More stories

  • in

    Reply to: Conclusions of low extinction risk for most species of reef-building corals are premature

    Dietzel, A., Bode, M., Connolly, S. R. & Hughes, T. P. The population sizes and global extinction risk of reef-building coral species at biogeographic scales. Nat. Ecol. Evol. 5, 663–669 (2021).Article 

    Google Scholar 
    Hubbell, S. P. et al. How many tree species are there in the Amazon and how many of them will go extinct? Proc. Natl Acad. Sci. USA 105, 11498–11504 (2008).CAS 
    Article 

    Google Scholar 
    Carpenter, K. E. et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321, 560–563 (2008).CAS 
    Article 

    Google Scholar 
    Muir, P. R. et al. Conclusions of low extinction risk for most species of reef-building corals are premature. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01659-5 (2022).Richards, Z. T., Syms, C., Wallace, C. C., Muir, P. R. & Willis, B. L. Multiple occupancy–abundance patterns in staghorn coral communities. Divers. Distrib. 19, 884–895 (2013).Article 

    Google Scholar 
    Zvuloni, A., Artzy-Randrup, Y., Stone, L., van Woesik, R. & Loya, Y. Ecological size–frequency distributions: how to prevent and correct biases in spatial sampling. Limnol. Oceanogr. Methods 6, 144–153 (2008).Article 

    Google Scholar  More

  • in

    Conclusions of low extinction risk for most species of reef-building corals are premature

    Dietzel, A., Bode, M., Connolly, S. R. & Hughes, T. P. The population sizes and global extinction risk of reef-building coral species at biogeographic scales. Nat. Ecol. Evol. 5, 663–669 (2021).Article 

    Google Scholar 
    Richards, Z. T., van Oppen, M. J., Wallace, C. C., Willis, B. L. & Miller, D. J. Some rare Indo-Pacific coral species are probable hybrids. PLoS ONE 3, e3240 (2008).Article 

    Google Scholar 
    Carpenter, K. E. et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321, 560–563 (2008).CAS 
    Article 

    Google Scholar 
    Richards, Z. T., Syms, C., Wallace, C. C., Muir, P. R. & Willis, B. L. Multiple occupancy–abundance patterns in staghorn coral communities. Divers. Distrib. 19, 84–895 (2013).Article 

    Google Scholar 
    Hoeksema, B. W. & Cairns, S. World List of Scleractinia (accessed 6 May 2021); http://www.marinespecies.org/scleractiniaHughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 493–496 (2018).Article 

    Google Scholar 
    Thurba, R. V. et al. Deciphering coral disease dynamics: integrating host, microbiome, and the changing environment. Front. Ecol. Evol. 8, 575927 (2020).Article 

    Google Scholar 
    Muir, P. R., Marshall, P. A., Abdulla, A. & Aguirre, J. D. Species identity and depth predict bleaching severity in reef building corals: shall the deep inherit the reef? Proc. R. Soc. B 284, 20171551 (2017).Article 

    Google Scholar 
    van Woesik, R., Sakai, K., Ganase, A. & Loya, Y. Revisiting the winners and the losers a decade after coral bleaching. Mar. Ecol. Prog. Ser. 434, 67–76 (2011).Article 

    Google Scholar 
    Chen, Y.-H., Shertzer, K. W. & Viehman, T. S. Spatio-temporal dynamics of the threatened elkhorn coral Acropora palmata: implications for conservation. Divers. Distrib. 26, 1582–1597 (2020).Article 

    Google Scholar 
    Sheppard, C., Sheppard, A. & Fenner, D. Coral mass mortalities in the Chagos Archipelago over 40 years: regional species and assemblage extinctions and indications of positive feedbacks. Mar. Poll. Bull. 154, 111075 (2020).CAS 
    Article 

    Google Scholar 
    DeVantier, L. & Turak, E. Species richness and relative abundance of reef-building corals in the Indo-West Pacific. Diversity 9, 25 (2017).Article 

    Google Scholar 
    Wallace, C. C. Staghorn Corals of the World (CSIRO, 1999).Benzoni, F., Stefani, F., Pichon, M. & Galli, P. The name game: morpho-molecular species boundaries in the genus Psammocora (Cnidaria, Scleractinia). Zool. J. Linn. Soc. 160, 421–456 (2010).Article 

    Google Scholar 
    Richards, Z. T., Berry, O. & van Oppen, M. J. H. Cryptic genetic divergence within threatened species of Acropora coral from the Indian and Pacific Oceans. Conserv. Genet. 17, 577–591 (2016).Article 

    Google Scholar 
    Sheets, E. A., Warner, P. A. & Palumbi, S. R. Accurate population genetic measurements require cryptic species identification in corals. Coral Reefs 37, 549–563 (2018).Article 

    Google Scholar 
    Bongaerts, P. et al. Morphological stasis masks ecologically divergent coral species on tropical reefs. Curr. Biol. 31, 2286–2298 (2021).CAS 
    Article 

    Google Scholar 
    Frankham, R. Effective population size/adult population size ratios in wildlife: a review. Genet. Res. 89, 491–503 (2008).Article 

    Google Scholar  More

  • in

    Decreasing rainfall frequency contributes to earlier leaf onset in northern ecosystems

    Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change 4, 598–604 (2014).CAS 

    Google Scholar 
    Barichivich, J. et al. Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011. Glob. Change Biol. 19, 3167–3183 (2013).
    Google Scholar 
    Vitasse, Y. et al. Assessing the effects of climate change on the phenology of European temperate trees. Agr. Forest Meteorol. 151, 969–980 (2011).
    Google Scholar 
    Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Change Biol. 12, 1969–1976 (2006).
    Google Scholar 
    Fu, Y. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).CAS 

    Google Scholar 
    Wang, H. et al. Overestimation of the effect of climatic warming on spring phenology due to misrepresentation of chilling. Nat. Commun. 11, 4945 (2020).CAS 

    Google Scholar 
    Myneni, R. C. et al. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702 (1997).CAS 

    Google Scholar 
    Piao, S. et al. Leaf onset in the Northern Hemisphere triggered by daytime temperature. Nat. Commun. 6, 6911 (2015).CAS 

    Google Scholar 
    Richardson, A. D. et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Phil. Trans. R. Soc. B 365, 3227–3246 (2010).
    Google Scholar 
    Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).
    Google Scholar 
    White, A., Cannell, M. G. R. & Friend, A. D. The high-latitude terrestrial carbon sink: a model analysis. Glob. Change Biol. 6, 227–245 (2000).
    Google Scholar 
    Piao, S. et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451, 49–53 (2008).CAS 

    Google Scholar 
    Fu, Y. H. et al. Unexpected role of winter precipitation in determining heat requirement for spring vegetation green-up at northern middle and high latitudes. Glob. Change Biol. 20, 3743–3755 (2014).
    Google Scholar 
    Yun, J. et al. Influence of winter precipitation on spring phenology in boreal forests. Glob. Change Biol. 11, 5176–5187 (2018).
    Google Scholar 
    Fu, Y. H. et al. Increased heat requirement for leaf flushing in temperate woody species over 1980–2012: effects of chilling, precipitation and insolation. Glob. Change Biol. 21, 2687–2697 (2015).
    Google Scholar 
    Wipf, S., Stoeckli, V. & Bebi, P. Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Climatic Change 94, 105–121 (2009).
    Google Scholar 
    Peñuelas, J. et al. Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytol. 161, 837–846 (2004).
    Google Scholar 
    Paschalis, A. et al. Rainfall manipulation experiments as simulated by terrestrial biosphere models: where do we stand? Glob. Change Biol. 26, 3336–3355 (2020).
    Google Scholar 
    Green, J. K. et al. Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nat. Geosci. 10, 410–414 (2017).CAS 

    Google Scholar 
    Trenberth, K. E., Dai, A., Rasmussen, R. M. & Parsons, D. B. The changing character of precipitation. Bull. Am. Meteorol. Soc. 84, 1205–1217 (2003).
    Google Scholar 
    Qian, W., Fu, J. & Yan, Z. Decrease of light rain events in summer associated with a warming environment in China during 1961–2005. Geophys. Res. Lett. 34, L11705 (2007).
    Google Scholar 
    Sun, Y., Solomon, S., Dai, A. & Portmann, R. W. How often will it rain? J. Clim. 20, 4801–4818 (2007).
    Google Scholar 
    Chou, C. et al. Mechanisms for global warming impacts on precipitation frequency and intensity. J. Clim. 13, 3291–3306 (2012).
    Google Scholar 
    Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).
    Google Scholar 
    Fowler, M. D., Kooperman, G. J., Randerson, J. T. & Pritchard, M. S. The effect of plant physiological responses to rising CO2 on global streamflow. Nat. Clim. Change 9, 873–879 (2019).CAS 

    Google Scholar 
    Belnap, J., Phillips, S. L. & Miller, M. E. Response of desert biological soil crusts to alterations in precipitation frequency. Oecologia 141, 306–316 (2004).
    Google Scholar 
    Knapp, A. K. et al. Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience 58, 811–821 (2008).
    Google Scholar 
    Chen, L. et al. Leaf senescence exhibits stronger climatic responses during warm than during cold autumns. Nat. Clim. Change 10, 777–780 (2020).CAS 

