Specific gut bacterial responses to natural diets of tropical birds
Natural diets of tropical birds vary within speciesWe collected 62 regurgitated samples (using the tartar emetic method 22) from multiple tropical bird species representing four bird orders (Columbiformes–Pigeons, Coraciiformes–Kingfishers, Psittaciformes–Parrots, and Passeriformes–Passerines). First, we characterized diet components visually and then through metabarcoding of 52 of these samples using universal primers targeting invertebrates (Cytochrome c oxidase subunit I: COI gene) and plants (Internal transcribed spacer 2: ITS2 gene) (Table S1 and Fig. 2). Through visual identification, we identified plant material in 26 samples. The most common visually identified invertebrate orders were Araneae (spiders—27 samples), and Coleoptera (beetles—27 samples) (Table S2). Metabarcoding sequences were analysed using the OBITools software25. Overall, we found 47 plant operational taxonomic units (OTUs—97% sequence similarity threshold) and 180 invertebrate OTUs (Table S3). Plant items were dominated by the orders Rosales (27.7% OTUs), Fabales (8.5% OTUs), and Sapindales (8.5% OTUs). Except for four OTUs, all plants were identified to the genus level. Of the invertebrate OTUs, 54 belonged to feather mites (known feather symbionts), endoparasites, and rotifers (likely due to accidental consumption along with drinking water), and these OTUs were removed from further analyses, leaving 126 potential dietary invertebrate OTUs. Invertebrate samples were dominated by the classes Insecta (67.5% OTUs) and Arachnida (28.6% OTUs). At the order-level, dietary items were mainly represented by Araneae (spiders—28.6% OTUs), Hemiptera (true bugs—15.9% OTUs), Diptera (flies—14.3% OTUs), and Lepidoptera (moths and butterflies—10.3% OTUs). However, 77% of the invertebrate OTUs could not be identified to genus level, highlighting the limited research on genotyping invertebrate communities in Papua New Guinea.Figure 2Natural diets of wild birds vary between individuals of the same species and the results of the two identification methods of dietary components (visual identification and metabarcoding). Relative abundances based on the presence/absence of data of different dietary components are indicated in colours. Only invertebrates are separated into taxonomic orders as visual identification is unable to identify plant orders. Individuals depicted with asterisks had both crop microbiome and diet samples (dataset 1), while black font represents individuals with both cloacal microbiomes and diet samples (dataset 2). Individuals are clustered according to the species (each species is given a six-letter code name) and their literature-based dietary guilds. The order of the species is indicated with illustrations (Columbiformes–Pigeons, Coraciiformes–Kingfishers, Passeriformes–Passerines and Psittaciformes–Parrots), while ‡ represents diet samples with a complete consensus between the two identification methods.Full size imageDiet item identification differed markedly between visual and metabarcoding methods (Fig. 2, Tables S2 and S3). The diet components of individuals also varied notably within species (Figs. 2 and S1). Only diets of 12 out of 52 individuals were fully congruent between the two methods (Fig. 2). Of these 12 samples, eight had only plant material. Identification of invertebrate orders also differed between the two methods (Fig. 2, Table 1). Both methods identified the arthropod orders Hemiptera, Diptera, Orthoptera (crickets and locusts), and Araneae in the same samples (Fig. 2 and Table 1), while metabarcoding detected lower proportions of Coleoptera than the visual identification (Table 1).Table 1 Comparison between diet items identified in the regurgitated samples from the two approaches (visual identification and metabarcoding).Full size tableComparison of microbiomes and consumed diet itemsFor subsequent comparisons of diets and microbiomes, we utilised individual datasets from both visual identification (diet components identified at the order level) and metabarcoding (both OTU and order level), and a combination (order level) of both approaches (for details see “Methods” section on identifying prey items). Due to differences between the diet identification methods, a combination of the results was used to circumscribe the full diversity of consumed diets and to account for inherent biases associated with the two methods (i.e., the inability to identify plant material and smaller body parts of invertebrates visually, and extraction and sequencing biases associated with metabarcoding). We separated the microbiome dataset into three datasets due to sequencing limitations: dataset 1 included 12 birds with successfully sequenced crop microbiomes and diets identified using both methods, dataset 2 included 27 birds with successfully sequenced cloacal microbiomes and