Mapping native and non-native vegetation in the Brazilian Cerrado using freely available satellite products
1.Pennington, R. T., Lehmann, C. E. R. & Rowland, L. M. Tropical savannas and dry forests. Curr. Biol. 28, R541–R545 (2018).CAS 
 PubMed 
 Google Scholar 
 2.Piao, S. et al. Interannual variation of terrestrial carbon cycle: Issues and perspectives. Glob. Change Biol. 26, 300–318 (2019).ADS 
 Google Scholar 
 3.Fan, L. et al. Satellite-observed pantropical carbon dynamics. Nat. Plants. 5, 944–951 (2019).CAS 
 PubMed 
 Google Scholar 
 4.Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).ADS 
 CAS 
 PubMed 
 Google Scholar 
 5.Moro, M. F., Nic Lughadha, E., de Araújo, F. S. & Martins, F. R. A phytogeographical metaanalysis of the semiarid caatinga domain in Brazil. Bot. Rev. 82, 91–148 (2016).6.Terra, M., et al. Water availability drives gradients of tree diversity, structure and functional traits in the Atlantic–Cerrado–Caatinga transition, Brazil. J. Plant Ecol. 11, 803–814 (2018).7.Leite, M. B., Xavier, R. O., Oliveira, P. T. S., Silva, F. K. G. & Silva Matos, D. M. Groundwater depth as a constraint on the woody cover in a Neotropical Savanna. Plant Soil. 426, 1–15 (2018).8.Silvertown, J., Araya, Y. & Gowing, D. Hydrological niches in terrestrial plant communities: a review. J. Ecol. 103, 93–108 (2014).
 Google Scholar 
 9.Poulter, B. et al. Plant functional type classification for earth system models: results from the European Space Agency’s Land Cover Climate Change Initiative. Geosci. Model Dev. 8, 2315–2328 (2015).ADS 
 Google Scholar 
 10.Congalton, R. G., Gu, J., Yadav, K., Thenkabail, P. & Ozdogan, M. Global land cover mapping: A review and uncertainty analysis. Remote Sens. 6(12), 12070–12093 (2014).ADS 
 Google Scholar 
 11.Phiri, D. & Morgenroth, J. Developments in Landsat land cover classification methods: A review. Remote Sens. 9(9), 967 (2017).
 Google Scholar 
 12.Joshi, N. et al. A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sens. 8(1), 70 (2016).ADS 
 Google Scholar 
 13.Xiao, J. et al. Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sens. Environ. 233, 111383 (2019).ADS 
 Google Scholar 
 14.Françoso, R. D. et al. Delimiting floristic biogeographic districts in the Cerrado and assessing their conservation status. Biodivers. Conserv. 29, 1477–1500 (2019).
 Google Scholar 
 15.Eiten, G. Delimitation of the cerrado concept. Plant Ecol. 36, 169–178 (1978).
 Google Scholar 
 16.Ribeiro, J.F. & Walter, B.M.T. As principais fitofisionomias do bioma Cerrado in Cerrado: ecologia e flora (ed. Sano, S.M., Almeida, S.P. & Ribeiro, J.F.) 151–212 (EMBRAPA, 2008).17.Oliveria, P.S. & Marquis, R.J. The Cerrados of Brazil: ecology and natural history of a neotropical savanna. (Columbia University Press, 2002).18.Buchhorn, M. et al. Copernicus Global Land Cover Layers—Collection 2. Remote Sens. 12, 1044 (2020).ADS 
 Google Scholar 
 19.European Space Agency. Data. https://climate.esa.int/en/projects/land-cover/data/ (2021).20.Pellegrini, A. F. A. Nutrient limitation in tropical savannas across multiple scales and mechanisms. Ecology 97, 313–324 (2016).PubMed 
 Google Scholar 
 21.Vourlitis, G. L. et al. Variations in stand structure and diversity along a soil fertility gradient in a Brazilian savanna (Cerrado) in Southern Mato Grosso. Soil Sci. Soc. Am. J. 77, 1370–1379 (2013).ADS 
 CAS 
 Google Scholar 
 22.Abrahão, A. et al. Soil types select for plants with matching nutrient-acquisition and use traits in hyperdiverse and severely nutrient-impoverished campos rupestres and cerrado in Central Brazil. J. Ecol. 107, 1302–1316 (2018).