    Google Scholar 
    De Boeck, H. J., Dreesen, F. E., Janssens, I. A. & Nijs, I. Climatic characteristics of heat waves and their simulation in plant experiments. Glob. Change Biol. 16, 1992–2000 (2010).
    Google Scholar 
    Shen, M. et al. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Glob. Change Biol. 21, 3647–3656 (2015).
    Google Scholar 
    Peaucelle, M. et al. Spatial variance of spring phenology in temperate deciduous forests is constrained by background climatic conditions. Nat. Commun. 10, 5388 (2019).
    Google Scholar 
    Estiarte, M. & Peñuelas, J. Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency. Glob. Change Biol. 21, 1005–1017 (2015).
    Google Scholar 
    Austin, A. T. et al. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141, 221–235 (2004).
    Google Scholar 
    White, M. A., Thornton, P. E. & Running, S. W. A continental phenology model for monitoring vegetation responses to interannual climatic variability. Glob. Biogeochem. Cycles 11, 217–234 (1997).CAS 

    Google Scholar 
    Templ, B. et al. Pan European Phenological database (PEP725): a single point of access for European data. Int. J. Biometeorol. 62, 1109–1113 (2018).
    Google Scholar 
    Ge, Q., Wang, H., Rutishauser, T. & Dai, J. Phenological response to climate change in China: a meta-analysis. Glob. Change Biol. 21, 265–274 (2015).
    Google Scholar 
    Schwartz, M. D., Betancourt, J. L. & Weltzin, J. F. From Caprio’s lilacs to the USA National Phenology Network. Front. Ecol. Environ. 10, 324–327 (2012).
    Google Scholar 
    Wu, C. et al. Interannual variability of net ecosystem productivity in forests is explained by carbon flux phenology in autumn. Glob. Ecol. Biogeogr. 22, 994–1006 (2013).
    Google Scholar 
    Zhang, X. et al. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 84, 471–475 (2003).
    Google Scholar 
    Shen, M. et al. Can changes in autumn phenology facilitate earlier green-up date of northern vegetation? Agr. Forest Meteorol. 291, 108077 (2020).
    Google Scholar 
    Chen, J. et al. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 91, 332–344 (2004).
    Google Scholar 
    Shen, M. et al. Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai–Tibetan Plateau. Agr. Forest Meteorol. 189, 71–80 (2014).
    Google Scholar 
    Wu, C. et al. Widespread decline in winds delayed autumn foliar senescence over high latitudes. Proc. Natl Acad. Sci. USA 118, e2015821118 (2021).CAS 

    Google Scholar 
    Elmore, A. J. et al. Landscape controls on the timing of spring, autumn, and growing season length in mid-Atlantic forests. Glob. Change Biol. 18, 656–674 (2012).
    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001).
    Google Scholar 
    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).
    Google Scholar 
    New, M., Hulme, M. & Jones, P. D. Representing twentieth‐century space–time climate variability. Part I: development of a 1961–90 mean monthly terrestrial climatology. J. Clim. 12, 829–856 (1999).
    Google Scholar 
    Hempel, S., Frieler, K., Warszawski, L., Schewe, J. & Piontek, F. A trend-preserving bias correction—the ISI-MIP approach. Earth Syst. Dynam. 4, 219–236 (2013).
    Google Scholar 
    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).
    Google Scholar 
    Vicenteserrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index. J. Clim. 23, 1696–1718 (2010).
    Google Scholar 
    Barr, A. G. et al. Inter‐annual variability in the leaf area index of a boreal aspen–hazelnut forest in relation to net ecosystem production. Agr. Forest Meteorol. 126, 237–255 (2004).
    Google Scholar 
    Chen, J., Chen, W., Liu, J., Cihlar, J. & Gray, S. Annual carbon balance of Canada’s forests during 1895–1996. Glob. Biogeochem. Cycles 14, 839–849 (2000).CAS 

    Google Scholar 
    Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Glob. Biogeochem. Cycles 19, GB1015 (2005).
    Google Scholar  More

  • in

    Modelling the emergence dynamics of the western corn rootworm beetle (Diabrotica virgifera virgifera)

    Let (y_{itk}) denote the WCR count observed for trap i in week t in year k, and assume it to follow a Poisson distribution with parameter (mu _{itk})$$begin{aligned} y_{itk} | mu _{itk}, sim Poisson(mu _{itk}) end{aligned}$$
    (1)
    The intensity parameter (mu _{itk}) represents the rate of emergence for a given time period. Instead of allowing it to depend purely on time t, a phenological variable of growing degree days (GDD) is used, as warmer temperatures are required for WCR development25,26,27,28. GDDs reflect the heat accumulation and are defined as an integral of warmth above a base temperature after a given start date:$$begin{aligned} GDD = int (T(t)-T_{base})dt. end{aligned}$$
    (2)
    The above integral can be approximated by$$begin{aligned} GDD = max left( frac{T_{max} – T_{min}}{2} – T_{base}, 0 right) . end{aligned}$$
    (3)
    Here (T_{min}) is the minimum daily temperature, (T_{max}) is the maximum daily temperature, and (T_{base}) is a set base temperature. In this study, the base temperature was set to (10,^{circ })C, and the starting date was the beginning of April, which marks the start of the growing season in Austria.The rate of cumulative emergence of the WCR beetle can be described by a Gompertz function. The Gompertz function is a sigmoidal function which describes growth as being slowest at the beginning and the end of a given period and is defined as$$begin{aligned} f(z_t) = alpha exp (-beta exp (-gamma z_t)). end{aligned}$$
    (4)
    where (alpha) is the upper asymptote, (beta) is a relative starting value, (gamma) is a growth rate coefficient which affects the slope, and (z_t) are the cumulative growing degree days. In this study, one can consider the asymptote as proxy to the saturation level of WCR population growth. Lower values of (beta) suggest an earlier first emergence in the season, while lower values of (gamma) indicate a longer emergence period. To investigate whether there is an association between climate variables and the emergence dynamics, the Gompertz curve parameters were assumed to linearly depend on climate covariates. In this regression modelling framework, a spatially correlated residual structure can be added in either (alpha), (beta), and/or (gamma) if there is evidence to do so.To reflect the nature of the emergence dynamics and to preserve the shape of the increasing Gompertz curve, the parameters of the model were restricted to positive values such that (alpha >0), (beta >0), and (gamma >0). The time at inflection or period of highest growth can be obtained by solving Eq. (4) for the value of t at which the concavity of the function changes. The time at inflection is described as:$$begin{aligned} T_z^* = frac{log (beta )}{gamma } end{aligned}$$
    (5)
    The Gompertz function describes cumulative emergence. Thus to describe the marginal emergence rate, the derivative of the Gompertz function can be used instead. Consequently, as the WCR trapping data consisted of weekly counts, the rate of emergence (mu _{itk}) is better described by the log of the derivative of the Gompertz function$$begin{aligned} log (mu _{itk}) = log (alpha _{ik}) + log (gamma _{ik}) + log (beta _{ik}) + gamma _i z_{itk} – beta _{ik} exp (-gamma z_{itk}). end{aligned}$$
    (6)
    The parameters (alpha _{ik}), (beta _{ik}) and (gamma _{ik}) are site and year specific such that:$$begin{aligned}&alpha _{ik} sim N(mu _{alpha _{ik}}, tau _{alpha }) end{aligned}$$
    (7)
    $$begin{aligned}&gamma _{ik} sim N(mu _{gamma _{ik}}, tau _{gamma }) end{aligned}$$
    (8)
    $$begin{aligned}&beta _{ik} sim N(mu _{beta _{ik}}, tau _{beta }). end{aligned}$$
    (9)
    Here, (tau _{alpha }), (tau _{beta }), and (tau _{gamma }) are the precision (inverse variance) parameters of the prior distributions for (alpha), (beta) and (gamma) respectively. Moreover, the means of the distributions (mu _{alpha _{ik}}), (mu _{beta _{ik}}), and (mu _{gamma _{ik}}) can be expressed as functions of known covariates:$$begin{aligned} mu _{alpha _{ik}}= & {} a_{0} + {mathbf {w}}^T X_{alpha _{ik}}, end{aligned}$$
    (10)
    $$begin{aligned} mu _{beta _{ik}}= & {} b_{0}, end{aligned}$$
    (11)
    $$begin{aligned} mu _{gamma _{ik}}= & {} g_{0} + {mathbf {u}}^T X_{gamma _{ik}}. end{aligned}$$
    (12)
    Here (a_{0}) is the intercept, ({mathbf {w}}) is a vector of the regression coefficients, and (X_{alpha _{ik}}) are the location and year specific covariates. The predictors used in the regression of (mu _{alpha _{ik}}) are the average winter temperature, the precipitation sum during winter, the year, the percentage of the agricultural area per Austrian municipality used for cultivating maize crops (maize), and the corresponding centred coordinates of the trap locations; x, y, and their functions (x^2), (y^2), and xy. The parameter (g_{0}) is the intercept for the regression of (mu _{gamma _{ik}}), and u is the corresponding regression coefficient. The predictor used for (mu _{gamma _ik}) is the average yearly spring temperature.The intercepts and regression coefficients ((mathbf {w}) and (mathbf {u})) were given non-informative normal priors N(0, 0.01). The precision parameters (tau _{alpha }), (tau _{beta }) and (tau _{gamma }) were assigned prior distributions Gamma(0.01, 0.01).The model was fitted using WinBUGS through the R2WinBUGS package in R29,30,31. The model was run for 20000 iterations, with a burn-in of 10000 iterations, and a thinning rate of five. Convergence was determined by visual assessments of trace plots and marginal posterior densities. More

