More stories

  • in

    Giant sponge grounds of Central Arctic seamounts are associated with extinct seep life

    1.Maldonado, M. et al. in Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots (eds. Rossi, S., Bramanti, L., Gori, A. & del Valle, C.) (Springer, 2016).2.de Goeij, J. M. et al. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342, 108–110 (2013).ADS 
    PubMed 

    Google Scholar 
    3.Beazley, L., Kenchington, E., Yashayaev, I. & Murillo, F. J. Drivers of epibenthic megafaunal composition in the sponge grounds of the Sackville Spur, northwest. Atl. Deep. Res. Part I 98, 102–114 (2015).
    Google Scholar 
    4.Klitgaard, A. B. & Tendal, O. S. Progress in oceanography distribution and species composition of mass occurrences of large-sized sponges in the northeast Atlantic. Prog. Oceanogr. 61, 57–98 (2004).ADS 

    Google Scholar 
    5.Kazanidis, G. et al. Distribution of deep-sea sponge aggregations in an area of multisectoral activities and changing oceanic conditions. Front. Mar. Sci. 6, 163 (2019).
    Google Scholar 
    6.Hanz, U., Roberts, E. M., Duineveld, G., Davies, A. & Rapp, H. T. Long – term observations reveal environmental conditions and food supply mechanisms at an Arctic deep-sea sponge ground. J. Geophisical. Res. 126, 1–18 (2021).
    Google Scholar 
    7.Roberts, E. et al. Water masses constrain the distribution of deep-sea sponges in the North Atlantic Ocean and Nordic Seas. Mar. Ecol. Prog. Ser. 659, 75–96 (2021).ADS 

    Google Scholar 
    8.Cathalot, C. et al. Cold-water coral reefs and adjacent sponge grounds: hotspots of benthic respiration and organic carbon cycling in the deep sea. Front. Mar. Sci. 2, 37 (2015).
    Google Scholar 
    9.Kahn, A. S., Yahel, G., Chu, J. W. F., Tunnicliffe, V. & Leys, S. P. Benthic grazing and carbon sequestration by deep-water glass sponge reefs. Limnol. Oceanogr. 60, 78–88 (2015).ADS 

    Google Scholar 
    10.Morganti, T., Coma, R., Yahel, G. & Ribes, M. Trophic niche separation that facilitates co-existence of high and low microbial abundance sponges is revealed by in situ study of carbon and nitrogen fluxes. Limnol. Oceanogr. 62, 1963–1983 (2017).ADS 
    CAS 

    Google Scholar 
    11.Kutti, T., Bannister, R. J. & Fosså, J. H. Community structure and ecological function of deep-water sponge grounds in the Traenadypet MPA — Northern Norwegian continental shelf. Cont. Shelf Res. 69, 21–30 (2013).ADS 

    Google Scholar 
    12.Bart, M. C. et al. Dissolved organic carbon (DOC) is essential to balance the metabolic demands of four dominant North-Atlantic deep-sea sponges. Limnol. Oceanogr. 9999, 1–14 (2020).
    Google Scholar 
    13.Gloeckner, V. et al. The HMA-LMA dichotomy revisited: an electron microscopical survey of 56 sponge species. Biol. Bull. 227, 78–88 (2014).PubMed 

    Google Scholar 
    14.Bruck, T. B., Self, W. T., Reed, J. K., Nitecki, S. S. & McCarthy, P. J. Comparison of the anaerobic microbiota of deep-water Geodia spp. and sandy sediments in the Straits of Florida. ISME J. 4, 686–699 (2010).PubMed 

    Google Scholar 
    15.Schottner, S. et al. Relationships between host phylogeny, host type and bacterial community diversity in cold-water coral reef sponges. PLoS ONE 8, 1–11 (2013).
    Google Scholar 
    16.Hoffmann, F. et al. An anaerobic world in sponges. Geomicrobiol. J. 22, 1–10 (2005).
    Google Scholar 
    17.Schlindwein, V. & Schmid, F. Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere. Nature 535, 276–279 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    18.Cochran, J. R. Seamount volcanism along the Gakkel Ridge. Arct. Ocean. Geophys. J. Int. 174, 1153–1173 (2008).ADS 

    Google Scholar 
    19.Arrigo, K. R., van Dijken, G. & Pabi, S. Impact of a shrinking Arctic ice cover on marine primary production. Geophys. Res. Lett. 35, L19603 (2008).ADS 

    Google Scholar 
    20.Wassmann, P., Slagstad, D. & Ellingsen, I. Primary production and climatic variability in the European sector of the Arctic Ocean prior to 2007: preliminary results. Polar Biol. 33, 1641–1650 (2010).
    Google Scholar 
    21.Wiedmann, I. et al. What feeds the Benthos in the Arctic Basins? Assembling a carbon budget for the deep Arctic Ocean. Front. Mar. Sci. 7, 224 (2020).
    Google Scholar 
    22.Boetius, A. & Purser, A. The Expedition PS101 of the Research Vessel POLARSTERN to the Arctic Ocean in 2016, Berichte zur Polar- und Meeresforschung = Reports on polar and marine research, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research. (2017).23.Alvizu, A., Xavier, J. R. & Rapp, H. T. Description of new chiactine-bearing sponges provides insights into the higher classification of Calcaronea (Porifera: Calcarea). Zootaxa 4615, 201–251 (2019).
    Google Scholar 
    24.Rybakova, E., Kremenetskaia, A., Vedenin, A., Boetius, A. & Gebruk, A. Deep-sea megabenthos communities of the Eurasian Central Arctic are influenced by ice-cover and sea-ice algal falls. PLoS ONE 14, 1–27 (2019).
    Google Scholar 
    25.Astrom, E. K. L. et al. Methane cold seeps as biological oases in the high-Arctic deep sea. Limnol. Oceanogr. 63, 209–231 (2018).
    Google Scholar 
    26.Sen, A., Didriksen, A., Hourdez, S., Svenning, M. M. & Rasmussen, T. L. Frenulate siboglinids at high Arctic methane seeps and insight into high latitude frenulate distribution. Ecol. Evol. 10, 1339–1351 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    27.Henrich, R. et al. Facies belts and communities of the arctic Vesterisbanken Seamount (Central Greenland Sea). Facies 27, 71 (1992).
    Google Scholar 
    28.Leys, S. P., Kahn, A. S., Fang, J. K. H., Kutti, T. & Bannister, R. J. Phagocytosis of microbial symbionts balances the carbon and nitrogen budget for the deep-water boreal sponge Geodia barretti. Limnol. Oceanogr. 63, 187–202 (2018).ADS 
    CAS 

    Google Scholar 
    29.Druffel, E. R. M., Griffin, S., Glynn, C. S., Benner, R. & Walker, B. D. Radiocarbon in dissolved organic and inorganic carbon of the Arctic Ocean. Geophys. Res. Lett. 44, 2369–2376 (2017).ADS 
    CAS 

    Google Scholar 
    30.Mehrshad, M., Rodriguez-Valera, F., Amoozegar, M. A., López-García, P. & Ghai, R. The enigmatic SAR202 cluster up close: shedding light on a globally distributed dark ocean lineage involved in sulfur cycling. ISME J. 12, 655–668 (2018).CAS 
    PubMed 

    Google Scholar 
    31.Petersen, J. M., Wentrup, C., Verna, C., Knittel, K. & Dubilier, N. Origins and evolutionary flexibility of chemosynthetic symbionts from deep-sea animals. Biol. Bull. 223, 123–137 (2012).CAS 
    PubMed 

    Google Scholar 
    32.Rubin-Blum, M. et al. Fueled by methane: deep-sea sponges from asphalt seeps gain their nutrition from methane-oxidizing symbionts. ISME J. 13, 1209–1225 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Bayer, K., Jahn, M. T., Slaby, B. M., Moitinho-Silva, L. & Hentschel, U. Marine sponges as chloroflexi hot spots: genomic insights and high-resolution visualization of an abundant and diverse symbiotic clade. mSystems 3, e00150–18 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Kamke, J. et al. Single-cell genomics reveals complex carbohydrate degradation patterns in poribacterial symbionts of marine sponges. ISME J. 7, 2287–2300 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Bayer, K. et al. Microbial strategies for survival in the glass sponge Vazella pourtalesii. mSystems 5, e00473–20 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Van Duyl, F. C., Hegeman, J., Hoogstraten, A. & Maier, C. Dissolved carbon fixation by sponge-microbe consortia of deep water coral mounds in the northeastern Atlantic Ocean. Mar. Ecol. Prog. Ser. 358, 137–150 (2008).ADS 

    Google Scholar 
    37.Leitner, A. B., Neuheimer, A. B. & Drazen, J. C. Evidence for long-term seamount-induced chlorophyll enhancements. Sci. Rep. 10, 12729 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.von Appen, W.-J., Latarius, K. & Kanzow, T. Physical oceanography and current meter data from mooring F6-17. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven (2017). https://doi.org/10.1594/PANGAEA.870845.39.Woodgate, R. Arctic ocean circulation: going around at the top of the world. Nat. Educ. Knowl. 4, 8 (2013).
    Google Scholar 
    40.White, M., Bashmachnikov, I., Arístegui, J. & Martins, A. in Seamounts: Ecology, Fisheries & Conservation (eds Pitcher, T. J. et al.) Ch. 4 (Wiley, 2007).41.Buchs, D. M., Hoernle, K. & Grevemeyer, I. In Encyclopedia of Marine Geosciences (eds Harff, J., Meschede, M., Petersen, S. & Thiede, J.) (Springer, Dordrecht, 2015). https://doi.org/10.1007/978-94-007-6644-0_34-2.42.Emerson, D. & Moyer, C. Microbiology of seamounts: common patterns observed in community structure. Oceanography 23, 148–163 (2010).
    Google Scholar 
    43.Rimskaya-Korsakova, N. N. et al. First discovery of pogonophora (Annelida, Siboglinidae) in the Kara Sea coincide with the area of high methane concentration. Dokl. Biol. Sci. 490, 25–27 (2020).CAS 
    PubMed 

    Google Scholar 
    44.Cardenas, P. & Rapp, H. T. Demosponges from the Northern mid-Atlantic ridge shed more light on the diversity and biogeography of North Atlantic deep-sea sponges. J. Mar. Biol. Assoc. U. Kindom 95, 1475–1516 (2015).
    Google Scholar 
    45.Meyer, H. K., Roberts, E. M., Rapp, H. T. & Davies, A. J. Spatial patterns of arctic sponge ground fauna and demersal fish are detectable in autonomous underwater vehicle (AUV) imagery. Deep. Res. Part I Oceanogr. Res. Pap. 153, 103137 (2019).
    Google Scholar 
    46.Grebmeier, J. M. et al. Ecosystem characteristics and processes facilitating persistent macrobenthic biomass hotspots and associated benthivory in the Pacific Arctic. Prog. Oceanogr. 136, 92–114 (2015).ADS 

    Google Scholar 
    47.Oevelen, D. Van et al. The cold-water coral community as a hot spot for carbon cycling on continental margins: a food-web analysis from Rockall Bank (northeast Atlantic). Limnol. Oceanogr. 54, 1829–1844 (2009).ADS 

