More stories

  • in

    A single-agent extension of the SIR model describes the impact of mobility restrictions on the COVID-19 epidemic

    Combining agent mobility patterns and SIR modelTo take into account agent mobility19 in a scenario compatible with a SIR model, we developed the model pictorially illustrated in Fig. 1. As explained in details in the Methods Section, the agents can move on a lattice through jumps processes, modelled using a Lévy walk of jump parameter (beta)36,37,38. When (beta) becomes large, i.e., for (beta rightarrow 2), agents tend to perform a Brownian random walk with very short jumps. As (beta rightarrow 1), agents can travel long distances in just one step. There are no constraints on the number of agents that can occupy a single cell. In each cells, agents can be infected by neighbours according to the SIR rules. Thus, the parameters that control the model are the jump parameter (beta) plus the standard SIR parameters, infection rate (alpha) and removal rate (gamma). The agent-based lattice model considered here reduces to a standard SIR model when the well-mixed population condition is satisfied, i. e. when large jumps dominate the dynamics (Fig. 2).Figure 1Agent-based SIR model on a lattice. (a) Agents of different colors, representing the SIR states, move on a lattice. White cells represent empty sites. Green cells are occupied by susceptible (S) agents, blue cells contain only removed (R) agents. Red cells contain only infected (I) agents. Shaded cells contain agents in a mixture of states. Agents can move among cells performing jumps (black arrows) whose length follows Lévy statistics. The letters i and j, with (i=1,..,N_b) and (j=1,…,N_b) define the location of the cell (i, j). (b,c) Agents in the same cell undergo a SIR dynamics: (b) S become I at a rate (alpha); (c) I become R at rate (gamma). (d) The jump dynamics allows an agent to move from the cell (i, j) to ((i+k,j+l)). The probability to perform a large/small jump is controlled by the parameter (beta in [1.0,1.99]). Large (beta) values correspond to small jumps, i. e., a random walk that gives rise to Brownian motion. Small (beta) values correspond to large jumps.Full size imageFor reproducing the kinetics of real data we made the following assumptions:

    In the absence of containing strategies, the infection is characterized by a high infection rate (we take (alpha =0.9)) and a low removal rate ((gamma =0.025) or 0.05). Using as a unit of time the update of all agent positions (see Methods for details), the removal rate introduce a time scale (tau _I = gamma ^{-1}=40) or (20). This characteristic time scale represents the average time an agent remains infected and can thus spread the infection. This condition ensures that we are in an epidemic regime, i. e., the mean-field value is (R_t gg 1). We stress that, since the SIR dynamics with only three sub-populations is a simplification of the real chain of epidemic transmission, the parameters we choose for the epidemic spreading are not strictly related to those of Covid-19. Because we are interested in the effect of mobility restriction on epidemic spreading, we fix the epidemic parameters in a way that, without mobility restrictions, we are sure to stay in the worst-case scenario with an exponentially fast spreading of the infection.

    The parameter (beta in [1,1.99]) tunes the intensity of mobility restrictions. The higher its value, the stricter the limitations. (beta) is one of the fitting parameters.

    Other interventions that mitigate the epidemic spreading tend to increase the removal rate (gamma). We thus assume that (gamma) is another fitting parameter. This is because typical measures, for instance, quarantine, remove infected agents from the system. In this way, we reabsorb the presence of many hidden sub-populations into an effective value of (gamma).

    We define the parameter (delta), i. e., the fraction of infected agents at the epidemic peak with respect to the entire population, that provides a quantitative measure of the reduction of the epidemic peak. In other words, the parameter (delta) represents the efficiency of a given containing strategy compared to the uncontrolled situation where all the agents turn out to contract the infection (which is the case of our model for (gamma ll alpha), (alpha =0.9), and (beta =1)).

