Van Marle, M. J. E. et al. Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015). Geosci. Model Dev. 10, 3329–3357 (2017).
Google Scholar
Erb, K. H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).
Google Scholar
Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).
Google Scholar
Bastin, J. F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
Google Scholar
Bowman, D. M. J. S. et al. Fire in the Earth system. Science 324, 481–485 (2009).
Google Scholar
Archibald, S. et al. Biological and geophysical feedbacks with fire in the Earth system. Environ. Res. Lett. 13, 033003 (2018).
Google Scholar
Mills, B. J. W., Belcher, C. M., Lenton, T. M. & Newton, R. J. A modeling case for high atmospheric oxygen concentrations during the Mesozoic and Cenozoic. Geology 44, 1023–1026 (2016).
Google Scholar
Lenton, T. M. in Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science (ed. Belcher, C. M.) 298–308 (Wiley, 2013).Pechony, O. & Shindell, D. T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl Acad. Sci. USA 107, 19167–19170 (2010).
Google Scholar
Marlon, J. R. et al. Reconstructions of biomass burning from sediment-charcoal records to improve data-model comparisons. Biogeosciences 13, 3225–3244 (2016).
Google Scholar
Archibald, S., Staver, A. C. & Levin, S. A. Evolution of human-driven fire regimes in Africa.Proc. Natl Acad. Sci. USA 109, 847–852 (2012).
Google Scholar
Santín, C. et al. Towards a global assessment of pyrogenic carbon from vegetation fires. Global Change Biol. 22, 76–91 (2016).
Google Scholar
Jones, M. W., Santín, C., van der Werf, G. R. & Doerr, S. H. Global fire emissions buffered by the production of pyrogenic carbon. Nat. Geosci. 12, 742–747 (2019).
Google Scholar
Bird, M. I., Wynn, J. G., Saiz, G., Wurster, C. M. & McBeath, A. The pyrogenic carbon cycle. Annu. Rev. Earth Planet. Sci. 43, 273–298 (2015).
Google Scholar
Hammes, K. & Abiven, S. in Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science (ed. Belcher, C. M.) 157–176 (Wiley, 2013).Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).
Google Scholar
Lavallee, J. M. et al. Selective preservation of pyrogenic carbon across soil organic matter fractions and its influence on calculations of carbon mean residence times. Geoderma 354, 113866 (2019).
Google Scholar
Coppola, A. I. et al. Global-scale evidence for the refractory nature of riverine black carbon. Nat. Geosci. 11, 584–588 (2018).
Google Scholar
Kuzyakov, Y., Bogomolova, I. & Glaser, B. Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biol. Biochem. 70, 229–236 (2014).
Google Scholar
Singh, B. P., Cowie, A. L. & Smernik, R. J. Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environ. Sci. Technol. 46, 11770–11778 (2012).
Google Scholar
Masiello, C. A. & Druffel, E. R. M. Black carbon in deep-sea sediments. Science 280, 1911–1913 (1998).
Google Scholar
Santos, F., Torn, M. S. & Bird, J. A. Biological degradation of pyrogenic organic matter in temperate forest soils. Soil Biol. Biochem. https://doi.org/10.1016/j.soilbio.2012.04.005 (2012).Zimmermann, M. et al. Rapid degradation of pyrogenic carbon. Glob. Change Biol. 18, 3306–3316 (2012).
Google Scholar
Jones, M. W. et al. Fires prime terrestrial organic carbon for riverine export to the global oceans. Nat. Commun. 11, 2791 (2020).
Google Scholar
Qi, Y. et al. Dissolved black carbon is not likely a significant refractory organic carbon pool in rivers and oceans. Nat. Commun. 11, 5051 (2020).
Google Scholar
Pausas, J. G. & Paula, S. Fuel shapes the fire-climate relationship: evidence from Mediterranean ecosystems. Glob. Ecol. Biogeogr. 21, 1074–1082 (2012).
Google Scholar
Archibald, S., Lehmann, C. E. R., Gómez-Dans, J. L. & Bradstock, R. A. Defining pyromes and global syndromes of fire regimes. Proc. Natl Acad. Sci. USA 110, 6442–6447 (2013).
Google Scholar
Abatzoglou, J. T., Williams, A. P., Boschetti, L., Zubkova, M. & Kolden, C. A. Global patterns of interannual climate-fire relationships. Glob. Change Biol. 24, 5164–5175 (2018).
Google Scholar
Brando, P. M. et al. Prolonged tropical forest degradation due to compounding disturbances: implications for CO2 and H2O fluxes. Glob. Change Biol. 25, 2855–2868 (2019).