    Google Scholar 
    48.Hammel, J. U., Herzen, J., Beckmann, F. & Nickel, M. Sponge budding is a spatiotemporal morphological patterning process: insights from synchrotron radiation-based x-ray microtomography into the asexual reproduction of Tethya wilhelma. Front. Zool. 6, 19 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    49.Witte, U. & Graf, G. Metabolism of deep-sea sponges in the Greenland- Norwegian Sea. Mar. Biol. 198, 223–235 (1996).
    Google Scholar 
    50.Rovelli, L. et al. Benthic O2 uptake of two cold-water coral communities estimated with the non-invasive eddy correlation technique. Mar. Ecol. Prog. Ser. 525, 97–104 (2015).ADS 

    Google Scholar 
    51.De Clippele, L. H. et al. Mapping cold-water coral biomass: an approach to derive ecosystem functions. Coral Reefs 40, 215–231 (2021).
    Google Scholar 
    52.de Kluijver, A. et al. An integrative model of carbon and nitrogen metabolism in a common deep-sea sponge (Geodia barretti). Front. Mar. Sci. 7, 1–18 (2021).
    Google Scholar 
    53.Lalande, C., Nothig, E.-M. & Fortier, L. Algal export in the Arctic ocean in times of global warming. Geophys. Res. Lett. 46, 1–9 (2019).
    Google Scholar 
    54.Boetius, A. et al. Export of algal biomass from the melting Arctic sea ice. Science 339, 1430–1433 (2013).55.Maier, S. R. et al. Survival under conditions of variable food availability: Resource utilization and storage in the cold-water coral Lophelia pertusa. Limnol. Oceanogr. 64, 1651–1671 (2019).ADS 
    CAS 

    Google Scholar 
    56.Rix, L. et al. Heterotrophy in the earliest gut: a single-cell view of heterotrophic carbon and nitrogen assimilation in sponge-microbe symbioses. ISME J. 14, 2554–2567 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Hansell, D. A. Recalcitrant dissolved organic carbon fractions. Ann. Rev. Mar. Sci. 5, 421–445 (2013).PubMed 

    Google Scholar 
    58.Bart, M. C. et al. Differential processing of dissolved and particulate organic matter by deep-sea sponges and their microbial symbionts. Sci. Rep. 10, 1–13 (2020).
    Google Scholar 
    59.Anderson, L. G. & Amon, R. M. W. DOM in the Arctic Ocean. In Biogeochemistry of Marine Dissolved Organic Matter (eds Hansell, D. A. & Carlson, C. A.) Ch. 14 (Academic Press, 2015).60.Rossel, P. E., Bienhold, C., Boetius, A. & Dittmar, T. Dissolved organic matter in pore water of Arctic Ocean sediments: environmental influence on molecular composition. Org. Geochem. 97, 41–52 (2016).CAS 

    Google Scholar 
    61.Landry, Z., Swan, B. K., Herndl, G. J., Stepanauskas, R. & Giovannoni, S. J. SAR202 genomes from the dark ocean predict pathways for the oxidation of recalcitrant dissolved organic matter. MBio 8, e00413–e00417 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Radax, R. et al. Metatranscriptomics of the marine sponge Geodia barretti: tackling phylogeny and function of its microbial community. Environ. Microbiol. 14, 1308–1324 (2012).63.Busch, K. et al. Chloroflexi dominate the deep-sea golf ball sponges Craniella zetlandica and Craniella infrequens throughout different life stages. Front. Mar. Sci. 7, 1–13 (2020).
    Google Scholar 
    64.Raimundo, I. et al. Functional metagenomics reveals differential chitin degradation and utilization features across free-living and host-associated marine microbiomes. Microbiome 9, 1–18 (2021).
    Google Scholar 
    65.Hoffmann, F. et al. Complex nitrogen cycling in the sponge Geodia barretti. Environ. Microbiol. 11, 2228–2243 (2009).CAS 
    PubMed 

    Google Scholar 
    66.Radax, R., Hoffmann, F., Rapp, H. T., Leininger, S. & Schleper, C. Ammonia-oxidizing archaea as main drivers of nitrification in cold-water sponges. Environ. Microbiol. 14, 909–923 (2012).CAS 
    PubMed 

    Google Scholar 
    67.Kahn, A. S., Chu, J. W. F. & Leys, S. P. Trophic ecology of glass sponge reefs in the Strait of Georgia, British Columbia. Sci. Rep. 8, 756 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Thiel, V. et al. Mid-chain branched alkanoic acids from “living fossil” demosponges: a link to ancient sedimentary lipids? Org. Geochem. 30, 1–14 (1999).CAS 

    Google Scholar 
    69.de Kluijver, A. et al. Bacterial precursors and unsaturated long-chain fatty acids are biomarkers of North-Atlantic deep-sea demosponges. PLoS ONE 16, 1–18 (2021).
    Google Scholar 
    70.Parnell, A. C., Inger, R., Bearhop, S. & Jackson, A. L. Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5, e9672 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Freeman, C. J. et al. Microbial symbionts and ecological divergence of Caribbean sponges: a new perspective on an ancient association. ISME J. 14, 1571–1583 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    72.Middelburg, J. J. Stable isotopes dissect aquatic food webs from the top to the bottom. Biogeosciences 11, 2357–2371 (2014).ADS 

    Google Scholar 
    73.Åström, E. et al. Chemosynthesis influences food web and community structure in high-Arctic benthos. Mar. Ecol. Prog. Ser. 629, 19–42 (2019).ADS 

    Google Scholar 
    74.Ravaux, J. et al. Comparative degradation rates of chitinous exoskeletons from deep-sea environments. Mar. Biol. 143, 405–412 (2003).CAS 

    Google Scholar 
    75.Gooday, G. W. The Ecology of Chitin Degradation. In Advances in Microbial Ecology, (ed. Marshall, K. C.) vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7612-5_10.76.Schwarz, J. R., Yayanos, A. A. & Colwell, R. R. Metabolic activities of the intestinal microflora of a deep-sea invertebrate. Appl. Environ. Microbiol. 31, 46 LP–46 48 (1976).ADS 

    Google Scholar 
    77.Godefroy, N. et al. Sponge digestive system diversity and evolution: filter feeding to carnivory. Cell Tissue Res. 377, 341–351 (2019).PubMed 

    Google Scholar 
    78.Ehrlich, H. et al. First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (demospongia: Porifera). J. Exp. Zool. Part B Mol. Dev. Evol. 308B, 347–356 (2007).CAS 

    Google Scholar 
    79.Bowden, D. A. et al. Cold seep epifaunal communities on the Hikurangi Margin, New Zealand: composition, succession, and vulnerability to human activities. PLoS ONE 8, e76869 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    80.Georgieva, M. N. et al. Identification of fossil worm tubes from Phanerozoic hydrothermal vents and cold seeps. J. Syst. Palaeontol. 17, 287–329 (2017).
    Google Scholar 
    81.Morganti, T. M. et al. In situ observation of sponge trails suggests common sponge locomotion in the deep central Arctic. Curr. Biol. 31, R368–R370 (2021).CAS 
    PubMed 

    Google Scholar 
    82.Maldonado, M. An experimental approach to the ecological significance of microhabitat-scale movement in an encrusting sponge. Mar. Ecol. Prog. Ser. 185, 239–255 (1999).ADS 

    Google Scholar 
    83.Rice, A. L., Thurston, M. H. & New, A. L. Dense aggregations of a hexactinellid sponge, Pheronema carpenteri, in the Porcupine Seabight (northeast Atlantic Ocean), and possible causes. Prog. Oceanogr. 24, 179–196 (1990).ADS 

    Google Scholar 
    84.Roberts, E. M. et al. Oceanographic setting and short-timescale environmental variability at an Arctic seamount sponge ground. Deep. Res. Part I Oceanogr. Res. Pap. 138, 98–113 (2018).ADS 

    Google Scholar 
    85.Purser, A. et al. Ocean floor observation and bathymetry system (OFOBS): a new towed camera/sonar system for deep-sea habitat surveys. IEEE J. Ocean. Eng. 44, 1–13 (2019).
    Google Scholar 
    86.Marcon, Y. & Purser, A. PAPARA(ZZ)I: an open-source software interface for annotating photographs of the deep-sea. SoftwareX 6, 69–80 (2017).ADS 

    Google Scholar 
    87.Morganti, T. M., Ribes, M., Yahel, G. & Coma, R. Size is the major determinant of pumping rates in marine sponges. Front. Physiol. 10, 1474 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    88.Zelles, L. Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere 35, 275–294 (1997).ADS 
    CAS 
    PubMed 

    Google Scholar 
    89.Volkman, J. K., Jeffrey, S. W., Nichols, P. D., Rogers, G. I. & Garland, C. D. Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J. Exp. Mar. Bio. Ecol. 128, 219–240 (1989).CAS 

    Google Scholar 
    90.Koopmans, M. et al. Seasonal variation of fatty acids and stable carbon isotopes in sponges as indicators for nutrition: biomarkers in sponges identified. Mar. Biotechnol. 17, 43–54 (2015).CAS 

    Google Scholar 
    91.Mollenhauer, G., Grotheer, H., Gentz, T., Bonk, E. & Hefter, J. Standard operation procedures and performance of the MICADAS radiocarbon laboratory at Alfred Wegener Institute (AWI). Ger. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 496, 45–51 (2021).ADS 
    CAS 

    Google Scholar 
    92.Fallon, S. J., James, K., Norman, R., Kelly, M. & Ellwood, M. J. A simple radiocarbon dating method for determining the age and growth rate of deep-sea sponges. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 268, 1241–1243 (2010).ADS 
    CAS 

    Google Scholar 
    93.Griffith, D. R. et al. Carbon dynamics in the western Arctic Ocean: insights from full-depth carbon isotope profiles of DIC, DOC, and POC. Biogeosciences 9, 1217–1224 (2012).ADS 
    CAS 

    Google Scholar 
    94.Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    95.Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    96.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    97.Li, D. et al. MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 102, 3–11 (2016).CAS 
    PubMed 

    Google Scholar 
    98.Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    99.Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    100.Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    101.Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014).CAS 
    PubMed 

    Google Scholar 
    102.Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    103.De Anda, V. et al. MEBS, a software platform to evaluate large (meta)genomic collections according to their metabolic machinery: unraveling the sulfur cycle. Gigascience 6, 1–17 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    104.Benner, R., Benitez-Nelson, B., Kaiser, K. & Amon, R. M. W. Export of young terrigenous dissolved organic carbon from rivers to the Arctic Ocean. Geophys. Res. Lett. 31, 10–13 (2004).
    Google Scholar 
    105.Thibodeau, B., Bauch, D. & Voss, M. Nitrogen dynamic in Eurasian coastal Arctic ecosystem: Insight from nitrogen isotope. Glob. Biogeochem. Cycles 31, 836–849 (2017).ADS 
    CAS 

    Google Scholar 
    106.Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER – Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011). More

  • in

    Diversity and dynamics of bacteria at the Chrysomya megacephala pupal stage revealed by third-generation sequencing