  • in

    Persistence of the invasive bird-parasitic fly Philornis downsi over the host interbreeding period in the Galapagos Islands

    Denlinger, D. L. Dormancy in tropical insects. Annu. Rev. Entomol. 31, 239–264. https://doi.org/10.1146/annurev.en.31.010186.001323 (1986).CAS 
    Article 
    PubMed 

    Google Scholar 
    Moreau, R. E. The breeding seasons of African birds—1. Land birds. Ibis 92, 223–267. https://doi.org/10.1111/j.1474-919X.1950.tb01750.x (1950).Article 

    Google Scholar 
    Fogden, M. P. L. Seasonality and population dynamics of equatorial forest birds in Sarawak. Ibis 114, 307–343. https://doi.org/10.1111/j.1474-919X.1972.tb00831.x (1972).Article 

    Google Scholar 
    Karr, J. R. Resource availability, and community diversity in tropical bird communities. Am. Nat. 110, 973–994. https://doi.org/10.1086/283121 (1976).Article 

    Google Scholar 
    Oppel, S. et al. The effects of rainfall on different components of seasonal fecundity in a tropical forest passerine. Ibis 155, 464–475. https://doi.org/10.1111/ibi.12052 (2013).Article 

    Google Scholar 
    Shaw, P. Rainfall, leafing phenology and sunrise time as potential Zeitgeber for the bimodal, dry season laying pattern of an African rain forest tit (Parus fasciiventer). J. Ornithol. 158, 263–275. https://doi.org/10.1007/s10336-016-1395-6 (2017).Article 

    Google Scholar 
    Withers, P. C. & Cooper, C. E. Metabolic depression: A historical perspective. In Aestivation: Molecular and Physiological Aspects, Progress in Molecular and Subcellular Biology (eds Navas, C. A. & Carvalho, J. E.) 1–23 (Springer-Verlag, 2010).
    Google Scholar 
    Fletcher, B. S., Pappas, S. & Kapatos, E. Changes in ovaries of olive fly (Dacus-oleae-(Gmelin)) during summer, and their relationship to temperature, humidity and fruit availability. Ecol. Entomol. 3, 99–107. https://doi.org/10.1111/j.1365-2311.1978.tb00908.x (1978).Article 

    Google Scholar 
    Braby, M. F. Reproductive seasonality in tropical satyrine butterflies—Strategies for the dry season. Ecol. Entomol. 20, 5–17. https://doi.org/10.1111/j.1365-2311.1995.tb00423.x (1995).Article 

    Google Scholar 
    Goehring, L. & Oberhauser, K. S. Effects of photoperiod, temperature, and host plant age on induction of reproductive diapause and development time in Danaus plexippus. Ecol. Entomol. 27, 674–685. https://doi.org/10.1046/j.1365-2311.2002.00454.x (2002).Article 

    Google Scholar 
    Valera, F., Casas-Crivillé, A. & Hoi, H. Interspecific parasite exchange in a mixed colony of birds. J. Parasitol. 89, 245–250. https://doi.org/10.1645/0022-3395(2003)089[0245:IPEIAM]2.0.CO;2 (2003).Article 
    PubMed 

    Google Scholar 
    Grimaldi, D. The bird flies, genus Carnus: Species revision, generic relationships, and a fossil Meoneura in amber (Diptera: Carnidae). Am. Mus. Novit. 3190, 1–30 (1997).MathSciNet 

    Google Scholar 
    Valera, F., Casas-Crivillé, A. & Calero-Torralbo, M. A. Prolonged diapause in the ectoparasite Carnus hemapterus (Diptera: Cyclorrapha, Acalyptratae)—How frequent is it in parasites?. Parasitology 133, 179–186. https://doi.org/10.1017/S0031182006009899 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sabrosky, C. W., Bennett, G. F. & Whitworth, T. L. Bird blow flies (Protocalliphora) in North America (Diptera: Calliphoridae), with notes on the Palearctic species. https://library.si.edu/digital-library/book/birdblowfliespro00sabr (Smithsonian Institute Press, 1989).Dodge, H. R. & Aitken, T. H. G. Philornis flies from Trinidad (Diptera: Muscidae). J. Kansas Entomol. Soc. 41, 134–154 (1968).
    Google Scholar 
    Couri, M. S. Notes and descriptions of Philornis flies (Diptera, Muscidae, Cyrtoneurinininae). Rev. Bras. Entomol. 28, 473–490 (1984).
    Google Scholar 
    Couri, M. S. Myiasis caused by obligatory parasites. Ia. Philornis Meinert (Muscidae). In Myiasis in Man and Animals in the Neotropical Region (eds Guimaraes, J. H. & Papavero, N.) 44–70 (Editora Pleiade, 1999).
    Google Scholar 
    Silvestri, L., Antoniazzi, L. R., Couri, M. S., Monje, L. D. & Beldomenico, P. M. First record of the avian ectoparasite Philornis downsi Dodge & Aitken, 1968 (Diptera: Muscidae) in Argentina. Syst. Parasitol. 80, 137–140. https://doi.org/10.1007/s11230-011-9314-y (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bulgarella, M. et al. Philornis downsi, an avian nest parasite invasive to the Galápagos Islands, in mainland Ecuador. Ann. Entomol. Soc. Am. 108, 242–250. https://doi.org/10.1093/aesa/sav026 (2015).Article 

    Google Scholar 
    Kleindorfer, S. & Dudaniec, R. Y. Host-parasite ecology, behavior and genetics: a review of the introduced fly parasite Philornis downsi and its Darwin finch hosts. BMC Zool. 1, 1. https://doi.org/10.1186/s40850-016-0003-9 (2016).Article 

    Google Scholar 
    Fessl, B., Heimpel, G. E. & Causton, C. E. Invasion of an avian nest parasite, Philornis downsi, to the Galapagos Islands: Colonization history, adaptations to novel ecosystems, and conservation challenges. In Disease Ecology: Social and Ecological Interactions in the Galapagos Islands (ed. Parker, P. G.) 213–266 (Springer, 2018). https://doi.org/10.1007/978-3-319-65909-1_9DO.Chapter 

    Google Scholar 
    McNew, S. M. & Clayton, D. H. Alien invasion: biology of Philornis flies highlighting Philornis downsi, an introduced parasite of Galapagos birds. Annu. Rev. Entomol. 63, 369–387. https://doi.org/10.1146/annurev-ento-020117-043103 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Anchundia, D. & Fessl, B. The conservation status of the Galapagos Martin, Progne modesta: Assessment of historical records and results of recent surveys. Bird Conserv. Int. 31, 129–138. https://doi.org/10.1017/S095927092000009X (2021).Article 

    Google Scholar 
    Coloma, A., Anchundia, D., Piedrahita, P., Pike, C. & Fessl, B. Observations on the nesting of the Galapagos Dove, Zenaida galapagoensis, in Galapagos, Ecuador. Galapagos Res. 69, 34–38 (2020).
    Google Scholar 
    Lack, D. Darwin’s Finches (Cambridge University Press, 1947).
    Google Scholar 
    Grant, P. R. Ecology and Evolution of Darwin’s Finches (Princeton University Press, 1986).
    Google Scholar 
    Bulgarella, M., Quiroga, M. A. & Heimpel, G. E. Additive negative effects of Philornis nest parasitism and small and declining Neotropical bird populations. Bird Conserv. Int. 29, 339–360. https://doi.org/10.1017/S0959270918000291 (2019).Article 

    Google Scholar 
    Causton, C. E. et al. Population dynamics of an invasive bird parasite, Philornis downsi (Diptera: Muscidae), in the Galapagos Islands. PLoS ONE 14(10), e0224125. https://doi.org/10.1371/journal.pone.0224125 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hayes, E. J. & Wall, R. Age-grading adult insects: A review of techniques. Physiol. Entomol. 24, 1–10. https://doi.org/10.1046/j.1365-3032.1999.00104.x (1999).Article 

    Google Scholar 
    Lahuatte, P. F., Lincango, M. P., Heimpel, G. E. & Causton, C. E. Rearing larvae of the avian nest parasite, Philornis downsi (Diptera: Muscidae), on chicken blood-based diets. J. Insect Sci. 16, 84. https://doi.org/10.1093/jisesa/iew064 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moon, R. D. & Krafsur, E. S. Pterin quantity and gonotrophic stage as indicators of age in Musca autumnalis (Diptera: Muscidae). J. Med. Entomol. 32, 673–684. https://doi.org/10.1093/jmedent/32.5.673 (1995).CAS 
    Article 
    PubMed 

    Google Scholar 
    Butler, S. M. et al. Characterization of age and cuticular hydrocarbon variation in mating pairs of house fly, Musca domestica, collected in the field. Med. Vet. Entomol. 23, 426–442. https://doi.org/10.1111/j.1365-2915.2009.00831.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mail, T. S. & Lehane, M. J. Characterisation of pigments in the head capsule of the adult stablefly Stomoxys calcitrans. Entomol. Exp. Appl. 46, 125–131. https://doi.org/10.1111/j.1570-7458.1988.tb01102.x (1988).Article 