diets, and dataset 3 included 17 birds for which we obtained successfully sequenced crop and cloacal microbiomes (Table S1). Prior to subsequent analyses, each microbiome dataset was rarefied to even sequencing depths using the sample with the lowest number of sequences26 (Fig. S2).Crop microbiome similarity did not align with the consumed diet similarity (dataset 1)Out of the collected crop samples (N = 62), samples from only 19 individuals were successfully sequenced for their microbiomes. Of these individuals, we acquired diet samples for 12 individuals. Bacterial 16S rRNA MiSeq sequences were analysed using the DADA2 pipeline27 within QIIME228. There were 351,867 bacterial sequences (mean ± SD: 29,322 ± 33,009) in the crop microbiomes prior to rarefaction (Table S4). After rarefaction, bacterial sequences were identified to 615 amplicon sequence variants (ASVs—100% sequence similarity). Crop microbiomes were dominated by Proteobacteria (53.6%), Actinobacteria (18.9%), and Firmicutes (17.9%). Alpha diversities of individual microbiomes were calculated using the diversity function in the microbiome package29 and they did not differ significantly between host orders [Chao1 richness: Kruskal Wallis (KW) χ2 = 4.559, df = 3, p = 0.2271; Shannon’s diversity index: χ2 = 2.853, df = 3, p = 0.4149], or literature-based dietary guilds (Chao1 richness: KW χ2 = 4.317, df = 2, p = 0.1155; Shannon’s diversity index: KW χ2 = 2.852, df = 2, p = 0.2403) (Fig. S3).The compositional differences of crop microbiomes were investigated with the adonis2 function in the vegan package30 using permutational multivariate analyses of variance tests (PERMANOVA). These analyses revealed that the bird host order did not influence the crop microbiome composition (PERMANOVA10,000 permutations: Bray–Curtis: F = 1.251, R2 = 0.0993, p = 0.1911; Jaccard: F = 1.154, R2 = 0.0962, p = 0.2191) (Fig. S1). The effect of feeding guild was masked by host order as they are strongly correlated in this dataset. Furthermore, the lack of an effect of host taxa on crop microbiomes may be a result of the small sample sizes.We further investigated whether alpha diversity of the crop microbiomes was influenced by the diet item diversity of individuals. The Chao1 richness estimates of the microbiomes and the richness of the consumed diet items (number of different diet items based on the combined results) of individuals were not significantly correlated (Table S5), suggesting that the diet richness does not impact crop microbiome richness. However, Shannon’s diversity index of crop microbiomes and diet diversity were marginally significantly negatively associated (Table S5). This suggests that despite the lack of an association between diet and microbiome richness, crop microbiome evenness could be influenced by diet diversity.We then explored the association between the crop microbiome composition and the consumed diets, investigating correlations between Bray–Curtis and Jaccard dissimilarities of microbiomes, and Jaccard dissimilarity of diets using Mantel tests in the vegan package30. The compositional similarity of the diets based on any of the methods (visual, metabarcoding—both OTU and order-level separately, and combined) did not correlate significantly with crop microbiome compositions (Table 2 and Fig. S4). We observed similar non-significant associations between diets and microbiomes when investigating host orders separately (Table S6). This suggests that overall crop microbiomes of individuals are not completely modelled by the composition of the consumed diets.Table 2 Results of Mantel tests between the crop (dataset 1) and the cloacal (dataset 2) microbiome similarities (measured with both Bray–Curtis and Jaccard distances) and the consumed diet similarities (measured with Jaccard distances).Full size tableHost-taxon specific cloacal microbes are associated with different diet items (dataset 2)We obtained 27 individuals from 15 bird species with successfully sequenced cloacal microbiomes and diet samples (based on both metabarcoding and visual identification). Prior to rarefying, we acquired 818,272 bacterial sequences from the cloacal swab samples (mean ± SD: 30,306 ± 20,903) (Table S7). After rarefaction, bacterial sequences were assigned to 1,324 ASVs that belonged to Actinobacteria (35.9%), Proteobacteria (32.6%), Firmicutes (21.2%) and Tenericutes (5.0%). Cloacal microbiome alpha diversity did not differ significantly between different bird orders (Chao1 richness: KW χ2 = 2.624, df = 3, p = 0.4532; Shannon’s diversity: χ2 = 6.595, df = 3, p = 0.0861) or literature-based dietary guilds (Chao1 richness: KW χ2 = 1.128, df = 3, p = 0.7703; Shannon’s diversity: KW χ2 = 1.673, df = 3, p = 0.6429) (Fig. S5).However, cloacal microbiome beta diversity was significantly influenced by host bird order (PERMANOVA10,000 permutations: Bray–Curtis: F = 2.159, R2 = 0.2055, p More