    The microbiomes associated with insects are important in mediating host health and fitness. In recent years, numerous studies have explored the microbial diversity and variations across different developmental stages in insects, particularly for pests, including Bactrocera dorsalis16, Monochamus alternatus17, and Zeugodacus tau18. Previously, bacterial communities were investigated using inefficient, low-throughput culture-based or conventional molecular methods19,20, inevitably underestimating the microbial abundance. The advancements in sequencing technology have inspired more research on insect microbial communities, thereby enriching the information on the microbiome of insects. However, a comprehensive understanding of the C. megacephala pupal stage microbiome remains unclear. Therefore, this paper presents a study of the diversity and dynamics of bacteria in the pupal stage of C. megacephala using third-generation sequencing of bacterial 16S rRNA. The results provide a better understanding of the C. megacephala microbiome.This annotation results demonstrate that the bacteria in the pupal stage of C. megacephala are rich and diverse, but the diversity is indiscrete. At the phylum level, Proteobacteria, Firmicutes, and Bacteroidetes were the three predominant phyla, similar to the observation from the housefly Musca domestica21, possibly owing to a semblable ecological niche. The bacterial community analysis identified Clostridia and Gammaproteobacteria as the two predominant bacterial classes in the pupal stage of C. megacephala with ~ 30% relative abundances. However, another study of the gut bacteria across the lifecycle of C. megacephala showed Gammaproteobacteria as the dominant class with over 60% relative abundance. These results suggest that Clostridia may be from other C. megacephala tissues apart from the gut.Compared with the previous results about C. megacephala bacterial communities that were determined using culture-based or conventional molecular methods, the microbial diversity was much higher in this study using third-generation sequencing technology22. However, we cannot identify some bacteria to the species level, such as Klebsiella pneumoniae and Aeromonas hydrophila23, so culture-based and conventional molecular methods are also important.Ignatzschineria indica and Wolbachia endosymbiont were the two predominant species in the bacterial communities in the C. megacephala pupal stage. Ignatzschineria indica is a Gram-negative bacterium commonly associated with maggot infestation and myiasis, a probable marker for myiasis diagnosis24,25. Wolbachia are intracellular symbiotic bacteria widely distributed in the reproductive tissues of arthropods. They cause reproductive alterations in their hosts, such as cytoplasmic incompatibility (CI)26, feminization27, killing males28, and inducing parthenogenesis (PI)29. Wolbachia increases the resistance to arbovirus infection, resulting in decreased virus transmission. The reproductive regulation of Wolbachia on target organisms may be important in future biological prevention and pest control. Since Wolbachia causes CI, Wolbachia-infected populations can be established and released to reduce to the environment to reduce the reproductive potential of harmful target insect populations. Modified Wolbachia that harbor anti-parasitic or anti-viral genes can be adopted to control virus transmission in insects carrying viruses30.However, few studies have reported that Ignatzschineria and Wolbachia can coexist in an individual insect, despite their status as common bacterial genera. Several possibilities may explain this analytical discrepancy. Firstly, in this study, Spearman’s rank correlation between Wolbachia and Ignatzschineria showed a negative correlation, suggesting a competitive relationship between Wolbachia and Ignatzschineria. Secondly, the previous investigations of bacterial communities applied inefficient, low throughput culture-based or conventional molecular methods, potentially generating incomplete results. Finally, numerous studies have established that microbial communities differ between insect populations because of different sampling techniques and procedures31. This study analyzed C. megacephala sampled from a laboratory population reared with pork for five years. Nevertheless, the significant decrease in the relative abundance of Wolbachia observed at the end of the pupal development is unsolved, thus, required further studies.Traditionally, the most common method for pest control is by chemical pesticides. However, the excessive use of chemical pesticides causes the rapid build-up of pesticide resistance and environmental pollution. Therefore, it is urgent to develop biological control methods for pests. Nasonia vitripennis (Walker), is an important parasitoid whose female wasp stings, injects venom, and lays eggs in different fly pupae, where parasitoid eggs, larvae, pupae, and early-stage adults develop. N. vitripennis lives in species of the family Calliphoridae, Sarcophagidae, and Muscidae, where their larvae feed on fly pupae, allowing N. vitripennis to function as a biological agent to control the flies.The microbial communities of fly species and N. vitripennis live in an enclosed environment, providing more opportunities for the N. vitripennis-fly communication. Therefore, the impacts of micro-communities of the fly hosts on N. vitripennis are worth studying, precisely at the pupal stage. Studies of different fly hosts and their corresponding N. vitripennis showed diverse core microbiota, and so other fly hosts shaped the bacterial diversity of their parasitic wasps32. In addition, parasitic wasps infected with Wolbachia produced more female offspring than uninfected ones, further emphasizing the need to improve biological prevention and control efficiency33. Therefore, a deliberate focus to study the micro-communities of different fly species at the pupal stage and the interaction between the fly species and N. vitripennis will guide the development and utilization of N. vitripennis as biological agents for the prevention and control of flies.Approximately half of the bacteria identified at the species level in this study are pathogens or conditional pathogens (Supplementary Table S2), Escherichia coli, Providencia burhodogranariea, and Morganella morganii, among others. Another uncommon pathogenic bacterium, Erysipelothrix rhusiopathiae was also identified at the species level. E. rhusiopathiae is the etiological agent of swine erysipelas and causes economically important chicken, duck, and sheep diseases. Although E. rhusiopathiae primarily infects pigs, it also infects various domestic and wild mammals, including marine mammals, birds, and humans. Humans infected with E. rhusiopathiae develop large areas of red spots on their body. Severe E. rhusiopathiae infection causes endocarditis and septicemia, which have a 38% mortality rate34.However, very few studies have focused on the insects that transmit E. rhusiopathiae35. Considering that the C. megacephala samples in this study were obtained from a laboratory population reared for five years, it is likely that the E. rhusiopathiae originated from infected pork and were transmitted to C. megacephala through feeding. Thus, disease-vector insects can infect and spread pathogens beyond their feeding activities, and disease-vector insects require more comprehensive prevention and control methods (“Supplementary information”).In conclusion, this study comprehensively investigated the pupal stage microbiome of C. megacephala using third-generation sequencing to deepen the understanding of C. megacephala microbial communities on the whole. The study provides a basis for subsequent studies of biological control and the comprehensive utilization of C. megacephala. Future studies should focus on the transmission patterns and biological functions of these microbial species. More

  • in

    Double-observer approach with camera traps can correct imperfect detection and improve the accuracy of density estimation of unmarked animal populations

    Model frameworkThe capture-recapture model applied here is the hierarchical model for stratified populations proposed by Royle et al.48. The model aims to estimate local population size or community structure49 using capture-recapture data from multiple independent locations. In the following, we briefly describe the model in our context, including addressing heterogeneity in detection probability.Let us consider that we establish S independent camera stations in a survey area. Then, we install K camera traps at each station to monitor exactly the same focal area (totally S × K camera traps will be used). We assume that these camera traps detect animals within the focal areas NT times in total. For animal pass i (i = 1, 2, 3, …, NT), we will obtain (1) at the station where the animal is detected (hereafter station identity; gi), and (2) how many of the K cameras at the station were successful in detecting the animal pass (hereafter detection history; yi). The hierarchal capture-recapture model uses these two data, gi and yi.Let the number of the animal passes at station s be Ns (s = 1, 2, 3, …, S). Then, we assume that Ns follows a Poisson distribution with a parameter λ. In this case, the probability of passage i occurring at station s is expected to be (frac{lambda }{lambda times S}). Thus, station identity, gi, can be modelled as follows:$$g_{i} sim {text{ Categorical}}; left(frac{lambda }{lambda times S}right)$$
    When the number of the animal passes at station s, Ns, may have larger variation than expected from the Poisson case, we may assume a negative binomial distribution model or may give a random effect to the parameter of the Poisson distribution at the camera station level.The detection history Y with elements yi can be modelled using a data augmentation procedure47. Specifically, the original detection Y is artificially augmented by many M – n passes with all-zero histories (i.e. not detected by any camera). The augmented data W with elements wi (y1, y2…yNT, 0, 0, … 0) will consist of the passage that occurred but was not detected by any camera (false zero), which occurs with probability ψ, and the passage that did not occur (structural zeros) with the probability 1 − ψ. A set of latent augmentation binary variables, z1, z2, … zM, is introduced, which denotes the false zero (z = 1) and the structural zero (z = 0). That is$$z_{i} sim {text{ Bernoulli }}left( psi right).$$The elements of the augmented data, wi, can be modelled conditional on the latent variables zi. There would be two alternative approaches to modelling the wi.The simplest one may regard wi as random binomial variables. That is$$w_{i} |z_{i} = , 1sim {text{ Binomial }}left( {K,p} right)$$When accounting for the heterogeneity of detection among animal passes, it can be accommodated using a beta distribution as follows;$$w_{i} |z_{i} = , 1sim {text{ Binomial }}left( {K,p_{i} } right)$$$$p_{i} sim {text{ Beta}}left( {alpha ,beta } right)$$The expected detection probability can be derived from (widehat{alpha }/(widehat{alpha }+widehat{beta })) and the correlation coefficients can be calculated by (1/(widehat{alpha }+widehat{beta }+1)).Alternatively, we can regard wi as a categorical variable that takes values from zero to K.$$w_{i} sim {text{ Categorical }}left( pi right)$$
    where π is a probability vector of length K + 1. For simplicity, let us consider two camera traps installed at each station, and those cameras have equal detection probability. Then, wi can take either 0 (i.e. zi = 0 or both camera traps missed animals with conditional on zi = 1), 1 (i.e. only one camera trap detected animals with conditional on zi = 1), or 2 (i.e. both camera traps detected animals with conditional on zi = 1). Thus, when we define the probability that wi takes 0, 1, 2 with conditional on zi = 1, as φm (m = 1, 2, 3), the elements of π is equal to {zi × φ0 + (1 − zi)}, {zi × φ1}, {zi × φ2}, respectively.We then take different modelling approaches depending on whether detection probability among animal passes is heterogeneous or not. When two camera traps at a station detect animals independently with the same probability ρ, φ0, φ1, and φ2 can be expressed as a function of ρ, i.e. (1 − ρ)2, 2 × ρ × (1 − ρ)2, ρ2, respectively (Clare et al.47). On the other hand, when detections by the two camera traps are correlated, we need to estimate three real parameters φm that designate the probabilities of all outcomes wi|zi = 1. We assume that ρm follows the Dirichlet distribution with the parameter γm (m = 1, 2, 3). That is$$varphi_{m} sim {text{ Dirichlet}}left( {gamma_{1} ,gamma_{2} , , gamma_{3} } right)$$In this approach, the expected detection probability can be derived from ({widehat{varphi }}_{1}/2+{widehat{varphi }}_{2}) and the correlation coefficients can be calculated by ({widehat{varphi }}_{2}-{({widehat{varphi }}_{1}/2+{widehat{varphi }}_{2})}^{2}).Compared to the beta-binomial distribution approach, the approach using categorical-Dirichlet distribution might be more flexible in accommodating detection heterogeneity while it might be more challenging to estimate the model parameters. In either approach, the expected total number of animal passes can be expressed as (lambda times S). Thus, ψ can be fixed as follows:$$psi = frac{lambda times S}{M}$$For more details of the models, see Royle et al.48 and Clare et al.44.Testing the effectiveness of the hierarchical capture-recapture modelWe performed Monte Carlo simulations to evaluate the effectiveness of the hierarchical capture-recapture model. Because the model reliability has been confirmed well48, we here focused on the effects of heterogeneity in detection probability on the accuracy and precision of the estimates.We assumed that the number of detections by camera traps followed a negative binomial distribution with a mean of 5.0 and dispersion parameter 1.27, which derived the actual data on an ungulate in African rainforests34. We also assumed two camera traps each at 30 stations (i.e. 60 camera traps in total). We generated detection histories (i.e. the number of camera traps successfully detecting animals in each animal passage) using a beta-binomial distribution with the expected detection probability at 0.8 or 0.4. We varied the correlation coefficients (= 1/(α + β + 1)), from 0.1 to 0.5 in 0.1 increments. The scale parameters of the beta distributions for each scenario are shown in Table 1. Additionally, to determine the effects of sample sizes on the accuracy and precision of estimates, we increased the number of camera stations at 100. Since this setting requires much computation time, we only assumed a detection probability of 0.4 and a correlation coefficient of 0.3.We estimated the parameters of the hierarchical capture-recapture models assuming a beta-binomial distribution and a categorical-Dirichlet distribution using the Markov chain Monte Carlo (MCMC) implemented in JAGS (version 3.4.0) in all the simulations. We assumed that the number of animal passes followed a negative binomial distribution. For the model assuming a beta-binomial distribution, we transformed the scale parameters, α and β as p*phi and p*(1 − phi), respectively (p is an expected detection probability). Then we used a weakly informative prior (gamma distribution with shape = 10 and rate = 2) for phi and a non-informative uniform distribution from 0 to 1 for the detection probability49. For the model assuming a categorical-Dirichlet distribution, the Dirichlet prior distribution was induced by treating each γm ~ Gamma(1, 1) and calculating each probability by ({varphi }_{m}={{gamma }_{m}}/{sum }_{m=1}^{M}{gamma }_{m}) followingv and Clare et al.44. We generated three chains of 3000 iterations after a burn-in of 1000 and thinned by 5. The convergence of models was determined using the Gelman–Rubin statistic, where values  More