    Google Scholar 
    Trueman, M. & D’Ozouville, N. Characterizing the Galapagos terrestrial climate in the face of global climate change. Galapagos Res. 67, 26–37 (2010).
    Google Scholar 
    Stramma, L. et al. Observed El Niño conditions in the eastern tropical Pacific in October 2015. Ocean Sci. 12, 861–873. https://doi.org/10.5194/os-12-861-2016 (2016).ADS 
    Article 

    Google Scholar 
    Martin, N. J. et al. Seasonal and ENSO influences on the stable isotopic composition of Galapagos precipitation. J. Geophys. Res-Atmos. 123, 261–275. https://doi.org/10.1002/2017JD027380 (2018).ADS 
    Article 

    Google Scholar 
    Grant, P. R., Grant, B. R., Keller, L. F. & Petren, K. Effects of El Niño events on Darwin’s finch productivity. Ecology 81, 2442–2457. https://doi.org/10.2307/177466 (2000).Article 

    Google Scholar 
    Sage, R. et al. Environmentally cued hatching in the bird parasite Philornis downsi (Diptera: Muscidae). Entomol. Exp. Appl. 166, 752–760. https://doi.org/10.1111/eea.12721 (2018).Article 

    Google Scholar 
    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B 73, 3–36. https://doi.org/10.1111/j.1467-9868.2010.00749.x (2011).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    Lack, D. Breeding seasons in the Galapagos. Ibis 92, 268–278. https://doi.org/10.1111/j.1474-919X.1950.tb01751.x (1950).Article 

    Google Scholar 
    Grant, P. R. & Boag, P. T. Rainfall on the Galapagos and the demography of Darwin’s Finches. Auk 97, 227–244 (1980).Article 

    Google Scholar 
    Peck, S. B. Beetles of the Galápagos Islands, Ecuador: Evolution, Ecology, and Diversity (Insecta: Coleoptera) (NRC Research Press, 2006).
    Google Scholar 
    Grant, P. R. & Grant, B. R. The breeding and feeding characteristics of Darwin’s Finches on Isla Genovesa, Galapagos. Ecol. Monogr. 50, 381–410. https://doi.org/10.2307/2937257 (1980).Article 

    Google Scholar 
    Boag, P. T. & Grant, P. R. Darwin Finches (Geospiza) on Isla Daphne Major, Galapagos—Breeding and feeding ecology in a climatically variable environment. Ecol. Monogr. 54, 463–489. https://doi.org/10.2307/1942596 (1984).Article 

    Google Scholar 
    Schluter, D. Feeding correlates of breeding and social organization in two Galapagos Finches. Auk 101, 59–68. https://doi.org/10.1093/auk/101.1.59 (1984).Article 

    Google Scholar 
    Hau, M., Wikelski, M., Gwinner, H. & Gwinner, E. 2004 Timing of reproduction in a Darwin’s finch: Temporal opportunism under spatial constraints. Oikos 106, 489–500 (2004).Article 

    Google Scholar 
    Pike, C. L. et al. Behavior of the avian parasite Philornis downsi (Diptera: Muscidae) in and near host nests in the Galapagos Islands. J. Insect Behav. https://doi.org/10.1007/s10905-021-09789-7 (2021).Article 

    Google Scholar 
    Heleno, R. H., Olesen, J. M., Nogales, M., Vargas, P. & Traveset, A. Seed dispersal network in the Galapagos and the consequences of alien plant invasions. Proc. R. Soc. B. 280, 20122112. https://doi.org/10.1098/rspb.2012.2112 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Traveset, A., Chamorro, S., Olesen, J. M. & Heleno, R. Space, time and aliens: charting the dynamic structure of Galapagos pollination networks. AoB PLANTS 7, plv068. https://doi.org/10.1093/aobpla/plv068 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ervin, S. Nesting behavior of the large-billed flycatcher on Isla Santa Cruz. Noticias de Galapagos 51, 17–20 (1992).
    Google Scholar 
    Lincango, P. et al. Interactions between the avian parasite, Philornis downsi (Diptera: Muscidae) and the Galapagos Flycatcher, Myiarchus magnirostris Gould (Passeriformes: Tyrannidae). J. Wildl. Dis. 51, 907–910. https://doi.org/10.7589/2015-01-025 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dudaniec, R. Y., Gardner, M. G., Donnellan, S. & Kleindorfer, S. Genetic variation in the invasive parasite, Philornis downsi (Diptera: Muscidae) on the Galapagos archipelago. BMC Ecol. 8, 13. https://doi.org/10.1186/1472-6785-8-13 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cimadom, A. et al. Darwin’s finches treat their feathers with a natural repellent. Sci. Rep. 6, 34559. https://doi.org/10.1038/srep34559 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Common, L. K., Dudaniec, R. Y., Colombelli-Negrel, D. & Kleindorfer, S. Taxonomic shifts in Philornis larval behavior and rapid changes in Philornis downsi Dodge & Aitken (Diptera: Muscidae), an invasive avian parasite on the Galapagos Islands. InTech Open https://doi.org/10.5772/intechopen.88854 (2019).Article 

    Google Scholar 
    Common, L. K., O’Connor, J. A., Dudaniec, R. Y., Peters, K. J. & Kleindorfer, S. Evidence for rapid downward fecundity selection in an ectoparasite (Philornis downsi) with earlier host mortality in Darwin’s finches. J. Evol. Biol. 33, 524–533. https://doi.org/10.1111/jeb.13588 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dieckhoff, C., Theobald, J. C., Waeckers, F. L. & Heimpel, G. E. Egg load dynamics and the risk of egg and time limitation experienced by an aphid parasitoid in the field. Ecol. Evol. 4, 1739–1750. https://doi.org/10.1002/ece3.1023 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Papaj, D. R. Ovarian dynamics and host use. Annu. Rev. Entomol. 45, 423–448. https://doi.org/10.1146/annurev.ento.45.1.423 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Barton Browne, L., van Gerwen, A. C. M. & Williams, K. L. Oocyte resorption during ovarian development in the blowfly Lucilia cuprina. J. Insect Physiol. 25, 147–153. https://doi.org/10.1016/0022-1910(79)90093-3 (1979).Article 

    Google Scholar 
    Venkatesh, K. & Morrison, P. E. Some aspects of oogenesis in the stable fly Stomoxys calcitrans (Diptera, Muscidae). J. Insect Physiol. 26, 711–715. https://doi.org/10.1016/0022-1910(80)90045-1 (1980).Article 

    Google Scholar 
    Spradbery, J. P. & Schweizer, G. Oosorption during ovarian development in the screw-worm fly, Chrysomya bezziana. Entomol. Exp. Appl. 30, 209–214. https://doi.org/10.1111/j.1570-7458.1981.tb03102.x (1981).Article 

    Google Scholar 
    Curry, R. L. & Grant, P. R. Demography of the cooperatively breeding Galapagos mockingbird, Nesomimus parvulus, in a climatically variable environment. J. Anim. Ecol. 58, 441–463. https://doi.org/10.2307/4841 (1989).Article 

    Google Scholar 
    Calero-Torralbo, M. A. & Valera, F. Synchronization of host-parasite cycles by means of diapause: Host influence and parasite response to involuntary host shifting. Parasitol. 135, 1343–1352. https://doi.org/10.1017/S0031182008004885 (2008).CAS 
    Article 

    Google Scholar 
    Larimore, R. W. Synchrony of cliff swallow nesting and development of the tick Ixodes baergi. Southwest. Nat. 32, 121–126 (1987).Article 

    Google Scholar 
    Bulgarella, M. & Heimpel, G. E. Host range and community structure of bird parasites in the genus Philornis (Diptera: Muscidae) on the Island of Trinidad. Ecol. Evol. 5, 3695–3703. https://doi.org/10.1002/ece3.1621 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Common, L. K. et al. Avian vampire fly (Philornis downsi) mortality differs across Darwin’s finch host species. Sci. Rep. 11, 15832. https://doi.org/10.1038/s41598-021-94996-7 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mendonca, E. & Couri, M. S. New associations between Philornis Meinert (Diptera, Muscidae) and Thamnophilidae (Aves, Passeriformes). Revta. Bras. Zool. 16, 1223–1225 (1999).Article 

    Google Scholar 
    Di Giacomo, A. G. Aves de la Reserva El Bagual. Historia natural y paisaje de la Reserva El Bagual, provincia de Formosa, Argentina. Inventario de la fauna de vertebrados y de la flora vascular de un área del Chaco Húmedo (eds. Di Giacomo, A. G. & Krapovickas, S. F.). Temas de Naturaleza y Conservación 4, 203–465 (Aves Argentinas/AOP, 2005).Koop, J. A. H., Causton, C. E., Bulgarella, M., Cooper, E. & Heimpel, G. E. Population structure of a nest parasite of Darwin’s finches within its native and invasive ranges. Conserv. Genet. 22, 11–22. https://doi.org/10.1007/s10592-020-01315-0 (2021).Article 