 Google Scholar 
 23.de Assis, A. C. C., Coelho, R. M., da Silva Pinheiro, E. & Durigan, G. Water availability determines physiognomic gradient in an area of low-fertility soils under Cerrado vegetation. Plant Ecol. 212, 1135–1147 (2011).24.Oliveira, P. T. S. et al. Groundwater recharge decrease with increased vegetation density in the Brazilian cerrado. Ecohydrology. 10, e1759 (2016).25.de Oliveira Xavier, R., Leite, M. B., Dexter, K. & da Silva Matos, D. M. Differential effects of soil waterlogging on herbaceous and woody plant communities in a Neotropical savanna. Oecologia. 190, 471–483 (2019).26.Zappi, D. C., Moro, M. F., Meagher, T. R. & Nic Lughadha, E. Plant biodiversity drivers in Brazilian campos rupestres: insights from phylogenetic structure. Front. Plant Sci. 8, (2017).27.Neri, A. V., Schaefer, C. E. G. R., Souza, A. L., Ferreira-Junior, W. G. & Meira-Neto, J. A. A. Pedology and plant physiognomies in the cerrado, Brazil. An. Acad. Bras. Ciênc. 85, 87–102 (2013).CAS 
 PubMed 
 Google Scholar 
 28.Simon, M. F. & Pennington, T. Evidence for Adaptation to Fire Regimes in the Tropical Savannas of the Brazilian Cerrado. Int. J. Plant Sci. 173, 711–723 (2012).
 Google Scholar 
 29.de Castro, E. A. & Kauffman, J. B. Ecosystem structure in the Brazilian Cerrado: a vegetation gradient of aboveground biomass, root mass and consumption by fire. J. Trop. Ecol. 14, 263–283 (1998).
 Google Scholar 
 30.da Silva, D. M. & Batalha, M. A. Soil–vegetation relationships in cerrados under different fire frequencies. Plant Soil 311, 87–96 (2008).CAS 
 Google Scholar 
 31.Durigan, G. Zero-fire: Not possible nor desirable in the Cerrado of Brazil. Flora. 268, 151612 (2020).32.Lloyd, J. & Veenendaal, E. M. Are fire mediated feedbacks burning out of control? (2016)33.Bueno, M. L. et al. The environmental triangle of the Cerrado Domain: Ecological factors driving shifts in tree species composition between forests and savannas. J. Ecol. 106, 2109–2120 (2018).
 Google Scholar 
 34.Alencar, A. et al. Mapping Three Decades of Changes in the Brazilian Savanna Native Vegetation Using Landsat Data Processed in the Google Earth Engine Platform. Remote Sens. 12, 924 (2020).ADS 
 Google Scholar 
 35.INPE. Projeto TerraClass Cerrado Mapeamento do Uso e Cobertura Vegetal do Cerrado. http://www.inpe.br/cra/projetos_pesquisas/dados_terraclass.php (2019)36.Sano, E. E., Rosa, R., Brito, J. L. S. & Ferreira, L. G. Land cover mapping of the tropical savanna region in Brazil. Environ. Monit. Assess. 166, 113–124 (2009).PubMed 
 Google Scholar 
 37.Sano, E. E. et al. Cerrado ecoregions: A spatial framework to assess and prioritize Brazilian savanna environmental diversity for conservation. J. Environ. Manag. 232, 818–828 (2019).
 Google Scholar 
 38.Monteiro, L. M. et al. Evaluating the impact of future actions in minimizing vegetation loss from land conversion in the Brazilian Cerrado under climate change. Biodivers. Conserv. 29, 1701–1722 (2018).
 Google Scholar 
 39.Silva, J. F., Farinas, M. R., Felfili, J. M. & Klink, C. A. Spatial heterogeneity, land use and conservation in the cerrado region of Brazil. J. Biogeogr. 33, 536–548 (2006).
 Google Scholar 
 40.Strassburg, B. B. N. et al. Moment of truth for the Cerrado hotspot. Nat. Ecol. Evol. 1, 0099 (2017).