  • in

    Spatial-temporal dynamics of a microbial cooperative behavior resistant to cheating

    Timeseries imaging tracks gene expression in spatial systemsRecent studies have shown it possible to identify the members of microbial consortia as well as their gene expression within spatially-structured systems30,33,34. However, these methods capture data cross-sectionally and are unable to provide temporal insight into gene expression patterning as it emerges in these cell populations. To bridge this gap, we built a fluorescent imager inside an incubator (Supplementary Fig. 1). Our framework characterizes cellular growth and gene expression in spatially-structured environments with previously unattainable time-resolution and throughput. Fluorescently labeled cells are illuminated using LEDs connected to a custom-built control system (see methods). The images are background corrected and analyzed, tracking colony growth and gene expression information (Supplementary Figs. 2, 3) straight from the spatially-structured system.In our experiments, we utilized a dual-labeled P. aeruginosa PA14 strain harboring PBad-DsRed(EC2)35 driven by L-arabinose in the plate media, which cannot be metabolized by the cells36, and PrhlAB-GFP28,37. When grown in spatial structure, the constitutive expression of DsRed provided a measure of the local density of bacteria (Supplementary Fig. 4). In all our experiments, the dynamical expression of GFP, validated by RT-qPCR (Supplementary Fig. 5) (see methods), reported on the expression of rhlAB.Using these data, we were able to characterize how the surroundings experienced by these microbes influence the dynamics of their cooperative behavior directly in a spatially-structured setting.Rhamnolipid production differs in liquid and spatial environmentsRhamnolipids are necessary for cooperative swarming behavior in P. aeruginosa and for other traits related to virulence26. Rhamnolipids can be produced in liquid culture10,20,28,38, thus rhamnolipid production is often studied in detail there. Despite recent work indicating that gene expression related to quorum signaling systems in P. aeruginosa may differ in spatial structure29, no studies assess how downstream genes, such as rhlAB, may be affected in spatially-structured colonies. Given the relevance of these diffusible inputs to the rhlAB system, we hypothesized that there could be differences between gene expression patterns in liquid and spatial environments.We compared P. aeruginosa biomass growth and gene expression in the liquid and spatial environments (Fig. 1a). Liquid culture data was collected following prior methods28. To interrogate the spatial system, we used the protocol from the classic Colony Forming Unit (CFU) assay. Cells were seeded with extreme dilution and we observed the behavior of the resultant colonies (cCFUs) across time and within the random configurations generated.Fig. 1: Rhamnolipid production differs between liquid culture and surface-attached P. aeruginosa.a Cartoon depictions of liquid and spatially-structured environments used in this study. b Optical density timeseries describing P. aeruginosa growth in liquid culture. [Blue] Biomass growth without exogenous quorum signals. [Purple] Biomass growth with exogenous quorum signals. c DsRed fluorescent timeseries generated from a custom-built imager (Supplementary Fig. 1) and custom software (Supplementary Fig. 3) describing P. aeruginosa growth in colony forming units (CFU). [Blue] Biomass growth without exogenous quorum signals [Purple] Biomass growth with exogenous quorum signals added to the plate media. [Inset] Example plate showing colonies at 48 h. Scale bar 1 cm. d Promoter activity (left[frac{{dGFP}}{{dt}}cdot frac{1}{{{OD}}_{600}}right]) of PrhlAB with respect to culture growth rate (left[frac{d{{OD}}_{600}}{{dt}}cdot frac{1}{{{OD}}_{600}}right]). [Blue] without exogenous quorum signals [Purple] with exogenous quorum signals. e Promoter activity (left[frac{{dGFP}}{{dt}}cdot frac{1}{{DsRed}}right]) of PrhlAB with respect to CFU growth rate (left[frac{{dDsRed}}{{dt}}cdot frac{1}{{DsRed}}right]). [Blue] without exogenous quorum signals [Purple] with exogenous quorum signals provided in the plate media.Full size imageWe observed differences in growth between cells grown in liquid culture (Fig. 1b) and spatial structure (Fig. 1c) with the same media composition. The growth pattern observed in liquid culture recapitulates previously reported data22,28. In comparing WT growth (dark blue data in Fig. 1b, c) between environments, we observed that both achieve a period of exponential growth, followed by a period of slowed growth. This sub-exponential growth is prolonged and no period of biomass decay is observed in the spatially-structured environment during our observation window.Quorum signal perturbation has long been an experimental tool to determine if a phenotype is responsive to social signaling9,10. rhlAB gene expression in particular is known to be downstream of both the las and rhl quorum signal systems39,40. However, it has previously been shown that liquid culture perturbation with additional C4-HSL and 3-oxo-C12-HSL, the rhl and las quorum signal system auto-inducers respectively, do not illicit significant change in growth or PrhlAB dynamics in this strain of P. aeruginosa22. We replicated this liquid culture result (Fig. 1b, purple data). In the spatially-structured system, we performed this perturbation by including both quorum signal molecules in the plate media in the same concentration by volume as previously published22. This analysis was done using biological replicates with More

  • in

    Extensive oceanic mesopelagic habitat use of a migratory continental shark species

    1.Angel, M. V. Biodiversity of the Pelagic Ocean. Conserv. Biol. 7, 760–772 (1993).Article 

    Google Scholar 
    2.Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. https://doi.org/10.1038/ncomms4271 (2014).Article 
    PubMed 

    Google Scholar 
    3.Hays, G. C. A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. Hydrobiology 503, 163–170. https://doi.org/10.1023/B:HYDR.0000008476.23617.b0 (2003).Article 

    Google Scholar 
    4.Klevjer, T. A. et al. Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers. Sci. Rep. 6, 19873. https://doi.org/10.1038/srep19873 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Hammerschlag, N., Gallagher, A. J. & Lazarre, D. M. A review of shark satellite tagging studies. J. Exp. Mar. Biol. Ecol. 398, 1–8. https://doi.org/10.1016/j.jembe.2010.12.012 (2011).Article 

    Google Scholar 
    6.Dulvy, N. K. et al. You can swim but you can’t hide: The global status and conservation of oceanic pelagic sharks and rays. Aquat. Conserv. 18, 459–482 (2008).Article 

    Google Scholar 
    7.Pacoureau, N. et al. Half a century of global decline in oceanic sharks and rays. Nature 589, 567–571. https://doi.org/10.1038/s41586-020-03173-9 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Compagno, L. J. V. Pelagic elasmobranch diversity. In Sharks of the Open Ocean, 14–23 (2008).9.Howey, L. A. et al. Into the deep: The functionality of mesopelagic excursions by an oceanic apex predator. Ecol. Evol. 6, 5290–5304. https://doi.org/10.1002/ece3.2260 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Francis, M. P. et al. Oceanic nomad or coastal resident? Behavioural switching in the shortfin mako shark (Isurus oxyrinchus). Mar. Biol. 166, 5. https://doi.org/10.1007/s00227-018-3453-5 (2018).Article 

    Google Scholar 
    11.Skomal, G. et al. Horizontal and vertical movement patterns and habitat use of juvenile porbeagles (Lamna nasus) in the western north Atlantic. Front. Mar. Sci. 8, 16 (2021).Article 

    Google Scholar 
    12.Gaube, P. et al. Mesoscale eddies influence the movements of mature female white sharks in the Gulf Stream and Sargasso Sea. Sci. Rep. 8, 7363. https://doi.org/10.1038/s41598-018-25565-8 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Coelho, R., Fernandez-Carvalho, J. & Santos, M. N. Habitat use and diel vertical migration of bigeye thresher shark: Overlap with pelagic longline fishing gear. Mar. Environ. Res. 112, 91–99. https://doi.org/10.1016/j.marenvres.2015.10.009 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Arostegui, M. C. et al. Vertical movements of a pelagic thresher shark (Alopias pelagicus): Insights into the species’ physiological limitations and trophic ecology in the Red Sea. Endanger. Species Res. 43, 387–394. https://doi.org/10.3354/esr01079 (2020).Article 

    Google Scholar 
    15.Coffey, D. M., Carlisle, A. B., Hazen, E. L. & Block, B. A. Oceanographic drivers of the vertical distribution of a highly migratory, endothermic shark. Sci. Rep. 7, 10434. https://doi.org/10.1038/s41598-017-11059-6 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Coffey, D. M., Royer, M. A., Meyer, C. G. & Holland, K. N. Diel patterns in swimming behavior of a vertically migrating deepwater shark, the bluntnose sixgill (Hexanchus griseus). PLoS One 15, e0228253. https://doi.org/10.1371/journal.pone.0228253 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Francis, M. P., Holdsworth, J. C. & Block, B. A. Life in the open ocean: Seasonal migration and diel diving behaviour of Southern Hemisphere porbeagle sharks (Lamna nasus). Mar. Biol. 162, 2305–2323. https://doi.org/10.1007/s00227-015-2756-z (2015).Article 

    Google Scholar 
    18.Jorgensen, S. J. et al. Eating or meeting? Cluster analysis reveals intricacies of white shark (Carcharodon carcharias) migration and offshore behavior. PLoS One 7, e47819. https://doi.org/10.1371/journal.pone.0047819 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Nelson, D. R. et al. An acoustic tracking of a megamouth shark, Megachasma pelagios: A crepuscular vertical migrator. Environ. Biol. Fish. 49, 389–399. https://doi.org/10.1023/A:1007369619576 (1997).Article 

    Google Scholar 
    20.Sims, D. W., Southall, E. J., Tarling, G. A. & Metcalfe, J. D. Habitat-specific normal and reverse diel vertical migration in the plankton-feeding basking shark. J. Anim. Ecol. 74, 755–761. https://doi.org/10.1111/j.1365-2656.2005.00971.x (2005).Article 

    Google Scholar 
    21.Watanabe, Y. Y. & Papastamatiou, Y. P. Distribution, body size and biology of the megamouth shark Megachasma pelagios. J. Fish Biol. 95, 992–998. https://doi.org/10.1111/jfb.14007 (2019).Article 
    PubMed 

