More stories

  • in

    Responses of birds and mammals to long-established wind farms in India

    1.Malthus, T. An Essay on the Principle of Population (Penguin Classics, 1798).
    Google Scholar 
    2.Northrup, J. M. & Wittemyer, G. Characterising the impacts of emerging energy development on wildlife, with an eye towards mitigation. Ecol. Lett. 16, 112–125 (2013).PubMed 

    Google Scholar 
    3.Hubbert, M. K. Nuclear energy and the fossil fuel. In Drilling and Production Practice. 1–57 (Shell Developmental Company, American Petroleum Institute, Houston, 1956).
    Google Scholar 
    4.Höök, M., Sivertsson, A. & Aleklett, K. Validity of the fossil fuel production outlooks in the IPCC Emission Scenarios. Nat. Resour. Res. 19, 63–81 (2010).
    Google Scholar 
    5.Höök, M. & Tang, X. Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy 52, 797–809 (2013).
    Google Scholar 
    6.Abbasi, S. A. & Abbasi, N. The likely adverse environmental impacts of renewable energy sources. Appl. Energy. 65, 121–144 (2000).
    Google Scholar 
    7.Vöhringer, M. Renewable energy and sustainable development: An impact assessment of micro and mini hydel projects in Gilgit-Baltistan, Pakistan. https://doi.org/10.17169/refubium-22914 (2010).8.Höök, M., Li, J., Johansson, K. & Snowden, S. Growth rates of global energy systems and future outlooks. Nat. Resour. Res. 21, 23–41 (2012).
    Google Scholar 
    9.Rotty, R. M. Growth in global energy demand and contribution of alternative supply systems. Energy 4, 881–890 (1979).
    Google Scholar 
    10.Aung, T. S., Overland, I. & Vakulchuk, R. Environmental performance of foreign firms: Chinese and Japanese firms in Myanmar. J. Clean. Prod. 312, 127701 (2021).
    Google Scholar 
    11.Lu, M. S., Chang, C. L., Lee, W. J. & Wang, L. Combining the wind power generation system with energy storage equipment. IEEE Trans. Ind. Appl. 45, 2109–2115 (2009).
    Google Scholar 
    12.Morinha, F. et al. Differential mortality of birds killed at wind farms in Northern Portugal. Bird Study 61, 255–259 (2014).
    Google Scholar 
    13.Arnett, E. B. & May, R. F. Mitigating wind energy impacts on wildlife: Approaches for multiple taxa. Hum.–Wild. Interact. 10, 5 (2016).
    Google Scholar 
    14.Powlesland, R. G. Impacts of wind farms on birds: A review. Sci. Conserv. 289, 1–53 (2009).
    Google Scholar 
    15.Marques, A. T. et al. Understanding bird collisions at wind farms: An updated review on the causes and possible mitigation strategies. Biol. Conserv. 179, 40–52 (2014).
    Google Scholar 
    16.Wellig, S. D. et al. Mitigating the negative impacts of tall wind turbines on bats: Vertical activity profiles and relationships to wind speed. PLoS ONE 13, e0192493. https://doi.org/10.1371/journal.pone.0192493 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Everaert, J. & Eric, W. M. S. Impact of wind turbines on birds in Zeebrugge (Belgium). Biodivers. Conserv. 16, 3345–3359 (2007).
    Google Scholar 
    18.Barrios, L. & Rodriguez, A. Behavioural and environmental correlates of soaring-bird mortality at on-shore wind turbines. J. Appl. Ecol. 41, 72–81 (2004).
    Google Scholar 
    19.Barrios, L. & Rodriguez, A. Spatiotemporal patterns of bird mortality at two wind farms of Southern Spain. in Birds and wind farms: Risk Assessment and Mitigation (eds De Lucas, M. et al.) 229–239 (2007).20.Meek, E. R., Ribbands, J. B., Christer, W. B., Davy, P. R. & Higginson, I. The effects of aero-generators onmoorland bird populations in the Orkney Islands, Scotland. Bird Study 40, 140–143 (1993).
    Google Scholar 
    21.Smallwood, K. S. & Thelander, C. Developing methods to reduce bird mortality in the Altamont Pass Wind Resource Area. Final report to the California Energy Commission. Public Interest Energy Research–Environmental Area, Contract (2004).22.Smallwood, K. S. & Thelander, C. Bird mortality in the Altamont Pass wind resource area, California. J. Wildl. Manag. 72, 215–223 (2008).
    Google Scholar 
    23.Drewitt, A. L. & Langston, R. H. Collision effects of wind-power generators and other obstacles on birds. Ann. N. Y. Acad. Sci. 1134, 233–266 (2008).ADS 
    PubMed 

    Google Scholar 
    24.IWTMA—Indian Wind Turbine Manufacturers Association: INDIA—WIND POWER State wise Month wise Wind Power Installed Capacity 2019–2020. Accessed 7 May 2021. http://www.indianwindpower.com/wind-energy-in-india.php#tab1 (2020). 25.Smith, K. T., Taylor, K. L., Albeke, S. E. & Beck, J. L. Pronghorn winter resource selection before and after wind energy development in South-Central Wyoming. Rangel. Ecol. Manag. 73(2), 227–233 (2020).
    Google Scholar 
    26.Klich, D., Łopucki, R., Ścibior, A., Gołębiowska, D. & Wojciechowska, M. Roe deer stress response to a wind farms: methodological and practical implications. Ecol. Indic. 117, 106658 (2020).
    Google Scholar 
    27.Flydal, K., Eftestøl, S., Reimers, E. & Colman, J. E. Effects of wind turbines on area use and behaviour of semi-domestic reindeer in enclosures. Rangifer. 24(2), 55–66 (2004).
    Google Scholar 
    28.Rabin, L. A., Coss, R. G. & Owings, D. H. The effects of wind turbines on antipredator behavior in California ground squirrels (Spermophilus beecheyi). Biol. Conserv. 131(3), 410–420 (2006).
    Google Scholar 
    29.Łopucki, R. & Perzanowski, K. Effects of wind turbines on spatial distribution of the European hamster. Ecol. Indic. 84, 433–436 (2018).
    Google Scholar 
    30.Kumar, S. R., Ali, A. & Arun, P. R. Impact of wind turbines on birds: A case study from Gujarat, India. Sci. J. Environ. Sci. 228, 1–12 (2012).
    Google Scholar 
    31.Kumar, S. R., Ali, A. M. S. & Arun, P. R. Bat mortality due to collision with wind turbines in Kutch District, Gujarat, India. J. Threat. Taxa. 5(13), 4822–4824 (2013).
    Google Scholar 
    32.Kumar, V., Kumar, P. & Singh, J. An introduction to contaminants in agriculture and environment. In Contaminants in Agriculture and Environment: Health Risks and Remediation (eds. Kumar, V. et al.) 1–8 (Afro Environment India, Haridwar, India, 2019).
    Google Scholar 
    33.Pande, S. et al. CEPF Western Ghats Special Series: Avian collision threat assessment at Bhambarwadi Wind farm Plateau in northern Western Ghats. India. J. Threat. Taxa. 5(1), 3504–3515 (2013).
    Google Scholar 
    34.Narwade, S. et al. Mass mortality of wildlife due to hailstorms in Maharashtra, India. Bird Populations. 13, 28–35 (2014).
    Google Scholar 
    35.Champion, H. G. & Seth, S. K. A Revised Survey of the Forest Types of India (Manager of Publications, 1968).
    Google Scholar 
    36.Erickson, W. P. et al. Avian collisions with wind turbines: a summary of existing studies and comparisons to other sources of avian collision mortality in the United States. Western EcoSystems Technology, Inc., Cheyenne, WY (United States); RESOLVE, Inc., Washington, DC (United States). Accessed 20 Feb 2021. https://www.osti.gov/servlets/purl/822418/ (2001).37.Shoenfeld, P. Suggestions regarding avian mortality extrapolation. Prepared for the Mountaineer Wind Energy Center Technical Review Committee (2004).38.Buckland, S. T. et al. Introduction to Distance Sampling (Oxford University Press, 2001).
    Google Scholar 
    39.Bibby, C. J., Burgess, N. D. & Hill, D. A. Bird Census Techniques (Academic Press, 1992).
    Google Scholar 
    40.Cottam, G. & Curtis, J. T. The use of distance measures in phytosociological sampling. Ecology 37, 451–460 (1956).
    Google Scholar 
    41.Erickson, W. P., Jeffrey, J., Kronner, K. & Bay, K. Stateline wind project wildlife monitoring annual report, results for the period July 2001–December 2002. Technical report submitted to FPL Energy, the Oregon Office of Energy, and the Stateline Technical Advisory Committee (2003).42.Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
    Google Scholar 
    43.McCune, B., Grace, J. B. & Urban, D. L. Analysis of Ecological Communities Vol. 28 (MjM Software Design, 2002).
    Google Scholar 
    44.Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. Ecol. 18, 117–143 (1993).
    Google Scholar 
    45.Baskaran, N., Desai, A. A. & Udhayan, A. Population distribution and conservation of the four-horned antelope (Tetracerus quadricornis) in the tropical forest of Southern India. J. Sci. Trans. Environ. Technol. 2, 139–144 (2009).
    Google Scholar 
    46.Isvaran, K. Intraspecific variation in group size in the blackbuck antelope: The roles of habitat structure and forage at different spatial scales. Oecologia 154(2), 435–444 (2007).ADS 
    PubMed 

    Google Scholar 
    47.Šálek, M. et al. Population densities and habitat use of the golden jackal (Canis aureus) in farmlands across the Balkan Peninsula. Eur. J. Wildl. Res. 60(2), 193–200 (2014).
    Google Scholar 
    48.Mukherjee, S., Goyal, S. P., Johnsingh, A. J. T. & Pitman, M. L. The importance of rodents in the diet of jungle cat (Felis chaus), caracal (Caracal caracal) and golden jackal (Canis aureus) in Sariska Tiger Reserve, Rajasthan, India. J. Zool. 262(4), 405–411 (2004).
    Google Scholar 
    49.Majumder, A., Sankar, K., Qureshi, Q. & Basu, S. Food habits and temporal activity patterns of the Golden Jackal Canis aureus and the Jungle Cat Felis chaus in Pench Tiger Reserve, Madhya Pradesh. J. Threat. Taxa. 3(11), 2221–2225 (2011).
    Google Scholar 
    50.Gaikwad, M. C. & Narwade, S. S. The status of Chinkara Gazella bennettii (Mammalia: Cetartiodactyla: Bovidae) at Mayureshwar Wildlife Sanctuary, Supe, Baramati, Pune and a note on its current distribution in the southwestern region of the Deccan Plateau of Maharashtra, India. J. Threat. Taxa. 8(3), 8590–8595 (2016).
    Google Scholar 
    51.Kumar, D. et al. Ecological determinants of occupancy and abundance of chinkara (Gazella bennettii) in Yadahalli Wildlife Sanctuary, Karnataka, India. Curr. Sci. 118(2), 264–270 (2020).
    Google Scholar 
    52.Anoop, V., Arun, P. R. & Jayapal, R. Do black-naped hares Lepus nigricollis (Mammalia: Lagomorpha: Leporidae) have synanthropic association with wind farms?. J. Threat. Taxa. 10(7), 11925–11927 (2018).
    Google Scholar 
    53.MacKenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255 (2002).
    Google Scholar 
    54.MacKenzie, D. I. et al. Occupancy Modelling and Estimation (Academic Press, 2006).
    Google Scholar 
    55.Akaike, H. Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika 60, 255–265 (1973).MathSciNet 
    MATH 

    Google Scholar 
    56.Burnham, K. P. & Anderson, D. R. in Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach 2nd edn (Springer-Verlag, New York, 2002).MATH 