    To detail how mobility restrictions induce deviations from the SIR model, we calculate, via numerical simulations, the epidemic curves as a function of time for different values of (beta) as illustrated in Fig. 2a. Here, the SIR parameters are (alpha =0.9) and (gamma =0.025), i. e., the corresponding SIR model is in the fully blown epidemic regime. For small (beta) the epidemic growth is well captured by the exponential function, indicating that we are in the epidemic regime. As (beta) increases the curve turns out to be flattened and the peak reduces to (80%). Moreover, the growth of the epidemic for the largest (beta) examined is well described by the power law (I(t) sim t^{2}). The value of the exponent is comparable with those measured in different countries during the COVID(-19) epidemic wave23. The model considered here suggests that the crossover from exponential growth to power-law might be related to changes of the mobility patterns that, in our picture, shift from being dominated by large jumps to small ones. This finding is consistent with the observation that a sub-exponential growth in the number of infected people is a consequence of containing strategies23. Moreover, in the microscopic description adopted here, the crossover in the kinetics of I(t) is driven by just one parameter.Figure 2Agent dynamics impacts the epidemic spreading process. (a) The graph shows the dependency of the epidemic curves on (beta =1.20,1.50,1.75,1.80,1.85,1.87,1.90,1.92,1.95,1.97,1.99) (increasing values of (beta) from yellow to violet). As (beta) decreases, the epidemic grows exponentially fast (dotted black curve) and approaches the evolution of SIR model in well-mixed population (dashed red curve). The dash-dot blue curve is a power law (sim t^2). The parameters of the SIR reactions are (alpha =0.9) and (gamma =0.025). (b–g) Typical configurations taken at the same fraction of infected agents (I/N sim 0.25) for increasing values of (beta =1.0,1.2,1.4,1.6,1.8,1.9) (red are infected sites, green the susceptible ones, we keep white the sites populated by removed agents). (h) The probability distribution function of the local density of infected sites. (i) Radius of the cluster of infected agents ((beta =1.99)) as a function of time. The red dashed line is a linear fit.Full size imageThe crossover from exponential to power-law growth reflects the drastic change in the structure of clusters of infected agents, as illustrated in Fig. 2b–g, where typical configurations with the same fraction of infected agents are shown ((I/N=0.25, alpha =0.9, gamma =0.025)). As one can see, in the high mobility region ((beta = 1)), infected agents are spread almost everywhere in the system. As (beta) increases, infected sites tend to form a single cluster. This phenomenology is consistent with the literature of mobile agents undergoing SIR dynamics39,40. This structural change is quantitatively documented by the density distribution of infected sites shown in panel (h) of the same figure (see section Methods for details). As one can appreciate, the distribution becomes double-peaked as (beta) increases. The first peak around zero indicates the presence of an extended region of susceptible agents. The peak at high values is due to the growing cluster of infected agents. As highlighted in panel (i), the cluster grows linearly in time and thus the number of infected grows with (t^2).Another interesting aspect to understand with this model is the trade off between mobility restrictions and and other kind of interventions that have the effect of increasing the removal rate. In particular in Asian countries41, NPIs applied during the COVID-19 waves have relied mostly on contact tracing and/or preventive quarantine, with little mobility reduction, leading to effective and durable control of epidemic spreading, as reviewed by Ref.21. To understand if there is an optimal balance between containing strategies (characterized by (beta)) and efficiency in removing infected agents (denoted by (gamma)), we calculate the fraction of infected population at the epidemic peak (the maximum of I(t)) as a function of the jump parameter (beta) and of the removal rate (gamma). As above, the initial occupation number of each site is, on average, one. The infection rate is (alpha =0.9). The resulting phase diagram is shown in Fig. 3. The color indicates the fraction of infected population: in the violet region, this fraction goes to zero (epidemic is suppressed) while in the yellow region such a value goes to one, indicating an epidemic regime. The phase diagram fully recapitulates the effectiveness of the two strategies used to mitigate the infection spread, a strong lockdown with limited contact tracing, or an efficient contact tracing a moderate reduction of the mobility.Figure 3Effect of different containment strategies. The phase diagram is obtained considering as control parameters (beta), that represents mobility restrictions, and (gamma), the efficiency in removing infected agents. The color scale represents the fraction of the initial susceptible population that becomes infected, ranging between 0 (epidemic suppression, violet region) and 1 (fully-blown epidemic, yellow region). Containment is achieved as (beta) increases (corresponding to increasing mobility restrictions) even with low removal rate, or increasing (gamma) (effective removal of infected agents), even with limited mobility restrictions.Full size imageHowever, even under the strictest lockdown, several activities could not be stopped (hospitals, food supply chain, …), meaning that a single mobility parameter cannot fully describe this varied situation. To understand what could be the impact of heterogeneous motility patterns on the evolution of the epidemic, we introduce in the model some regions characterized by a high mobility (jump parameter, (beta _2)), while the majority of the the cells have restricted mobility, with a jump parameter (beta _1=1.99) (see Methods for more details). By varying (beta _2) and the density of more mobile cells (parameter (rho)) we are able to draw the phase diagram shown in Fig. 4.Figure 4Sites of different mobility affect epidemic spreading. (a) Each cell labelled by (i, j) is characterized by its own mobility parameter (beta _{ij}). We consider the special case of a binary mixture ((beta _{ij} = beta _{1,2})) of high and low mobility regions. Changing the density (rho) of (beta _2) sites and the value of (beta _2), we obtain the the phase diagram presented in panel (b), obtained for (beta _1=1.99), (alpha =0.9), and (gamma =0.05), conditions that grant contained epidemic spreading thanks to the low-mobility group. A small amount of sites with small values of (beta _2) can trigger the epidemic spreading.Full size imageAs in the previous case, in the violet area the epidemic spreading is stopped, while in the yellow area the epidemic peak reaches the entire population. Epidemic spreading takes place above a critical curve: for a given value of mobility (beta _2 More

