Environmental influences on human innovation and behavioural diversity in southern Africa 92–80 thousand years ago
Lombard, M. et al. South African and Lesotho Stone Age sequence updated. S. Afr. Archaeol. Bull. 67, 120–144 (2012).
Google Scholar
Kandel, A. W. et al. Increasing behavioral flexibility? An integrative macro-scale approach to understanding the Middle Stone Age of southern Africa. J. Archaeol. Method Theory 23, 623–628 (2015).
Google Scholar
Porraz, G. et al. Experimentation preceding innovation in a MIS5 Pre-Still Bay layer from Diepkloof Rock Shelter (South Africa): emerging technologies and symbols. Preprint at EcoEvoRxiv https://ecoevorxiv.org/ch53r/ (2020).Texier, P. J. et al. A Howiesons Poort tradition of engraving ostrich eggshell containers dated to 60,000 years ago at Diepkloof Rock Shelter, South Africa. Proc. Natl Acad. Sci. USA 107, 6180–6185 (2010).CAS
PubMed
PubMed Central
Google Scholar
Henshilwood, C. S. et al. Klipdrift Shelter, southern Cape, South Africa: preliminary report on the Howiesons Poort layers. J. Archaeol. Sci. 45, 284–303 (2014).
Google Scholar
Powell, A., Shennan, S. & Thomas, M. G. Late Pleistocene demography and the appearance of modern human behavior. Science 324, 1298–1301 (2009).CAS
PubMed
Google Scholar
Marean, C. W. The transition to foraging for dense and predictable resources and its impact on the evolution of modern humans. Phil. Trans. R. Soc. B 371, 20150239 (2016).PubMed
PubMed Central
Google Scholar
Mackay, A., Stewart, B. A. & Chase, B. M. Coalescence and fragmentation in the late Pleistocene archaeology of southernmost Africa. J. Hum. Evol. 72, 26–51 (2014).PubMed
Google Scholar
Wilkins, J. et al. Innovative Homo sapiens behaviours 105,000 years ago in a wetter Kalahari. Nature 592, 248–252 (2021).CAS
PubMed
Google Scholar
Dewar, G. & Stewart, B. A. Preliminary results of excavations at Spitzkloof Rockshelter, Richtersveld, South Africa. Quat. Int. 270, 30–39 (2012).
Google Scholar
Cowling, R. M. & Pierce, S. Namaqualand: A Succulent Desert (Fernwood Press, 1999).Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
Google Scholar
Mucina, L. et al. in The Vegetation of South Africa, Lesotho and Swaziland (eds Mucina, L. & Rutherford, M. C.) 221–299 (SANBI, 2006).Rebelo, A. G., Boucher, C., Helme, N., Mucina, L. & Rutherford, M. C. in The Vegetation of South Africa, Lesotho and Swaziland (eds Mucina, L. & Rutherford, M. C.) 53–219 (SANBI, 2006).Marean, C. W. et al. in Fynbos: Ecology, Evolution, and Conservation of a Megadiverse Region (eds Allsopp, N. et al.) 164–199 (Oxford Univ. Press, 2014).Carr, A. S., Chase, B. M. & Mackay, A. in Africa from MIS 6-2: Population Dynamics and Paleoenvironments (eds Jones, S. & Stewart, B. A.) 23–47 (Springer, 2016).Chase, B. M. & Meadows, M. E. Late Quaternary dynamics of southern Africa’s winter rainfall zone. Earth Sci. Rev. 84, 103–138 (2007).
Google Scholar
Steele, T. E. et al. Varsche Rivier 003: a Middle and Later Stone Age site with Still Bay and Howiesons Poort assemblages in southern Namaqualand, South Africa. Paleoanthropology 2016, 100–163 (2016).
Google Scholar
Sharp, W. D. et al. 230Th/U burial dating of ostrich eggshell. Quat. Sci. Rev. 219, 263–276 (2019).