    Google Scholar 
    57.Kingsley, A. & Whittam, B. Potential Impacts of Wind Turbines on Birds at North Cape, Prince Edward Island (Bird Studies Canada, 2001).
    Google Scholar 
    58.Winkelman, J. E. Vogels en het Windpark nabij Urk (NOP): Aanvaringsslachtoffers en Verstoring van Pleisterende Eenden, Ganzen en Zwanen. RIN-report 89/15. Arnhem. (1989).59.Arun, P. R., Jayapal, R. & Anoop, V. Impact of Hara wind power project of CLP wind farms (India) ltd. On wildlife including migratory birds and raptors at Harpanahalli, Davangere, Karnataka. Final report Submitted to CLP Wind farms (India) Pvt. Ltd. SACON Report. 145 (2015).60.SGS Environment – Haverigg wind farm ornithological monitoring programme. Report to Windcluster Ltd. (1994).61.Tyler, S. J. Bird strike study at Bryn Titli wind farm, Rhayader. Report to National Wind Power Ltd (1995).62.Petterson, J. & Stalin, T. Influence of offshore windmill on migratory birds in southeast coast of Sweden. Report to GE Wind Energy. Piorkowski (2003).63.Grünkorn T., Diederichs A., Stahl B., Pöszig D. & Nehls G. Entwicklung einer Methode zur Abschätzung desKollisionsrisikos von Vögeln an Windenergie-anlagen. Bioconsult SH, Hockensbüll, Germany. Accessed 2 Feb 2021. http://www.umweltdaten.landsh.de/nuis/upool/gesamt/wea/voegel_wea.pdf (2005).64.Morrison, M. L. Avian Risk and Fatality Protocol (National Renewable Energy Lab., 1998).
    Google Scholar 
    65.Anderson, R. et al. Avian Monitoring and Risk Assessment at the San Gorgonio Wind Resource Area (National Renewable Energy Lab. (NREL), 2005).
    Google Scholar 
    66.Hunt, G. & Hunt, T. The trend of golden eagle territory occupancy in the vicinity of the Altamont Pass Wind Resource Area: 2005 survey. Unpublished report of the California Energy Commission. Accessed 2 Feb 2021. www.energy.ca.gov/2006publications/CEC-500-2006-056/CEC-500-2006-056.pdf (2006).67.Brown, M. J., Linton, E. & Rees, E. C. Causes of mortality among wild swans in Britain. Wildfowl. 43, 70–79 (1992).
    Google Scholar 
    68.Larsen, J. K. & Clausen, P. Potential wind park impacts on whooper swans in winter: The risk of collision. Waterbirds. 25, 327–330 (2002).
    Google Scholar 
    69.Drewitt, A. L. & Langston, R. H. Assessing the impacts of wind farms on birds. Ibis 148, 29–42 (2006).
    Google Scholar 
    70.Stewart, G. B., Pullin, A. S. & Coles, C. F. Poor evidence-base for assessment of wind farm impacts on birds. Environ. Conserv. 34, 1–11 (2007).
    Google Scholar 
    71.Kuvlesky, W. P. Jr. et al. Wind energy development and wildlife conservation: Challenges and opportunities. J. Wildl. Manag. 71, 2487–2498 (2007).
    Google Scholar 
    72.Behr, O. & Helversen. O. V. Gutachten zur Beeinträchtigung im freien Luftraum jagender und ziehender Fledermäuse durch bestehende Windkraftanlagen. Wirkungskontrolle zum Windpark “Roßkopf” (Freiburg i. Br.). Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Zoologie II: 1–42 (2005).73.Behr, O. et al. Gutachten zur Beeinträchtigung im freien Luftraum jagender und ziehender Fledermäuse durch bestehende Windkraftanlagen. Wirkungskontrolle zum Windpark ‘Ittenschwander Horn’ (Freiburg i Br.). Report to Windpark Fröhnd GmbH & Co. KG (2006).74.Brinkmann, R., Schauer-Weisshahn H., & Bontadina F. Untersuchungen zu möglichen betriebsbedingten Auswirkungen von Windkraftanlagen auf Fledermäuse im Regierungsbezirk Freiburg. Report to Regierungspräsidium Freiburg, Referat 56 Naturschutz und Landschaftspflege. Accessed 2 Feb 2021. http://www.rp-freiburg.de/servlet/PB/show/1158478/rpf-windkraft-fledermaeuse.pdf (2006).75.Grunwald, T. & Schäfer, F. Aktivität von Fledermäusen im Rotorbereich von Windenergieanlagen an bestehenden WEA in Südwestdeutschland – Teil 2: Ergebnisse. Nyctalus. 12, 182–198 (2007).
    Google Scholar 
    76.Bach, P., Niermann, I. & Bach, L. Impact of wind speed on the activity of bats-at the coast and inland. Accessed 2 Feb 2021. https://tethys.pnnl.gov/sites/default/files/publications/Bachetal2011.pdf (2011).77.Bach, P., Bach, L., Ekschmitt, K., Frey, K. & Gerhardt, U. Bat fatalities at different wind facilities in Northwest Germany. Accessed 2 Feb 2021. https://tethys.pnnl.gov/sites/default/files/publications/Bach-Bat-fatalities-Poster-2013.pdf (2013).78.Cryan, P. M. & Brown, A. C. Migration of bats past a remote island offers clues toward the problem of bat fatalities at wind turbines. Biol. Conserv. 139, 1–11 (2007).
    Google Scholar 
    79.Thaxter, C. B. et al. Bird and bat species’ global vulnerability to collision mortality at wind farms revealed through a trait-based assessment. Proc. R. Soc. B 284, 20170829. https://doi.org/10.1098/rspb.2017.0829 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    80.Kumar S. R. Impacts of wind farm on avifauna of Samakhiali region, Kutch, Gujarat, PhD thesis submitted to Bharathiyar University, Coimbatore (2017).81.De Lucas, M., Janss, G. F., Whitfield, D. P. & Ferrer, M. Collision fatality of raptors in wind farms does not depend on raptor abundance. J. Appl. Ecol. 45, 1695–1703 (2008).
    Google Scholar 
    82.Leddy, K. L., Higgins, K. F. & Naugle, D. E. Effects of wind turbines on upland nesting birds in Conservation Reserve Program grasslands. Wilson. Bull. 111, 100–104 (1999).
    Google Scholar 
    83.Pearce-Higgins, J. W., Stephen, L., Langston, R. H., Bainbridge, I. P. & Bullman, R. The distribution of breeding birds around upland wind farms. J. Appl. Ecol. 46, 1323–1331 (2009).
    Google Scholar 
    84.Zimmerling, J., Pomeroy, A., d’Entremont, M. & Francis, C. Canadian estimate of bird mortality due to collisions and direct habitat loss associated with wind turbine developments. Avian Conserv. Ecol. 8, 1–13 (2013).
    Google Scholar 
    85.Schaller, G. B. The Deer and the Tiger: A Study of Wildlife in India (University Chicago Press, 1967).
    Google Scholar 
    86.Prasad, N. Home range, dispersal, and movement of blackbuck (Antilope cervicapra) population in relation to seasonal change in Mudmal and environs. PhD thesis submitted to Saurashtra University, Rajkot, India (1981).87.Ranjitsinh, M. K. Indian Blackbuck (Natraj Publishers, 1989).
    Google Scholar 
    88.Kumara, H. N., Rathnakumar, S., Sasi, R. & Singh, M. Conservation status of wild mammals in Biligiri Rangaswamy Temple wildlife sanctuary, the Western Ghats, India. Curr. Sci. 103, 933–940 (2012).
    Google Scholar 
    89.Rathore, D. Blackbuck occupancy in Moyar valley, Tamil Nadu. MSc thesis submitted to TERI University, Delhi (2017).90.Arandhara, S., Sathishkumar, S., Gupta, S. & Baskaran, N. Influence of invasive Prosopis juliflora on the distribution and ecology of native blackbuck in protected areas of Tamil Nadu, India. Eur. J. Wildl. Res. 67, 1–16 (2021).
    Google Scholar 
    91.Prater, S. H. The Book of Indian Animals (Oxford University Press, 1971).
    Google Scholar 
    92.Roberts, T. J. The Mammals of Pakistan (Oxford University Press, 1997).
    Google Scholar 
    93.Rahmani, A. R. Distribution of the Indian gazelle or chinkara Gazella bennetti (Sykes) in India. Mammalia 54, 605–620 (1990).
    Google Scholar 
    94.Kumar, D. et al. Ecological determinants of occupancy and abundance of chinkara (Gazella bennettii) in Yadahalli Wildlife Sanctuary, Karnataka, India. Curr. Sci. 118, 264 (2020).
    Google Scholar 
    95.Gubbi, S., Seshadri, S. & Kumara, V. Counting the unmarked: Estimating animal population using count data. Electron. J. Appl. Stat. Anal. 12, 604–618 (2019).
    Google Scholar 
    96.Clutton-Brock, J., Corbet, G. B. & Hills, M. Review of the family Canidae, with a classification by numerical methods. Bull. Br. Mus. Nat. Hist. Zool. 29, 117–199 (1976).
    Google Scholar 
    97.Nowell, K. & Jackson, P. Wild Cats: Status Survey and Conservation Action Plan (IUCN, 1996).
    Google Scholar 
    98.Krishna, Y. C., Krishnaswamy, J. & Kumar, N. S. Habitat factors affecting site occupancy and relative abundance of four-horned antelope. J. Zool. 276, 63–70 (2008).
    Google Scholar  More

  • in

    Wounding response in Porifera (sponges) activates ancestral signaling cascades involved in animal healing, regeneration, and cancer

    1.Eming, S. A., Martin, P. & Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med. 6, 265sr6–265sr6 (2014).2.Wilkinson, H. N. & Hardman, M. J. Wound healing: Cellular mechanisms and pathological outcomes. Open Biol. 10, 20023 (2020).
    Google Scholar 
    3.Dvorak, H. F. Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650–1659 (1986).CAS 
    PubMed 

    Google Scholar 
    4.Dvorak, H. F. Tumors: Wounds that do not heal–Redux. Cancer Immunol. Res. 3, 1–11 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Schäfer, M. & Werner, S. Cancer as an overhealing wound: An old hypothesis revisited. Nat. Rev. Mol. Cell Biol. 9, 628–638 (2008).PubMed 

    Google Scholar 
    6.MacCarthy-Morrogh, L. & Martin, P. The hallmarks of cancer are also the hallmarks of wound healing. Sci. Signal. 13, eaay8690 (2020).7.Trigos, A. S., Pearson, R. B., Papenfuss, A. T. & Goode, D. L. How the evolution of multicellularity set the stage for cancer. Br. J. Cancer 118, 145–152 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Bely, A. E. & Nyberg, K. G. Evolution of animal regeneration: Re-emergence of a field. Trends Ecol. Evol. 25, 161–170 (2010).PubMed 

    Google Scholar 
    9.Bosch, T. C. G. Why polyps regenerate and we don’t: Towards a cellular and molecular framework for Hydra regeneration. Dev. Biol. 303, 421–433 (2007).CAS 
    PubMed 

    Google Scholar 
    10.Gurtner, G. C., Werner, S., Barrandon, Y. & Longaker, M. T. Wound repair and regeneration. Nature 453, 314–321 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    11.Slack, J. M. Animal regeneration: Ancestral character or evolutionary novelty?. EMBO Rep. 18, 1497–1508 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Wenger, Y., Buzgariu, W., Reiter, S. & Galliot, B. Injury-induced immune responses in Hydra. Semin. Immunol. 26, 277–294 (2014).CAS 
    PubMed 

    Google Scholar 
    13.Poss, K. D., Wilson, L. G. & Keating, M. T. Heart regeneration in zebrafish. Science (80-. ). 298, 2188–2190 (2002).14.Kao, D., Felix, D. & Aboobaker, A. The planarian regeneration transcriptome reveals a shared but temporally shifted regulatory program between opposing head and tail scenarios. BMC Genomics 14, 1–17 (2013).
    Google Scholar 
    15.Gehrke, A. R. et al. Acoel genome reveals the regulatory landscape of whole-body regeneration. Science (80-. ). 363 (2019).16.DuBuc, T. Q., Traylor-Knowles, N. & Martindale, M. Q. Initiating a regenerative response; cellular and molecular features of wound healing in the cnidarian Nematostella vectensis. BMC Biol. 12, 24 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    17.Cary, G. A., Wolff, A., Zueva, O., Pattinato, J. & Hinman, V. F. Analysis of sea star larval regeneration reveals conserved processes of whole-body regeneration across the metazoa. BMC Biol. 17, 16 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    18.Owlarn, S. et al. Generic wound signals initiate regeneration in missing-tissue contexts. Nat. Commun. 8, 1–13 (2017).CAS 

    Google Scholar 
    19.Ramon-Mateu, J., Ellison, S. T., Angelini, T. E. & Martindale, M. Q. Regeneration in the ctenophore Mnemiopsis leidyi occurs in the absence of a blastema, requires cell division, and is temporally separable from wound healing. BMC Biol. 17, 80 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    20.Pawlik, J. R. & Deignan, L. K. Cowries graze Verongid sponges on Caribbean reefs. Coral Reefs 34, 663 (2015).ADS 

    Google Scholar 
    21.Rice, M. M., Ezzat, L. & Burkepile, D. E. Corallivory in the anthropocene: Interactive effects of anthropogenic stressors and corallivory on coral reefs. Front. Mar. Sci. 5, 1–14 (2019).
    Google Scholar 
    22.Pawlik, J. R., Loh, T.-L., McMurray, S. E. & Finelli, C. M. Sponge communities on Caribbean coral reefs are structured by factors that are top-down, not bottom-up. PLoS One 8, e62573 (2013).23.Mortimer, C., Dunn, M., Haris, A., Jompa, J. & Bell, J. Estimates of sponge consumption rates on an Indo-Pacific reef. Mar. Ecol. Prog. Ser. 672, 123–140 (2021).ADS 
    CAS 

    Google Scholar 
    24.de Goeij, J. M. et al. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science (80-. ). 342, 108–10 (2013).25.Rix, L. et al. Differential recycling of coral and algal dissolved organic matter via the sponge loop. Funct. Ecol. 31, 778–789 (2016).
    Google Scholar 
    26.Maldonado, M. et al. Sponge grounds as key marine habitats: A synthetic review of types, structure, functional roles and conservation concerns. Mar. Animal Forests https://doi.org/10.1007/978-3-319-17001-5 (2015).Article 

    Google Scholar 
    27.Soubigou, A., Ross, E. G., Touhami, Y., Chrismas, N. & Modepalli, V. Regeneration in sponge Sycon ciliatum partly mimics postlarval development. Development https://doi.org/10.1242/dev.193714 (2020).Article 
    PubMed 

    Google Scholar 
    28.Telford, M. J., Moroz, L. L. & Halanych, K. M. A sisterly dispute. Nature 529, 286–287 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    29.Feuda, R. et al. Improved modeling of compositional heterogeneity supports sponges as sister to all other animals. Curr. Biol. https://doi.org/10.1016/j.cub.2017.11.008 (2017).Article 
    PubMed 

    Google Scholar 
    30.Dunn, C. W., Leys, S. P. & Haddock, S. H. D. The hidden biology of sponges and ctenophores. Trends Ecol. Evol. 30, 282–291 (2015).PubMed 

    Google Scholar 
    31.Borisenko, I. E., Adamska, M., Tokina, D. B. & Ereskovsky, A. V. Transdifferentiation is a driving force of regeneration in Halisarca dujardini (Demospongiae, Porifera). PeerJ 3, e1211 (2015).32.Lavrov, A. I., Bolshakov, F. V., Tokina, D. B. & Ereskovsky, A. V. Sewing up the wounds: The epithelial morphogenesis as a central mechanism of calcaronean sponge regeneration. J. Exp. Zool. Part B Mol. Dev. Evol. 330, 351–371 (2018).33.Ereskovsky, A. V. et al. Transdifferentiation and mesenchymal‐to‐epithelial transition during regeneration in Demospongiae (Porifera). J. Exp. Zool. Part B Mol. Dev. Evol. 334, 37–58 (2020).34.Alexander, B. E. et al. Cell kinetics during regeneration in the sponge Halisarca caerulea: how local is the response to tissue damage? PeerJ 3, e820 (2015).35.Pozzolini, M. et al. Insights into the evolution of metazoan regenerative mechanisms: TGF superfamily member roles in tissue regeneration of the marine sponge Chondrosia reniformis Nardo, 1847. J. Exp. Biol. 222, jeb207894 (2019).36.Kenny, N. J. et al. Towards the identification of ancestrally shared regenerative mechanisms across the Metazoa: A transcriptomic case study in the demosponge Halisarca caerulea. Mar. Genomics 37, 135–147 (2018).PubMed 

    Google Scholar 
    37.Pawlik, J. R. Handbook of marine natural products. in Handbook of Marine Natural Products (eds. Fattorusso, E., Gerwick, W. H. & Taglialatela-Scafati, O.) 677–705 (Springer, New York, 2012). https://doi.org/10.1007/978-90-481-3834-038.Walters, K. D. & Pawlik, J. R. Is there a trade-off between wound-healing and chemical defenses among Caribbean reef sponges?. Integr. Comp. Biol. 45, 352–358 (2005).PubMed 