  • in

    Assessing the influence of the amount of reachable habitat on genetic structure using landscape and genetic graphs

    Andersson E, Bodin Ö (2009) Practical tool for landscape planning? an empirical investigation of network-based models of habitat fragmentation. Ecography 32(1):123–132
    Google Scholar 
    Angelone S, Kienast F, Holderegger R (2011) Where movement happens—scale-dependent landscape effects on genetic differentiation in the European tree frog. Ecography 34(5):714–722
    Google Scholar 
    Arnaud J-F (2003) Metapopulation genetic structure and migration pathways in the land snail Helix aspersa: influence of landscape heterogeneity. Landsc Ecol 18(3):333–346
    Google Scholar 
    Awade M, Boscolo D, Metzger JP (2012) Using binary and probabilistic habitat availability indices derived from graph theory to model bird occurrence in fragmented forests. Landsc Ecol 27(2):185–198
    Google Scholar 
    Balkenhol N, Pardini R, Cornelius C, Fernandes F, Sommer S (2013) Landscape-level comparison of genetic diversity and differentiation in a small mammal inhabiting different fragmented landscapes of the Brazilian Atlantic Forest. Conserv Genet 14(2):355–367
    Google Scholar 
    Baranyi G, Saura S, Podani J, Jordán F (2011) Contribution of habitat patches to network connectivity: redundancy and uniqueness of topological indices. Ecol Indic 11(5):1301–1310
    Google Scholar 
    Barr KR, Kus BE, Preston KL, Howell S, Perkins E, Vandergast AG (2015) Habitat fragmentation in coastal southern California disrupts genetic connectivity in the Cactus Wren (Campylorhynchus brunneicapillus). Mol Ecol 24(10):2349–2363PubMed 

    Google Scholar 
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soci Series B (Methodological) 57(1):289–300
    Google Scholar 
    Bergés L, Avon C, Bezombes L, Clauzel C, Duflot R, Foltête J-C, Gaucherand S, Girardet X, Spiegelberger T (2020) Environmental mitigation hierarchy and biodiversity offsets revisited through habitat connectivity modelling. J Environ Manag 256:1–10
    Google Scholar 
    Bertin A, Gouin N, Baumel A, Gianoli E, Serratosa J, Osorio R, Manel S (2017) Genetic variation of loci potentially under selection confounds species-genetic diversity correlations in a fragmented habitat. Mol Ecol 26(2):431–443PubMed 

    Google Scholar 
    Bönsel AB, Sonneck A-G (2011) Habitat use and dispersal characteristic by Stethophyma grossum: the role of habitat isolation and stable habitat conditions towards low dispersal. J Insect Conserv 15(3):455–463
    Google Scholar 
    Boulanger E, Dalongeville A, Andrello M, Mouillot D, Manel S (2020) Spatial graphs highlight how multi-generational dispersal shapes landscape genetic patterns. Ecography 15(1):1–13
    Google Scholar 
    Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368(6470):455–457PubMed 

