 (2017).
    Google Scholar 
    Schabo, D. G. et al. Long-term data indicates that supplementary food enhances the number of breeding pairs in a Cape Vulture Gyps coprotheres colony. Bird Conserv. Int. 27, 1–13 (2016).
    Google Scholar 
    Louzao, M. et al. Conserving pelagic habitats: Seascape modelling of an oceanic predator. J. Appl. Ecol. 48, 121–132 (2011).
    Google Scholar 
    Buechley, E. R. et al. Identifying critical migratory bottlenecks and high-use areas for an endangered migratory soaring bird across three continents. J. Avian Biol. 49, e01629 (2018).
    Google Scholar 
    Morales-Reyes, Z. et al. Supplanting ecosystem services provided by scavengers raises greenhouse gas emissions. Sci. Rep. 5, 7811 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mateo-Tomás, P., Olea, P. P., Moleón, M., Selva, N. & Sánchez-Zapata, J. A. Both rare and common species support ecosystem services in scavenger communities. Glob. Ecol. 26, 1459–1470 (2017).
    Google Scholar 
    Aguilera-Alcalá, N., Morales-Reyes, Z., Martín-López, B., Moléon, M. & Sánchez-Zapata, J. A. Role of scavengers in providing non-material contributions to people. Ecol. Indic. 117, 106643 (2020).
    Google Scholar 
    Margalida, A. et al. Uneven large-scale movement patterns in wild and reintroduced pre-adult bearded vultures: Conservation implications. PLoS ONE 8, e65857 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Griesinger, J. Juvenile dispersion and migration among Griffon Vultures Gyps fulvus in Spain. Holartic Birds of Prey (1998).Plieninger, T. et al. Dehesas as high nature value farming systems: A social-ecological synthesis of drivers, pressures, state, impacts, and responses. Ecology 26, 23 (2021).
    Google Scholar 
    Virani, M. Z., Monadjem, A., Thomsett, S. & Kendall, C. Seasonal variation in breeding Rüppell’s Vultures Gyps rueppellii at Kwenia, southern Kenya and implications for conservation. Bird. Conserv. Int. 22, 260–269 (2012).
    Google Scholar 
    Morales-Reyes, Z. et al. Evaluation of the network of protection areas for the feeding of scavengers in Spain: From biodiversity conservation to greenhouse gas emission savings. J. Appl. Ecol. 54, 1120–1129 (2017).CAS 

    Google Scholar 
    Mateo-Tomás, P. & Olea, P. When hunting benefits raptors: A case study of game species and vultures. Eur. J. Wildl. Res. 56, 519–528 (2010).
    Google Scholar 
    Pereira, H. M. & Navarro, L. M. Rewilding European Landscapes (Springer, 2015).
    Google Scholar 
    Margalida, A., Carrete, M., Sánchez-Zapata, J. A. & Donázar, J. A. Good news for European vultures. Science 335, 284 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Paredes, R. et al. Proximity to multiple foraging habitats enhances seabirds’ resilience to local food shortages. Mar. Ecol. Prog. Ser. 471, 253–269 (2012).ADS 

    Google Scholar 
    Gomo, G., Mattisson, J., Hagen, B. R., Moa, P. F. & Willebrand, T. Scavenging on a pulsed resource. Quality matters for corvids but density for mammals. BMC Ecol. 17, 22 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Navarro, L. M. & Pereira, H. M. Rewilding abandoned landscapes in Europe. Ecosystems 15, 900–912 (2012).
    Google Scholar 
    Arrondo, E. et al. Rewilding traditional grazing areas affects scavenger assemblages and carcass consumption patterns. Basic Appl. Ecol. 41, 56–66 (2019).
    Google Scholar 
    Cortés-Avizanda, A., Donázar, J. A. & Pereira, H. M. Top scavengers in a wilder Europe. In Rewilding European Landscapes (eds Pereira, H. M. & Navarro, L.) 85–106 (Springer, Berlin, 2015).
    Google Scholar 
    Harel, R. et al. Decision-making by a soaring bird: Time, energy and risk considerations at different spatio-temporal scales. Philos. Trans. R. Soc. B 371, 20150397 (2016).
    Google Scholar 
    Austin, R. E. et al. A sex-influenced flexible foraging strategy in a tropical seabird, the magnificent frigatebird. Mar. Ecol. Prog. Ser. 611, 203–214 (2019).ADS 