    Google Scholar 
    22.Braun, C. D., Skomal, G. B. & Thorrold, S. R. Integrating archival tag data and a high-resolution oceanographic model to estimate basking shark (Cetorhinus maximus) movements in the Western Atlantic. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00025 (2018).Article 

    Google Scholar 
    23.Jorgensen, S. J. et al. Philopatry and migration of Pacific white sharks. Proc. R. Soc. B 277, 679–688. https://doi.org/10.1098/rspb.2009.1155 (2010).Article 
    PubMed 

    Google Scholar 
    24.Lipscombe, R. S. et al. Habitat use and movement patterns of tiger sharks (Galeocerdo cuvier) in eastern Australian waters. ICES J. Mar. Sci. 77, 3127–3137. https://doi.org/10.1093/icesjms/fsaa212 (2020).Article 

    Google Scholar 
    25.Walker, T. I. et al. Galeorhinus galeus. The IUCN Red List of Threatened Species 2020: e.T39352A2907336. https://doi.org/10.2305/IUCN.UK.2020-2.RLTS.T39352A2907336.en (2020). (Downloaded on 18 June 2021).26.Chabot, C. L. Microsatellite loci confirm a lack of population connectivity among globally distributed populations of the tope shark Galeorhinus galeus (Triakidae). J. Fish Biol. 87, 371–385. https://doi.org/10.1111/jfb.12727 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    27.Bester-van der Merwe, A. E. et al. Population genetics of Southern Hemisphere tope shark (Galeorhinus galeus): Intercontinental divergence and constrained gene flow at different geographical scales. PLoS One 12, e0184481. https://doi.org/10.1371/journal.pone.0184481 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Stevens, J. D. Further results from a tagging study of pelagic sharks in the north-east Atlantic. J. Mar. Biol. Assoc. UK 70, 707–720. https://doi.org/10.1017/S0025315400058999 (1990).Article 

    Google Scholar 
    29.West, G. J. & Stevens, J. D. Archival tagging of school shark, Galeorhinus galeus, in Australia: Initial results. Environ. Biol. Fish. 60, 283–298 (2001).Article 

    Google Scholar 
    30.Thorburn, J. et al. Ontogenetic variation in movements and depth use, and evidence of partial migration in a Benthopelagic Elasmobranch. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00353 (2019).Article 

    Google Scholar 
    31.McMillan, M. N., Huveneers, C., Semmens, J. M. & Gillanders, B. M. Partial female migration and cool-water migration pathways in an overfished shark. ICES J. Mar. Sci. 76, 1083–1093. https://doi.org/10.1093/icesjms/fsy181 (2019).Article 

    Google Scholar 
    32.Walker, T. Galeorhinus galeus fisheries of the World, in: Case studies of management of elasmobranch fisheries. FAO Fish. Tech. Pap. 378, 728–773 (1999).
    Google Scholar 
    33.Brown, L., Bridge, N. & Walker, T. Summary of tag releases and recaptures in the Southern Shark Fishery. Mar. Freshw. Resour. Inst. Rep. 16, 60 (2000).
    Google Scholar 
    34.Lucifora, L., Menni, R. & Escalante, A. Reproductive biology of the school shark, Galeorhinus galeus, off Argentina: Support for a single south western Atlantic population with synchronized migratory movements. Environ. Biol. Fish. 71, 199–209. https://doi.org/10.1007/s10641-004-0305-6 (2004).Article 

    Google Scholar 
    35.Jaureguizar, A. J., Argemi, F., Trobbiani, G., Palma, E. D. & Irigoyen, A. J. Large-scale migration of a school shark, Galeorhinus galeus, in the Southwestern Atlantic. Neotrop. Ichthyol. https://doi.org/10.1590/1982-0224-20170050 (2018).Article 

    Google Scholar 
    36.Nosal, A. P. et al. Triennial migration and philopatry in the critically endangered soupfin shark Galeorhinus galeus. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13848 (2021).Article 

    Google Scholar 
    37.Cuevas, J., Garcia, M. & Di Giacomo, E. Diving behaviour of the critically endangered tope shark Galeorhinus galeus in the Natural Reserve of Bahia San Blas, northern Patagonia. Anim. Biotelemetry 2, 11 (2014).Article 

    Google Scholar 
    38.Iosilevskii, G., Papastamatiou, Y. P., Meyer, C. G. & Holland, K. N. Energetics of the yo-yo dives of predatory sharks. J. Theor. Biol. 294, 172–181. https://doi.org/10.1016/j.jtbi.2011.11.008 (2012).ADS 
    MathSciNet 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    39.Carey, F. G., Scharold, J. V. & Kalmijn, A. J. Movements of blue sharks (Prionace glauca) in depth and course. Mar. Biol. 106, 329–342. https://doi.org/10.1007/BF01344309 (1990).Article 

    Google Scholar 
    40.Nakamura, I., Watanabe, Y. Y., Papastamatiou, Y. P., Sato, K. & Meyer, C. G. Yo-yo vertical movements suggest a foraging strategy for tiger sharks Galeocerdo cuvier. Mar. Ecol. Prog. Ser. 424, 237–246 (2011).ADS 
    Article 

    Google Scholar 
    41.Thorrold, S. R. et al. Extreme diving behaviour in devil rays links surface waters and the deep ocean. Nat. Commun. https://doi.org/10.1038/ncomms5274 (2014).Article 
    PubMed 

    Google Scholar 
    42.Braun, C. D., Gaube, P., Sinclair-Taylor, T. H., Skomal, G. B. & Thorrold, S. R. Mesoscale eddies release pelagic sharks from thermal constraints to foraging in the ocean twilight zone. Proc. Nat. Acad. Sci. 116, 17187–17192. https://doi.org/10.1073/pnas.1903067116 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Andrzejaczek, S., Gleiss, A. C., Pattiaratchi, C. B. & Meekan, M. G. Patterns and drivers of vertical movements of the large fishes of the epipelagic. Rev. Fish. Biol. Fish. 29, 335–354. https://doi.org/10.1007/s11160-019-09555-1 (2019).Article 

    Google Scholar 
    44.Papastamatiou, Y. P. et al. Drivers of daily routines in an ectothermic marine predator: Hunt warm, rest warmer?. PLoS One 10, e0127807. https://doi.org/10.1371/journal.pone.0127807 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Proud, R., Cox, M. J. & Brierley, A. S. Biogeography of the global ocean’s mesopelagic zone. Curr. Biol. 27, 113–119. https://doi.org/10.1016/j.cub.2016.11.003 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    46.Sutton, T. T. et al. A global biogeographic classification of the mesopelagic zone. Deep Sea Res. I(126), 85–102. https://doi.org/10.1016/j.dsr.2017.05.006 (2017).Article 

    Google Scholar 
    47.Ariza, A. et al. Vertical distribution, composition and migratory patterns of acoustic scattering layers in the Canary Islands. J. Mar. Syst. 157, 82–91. https://doi.org/10.1016/j.jmarsys.2016.01.004 (2016).Article 

    Google Scholar 
    48.Peña, M., Cabrera-Gámez, J. & Domínguez-Brito, A. C. Multi-frequency and light-avoiding characteristics of deep acoustic layers in the North Atlantic. Mar. Environ. Res. 154, 104842. https://doi.org/10.1016/j.marenvres.2019.104842 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Peña, M. et al. Acoustic detection of mesopelagic fishes in scattering layers of the Balearic Sea (western Mediterranean). Can. J. Fish. Aquat. Sci. 71, 1186–1197. https://doi.org/10.1139/cjfas-2013-0331 (2014).CAS 
    Article 

    Google Scholar 
    50.Menkes, C. E. et al. Seasonal oceanography from physics to micronekton in the south-west Pacific. Deep Sea Res. II(113), 125–144. https://doi.org/10.1016/j.dsr2.2014.10.026 (2015).Article 

    Google Scholar 
    51.Urmy, S. S. & Horne, J. K. Multi-scale responses of scattering layers to environmental variability in Monterey Bay, California. Deep Sea Res. I(113), 22–32. https://doi.org/10.1016/j.dsr.2016.04.004 (2016).Article 

    Google Scholar 
    52.Korneliussen, R. J. et al. Acoustic target classification. ICES Coop. Res. Rep. 344, 110. https://doi.org/10.17895/ices.pub.4567 (2018).Article 

    Google Scholar 
    53.D’Elia, M. et al. Diel variation in the vertical distribution of deep-water scattering layers in the Gulf of Mexico. Deep Sea Res. I(115), 91–102. https://doi.org/10.1016/j.dsr.2016.05.014 (2016).Article 

    Google Scholar 
    54.Scoulding, B., Chu, D., Ona, E. & Fernandes, P. G. Target strengths of two abundant mesopelagic fish species. J. Acoust. Soc. Am. 137, 989–1000. https://doi.org/10.1121/1.4906177 (2015).ADS 
    Article 
    PubMed 

    Google Scholar 
    55.Geoffroy, M. et al. Mesopelagic sound scattering layers of the high arctic: Seasonal variations in biomass, species assemblage, and trophic relationships. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00364 (2019).Article 

    Google Scholar 
    56.Shea, E. K. & Vecchione, M. Ontogenic changes in diel vertical migration patterns compared with known allometric changes in three mesopelagic squid species suggest an expanded definition of a paralarva. ICES J. Mar. Sci. 67, 1436–1443. https://doi.org/10.1093/icesjms/fsq104 (2010).Article 

    Google Scholar 
    57.Lucifora, L. O., Garcia, V. B., Menni, R. C. & Escalante, A. H. Food habits, selectivity, and foraging modes of the school shark Galeorhinus galeus. Mar. Ecol. Prog. Ser. 315, 259–270 (2006).ADS 
    Article 

    Google Scholar 
    58.Morato, T., Sola, E., Gros, M. P. & Menezes, G. Diets of thornback ray (Raja clavata) and tope shark (Galeorhinus galeus) in the bottom longline fishery of the Azores, northeastern Atlantic. Fish. Bull. 101, 590–602 (2003).
    Google Scholar 
    59.Ellis, J. R., Pawson, M. G. & Shackley, S. E. The comparative feeding ecology of six species of shark and four species of ray (Elasmobranchii) in the North-East Atlantic. J. Mar. Biol. Assoc. UK. 76, 89–106. https://doi.org/10.1017/S0025315400029039 (1996).Article 

    Google Scholar 
    60.Clarke, M. R., Clarke, D. C., Martins, H. R. & Silva, H. M. The diet of blue shark (Prionace glauca) in Azorean waters, Arquipélago. Life Mar. Sci. 14A, 41–56 (1996).
    Google Scholar 
    61.Bond, M. E., Tolentino, E., Mangubhai, S. & Howey, L. A. Vertical and horizontal movements of a silvertip shark (Carcharhinus albimarginatus) in the Fijian archipelago. Anim. Biotelemetry 3, 19. https://doi.org/10.1186/s40317-015-0055-6 (2015).Article 

    Google Scholar 
    62.Saba, G. K. et al. Toward a better understanding of fish-based contribution to ocean carbon flux. Limnol. Oceanogr. 66, 1–26. https://doi.org/10.1002/lno.11709 (2021).CAS 
    Article 

    Google Scholar 
    63.Arkhipkin, A. I. Squid as nutrient vectors linking Southwest Atlantic marine ecosystems. Deep Sea Res. II(95), 7–20. https://doi.org/10.1016/j.dsr2.2012.07.003 (2013).CAS 
    Article 