Google Scholar
Silva, C. V. J. et al. Drought-induced Amazonian wildfires instigate a decadal-scale disruption of forest carbon dynamics. Phil. Trans. R. Soc. B 373, 20180043 (2018).
Google Scholar
Withey, K. et al. Quantifying immediate carbon emissions from El Niño-mediated wildfires in humid tropical forests. Phil. Trans. R. Soc. B 373, 20170312 (2018).
Google Scholar
Pellegrini, A. F. A. et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553, 194–198 (2018).
Google Scholar
Reisser, M., Purves, R. S., Schmidt, M. W. I. & Abiven, S. Pyrogenic carbon in soils: a literature-based inventory and a global estimation of its content in soil organic carbon and stocks.Front. Earth Sci. 4, 80 (2016).
Google Scholar
Wei, X., Hayes, D. J., Fraver, S. & Chen, G. Global pyrogenic carbon production during recent decades has created the potential for a large, long-term sink of atmospheric CO2. J. Geophys. Res. Biogeosci. 123, 3682–3696 (2018).
Google Scholar
Guimberteau, M. et al. ORCHIDEE-MICT (v8.4.1), a land surface model for the high latitudes: model description and validation. Geosci. Model Dev. 11, 121–163 (2018).
Google Scholar
Thonicke, K. et al. The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model. Biogeosciences 7, 1991–2011 (2010).
Google Scholar
Yue, C. et al. Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE—Part 1: simulating historical global burned area and fire regimes. Geosci. Model Dev. 7, 2747–2767 (2014).
Google Scholar
Abiven, S. & Santín, C. Editorial: From fires to oceans: dynamics of fire-derived organic matter in terrestrial and aquatic ecosystems. Front. Earth Sci 7, 31 (2019).
Google Scholar
Santín, C., Doerr, S. H., Preston, C. M. & González-Rodríguez, G. Pyrogenic organic matter production from wildfires: a missing sink in the global carbon cycle. Glob. Change Biol. 21, 1621–1633 (2015).
Google Scholar
Santín, C. et al. Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars. Sci. Rep. 7, 11233 (2017).
Google Scholar
Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).
Google Scholar
Arora, V. K. & Melton, J. R. Reduction in global area burned and wildfire emissions since 1930s enhances carbon uptake by land. Nat. Commun. 9, 1326 (2018).
Google Scholar
Mouillot, F. & Field, C. B. Fire history and the global carbon budget: a 1° × 1° fire history reconstruction for the 20th century. Global Change Biol. 11, 398–420 (2005).
Google Scholar
Gibson, D. Grasses and Grassland Ecology. Annals of Botany (Oxford Univ. Press, 2009).Dixon, A. P., Faber-Langendoen, D., Josse, C., Morrison, J. & Loucks, C. J. Distribution mapping of world grassland types. J. Biogeogr. 41, 2003–2019 (2014).
Google Scholar
Bond, W. J. Ancient grasslands at risk. Science 351, 120–122 (2016).
Google Scholar
Retallack, G. J. Global cooling by grassland soils of the geological past and near future. Annu. Rev. Earth Planet. Sci. 41, 69–86 (2013).
Google Scholar
Leys, B. A., Marlon, J. R., Umbanhowar, C. & Vannière, B. Global fire history of grassland biomes. Ecol. Evol. 8, 8831–8852 (2018).
Google Scholar
Alvarado, S. T., Andela, N., Silva, T. S. F. & Archibald, S. Thresholds of fire response to moisture and fuel load differ between tropical savannas and grasslands across continents. Glob. Ecol. Biogeogr. 29, 331–344 (2020).
Google Scholar
Buisson, E. et al. Resilience and restoration of tropical and subtropical grasslands, savannas and grassy woodlands. Biol. Rev. 94, 590–609 (2019).
Google Scholar
Rodionov, A. et al. Black carbon in grassland ecosystems of the world. Glob. Biogeochem. Cycles 24, GB3013 (2010).
Google Scholar
Haberl, H., Erb, K. H. & Krausmann, F. Human appropriation of net primary production: patterns, trends and planetary boundaries. Annu. Rev. Environ. Resources 39, 363–391 (2014).
Google Scholar
Medan, D., Torretta, J. P., Hodara, K., de la Fuente, E. B. & Montaldo, N. H. Effects of agriculture expansion and intensification on the vertebrate and invertebrate diversity in the Pampas of Argentina. Biodivers. Conserv. 20, 3077–3100 (2011).