    Google Scholar 
    Weimerskirch, H., Cherel, Y., Cuenot-Chaillet, F. & Ridoux, V. Alternative foraging strategies and resource allocation by maIe and female wandering albatrosses. Ecology 78, 2051–2063 (1997).
    Google Scholar 
    Gangoso, L. et al. Avian scavengers living in anthropized landscapes have shorter telomeres and higher levels of glucocorticoid hormones. Sci. Total Environ. 782, 146920 (2021).ADS 
    CAS 

    Google Scholar 
    Lambertucci, S. A., Carrete, M., Donázar, J. A. & Hiraldo, F. Large-scale age-dependent skewed sex ratio in a sexually dimorphic avian scavenger. PLoS ONE 7, e46347 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jackson, A. L., Ruxton, G. D. & Houston, D. C. The effect of social facilitation on foraging success in vultures: A modelling study. Biol. Lett. 4, 311–313 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Deygout, C., Gault, A., Duriez, O., Sarrazin, F. & Bessa-Gomes, C. Impact of food predictability on social facilitation by foraging scavengers. Behav. Ecol. 21, 1131–1139 (2010).
    Google Scholar 
    Harel, R., Spiegel, O., Getz, W. M. & Nathan, R. Social foraging and individual consistency in following behaviour: Testing the information centre hypothesis in free-ranging vultures. Proc. R. Soc. B 284, 20162654 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    van Overveld, T. et al. Integrating vulture social behavior into conservation practice. The Condor 122, 1–20 (2020).
    Google Scholar 
    Genero, F., Franchini, M., Fanin, Y. & Filacorda, S. Spatial ecology of non-breeding Eurasian Griffon Vultures Gyps fulvus in relation to natural and artificial food availability. Bird Study 67, 1–18 (2020).
    Google Scholar 
    Sherub, S., Fiedler, W., Duriez, O. & Wikelski, M. Bio-Logging – New Technologies to study conservation physiology on the move: A case study on annual survival of Himalayan Vultures. J. Comp. Physiol. 203, 531–542 (2017).
    Google Scholar 
    Olea, P. P. & Mateo-Tomás, P. The role of traditional farming practices in ecosystem conservation: The case of transhumance and vultures. Biol. Conserv. 142, 1844–1853 (2009).
    Google Scholar 
    Aguilera-Alcalá, N. et al. The value of transhumance for biodiversity conservation: Vulture foraging in relation to livestock movements. (Ambio, 2021).
    Google Scholar 
    Clement, V. Spanish wood pasture: Origin and durability of an historical wooded landscape in Mediterranean Europe. Environ. Hist. Camb. 14, 67–87 (2008).
    Google Scholar 
    Arrondo, E. et al. Landscape anthropization shapes the survival of a top avian scavenger. Biodivers. Conserv. 29, 1411–1425 (2020).
    Google Scholar 
    Block, T. A., Lyon, B. E., Mikalonis, Z., Chaine, A. S. & Shizuka, D. Social migratory connectivity: Do birds that socialize in winter breed together?. BioRxiv 17, 76 (2021).
    Google Scholar 
    Thaxter, C. B. et al. Seabird foraging ranges as a preliminary tool for identifying candidate Marine Protected Areas. Biol. Conserv. 156, 53–61 (2012).
    Google Scholar 
    Santangeli, A. et al. Priority areas for conservation of Old World vultures. Conserv. Biol. 33, 1056–1065 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Costa, A., Pereira, H. & Madeira, M. Landscape dynamics in endangered cork oak woodlands in Southwestern Portugal (1958–2005). Agrofor. Syst. 77, 83–96 (2009).
    Google Scholar 
    Del Moral, J. C. & Molina, B. (eds) El buitre leonado en España, población reproductora en 2018 y método de censo (SEO/BirdLife, 2018).
    Google Scholar 
    Zuberogoitia, I. et al. The flight feather molt of griffon vultures (Gyps fulvus) and associated biological consequences. J. Raptor Res. 47, 292–304 (2013).
    Google Scholar 
    Fluhr, J., Benhamou, S., Peyrusque, D. & Duriez, O. Space use and time budget in two populations of Griffon Vultures in contrasting landscapes. J. Raptor Res. 55, 13 (2021).
    Google Scholar 
    Arrondo, E. et al. Use of avian GPS tracking to mitigate human fatalities from bird strikes caused by large soaring birds. J. Appl. Ecol. 58, 1411–1420 (2021).
    Google Scholar 
    Serrano, D. Dispersal in raptors. In Birds of Prey. Biology and Conservation in the XXI Century (eds HernánSarasola, J. et al.) 95–121 (Springer, 2018).
    Google Scholar 
    Williams, H. J. et al. Vultures respond to challenges of near-ground thermal soaring by varying bank angle. J. Exp. Biol. 221, 174995 (2018).
    Google Scholar 
    García-Barón, I. et al. How to fit the distribution of apex scavengers into land-abandonment scenarios? The Cinereous vulture in the Mediterranean biome. Divers. Distrib. 24, 1018–1031 (2018).
    Google Scholar 
    Donázar, J. A., Ceballos, O. & Cortés-Avizanda, A. Tourism in protected areas: Disentangling road and traffic effects on intra-guild scavenging processes. Sci. Total Environ. 630, 600–608 (2018).ADS 
    PubMed 