    Google Scholar 
    64.Bird, C. S. et al. A global perspective on the trophic geography of sharks. Nat. Ecol. Evol. 2, 299–305. https://doi.org/10.1038/s41559-017-0432-z (2018).Article 
    PubMed 

    Google Scholar 
    65.Spaet, J. L. Y., Lam, C. H., Braun, C. D. & Berumen, M. L. Extensive use of mesopelagic waters by a Scalloped hammerhead shark (Sphyrna lewini) in the Red Sea. Anim. Biotelemetry 5, 20. https://doi.org/10.1186/s40317-017-0135-x (2017).Article 

    Google Scholar 
    66.ICES. Working Group on Elasmobranch Fishes (WGEF). ICES Sci. Rep. 2, 789. https://doi.org/10.17895/ices.pub.7470 (2020).Article 

    Google Scholar 
    67.Murgier, J. et al. Rebound in functional distinctiveness following warming and reduced fishing in the North Sea. Proc. R. Soc. B 288, 20201600. https://doi.org/10.1098/rspb.2020.1600 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Pastoors, M. A., van Helmond, E. B., van Marlen, B., van Overzee, H. & de Graaf, E. Pelagic pilot project discard ban, 2013–2014. (IMARES, Wageningen UR, Report Number C071/14) (2014).69.Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496. https://doi.org/10.1175/2007JCLI1824.1 (2007).ADS 
    Article 

    Google Scholar 
    70.NOAA National Geophysical Data Center. ETOPO1 1 Arc-Minute Global Relief Model. (NOAA National Centers for Environmental Information, 2009).71.Pedersen, M. W., Patterson, T. A., Thygesen, U. H. & Madsen, H. Estimating animal behaviour and residency from movement data. Oikos 120, 1281–1290. https://doi.org/10.1111/j.1600-0706.2011.19044.x (2011).Article 

    Google Scholar 
    72.Bauer, R. RchivalTag: Analyzing Archival Tagging Data. A set of functions to generate, access and analyze standard data products from archival tagging data. (2020). https://cran.r-project.org/package=RchivalTag.
    Accessed on 8 November 2021.73.Cazelles, B. et al. Wavelet analysis of ecological time series. Oecologia 156, 287–304. https://doi.org/10.1007/s00442-008-0993-2 (2008).ADS 
    Article 
    PubMed 

    Google Scholar 
    74.Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S, 4th ed. (Springer, 2002). https://doi.org/10.1007/978-0-387-21706-2.75.Wood, S. mgcv: Mixed GAM Computation Vehicle with GCV/AIC/REML smoothness estimation and GAMMs by REML/PQL (2012). https://cran.r-project.org/package=mgcv. Accessed on 8 November 2021.76.Wood S. N. Generalized Additive Models. An Introduction with R. 2nd ed. (Chapman & Halll, 2017). https://doi.org/10.1201/9781315370279. More

  • in

    Airborne microalgal and cyanobacterial diversity and composition during rain events in the southern Baltic Sea region

    This research focuses on the quantitative and qualitative analyses of cyanobacteria and microalgae present in rainfall during the summer phytoplankton bloom season of August–September 2019. In addition, a continuous episode of rainfall over several days was selected to demonstrate the washout process of microorganisms from the air with rain.Quantity of cyanobacteria and microalgae washed out with rain during the growing seasonCurrently, there is a growing number of scientific articles on cyanobacteria and microalgae in the atmosphere8. Unfortunately, there is a reference methodology for efficiently counting the microorganisms present in the air or in rainfall. A popular method for quantifying cyanobacteria and microalgae in the air is to show the number of taxa found in the collected samples after growth6,31,42,43,44,45,46. In this study, a total of 16 taxa of airborne cyanobacteria and microalgae were found in the samples. In the rainwater samples obtained during the summer of 2019, 11 taxa of cyanobacteria and microalgae were distinguished. The green algae in the rainwater samples included Bracteacoccus sp., Oocystis sp., Coenochloris sp., Chlorella sp., and Chlorococcum sp., while the cyanobacteria included Leptolyngbya sp., Pseudanabaena sp., Synechococcus sp., and Synechocystis sp. In addition, Chrysochromulina sp., which belongs to Haptophyta, was observed.Other studies recorded the presence of several to several dozen taxa in the air6,31,42,43,44,45,46. Certainly, a number of factors, starting with atmospheric conditions and ending with physical and chemical parameters of the surrounding waters, influence the diversity of cyanobacteria and microalgae in the atmospheric air. Analyzing global trends, only cyanobacteria have been found in the atmosphere of every region of the world31. However, according to Dillon et al.47, cyanobacteria have been detected in clouds at variable abundances between ~ 1% and 50% of the total microbial community. Xu et al.48 found that cyanobacteria constituted only 1.1% of the total bacterial community in clouds. It needs to be highlighted that there is still a lack of research available to provide this type of information for rainfall samples.For the period from July to September 2019, the results showed that the number of cyanobacteria and microalgae cells present in rainfall varied over time (Fig. 1) and ranged between 100 cells L–1 and 342.2 × 103 cells L–1. From July to the end of August, the cell number was relatively low, ranging from 100 cells L–1 to 28.6 × 103 cells L–1. This variability was related to the change in the biomass of blue green algae in the Gulf of Gdańsk (Table S2; Fig. 1). Therefore, this research also shows the close relationship between the processes taking place in the Baltic Sea and the presence of cyanobacteria and microalgae in the atmosphere. As the biomass of cyanobacteria in the Baltic Sea increased, the number of cyanobacteria and microalgae cells in the rainfall samples also increased (***p  More

  • in

    Higher temperature extremes exacerbate negative disease effects in a social mammal

    1.Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA 117, 4211–4217 (2020).
    Google Scholar 
    2.Fuller, A. et al. Physiological mechanisms in coping with climate change. Physiol. Biochem. Zool. 83, 713–720 (2010).
    Google Scholar 
    3.Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899 (2010).CAS 

    Google Scholar 
    4.Brawn, J. D., Benson, T. J., Stager, M., Sly, N. D. & Tarwater, C. E. Impacts of changing rainfall regime on the demography of tropical birds. Nat. Clim. Change 7, 133–136 (2016).
    Google Scholar 
    5.Summers, B. A. Climate change and animal disease. Vet. Pathol. 46, 1185–1186 (2009).CAS 

    Google Scholar 
    6.Randall, C. J. & van Woesik, R. Contemporary white-band disease in Caribbean corals driven by climate change. Nat. Clim. Change 5, 375–379 (2015).
    Google Scholar 
    7.Munson, L. et al. Climate extremes promote fatal co-infections during canine distemper epidemics in African lions. PLoS ONE 3, e2545 (2008).
    Google Scholar 
    8.Rohr, J. R. et al. Frontiers in climate change–disease research. Trends Ecol. Evol. 26, 270–277 (2011).
    Google Scholar 
    9.Zarnetske, P. L., Skelly, D. K. & Urban, M. C. Biotic multipliers of climate change. Science 336, 1516–1518 (2012).CAS 

    Google Scholar 
    10.Cohen, J. M., Sauer, E. L., Santiago, O., Spencer, S. & Rohr, J. R. Divergent impacts of warming weather on wildlife disease risk across climates. Science 370, eabb1702 (2020).CAS 

    Google Scholar 
    11.Cornwallis, C. K. et al. Cooperation facilitates the colonization of harsh environments. Nat. Ecol. Evol. 1, 0057 (2017).
    Google Scholar 
    12.Koenig, W. D. & Dickinson, J. L. (eds) Cooperative Breeding in Vertebrates: Studies of Ecology, Evolution, and Behavior (Cambridge Univ. Press, 2016).13.Groenewoud, F. & Clutton-Brock, T. Meerkat helpers buffer the detrimental effects of adverse environmental conditions on fecundity, growth and survival. J. Anim. Ecol. 90, 641–652 (2020).
    Google Scholar 
    14.Langwig, K. E. et al. Sociality, density-dependence and microclimates determine the persistence of populations suffering from a novel fungal disease, white-nose syndrome. Ecol. Lett. 15, 1050–1057 (2012).
    Google Scholar 
    15.Vicente, J., Delahay, R. J., Walker, N. J. & Cheeseman, C. L. Social organization and movement influence the incidence of bovine tuberculosis in an undisturbed high-density badger Meles meles population. J. Anim. Ecol. 76, 348–360 (2007).CAS 

    Google Scholar 
    16.Bermejo, M. et al. Ebola outbreak killed 5000 gorillas. Science 314, 1564 (2006).CAS 

    Google Scholar 
    17.Hanya, G. et al. Mass mortality of Japanese macaques in a western coastal forest of Yakushima. Ecol. Res. 19, 179–188 (2004).
    Google Scholar 
    18.Angulo, E. et al. Allee effects in social species. J. Anim. Ecol. 87, 47–58 (2018).
    Google Scholar 
    19.Woodroffe, R., Groom, R. & McNutt, J. W. Hot dogs: high ambient temperatures impact reproductive success in a tropical carnivore. J. Anim. Ecol. 86, 1329–1338 (2017).
    Google Scholar 
    20.Brandell, E. E., Dobson, A. P., Hudson, P. J., Cross, P. C. & Smith, D. W. A metapopulation model of social group dynamics and disease applied to Yellowstone wolves. Proc. Natl Acad. Sci. USA 118, 33649227 (2021).
    Google Scholar 
    21.Clutton-Brock, T. H. & Manser, M. in Cooperative Breeding in Vertebrates: Studies of Ecology, Evolution, and Behavior (eds Koenig, W. D. & Dickinson, J. L.) 294–317 (Cambridge Univ. Press, 2016).22.Drewe, J. A. Who infects whom? Social networks and tuberculosis transmission in wild meerkats. Proc. R. Soc. B 277, 633–642 (2010).
    Google Scholar 
    23.Parsons, S. D. C., Drewe, J. A., van Pittius, N. C. G., Warren, R. M. & van Helden, P. D. Novel cause of tuberculosis in meerkats, South Africa. Emerg. Infect. Dis. 19, 2004–2007 (2013).
    Google Scholar 
    24.Duncan, C., Manser, M., & Clutton-Brock, T. H. Decline and fall: the causes of group failure in cooperatively breeding meerkats. Ecol. Evol. https://doi.org/10.1002/ece3.7655 (2021).25.Drewe, J. A., Foote, A. K., Sutcliffe, R. L. & Pearce, G. P. Pathology of Mycobacterium bovis infection in wild meerkats (Suricata suricatta). J. Comp. Pathol. 140, 12–24 (2009).CAS 

    Google Scholar 
    26.van Wilgen, N. J., Goodall, V. & Holness, S. Rising temperatures and changing rainfall patterns in South Africa’s national parks. Aquat. Microb. Ecol. 36, 706–721 (2016).
    Google Scholar 
    27.Conradie, S. R., Woodborne, S. M., Cunningham, S. J. & McKechnie, A. E. Chronic, sublethal effects of high temperatures will cause severe declines in southern African arid-zone birds during the 21st century. Proc. Natl Acad. Sci. USA 116, 14065–14070 (2019).CAS 