    Google Scholar 
    39.Becerro, M. A., Turon, X., Uriz, M. J. & Templado, J. Can a sponge feeder be a herbivore? Tylodina perversa (Gastropoda) feeding on Aplysina aerophoba (Demospongiae). Biol. J. Linn. Soc. 78, 429–438 (2003).
    Google Scholar 
    40.Wu, Y.-C. et al. Opisthobranch grazing results in mobilisation of spherulous cells and re-allocation of secondary metabolites in the sponge Aplysina aerophoba. Sci. Rep. 10, 21934 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Pita, L., Hoeppner, M. P., Ribes, M. & Hentschel, U. Differential expression of immune receptors in two marine sponges upon exposure to microbial-associated molecular patterns. Sci. Rep. 8, 16081 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Stewart, F. J., Ottesen, E. A. & Delong, E. F. Development and quantitative analyses of a universal rRNA-subtraction protocol for microbial metatranscriptomics. ISME J. 4, 896–907 (2010).CAS 
    PubMed 

    Google Scholar 
    43.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible read trimming tool for Illumina NGS data. Bioinformatics btu170 (2014).44.Menzel, P. & Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7, 11257 (2015).ADS 

    Google Scholar 
    45.Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity. Nat. Protoc. 8, 1494 (2013).CAS 
    PubMed 

    Google Scholar 
    46.Smith-Unna, R., Boursnell, C., Patro, R., Hibberd, J. M. & Kelly, S. TransRate: Reference free quality assessment of de-novo transcriptome assemblies. Genome Res. 26, 1134–1144 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. Genome analysis BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).CAS 
    PubMed 

    Google Scholar 
    48.Bryant, D. M. et al. A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep. 18, 762–776 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Kanehisa, M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Conesa, A. et al. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).CAS 
    PubMed 

    Google Scholar 
    51.Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6, e21800 (2011).52.Wickham, H. ggplot2: Elegant graphics for data analysis. (Springer, Berlin, 2016).53.Team, R. C. R: A language and environment for statistical computing. (2019).54.Team, Rs. RStudio: Integrated Development for R. (2015).55.Szklarczyk, D. et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).CAS 
    PubMed 

    Google Scholar 
    56.Pritchard, L., Jones, S. & Cock, P. IBioIC Introd. Bioinform. Train. Course https://doi.org/10.5281/zenodo.1184095 (2018).57.Forbes, S. A. et al. The catalogue of somatic mutations in cancer (COSMIC). Curr. Protoc. Hum. Genet. 57 (2008).58.Trigos, A. S., Pearson, R. B., Papenfuss, A. T. & Goode, D. L. Somatic mutations in early metazoan genes disrupt regulatory links between unicellular and multicellular genes in cancer. Elife 8, 1–28 (2019).
    Google Scholar 
    59.Cerenius, L. & Söderhäll, K. Coagulation in invertebrates. J. Innate Immun. 3, 3–8 (2011).PubMed 

    Google Scholar 
    60.Davie, E. W., Fujikawa, K. & Kisiel, W. The coagulation cascade: Initiation, maintenance, and regulation. Biochemistry 30, 10363–10370 (1991).CAS 
    PubMed 

    Google Scholar 
    61.Richardson, V. R., Cordell, P., Standeven, K. F. & Carter, A. M. Substrates of factor XIII-A: Roles in thrombosis and wound healing. Clin. Sci. 124, 123–137 (2013).CAS 

    Google Scholar 
    62.Domazet-Lošo, T. & Tautz, D. Phylostratigraphic tracking of cancer genes suggests a link to the emergence of multicellularity in metazoa. BMC Biol. 8, 1–10 (2010).
    Google Scholar 
    63.Trigos, A. S., Pearson, R. B., Papenfuss, A. T. & Goode, D. L. Altered interactions between unicellular and multicellular genes drive hallmarks of transformation in a diverse range of solid tumors. Proc. Natl. Acad. Sci. USA 114, 6406–6411 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Rohani, M. G. & Parks, W. C. Matrix remodeling by MMPs during wound repair. Matrix Biol. 44–46, 113–121 (2015).PubMed 

    Google Scholar 
    65.Grose, R. et al. A crucial role of beta 1 integrins for keratinocyte migration in vitro and during cutaneous wound repair. Development 129, 2303–2315 (2002).CAS 
    PubMed 

    Google Scholar 
    66.Sebé-Pedrós, A. et al. Early metazoan cell type diversity and the evolution of multicellular gene regulation. Nat. Ecol. Evol. 2, 1176–1188 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    67.Paps, J. & Holland, P. W. H. Reconstruction of the ancestral metazoan genome reveals an increase in genomic novelty. Nat. Commun. 9, 1730 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Sharrocks, A. D. The ETS-domain transcription factor family. Nat. Rev. Mol. Cell Biol. 2, 827–837 (2001).CAS 
    PubMed 

    Google Scholar 
    69.Larroux, C. et al. Developmental expression of transcription factor genes in a demosponge: Insights into the origin of metazoan multicellularity. Evol. Dev. 8, 150–173 (2006).CAS 
    PubMed 

    Google Scholar 
    70.Petersen, H. O. et al. A comprehensive transcriptomic and proteomic analysis of Hydra head regeneration. Mol. Biol. Evol. 32, 1928–1947 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Cardozo, M. J., Mysiak, K. S., Becker, T. & Becker, C. G. Reduce, reuse, recycle—Developmental signals in spinal cord regeneration. Dev. Biol. 432, 53–62 (2017).CAS 
    PubMed 

    Google Scholar 
    72.Adamska, M. et al. Wnt and TGF-β expression in the sponge Amphimedon queenslandica and the origin of metazoan embryonic patterning. PLoS One 2, e1031 (2007).73.Stewart, Z. K. et al. Transcriptomic investigation of wound healing and regeneration in the cnidarian Calliactis polypus. Sci. Rep. 7, 41458 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Chablais, F. & Jazwinska, A. The regenerative capacity of the zebrafish heart is dependent on TGF signaling. Development 139, 1921–1930 (2012).CAS 
    PubMed 

    Google Scholar 
    75.Chen, H., Lin, F., Xing, K. & He, X. The reverse evolution from multicellularity to unicellularity during carcinogenesis. Nat. Commun. 6, 1–10 (2015).ADS 

    Google Scholar 
    76.Srivastava, M. et al. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466, 720–726 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Ćetković, H., Halasz, M. & Herak Bosnar, M. Sponges: A reservoir of genes implicated in human cancer. Mar. Drugs 16, 20 (2018).PubMed Central 

    Google Scholar  More

  • in

    Road traffic and landscape characteristics predict the occurrence of native halophytes on roadside verges

    1.European Road Federation. European Road Statistics: Yearbook 2020. https://erf.be/statistics/road-network-2020/ (2020)2.Hungarian Public Road Nonprofit Pte Ltd Co. https://internet.kozut.hu/ (2020)3.Findlay, T., Scott, C. & Bourdages, J. Response time of wetland biodiversity to road construction on adjacent lands. Conserv. Biol. 14, 86–94. https://doi.org/10.1046/j.1523-1739.2000.99086.x (2000).Article 

    Google Scholar 
    4.Forman, R. T. & Alexander, L. E. Roads and their major ecological effects. Annu. Rev. Ecol. Syst. 29, 207–231. https://doi.org/10.1046/j.1466-822x.1998.00308.x (1998).Article 

    Google Scholar 
    5.Dean, W. R. J., Seymour, C. L., Joseph, G. S. & Foord, S. H. A review of the impacts of roads on wildlife in semi-arid regions. Diversity 11, 81. https://doi.org/10.3390/d11050081 (2019).Article 

    Google Scholar 
    6.Auffret, A. G., Berg, J. & Cousins, S. A. The geography of human‐mediated dispersal. Divers. Distrib. 20, 1450–1456. https://doi.org/10.1111/ddi.12251 (2014)7.Niggemann, M., Jetzkowitz, J., Brunzel, S., Wichmann, M. C. & Bialozyt, R. Distribution patterns of plants explained by human movement behaviour. Ecol. Model. 220, 1339–1346. https://doi.org/10.1016/j.ecolmodel.2009.02.018 (2009).Article 

    Google Scholar 
    8.Clifford, H. T. Seed dispersal by motor vehicles. J. Ecol. 47, 311–315. https://doi.org/10.2307/2257368 (1959).Article 

    Google Scholar 
    9.Rew, L. J. et al. Hitching a ride: seed accrual rates on different types of vehicles. J. Environ. Manage. 206, 547–555. https://doi.org/10.1016/j.jenvman.2017.10.060 (2018).Article 
    PubMed 

    Google Scholar 
    10.Schmidt, W. Plant dispersal by motor cars. Vegetatio 80, 147–152 (1989).Article 

    Google Scholar 
    11.Ross, S. M. Vegetation change on main road verges in south-east Scotland. J. Biogeogr. 13, 109–117. https://doi.org/10.2307/2844986 (1986).Article 

    Google Scholar 
    12.Vitalos, M. & Karrer, G. Dispersal of Ambrosia artemisiifolia seeds along roads: the contribution of traffic and mowing machines. Neobiota 8, 53–60 (2009).
    Google Scholar 
    13.Tikka, P. M., Högmander, H. & Koski, P. S. Road and railway verges serve as dispersal corridors for grassland plants. Landscape Ecol. 16, 659–666. https://doi.org/10.1023/A:101312052 (2001).Article 

    Google Scholar 
    14.Forman, R. T. Estimate of the area affected ecologically by the road system in the United States. Conserv. Biol. 14, 31–35. https://doi.org/10.1046/j.1523-1739.2000.99299.x (2000).Article 

    Google Scholar 
    15.Gelbard, J. L. & Belnap, J. Roads as conduits for exotic plant invasions in a semiarid landscape. Conserv. Biol. 17, 420–432. https://doi.org/10.1046/j.1523-1739.2003.01408.x (2003).Article 

    Google Scholar 
    16.Kalwij, J. M., Milton, S. J. & Mcgeoch, M. A. Road verges as invasion corridors? A spatial hierarchical test in an arid ecosystem. Landscape Ecol. 23, 439–451. https://doi.org/10.1007/s10980-008-9201-3 (2008).Article 

    Google Scholar 
    17.Essl, F., Dullinger, S. & Kleinbauer, I. Changes in the spatio-temporal patterns and habitat preferences of Ambrosia artemisiifolia during its invasion of Austria. Preslia 81, 119–133 (2009).
    Google Scholar 
    18.Follak, S., Dullinger, S., Kleinbauer, I., Moser, D. & Essl, F. Invasion dynamics of three allergenic invasive Asteraceae (Ambrosia trifida, Artemisia annua, Iva xanthiifolia) in central and eastern Europe. Preslia 85, 41–61 (2013).
    Google Scholar 
    19.Skálová, H., Guo, W. Y., Wild, J. & Pyšek, P. Ambrosia artemisiifolia in the Czech Republic: history of invasion, current distribution and prediction of future spread. Preslia 89, 1–16. https://doi.org/10.23855/preslia.2017.001 (2017).Article 

    Google Scholar 
    20.Clarke, A. Macroecology comes of age. Trends Ecol. Evol. 17, 352–353. https://doi.org/10.1016/s0169-5347(02)02552-1 (2002).Article 

    Google Scholar 
    21.Török, K. et al. Invasion gateways and corridors in the Carpathian Basin: Biological invasions in Hungary. Biol. Inv. 5, 349–356. https://doi.org/10.1023/B:BINV.0000005570.19429.73 (2003).Article 

    Google Scholar 
    22.Pyšek, P., Jarošík, V. & Kucera, T. Patterns of invasion in temperate nature reserves. – Biol. Conserv. 104, 13–24. https://doi.org/10.1016/S0006-3207(01)00150-1 (2002).23.Greenberg, C. H., Crownover, S. H. & Gordon, D. R. Roadside soils: a corridor for invasion of xeric shrub by nonindigenous plants. Nat. Area. J. 17, 99–109 (1997).
    Google Scholar 
    24.Köles, P. Útpályák szennyeződése és a vízlefolyás környezeti hatása. Hidrol. Táj. 1, 14–16 (1994).
    Google Scholar 
    25.Amrhein, C., Strong, J. E. & Mosher, P. A. Effect of deicing salts on metal and organic matter mobilization in roadside soils. Environ. Sci. Technol. 26, 703–709. https://doi.org/10.1021/es00028a006 (1992).ADS 
    CAS 
    Article 

    Google Scholar 
    26.Davison, A. W. The effects of de-icing salt on roadside verges. I. Soil and plant analysis. J. Appl. Ecol. 8, 555–561. https://doi.org/10.2307/2402891 (1971).Article 

    Google Scholar 
    27.Bouraoui, D., Cekstere, G., Osvalde, A., Vollenweider, P. & Rasmann, S. Deicing salt pollution affects the foliar traits and arthropods’ biodiversity of lime trees in Riga’s street greeneries. Front. Ecol. Evol. 7, 282. https://doi.org/10.3389/fevo.2019.00282 (2019).Article 

    Google Scholar 
    28.Asensio, E. et al. Accumulation of de-icing salt and leaching in Spanish soils surrounding roadways. Int. J. Env. Res. Pub. He. 14, 1498. https://doi.org/10.3390/ijerph14121498 (2017).CAS 
    Article 

    Google Scholar 
    29.Hintz, W. D. & Relyea, R. A. A review of the species, community, and ecosystem impacts of road salt salinisation in fresh waters. Freshwater Biol. 64, 1081–1097. https://doi.org/10.1111/fwb.13286 (2019).Article 

    Google Scholar 
    30.Zehetner, F., Rosenfellner, U., Mentler, A. & Gerzabek, M. H. Distribution of road salt residues, heavy metals and polycyclic aromatic hydrocarbons across a main road-forest interface. Water Air Soil Poll. 198, 125–132. https://doi.org/10.1007/s11270-008-9831-8 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Flowers, T. J. & Colmer, T. D. Salinity tolerance in halophytes. New Phytol. 179, 945–963. https://doi.org/10.1111/j.1469-8137.2008.02531.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Barbour, M. G. Is any angiosperm an obligate halophyte?. Am. Midl. Nat. 84, 105–120. https://doi.org/10.2307/2423730 (1970).Article 