    Google Scholar 
    Daoud, J. I. Multicollinearity and Regression Analysis. J. Phys. Conf. Ser. 949, 012009 (2017).
    Google Scholar 
    Burnham, K. P., Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (2002).Symonds, M. R. E. & Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65, 13–21 (2011).
    Google Scholar 
    Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models (2020).R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, (2018), https://www.r-project.org/Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn. (Springer, New York, 2002).MATH 

    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    Warnes, G. R., Bolker, B., Lumley, T., Johnson, R. C. gmodels: Various R programming tools for model fitting (2018).Mazerolle, M. J. AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package version 2.2-2 (2019).K. Barton, MuMIn: Multimodel inference. R package version 1.43.6.557. (2019).QGIS.org, QGIS Geographic Information System. QGIS Association, (2019), http://www.qgis.orgBouten, W., Baaij, E. W., Shammoun-Baranes, J. & Camphuysen, K. C. J. A flexible GPS tracking system for studying bird behaviour at multiple scales. J. Ornithol. 154, 571–580 (2012).
    Google Scholar 
    ASTER GDEM Validation Team, ASTER Global Digital Elevation Model Version 2 ‐ Summary of Validation Results (2011).Ruiz de la Torre, J. Mapa Forestal de España, 1:200.000, Memoria General, (ICONA, Madrid, 1990).INE, Anuario estadístico. Madrid, Spain: Instituto Nacional de Estadística, Ministerio de Economía y Hacienda (2006). More

  • in

    Physiological response and proteomics analysis of Reaumuria soongorica under salt stress

    Effects of NaCl concentrations on growth indicators of R. soongorica seedlingsAs shown in Table 1, when compared with control A (i.e., 0 mM NaCl), both the fresh weight and root/shoot ratio of R. soongorica in group B (i.e., 200 mM NaCl) were significantly higher. However, both fresh weight and root/shoot ratio gradually decreased in group C (i.e., 500 mM NaCl). When the NaCl concentration reached that of group C (i.e., 500 mM NaCl), the growth of R. soongorica was significantly inhibited. The fresh weight of above-ground and root tissues was respectively 43.82% and 50.99% that of the control, and these differences were significant (P  More

  • in

    Human ignitions on private lands drive USFS cross-boundary wildfire transmission and community impacts in the western US

    Zald, H. S. J. & Dunn, C. J. Severe fire weather and intensive forest management increase fire severity in a multi-ownership landscape. Ecol. Appl. 2, 1–13 (2018).
    Google Scholar 
    Schoennagel, T. et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl. Acad. Sci. 114, 4582–4590 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Johnstone, J. F. et al. Changing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ. 14, 369–378 (2016).
    Google Scholar 
    Radeloff, V. C., Helmers, D. P., Kramer, H. A., Mockrin, M. H. & Alexandre, P. M. Rapid growth of the US wildland-urban interface raises wildfire risk. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1718850115 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase western U.S. forest wildfire activity. Science (80-.). 313, 940–943 (2006).ADS 
    CAS 

    Google Scholar 
    Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 1–11 (2015).CAS 