    Google Scholar 
    Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 7, 1225–1241. https://doi.org/10.1111/j.1461-0248.2004.00684.x (2004).Article 

    Google Scholar  More

  • in

    Avian predators taste reject mimetic prey in relation to their signal reliability

    Dall, S. R. X. & Johnstone, R. A. Managing uncertainty: Information and insurance under the risk of starvation. Philos. Trans. R. Soc. Lond. B 357, 1519–1526 (2002).
    Article 

    Google Scholar 
    Balogh, A. C. V., Gamberale-Stille, G. & Leimar, O. Learning and the mimicry spectrum: from quasi-Bates to super-Müller. Anim. Behav. 76, 1591–1599 (2008).Article 

    Google Scholar 
    Barnett, C. A., Bateson, M. & Rowe, C. Better the devil you know: Avian predators find variation in prey toxicity aversive. Biol. Lett. 10, 20140533 (2014).Article 

    Google Scholar 
    Ruxton, G. D., Allen, W. L., Sherratt, T. N. & Speed, M. P. Avoiding Attack: The Evolutionary Ecology of Crypsis, Aposematism, and Mimicry 2nd edn. (Oxford University Press, 2018).Book 

    Google Scholar 
    Sherratt, T. N. State-dependent risk-taking by predators in systems with defended prey. Oikos 103, 93–100 (2003).Article 

    Google Scholar 
    Sherratt, T. N., Speed, M. S. & Ruxton, G. D. Natural selection on unpalatable species imposed by state-dependent foraging behaviour. J. Theor. Biol. 228, 217–226 (2004).MathSciNet 
    Article 
    ADS 

    Google Scholar 
    Gamberale-Stille, G. & Guilford, T. Automimicry destabilizes aposematism: Predator sample-and-reject behaviour may provide a solution. Proc. R. Soc. Lond. B 271, 2621–2625 (2004).Article 

    Google Scholar 
    Skelhorn, J. & Rowe, C. Avian predators taste-reject aposematic prey on the basis of their chemical defence. Biol. Lett. 2, 348–350 (2006).Article 

    Google Scholar 
    Skelhorn, J. & Rowe, C. Automimic frequency influences the foraging decisions of avian predators on aposematic prey. Anim. Behav. 74, 1563–1572 (2007).Article 

    Google Scholar 
    Brower, J. V. Z. Experimental studies of mimicry. IV. The reactions of starlings to different proportions of models and mimics. Am. Nat. 94, 271–282 (1960).Article 

    Google Scholar 
    Huheey, J. E. Studies in warning coloration and mimicry VIII. Further evidence for a frequency-dependent model of predation. J. Herpetol. 14, 223–230 (1980).Avery, M. L. Application of mimicry theory to bird damage control. J. Wildl. Manag. 49, 1116–1121 (1985).Article 

    Google Scholar 
    Nonacs, P. Foraging in a dynamic mimicry complex. Am. Nat. 126, 165–180 (1985).Article 

    Google Scholar 
    Rowland, H. M., Ihalainen, E., Lindström, L., Mappes, J. & Speed, M. P. Co-mimics have a mutualistic relationship despite unequal defences. Nature 448, 64–67 (2007).CAS 
    Article 
    ADS 

    Google Scholar 
    Skelhorn, J. & Rowe, C. Predators’ toxin burdens influence their strategic decisions to eat toxic prey. Curr. Biol. 17, 1479–1483 (2007).CAS 
    Article 

    Google Scholar 
    Jones, R. S., Davis, S. C. & Speed, M. P. Defence cheats can degrade protection of chemically defended prey. Ethology 119, 52–57 (2013).Article 

    Google Scholar 
    Guilford, T. “Go-slow” signalling and the problem of automimicry. J. Theor. Biol. 170, 311–316 (1994).Article 
    ADS 

    Google Scholar 
    Skelhorn, J. & Rowe, C. Taste-rejection by predators and the evolution of unpalatability in prey. Behav. Ecol. Sociobiol. 60, 550–555 (2006).Article 

    Google Scholar 
    Chatelain, M., Halpin, C. G. & Rowe, C. Ambient temperature influences birds’ decisions to eat toxic prey. Anim. Behav. 86, 733–740 (2013).CAS 
    Article 

    Google Scholar 
    Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007).Article 
    ADS 

    Google Scholar 
    Yamazaki, Y., Pagani-Núñez, E., Sota, T. & Barnett C. R. A. The truth is in the detail: predators attack aposematic prey less intensely than other prey types. Biol. J. Linn. Soc. 131, 332–343 (2020).Valkonnen, J. K. et al. Variation in predator species abundance can cause variable selection pressure on warning signalling prey. Ecol. Evol. 2, 1971–1976 (2011).Article 

    Google Scholar 
    Nokelainen, O., Valkonen, J., Lindstedt, C. & Mappes, J. Changes in predator community structure shifts the efficacy of two warning signals in Arctiid moths. J. Anim. Ecol. 83, 598–605 (2014).Article 

    Google Scholar 
    Bibby, C. J., Burgess, N. D., Hill, D. A. &. Mustoe S. H. Bird Census Techniques (2nd Edition). (Academic Press, London, 2000).Tsujimoto, D., Lin, C.-H., Kurihara, N. & Barnett, C. R. A. Citizen science in the class-room: the consistency of student collected data and its value in ecological hypothesis testing. Ornithological Sci. 18, 39–47 (2019).Article 

    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Software 67, 1–48 (2015).Article 

    Google Scholar 
    Rainey, C. Dealing with separation in logistic regression models. Polit. Anal. 24, 339–355 (2016).Article 

    Google Scholar 
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Meth. Ecol. Evol. 4, 133–142 (2012).Article 

    Google Scholar 
    Hothorn, T,. Bretz, F. & Westfall, P. Simultaneous Inference in General Parametric Models. Biometrical. J. 50, 346–363 (2008).Paradis, E. & Schliep, K. Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).Barnett, C. R. A., Ringhofer, M. & Suzuki, T. N. Differences in predatory behavior among three bird species when attacking chemically defended and undefended prey. J. Ethol. 39, 29–37 (2021).Article 

    Google Scholar 
    Carroll, J. & Sherratt, T. N. A direct comparison of the effectiveness of two anti-predator strategies under field conditions. J. Zool. 291, 279–285 (2013).Article 

    Google Scholar 
    Krebs, C. J. Ecological Methodology (2nd Edition). (Benjamin/Cummings, Menlo Park, CA, 1999).Oksanen, J. vegan: Community Ecology Package. (2020).R Development Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. URL http://www.Rproject.org (2017).Marples, N. M., Speed, M. P. & Thomas, R. J. An individual-based profitability spectrum for understanding interactions between predators and their prey. Biol. J. Linn. Soc. 125, 1–13 (2018).Article 

    Google Scholar 
    Boyden, T. C. Butterfly palatability and mimicry: experiments with anolis lizards. Evolution 30, 73–81 (1976).Article 

    Google Scholar 
    Järvi, T., Sillén-Tullberg, B. & Wiklund, C. The cost of being aposematic. An experimental study of predation on larvae of Papilio machaon by the Great Tit Parus major. Oikos 36, 267–272 (1981).Wiklund, C. & Järvi, T. Survival of distasteful insects after being attacked by naïve birds: a reappraisal of aposematic coloration evolving through individual selection. Evolution 36, 998–1002 (1982).Article 

    Google Scholar 
    Pinheiro, C. E. G. & Campos, V. C. Do rufous-tailed jacamars (Galbula ruficauda) play with aposematic butterflies. Ornitol. Neotrop. 24, 1–3 (2013).
    Google Scholar 
    Halpin, C. G. & Rowe, C. The effect of distastefulness and conspicuous coloration on post-attack rejection behaviour of predators and survival of prey. Biol. J. Linn. Soc. 120, 236–244 (2017).
    Google Scholar 
    Sillén-Tullberg, B. Higher survival of an aposematic than of a cryptic form of a distasteful bug. Oecologia 67, 411–415 (1985).Article 
    ADS 

    Google Scholar 
    Fisher, R. A. The Genetical Theory of Natural Selection (Clarenden Press, 1930).Book 

    Google Scholar 
    Chai, P. Field observations and feeding experiments on the responses of rufous-tailed jacamars butterflies in a tropical rainforest. Biol. J. Linn. Soc. 29, 161–189 (1986).Article 

    Google Scholar 
    Wang, L.-Y., Huang, W.-S., Tang, H.-C., Huang, L.-C. & Lin, C.-P. Too hard to swallow: A secret secondary defence of an aposematic insect. J. Exp. Biol. 221, jeb172486 (2018).PubMed 

    Google Scholar 
    Summers, K., Speed, M. P., Blount, J. D. & Stuckert, A. M. M. Are aposematic signals honest? A review. J. Evol. Biol. 28, 1583–1599 (2015).CAS 
    Article 

    Google Scholar 
    Holen, Ø. H. Disentangling taste and toxicity in aposematic prey. Proc. R. Soc. B 280, 20122588 (2013).Article 

    Google Scholar 
    Speed, M. P. & Franks, D. W. Antagonistic evolution in an aposematic predator-prey system. Evolution 68, 2996–3007 (2014).Article 

    Google Scholar  More

  • in

    Rhizosphere bacteriome structure and functions

    Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E. & Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64, 807–838 (2013).CAS 
    PubMed 