    Google Scholar 
    33.Mitsch, W. J. & Gosselink, J. G. Wetlands 3rd edn. (Wiley, 2000).
    Google Scholar 
    34.Sabovljevic´, M., Sabovljevic´, A. Contribution to the coastal bryophytes of the Northern Mediterranean: Are there halophytes among bryophytes? Phytol. Balc. 13, 131–135 (2007).35.Krauss, K. W. & Ball, M. C. On the halophytic nature of mangroves. Trees 27, 7–11. https://doi.org/10.1007/s00468-012-0767-7 (2013).Article 

    Google Scholar 
    36.Gerstberger, P. Plantago coronopus subsp. commutata introduced as a roadside halophyte in central Europe. Tuexenia 21, 249–256 (2001).
    Google Scholar 
    37.Wrobel, M., Tomaszewicz, T. & Chudecka, J. Floristic diversity and spatial distribution of roadside halophytes along forest and field roads in Szczecin lowland (West Poland). Pol. J. Ecol. 54, 303–309 (2006).
    Google Scholar 
    38.Šerá, B. Road vegetation in Central Europe – an example from the Czech Republic. Biologia 63, 1085–1088. https://doi.org/10.2478/s11756-008-0152-6 (2008).Article 

    Google Scholar 
    39.Kaplan, Z. et al. Distributions of vascular plants in the Czech Republic. Part 2. Preslia 88, 229–322 (2016).
    Google Scholar 
    40.Schmidt, D., Dítětová, Z., Horváth, A. & Szűcs, P. Coastal newcomer on motorways: the invasion of Plantago coronopus in Hungary. Studia Bot. Hung. 47, 319–334 (2016).Article 

    Google Scholar 
    41.Fekete, R. et al. Rapid continental spread of a salt-tolerant plant along the European road network. Biol. Inv. 23, 2661–2674. https://doi.org/10.1007/s10530-021-02531-6 (2021).Article 

    Google Scholar 
    42.Schmidt, D., Bauer, N., Fekete, R., Haszonits, G. & Süveges, K. Continuing spread of Plantago coronopus along Hungarian roads. Kitaibelia 25, 19–26. https://doi.org/10.17542/kit.25.19 (2020).43.Schmidt, D. New data to spreading of Plantago coronopus in Hungary. Kitaibelia 26, 99–101. https://doi.org/10.17542/kit.26.99 (2021).44.Fekete, R., Mesterházy, A., Valkó, O. & Molnár, V. A. A hitchhiker from the beach: the spread of the maritime halophyte Cochlearia danica along salted continental roads. Preslia 90, 23–37. https://doi.org/10.23855/preslia.2018.023 (2018).45.Schmotzer, A. Ceratocephala testiculata (Crantz) Roth and further data to the flora of the foothills of Bükk Mts. (‘Bükkalja’, NE Hungary). Kitaibelia 20, 81–142. https://doi.org/10.17542/kit.20.81 (2015).Article 

    Google Scholar 
    46.Barbosa, N. P., Fernandes, G. W., Carneiro, M. A. & Júnior, L. A. Distribution of non-native invasive species and soil properties in proximity to paved roads and unpaved roads in a quartzitic mountainous grassland of southeastern Brazil (rupestrian fields). Biol. Inv. 12, 3745–3755. https://doi.org/10.1007/s10530-010-9767-y (2010).Article 

    Google Scholar 
    47.Pollnac, F., Seipel, T., Repath, C. & Re, L. J. Plant invasion at landscape and local scales along roadways in the mountainous region of the Greater Yellowstone Ecosystem. Biol. Inv. 14, 1753–1763. https://doi.org/10.1007/s10530-012-0188-y (2012).Article 

    Google Scholar 
    48.McDougall, K. L. et al. Running off the road: roadside non-native plants invading mountain vegetation. Biol. Inv. 20, 3461–3473. https://doi.org/10.1007/s10530-018-1787-z (2018).Article 

    Google Scholar 
    49.US Fish and Wildlife Service. Jesup’s milk-vetch (Astragalus robbinsii var. jesupii) 5-Year Review: Summary and Evaluation., USA: US Fish and Wildlife Service, 14 pp. (2008)50.US Fish and Wildlife Service. Showy Indian Clover (Trifolium amoenum) 5-Year Review: Summary and Evaluation., USA: US Fish and Wildlife Service, 12 pp. (2008)51.Zarzyczki, K. & Szeląg, Z. Red list of the vascular plants in Poland. (W. Szafer Institute of Botany, Polish Academy of Sciences, 2006)52.Bartha D. et al. Magyarország edényes növényfajainak elterjedési atlasza. Distribution atlas of vascular plants of Hungary (ed. Bartha, D.) (Nyugat-magyarorszagi Egyetem Kiadó, Sopron, 2015).53.QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2019)54.Király G. ed. Új magyar füvészkönyv. Magyarország hajtásos növényei. (Aggteleki Nemzeti Park Igazgatóság, 2009)55.Abrol, I. P., Yadav, J. S. P., & Massoud, F. I. Salt-affected soils and their management (No. 39). Food & Agriculture Org, (1988).56.R Core Team. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2018)57.Bates, D., Sarkar, D., Bates, M. D. & Matrix, L. The lme4 package. R package version 2, 74 (2007).
    Google Scholar 
    58.Knowles, J. E. & Frederick, C. Prediction intervals from merMod objects. https://www.cran.rproject.org/web/packages/merTools/vignettes/Using_predictInterval.html (2016).59.The Plant List. Version 1.1. Published on the Internet. http://www.theplantlist.org/ (2020)60.Schmidt, D., Haszonits, Gy. & Korda, M. Spreading of native Spergularia species along roadsides of Transdanubia (NW Hungary). Kitaibelia 23, 141–150. https://doi.org/10.17542/kit.23.141 (2018).Article 

    Google Scholar 
    61.Englmaier, P. & Wilhalm, T. Alien grasses (Poaceae) in the flora of the Eastern Alps: contribution to an excursion flora of Austria and the Eastern Alps. Neilreichia 9, 177–245 (2018).
    Google Scholar 
    62.Takács, A., & Zsólyomi, T. Adatok a Taktaköz flórájának ismeretéhez. Data to the knowledge of the vascular flora of the Taktaköz (N-Hungary). Kitaibelia 15, 25–34 (2010).63.Bauer, N. Casual occurrences of Limonium gmelinii (Willd.) Kuntze subsp. hungaricum (Klokov) Soó in roadside verges. Kitaibelia 20, 300 (2015).64.Kocián, P. et al. Limonka Gmelinova (Limonium gmelinii) na dálnicích České republiky. Acta Rer. Nat. 19, 1–6 (2016).
    Google Scholar 
    65.Hohla, M., Diewald, W. & Király, G. Limonium gmelini – eine Steppenpflanze an österreichischen Autobahnen sowie weitere Neuigkeiten zur Flora Österreichs. Stapfia 103, 127–150 (2015).
    Google Scholar 
    66.Hanselmann D. Neue Zierde für den Straßensaum–Erstnachweis von Limonium gmelini (Willd.) Kuntze in Deutschland (und weitere Anmerkungen zu aktuellen Entwicklungen der Straßenbegleitflora in Rheinland-Pfalz). Mainz. Nat. Wiss. Arch. 54, 155–156 (2017).67.Scheuer, C. Dupla Graecensia Fungorum (2012, 201–350. Sz.). Fritschiana 72, 9–60 (2012).
    Google Scholar 
    68.John, H. & Stolle, J. Aktuelle Nachweise von Farn-und Blütenpflanzen im südlichen Sachsen-Anhalt. Mitt Florist. Kart. Sachsen-Anhalt 16, 43–57 (2011).
    Google Scholar 
    69.Yannitsaros, A. Additions to the flora of Kithira (Greece) I. Willdenowia 28, 77–94 (1998).Article 

    Google Scholar 
    70.Dogan, Y., Baslar, S., Celik, A., Mert, H. H. & Ozturk, M. A study of the roadside plants of west Anatolia Turkey. Nat. Croat. 1, 63–80 (2004).
    Google Scholar 
    71.Arnold, N., Baydoun, S., Chalak, L. & Raus, T. A contribution to the flora and ethnobotanical knowledge of Mount Hermon Lebanon. Flora Mediterr. 25, 13–55. https://doi.org/10.7320/flmedit25.013 (2015).Article 

    Google Scholar 
    72.Kárpáti, Z. Kiegészítés Soó – Jávorka: A magyar növényvilág kézikönyve c. munkájához. Bot. Közl. 45, 71–76 (1954).
    Google Scholar 
    73.Scott, N. E. & Davison, A. W. De-icing salt and the invasion of road verges by maritime plants. Watsonia 14, 41–52 (1982).
    Google Scholar 
    74.Fukarek, F., Knapp, M. D., Rauschert, S., Weinert, E. Karten der Pflanzenverbreitung in der DDR. Hercynia NF Leipzig 1 Serie 15, 229–320 (1978).75.Bresinsky, A. & Schundfelder, P. Mitteilungen der Arbeitsgemeinschaft zur floristischen Kartierung Bayerns. In: A. Bresinsky et al. (eds.). 7: 25–34 (Anmerkungen zu einigen Musterkarten für einen Atlas der Flora Bayerns,1980).76.Mirek, Z. & Trzonska-Tacik, D. Spreading of Puccinellia distans (L.) Parl. along the roads in southern Poland. Ekol. Pol. 92: 345–352 (1981).77.Valei, F. G. Bromus carinatus Hook. et Arn. en Puccinellia distans (L.) Parl. in midden Nederland. Gorteria 9, 232–234 (1979).78.Badmin, J. S. Records of Puccinellia distans growing inland in Kent and northern France. Trans. Kent Field Club 8, 115 (1980).
    Google Scholar 
    79.Butler, J. D., Hughes, T. D., Sanks, G. D. & Craig, P. R. Salt causes problems along Illinois main roads. Illinois Res. 13, 3–4 (1971).
    Google Scholar 
    80.Catling, P. M. & McKay, S. M. A review of the occurrence of halophytes in the eastern Great Lakes region. Michigan Bot. 20, 167–179 (1981).
    Google Scholar 
    81.Hohla, M. & Melzer, H. Floristisches von den Autobahnen der Bundesländer Salzburg, Oberösterreich Niederösterreich und Burgenland. Linz. Biol. Beitr. 35, 1307–1326 (2003).
    Google Scholar 
    82.Kocián, P. Novelties in the roadside flora of Moravia and Silesia (Czech Republic) – 1. Spergularia media. Acta Mus. Siles. Sci. Nat. 64, 263–267. https://doi.org/10.1515/cszma-2015-0033 (2015).83.Randall, R. E. An annotated flora of Tory Island, Co Donegal (vc H35). Ir. Nat. J. 27, 373–381 (2004).
    Google Scholar 
    84.Rossbach, R. P. Spergularia in North and South America. Contrib. Gray Herb. Harvard Univ. 130, 57–217 (1940).
    Google Scholar 
    85.Truscott, A. M., Palmer, S. C. F., McGowan, G. M., Cape, J. N. & Smart, S. Vegetation composition of roadside verges in Scotland: the effects of nitrogen deposition, disturbance and management. Environment. Poll. 136, 109–118 https://doi.org/10.1016/j.envpol.2004.12.009 (2005).86.Lonsdale, W. M. & Lane, A. M. Tourist vehicles as vectors of weed seeds in Kakadu National Park Northern Australia. Biol. Conserv. 69, 277–283 (1994).Article 

    Google Scholar 
    87.Borhidi, A. & Sánta, A. Vörös könyv Magyarország növénytársulásairól. I-II. 711 pp (Természetbúvár Alapítvány Kiadó, 2007).88.Bekker, R. et al. Seed size, shape and vertical distribution in the soil: indicators of seed longevity. Funct. Ecol. 12, 834–842. https://doi.org/10.1046/j.1365-2435.1998.00252.x (1998).Article 

    Google Scholar 
    89.Westoby, M., Leishman, M., Lord, J., Poorter, H. & Schoen, D. J. Comparative ecology of seed size and dispersal. Philos. T. R. Soc. B. 351, 1309–1318 (1996).Article 

    Google Scholar 
    90.Török, P. et al. New thousand-seed weight records of the Pannonian flora and their application in analysing Social Behaviour Types. Acta Bot. Hung. 55, 429–472. https://doi.org/10.1556/ABot.55.2013.3-4.17 (2013).Article 

    Google Scholar 
    91.Török, P. et al. New measurements of thousand-seed weights of species in the Pannonian flora. Acta Bot. Hung. 58, 187–198. https://doi.org/10.1556/034.58.2016.1-2.10 (2016).Article 

    Google Scholar 
    92.Dawson, W., Burslem, D. F. & Hulme, P. E. Factors explaining alien plant invasion success in a tropical ecosystem differ at each stage of invasion. J. Ecol. 97, 657–665. https://doi.org/10.1111/j.1365-2745.2009.01519.x (2009).Article 

    Google Scholar 
    93.Ungar, I. A. & Binet, P. Factors influencing seed dormancy in Spergularia media (L.) C Presl. Aquat. Bot. 1, 45–55 (1975).CAS 
    Article 

    Google Scholar 
    94.Moravcova, L. & Frantik, T. Germination ecology of Puccinellia distans and P. limosa. Biologia, Sect. Bot. 57,441–448 (2002).95.Filep, Gy. Talajtani alapismeretek II. Egyetemi jegyzet. (Debreceni Agrártudományi Egyetem, Debrecen, 1999)96.Grigore, M. N., & Toma, C. Anatomical adaptations of halophytes. A review of classic literature and recent, Springer https://doi.org/10.1007/978-3-319-66480-4 (2017).97.Grigore, M. N., Ivanescu, L. & Toma, C. Halophytes: an integrative anatomical study. Springer https://doi.org/10.1007/978-3-319-05729-3 (2014).Article 

    Google Scholar 
    98.Vakhrusheva, D. V. Mesostructure of photosynthetic apparatus in C3 plants in the arid zone of Central Asia, Extended Abst. Cand. Sci. (Biol.) Dissertation, Leningrad (1989).99.Breckle, S. W. Salinity tolerance of different halophyte types. In Genetic aspects of plant mineral nutrition Springer, Dordrecht, pp. 167–175. https://doi.org/10.1007/978-94-009-2053-8_26 (1990).100.Glenn, E. P., Brown, J. J. & Blumwald, E. Salt tolerance and crop potential of halophytes. Crit. Rev. Plant Sci. 18, 227–255. https://doi.org/10.1080/07352689991309207 (1999).Article 