 Google Scholar 
 41.Soares-Filho, B. et al. Cracking Brazil’s Forest Code. Science 344, 363–364 (2014).ADS 
 CAS 
 PubMed 
 Google Scholar 
 42.Gomes, L., Miranda, H. S. & Bustamante, M. M. C. How can we advance the knowledge on the behavior and effects of fire in the Cerrado biome? For. Ecol. Manag. 417, 281–290 (2018).43.Hartley, A. J., MacBean, N., Georgievski, G. & Bontemps, S. Uncertainty in plant functional type distributions and its impact on land surface models. Remote Sens. Environ. 203, 71–89 (2017).ADS 
 Google Scholar 
 44.Cava, M. G. B., Pilon, N. A. L., Ribeiro, M. C. & Durigan, G. Abandoned pastures cannot spontaneously recover the attributes of old-growth savannas. J. Appl. Ecol. 55, 1164–1172 (2017).
 Google Scholar 
 45.Brancalion, P. H. S. et al. Governance innovations from a multi-stakeholder coalition to implement large-scale Forest Restoration in Brazil. World Dev. Perspect. 3, 15–17 (2016).
 Google Scholar 
 46.Seddon, N. et al. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Phil. Trans. R. Soc. B. 375, 20190120 (2020).PubMed 
 PubMed Central 
 Google Scholar 
 47.MMA. Plano de Manejo Parque Nacional Chapada dos Veadeiros. Ministro de Estado do Meio Ambiente. Brasília. (2009).48.Hunke, P., Roller, R., Zeilhofer, P., Schröder, B. & Mueller, E. N. Soil changes under different land-uses in the Cerrado of Mato Grosso, Brazil. Geoderma Reg. 4, 31–43 (2015).
 Google Scholar 
 49.Sampaio, A.B. et. al. Guia de restauração do Cerrado: volume 1: semeadura direta. Embrapa Cerrados-Livro técnico (INFOTECA-E, 2015).50.Schmidt, I. B. et al. Tailoring restoration interventions to the grassland-savanna-forest complex in central Brazil. Restor. Ecol. 27, 942–948 (2019).
 Google Scholar 
 51.Schmidt, I. B. et al. Community-based native seed production for restoration in Brazil: the role of science and policy. Plant Biol. J. 21, 389–397 (2018).
 Google Scholar 
 52.Strassburg, B. B. N. et al. Author Correction: Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nat. Ecol. Evol. 4, 765–765 (2020).PubMed 
 Google Scholar 
 53.Assis, G. B., Pilon, N. A. L., Siqueira, M. F. & Durigan, G. Effectiveness and costs of invasive species control using different techniques to restore cerrado grasslands. Restor. Ecol. 29, (2020).54.Torello-Raventos, M. et al. On the delineation of tropical vegetation types with an emphasis on forest/savanna transitions. Plant Ecol. Divers. 6, 101–137 (2013).
 Google Scholar 
 55.da Silva, D. P., Amaral, A. G., Bijos, N. R. & Munhoz, C. B. R. Is the herb-shrub composition of veredas (Brazilian palm swamps) distinguishable?. Acta Bot. Bras. 32, 47–54 (2017).
 Google Scholar 
 56.Munhoz, C. B. R. & Felfili, J. M. Florística do estrato herbáceo-subarbustivo de um campo limpo úmido em Brasília, Brasil. Biota. Neotrop. 7, 205–215 (2007).
 Google Scholar 
 57.Franco, A. C. et al. Leaf functional traits of Neotropical savanna trees in relation to seasonal water deficit. Trees 19, 326–335 (2004).
 Google Scholar 
 58.Oliveras, I. & Malhi, Y. Many shades of green: the dynamic tropical forest–savannah transition zones. Phil. Trans. R. Soc. B. 371, 20150308 (2016).PubMed 
 PubMed Central 
 Google Scholar 
 59.Cianciaruso, MV. & Batalha, MA. A year in a Cerrado wet grassland: a non-seasonal island in a seasonal savanna environment. Braz. J. Biol. 68, 495–501 (2008).60.MapBiomas. MapBiomas v5.0. https://mapbiomas.org (2021).61.Souza, C. M. Jr. et al. Reconstructing three decades of land use and land cover changes in Brazilian biomes with landsat archive and earth engine. Remote Sens. 12, 2735 (2020).ADS 
 Google Scholar 
 62.Gorelick, N. et al. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).ADS 
 Google Scholar 
 63.Crouzeilles, R. et al. There is hope for achieving ambitious Atlantic Forest restoration commitments. Perspect. Ecol. Conserv. 17, 80–83 (2019).