    Google Scholar 
    Capurucho JMG, Cornelius C, Borges SH, Cohn-Haft M, Aleixo A, Metzger JP, Ribas CC (2013) Combining phylogeography and landscape genetics of Xenopipo atronitens (Aves: Pipridae), a white sand campina specialist, to understand Pleistocene landscape evolution in Amazonia. Biol J Linnean Soc 110(1):60–76
    Google Scholar 
    Carrascal LM, Galván I, Gordo O (2009) Partial Least Squares regression as an alternative to current regression methods used in ecology. Oikos 118(5):681–690
    Google Scholar 
    Cushman SA, Shirk A, Landguth EL (2012) Separating the effects of habitat area, fragmentation and matrix resistance on genetic differentiation in complex landscapes. Landsc Ecol 27(3):369–380
    Google Scholar 
    Díaz SM, Settele J, Brondízio E, Ngo H, Guèze M, Agard J, Arneth A, Balvanera P, Brauman K, Butchart S, et al. (2019). The global assessment report on biodiversity and ecosystem services: summary for policy makers. Technical report, Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem ServicesDidham RK, Kapos V, Ewers RM (2012) Rethinking the conceptual foundations of habitat fragmentation research. Oikos 121(2):161–170
    Google Scholar 
    DiLeo MF, Wagner HH (2016) A landscape ecologist’s agenda for landscape genetics. Curr Landsc Ecol Rep 1(3):115–126
    Google Scholar 
    Dyer RJ (2015) Population graphs and landscape genetics. Annu Rev Ecol, Evolut Syst 46:327–342
    Google Scholar 
    Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40(9):1649–1663
    Google Scholar 
    Flavenot T, Fellous S, Abdelkrim J, Baguette M, Coulon A (2015) Impact of quarrying on genetic diversity: an approach across landscapes and over time. Conserv Genet 16(1):181–194
    Google Scholar 
    Foltête J-C, Clauzel C, Vuidel G (2012) A software tool dedicated to the modelling of landscape networks. Environ Model Softw 38:316–327
    Google Scholar 
    Foltête J-C, Savary P, Clauzel C, Bourgeois M, Girardet X, Sahraoui Y, Vuidel G, Garnier S (2020) Coupling landscape graph modeling and biological data: a review. Landsc Ecol 35(5):1035–1052
    Google Scholar 
    Frankham R (2005) Genetics and extinction. Biol Conserv 126(2):131–140
    Google Scholar 
    Frankham R (2015) Genetic rescue of small inbred populations: Meta-analysis reveals large and consistent benefits of gene flow. Mol Ecol 24(11):2610–2618PubMed 

    Google Scholar 
    Frankham R, Ballou JD, and Briscoe DA (2004) A primer of conservation genetics. Cambridge University PressGaggiotti OE, Foll M (2010) Quantifying population structure using the F-model. Mol Ecol Resour 10(5):821–830PubMed 

    Google Scholar 
    Galpern P, Manseau M, Fall A (2011) Patch-based graphs of landscape connectivity: a guide to construction, analysis and application for conservation. Biol Conserv 144(1):44–55
    Google Scholar 
    Greenbaum G, Fefferman NH (2017) Application of network methods for understanding evolutionary dynamics in discrete habitats. Mol Ecol 26(11):2850–2863PubMed 

    Google Scholar 
    Griffioen R (1996) Over het dispersievermogen van de moerassprinkhaan. Nieuwsbrief Saltabel 15(1):39–41
    Google Scholar 
    Hahn T, Kettle CJ, Ghazoul J, Hennig EI, Pluess AR (2013) Landscape composition has limited impact on local genetic structure in mountain clover Trifolium montanum L. J Heredity 104(6):842–852
    Google Scholar 
    Hedrick P (2011) Genetics of populations. Jones & Bartlett LearningHolzhauer SI, Ekschmitt K, Sander A-C, Dauber J, Wolters V (2006) Effect of historic landscape change on the genetic structure of the bush-cricket Metrioptera roeseli. Landsc Ecol 21(6):891–899
    Google Scholar 
    Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53(6):1898–1914PubMed 