    Google Scholar 
    28.Fischer, E. M., Beyerle, U. & Knutti, R. Robust spatially aggregated projections of climate extremes. Nat. Clim. Change 3, 1033–1038 (2013).
    Google Scholar 
    29.Bourne, A. R., Cunningham, S. J., Spottiswoode, C. N. & Ridley, A. R. Hot droughts compromise interannual survival across all group sizes in a cooperatively breeding bird. Ecol. Lett. 23, 1776–1788 (2020).
    Google Scholar 
    30.Van de Ven, T. M. F. N., Fuller, A. & Clutton‐Brock, T. H. Effects of climate change on pup growth and survival in a cooperative mammal, the meerkat. Funct. Ecol. 34, 194–202 (2020).
    Google Scholar 
    31.Katale, B. Z. et al. Prevalence and risk factors for infection of bovine tuberculosis in indigenous cattle in the Serengeti ecosystem, Tanzania. BMC Vet. Res. 9, 267 (2013).
    Google Scholar 
    32.Paniw, M., Maag, N., Cozzi, G., Clutton-Brock, T. & Ozgul, A. Life history responses of meerkats to seasonal changes in extreme environments. Science 363, 631–635 (2019).CAS 

    Google Scholar 
    33.Dwyer, R. A., Witte, C., Buss, P., Goosen, W. J. & Miller, M. Epidemiology of tuberculosis in multi-host wildlife systems: implications for black (Diceros bicornis) and white (Ceratotherium simum) rhinoceros. Front. Vet. Sci. 7, 580476 (2020).
    Google Scholar 
    34.Patterson, S., Drewe, J. A., Pfeiffer, D. U. & Clutton-Brock, T. H. Social and environmental factors affect tuberculosis related mortality in wild meerkats. J. Anim. Ecol. 86, 442–450 (2017).
    Google Scholar 
    35.Dubuc, C. et al. Increased food availability raises eviction rate in a cooperative breeding mammal. Biol. Lett. 13, 20160961 (2017).
    Google Scholar 
    36.Maag, N., Cozzi, G., Clutton-Brock, T. H. & Ozgul, A. Density‐dependent dispersal strategies in a cooperative breeder. Ecology 99, 1932–1941 (2018).
    Google Scholar 
    37.Ekernas, L. S. & Cords, M. Social and environmental factors influencing natal dispersal in blue monkeys, Cercopithecus mitis stuhlmanni. Anim. Behav. 73, 1009–1020 (2007).
    Google Scholar 
    38.Ozgul, A., Bateman, A. W., English, S., Coulson, T. & Clutton-Brock, T. H. Linking body mass and group dynamics in an obligate cooperative breeder. J. Anim. Ecol. 83, 1357–1366 (2014).
    Google Scholar 
    39.Tomlinson, A. J., Chambers, M. A., Wilson, G. J., McDonald, R. A. & Delahay, R. J. Sex-related heterogeneity in the life-history correlates of Mycobacterium bovis infection in European badgers (Meles meles). Transbound. Emerg. Dis. 60, 37–45 (2013).
    Google Scholar 
    40.Courchamp, F., Grenfell, B. & Clutton-Brock, T. H. Population dynamics of obligate cooperators. Proc. R. Soc. B 266, 557–563 (1999).
    Google Scholar 
    41.Lerch, B. A., Nolting, B. C. & Abbott, K. C. Why are demographic Allee effects so rarely seen in social animals? J. Anim. Ecol. 87, 1547–1559 (2018).
    Google Scholar 
    42.Borg, B. L., Brainerd, S. M., Meier, T. J. & Prugh, L. R. Impacts of breeder loss on social structure, reproduction and population growth in a social canid. J. Anim. Ecol. 84, 177–187 (2015).
    Google Scholar 
    43.Brown, P. T. & Caldeira, K. Greater future global warming inferred from Earth’s recent energy budget. Nature 552, 45–50 (2017).CAS 

    Google Scholar 
    44.Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018).
    Google Scholar 
    45.Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C. & Finnegan, S. Climate change and the past, present, and future of biotic interactions. Science 341, 499–504 (2013).CAS 

    Google Scholar 
    46.Blackwood, J. C., Streicker, D. G., Altizer, S. & Rohani, P. Resolving the roles of immunity, pathogenesis, and immigration for rabies persistence in vampire bats. Proc. Natl Acad. Sci. USA 110, 20837–20842 (2013).CAS 

    Google Scholar 
    47.Fenner, A. L., Godfrey, S. S. & Michael Bull, C. Using social networks to deduce whether residents or dispersers spread parasites in a lizard population. J. Anim. Ecol. 80, 835–843 (2011).
    Google Scholar 
    48.Paniw, M. et al. The myriad of complex demographic responses of terrestrial mammals to climate change and gaps of knowledge: a global analysis. J. Anim. Ecol. 90, 1398–1407 (2021).
    Google Scholar 
    49.McDonald, J. L. et al. Demographic buffering and compensatory recruitment promotes the persistence of disease in a wildlife population. Ecol. Lett. 19, 443–449 (2016).
    Google Scholar 
    50.Plowright, R. K., Sokolow, S. H., Gorman, M. E., Daszak, P. & Foley, J. E. Causal inference in disease ecology: investigating ecological drivers of disease emergence. Front. Ecol. Environ. 6, 420–429 (2008).
    Google Scholar 
    51.Russell, R., DiRenzo, G. V., Szymanski, J., Alger, K. & Grant, E. H. C. Principles and mechanisms of wildlife population persistence in the face of disease. Front. Ecol. Evol. 8, 344 (2020).
    Google Scholar 
    52.Baudouin, A. et al. Disease avoidance, and breeding group age and size condition the dispersal patterns of western lowland gorilla females. Ecology 100, e02786 (2019).
    Google Scholar 
    53.Townsend, A. K., Hawley, D. M., Stephenson, J. F. & Williams, K. E. G. Emerging infectious disease and the challenges of social distancing in human and non-human animals. Proc. R. Soc. B 287, 20201039 (2020).CAS 

    Google Scholar 
    54.Schisler, G. J., Bergersen, E. P. & Walker, P. G. Effects of multiple stressors on morbidity and mortality of fingerling rainbow trout infected with Myxobolus cerebralis. Trans. Am. Fish. Soc. 129, 859–865 (2000).
    Google Scholar 
    55.Härkönen, T., Harding, K., Rasmussen, T. D., Teilmann, J. & Dietz, R. Age- and sex-specific mortality patterns in an emerging wildlife epidemic: the phocine distemper in European harbour seals. PLoS ONE 2, e887 (2007).
    Google Scholar 
    56.Clutton-Brock, T. H. et al. Reproduction and survival of suricates (Suricata suricatta) in the southern Kalahari. Afr. J. Ecol. 37, 69–80 (1999).
    Google Scholar 
    57.Clutton-Brock, T. H., Hodge, S. J. & Flower, T. P. Group size and the suppression of subordinate reproduction in Kalahari meerkats. Anim. Behav. 76, 689–700 (2008).
    Google Scholar 
    58.Bateman, A. W., Ozgul, A., Coulson, T. & Clutton-Brock, T. H. Density dependence in group dynamics of a highly social mongoose, Suricata suricatta. J. Anim. Ecol. 81, 628–639 (2012).
    Google Scholar 
    59.Adler, R. F. et al. The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation. Atmosphere 9, 138 (2018).
    Google Scholar 
    60.Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).CAS 

    Google Scholar 
    61.Parding, K. M. et al. GCMeval – an interactive tool for evaluation and selection of climate model ensembles. Clim. Serv. 18, 100167 (2020).
    Google Scholar 
    62.Delahay, R. J., Langton, S., Smith, G. C., Clifton-Hadley, R. S. & Cheeseman, C. L. The spatio-temporal distribution of Mycobacterium bovis (bovine tuberculosis) infection in a high-density badger population. J. Anim. Ecol. 69, 428–441 (2000).
    Google Scholar 
    63.Delahay, R. J. et al. Long-term temporal trends and estimated transmission rates for Mycobacterium bovis infection in an undisturbed high-density badger (Meles meles) population. Epidemiol. Infect. 141, 1445–1456 (2013).CAS 

    Google Scholar 
    64.Buzdugan, S. N., Chambers, M. A., Delahay, R. J. & Drewe, J. A. Diagnosis of tuberculosis in groups of badgers: an exploration of the impact of trapping efficiency, infection prevalence and the use of multiple tests. Epidemiol. Infect. 144, 1717–1727 (2016).CAS 

    Google Scholar 
    65.Akaike, H. in Selected Papers of Hirotugu Akaike (eds Parzen, E. et al.) 199–213 (Springer, 1998).66.Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B Stat. 73, 3–36 (2011).
    Google Scholar 
    67.Grimm, V. et al. The ODD protocol: a review and first update. Ecol. Model. 221, 2760–2768 (2010).
    Google Scholar 
    68.Wood, S. N. Statistical inference for noisy nonlinear ecological dynamic systems. Nature 466, 1102–1104 (2010).CAS 

    Google Scholar 
    69.Fronzek, S., Carter, T. R., Räisänen, J., Ruokolainen, L. & Luoto, M. Applying probabilistic projections of climate change with impact models: a case study for sub-Arctic palsa mires in Fennoscandia. Clim. Change 99, 515–534 (2010).
    Google Scholar  More

  • in

    Plant-water sensitivity regulates wildfire vulnerability

    1.Westerling, A. L. R. Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring. Phil. Trans. R. Soc. B 371, 20150178 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    2.Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Gonzalez, P. et al. Southwest: Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment (U.S. Global Change Research Program, 2018).4.McLauchlan, K. K. et al. Fire as a fundamental ecological process: research advances and frontiers. J. Ecol. 108, 2047–2069 (2020).
    Google Scholar 
    5.Bowman, D. M. J. S. et al. Fire in the Earth system. Science 324, 481–484 (2009).6.Davis, K. T. et al. Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proc. Natl Acad. Sci. USA 116, 6193–6198 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Stephens, S. L. et al. Drought, tree mortality, and wildfire in forests adapted to frequent fire. Bioscience 68, 77–88 (2018).
    Google Scholar 
    8.Radeloff, V. C. et al. Rapid growth of the US wildland–urban interface raises wildfire risk. Proc. Natl Acad. Sci. USA 115, 3314–3319 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Syphard, A. D., Keeley, J. E., Pfaff, A. H. & Ferschweiler, K. Human presence diminishes the importance of climate in driving fire activity across the United States. Proc. Natl Acad. Sci. USA 114, 13750–13755 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Mietkiewicz, N. et al. In the line of fire: consequences of human-ignited wildfires to homes in the U.S. (1992–2015). Fire 3, 50 (2020).11.Balch, J. K. et al. Human-started wildfires expand the fire niche across the United States. Proc. Natl Acad. Sci. USA 114, 2946–2951 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.McKenzie, D. & Littell, J. S. Climate change and the eco-hydrology of fire: will area burned increase in a warming western USA. Ecol. Appl. 27, 26–36 (2017).PubMed 

    Google Scholar 
    13.Littell, J. S., Mckenzie, D., Peterson, D. L. & Westerling, A. L. Climate and wildfire area burned in western U.S. ecoprovinces, 1916–2003. Ecol. Appl. 19, 1003–1021 (2009).PubMed 