    Google Scholar 
    Leach, J. E., Triplett, L. R., Argueso, C. T. & Trivedi, P. Communication in the phytobiome. Cell 169, 587–596 (2017).CAS 
    PubMed 

    Google Scholar 
    Vorholt, J. A., Vogel, C., Carlstrom, C. I. & Muller, D. B. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22, 142–155 (2017).CAS 
    PubMed 

    Google Scholar 
    Jiang, Y. et al. Plant cultivars imprint the rhizosphere bacterial community composition and association networks. Soil Biol. Biochem. 109, 145–155 (2017).CAS 

    Google Scholar 
    Garbeva, P., van Elsas, J. D. & van Veen, J. A. Rhizosphere microbial community and its response to plant species and soil history. Plant Soil 302, 19–32 (2008).CAS 

    Google Scholar 
    Li, Y. et al. Rhizobacterial communities of five co-occurring desert halophytes. PeerJ 6, e5508 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Matthews, A., Pierce, S., Hipperson, H. & Raymond, B. Rhizobacterial community assembly patterns vary between crop species. Front. Microbiol. 10, 581 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Perez-Jaramillo, J. E., Mendes, R. & Raaijmakers, J. M. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol. Biol. 90, 635–644 (2016).CAS 
    PubMed 

    Google Scholar 
    Xu, J. et al. The structure and function of the global citrus rhizosphere microbiome. Nat. Commun. 9, 4894 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant-microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18, 607–621 (2020).CAS 
    PubMed 

    Google Scholar 
    Howard, M. M., Munoz, C. A., Kao-Kniffin, J. & Kessler, A. Soil microbiomes from fallow fields have species-specific effects on crop growth and pest resistance. Front. Plant Sci. 11, 1171 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Yan, Y., Kuramae, E. E., de Hollander, M., Klinkhamer, P. G. & van Veen, J. A. Functional traits dominate the diversity-related selection of bacterial communities in the rhizosphere. ISME J. 11, 56–66 (2017).PubMed 

    Google Scholar 
    Bakker, P. A., Berendsen, R. L., Doornbos, R. F., Wintermans, P. C. & Pieterse, C. M. The rhizosphere revisited: root microbiomics. Front. Plant Sci. 4, 165 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Busby, P. E. et al. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol. 15, e2001793 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    de Vries, F. T., Griffiths, R. I., Knight, C. G., Nicolitch, O. & Williams, A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368, 270–274 (2020).ADS 
    PubMed 

    Google Scholar 
    Hamonts, K. et al. Field study reveals core plant microbiota and relative importance of their drivers. Environ. Microbiol. 20, 124–140 (2018).CAS 
    PubMed 

    Google Scholar 
    Xu, Q. et al. Long-term chemical-only fertilization induces a diversity decline and deep selection on the soil bacteria. mSystems 5, e00337–20 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richter, A., Schöning, I., Kahl, T., Bauhus, J. & Ruess, L. Regional environmental conditions shape microbial community structure stronger than local forest management intensity. Ecol. Manag. 409, 250–259 (2018).
    Google Scholar 
    Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S. & Vivanco, J. M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57, 233–266 (2006).CAS 
    PubMed 

    Google Scholar 
    Wallenstein, M. D. Managing and manipulating the rhizosphere microbiome for plant health: a systems approach. Rhizosphere 3, 230–232 (2017).
    Google Scholar 
    Kuzyakov, Y. & Xu, X. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. N. Phytol. 198, 656–669 (2013).CAS 

    Google Scholar 
    Roller, B. R., Stoddard, S. F. & Schmidt, T. M. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat. Microbiol. 1, 16160 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, L. et al. Microbial functional trait of rRNA operon copy numbers increases with organic levels in anaerobic digesters. ISME J. 11, 2874–2878 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nuccio, E. E. et al. Niche differentiation is spatially and temporally regulated in the rhizosphere. ISME J. 14, 999–1014 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fan, K., Weisenhorn, P., Gilbert, J. A. & Chu, H. Wheat rhizosphere harbors a less complex and more stable microbial co-occurrence pattern than bulk soil. Soil Biol. Biochem. 125, 251–260 (2018).CAS 

    Google Scholar 
    Fan, K. et al. Rhizosphere-associated bacterial network structure and spatial distribution differ significantly from bulk soil in wheat crop fields. Soil Biol. Biochem. 113, 275–284 (2017).CAS 

    Google Scholar 
    Peiffer, J. A. et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl Acad. Sci. USA 110, 6548–6553 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baudoin, E., Benizri, E. & Guckert, A. Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol. Biochem. 35, 1183–1192 (2003).CAS 

    Google Scholar 
    Kuzyakov, Y. & Razavi, B. S. Rhizosphere size and shape: temporal dynamics and spatial stationarity. Soil Biol. Biochem. 135, 343–360 (2019).CAS 

    Google Scholar 
    Ren, Y. et al. Functional compensation dominates the assembly of plant rhizospheric bacterial community. Soil Biol. Biochem. 150, 107968 (2020).CAS 

    Google Scholar 
    Chen, Y. et al. Organic amendments shift the phosphorus-correlated microbial co-occurrence pattern in the peanut rhizosphere network during long-term fertilization regimes. Appl. Soil Ecol. 124, 229–239 (2018).ADS 

    Google Scholar 
    Atulba, S. L. et al. Evaluation of rice root oxidizing potential using digital image analysis. J. Korean Soc. Appl. Bi 58, 463–471 (2015).CAS 

    Google Scholar 
    Schmidt, H., Eickhorst, T. & Tippkötter, R. Monitoring of root growth and redox conditions in paddy soil rhizotrons by redox electrodes and image analysis. Plant Soil 341, 221–232 (2011).CAS 

    Google Scholar 
    Pausch, J., Zhu, B., Kuzyakov, Y. & Cheng, W. Plant inter-species effects on rhizosphere priming of soil organic matter decomposition. Soil Biol. Biochem. 57, 91–99 (2013).CAS 

    Google Scholar 
    Finn, D., Kopittke, P. M., Dennis, P. G. & Dalal, R. C. Microbial energy and matter transformation in agricultural soils. Soil Biol. Biochem. 111, 176–192 (2017).CAS 

    Google Scholar 
    Jones, R. T. et al. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J. 3, 442–453 (2009).CAS 
    PubMed 

    Google Scholar 
    Zhao, S. et al. Biogeographical distribution of bacterial communities in saline agricultural soil. Geoderma 361, 114095 (2020).ADS 
    CAS 

    Google Scholar 
    Eiler, A., Heinrich, F. & Bertilsson, S. Coherent dynamics and association networks among lake bacterioplankton taxa. ISME J. 6, 330–342 (2012).CAS 
    PubMed 

    Google Scholar 
    Zhou, J. et al. Generation of arbitrary two-point correlated directed networks with given modularity. Phys. Lett. A 374, 3129–3135 (2010).ADS 
    CAS 
    MATH 

    Google Scholar 
    Herron, P. M., Gage, D. J., Arango Pinedo, C., Haider, Z. K. & Cardon, Z. G. Better to light a candle than curse the darkness: illuminating spatial localization and temporal dynamics of rapid microbial growth in the rhizosphere. Front. Plant Sci. 4, 323 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Blagodatskaya, E., Blagodatsky, S., Anderson, T. H. & Kuzyakov, Y. Microbial growth and carbon use efficiency in the rhizosphere and root-free soil. PLoS ONE 9, e93282 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berendsen, R. L., Pieterse, C. M. & Bakker, P. A. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).CAS 
    PubMed 

    Google Scholar 
    Mendes, L. W., Kuramae, E. E., Navarrete, A. A., van Veen, J. A. & Tsai, S. M. Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J. 8, 1577–1587 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hinsinger, P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237, 173–195 (2001).CAS 

    Google Scholar 
    Kuzyakov, Y. & Blagodatskaya, E. Microbial hotspots and hot moments in soil: Concept & review. Soil Biol. Biochem. 83, 184–199 (2015).CAS 

    Google Scholar 
    Loeppmann, S., Blagodatskaya, E., Pausch, J. & Kuzyakov, Y. Substrate quality affects kinetics and catalytic efficiency of exo-enzymes in rhizosphere and detritusphere. Soil Biol. Biochem. 92, 111–118 (2016).CAS 

    Google Scholar 
    Ma, X. et al. Spatial patterns of enzyme activities in the rhizosphere: Effects of root hairs and root radius. Soil Biol. Biochem. 118, 69–78 (2018).CAS 

    Google Scholar 
    Kroener, E., Zarebanadkouki, M., Kaestner, A. & Carminati, A. Nonequilibrium water dynamics in the rhizosphere: How mucilage affects water flow in soils. Water Resour. Res. 50, 6479–6495 (2014).ADS 

    Google Scholar 
    Carminati, A. Rhizosphere wettability decreases with root age: a problem or a strategy to increase water uptake of young roots? Front. Plant Sci. 4, 298 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Holz, M., Zarebanadkouki, M., Kaestner, A., Kuzyakov, Y. & Carminati, A. Rhizodeposition under drought is controlled by root growth rate and rhizosphere water content. Plant Soil 423, 429–442 (2018).CAS 