    Google Scholar 
    Ingvarsson PK (2001) Restoration of genetic variation lost-the genetic rescue hypothesis. Trends Ecol Evol 16(2):62–63PubMed 

    Google Scholar 
    Jackson ND, Fahrig L (2015) Habitat amount—not habitat configuration—best predicts population genetic structure in fragmented landscapes. Landsc Ecol 31(5):951–968
    Google Scholar 
    Joly CA, Metzger JP, Tabarelli M (2014) Experiences from the Brazilian atlantic forest: ecological findings and conservation initiatives. New Phytol 204(3):459–473PubMed 

    Google Scholar 
    Kalinowski ST (2004) Counting alleles with rarefaction: private alleles and hierarchical sampling designs. Conserv Genet 5(4):539–543
    Google Scholar 
    Keller D, Holderegger R, Strien MJ (2013) Spatial scale affects landscape genetic analysis of a wetland grasshopper. Mol Ecol 22(9):2467–2482PubMed 

    Google Scholar 
    Keyghobadi N (2007) The genetic implications of habitat fragmentation for animals. Can J Zool 85(10):1049–1064
    Google Scholar 
    Keyghobadi N, Roland J, Matter SF, Strobeck C (2005) Among- and within-patch components of genetic diversity respond at different rates to habitat fragmentation: an empirical demonstration. Proc R Soc B 272(1562):553–560PubMed 
    PubMed Central 

    Google Scholar 
    Kierepka EM, Anderson SJ, Swihart RK, Rhodes OE (2020) Differing, multiscale landscape effects on genetic diversity and differentiation in eastern chipmunks. Heredity 124(3):457–468PubMed 
    PubMed Central 

    Google Scholar 
    Koen EL, Bowman J, Wilson PJ (2016) Node-based measures of connectivity in genetic networks. Mol Ecol Resour 16(1):69–79PubMed 

    Google Scholar 
    Koschuh A (2004) Verbreitung, lebensräume und gefährdung der sumpfschrecke (stethophyma grossum, l., 1758)(saltatoria) in der steiermark. Joannea, Zool 6:223–246
    Google Scholar 
    Krause S (1996) Populationsstruktur, Habitatbindung und Mobilität der Larven von Stethophyma grossum (Linné, 1758). Articulata 11(2):77–89
    Google Scholar 
    Latta RG (2006) Integrating patterns across multiple genetic markers to infer spatial processes. Landsc Ecol21(6):809–820
    Google Scholar 
    Lehnen L, Jan P-L, Besnard A-L, Fourcy D, Kerth G, Biedermann M, Nyssen P, Schorcht W, Petit E, and Puechmaille S (2021) Genetic diversity in a long-lived mammal is explained by the past’s demographic shadow and current connectivity. Mol Ecol, 00(1)Long FH (2013) Multivariate analysis for metabolomics and proteomics data. In Proteomic and metabolomic approaches to biomarker discovery, pages 299–311. ElsevierMalkus J (1997) Habitatpräferenzen und mobilität der sumpfschrecke (stethophyma grossum l. 1758) unter besonderer berücksichtigung der mahd. Articulata 12(1):1–18
    Google Scholar 
    Marzelli M (1994) Ausbreitung von mecostethus grossus auf einer ausgleichs-und renaturierungsfläche. Articulata 9(1):25–32
    Google Scholar 
    Miguet P, Fahrig L, Lavigne C (2017) How to quantify a distance-dependent landscape effect on a biological response. Methods Ecol Evol 8(12):1717–1724
    Google Scholar 
    Millette KL, Keyghobadi N (2015) The relative influence of habitat amount and configuration on genetic structure across multiple spatial scales. Ecol Evol 5(1):73–86PubMed 

    Google Scholar 
    Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83(4):1131–1145
    Google Scholar 
    Mony C, Abadie J, Gil-Tena A, Burel F, Ernoult A (2018) Effects of connectivity on animal-dispersed forest plant communities in agriculture-dominated landscapes. J Veg. Sci. 29(2):167–178
    Google Scholar 
    Murphy MA, Evans JS, Storfer A (2010) Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology 91(1):252–261PubMed 