Google Scholar
González-Roglich, M., Swenson, J. J., Villarreal, D., Jobbágy, E. G. & Jackson, R. B. Woody plant-cover dynamics in Argentine savannas from the 1880s to 2000s: the interplay of encroachment and agriculture conversion at varying scales. Ecosystems 18, 481–492 (2015).
Google Scholar
Satir, O. & Erdogan, M. A. Monitoring the land use/cover changes and habitat quality using Landsat dataset and landscape metrics under the immigration effect in subalpine eastern Turkey. Environ. Earth Sci. 75, 1118 (2016).
Google Scholar
Şekercioĝlu, Ç. H. et al. Turkey’s globally important biodiversity in crisis. Biol. Conserv. 144, 2752–2769 (2011).
Google Scholar
Schierhorn, F. et al. Post-Soviet cropland abandonment and carbon sequestration in European Russia, Ukraine and Belarus. Glob. Biogeochem. Cycles 27, 1175–1185 (2013).
Google Scholar
Jaglan, M. S. & Qureshi, M. H. Irrigation development and its environmental consequences in arid regions of India. Environ. Manage. 20, 323–336 (1996).
Google Scholar
Joshi, A. A., Sankaran, M. & Ratnam, J. ‘Foresting’ the grassland: historical management legacies in forest-grassland mosaics in southern India, and lessons for the conservation of tropical grassy biomes. Biol. Conserv. 224, 144–152 (2018).
Google Scholar
Huang, F., Wang, P. & Zhang, J. Grasslands changes in the Northern Songnen Plain, China during 1954–2000. Environ. Monit. Assess. 184, 2161–2175 (2012).
Google Scholar
Zhou, Y., Hartemink, A. E., Shi, Z., Liang, Z. & Lu, Y. Land use and climate change effects on soil organic carbon in north and northeast China. Sci. Total Environ. 647, 1230–1238 (2019).
Google Scholar
Williams, N. S. G. Environmental, landscape and social predictors of native grassland loss in western Victoria, Australia. Biol. Conserv. 137, 308–318 (2007).
Google Scholar
Dowling, P. M. et al. Effect of continuous and time-control grazing on grassland components in south-eastern Australia. Aust. J. Exp. Agric. 45, 369–382 (2005).
Google Scholar
DeLuca, T. H. & Zabinski, C. A. Prairie ecosystems and the carbon problem. Front. Ecol. Environ. 9, 407–413 (2011).
Google Scholar
Ceballos, G. et al. Rapid decline of a grassland system and its ecological and conservation implications. PLoS ONE 5, e8562 (2010).
Google Scholar
Haugo, R. et al. A new approach to evaluate forest structure restoration needs across Oregon and Washington, USA. For. Ecol. Manage. https://doi.org/10.1016/j.foreco.2014.09.014 (2015).DeLuca, T. H. & Aplet, G. H. Charcoal and carbon storage in forest soils of the Rocky Mountain West. Front. Ecol. Environ. 6, 18–24 (2008).
Google Scholar
Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).
Google Scholar
Bellè, S. L. et al. Key drivers of pyrogenic carbon redistribution during a simulated rainfall event. Biogeosciences 18, 1105–1126 (2021).
Google Scholar
Abney, R. B., Jin, L. & Berhe, A. A. Soil properties and combustion temperature: controls on the decomposition rate of pyrogenic organic matter. Catena 182, 104127 (2019).
Google Scholar
Bradstock, R. A., Hammill, K. A., Collins, L. & Price, O. Effects of weather, fuel and terrain on fire severity in topographically diverse landscapes of south-eastern Australia. Landsc. Ecol. 25, 607–619 (2010).
Google Scholar
Rogers, B. M., Soja, A. J., Goulden, M. L. & Randerson, J. T. Influence of tree species on continental differences in boreal fires and climate feedbacks. Nat. Geosci. 8, 228–234 (2015).
Google Scholar
Coppola, A. I. & Druffel, E. R. M. Cycling of black carbon in the ocean. Geophys. Res. Lett. 43, 4477–4482 (2016).
Google Scholar
Stenzel, J. E. et al. Fixing a snag in carbon emissions estimates from wildfires. Glob. Change Biol. 25, 3985–3994 (2019).
Google Scholar
Murphy, B. P., Prior, L. D., Cochrane, M. A., Williamson, G. J. & Bowman, D. M. J. S. Biomass consumption by surface fires across Earth’s most fire prone continent. Glob. Change Biol. 25, 254–268 (2019).
Google Scholar
Brando, P. M. et al. Droughts, wildfires and forest carbon cycling: a pantropical synthesis. Annu. Rev. Earth Planet. Sci. 47, 555–581 (2019).