    Google Scholar 
    Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. U. S. A. 113, 11770–11775 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Agee, J. K. The landscape ecology of western forest fire regimes. Northwest Sci. 72, 7569 (1993).
    Google Scholar 
    Whitehair, L., Fulé, P. Z., Meador, A. S., Azpeleta, T. A. & Kim, Y. S. Fire regime on a cultural landscape: Navajo Nation. Ecol. Evol. 8, 9848–9858 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Hessburg, P. F. et al. Restoring fire-prone Inland Pacific landscapes: seven core principles. Landsc. Ecol. 30, 1805–1835 (2015).
    Google Scholar 
    Calkin, D. E., Thompson, M. P. & Finney, M. A. Negative consequences of positive feedbacks in US wildfire management. For. Ecosyst. 2, 1–10 (2015).
    Google Scholar 
    Mietkiewicz, N. et al. In the line of fire: consequences of human-ignited wildfires to homes in the U.S. (1992–2015). Fire 3, 1–20 (2020).
    Google Scholar 
    USDA Forest Service & Department of the Interior. 2014 Quadrennial Fire Review: Final Report. (2015).Fischer, A. P. et al. Wildfire risk as a socioecological pathology. Front. Ecol. Environ. 14, 276–284 (2016).
    Google Scholar 
    Hamilton, M., Fischer, A. P. & Ager, A. A social-ecological network approach for understanding wildfire risk governance. Glob. Environ. Chang. 54, 113–123 (2019).
    Google Scholar 
    Syphard, A. D. et al. Human influence on California fire regimes. Ecol. Appl. 17, 1388–1402 (2007).PubMed 

    Google Scholar 
    Balch, J. K. et al. Human-started wildfires expand the fire niche across the USA. Proc. Natl. Acad. Sci. U. S. A. 114, 2946–2951 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoover, K. Federal wildfire management: Ten-year funding trends and issues (FY2011-FY2020). Congressional Research Service (2020).Brown, H. The Camp Fire tragedy of 2018 in California. Fire Manag. Today 78, 11–22 (2020).
    Google Scholar 
    Wang, D., Guan, D., Kinnon, M. M., Geng, G. & Davis, S. J. Economic footprint of California wildfires in 2018. Nat. Sustain. https://doi.org/10.1038/s41893-020-00646-7 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Higuera, P. E. & Abatzoglou, J. T. Record-setting climate enabled the extraordinary 2020 fire season in the western USA. Glob. Chang. Biol. 27, 1–2 (2021).ADS 
    PubMed 

    Google Scholar 
    NIFC. National Report of Wildland Fires and Acres Burned by State. Natl. Interag. Fire Cent. 64–75 (2018).Ager, A. A. et al. Wildfire exposure to the wildland urban interface in the western US. Appl. Geogr. 111, 102059 (2019).
    Google Scholar 
    Palaiologou, P., Ager, A. A., Evers, C. R., Nielsen-Pincus, M. & Day, M. A. Fine-scale assessment of cross-boundary wildfire events in the western USA. Nat. Hazards Earth Syst. Sci. 6, 1755–1777 (2019).ADS 

    Google Scholar 
    Evers, C. R., Ager, A. A., Nielsen-pincus, M., Palaiologou, P. & Bunzel, K. Archetypes of community wildfire exposure from national forests of the western USA. Landsc. Urban Plan. 182, 55–66 (2019).
    Google Scholar 
    Artley, D. K. Wildland fire protection and response in the United States: the responsibilities, authorities, and roles of federal, state, local, and tribal government. Int. Assoc. Fire Chiefs 5, 1–117 (2009).
    Google Scholar 
    USDA Forest Service. National action plan: An implementation framework for the National Cohesive Wildland Fire Management Strategy. USDA For. Serv. (2014).Ager, A. A. et al. Network analysis of wildfire transmission and implications for risk governance. PLoS One https://doi.org/10.1371/journal.pone.0172867 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fleming, C. J., Mccartha, E. B. & Steelman, T. A. Conflict and collaboration in wildfire management: the role of mission alignment. Public Adm. Rev. 75, 445–454 (2015).
    Google Scholar 
    Dunn, C. J. et al. Wildfire risk science facilitates adaptation of fire-prone social-ecological systems to the new fire reality. Environ. Res. Lett. 15, 25001 (2020).
    Google Scholar 
    Calkin, D. E., Cohen, J. D., Finney, M. A. & Thompson, M. P. How risk management can prevent future wildfire disasters in the wildland-urban interface. Proc. Natl. Acad. Sci. U. S. A. 111, 746–751 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Whitman, E. et al. The climate space of fire regimes in north-western North America. J. Biogeogr. 42, 1736–1749 (2015).
    Google Scholar 
    Littell, J. S., Mckenzie, D., Peterson, D. L. & Westerling, A. L. Climate and wildfire area burned in western U.S.A ecoprovinces, 1916–2003. Ecol. Appl. 19, 1003–1021 (2009).PubMed 