    Google Scholar 
    101.Flowers, T. J. & Yeo, A. R. Ion relations of plants under drought and salinity. Aust. J. Plant Physiol. 13, 75–91. https://doi.org/10.1071/PP9860075 (1986).CAS 
    Article 

    Google Scholar 
    102.Pătruţ, D. I., Pop, A., & Coste, I. Biodiversitatea halofitelor din Câmpia Banatului. Eurobit, (2005).103.Skultety, D. & Matthews, J. W. Urbanization and roads drive non-native plant invasion in the Chicago Metropolitan region. Biol. Inv. 19(2553–2566), 2553–2566. https://doi.org/10.1007/s10530-017-1464-7 (2017).Article 

    Google Scholar  More

  • in

    DNA metabarcoding suggests dietary niche partitioning in the Adriatic European hake

    1.Griffin, J. N. et al. Spatial heterogeneity increases the importance of species richness for an ecosystem process. Oikos 118, 1335–1342 (2009).
    Google Scholar 
    2.Bulling, M. T. et al. Species effects on ecosystem processes are modified by faunal responses to habitat composition. Oecologia 158, 511–520 (2008).ADS 
    PubMed 

    Google Scholar 
    3.Godbold, J. A., Bulling, M. T. & Solan, M. Habitat structure mediates biodiversity effects on ecosystem properties. Proc. R. Soc. B Biol. Sci. 278, 2510–2518 (2011).CAS 

    Google Scholar 
    4.Carlucci, R. et al. Exploring spatio-temporal changes in the demersal and benthopelagic assemblages of the north-western Ionian Sea (central Mediterranean Sea). Mar. Ecol. Prog. Ser. 598, 1–19 (2018).ADS 

    Google Scholar 
    5.Garrison, L. P. & Link, J. S. Fishing effects on spatial distribution and trophic guild structure of the fish community in the Georges Bank region. ICES J. Mar. Sci. 57, 723–730 (2000).
    Google Scholar 
    6.Worm, B. & Myers, R. A. Meta-analysis of COD–shrimp interactions reveals top-down control in oceanic food webs. Ecology 84, 162–173 (2003).
    Google Scholar 
    7.Savenkoff, C. et al. Changes in the northern Gulf of St. Lawrence ecosystem estimated by inverse modelling: evidence of a fishery-induced regime shift?. Estuar. Coast. Shelf Sci. 73, 711–724 (2007).ADS 

    Google Scholar 
    8.Ellingsen, K. E. et al. The rise of a marine generalist predator and the fall of beta diversity. Glob. Chang. Biol. 6, 1–11. https://doi.org/10.1111/gcb.15027 (2020).Article 

    Google Scholar 
    9.Casellato, S. & Stefanon, A. Coralligenous habitat in the northern Adriatic Sea: an overview. Mar. Ecol. 29, 321–341 (2008).ADS 

    Google Scholar 
    10.Guidetti, P., Lorenti, M., Buia, M. C. & Mazzella, L. Temporal dynamics and biomass partitioning in three Adriatic seagrass species: Posidonia oceanica, Cymodocea nodosa, Zostera marina. Mar. Ecol. 23, 51–67 (2002).ADS 

    Google Scholar 
    11.Sanfilippo, R. et al. Serpula aggregates and their role in deep-sea coral communities in the southern Adriatic Sea. Facies 59, 663–677 (2013).
    Google Scholar 
    12.FAO. The state of the Mediterranean and Black Sea fisheries 2020. (2020).13.Mannini, P. & Massa, F. Brief overview of Adriatic fisheries landing trends (1972–1997). Support paper prepared for the first Adriamed Coordination Committee Meeting. General Fisheries Commission for the Mediterranean (FAO). Annex G. 3, 1–19 (2000).
    Google Scholar 
    14.Adriamed. Priority Topics Related to Small Pelagic Fishery Resources of the Adriatic Sea. Report of the First Meeting of the Adriamed Working Group on Shared Demersal Resources. FAO-MiPAF Scientific Cooperation to Support Responsible Fisheries in the Adriatic Sea. AdriaMed Tech. Doc. 1–21 (2000).15.Mannini, P., Massa, F. & Milone, N. Priority topics related to small pelagic fishery resources of the Adriatic Sea. Report of the first meeting of the adriamed working group on small pelagic resources. FAO-MiPAF scientific cooperation to support responsible fisheries in the Adriatic Sea. Adriamed Tech. Doc. 6, 1–92 (2001).
    Google Scholar 
    16.Vrgoč, N. et al. Review of current knowledge on shared demersal stocks of the Adriatic Sea. (Food and agriculture organization of the United nations (FAO), 2004).17.Cerrano, C. et al. Adriatic Sea: Description of the ecology and identification of the areas that may deserve to be protected. (2015).18.Arneri, E. & Morales-Nin, B. Aspects of the early life history of European hake from the central Adriatic. J. Fish Biol. 56, 1368–1380 (2000).
    Google Scholar 
    19.Zupanovic, S. & Jardas, I. A contribution to the study of biology and population dynamics of the Adriatic hake, M. merluccius (L). Acta Adriat. 27, 97–146 (1986).
    Google Scholar 
    20.Colloca, F. et al. Mapping of nursery and spawning grounds of demersal fish. Mediterr. Sensitive Habitats Final Report, DG MARE Specif. Contract SI2 600741, (2013).21.Sion, L. et al. Spatial distribution pattern of European hake, M. merluccius (Pisces: Merlucciidae), in the Mediterranean Sea. Sci. Mar. 83, 21–32 (2020).
    Google Scholar 
    22.GFCM. FAO: The state of the Mediterranean and Black Sea fisheries 2016. General Fisheries Commission for the Mediterranean (2016). https://doi.org/10.1163/156853010X510807.23.NGOs. Urgent call for a Fisheries Restricted Area in the Jabuka/Pomo Pit closed to demersal fisheries. (2017).24.Fisher, W., Bauchot, W. M. & Schneider, M. Fiches FAO d’identification pour les besoins de la pêche (rev. 1). Méditerranée et mer Noire. Zone de pêche 37 2, 761–1530 (1987).
    Google Scholar 
    25.Carpentieri, P., Colloca, F. & Ardizzone, G. Daily ration and feeding activity of juvenile hake in the central Mediterranean Sea. J. Mar. Biol. Assoc. UK 88, 1493–1501 (2008).
    Google Scholar 
    26.Cartes, J. E., Hidalgo, M., Papiol, V., Massutí, E. & Moranta, J. Changes in the diet and feeding of the hake M. merluccius at the shelf-break of the Balearic Islands: influence of the mesopelagic-boundary community. Deep Sea Res. Part I Oceanogr. Res. Pap. 56, 344–365 (2009).ADS 

    Google Scholar 
    27.Modica, L., Cartes, J. E., Velasco, F. & Bozzano, A. Juvenile hake predation on Myctophidae and Sternoptychidae: quantifying an energy transfer between mesopelagic and neritic communities. J. Sea Res. 95, 217–225 (2015).ADS 

    Google Scholar 
    28.Druon, J.-N. et al. Modelling of European hake nurseries in the Mediterranean Sea: an ecological niche approach. Prog. Oceanogr. 130, 188–204 (2015).ADS 

    Google Scholar 
    29.Mellon-Duval, C. et al. Trophic ecology of the European hake in the Gulf of Lions, northwestern Mediterranean Sea. Sci. Mar. 81, 7–18 (2017).
    Google Scholar 
    30.Stagioni, M., Montanini, S. & Vallisneri, M. Feeding habits of European hake, M. merluccius (Actinopterygii: Gadiformes: Merlucciidae), from the Northeastern Mediterranean Sea. Acta Ichthyol. Piscat. 41, 109 (2011).
    Google Scholar 
    31.Albaina, A., Aguirre, M., Abad, D., Santos, M. & Estonba, A. 18S rRNA V9 metabarcoding for diet characterization: a critical evaluation with two sympatric zooplanktivorous fish species. Ecol. Evol. 6, 1809–1824 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    32.Berry, O. et al. Comparison of morphological and DNA metabarcoding analyses of diets in exploited marine fishes. Mar. Ecol. Prog. Ser. 540, 167–181 (2015).ADS 
    CAS 

    Google Scholar 
    33.Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. 10, 34 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    34.Siegenthaler, A. et al. Metabarcoding of shrimp stomach content: Harnessing a natural sampler for fish biodiversity monitoring. Mol. Ecol. Resour. 19, 206–220 (2019).CAS 
    PubMed 

    Google Scholar 
    35.Riccioni, G., Stagioni, M., Piccinetti, C. & Libralato, S. A metabarcoding approach for the feeding habits of European hake in the Adriatic Sea. Ecol. Evol. 8, 10435–10447 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    36.Carpentieri, P., Colloca, F., Cardinale, M., Belluscio, A. & Ardizzone, G. Feeding habits of European hake (M. merluccius) in the central Mediterranean Sea. Fish. Bull. 103, 411–416 (2005).
    Google Scholar 
    37.Carrozzi, V. et al. Prey preferences and ontogenetic diet shift of European hake M. merluccius (Linnaeus, 1758) in the central Mediterranean. Reg. Stud. Mar. Sci. 25, 100440 (2019).
    Google Scholar 
    38.Bozzano, A., Sardà, F. & Ríos, J. Vertical distribution and feeding patterns of the juvenile European hake, M. merluccius in the NW Mediterranean. Fish. Res. 73, 29–36 (2005).
    Google Scholar 
    39.Cartes, J. E., Rey, J., Lloris, D. & De Sola, L. G. Influence of environmental variables on the feeding and diet of European hake (M. merluccius) on the Mediterranean Iberian coasts. J. Mar. Biol. Assoc. UK 84, 831–835 (2004).
    Google Scholar 
    40.Papaconstantinou, C. & Caragitsou, E. The food of hake (M. merluccius) in Greek Seas. Vie milieu 37, 77–83 (1987).
    Google Scholar 
    41.Sartor, P., Carlini, F. & De Ranieri, S. Diet of young European hake (M. merluccius) in the Northern Tyrrhenian Sea. (Società italiana di biologia marina, 2003).42.Ungaro, N., Mannini, P. & Vrgoč, N. The biology and stock assessment of M. merluccius in the Adriatic Sea: an historical review by geographical subareas. Acta Adriat. 44, 9–20 (2003).
    Google Scholar 
    43.Froglia, C. & Gramitto, M. E. Summary of biological parameters on Micromesistius poutassou (Risso) in the Adriatic. FAO Fish. Report= FAO Rapp. sur les pêches (1981).44.Krstulovic, S. S. et al. Composition and distribution of the cephalopod fauna in the eastern Adriatic and eastern Ionian Sea. Isr. J. Zool. 51, 315–330 (2005).
    Google Scholar 
    45.Nožina, I. Biogenic deep scattering layers in the Adriatic mesopelagial. (1979).46.Sobrino, I., Silva, C., Sbrana, M. & Kapiris, K. A review of the biology and fisheries of the deep water rose shrimp, parapenaeus longirostris, in European atlantic and Mediterranean Waters (Decapoda, Dendrobranchiata, Penaeidae). Crustaceana 78, 1153–1184 (2005).
    Google Scholar 
    47.Ciavaglia, E. & Manfredi, C. Distribution and some biological aspects of cephalopods in the North and Central Adriatic. Boll. Malacol 45, 61–69 (2009).
    Google Scholar 
    48.Stagioni, M., Montanini, S. & Vallisneri, M. Feeding habits of European hake, M. merluccius (Actinopterygii: Gadiformes: Merlucciidae), from the Northeastern Mediterranean Sea. Acta Ichthyol. Piscat. 41, 277–284 (2011).
    Google Scholar 
    49.Cartes, J. E., Sorbe, J. C. & Sardà, F. Spatial distribution of deep-sea decapods and euphausiids near the bottom in the northwestern Mediterranean. J. Exp. Mar. Bio. Ecol. 179, 131–144 (1994).
    Google Scholar 
    50.Despalatovic, M., Grubelic, I. & Simunovic, A. Distribution and abundance of the Atlantic mud shrimp, Solenocera membranacea (Risso, 1816)(Decapoda, Solenoceridae) in the northern and central Adriatic Sea. Crustac. J. Crustac. Res. 79, 1025 (2006).
    Google Scholar 
    51.Koulouri, P., Dounas, C. & Eleftheriou, A. Hyperbenthic community structure over oligotrophic continental shelves and upper slopes: crete (South Aegean Sea, NE Mediterranean). Estuar. Coast. Shelf Sci. 117, 188–198 (2013).ADS 

    Google Scholar 
    52.Panzeri, D. et al. Developing spatial distribution models for demersal species by the integration of trawl surveys data and relevant ocean variables. Copernicus Mar. Serv. Ocean State Rep. J. Oper Oceanogr. 14, 114–124 (2021).
    Google Scholar 
    53.Albo-Puigserver, M. et al. Year-round energy dynamics of sardine and anchovy in the north-western Mediterranean Sea. Mar. Environ. Res. 159, 105021 (2020).CAS 
    PubMed 

    Google Scholar 
    54.Harmelin-Vivien, M., Bӑnaru, D., Dromard, C. R., Ourgaud, M. & Carlotti, F. Biochemical composition and energy content of size-fractionated zooplankton east of the Kerguelen Islands. Polar Biol. 42, 603–617 (2019).
    Google Scholar 
    55.McClatchie, S. et al. Food limitation of sea lion pups and the decline of forage off central and southern California. R. Soc. Open Sci. 3, 150628 (2020).
    Google Scholar 
    56.Schaafsma, F. L. et al. Review: the energetic value of zooplankton and nekton species of the Southern Ocean. Mar. Biol. 165, 129 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    57.Cai, L. et al. Interrelationships between feeding, food deprivation and swimming performance in juvenile grass carp. Aquat. Biol. 20, 69–76 (2014).
    Google Scholar 
    58.Nunn, A. D., Tewson, L. H. & Cowx, I. G. The foraging ecology of larval and juvenile fishes. Rev. Fish Biol. Fish. 22, 377–408 (2012).
    Google Scholar 
    59.Ferraton, F., Harmelin-Vivien, M. & Mellon-Duval, C. Spatio-temporal variation in diet may affect condition and abundance of juvenile European hake in the Gulf of Lions (NW Mediterranean). Mar. Ecol. Prog. Ser. 337, 197–208 (2007).ADS 