    Google Scholar 
    Tripathi, B. M. et al. Trends in taxonomic and functional composition of soil microbiome along a precipitation gradient in Israel. Microb. Ecol. 74, 168–176 (2017).PubMed 

    Google Scholar 
    Harms, A., Brodersen, D. E., Mitarai, N. & Gerdes, K. Toxins, targets, and triggers: an overview of toxin-antitoxin biology. Mol. Cell 70, 768–784 (2018).CAS 
    PubMed 

    Google Scholar 
    Kearns, P. J. & Shade, A. Trait-based patterns of microbial dynamics in dormancy potential and heterotrophic strategy: case studies of resource-based and post-press succession. ISME J. 12, 2575–2581 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Klappenbach, J. A., Dunbar, J. M. & Schmidt, T. M. rRNA operon copy number reflects ecological strategies of bacteria. Appl. Environ. Microb. 66, 1328–1333 (2000).ADS 
    CAS 

    Google Scholar 
    Schoeps, R. et al. Land-use intensity rather than plant functional identity shapes bacterial and fungal rhizosphere communities. Front. Micro. 9, 2711 (2018).
    Google Scholar 
    Nemergut, D. R. et al. Decreases in average bacterial community rRNA operon copy number during succession. ISME J. 10, 1147–1156 (2016).CAS 
    PubMed 

    Google Scholar 
    Cui, J. et al. Carbon and nitrogen recycling from microbial necromass to cope with C:N stoichiometric imbalance by priming. Soil Biol. Biochem. 142, 107720 (2020).CAS 

    Google Scholar 
    Blagodatskaya, E. V., Blagodatsky, S. A., Anderson, T. H. & Kuzyakov, Y. Priming effects in chernozem induced by glucose and N in relation to microbial growth strategies. Appl. Soil Ecol. 37, 95–105 (2007).
    Google Scholar 
    Lecomte, S. M. et al. Diversifying anaerobic respiration strategies to compete in the rhizosphere. Front. Environ. Sci. 6, 139 (2018).
    Google Scholar 
    Herz, K. et al. Drivers of intraspecific trait variation of grass and forb species in German meadows and pastures. J. Veg. Sci. 28, 705–716 (2017).
    Google Scholar 
    Ravenek, J. M. et al. Linking root traits and competitive success in grassland species. Plant Soil 407, 39–53 (2016).CAS 

    Google Scholar 
    Larsen, J., Jaramillo-López, P., Nájera-Rincon, M. & González-Esquivel, C. Biotic interactions in the rhizosphere in relation to plant and soil nutrient dynamics. J. Soil Sci. Plant Nutr. 15, 449–463 (2015).
    Google Scholar 
    Raaijmakers, J. M., Paulitz, T. C., Steinberg, C., Alabouvette, C. & Moënne-Loccoz, Y. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321, 341–361 (2009).CAS 

    Google Scholar 
    Ma, H.-K. et al. Steering root microbiomes of a commercial horticultural crop with plant-soil feedbacks. Appl. Soil Ecol. 150, 103468 (2020).
    Google Scholar 
    Hannula, S. E. et al. Persistence of plant-mediated microbial soil legacy effects in soil and inside roots. Nat. Commun 12, 5686 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hill, T. C., Walsh, K. A., Harris, J. A. & Moffett, B. F. Using ecological diversity measures with bacterial communities. FEMS Microbiol. Ecol. 43, 1–11 (2003).CAS 
    PubMed 

    Google Scholar 
    Lima-Mendez, G. et al. Determinants of community structure in the global plankton interactome. Science 348, 6237 (2015).
    Google Scholar 
    Noble, W. S. How does multiple testing correction work? Nat. Biotechnol. 27, 1135–1137 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Luo, F., Zhong, J., Yang, Y., Scheuermann, R. H. & Zhou, J. Application of random matrix theory to biological networks. Phys. Lett. A 357, 420–423 (2006).ADS 
    CAS 

    Google Scholar 
    Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. ICWSM 8, 361–362 (2009).
    Google Scholar 
    Peng, G. S. & Wu, J. Optimal network topology for structural robustness based on natural connectivity. Phys. A 443, 212–220 (2016).MathSciNet 

    Google Scholar 
    Ruan, Y., Wang, T., Guo, S., Ling, N. & Shen, Q. Plant grafting shapes complexity and co-occurrence of rhizobacterial assemblages. Microb. Ecol. 80, 643–655 (2020).CAS 
    PubMed 

    Google Scholar 
    Newman, M. E. Modularity and community structure in networks. Proc. Natl Acad. Sci. USA 103, 8577–8582 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Deng, Y. et al. Molecular ecological network analyses. BMC Bioinforma. 13, 113 (2012).
    Google Scholar 
    Guimerà, R. & Nunes Amaral, L. A. Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl Acad. Sci. USA 104, 19891 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    Ling, N. et al. Insight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysis. Soil Biol. Biochem. 99, 137–149 (2016).CAS 

    Google Scholar 
    Louca, S., Parfrey Laura, W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685–688 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lennon, J. T. & Jones, S. E. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol. 9, 119–130 (2011).CAS 
    PubMed 

    Google Scholar 
    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
    Google Scholar 
    Rosenberg, M. S., Adams, D. C. & Gurevitch, J. MetaWin: Statistical software for meta-analysis. Version 2.0. Sinauer (2000).Viechtbauer, W. Conducting meta-analyses in R with the metafor Package. J. Stat. Softw. 36, 1–48 (2010).
    Google Scholar 
    Egger, M., Smith, G. D., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Calcagno, V. & de Mazancourt, C. glmulti: an R package for easy automated model selection with (generalized) linear models. J. Stat. Softw. 34, 1–29 (2010).
    Google Scholar 
    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Changes in rays’ swimming stability due to the phase difference between left and right pectoral fin movements