 Google Scholar 
 64.Smith, C. C. et al. Secondary forests offset less than 10% of deforestation-mediated carbon emissions in the Brazilian Amazon. Glob. Change Biol. 26, 7006–7020 (2020).ADS 
 Google Scholar 
 65.Rosan, T. M. et al. Extensive 21st-Century Woody Encroachment in South America’s Savanna. Geophys. Res. Lett. 46, 6594–6603 (2019).ADS 
 Google Scholar 
 66.Schwieder, M. et al. Mapping Brazilian savanna vegetation gradients with Landsat time series. Int. J. Appl. Earth Obs. Geoinf. 52, 361–370 (2016).ADS 
 Google Scholar 
 67.Ribeiro, F. F. et al. Geographic Object-Based Image Analysis Framework for Mapping Vegetation Physiognomic Types at Fine Scales in Neotropical Savannas. Remote Sens. 12, 1721 (2020).ADS 
 Google Scholar 
 68.Jacon, A. D., Galvão, L. S., dos Santos, J. R. & Sano, E. E. Seasonal characterization and discrimination of savannah physiognomies in Brazil using hyperspectral metrics from Hyperion/EO-1. Int. J. Remote Sens. 38, 4494–4516 (2017).
 Google Scholar 
 69.Neves, A. K. et al. Hierarchical mapping of Brazilian Savanna (Cerrado) physiognomies based on deep learning. J. App. Remote Sens. 15, 044504–1–044504–23 (2021).70.de Souza Mendes, F., Baron, D., Gerold, G., Liesenberg, V. & Erasmi, S. Optical and SAR remote sensing synergism for mapping vegetation types in the endangered cerrado/amazon ecotone of nova mutum—mato grosso. Remote Sens. 11, 1161 (2019).ADS 
 Google Scholar 
 71.Sano, E. E., Ferreira, L. G., Asner, G. P. & Steinke, E. T. Spatial and temporal probabilities of obtaining cloud-free Landsat images over the Brazilian tropical savanna. Int. J. Remote Sens. 28, 2739–2752 (2007).
 Google Scholar 
 72.Flores-Anderson, A.I., Herndon, K.E., Thapa, R.B. & Cherrington, E. The SAR handbook: comprehensive methodologies for forest monitoring and biomass estimation. (SERVIR, 2019).73.Bendini, H. N. et al. Detailed agricultural land classification in the Brazilian cerrado based on phenological information from dense satellite image time series. Int. J. Appl. Earth. Obs. Geoinf. 82, 101872 (2019).74.Bendini, H. N. et al. Combining environmental and Landsat analysis ready data for vegetation mapping: a case study in the Brazilian savanna biome. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLIII-B3–2020, 953–960 (2020).75.ECMWF. Climate reanalysis. https://climate.copernicus.eu/climate-reanalysis (2021).76.UNESCO. MINOR MODIFICATIONS PROPOSAL TO THE BOUNDARIES of Cerrado Protected Areas World Heritage: Chapada dos Veadeiros and Emas National Parks. (UNESCO Brasília, 2019)77.ICUN. Advisory mission to Cerrado Protected Areas World Heritage Property (Chapada Dos Veadeiros component) (Brazil). (International Union for Conservation of Nature, 2016)78.EMBRAPA. Sistema brasileiro de classificação dos solos. (EMBRAPA, 2006)79.IBGE. Mapa de Solos do Brasil do IBGE escala 1:250.000 https://www.ibge.gov.br/geociencias/downloads-geociencias.html (IBGE, 2020).80.Rodrigues, J. A. et al. How well do global burned area products represent fire patterns in the Brazilian Savannas biome? An accuracy assessment of the MCD64 collections. Int. J. Appl. Earth. Obs. Geoinf. 78, 318–331 (2019).ADS 
 Google Scholar 
 81.NASA, MCD64A1 v6. https://lpdaac.usgs.gov/products/mcd64a1v006/ (2021)82.GEE. Earth Engine Data Catalog. https://developers.google.com/earth-engine/datasets (2021)83.Vreugdenhil, M. et al. Sensitivity of sentinel-1 backscatter to vegetation dynamics: an Austrian case study. Remote Sens. 10, 1396 (2018).ADS 
 Google Scholar 
 84.Harfenmeister, K., Spengler, D. & Weltzien, C. Analyzing temporal and spatial characteristics of crop parameters using sentinel-1 backscatter data. Remote Sens. 11, 1569 (2019).ADS 
 Google Scholar 
 85.European Space Agency. Level-2A Algorithm Overview https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-2a/algorithm (2021)86.GEE. Sentinel-2 MSI: MultiSpectral Instrument, Level-2A. https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR (2021).87.GEE. USGS Landsat 8 Level 2, Collection 2, Tier 1. https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_L2 (2021)88.Xue, J. & Su, B. Significant remote sensing vegetation indices: a review of developments and applications. J. Sens. 2017, 1353691 (2017).