    Google Scholar 
    60.Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested assembly of plant–animal mutualistic networks. Proc. Natl. Acad. Sci. 100, 9383–9387 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Almeida-Neto, M., Guimaraes, P., Guimaraes, P. R. Jr., Loyola, R. D. & Ulrich, W. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117, 1227–1239 (2008).
    Google Scholar 
    62.Baumgartner, M. T. Connectance and nestedness as stabilizing factors in response to pulse disturbances in adaptive antagonistic networks. J. Theor. Biol. 486, 110073 (2020).PubMed 
    MATH 

    Google Scholar 
    63.Libralato, S. et al. Food-web traits of protected and exploited areas of the Adriatic Sea. Biol. Conserv. 143, 2182–2194 (2010).
    Google Scholar 
    64.van Denderen, P. D., van Kooten, T. & Rijnsdorp, A. D. When does fishing lead to more fish? Community consequences of bottom trawl fisheries in demersal food webs. Proc. R. Soc. B Biol. Sci. 280, 20131883 (2013).
    Google Scholar 
    65.Agnetta, D. et al. Benthic-pelagic coupling mediates interactions in Mediterranean mixed fisheries: an ecosystem modeling approach. PLoS One 14, e0210659 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Walters, C. J., Christensen, V., Martell, S. J. & Kitchell, J. F. Possible ecosystem impacts of applying MSY policies from single-species assessment. ICES J. Mar. Sci. 62, 558–568 (2005).
    Google Scholar 
    67.GFCM. Report of the nineteenth session of the Scientific Advisory Committee on Fisheries. Working copy vol. 1209 (2017).68.NOAA. Essential fish habitat and consultation. NOAA Fish. Pacific Isl. Reg. Off. (2004) https://doi.org/10.17128/9781589483651_11.1.69.Rohland, N. & Reich, D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res. 22, 939–946 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Boyer, F. et al. obitools: a unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).CAS 
    PubMed 

    Google Scholar 
    71.Zhang, Z., Schwartz, S., Wagner, L. & Miller, W. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7, 203–214 (2000).CAS 
    PubMed 

    Google Scholar 
    72.Oksanen, J. Vegan: an introduction to ordination. (2016).73.Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.R Core Team. R: A Language and Environment for Statistical Computing. (2015).75.Dormann, C. F. How to be a specialist? Quantifying specialisation in pollination networks. Netw. Biol. 1, 1–20 (2011).
    Google Scholar 
    76.Almeida-Neto, M. & Ulrich, W. A straightforward computational approach for measuring nestedness using quantitative matrices. Environ. Model. Softw. 26, 173–178 (2011).
    Google Scholar 
    77.Jacobs, J. Quantitative measurement of food selection. Oecologia 14, 413–417 (1974).ADS 
    PubMed 

    Google Scholar  More

  • in

    Rare and localized events stabilize microbial community composition and patterns of spatial self-organization in a fluctuating environment

    Effects of environmental fluctuations on co-culture composition and intermixingWe first tested the effects of fluctuations between anoxic (inducing a mutualistic interaction) and oxic (inducing a competitive interaction) conditions on co-culture composition (quantified as the ratio of consumer-to-producer at the expansion edge) and interspecific mixing (quantified as the number of interspecific boundaries divided by the colony circumference). We expected that, over a series of anoxic/oxic transitions, the ratio of consumer-to-producer at the expansion edge and the degree of intermixing would both decrease (Fig. 1d). To test this, we performed range expansions where we transitioned the environment between anoxic and oxic conditions. While we performed the experiments with defined anoxic and oxic incubation times, our main prediction (i.e., that repeated transitions between anoxic and oxic conditions can induce irreversible pattern transitions that alter co-culture composition and functioning) is independent of the time spent under either of those conditions as far as cells can adjust their metabolism to the new environment (Fig. 1d).As expected, the ratio of consumer-to-producer and the intermixing index both decreased over the series of anoxic/oxic transitions (Fig. 2a, b). The changes in these quantities appear to have two distinct dynamic phases; a first phase with a relatively steep decay and a second phase with a shallower decay. We therefore modeled their dynamics using a two-phase linear regression model [53,54,55]. During the first phase, the ratio of consumer-to-producer decreased significantly more rapidly at pH 7.5 (r2 = 0.90, p = 2 × 10−9, coeff = −0.0374, 95% CI = [−0.038, −0.0368]) than at 6.5 (r2 = 0.94, p = 1 × 10−7, coeff = −0.0103, 95% CI = [−0.0108, −0.0097]) (Fig. 2a). We observed consistent results for the intermixing index, where it also decreased significantly more rapidly at pH 7.5 (r2 = 0.90, p = 2 × 10−9, coeff = −0.0289, 95% CI = [−0.0295, −0.0284]) than at 6.5 (r2 = 0.93, p = 9 × 10−8, coeff = −0.01, 95% CI = [−0.0109, −0.0098]) (Fig. 2b). During the second phase, the change in the ratio of consumer-to-producer did not significantly differ between pH 7.5 (r2 = 0.90, p = 2 × 10−9, coeff = 0.0008, 95% CI = [0.0002, 0.0014]) and 6.5 (r2 = 0.94, p = 1 × 10−7, coeff = 0.0003, 95% CI = [−0.0002, 0.0008]) (Fig. 2a). However, we observed that the decrease in the intermixing index was significantly different between pH 7.5 (r2 = 0.94, p = 2 × 10−9, coeff = 0.0018, 95% CI = [0.0013, 0.0024]) and 6.5 (r2 = 0.94, p = 8 × 10−8, coeff = −0.0019, 95% CI = [−0.0025, −0.0013]). Overall, the final ratio of consumer-to-producer is lower at pH 7.5 (mean = 0.0163, SD = 0.01) than at 6.5 (mean = 0.052, SD = 0.02) (two-sample two-sided t-test; p = 0.03, n = 4) (Fig. 2). Consistently, the final intermixing index is also lower at pH 7.5 (mean = 0.0039, SD = 0.0032) than at 6.5 (mean = 0.0107, SD = 0.0049) (two-sample two-sided t-test; p = 0.05, n = 4) (Fig. 2b).Fig. 2: Dynamics of co-culture composition and intermixing during repeated anoxic/oxic transitions.a Co-culture composition measured as the ratio of consumer-to-producer. b Intermixing between the consumer and producer measured as the intermixing index, where N is the number of interspecific boundaries between the two strains. Experiments were performed at pH 6.5 (strong mutualistic interaction) (magenta data points) or pH 7.5 (weak mutualistic interaction) (cyan data points). Each data point is for an independent replicate (n = 4). The solid black lines are the two-phase linear regression models for pH 6.5, while the dashed black lines are the two-phase linear regression models for pH 7.5. Images of the final expansions after 350 h of incubation at c pH 6.5 and d pH 7.5. The scale bars are 1000 μm.Full size imageThe results described above yielded two important outcomes. First, the modeled two-phase linear regression of the ratio of consumer-to-producer and the intermixing index both depended on the strength of the mutualistic interaction, where the initial rate of decay was faster at pH 7.5 than at 6.5 (Fig. 2a, b). Thus, as the strength of the interdependency increases, the decay in the ratio and the intermixing index slows. Second, at pH 6.5 we never observed the complete loss of the consumer from the expansion edge (i.e., neither the ratio of consumer-to-producer nor the intermixing index reached zero) (Fig. 2a, b), which is counter to our initial expectation (Fig. 1d).We further performed controls under continuous oxic and continuous anoxic conditions (Supplementary Fig. S5). The ratio of consumer-to-producer and the intermixing indices both significantly differed between continuous oxic and continuous anoxic conditions regardless of the pH (two-sample two-sided t-tests; p  More

  • in

    Wildland fire smoke alters the composition, diversity, and potential atmospheric function of microbial life in the aerobiome

    Fire conditions and particulate and bioaerosol emissionsFire radiative power values estimated from satellite imagery ranged from 6 to 259 MW over three days of burning [19]. Smoke sampled above combusting vegetation contained high concentrations of PM10 (mean ± s.e. 928.4 ± 140.6 µg m−3; Fig. 1). Microbial cells are a component of total bioaerosols, and their abundance can correlate with PM in ambient conditions [24] as well as in wildland fire smoke [6]. However, we observed that only the concentration of viable cells (and not total cells) correlated with PM2.5 and PM10 values (r2 = 0.80, and 0.81, respectively; p  More

  • in

    A call for governments to save soil

    BOOK REVIEW
    24 January 2022

    A call for governments to save soil

    To ensure food security, the world must stop letting fertile soil wash and blow away.

    Emma Marris

    0

    Emma Marris

    Emma Marris is an environmental writer who lives in Oregon.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    Download PDF

    Rock becomes visible as topsoil is eroded away.Credit: Martin Harvey/Getty

    A World Without Soil: The Past, Present, and Precarious Future of the Earth Beneath Our Feet Jo Handelsman Yale Univ. Press (2021)Soil creates life from death. The production of more than 95% of the food we eat relies on soil, a heady mix of rock particles, decaying organic matter, roots, fungi and microorganisms. Yet this precious resource is eroding at a global average of 13.5 tonnes per hectare per year. Instead of nourishing crops, fertile topsoil is ending up in inconvenient places such as ditches, reservoirs and the ocean.Microbiologist Jo Handelsman takes on the challenge of making readers care in A World Without Soil, aided by environmental researcher Kayla Cohen. Their prologue takes the form of a letter about soil erosion that Handelsman wishes she had sent to US president Barack Obama while working in the White House’s Office of Science and Technology Policy in the mid-2010s. Alas, she did not understand the true gravity of the problem until the waning days of the administration. Her biggest regret? That she wasn’t able to make soil management the federal priority she thinks it should be.Soil can be created over time, as dead things break down and contribute energy and nutrients to an ecosystem based on the underlying rock. But it erodes 10–30 times faster than it is produced. Globally, erosion reduces annual crop yields by 0.3%. At that rate, 10% of production could be lost by 2050. In erosion hotspots such as Nigeria, 80% of the land has been degraded. In Iowa, up to 17% of land is almost devoid of topsoil. Almost more convincing than the many facts and figures is a colour photograph of a field in Iowa with so little topsoil that the pale, lifeless sandy rubble beneath pokes through.Age-old solutionsA sense of dread builds in the chapters that cover the basic science of soil as well as the causes and consequences of its erosion. The last part of the book brings a burst of enthusiasm, as the authors turn to possible solutions — many of them simple, and some millennia old. These involve improving holding capacity through planting diverse crops in rotation; increasing organic content with additions such as compost and biochar; reducing the erosional effects of water and wind by reshaping the land with contouring, terraces, windbreaks and the like; and ploughing as little as possible.In a chapter on traditional soil-management techniques around the world, Handelsman and Cohen describe deep black “plaggen” soils on Scottish islands, made rich with cattle manure; rice terraces managed for 2,000 years by the Ifugao people in the Philippines; the milpa farming system of the Maya in Latin America, with its 25-year rotation of crops including trees; and compost made of seaweed, shells and plant material by the Māori in New Zealand. Each system yields rich agricultural productivity while maintaining deep banks of carbon-rich, fertile soil. “We know how to do this,” write Handelsman and Cohen.

    Cactus farming in Mexico, where the traditional system of crop rotation helps to replenish the soil.Credit: Omar Torres/AFP/Getty

    Why, then, is fertile soil being allowed to wash and blow away? The answer, not surprisingly, rests in the shackles of global capitalism. Farming’s profit margins are razor-thin, forcing producers to plant the highest-yielding variety of the highest-profit crop from field edge to field edge every season. Terracing, rotating crops and forgoing tilling enrich soil in the long run, but nibble into profits this year. And farmers can’t pay their mortgages or lease equipment with the aroma of deep black topsoil.
    Food systems: seven priorities to end hunger and protect the planet
    Handelsman and Cohen urge the world to demand real change in how mainstream agricultural production is managed. “The burden of protecting soil cannot be relegated to indigenous people and environmental activists,” they note. But their specific suggestions are a little underwhelming. They join the calls for international soil treaties, but given how poorly climate treaties have worked, I am cynical about the potential of such agreements. Countries seem likely to both under-promise and under-deliver unless there are costly penalties for failure. The same goes for the consumer-facing labels that the authors propose for food produced on farms that are working to improve their soil. Similar labels have not put a meaningful dent in climate change or other environmental problems — and many customers cannot afford to spend more on “soil-friendly” food.Top-down changeWhat farming needs is a top-down overhaul. Handelsman and Cohen gesture at this with proposed discounts on crop-insurance premiums for farmers who increase the carbon in their soil. More is needed. Governments must pay farmers to build soil. In the United States, farmers can apply for funding for anti-erosion improvements through the Environmental Quality Incentives Program, run by the Department of Agriculture. Funding announced this month will increase the amount of land planted with cover crops to 12 million hectares by 2030 — but even that would represent only some 7% of US cropland. It is not enough.We need to change how we think of farming. We have already begun to move towards a model in which farmers are less independent businesspeople growing and selling food, and more government-supported land stewards managing a complex mix of food production, soil fertility, wildlife habitat and more. Around the world, many farmers depend on subsidies, drought relief and payments from piecemeal schemes to conserve soil and nature. Such programmes — currently small-scale, ad hoc fixes for a broken system — should be the core of the agricultural sector.Our land, our fresh water, our biodiversity and our soil are too precious to be destroyed by the market price of commodity grains and other foodstuffs. We must invest deeply and thoughtfully in our farmers so that they can invest deeply and thoughtfully in the land, becoming holistic landscape-management professionals. This is the future of farming.

    Nature 601, 503-504 (2022)
    doi: https://doi.org/10.1038/d41586-022-00158-8

    Competing Interests
    The author declares no competing interests.