    Google Scholar 
    14.Jensen, D. et al. The sensitivity of US wildfire occurrence to pre-season soil moisture conditions across ecosystems. Environ. Res. Lett. 13, 014021 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    15.Vicente-Serrano, S. M., Quiring, S. M., Peña-Gallardo, M., Yuan, S. & Domínguez-Castro, F. A review of environmental droughts: increased risk under global warming? Earth Sci. Rev. 201, 102953 (2020).
    Google Scholar 
    16.Ficklin, D. L. & Novick, K. A. Historic and projected changes in vapor pressure deficit suggest a continental-scale drying of the United States atmosphere. J. Geophys. Res. 122, 2061–2079 (2017).
    Google Scholar 
    17.Sarhadi, A., Ausín, M. C., Wiper, M. P., Touma, D. & Diffenbaugh, N. S. Multidimensional risk in a nonstationary climate: joint probability of increasingly severe warm and dry conditions. Sci. Adv. 4, eaau3487 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    18.Abatzoglou, J. T., Williams, A. P., Boschetti, L., Zubkova, M. & Kolden, C. A. Global patterns of interannual climate–fire relationships. Glob. Change Biol. 24, 5164–5175 (2018).
    Google Scholar 
    19.Williams, A. P. & Abatzoglou, J. T. Recent advances and remaining uncertainties in resolving past and future climate effects on global fire activity. Curr. Clim. Change Rep. 2, 1–14 (2016).
    Google Scholar 
    20.Bradstock, R. A. A biogeographic model of fire regimes in Australia: current and future implications. Glob. Ecol. Biogeogr. 19, 145–158 (2010).
    Google Scholar 
    21.Krawchuk, M. A. & Moritz, M. A. Constraints on global fire activity vary across a resource gradient. Ecology 92, 121–132 (2011).PubMed 

    Google Scholar 
    22.Scarff, F. R. et al. Effects of plant hydraulic traits on the flammability of live fine canopy fuels. Funct. Ecol. 35, 835–846 (2021).23.Ruffault, J., Martin-StPaul, N., Pimont, F. & Dupuy, J. L. How well do meteorological drought indices predict live fuel moisture content (LFMC)? An assessment for wildfire research and operations in Mediterranean ecosystems. Agric. For. Meteorol. 262, 391–401 (2018).
    Google Scholar 
    24.Pivovaro, A. L. et al. The effect of ecophysiological traits on live fuel moisture content. Fire 2, 28 (2019).25.Nolan, R. H., Hedo, J., Arteaga, C., Sugai, T. & Resco de Dios, V. Physiological drought responses improve predictions of live fuel moisture dynamics in a Mediterranean forest. Agric. For. Meteorol. 263, 417–427 (2018).26.Skelton, R. P., West, A. G. & Dawson, T. E. Predicting plant vulnerability to drought in biodiverse regions using functional traits. Proc. Natl Acad. Sci. USA 112, 5744–5749 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Ma, W. et al. Assessing climate change impacts on live fuel moisture and wildfire risk using a hydrodynamic vegetation model. Biogeosciences 18, 4005–4020 (2021).CAS 

    Google Scholar 
    28.McColl, K. A. et al. The global distribution and dynamics of surface soil moisture. Nat. Geosci. 10, 100–104 (2017).CAS 

    Google Scholar 
    29.Chuvieco, E., González, I., Verdú, F., Aguado, I. & Yebra, M. Prediction of fire occurrence from live fuel moisture content measurements in a Mediterranean ecosystem. Int. J. Wildland Fire 18, 430–441 (2009).30.Rao, K., Williams, A. P., Flefil, J. F. & Konings, A. G. SAR-enhanced mapping of live fuel moisture content. Remote Sens. Environ. 245, 111797 (2020).
    Google Scholar 
    31.Nolan, R. H., Boer, M. M., Resco De Dios, V., Caccamo, G. & Bradstock, R. A. Large-scale, dynamic transformations in fuel moisture drive wildfire activity across southeastern Australia. Geophys. Res. Lett. 43, 4229–4238 (2016).
    Google Scholar 
    32.Dennison, P. E. & Moritz, M. A. Critical live fuel moisture in chaparral ecosystems: a threshold for fire activity and its relationship to antecedent precipitation. Int. J. Wildland Fire 18, 1021–1027 (2009).
    Google Scholar 
    33.Tumino, B. J., Duff, T. J., Goodger, J. Q. D. & Cawson, J. G. Plant traits linked to field-scale flammability metrics in prescribed burns in Eucalyptus forest. PLoS ONE 14, e0221403 (2019).34.Rodman, K. C. et al. A trait-based approach to assessing resistance and resilience to wildfire in two iconic North American conifers. J. Ecol. 109, 313–326 (2021).
    Google Scholar 
    35.Resco de Dios, V. Plant–Fire Interactions (Springer, 2020).36.Hurteau, M. D., Liang, S., Westerling, A. L. R. & Wiedinmyer, C. Vegetation–fire feedback reduces projected area burned under climate change. Sci. Rep. 9, 2838 (2019).37.Littell, J. S., McKenzie, D., Wan, H. Y. & Cushman, S. A. Climate change and future wildfire in the western United States: an ecological approach to nonstationarity. Earths Future 6, 1097–1111 (2018).38.Abatzoglou, J. T. & Kolden, C. A. Relationships between climate and macroscale area burned in the western United States. Int. J. Wildland Fire 22, 1003–1020 (2013).
    Google Scholar 
    39.Goss, M. et al. Climate change is increasing the likelihood of extreme autumn wildfire conditions across California. Environ. Res. Lett. 15, 094016 (2020).40.Bradshaw, L. S., Deeming, J. E., Burgan, R. E. & Cohen, J. D. The 1978 National Fire-Danger Rating System: Technical Documentation General Technical Report INT-169 (US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station,1984); https://doi.org/10.2737/INT-GTR-16941.Hardy, C. C. & Hardy, C. E. Fire danger rating in the United States of America: an evolution since 1916. Int. J. Wildland Fire 16, 217–231 (2007).42.Rabin, S. S. et al. The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions. Geosci. Model Dev. 10, 1175–1197 (2017).CAS 

    Google Scholar 
    43.Hantson, S. et al. The status and challenge of global fire modelling. Biogeosciences 13, 3359–3375 (2016).
    Google Scholar 
    44.Anderegg, W. R. L. Spatial and temporal variation in plant hydraulic traits and their relevance for climate change impacts on vegetation. New Phytol. 205, 1008–1014 (2015).PubMed 

    Google Scholar 
    45.Konings, A. G. & Gentine, P. Global variations in ecosystem-scale isohydricity. Glob. Change Biol. 23, 891–905 (2017).
    Google Scholar 
    46.Forkel, M. et al. Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models. Biogeosciences 16, 57–76 (2019).
    Google Scholar 
    47.Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought. Science 368, 261–266 (2020).CAS 
    PubMed 

    Google Scholar 
    48.Trugman, A. T., Anderegg, L. D. L., Shaw, J. D. & Anderegg, W. R. L. Trait velocities reveal that mortality has driven widespread coordinated shifts in forest hydraulic trait composition. Proc. Natl Acad. Sci. USA 117, 8532–8538 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Williams, A. P. et al. Correlations between components of the water balance and burned area reveal new insights for predicting forest fire area in the southwest United States. Int. J. Wildland Fire 24, 14–26 (2015).
    Google Scholar 
    50.Knapp, P. A. Spatio-temporal patterns of large grassland fires in the Intermountain West U.S.A. Glob. Ecol. Biogeogr. Lett. 7, 259–272 (1998).
    Google Scholar 
    51.Keeley, J. & Syphard, A. Climate change and future fire regimes: examples from California. Geosciences 6, 37 (2016).
    Google Scholar 
    52.Badia, A., Serra, P. & Modugno, S. Identifying dynamics of fire ignition probabilities in two representative Mediterranean wildland–urban interface areas. Appl. Geogr. 31, 930–940 (2011).
    Google Scholar 
    53.Fusco, E. J., Abatzoglou, J. T., Balch, J. K., Finn, J. T. & Bradley, B. A. Quantifying the human influence on fire ignition across the western USA. Ecol. Appl. 26, 2390–2401 (2016).
    Google Scholar 
    54.Syphard, A. D. et al. Human influence on California fire regimes. Ecol. Appl. 17, 1388–1402 (2007).PubMed 

    Google Scholar 
    55.Ager, A. A., Finney, M. A., Kerns, B. K. & Maffei, H. Modeling wildfire risk to northern spotted owl (Strix occidentalis caurina) habitat in central Oregon, USA. For. Ecol. Manage. 246, 45–56 (2007).56.Thomas, D., Butry, D., Gilbert, S., Webb, D. & Fung, J. The Costs and Losses of Wildfires: A Literature Survey NIST Special Publication 1215 (NIST, 2017); https://doi.org/10.6028/NIST.SP.121557.Wang, D. et al. Economic footprint of California wildfires in 2018. Nat. Sustain. 4, 252–260 (2021).
    Google Scholar 
    58.Burke, M. et al. The changing risk and burden of wildfire in the United States. Proc. Natl Acad. Sci. USA 118, e2011048118 (2021).59.García, M., Chuvieco, E., Nieto, H. & Aguado, I. Combining AVHRR and meteorological data for estimating live fuel moisture content. Remote Sens. Environ. 112, 3618–3627 (2008).
    Google Scholar 
    60.Matthews, S. Dead fuel moisture research: 1991–2012. Int. J. Wildland Fire 23, 78–92 (2014).
    Google Scholar 
    61.Cohen, J. D. et al. The National Fire-Danger Rating System: Basic Equations Vol. 82 (US Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station, 1985).62.Pellizzaro, G., Cesaraccio, C., Duce, P., Ventura, A. & Zara, P. Relationships between seasonal patterns of live fuel moisture and meteorological drought indices for Mediterranean shrubland species. Int. J. Wildland Fire 16, 232–241 (2007).63.Liu, L., Zhang, Y., Wu, S., Li, S. & Qin, D. Water memory effects and their impacts on global vegetation productivity and resilience. Sci. Rep. 8, 2962 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    64.Anderegg, W. R. L. et al. Woody plants optimise stomatal behaviour relative to hydraulic risk. Ecol. Lett. 21, 968–977 (2018).PubMed 

    Google Scholar 
    65.Meinzer, F. C., Johnson, D. M., Lachenbruch, B., McCulloh, K. A. & Woodruff, D. R. Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance. Funct. Ecol. 23, 922–930 (2009).
    Google Scholar 
    66.National Fuel Moisture Database (United States Forest Service, 2018); https://www.wfas.net/nfmd/public/index.php67.Abatzoglou, J. T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 33, 121–131 (2011).
    Google Scholar 
    68.Homer, C. et al. Completion of the 2006 National Land Cover Database for the conterminous United States. Photogramm. Eng. Remote Sens. 77, 858–864 (2011).69.Williams, A. P. et al. Observed impacts of anthropogenic climate change on wildfire in California. Earths Future 7, 892–910 (2019).
    Google Scholar 
    70.Boschetti, L., Roy, D., Hoffman, A. A. & Humber, M. Collection 5 MODIS Burned Area Product User Guide Version 3.0.1 (NASA EOSDIS Land Processes DAAC, 2013).71.PRISM Climate Data (Prism Climate Group, Oregon State University, accessed 16 December 2020); https://prism.oregonstate.edu72.Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. 116, G04021 (2011).73.Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Montzka, C., Herbst, M., Weihermüller, L., Verhoef, A. & Vereecken, H. A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves. Earth Syst. Sci. Data 9, 529–543 (2017).
    Google Scholar 
    75.Liu, S. et al. NACP MsTMIP: Unified North American Soil Map (ORNL DAAC, 2014); https://doi.org/10.3334/ornldaac/124276.Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
    Google Scholar 
    77.Martinuzzi, S. et al. The 2010 Wildland–Urban Interface of the Conterminous United States (USDA, 2015).78.Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Change Biol. 17, 2134–2144 (2011).
    Google Scholar  More