 Google Scholar 
 89.Parente, L. & Ferreira, L. Assessing the spatial and occupation dynamics of the Brazilian pasturelands based on the automated classification of MODIS images from 2000 to 2016. Remote Sens. 10, 606 (2018).ADS 
 Google Scholar 
 90.Hill, M. J., Zhou, Q., Sun, Q., Schaaf, C. B. & Palace, M. Relationships between vegetation indices, fractional cover retrievals and the structure and composition of Brazilian Cerrado natural vegetation. Int. J. Remote Sens. 38, 874–905 (2017).
 Google Scholar 
 91.Nomura, K. & Mitchard, E. More than meets the eye: using sentinel-2 to map small plantations in complex forest landscapes. Remote Sens. 10, 1693 (2018).ADS 
 Google Scholar 
 92.Hagen-Zanker, A. A computational framework for generalized moving windows and its application to landscape pattern analysis. Int. J. Appl. Earth. Obs. Geoinf. 44, 205–216 (2016).ADS 
 Google Scholar 
 93.Wantzen, K. M. et al. Soil carbon stocks in stream-valley-ecosystems in the Brazilian Cerrado agroscape. Agric. Ecosyst. Environ. 151, 70–79 (2012).CAS 
 Google Scholar 
 94.ESA. Copernicus DEM: Global and European Digital Elevation Model (COP-DEM). https://spacedata.copernicus.eu/web/cscda/dataset-details?articleId=394198 (2021)95.Breiman, L. Mach. Learn. 45, 5–32 (2001).96.Chen, D. & Wei, H. The effect of spatial autocorrelation and class proportion on the accuracy measures from different sampling designs. ISPRS J. Photogramm. Remote Sens. 64, 140–150 (2009).ADS 
 Google Scholar 
 97.Olofsson, P., Foody, G. M., Stehman, S. V. & Woodcock, C. E. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens. Environ. 129, 122–131 (2013).ADS 
 Google Scholar 
 98.Foody, G. M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 80, 185–201 (2002).ADS 
 Google Scholar 
 99.Jank, L., Barrios, S. C., do Valle, C. B., Simeão, R. M. & Alves, G. F. The value of improved pastures to Brazilian beef production. Crop Pasture Sci. 65, 1132 (2014).100.Oliveira, J. et al. Choosing pasture maps: An assessment of pasture land classification definitions and a case study of Brazil. Int. J. Appl. Earth. Obs. Geoinf. 93, 102205 (2020).101.Pereira, O., Ferreira, L., Pinto, F. & Baumgarten, L. Assessing pasture degradation in the Brazilian cerrado based on the analysis of MODIS NDVI time-series. Remote Sens. 10, 1761 (2018).ADS 
 Google Scholar 
 102.Meirelles, M.L., Ferreira, E.A.B. and Franco, A.C. Dinâmica sazonal do carbono em campo úmido do cerrado. Embrapa Cerrados-Documentos (INFOTECA-E, 2006).103.França, A. M. S., Paiva, R. J. O., Sano, E. E. & Carvalho, A. M. Estimates for carbon stocks in soil under humid grassland areas in the federal district of Brazil. OJE 04, 777–787 (2014).