    Analytical targetsTwo species of undulation motion rays with different pectoral fin shapes bred in KAIYUKAN were analyzed: sharpnose stingray Dasyatis acutirostra and pitted stingray Dasyatis matsubarai (Fig. 1a,b). Blender 2.7925 was used to construct stingray models from pictures26,27 as accurately as possible; Blender is a free and open-source 3D creation suite used to make realistic characters for movies, etc. Detailed information on how to construct models using Blender is provided in our previous paper28. To focus on the effects of pectoral fin movements, we did not consider the body’s shape as in the previous studies12,29. The height and disk width (WD) of all models were set to 0.01 m and 0.44 m, respectively, considering the previous studies30,31. The disk length of each model was determined from WD, referring to the aspect ratio of the rays’ photographs26,27; the disk length (LD) of D. acutirostra and D. matsubarai are 0.348 m and 0.344 m, respectively.Figure 1Analytical targets and description of motion. (a) Analytical model of D. acutirostra. (b) Analytical model of D. matsubarai. (c) Description of motion, (d) the relationship between any two points on the surface before and after the deformation.Full size imageMotionThe motion was given to satisfy the following equations:$$z = left{ {begin{array}{*{20}l} {A;sin left( {omega left( {t – kTleft( {frac{{angl{text{e}}left( {x_{i} ,y_{i} } right) – 10^{{text{o}}} }}{{All;angl{text{e}}}} – theta } right)} right)h_{1} h_{2} } right.} hfill & {left( {10^{{text{o}}} le angl{text{e}}left( {x_{i} ,y_{i} } right) le 170^{{text{o}}} } right)} hfill \ {A;sin left( {omega left( {t – kTleft( {frac{{350^{{text{o}}} – left( {angl{text{e}}left( {x_{i} ,y_{i} } right) – 10^{{text{o}}} } right)}}{{All;angl{text{e}}}}} right)} right)h_{1} h_{2} } right.} hfill & {left( {190^{{text{o}}} le angl{text{e}}left( {x_{i} ,y_{i} } right) le 350^{{text{o}}} } right)} hfill \ end{array} } right.$$
    (1)
    $$begin{array}{c}{h}_{1}=a{r}_{i}^{3}+b{r}_{i}^{2}+c{r}_{i}end{array}$$
    (2)
    $$h_{2} = left{ {begin{array}{*{20}l} {dleft( {angleleft( {x_{i} ,y_{i} } right) – 10^{ circ } } right)^{2} + eleft( {angleleft( {x_{i} ,y_{i} } right) – 10^{ circ } } right)} hfill & {left( {10^{ circ } le angleleft( {x_{i} ,y_{i} } right) le 170^{ circ } } right)} hfill \ {dleft( {350^{ circ } – left( {angleleft( {x_{i} ,y_{i} } right) – 10^{ circ } } right)} right)^{2} + eleft( {350^{ circ } – left( {angleleft( {x_{i} ,y_{i} } right) – 10^{ circ } } right)} right)} hfill & {left( {190^{ circ } le angleleft( {x_{i} ,y_{i} } right) le 350^{ circ } } right)} hfill \ end{array} } right.$$
    (3)
    $$begin{array}{c}{left({r}_{i}-{r}_{i-1}right)}^{2}+{left({z}_{i}-{z}_{i-1}right)}^{2}={left({r}_{i}^{mathrm{^{prime}}}-{r}_{i-1}^{mathrm{^{prime}}}right)}^{2}+{left({z}_{i}^{mathrm{^{prime}}}-{z}_{i-1}^{mathrm{^{prime}}}right)}^{2}end{array}$$
    (4)
    $$begin{array}{c}angleleft({x}_{i},{y}_{i}right)= angleleft({x}_{i}^{^{prime}},{y}_{i}^{^{prime}}right).end{array}$$
    (5)
    Equation (1) represents the amount of movement of the model surface in the z-axis direction, where (A) is the amplitude of the pectoral fin tip, (omega) is the angular velocity, (t) is time, (k) is the wavenumber, (T) is the period, angle(({x}_{i},{y}_{i})) is the angle made by the line connecting the center of rotation and any point (({x}_{i},{y}_{i})) on the model surface with the x-axis, Allangle is the range where the motion is given (160°), and (theta) is the phase difference between the movements of the right and left pectoral fins (Fig. 1c). ({h}_{1}) is the weighting from the center to the radial direction: it is necessary to set the amplitude at the ray’s center to zero and increase the amplitude toward the pectoral fin tip (a = 119.786, b = -7.957, c = 0.498). ({h}_{2}) is the weighting in the circumferential direction: it is necessary to increase the amplitude from the anterior to the tip of the pectoral fin and decrease the amplitude from the tip of the pectoral fin to the posterior (d = − 1.563 × 10–4, e = 0.025). Equation (4) is the condition in which the distance between two neighboring points in the same radial direction is equal before and after the movement (Fig. 1d). (r) is the distance between the center of rotation and any point (({x}_{i},{y}_{i})), defined as (sqrt{{x}_{i}^{2}+{y}_{i}^{2}}). Equation (5) defines angle(({x}_{i},{y}_{i})) as being constant before and after the move (Fig. 1c). The variables after the move are marked with ‘. Variables used in the analysis are A = 0.089 m, T = 0.499, k = 1.270, and ω = 12.599 rad/s. Videos of the created motion from the front and the side are shown in the “Supplement” (Supplement Movies 3, 4).Analytical conditionsAnalysis cases were conducted with eight conditions: two types of pectoral fin shape (Fig. 1a,b) and four types of phase difference (0 (T), 0.25 (T), 0.5 (T), and 0.75 (T)). These conditions were set for investigating the effects of phase differences between left and right pectoral fin movements on swimming and how these effects vary with pectoral fin shape.Numerical methodsA CFD simulation of the ray models in the water flow was performed using OPENFOAM, an open-source finite volume method CFD toolbox32, to calculate the forces acting on the rays in each axial direction and the moment around each axis. The governing equations were the continuity equation and the three-dimensional incompressible Reynolds-averaged Navier–Stokes equation, expressed by:$$begin{array}{*{20}c} {nabla cdot u = 0} \ end{array}$$
    (6)
    $$begin{array}{*{20}c} {frac{partial u}{{partial {text{t}}}} + nabla cdot left( {uu} right) = – nabla p + nabla cdot left( {vnabla u} right) + nabla cdot left[ {nu left{ {left( {nabla u} right)^{T} – frac{1}{3}nabla cdot uI} right}} right], } \ end{array}$$
    (7)
    where (u) is the velocity vector, t is the time, p is the static pressure divided by the reference density, (nu) is the kinematic viscosity, and I is the unit tensor. The Reynolds number was defined regarding the previous studies3 as:$$begin{array}{c}{R}_{e}=frac{U{L}_{D}}{nu },end{array}$$
    (8)
    where (U) (/ms) is the given flow speed3 (1.5 × LD/ms), ({L}_{D}) (m) is the length of the ray models, and (nu) is the kinematic viscosity of water at 20 °C (1.0 × 10–6 m2/s). The Reynolds number in this study is 1.8 × 105; considering this, we used the k–ω shear stress turbulence model33,34. The k–ω shear stress turbulence model is a type of Reynolds-averaged Navier–Stokes equation (RANS) turbulence model that is widely used to calculate for the fish swimming flow35,36,37. The overset grid method was used in this study; it is a generic implementation of overset meshes. For both static and dynamic cases, cell-to-cell mapping between multiple, disconnected mesh regions is employed to generate a composite domain38,39. This method permits complex mesh motions and interactions without the penalties associated with deforming meshes. The process is described in detail by Noack40. The calculation volume was 5.4 WD in length, 5.4 WD in height, and 5.4 WD in width (Fig. 2a,b). A hexahedral volume mesh was created using the snappyHexMesh of OPENFOAM. The fluid region was divided into two parts: the overset region and the background region (Fig. 2a,b). The overset region moves and transforms to match the motion of the ray and was made with fine meshes around the analysis target and coarse meshes in the outlying areas; a one-layer boundary layer mesh was created around the analysis target. The overset region shape is an ellipsoid (Fig. 2a,b). The minimum mesh volume is 7.3 × 10–10 (m3), and the maximum mesh volume is 2.6 × 10–2 (m3). The total number of meshes was 9.0 × 105. At the outlet boundary, the average static relative pressure was set to 0 Pa. The surfaces of the fish model were formed into non-slip surfaces.Figure 2Meshes for CFD simulation and differences in force between different meshes. (a) Meshes at the coronal plane of the whole fluid region. (b) Frontal cross-section of the fluid region at the green line in (a). The red region is the overset region. (c,d) Comparison of the instantaneous drag coefficient and the moment coefficient around the y-axis of D. matsubarai between the coarse, fine, and dense mesh.Full size imageThe drag coefficient ({C}_{D}left(tright)), the lateral force coefficient ({C}_{l}left(tright)), the lift coefficient ({C}_{L}left(tright)), the moment coefficient around the x-axis ({C}_{mx}left(tright)), the moment coefficient around the y-axis ({C}_{my}left(tright)) and the moment coefficient around the z-axis ({C}_{mz}left(tright)) were calculated as:$$begin{array}{c}{C}_{D}left(tright)=frac{Dleft(tright)}{frac{1}{2}rho {U}^{2}{L}_{D}{W}_{D}}end{array}$$
    (9)
    $$begin{array}{c}{C}_{l}left(tright)=frac{lleft(tright)}{frac{1}{2}rho {U}^{2}{L}_{D}{W}_{D}}end{array}$$
    (10)
    $$begin{array}{c}{C}_{L}left(tright)=frac{Lleft(tright)}{frac{1}{2}rho {U}^{2}{L}_{D}{W}_{D}}end{array}$$
    (11)
    $$begin{array}{c}{C}_{mx}left(tright)=frac{{M}_{psi }left(tright)}{frac{1}{2}rho {U}^{2}{L}_{D}^{2}{W}_{D}}end{array}$$
    (12)
    $$begin{array}{c}{C}_{my}left(tright)=frac{{M}_{phi }left(tright)}{frac{1}{2}rho {U}^{2}{L}_{D}^{2}{W}_{D}}end{array}$$
    (13)
    $$begin{array}{c}{c}_{mz}left(tright)=frac{{M}_{theta }left(tright)}{frac{1}{2}rho {U}^{2}{L}_{D}^{2}{W}_{D}},end{array}$$
    (14)
    where (Dleft(tright)) is the calculated drag, (lleft(tright)) is the calculated lateral force, (Lleft(tright)) is the calculated lift, ({M}_{psi }left(tright)) is the calculated moment around the x-axis, ({M}_{phi }left(tright)) is the calculated moment around the y-axis, ({M}_{theta }left(tright)) is the calculated moment around the z-axis, and (rho) (kg/m3) is the density of water at 20 °C (998 kg/m3). As shown in a previous study41. the propulsive efficiency (eta) is defined as the ratio of output power ({P}_{o}) to input power ({P}_{e}) which can be written as:$$begin{array}{c}{P}_{o}left(tright)=frac{1}{T}{int }_{0}^{T}Dleft(tright)Udtend{array}$$
    (15)
    $$begin{array}{c}{P}_{e}left(tright)=frac{1}{T}{int }_{0}^{T}left[Dleft(tright)dot{x}left(tright)+lleft(tright)dot{y}left(tright)+Lleft(tright)dot{z}left(tright)right]dtend{array}$$
    (16)
    $$begin{array}{c}eta =frac{{P}_{o}}{{P}_{e}}.end{array}$$
    (17)
    An in-house program calculated the forces acting on rays in each axial direction and the moment around each axis. The numerical method’s validity and reliability were verified by comparing previous experimental and numerical analytical studies of heaving and pitching on airfoil naca001341. A high degree of similarity to previous studies was confirmed; the mean difference in the propulsive efficiency from the previous study of analysis was 5%, and the difference from the previous study of the experiment was 9%. Detailed information such as mesh, length, and velocity, of this analysis method’s verification is provided in the “Supplement”.A grid sensitivity study was conducted using three meshes: coarse, fine, and dense. The coarse mesh has 8.1 × 105 elements, the fine mesh has 9.0 × 105 elements, and the dense mesh has 9.9 × 105 elements. The analysis was conducted using a condition with no phase difference of D. matsubarai. As shown in Fig. 2c,d, the drag coefficient and the moment coefficient around the y-axis are almost the same when the mesh is fine and when the mesh is dense. The mean drag and propulsive efficiency error of fine and coarse meshes are 2.7% and 3.5%, respectively. The fine mesh was used in all simulation cases considering accuracy. We used the same meshes for all cases. More