    Related Articles

    Food systems: seven priorities to end hunger and protect the planet

    Globe to gut: inside Big Food

    The novelist who loved soil

    The business case for soil

    Subjects

    Sustainability

    Ecology

    Environmental sciences

    Latest on:

    Sustainability

    Portugal leads with Europe’s largest marine reserve
    Correspondence 18 JAN 22

    Sustainability at the crossroads
    Editorial 21 DEC 21

    The UN must get on with appointing its new science board
    Editorial 08 DEC 21

    Ecology

    Biodiversity faces its make-or-break year, and research will be key
    Editorial 19 JAN 22

    Portugal leads with Europe’s largest marine reserve
    Correspondence 18 JAN 22

    Wind power versus wildlife: root mitigation in evidence
    Correspondence 11 JAN 22

    Environmental sciences

    Air pollution takes a bite out of Asia’s grain crops
    Research Highlight 21 JAN 22

    Global fine-scale changes in ambient NO2 during COVID-19 lockdowns
    Article 19 JAN 22

    Message to mayors: cities need nature
    World View 17 JAN 22

    Jobs

    Postdoc position to investigate composition and function of human hnRNP complexes

    University of Bern
    Bern, Switzerland

    Doctoral Candidate and Postdoc Positions on Magnonic/Plasmonic Devices, Magnonic Neural Networks, and Plasmonic Condensates/Nanolasers

    Aalto University
    Espoo, Finland

    211-0115/21-2N Tenure-track Assistant Professor in Plant Cell Biology and Biochemistry with emphasis on Glycobiology

    University of Copenhagen (UCPH)
    Copenhagen, Denmark

    Postdoctoral Research Scientist – Cellular Degradation Systems Lab

    Francis Crick Institute
    London, United Kingdom More

  • in

    The multicausal twilight of South American native mammalian predators (Metatheria, Sparassodonta)

    1.Simpson, G. G. History of the fauna of Latin America. Am. Sci. 38, 361–389 (1950).
    Google Scholar 
    2.Patterson, B. D. & Costa, L. P. Bones, Clones, and Biomes: The History and Geography of Recent Neotropical Mammals (The University of Chicago Press, 2012).3.Cidade, G. M., Fortier, D. & Hsiou, A. S. The crocodylomorph fauna of the Cenozoic of South America and its evolutionary history: a review. J. South Am. Earth Sci. 90, 392–411 (2019).ADS 

    Google Scholar 
    4.Tambussi, C. P. & Degrange, F. J. South American and Antarctic Continental Cenozoic Birds. (Springer Netherlands, 2013). https://doi.org/10.1007/978-94-007-5467-6.5.Marshall, L. G. Evolution of the carnivorous adaptive zone in South America. In Major Patterns in Vertebrate Evolution (eds. Hecht, M. K., Goody, P. C. & Hecht, B. M.) 709–721 (Springer US, 1977). https://doi.org/10.1007/978-1-4684-8851-7_24.6.Marshall, L. G. & Cifelli, R. L. Analysis of changing diversity patterns in Cenozoic land mammal age faunas, South America. Palaeovertebrata 19, 169–210 (1990).
    Google Scholar 
    7.Prevosti, F. J., Forasiepi, A. & Zimicz, N. The evolution of the cenozoic terrestrial mammalian predator guild in South America: competition or replacement?. J. Mamm. Evol. 20, 3–21 (2013).
    Google Scholar 
    8.Prevosti, F. J. & Forasiepi, A. M. Evolution of South American mammalian predators during the Cenozoic: paleobiogeographic and paleoenvironmental contingencies. (Springer International Publishing, 2018). https://doi.org/10.1007/978-3-319-03701-1.9.Croft, D. A. Do marsupials make good predators? Insights from predator-prey diversity ratios. Evol. Ecol. Res. 8, 1193–1214 (2006).
    Google Scholar 
    10.Albino, A. M. Snakes from the Paleocene and Eocene of Patagonia (Argentina): Paleoecology and coevolution with mammals. Hist. Biol. 7, 51–69 (1993).
    Google Scholar 
    11.Head, J. J. et al. Giant boid snake from the Palaeocene neotropics reveals hotter past equatorial temperatures. Nature 457, 715–717 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    12.de Muizon, C., Ladevèze, S., Selva, C., Vignaud, R. & Goussard, F. Allqokirus australis (Sparassodonta, Metatheria) from the early Palaeocene of Tiupampa (Bolivia) and the rise of the metatherian carnivorous radiation in South America. Geodiversitas 40, 363 (2018).
    Google Scholar 
    13.Forasiepi, A. M. Osteology of Arctodictis sinclairi (Mammalia, Metatheria, Sparassodonta) and phylogeny of Cenozoic metatherian carnivores from South America. Monogr. Mus. Argentino Cienc. Nat., n.s. 6, 1–174 (2009).14.Prevosti, F. J. et al. New radiometric 40Ar–39Ar dates and faunistic analyses refine evolutionary dynamics of Neogene vertebrate assemblages in southern South America. Sci. Rep. 11, 9830 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Pérez, L. F. et al. Oceanographic and climatic consequences of the tectonic evolution of the southern scotia sea basins, Antarctica. Earth-Science Rev. 198, 102922 (2019).
    Google Scholar 
    16.Williams, S. E., Whittaker, J. M., Halpin, J. A. & Müller, R. D. Australian-Antarctic breakup and seafloor spreading: Balancing geological and geophysical constraints. Earth-Science Rev. 188, 41–58 (2019).ADS 

    Google Scholar 
    17.Gelfo, J. N. Considerations about the evolutionary stasis of Notiolofos arquinotiensis (Mammalia: Sparnotheriodontidae), Eocene of Seymour Island, Antartica. Ameghiniana 53, 316–332 (2016).
    Google Scholar 
    18.Goin, F. J. et al. New metatherian mammal from the Early Eocene of Antarctica. J. Mamm. Evol. https://doi.org/10.1007/s10914-018-9449-6 (2018).Article 

    Google Scholar 
    19.Reguero, M. A. et al. Final Gondwana breakup: The Paleogene South American native ungulates and the demise of the South America-Antarctica land connection. Glob. Planet. Change 123, 400–413 (2014).ADS 

    Google Scholar 
    20.Ramos, V. A. & Aleman, A. Tectonic evolution of the Andes. in Tectonic evolution of South America (eds. Cordani, U. G., Milani, E. J., Thomaz Filho, A. & Campos, D. A.) 635–685 (2000).21.Boschman, L. M. Andean mountain building since the Late Cretaceous: A paleoelevation reconstruction. Earth-Science Rev. 220, 103640 (2021).
    Google Scholar 
    22.Fosdick, J. C., Reat, E. J., Carrapa, B., Ortiz, G. & Alvarado, P. M. Retroarc basin reorganization and aridification during Paleogene uplift of the southern central Andes. Tectonics 36, 493–514 (2017).ADS 

    Google Scholar 
    23.Leier, A., McQuarrie, N., Garzione, C. & Eiler, J. Stable isotope evidence for multiple pulses of rapid surface uplift in the Central Andes, Bolivia. Earth Planet. Sci. Lett. 371–372, 49–58 (2013).ADS 

    Google Scholar 
    24.Cione, A. L., Gasparini, G. M., Soibelzon, E., Soibelzon, L. H. & Tonni, E. P. The Great American Biotic Interchange: a South American perspective. (Springer, 2015).25.Coates, A. G. & Stallard, R. F. How old is the isthmus of Panama?. Bull. Mar. Sci. 89, 801–813 (2013).
    Google Scholar 
    26.Montes, C. et al. Middle Miocene closure of the Central American Seaway. Science (80-) 348, 226–229 (2015).ADS 
    CAS 

    Google Scholar 
    27.Auderset, A. et al. Gulf Stream intensification after the early Pliocene shoaling of the Central American Seaway. Earth Planet. Sci. Lett. 520, 268–278 (2019).CAS 

    Google Scholar 
    28.Scher, H. D. et al. Onset of Antarctic Circumpolar Current 30 million years ago as Tasmanian Gateway aligned with westerlies. Nature 523, 580–583 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    29.Benton, M. J. The Red Queen and the Court Jester: species diversity and the role of biotic and abiotic factors through time. Science (80-) 323, 728–732 (2009).ADS 
    CAS 

    Google Scholar 
    30.Van Valen, L. New evolutionary law. Evol. Theory 1, 1–30 (1973).
    Google Scholar 
    31.Cione, A. L., Tonni, E. P. & Soibelzon, L. The Broken Zig-Zag: Late Cenozoic large mammal and tortoise extinction in South America. Rev. del Mus. Argentino Ciencias Nat. n.s. 5, 1–19 (2003).32.Leigh, E. G., O’Dea, A. & Vermeij, G. J. Historical biogeography of the isthmus of Panama. Biol. Rev. 89, 148–172 (2014).PubMed 

    Google Scholar 
    33.Werdelin, L. Jaw geometry and molar morphology in Marsupial carnivores: Analysis of a constraint and its macroevolutionary consequences. Paleobiology 13, 342–350 (1987).
    Google Scholar 
    34.Goin, F. J. & Montalvo, C. Revisión sistemática y reconocimiento de una nueva especie del género Thylatheridium Reig (Marsupialia, Didelphidae). Ameghiniana 25, 161–167 (1988).
    Google Scholar 
    35.Goin, F. J. & Pardiñas, U. F. J. Revision de las especies del genero Hyperdidelphys Ameghino, 1904 (Mammalia, Marsupialia, Didelphidae). Su significación filogenética, estratigráfica y adaptativa en el Neogeno del Cono Sur Sudamericano. Estud. Geológicos 52, 327–359 (1996).36.Beck, R. M. D. & Taglioretti, M. L. A nearly complete juvenile skull of the marsupial Sparassocynus derivatus from the Pliocene of Argentina, the affinities of “sparassocynids”, and the diversification of opossums (Marsupialia; Didelphimorphia; Didelphidae). J. Mamm. Evol. 27, 385–417 (2020).
    Google Scholar 
    37.López-Aguirre, C., Archer, M., Hand, S. J. & Laffan, S. W. Extinction of South American sparassodontans (Metatheria): Environmental fluctuations or complex ecological processes?. Palaeontology 60, 91–115 (2017).
    Google Scholar 
    38.Forasiepi, A. M., Martinelli, A. G. & Goin, F. J. Revisión taxonómica de Parahyaenodon argentinus Ameghino y sus implicancias en el conocimiento de los grandes mamíferos carnívoros del Mio-Plioceno de América de Sur. Ameghiniana 44, 143–159 (2007).
    Google Scholar 
    39.Zimicz, N. Avoiding competition: the ecological history of late Cenozoic metatherian carnivores in South America. J. Mamm. Evol. 21, 383–393 (2014).
    Google Scholar 
    40.Echarri, S., Ercoli, M. D., Chemisquy, M. A., Turazzini, G. & Prevosti, F. J. Mandible morphology and diet of the South American extinct metatherian predators (Mammalia, Metatheria, Sparassodonta). Earth Environ. Sci. Trans. R. Soc. Edinburgh 106, 277–288 (2017).41.Croft, D. A., Engelman, R. K., Dolgushina, T. & Wesley, G. Diversity and disparity of sparassodonts (Metatheria) reveal non-analogue nature of ancient South American mammalian carnivore guilds. Proc. R. Soc. B Biol. Sci. 285, 20172012 (2018).
    Google Scholar 
    42.Engelman, R. K. & Croft, D. A. A new species of small-bodied sparassodont (Mammalia, Metatheria) from the middle Miocene locality of Quebrada Honda, Bolivia. J. Vertebr. Paleontol. 34, 672–688 (2014).
    Google Scholar 
    43.Engelman, R. K. & Croft, D. A. Strangers in a strange land: ecological dissimilarity to metatherian carnivores may partly explain early colonization of South America by Cyonasua- group procyonids. Paleobiology 45, 598–611 (2019).
    Google Scholar 
    44.Engelman, R. K., Anaya, F. & Croft, D. A. Australogale leptognathus, gen. et sp. nov., a Second Species of Small Sparassodont (Mammalia: Metatheria) from the Middle Miocene Locality of Quebrada Honda, Bolivia. J. Mamm. Evol. 27, 37–54 (2020).45.Silvestro, D., Schnitzler, J., Liow, L. H., Antonelli, A. & Salamin, N. Bayesian estimation of speciation and extinction from incomplete fossil occurrence data. Syst. Biol. 63, 349–367 (2014).PubMed 

    Google Scholar 
    46.Lehtonen, S. et al. Environmentally driven extinction and opportunistic origination explain fern diversification patterns. Sci. Rep. 7, 4831 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Rangel, C. et al. Diversity, affinities and adaptations of the basal sparassodont Patene Simpson, 1935 (Mammalia, Metatheria). Ameghiniana 56, 263–289 (2019).
    Google Scholar 
    48.Alroy, J. et al. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proc. Natl. Acad. Sci. 98, 6261–6266 (2001).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Badgley, C. The multiple scales of biodiversity. Paleobiology 29, 11–13 (2003).
    Google Scholar 
    50.Behrensmeyer, A. K., Kidwell, S. M. & Gastaldo, R. A. Taphonomy and paleobiology. Paleobiology 26, 103–147 (2000).
    Google Scholar 
    51.Butler, R. J., Barrett, P. M., Nowbath, S. & Upchurch, P. Estimating the effects of sampling biases on pterosaur diversity patterns: implications for hypotheses of bird/pterosaur competitive replacement. Paleobiology 35, 432–446 (2009).
    Google Scholar 
    52.Crampton, J. S. et al. Estimating the rock volume bias in paleobiodiversity studies. Science (80-) 301, 358–360 (2003).ADS 
    CAS 

    Google Scholar 
    53.Kalmar, A. & Currie, D. J. The completeness of the continental fossil record and its impact on patterns of diversification. Paleobiology 36, 51–60 (2010).
    Google Scholar 
    54.Newham, E., Benson, R., Upchurch, P. & Goswami, A. Mesozoic mammaliaform diversity: the effect of sampling corrections on reconstructions of evolutionary dynamics. Palaeogeogr. Palaeoclimatol. Palaeoecol. 412, 32–44 (2014).
    Google Scholar 
    55.Prevosti, F. J. & Soibelzon, L. H. Evolution of the South American carnivores (Mammalia, Carnivora): a paleontological perspective. In Bones, Clones, and Biomes: The History and Geography of Recent Neotropical Mammals (eds. Patterson, B. D. & Costa, L. P.) 102–122 (University of Chicago Press, 2012).56.Carrillo, J. D., Forasiepi, A., Jaramillo, C. & Sánchez-Villagra, M. R. Neotropical mammal diversity and the Great American Biotic Interchange: spatial and temporal variation in South America’s fossil record. Front. Genet. 5, 451 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    57.Silvestro, D., Salamin, N., Antonelli, A. & Meyer, X. Improved estimation of macroevolutionary rates from fossil data using a Bayesian framework. Paleobiology https://doi.org/10.1017/pab.2019.23 (2019).Article 

    Google Scholar 
    58.Condamine, F. L., Guinot, G., Benton, M. J. & Currie, P. J. Dinosaur biodiversity declined well before the asteroid impact, influenced by ecological and environmental pressures. Nat. Commun. 12, 3833 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Silvestro, D., Antonelli, A., Salamin, N. & Quental, T. B. The role of clade competition in the diversification of North American canids. Proc. Natl. Acad. Sci. 112, 8684–8689 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Alroy, J. Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 127, 285–311 (1996).
    Google Scholar 
    61.Moen, D. & Morlon, H. Why does diversification slow down?. Trends Ecol. Evol. 29, 190–197 (2014).PubMed 