 Google Scholar 
 104.Silveira, F. A. O. et al. Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. Plant Soil. 403, 129–152 (2015).
 Google Scholar 
 105.Pereira, E. G., Siqueira-Silva, A. I., de Souza, A. E., Melo, N. M. J. & Souza, J. P. Distinct ecophysiological strategies of widespread and endemic species from the megadiverse campo rupestre. Flora 238, 79–86 (2018).
 Google Scholar 
 106.Moreira, S. N., Pott, V. J., Pott, A., da Silva, R. H. & Júnior, G. A. D. Flora and vegetation structure of Vereda in southwestern Cerrado. Oecol. Aust. 23, 776–798 (2019).
 Google Scholar 
 107.Pinto, J. R. R., Lenza, E. & Pinto, A. de S. Composição florística e estrutura da vegetação arbustivo-arbórea em um cerrado rupestre, Cocalzinho de Goiás, Goiás. Rev. Bras. Bot. 32, (2009).108.Gomes, L., Lenza, E., Maracahipes, L., Marimon, B. S. & Oliveira, E. A. de. Comparações florísticas e estruturais entre duas comunidades lenhosas de cerrado típico e cerrado rupestre, Mato Grosso, Brasil. Acta Bot. Bras. 25, 865–875 (2011).109.Gomes, D.L. Classificação fitofisionômica do cerrado no Parque Nacional da Chapada dos Veadeiros, GO, com a aplicação de uma análise combinatória com filtros adaptativos em imagens TM Landsat. (Dissertação de Mestrado, Brasília, 2008).110.Neyret, M. et al. Examining variation in the leaf mass per area of dominant species across two contrasting tropical gradients in light of community assembly. Ecol. Evol. 6, 5674–5689 (2016).PubMed 
 PubMed Central 
 Google Scholar 
 111.Abreu, R. C. R. et al. The biodiversity cost of carbon sequestration in tropical savanna. Sci. Adv. 3, e1701284 (2017).112.Morais, V. A. et al. Carbon and biomass stocks in a fragment of cerradão in Minas Gerais state, Brazil. Cerne 19, 237–245 (2013).
 Google Scholar 
 113.Bispo, P. da C. et al. Woody aboveground biomass mapping of the Brazilian savanna with a multi-sensor and machine learning approach. Remote Sens. 12, 2685 (2020).114.Taberelli, M. & Gascon, C. Lessons from fragmentation research: improving management and policy guidelines for biodiversity conservation. Conserv. Biol. 19, 734–739 (2005).
 Google Scholar 
 115.Holder, D. N. H., Dockary, M. & Barber, J. The red edge of plant leaf reflectance. Int. J. Remote Sens. 4, 273–288 (1983).
 Google Scholar 
 116.Li, J. & Roy, D. A global analysis of sentinel-2A, sentinel-2B and landsat-8 data revisit intervals and implications for terrestrial monitoring. Remote Sens. 9, 902 (2017).ADS 
 Google Scholar 
 117.Hunter, F. D. L., Mitchard, E. T. A., Tyrrell, P. & Russell, S. Inter-seasonal time series imagery enhances classification accuracy of grazing resource and land degradation maps in a savanna ecosystem. Remote Sens. 12, 198 (2020).ADS 
 Google Scholar 
 118.Ramos, D. M., Diniz, P., Ooi, M. K. J., Borghetti, F. & Valls, J. F. M. Avoiding the dry season: dispersal time and syndrome mediate seed dormancy in grasses in Neotropical savanna and wet grasslands. J. Veg. Sci. 28, 798–807 (2017).
 Google Scholar 
 119.de Camargo, M. G. G., de Carvalho, G. H., Alberton, B. de C., Reys, P. & Morellato, L. P. C. Leafing patterns and leaf exchange strategies of a cerrado woody community. Biotropica. 50, 442–454 (2018).120.Rüetschi, M., Schaepman, M. & Small, D. Using multitemporal sentinel-1 C-band backscatter to monitor phenology and classify deciduous and coniferous forests in Northern Switzerland. Remote Sens. 10, 55 (2017).ADS 
 Google Scholar 
 121.Sano, E. E., Ferreira, L. G. & Huete, A. R. Synthetic aperture radar (L band) and optical vegetation indices for discriminating the Brazilian savanna physiognomies: a comparative analysis. Earth Interact. 9, 1–15 (2005).