Google Scholar
Chase, B. M. et al. South African speleothems reveal influence of high- and low-latitude forcing over the last 113.5 kyr. Geology 49, 1353–1357 (2021).CAS
Google Scholar
Chase, B. M. et al. Influence of tropical easterlies in southern Africa’s winter rainfall zone during the Holocene. Quat. Sci. Rev. 107, 138–148 (2015).
Google Scholar
Manning, J. Namaqualand (Briza, 2008).Skinner, J. D. & Chimimba, C. T. The Mammals of the Southern African Subregion 3rd edn (Cambridge Univ. Press, 2005).Skead, C. J. Historical Mammal Incidence in the Cape Province Vol 1: The Western and Northern Cape (Cape Town Department of Nature and Environmental Conservation, 1980).Churcher, C. S. Distribution and history of the Cape zebra (Equus capensis) in the Quaternary of Africa. Trans. R. Soc. S. Afr. 61, 89–95 (2006).
Google Scholar
Spratt, R. M. & Lisiecki, L. E. A Late Pleistocene sea level stack. Climate 12, 1079–1092 (2016).
Google Scholar
De Wet, W. Bathymetry of the South African Continental Shelf. MSc thesis, Univ. Cape Town (2013).Jerardino, A. & Marean, C. W. Shellfish gathering, marine paleoecology and modern human behavior: perspectives from Cave PP13B, Pinnacle Point, South Africa. J. Hum. Evol. 59, 412–424 (2010).PubMed
Google Scholar
Marean, C. W. Pinnacle Point Cave 13B (Western Cape Province, South Africa) in context: the Cape Floral kingdom, shellfish, and modern human origins. J. Hum. Evol. 59, 425–443 (2010).PubMed
Google Scholar
Kandel, A. W. Modification of ostrich eggs by carnivores and its bearing on the interpretation of archaeological and paleontological find. J. Archaeol. Sci. 31, 377–391 (2004).
Google Scholar
Steele, T. E. & Klein, R. G. The Middle and Later Stone Age faunal remains from Diepkloof Rock Shelter, Western Cape, South Africa. J. Archaeol. Sci. 40, 3453–3462 (2013).
Google Scholar
Klein, R. G. et al. The Ysterfontein 1 Middle Stone Age site, South Africa, and early human exploitation of coastal resources. Proc. Natl Acad. Sci. USA 101, 5708–5715 (2004).CAS
PubMed
PubMed Central
Google Scholar
Vogelsang, R. et al. New excavations of Middle Stone Age deposits at Apollo 11 Rockshelter, Namibia: stratigraphy, archaeology, chronology and past environments. J. Afr. Archaeol. 8, 185–218 (2010).Marean, C. W. et al. Early human use of marine resources and pigment in South Africa during the Middle Pleistocene. Nature 449, 905–908 (2007).CAS
PubMed
Google Scholar
Schmidt, I. et al. New investigations at the Middle Stone Age site of Pockenbank Rockshelter, Namibia. Antiquity 90, e2 (2016).
Google Scholar
Vogelsang, R. Middle Stone Age Fundstellen in Südwest-Namibia, Africa (Heinrich-Barth-Institut, 1998).Plug, I. Aquatic animals and their associates from the Middle Stone Age levels at Sibudu. South. Afr. Humanit. 18, 289–299 (2006).
Google Scholar
Wurz, S. Technological trends in the Middle Stone Age of South Africa between MIS 7 and MIS 3. Curr. Anthropol. 54, S305–S319 (2013).
Google Scholar
Volman, T. P. The Middle Stone Age in the Southern Cape. PhD thesis, Univ. Chicago (1981).Schmidt, P. & Mackay, A. Why was silcrete heat-treated in the Middle Stone Age? An early transformative technology in the context of raw material use at Mertenhof Rock Shelter, South Africa. PloS ONE 11, e0149243 (2016).PubMed
PubMed Central
Google Scholar
Porraz, G. et al. Technological successions in the Middle Stone Age sequence of Diepkloof Rock Shelter, Western Cape, South Africa. J. Archaeol. Sci. 40, 3376–3400 (2013).