    Google Scholar 
    Syphard, A. D., Keeley, J. E., Pfaff, A. H. & Ferschweiler, K. Human presence diminishes the importance of climate in driving fire activity across the USA. Proc. Natl. Acad. Sci. U. S. A. 114, 13750–13755 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parisien, M. A. et al. The spatially varying influence of humans on fire probability in North America. Environ. Res. Lett. 11, 1089 (2016).
    Google Scholar 
    Scott, J. H. et al. Wildfire risk to communities: spatial datasets of landscape-wide widlfire risk components for the USA. Fort Collins CO For. Serv. Res. Data Arch. 3, 159–1089 (2020).
    Google Scholar 
    Smith, A. M. S. et al. The science of firescapes: achieving fire-resilient communities. Bioscience 66, 130–146 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Moritz, M. A. et al. Learning to coexist with wildfire. Nature 515, 58–66 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ager, A. A. et al. Predicting paradise: modeling future wildfire disasters in the western USA. Sci. Total Environ. 784, 147057 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ager, A. A. et al. Wildfire exposure and fuel management on western USA national forests. J. Environ. Manag. 145, 54–70 (2014).
    Google Scholar 
    Haas, J. R., Calkin, D. E. & Thompson, M. P. Wildfire risk transmission in the Colorado Front Range, USA. Risk Anal. 35, 226–240 (2015).PubMed 

    Google Scholar 
    Stephens, S. L. & Ruth, L. W. Federal forest-fire policy in the USA. Ecol. Appl. 15, 532–542 (2005).
    Google Scholar 
    Harrell, A. All California’s national forests, including Tahoe’s, to close as fires rage (San Francisco Chronicle, 2020).Thompson, M. P., Gannon, B. M. & Caggiano, M. D. Forest roads and operational wildfire response planning. Forests 12, 1–11 (2021).
    Google Scholar 
    Parks, S. A., Parisien, M. A., Miller, C. & Dobrowski, S. Z. Fire activity and severity in the western US vary along proxy gradients representing fuel amount and fuel moisture. PLoS ONE 9, 1–8 (2014).
    Google Scholar 
    Scott, J. H. & Burgan, R. E. Standard fire behavior fuel models: a comprehensive set for use with Rothermel’s surface fire spread model. USDA For. Serv. Gen. Tech. Rep. RMRS GTR 2, 1–76. https://doi.org/10.2737/RMRS-GTR-153 (2005).Article 