    Google Scholar 
    Pascual-Hortal L, Saura S (2006) Comparison and development of new graph-based landscape connectivity indices: towards the priorization of habitat patches and corridors for conservation. Landsc Ecol 21(7):959–967
    Google Scholar 
    Pasinelli G, Meichtry-Stier K, Birrer S, Baur B, Duss M (2013) Habitat quality and geometry affect patch occupancy of two Orthopteran species. PLoS One 8(5):e65850PubMed 
    PubMed Central 

    Google Scholar 
    Pérez-Rodríguez A, Khimoun A, Ollivier A, Eraud C, Faivre B, Garnier S (2018) Habitat fragmentation, not habitat loss, drives the prevalence of blood parasites in a Caribbean passerine. Ecography 41(11):1835–1849
    Google Scholar 
    Peterman WE, Anderson TL, Ousterhout BH, Drake DL, Semlitsch RD, Eggert LS (2015) Differential dispersal shapes population structure and patterns of genetic differentiation in two sympatric pond breeding salamanders. Conserv Genet 16(1):59–69
    Google Scholar 
    Rayfield B, Fortin M-J, Fall A (2011) Connectivity for conservation: a framework to classify network measures. Ecology 92(4):847–858PubMed 

    Google Scholar 
    Reinhardt K, Köhler G, Maas S, Detzel P (2005) Low dispersal ability and habitat specificity promote extinctions in rare but not in widespread species: the Orthoptera of Germany. Ecography 28(5):593–602
    Google Scholar 
    Roy K, Kar S, and Das RN (2015) Statistical methods in QSAR/QSPR. In A primer on QSAR/QSPR modeling, pages 37–59. SpringerRozenfeld AF, Arnaud-Haond S, Hernández-Garcia E, Eguíluz VM, Serrão EA, Duarte CM (2008) Network analysis identifies weak and strong links in a metapopulation system. Proc Natl Acad Sci 105(48):18824–18829PubMed 
    PubMed Central 

    Google Scholar 
    Saura S (2018) The amount of reachable habitat—jointly measuring habitat amount and connectivity in space and time. In Proceedings of international conference of ecological sciences of the French Society for Ecology and EvolutionSaura S (2021) The Habitat Amount Hypothesis implies negative effects of habitat fragmentation on species richness. J Biogeogr 48(1):11–22
    Google Scholar 
    Saura S, Bodin Ö, Fortin M-J (2014) Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J Appl Ecol 51(1):171–182
    Google Scholar 
    Saura S and de la Fuente B (2017) Connectivity as the amount of reachable habitat: conservation priorities and the roles of habitat patches in landscape networks. In Gergel, SE and Turner, MG, editors, Learning landscape ecology: a practical guide to concepts and techniques, pages 229–254. SpringerSaura S, Rubio L (2010) A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography 33(3):523–537
    Google Scholar 
    Savary P, Foltête J-C, Moal H, Vuidel G, Garnier S (2021a) Analysing landscape effects on dispersal networks and gene flow with genetic graphs. Mol Ecol Resour 21(4):1167–1185PubMed 

    Google Scholar 
    Savary P, Foltête J-C, Moal H, Vuidel G, Garnier S (2021b) graph4lg: a package for constructing and analysing graphs for landscape genetics in R. Methods Ecol Evol 12(3):539–547
    Google Scholar 
    Schoville SD, Dalongeville A, Viennois G, Gugerli F, Taberlet P, Lequette B, Alvarez N, Manel S (2018) Preserving genetic connectivity in the European Alps protected area network. Biol Conserv 218:99–109
    Google Scholar 
    Shirk A, Cushman S (2011) sGD: software for estimating spatially explicit indices of genetic diversity. Mol Ecol Resour 11(5):922–934PubMed 

    Google Scholar 
    Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47(1):264–279PubMed 

    Google Scholar 
    Sonneck A-G, Bönsel A, Matthes J (2008) Der einfluss von landnutzung auf die habitate von stethophyma grossum (linnaeus, 1758) an beispielen aus mecklenburg-vorpommern. Articulata 23:15–30
    Google Scholar 
    Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. Proc Natl Acad Sci 101(42):15261–15264PubMed 
    PubMed Central 

    Google Scholar 
    Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape genetics: where are we now? Mol Ecol 19(17):3496–3514PubMed 