Google Scholar
Appezzato-da-Glória, B., Cury, G., Soares, M. K. M., Rocha, R. & Hayashi, A. H. Underground systems of Asteraceae species from the Brazilian Cerrado. J. Torrey Bot. Soc. 135, 103–113 (2008).
Google Scholar
Belcher, C. M. et al. The rise of angiosperms strengthened fire feedbacks and improved the regulation of atmospheric oxygen. Nat. Commun. 12, 503 (2021).
Google Scholar
Barbero, R., Abatzoglou, J. T., Larkin, N. K., Kolden, C. A. & Stocks, B. Climate change presents increased potential for very large fires in the contiguous United States. Int. J. Wildl. Fire 24, 892–899 (2015).
Google Scholar
Stephens, S. L. et al. Managing forests and fire in changing climates. Science 342, 41–42 (2013).
Google Scholar
Trenberth, K. E. Changes in precipitation with climate change. Clim. Res. 47, 123–138 (2011).
Google Scholar
Prein, A. F. et al. The future intensification of hourly precipitation extremes. Nat. Clim. Change 7, 48–52 (2017).
Google Scholar
Abatzoglou, J. T., Williams, A. P. & Barbero, R. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 46, 326–336 (2019).
Google Scholar
Silveira, F. A. O. et al. Myth-busting tropical grassy biome restoration. Restor. Ecol. 28, 1067–1073 (2020).
Google Scholar
Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).
Google Scholar
Schmidt, H. P. et al. Pyrogenic carbon capture and storage. GCB Bioenergy 11, 573–591 (2019).
Google Scholar
Fu, Z. et al. Recovery time and state change of terrestrial carbon cycle after disturbance. Environ. Res. Lett. 12, 104004 (2017).
Google Scholar
Zhu, D. et al. Improving the dynamics of Northern Hemisphere high-latitude vegetation in the ORCHIDEE ecosystem model. Geosci. Model Dev. 8, 2263–2283 (2015).
Google Scholar
Zhu, D. et al. Simulating soil organic carbon in Yedoma deposits during the Last Glacial Maximum in a land surface model. Geophys. Res. Lett. 43, 5133–5142 (2016).
Google Scholar
Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles 19, GB1015 (2005).
Google Scholar
Yue, C., Ciais, P., Cadule, P., Thonicke, K. & Van Leeuwen, T. T. Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE—Part 2: carbon emissions and the role of fires in the global carbon balance. Geosci. Model Dev. 8, 1321–1338 (2015).
Google Scholar
Hantson, S. et al. The status and challenge of global fire modelling. Biogeosciences 13, 3359–3375 (2016).
Google Scholar
Hantson, S. et al. Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project. Geosci. Model Dev. 13, 3299–3318 (2020).
Google Scholar
Li, F. et al. Historical (1700–2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP). Atmos. Chem. Phys. 19, 12545–12567 (2019).
Google Scholar
Forkel, M. et al. Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models. Biogeosciences 16, 57–76 (2019).
Google Scholar
Parton, W. J., Stewart, J. W. B. & Cole, C. V. Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry 5, 109–131 (1988).
Google Scholar
Singh, N. et al. Transformation and stabilization of pyrogenic organic matter in a temperate forest field experiment. Glob. Change Biol. 20, 1629–1642 (2014).
Google Scholar
Viovy, N. CRUNCEP Version 7—Atmospheric Forcing Data for the Community Land Model (Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, 2018); https://doi.org/10.5065/PZ8F-F017Mckee, T. B. T. et al. The relationship of drought frequency and duration to time scales. In Proc. Eighth Conference on Applied Climatology 179–184 (American Meteorological Society, 1993).The NCAR Command Language, Version 6.6.2 (UCAR/NCAR/CISL/TDD, 2019).Freeborn, P. H., Wooster, M. J., Roy, D. P. & Cochrane, M. A. Quantification of MODIS fire radiative power (FRP) measurement uncertainty for use in satellite-based active fire characterization and biomass burning estimation. Geophys. Res. Lett. 41, 1988–1994 (2014).
Google Scholar
Giglio, L. MODIS Collection 5 Active Fire Product User’s Guide Version 2.5 (Science Systems and Applications, 2013).Huang, N. et al. Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Sci. Adv. 6, eabb8508 (2020).
Google Scholar
Warner, D. L., Bond-Lamberty, B., Jian, J., Stell, E. & Vargas, R. Spatial predictions and associated uncertainty of annual soil respiration at the global scale. Glob. Biogeochem. Cycles 33, 1733–1745 (2019).
Google Scholar More