    Google Scholar 
    Keeley, J. E. & Syphard, A. D. Climate change and future fire regimes: examples from California. Geosciences 6, 129 (2016).
    Google Scholar 
    Thompson, M. P., Dunn, C. J. & Calkin, D. E. Wildfire: systemic changes required. Science (80-.) 20, 63 (2015).
    Google Scholar 
    North, M. et al. Reform forest fire management. Science (80-.) 3, 7–1459 (2015).
    Google Scholar 
    Williams, J. Exploring the onset of high-impact mega-fires through a forest land management prism. For. Ecol. Manag. 294, 4–10 (2013).
    Google Scholar 
    Safford, H. D., Stevens, J. T., Merriam, K., Meyer, M. D. & Latimer, A. M. Fuel treatment effectiveness in California yellow pine and mixed conifer forests. For. Ecol. Manag. 274, 17–28 (2012).
    Google Scholar 
    Prichard, S. J., Povak, N. A., Kennedy, M. C. & Peterson, D. W. Fuel treatment effectiveness in the context of landform, vegetation, and large, wind-driven wildfires. Ecol. Appl. 30, 1–22 (2020).
    Google Scholar 
    Thompson, M. P., Riley, K. L., Loeffler, D. & Haas, J. R. Modeling fuel treatment leverage: encounter rates, risk reduction, and suppression cost impacts. Forests 8, 1–26 (2017).
    Google Scholar 
    Boer, M. M., Price, O. F. & Bradstock, R. A. Wildfires: weigh policy effectiveness. Science (80-.) 250, 919 (2015).
    Google Scholar 
    Barnett, K., Parks, S. A., Miller, C. & Naughton, H. T. Beyond fuel treatment effectiveness: characterizing interactions between fire and treatments in the USA. Forests 7, 7569 (2016).
    Google Scholar 
    Brenkert-Smith, H., Champ, P. A. & Flores, N. Insights into wildfire mitigation decisions among wildland-urban interface residents. Soc. Nat. Resour. 19, 759–768 (2006).
    Google Scholar 
    Reams, M. A., Haines, T. K., Renner, C. R., Wascom, M. W. & Kingre, H. Goals, obstacles and effective strategies of wildfire mitigation programs in the Wildland-Urban Interface. For. Policy Econ. 7, 818–826 (2005).
    Google Scholar 
    Cohen, J. The wildland-urban interface fire problem: a consequence of the fire exclusion paradigm. For. Hist. Today 2008, 20–26 (2008).
    Google Scholar 
    Caggiano, M. D., Hawbaker, T. J., Gannon, B. M. & Hoffman, C. M. Building loss in WUI disasters: evaluating the core components of the wildland–urban interface definition. Fire 3, 1–17 (2020).
    Google Scholar 
    Steelman, T. A. & Burke, C. A. Is wildfire policy in the USA sustainable?. J. For. 105, 67–72 (2007).
    Google Scholar 
    Syphard, A. D. & Keeley, J. E. Factors associated with structure loss in the 2013–2018 California wildfires. Fire 2, 1–15 (2019).
    Google Scholar 
    Keeley, J. E. & Syphard, A. D. Historical patterns of wildfire ignition sources in California ecosystems. Int. J. Wildl. Fire 27, 781–799 (2018).
    Google Scholar 
    Scott, J. H., Thompson, M. P. & Calkin, D. E. A wildfire risk assessment framework for land and resource management. Gen. Tech. Rep. RMRS-GTR-315 US. Dep. Agric. For. Serv. Rocky Mt. Res. Stn. P 83, 59–67 (2013).
    Google Scholar 
    Rodrıguez y Silva, F., O’Connor, C. D., Thompson, M. P., Ramon Molina Martinez, J. & Calkin, D. E. Modelling suppression difficulty: current and future applications. Int. J. Wildl. Fire (2020).O’Connor, C. D., Calkin, D. E. & Thompson, M. P. An empirical machine learning method for predicting potential fire control locations for pre-fire planning and operational fire management. Int. J. Wildl. Fire 2, 587–597 (2017).
    Google Scholar 
    Thompson, M. P. et al. Application of wildfire risk assessment results to wildfire response planning in the Southern Sierra Nevada, California, USA. Forests 7, 542 (2016).
    Google Scholar 
    Thompson, M. P. et al. Prototyping a geospatial atlas for wildfire planning and management. Forests 2, 1–17 (2020).
    Google Scholar 
    Paveglio, T. B. et al. Urban interface: adaptive capacity for wildfire. For. Sci. 61, 298–310 (2015).
    Google Scholar 
    Haas, J. R., Calkin, D. E. & Thompson, M. P. A national approach for integrating wildfire simulation modeling into Wildland Urban Interface risk assessments within the USA. Landsc. Urban Plan. 119, 44–53 (2013).
    Google Scholar 
    Mockrin, M. H., Stewart, S. I., Radeloff, V. C., Hammer, R. B. & Alexandre, P. M. Adapting to wildfire: rebuilding after home loss. Soc. Nat. Resour. 28, 839–856 (2015).
    Google Scholar 
    Haire, S. L. & McGarigal, K. Effects of landscape patterns of fire severity on regenerating ponderosa pine forests (Pinus ponderosa) in New Mexico and Arizona, USA. Landsc. Ecol. 25, 1055–1069 (2010).
    Google Scholar 
    Coop, J. D. et al. Wildfire-driven forest conversion in western North American landscapes. Bioscience 70, 659–673 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Syphard, A. D., Brennan, T. J. & Keeley, J. E. Drivers of chaparral type conversion to herbaceous vegetation in coastal Southern California. Sci. Rep. 2, 90–101. https://doi.org/10.1111/ddi.12827 (2019).Article 

    Google Scholar 
    Steelman, T. U. S. wildfire governance as a socio-ecological problem. Ecol. Soc. 21, 386–408 (2016).
    Google Scholar 
    Short, K. C. Spatial wildfire occurrence data for the United States, 1992-2018 [FPA_FOD_20210617], 5th edn. https://doi.org/10.2737/RDS-2013-0009.5 (Forest Service Research Data Archive, Fort Collins, CO, 2021).
    Google Scholar 
    Short, K. C. A spatial database of wildfires in the USA, 1992–2011. Earth Syst. Sci. Data 6, 1–27 (2014).ADS 

    Google Scholar 
    PRISM. (PRISM Climate Group, Oregon State University. http://www.prism.oregonstate.edu, 2020).USGS. Protected areas database of the United States (PAD-US) 2.1: U.S. Geological Survey data release. (2020). https://doi.org/10.5066/P92QM3NT. Accessed 15 Nov 2020.Crase, B., Liedloff, A. C. & Wintle, B. A. A new method for dealing with residual spatial autocorrelation in species distribution models. Ecography (Cop.) 35, 879–888 (2012).
    Google Scholar 
    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2, 802–813. https://doi.org/10.1111/j.1365-2656.2008.01390.x (2008).Article 