Google Scholar
Schmid, V., Conard, N. J., Parkington, J., Texier, P. J. & Porraz, G. The ‘MSA 1’ of Elands Bay Cave (South Africa) in the context of the southern African early MSA technologies. South. Afr. Humanit. 29, 153–201 (2016).
Google Scholar
Evans, U. Hollow Rock Shelter, a Middle Stone Age site in the Cederberg. South. Afr. Field Archaeol. 3, 63–73 (1994).
Google Scholar
Mackay, A., Jacobs, Z. & Steele, T. E. Pleistocene archaeology and chronology of Putslaagte 8 (PL8) rockshelter, Western Cape, South Africa. J. Afr. Archaeol. 13, 71–98 (2015).
Google Scholar
Thompson, J. C. et al. Ecological risk, demography and technological complexity in the Late Pleistocene of northern Malawi: implications for geographical patterning in the Middle Stone Age. J. Quat. Sci. 33, 261–284 (2018).
Google Scholar
Vaesen, K. & Houkes, W. Is human culture cumulative? Curr. Anthropol. 62, 218–238 (2021).
Google Scholar
Boyd, R., Richerson, P. J. & Henrich, J. The cultural niche: why social learning is essential for human adaptation. Proc. Natl Acad. Sci. USA 108, 10918–10925 (2011).CAS
PubMed
PubMed Central
Google Scholar
Sterelny, K. From hominins to humans: how sapiens became behaviourally modern. Phil. Trans. R. Soc. B 366, 809–822 (2011).PubMed
PubMed Central
Google Scholar
Gärdenfors, P. & Högberg, A. The archaeology of teaching and the evolution of Homo docens. Curr. Anthropol. 58, 188–208 (2017).
Google Scholar
Marwick, B. Pleistocene exchange networks as evidence for the evolution of language. Camb. Archaeol. J. 13, 67–81 (2003).
Google Scholar
Blegen, N. The earliest long-distance obsidian transport: evidence from the ∼200 ka Middle Stone Age Sibilo School Road Site, Baringo, Kenya. J. Hum. Evol. 103, 1–19 (2017).PubMed
Google Scholar
McBrearty, S. & Brooks, A. S. The revolution that wasn’t: a new interpretation of the origin of modern human behavior. J. Hum. Evol. 39, 453–563 (2000).CAS
PubMed
Google Scholar
Klein, R. G. Archeology and the evolution of human behavior. Evol. Anthropol. 9, 17–36 (2000).
Google Scholar
Wynn, T. & Coolidge, F. L. Archeological insights into hominin cognitive evolution. Evol. Anthropol. 25, 200–213 (2016).PubMed
Google Scholar
Derex, M. & Mesoudi, A. Cumulative cultural evolution within evolving population structures. Trends Cogn. Sci. 24, 654–667 (2020).PubMed
Google Scholar
Sterelny, K. Adaptable individuals and innovative lineages. Phil. Trans. R. Soc. B 371, 20150196 (2016).PubMed
PubMed Central
Google Scholar
Henshilwood, C. S. & Marean, C. W. The origin of modern human behavior: critique of the models and their test implications. Curr. Anthropol. 44, 627–651 (2003).PubMed
Google Scholar
Stoops, G., Marcelino, V. & Mees, F. (eds) Interpretation of Micromorphological Features of Soils and Regoliths (Elsevier, 2010).Stoops, G. Guidelines for Analysis and Description of Soil and Regolith Thin Sections (Soil Science Society of America, 2003).McPherron, S. P. Additional statistical and graphical methods for analyzing site formation processes using artifact orientations. PLoS ONE 13, e0190195 (2018).PubMed
PubMed Central
Google Scholar
Thomsen, K. J., Murray, A. S., Jain, M. & Bøtter-Jensen, L. Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts. Radiat. Meas. 43, 1474–1486 (2008).CAS
Google Scholar
Armitage, S. J. & Bailey, R. M. The measured dependence of laboratory beta dose rates on sample grain size. Radiat. Meas. 39, 123–127 (2005).CAS
Google Scholar
Huntley, D. J. & Lamothe, M. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Can. J. Earth Sci. 38, 1093–1106 (2001).CAS
Google Scholar
Jaffey, A. H., Flynn, K. F., Glendenin, L. E. & Essling, A. M. Precision measurement of half-lives and specific activities of 235U and 238U. Phys. Rev. C 4, 1889–1906 (1971).