 Google Scholar 
 122.Joshi, N. et al. A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sens. 8, 70 (2016).ADS 
 Google Scholar 
 123.Nicolau, A. P., Flores-Anderson, A., Griffin, R., Herndon, K. & Meyer, F. J. Assessing SAR C-band data to effectively distinguish modified land uses in a heavily disturbed Amazon forest. Int. J. Appl. Earth. Obs. Geoinf. 94, 102214 (2021).124.Notarnicola, C. & Posa, F. Inferring vegetation water content from C- and L-band SAR images. IEEE Trans. Geosci. Remote Sens. 45, 3165–3171 (2007).ADS 
 Google Scholar 
 125.El Hajj, M., Baghdadi, N., Bazzi, H. & Zribi, M. Penetration analysis of SAR signals in the C and L bands for wheat, maize, and grasslands. Remote Sens. 11, 31 (2018).ADS 
 Google Scholar 
 126.JAXA. Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest/Non-Forest map. https://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm (JAXA, 2021).127.Zimbres, B. et al. Mapping the stock and spatial distribution of aboveground woody biomass in the native vegetation of the Brazilian Cerrado biome. For. Ecol. Manag. 499, 119615 (2021).128.Ryan, C. M. et al. Quantifying small-scale deforestation and forest degradation in African woodlands using radar imagery. Glob. Change Biol. 18, 243–257 (2011).ADS 
 Google Scholar 
 129.Yu, Y. & Saatchi, S. Sensitivity of L-Band SAR backscatter to aboveground biomass of global forests. Remote Sens. 8, 522 (2016).ADS 
 Google Scholar 
 130.Pilon, N. A. L. et al. The diversity of post-fire regeneration strategies in the cerrado ground layer. J. Ecol. 109, 154–166 (2020).
 Google Scholar 
 131.Schmidt, I. B. & Eloy, L. Fire regime in the Brazilian Savanna: Recent changes, policy and management. Flora. 268, 151613 (2020).132.Boschetti, L. et al. Global validation of the collection 6 MODIS burned area product. Remote Sens. Environ. 235, 111490 (2019).133.Humber, M. L., Boschetti, L., Giglio, L. & Justice, C. O. Spatial and temporal intercomparison of four global burned area products. Int. J. Digit. Earth. 12, 460–484 (2018).PubMed 
 PubMed Central 
 Google Scholar 
 134.Arruda, V. L. S., Piontekowski, V. J., Alencar, A., Pereira, R. S. & Matricardi, E. A. T. An alternative approach for mapping burn scars using Landsat imagery, Google Earth Engine, and Deep Learning in the Brazilian Savanna. Remote Sens. Appl. Soc. Environ. 22, 100472 (2021).135.Santos, F. L. M. et al. Assessing VIIRS capabilities to improve burned area mapping over the Brazilian Cerrado. Int. J. Remote Sens. 41, 8300–8327 (2020).
 Google Scholar 
 136.Marques, E. Q. et al. Redefining the Cerrado-Amazonia transition: implications for conservation. Biodivers. Conserv. 29, 1501–1517 (2019).
 Google Scholar 
 137.Marimon, B. S. et al. Disequilibrium and hyperdynamic tree turnover at the forest–cerrado transition zone in southern Amazonia. Plant Ecol. Divers. 7, 281–292 (2013).
 Google Scholar 
 138.Mellor, A., Boukir, S., Haywood, A. & Jones, S. Exploring issues of training data imbalance and mislabelling on random forest performance for large area land cover classification using the ensemble margin. ISPRS J. Photogramm. Remote Sens. 105, 155–168 (2015).ADS 
 Google Scholar 
 139.DRYFLOR. Plant diversity patterns in neotropical dry forests and their conservation implications. Science. 353, 1383–1387 (2016). More
 