    Google Scholar 
    Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography (Cop.) 36, 27–46 (2013).
    Google Scholar 
    Greenwell, B., Boehmke, B., Cunningham, J. & GBM-developers. gmb: Generalized boosted regression models. R Packag. version 2.1.8. https//CRAN.R-project.org/package=gbm (2020).Hijmans, R. J., Philips, S., Leathwick, J. & Elith, J. dismo: Species distribution modeling. R Packag. version 1.3–3. https//CRAN.R-project.org/package=dismo (2020). More

  • in

    Brazil opens highly protected caves to mining, risking fauna

    CORRESPONDENCE
    15 February 2022

    Brazil opens highly protected caves to mining, risking fauna

    Hernani Fernandes Magalhaes de Oliveira

     ORCID: http://orcid.org/0000-0001-7040-8317

    0
    ,

    Daiana Cardoso Silva

     ORCID: http://orcid.org/0000-0003-1612-6452

    1
    ,

    Priscilla Lora Zangrandi

     ORCID: http://orcid.org/0000-0003-1406-944X

    2
    &

    Fabricius Maia Chaves Bicalho Domingos

     ORCID: http://orcid.org/0000-0003-2069-9317

    3

    Hernani Fernandes Magalhaes de Oliveira

    Federal University of Paraná, Curitiba, Brazil.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Daiana Cardoso Silva

    Mato Grosso State University, Nova Xavantina, Brazil.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Priscilla Lora Zangrandi

    Toronto, Canada.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Fabricius Maia Chaves Bicalho Domingos

    Federal University of Paraná, Curitiba, Brazil.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    Brazil’s government has changed the designation of caves that warrant top priority for conservation (see go.nature.com/3gy5). Constituting some 13–30% of the country’s 22,000 protected caves, these will now be open to commercial exploitation, which could seriously affect their vulnerable fauna.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribeSubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    Nature 602, 386 (2022)
    doi: https://doi.org/10.1038/d41586-022-00406-x

    Competing Interests
    The authors declare no competing interests.

    Related Articles

    See more letters to the editor

    Subjects

    Conservation biology

    Government

    Industry

    Latest on:

    Government

    China: reform research-evaluation criteria
    Correspondence 15 FEB 22

    Biden needs scientists with policy chops
    World View 11 FEB 22

    Africa is bringing vaccine manufacturing home
    Editorial 09 FEB 22

    Industry

    Start-ups create career opportunities for scientists
    Career Feature 07 FEB 22

    Climate pledges from top companies crumble under scrutiny
    News 07 FEB 22

    Theranos’s lesson for investors: speak to lab workers
    Correspondence 25 JAN 22

    Jobs

    Hodi Research Fellow

    Dana-Farber Cancer Institute (DFCI)
    Boston, MA, United States

    Research Associate / Postdoctoral Researcher-Carbon

    Woodwell Climate Research Center
    Falmouth, MA, United States

    Postdoc Bioinformatics in (single cell) transcriptomic and (epi)genomic analyses of pediatric brain tumors

    Prinses Máxima Centrum
    Utrecht, Netherlands

    Chief Editor, Nature Reviews Cancer

    Springer Nature
    London, United Kingdom More

  • in

    Retention of deposited ammonium and nitrate and its impact on the global forest carbon sink