Google Scholar
Cheng, H. et al. Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planet. Sci. Lett. 371–372, 82–91 (2013).
Google Scholar
Holden, N. E. Total half-lives for selected nuclides. Pure Appl. Chem. 62, 941–958 (1990).CAS
Google Scholar
Ludwig, K. R. Isoplot/Ex Version 3.75: A Geochronological Toolkit for Microsoft Excel (Berkeley Geochronology Center Special Publication, 2010).Collins, B. & Steele, T. E. An often overlooked resource: ostrich (Struthio spp.) eggshell in the archaeological record. J. Archaeol. Sci. Rep. 13, 121–131 (2017).
Google Scholar
Schmidt, P. How reliable is the visual identification of heat treatment on silcrete? A quantitative verification with a new method. Archaeol. Anthropol. Sci. 11, 713–726 (2017).
Google Scholar
Roberts, D. L. Age, Genesis and Significance of South African Coastal Belt Silcretes (Council for Geoscience, South Africa, 2003).Schmidt, P. et al. A previously undescribed organic residue sheds light on heat treatment in the Middle Stone Age. J. Hum. Evol. 85, 22–34 (2015).PubMed
Google Scholar
Trabucco, A. & Zomer, R. Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v2 (figshare, 2019); https://doi.org/10.6084/m9.figshare.7504448.v3World Atlas of Desertification 2nd edn (UNEP, 1997).Mucina, L. & Rutherford, M. C. The Vegetation of South Africa, Lesotho and Swaziland (South African National Biodiversity Institute, 2006).Cordova, C. E. C3 Poaceae and Restionaceae phytoliths as potential proxies for reconstructing winter rainfall in South Africa. Quat. Int. 287, 121–140 (2013).
Google Scholar
Esteban, I. et al. Modern soil phytolith assemblages used as proxies for paleoscape reconstruction on the south coast of South Africa. Quat. Int. 434, 160–179 (2017).
Google Scholar
Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).
Google Scholar
Chase, B. M. et al. Orbital controls on Namib Desert hydroclimate over the past 50,000 years. Geology 47, 867–871 (2019).
Google Scholar
Farmer, E. C., deMenocal, P. B. & Marchitto, T. M. Holocene and deglacial ocean temperature variability in the Benguela upwelling region: implications for low‐latitude atmospheric circulation. Paleoceanography 20, PA2018 (2005).
Google Scholar
Pichevin, L., Cremer, M., Giraudeau, J. & Bertrand, P. A 190 kyr record of lithogenic grain size on the Namibian slope: forging a tight link between past wind‐strength and coastal upwelling dynamics. Mar. Geol. 218, 81–96 (2005).
Google Scholar
Little, M. G. et al. Trade wind forcing of upwelling, seasonality, and Heinrich events as a response to sub‐Milankovitch climate variability. Paleoceanography 12, 568–576 (2005).
Google Scholar
Stuut, J.-B. et al. A 300‐kyr record of aridity and wind strength in southwestern Africa: inferences from grain‐size distributions of sediments on Walvis Ridge, SE Atlantic. Mar. Geol. 180, 221–233 (2002).
Google Scholar
Kandel, A. W. & Conard, N. J. Production sequences of ostrich eggshell beads and settlement dynamics in the Geelbek Dunes of the Western Cape, South Africa. J. Archaeol. Sci. 32, 1711–1721 (2005).
Google Scholar More