    Google Scholar 
    62.Bromham, L. The genome as a life-history character: why rate of molecular evolution varies between mammal species. Philos. Trans. R. Soc. B Biol. Sci. 366, 2503–2513 (2011).
    Google Scholar 
    63.Feng, P. & Zhou, Q. Absence of relationship between mitochondrial DNA evolutionary rate and longevity in mammals except for CYTB. J. Mamm. Evol. 26, 1–7 (2019).
    Google Scholar 
    64.Gillooly, J. F., Allen, A. P., West, G. B. & Brown, J. H. The rate of DNA evolution: Effects of body size and temperature on the molecular clock. Proc. Natl. Acad. Sci. 102, 140–145 (2005).ADS 
    CAS 
    PubMed 

    Google Scholar 
    65.Martin, A. P. & Palumbi, S. R. Body size, metabolic rate, generation time, and the molecular clock. Proc. Natl. Acad. Sci. 90, 4087–4091 (1993).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Barraclough, T. G., Vogler, A. P. & Harvey, P. H. Revealing the factors that promote speciation. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 353, 241–249 (1998).67.Barraclough, T. G. & Savolainen, V. Evolutionary rates and species diversity in flowering plants. Evolution (N. Y) 55, 677–683 (2001).CAS 

    Google Scholar 
    68.Raia, P., Passaro, F., Fulgione, D. & Carotenuto, F. Habitat tracking, stasis and survival in Neogene large mammals. Biol. Lett. 8, 64–66 (2012).CAS 
    PubMed 

    Google Scholar 
    69.Viranta, S. Geographic and temporal ranges of middle and late Miocene Carnivores. J. Mammal. 84, 1267–1278 (2003).
    Google Scholar 
    70.Flynn, L. J. et al. Neogene Siwalik mammalian lineages: Species longevities, rates of change, and modes of speciation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 115, 249–264 (1995).
    Google Scholar 
    71.Van Valen, L. Group selection, sex, and fossils. Evolution (N. Y) 29, 87 (1975).
    Google Scholar 
    72.Cardillo, M. Biological determinants of extinction risk: why are smaller species less vulnerable?. Anim. Conserv. 6, 63–69 (2003).
    Google Scholar 
    73.Liow, L. H. et al. Higher origination and extinction rates in larger mammals. Proc. Natl. Acad. Sci. 105, 6097–6102 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.McLain, D. K. Cope’s rules, sexual selection, and the loss of ecological plasticity. Oikos 68, 490–500 (1993).
    Google Scholar 
    75.Hautmann, M. What is macroevolution?. Palaeontology 63, 1–11 (2020).
    Google Scholar 
    76.Stanley, S. M. The general correlation between rate of speciation and rate of extinction: fortuitous causal linkages. In Causes of evolution: A paleontological perspective (eds. Ross, R. M. & Allmon, W. D.) 103–127 (University of Chicago Press, 1990).77.Marshall, C. R. Five palaeobiological laws needed to understand the evolution of the living biota. Nat. Ecol. Evol. 1, 0165 (2017).
    Google Scholar 
    78.Ercoli, M. D., Prevosti, F. J. & Forasiepi, A. M. The structure of the mammalian predator guild in the Santa Cruz Formation (late Early Miocene). J. Mamm. Evol. 21, 369–381 (2014).
    Google Scholar 
    79.Marshall, L. G. Evolution of the Borhyaenidae, extinct south american predaceous marsupials. Univ. Calif. Publ. Geol. Sci. 17, 1–89 (1978).
    Google Scholar 
    80.Prevosti, F. J., Forasiepi, A. M., Ercoli, M. D. & Turazzini, G. F. Paleoecology of the mammalian carnivores (Metatheria, Sparassodonta) of the Santa Cruz Formation (late Early Miocene). In Early Miocene paleobiology in Patagonia (eds. Vizcaino, S. F., Kay, R. F. & Bargo, M. S.) 173–193 (Cambridge University Press, 2012). https://doi.org/10.1017/CBO9780511667381.012.81.Carbone, C., Teacher, A. & Rowcliffe, J. M. The costs of carnivory. PLoS Biol. 5, e22 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    82.Carbone, C., Mace, G. M., Roberts, S. C. & Macdonald, D. W. Energetic constraints on the diet of terrestrial carnivores. Nature 402, 286–288 (1999).ADS 
    CAS 
    PubMed 

    Google Scholar 
    83.Rovinsky, D. S., Evans, A. R., Martin, D. G. & Adams, J. W. Did the thylacine violate the costs of carnivory? Body mass and sexual dimorphism of an iconic Australian marsupial. Proc. R. Soc. B Biol. Sci. 287, 20201537 (2020).
    Google Scholar 
    84.Van Valkenburgh, B., Wang, X. & Damuth, J. Cope’s Rule, hypercarnivory, and extinction in North American canids. Science (80-) 306, 101–104 (2004).ADS 

    Google Scholar 
    85.Finarelli, J. A. Mechanisms behind active trends in body size evolution of the Canidae (Carnivora: Mammalia). Am. Nat. 170, 876–885 (2007).PubMed 

    Google Scholar 
    86.Cione, A. L. & Tonni, E. P. Chronostratigraphy and “Land-Mammal Ages” in the Cenozoic of southern South America: principles, practices, and the “Uquian” problem. J. Paleontol. 69, 135–159 (1995).
    Google Scholar 
    87.Soibelzon, L. H. & Prevosti, F. J. Los carnívoros (Carnivora, Mammalia) terrestres del Cuaternario de América del Sur. in Geomorfología Litoral i Quaternari. Homenatge a Joan Cuerda Barceló. Mon. Soc. Hist. Nat. (eds. Pons, G. X. & Vicens, D.) vol. 14 49–68 (2007).88.Argot, C. Evolution of South American mammalian predators (Borhyaenoidea): Anatomical and palaeobiological implications. Zool. J. Linn. Soc. 140, 487–521 (2004).
    Google Scholar 
    89.Degrange, F. J. Hind limb morphometry of terror birds (Aves, Cariamiformes, Phorusrhacidae): functional implications for substrate preferences and locomotor lifestyle. Earth Environ. Sci. Trans. R. Soc. Edinburgh 106, 257–276 (2015).90.Angst, D., Buffetaut, E., Lecuyer, C. & Amiot, R. A new method for estimating locomotion type in large ground birds. Palaeontology 59, 217–223 (2016).
    Google Scholar 
    91.Gurevitch, J. & Padilla, D. K. Are invasive species a major cause of extinctions?. Trends Ecol. Evol. 19, 470–474 (2004).PubMed 

    Google Scholar 
    92.Davis, M. A. Biotic globalization: Does competition from introduced species threaten biodiversity?. Bioscience 53, 481–489 (2003).
    Google Scholar 
    93.Prowse, T. A. A., Johnson, C. N., Bradshaw, C. J. A. & Brook, B. W. An ecological regime shift resulting from disrupted predator–prey interactions in Holocene Australia. Ecology 95, 693–702 (2014).PubMed 

    Google Scholar 
    94.Marshall, L. G. A new species of Lycopsis (Borhyaenidae: Marsupialia) from the La Venta Fauna (Late Miocene) of Colombia, South America. J. Paleontol. 51, 633–642 (1977).
    Google Scholar 
    95.Tomassini, R. L., Montalvo, C. I., Bargo, M. S., Vizcaíno, S. F. & Cuitiño, J. I. Sparassodonta (Metatheria) coprolites from the early-mid Miocene (Santacrucian age) of Patagonia (Argentina) with evidence of exploitation by coprophagous insects. Palaios 34, 639–651 (2019).ADS 

    Google Scholar 
    96.Bond, M., Cerdeño, E. & López, G. Los ungulados nativos de América del Sur. in Evolución biológica y climática de la región Pampeana durante los últimos cinco millones de años (eds. Alberdi, M. T., Leone, G. & Tonni, E. P.) 258–275 (Museo Nacional de Ciencias Naturales, 1995).97.Croft, D. A., Gelfo, J. N. & López, G. M. Splendid innovation: The extinct South American native ungulates. Annu. Rev. Earth Planet. Sci. 48, 259–290 (2020).ADS 
    CAS 

    Google Scholar 
    98.Pascual, R. & Jaureguizar, E. O. Evolving climates and mammal faunas in cenozoic South America. J. Hum. Evol. 19, 23–60 (1990).
    Google Scholar 
    99.Patterson, B. & Pascual, R. The fossil mammal fauna of South America. Q. Rev. Biol. 43, 409–451 (1968).
    Google Scholar 
    100.Miller, K. G. et al. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Sci. Adv. 6, eaaz1346 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    101.Rae, J. W. B. et al. Atmospheric CO2 over the past 66 million years from marine archives. Annu. Rev. Earth Planet. Sci. 49, 609–641 (2021).ADS 
    CAS 

    Google Scholar 
    102.Insel, N., Poulsen, C. J. & Ehlers, T. A. Influence of the Andes mountains on South American moisture transport, convection, and precipitation. Clim. Dyn. 35, 1477–1492 (2010).
    Google Scholar 
    103.Garzione, C. N. et al. Tectonic evolution of the Central Andean Plateau and implications for the growth of plateaus. Annu. Rev. Earth Planet. Sci. 45, 529–559 (2017).ADS 
    CAS 

    Google Scholar 
    104.Lossada, A. C. et al. Cenozoic uplift and exhumation of the Frontal Cordillera between 30° and 35° S and the influence of the subduction dynamics in the flat slab subduction context, South Central Andes. In The Evolution of the Chilean-Argentinean Andes (eds. Folguera, A. et al.) 387–409 (Springer Earth System Sciences, 2018). https://doi.org/10.1007/978-3-319-67774-3_16.105.Mora, A. et al. Tectonic history of the Andes and sub-Andean zones: implications for the development of the Amazon drainage basin. In Amazonia: Landscape and Species Evolution (eds. Hoorn, C. & Wesselingh, F. P.) 38–60 (Wiley-Blackwell Publishing Ltd., 2011). https://doi.org/10.1002/9781444306408.ch4.106.Pingel, H. et al. Late Cenozoic topographic evolution of the Eastern Cordillera and Puna Plateau margin in the southern Central Andes (NW Argentina). Earth Planet. Sci. Lett. 535, 116112 (2020).CAS 

    Google Scholar 
    107.Takahashi, K. & Battisti, D. S. Processes controlling the mean tropical Pacific precipitation pattern. Part I: The Andes and the Eastern Pacific ITCZ. J. Clim. 20, 3434–3451 (2007).ADS 

    Google Scholar 
    108.Amidon, W. H. et al. Mio-Pliocene aridity in the south-central Andes associated with Southern Hemisphere cold periods. Proc. Natl. Acad. Sci. 114, 6474–6479 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    109.Carrapa, B., Clementz, M. & Feng, R. Ecological and hydroclimate responses to strengthening of the Hadley circulation in South America during the Late Miocene cooling. Proc. Natl. Acad. Sci. 116, 9747–9752 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    110.Hartley, A. J. Andean uplift and climate change. J. Geol. Soc. Lond. 160, 7–10 (2003).
    Google Scholar 
    111.Barreda, V., Guler, V. & Palazzesi, L. Late Miocene continental and marine palynological assemblages from Patagonia. Dev. Quat. Sci. 11, 343–350 (2008).
    Google Scholar 
    112.Barreda, V. & Palazzesi, L. Patagonian vegetation turnovers during the Paleogene-early Neogene: Origin of arid-adapted floras. Bot. Rev. 73, 31–50 (2007).
    Google Scholar 
    113.Ortiz-Jaureguizar, E. & Cladera, G. A. Paleoenvironmental evolution of southern South America during the Cenozoic. J. Arid Environ. 66, 498–532 (2006).ADS 

    Google Scholar 
    114.Krockenberger, A. Lactation. In Marsupials (eds. Armati, P. J., Dickman, C. R. & Hume, I. D.) 108–136 (Cambridge University Press, 2006). https://doi.org/10.1017/CBO9780511541889.005.115.Morton, S. R., Recher, H. F., Thompson, S. D. & Braithwaite, R. W. Comments on the relative advantages of marsupial and eutherian reproduction. Am. Nat. 120, 128–134 (1982).
    Google Scholar 
    116.Thompson, S. D. Body size, duration of parental care, and the intrinsic rate of natural increase in eutherian and metatherian mammals. Oecologia 71, 201–209 (1987).ADS 
    CAS 
    PubMed 

    Google Scholar 
    117.Holloway, J. C. & Geiser, F. Seasonal changes in the thermoenergetics of the marsupial sugar glider Petaurus breviceps. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 171, 643–650 (2001).CAS 

    Google Scholar 
    118.Sánchez-Villagra, M. R. Why are there fewer marsupials than placentals? On the relevance of geography and physiology to evolutionary patterns of mammalian diversity and disparity. J. Mamm. Evol. 20, 279–290 (2013).
    Google Scholar 
    119.Bennett, C. V., Upchurch, P., Goin, F. J. & Goswami, A. Deep time diversity of metatherian mammals: Implications for evolutionary history and fossil-record quality. Paleobiology 44, 171–198 (2018).
    Google Scholar 
    120.Goin, F. J., Woodburne, M. O., Zimicz, A. N., Martin, G. M. & Chornogubsky, L. A Brief History of South American Metatherians: Evolutionary Contexts and Intercontinental Dispersals (Springer, 2016).121.Jablonski, D. Biotic interactions and macroevolution: Extensions and mismatches across scales and levels. Evolution (N. Y) 62, 715–739 (2008).
    Google Scholar 
    122.Mills, B. J. W., Belcher, C. M., Lenton, T. M. & Newton, R. J. A modeling case for high atmospheric oxygen concentrations during the Mesozoic and Cenozoic. Geology 44, 1023–1026 (2016).ADS 
    CAS 

    Google Scholar 
    123.Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science (80-) 369, 1383–1387 (2020).ADS 
    CAS 

    Google Scholar 
    124.Silvestro, D., Salamin, N. & Schnitzler, J. PyRate: A new program to estimate speciation and extinction rates from incomplete fossil data. Methods Ecol. Evol. 5, 1126–1131 (2014).
    Google Scholar 
    125.Green, P. J. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82, 711–732 (1995).MathSciNet 
    MATH 

    Google Scholar 
    126.Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More