    Study sitesThe paired 15N-tracer experiments were conducted in 13 forest sites, of which nine were in China, two in Europe and two in the USA. These sites vary in mean annual precipitation (MAP) from 700 to 2500 mm, in mean annual temperature (MAT) from 3 to > 20 °C, and in soil types (Fig. 1, Supplementary Table 1, Supplementary Table 2). Ambient N deposition (bulk/throughfall NH4+ plus NO3−) at the sites ranged from 6 to 54 kg N ha−1 yr−1. Forest types at the experimental sites include tropical forests in southern China, subtropical forests in central China, and temperate forests in northeastern China, Europe, and the USA. Data from the sites in Europe, the USA, and six of the nine sites in China have been reported previously. Detailed descriptions of these sites and the related data source references are summarized in Supplementary Table 1. Data for forests at the other three sites in China (Xishuangbanna, Wuyishan, and Maoershan) are originally presented here. The Xishuangbanna sites, which is located Xishuangbanna National Forest Reserve in Menglun, Mengla County, Yunnan Province, is a primary mixed forest dominated by the typical tropical forest tree species Terminalia myriocarpa and Pometia tomentosa. The Wuyishan forest, which is located in the Wuyi mountains in Jiangxi Province, is also a mature subtropical forest with Tsuga chinensis var. tchekiangensis as the dominant tree species in the canopy layer. Other common tree species in the forest include Betula luminifera and Cyclobalanopsis multinervis. Maoershan is a relatively young (45 years) larch (Larix gmelinii) plantation located at Laoshan Forest Research Station of Northeast Forestry University, Heilongjiang Province. A few tree species- Juglans mandshurica, Quercus mongolica, and Betula platyphylla- coexist with Larix gmelinii in the canopy. More information about these sites is also presented in Supplementary Table 1.
    15N-tracer experimentAt all sites, small amounts of 15NH4+ or 15NO3− tracers (generally  20% in a 1-km pixel was defined as forest. Based on this, we estimated the total global forest area to be ≈42 million km2.Calculation of N-induced C sinkThe N-induced C sink was estimated via the stoichiometric upscaling method19, i.e., by multiplying the N retention in woody tissues of stems, branches, and coarse roots and in the soil with the C/N ratios in these compartments. The C sink due to NHx and or NOy deposition was calculated separately using Eq. (4) as follows:$${{{{{{mathrm{C}}}}}}}_{{{{{{mathrm{sink}}}}}}}={{{{{{mathrm{N}}}}}}}_{{{{{{mathrm{dep}}}}}}}times left(,{!}^{15}{{{{{{{mathrm{N}}}}}}}_{{{{{{mathrm{org}}}}}}}^{{{{{{mathrm{R}}}}}}}}times frac{{{{{{mathrm{C}}}}}}}{{{{{{mathrm{N}}}}}}}_{{{{{{mathrm{org}}}}}}}+{{,}^{15}}{{{{{{{mathrm{N}}}}}}}_{{{min }}}^{{{{{{mathrm{R}}}}}}}}times frac{{{{{{mathrm{C}}}}}}}{{{{{{mathrm{N}}}}}}}_{{{min }}}+{{,}^{15}}{{{{{{{mathrm{N}}}}}}}_{{{{{{mathrm{wood}}}}}}}^{{{{{{mathrm{R}}}}}}}}times frac{{{{{{mathrm{C}}}}}}}{{{{{{mathrm{N}}}}}}}_{{{{{{mathrm{wood}}}}}}}times {{{{{mathrm{f}}}}}}right)$$
    (4)
    where Ndep is NHx or NOy deposition (kg N ha−1 yr−1); ({}^{15}{{{{{{rm{N}}}}}}}_{{{{{{rm{org}}}}}}}^{{{{{{rm{R}}}}}}}), ({}^{15}{{{{{{rm{N}}}}}}}_{{{min }}}^{{{{{{rm{R}}}}}}}) and ({}^{15}{{{{{{rm{N}}}}}}}_{{{{{{rm{wood}}}}}}}^{{{{{{rm{R}}}}}}}) indicate the fraction of deposited NHx or NOy allocated to organic layer, mineral soil, and woody biomass, respectively; and ({frac{{{{{{rm{C}}}}}}}{{{{{{rm{N}}}}}}}}_{{{{{{rm{org}}}}}}}), ({frac{{{{{{rm{C}}}}}}}{{{{{{rm{N}}}}}}}}_{{{min }}}), and ({frac{{{{{{rm{C}}}}}}}{{{{{{rm{N}}}}}}}}_{{{{{{rm{wood}}}}}}}) indicate C/N ratios in the soil organic layer, soil mineral layer and woody plant biomass, respectively. f is the fraction we applied to account for flexible C/N in response to elevated N deposition. At elevated N deposition, wood C/N ratio may decrease, and N accumulates without stimulating additional ecosystem C storage. To account for this scenario, we adopted a flexible stoichiometry51, in which the effects of N deposition on wood C/N ratios are accounted for by multiplying the C/N ratios of wood with a fraction f (from 1 to 0) depending on plant growth response to different rates of N deposition level (kg N ha−1 yr−1). Results of growth responses to experimental N addition and field N gradient studies show plant growth increased with increasing N deposition, flattening near 15–30 kg N ha−1 yr−1 and a reversal toward no enhanced growth response at about 100 kg N ha−1 yr−1 (ref. 36,52). Therefore, for N deposition More