    Google Scholar 
    Szpiech ZA, Jakobsson M, Rosenberg NA (2008) ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24(21):2498–2504PubMed 
    PubMed Central 

    Google Scholar 
    Taylor Z, Hoffman S (2014) Landscape models for nuclear genetic diversity and genetic structure in white-footed mice (Peromyscus leucopus). Heredity 112(6):588–595PubMed 
    PubMed Central 

    Google Scholar 
    Tenenhaus M (1998) La régression PLS: théorie et pratique. Editions TECHNIPToma Y, Imanishi J, Yokogawa M, Hashimoto H, Imanishi A, Morimoto Y, Hatanaka Y, Isagi Y, Shibata S (2015) Factors affecting the genetic diversity of a perennial herb Viola grypoceras A. Gray var. grypoceras in urban fragmented forests. Landsc Ecol 30(8):1435–1447
    Google Scholar 
    Tournant P, Afonso E, Roué S, Giraudoux P, Foltête J-C (2013) Evaluating the effect of habitat connectivity on the distribution of lesser horseshoe bat maternity roosts using landscape graphs. Biol Conserv 164:39–49
    Google Scholar 
    Trautner J, Hermann G (2008) Die Sumpfschrecke (Stethophyma grossum L., 1758) im Aufwind-Erkenntnisse aus dem zentralen Baden-Württemberg. Articulata 23(2):37–52
    Google Scholar 
    Urban D, Keitt T (2001) Landscape connectivity: a graph-theoretic perspective. Ecology 82(5):1205–1218
    Google Scholar 
    van Strien MJ (2017) Consequences of population topology for studying gene flow using link-based landscape genetic methods. Ecol Evol 7(14):5070–5081van Strien MJ, Keller D, Holderegger R, Ghazoul J, Kienast F, Bolliger J (2014) Landscape genetics as a tool for conservation planning: predicting the effects of landscape change on gene flow Ecol Appl 24(2):327–339PubMed 

    Google Scholar 
    Varvio S-L, Chakraborty R, Nei M (1986) Genetic variation in subdivided populations and conservation genetics. Heredity 57(2):189–198PubMed 

    Google Scholar 
    Villard M-A, Metzger JP (2014) Beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. J Appl Ecol 51(2):309–318
    Google Scholar 
    Wagner HH, Fortin M-J (2013) A conceptual framework for the spatial analysis of landscape genetic data. Conserv Genet 14(2):253–261
    Google Scholar 
    Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38(6):1358–1370PubMed 

    Google Scholar 
    Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemometr Intellig Lab Syst 58(2):109–130
    Google Scholar 
    Zetterberg A, Mörtberg UM, Balfors B (2010) Making graph theory operational for landscape ecological assessments, planning, and design. Landsc Urban Plan 95(4):181–191
    Google Scholar  More

  • in

    Utilizing DeepSqueak for automatic detection and classification of mammalian vocalizations: a case study on primate vocalizations

    1.Priyadarshani, N., Marsland, S. & Castro, I. Automated birdsong recognition in complex acoustic environments: A review. J. Avian Biol. 49, e01447. https://doi.org/10.1111/jav.01447 (2018).Article 

    Google Scholar 
    2.Barker, D. J. & Johnson, A. M. Automated acoustic analysis of 50-kHz ultrasonic vocalizations using template matching and contour analysis. J. Acoust. Soc. Am. 141, EL281–EL286. https://doi.org/10.1121/1.4977990 (2017).Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    3.Oswald, J. N., Rankin, S., Barlow, J. & Lammers, M. O. A tool for real-time acoustic species identification of delphinid whistles. J. Acoust. Soc. Am. 122, 587–595. https://doi.org/10.1121/1.2743157 (2007).Article 
    PubMed 
    ADS 

    Google Scholar 
    4.Van Segbroeck, M., Knoll, A. T., Levitt, P. & Narayanan, S. MUPET—Mouse Ultrasonic Profile ExTraction: A signal processing tool for rapid and unsupervised analysis of ultrasonic vocalizations. Neuron 94, 465-485.e465. https://doi.org/10.1016/j.neuron.2017.04.005 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Binder, M. S., Hernandez-Zegada, C. J., Potter, C. T., Nolan, S. O. & Lugo, J. N. A comparison of the Avisoft (5.2) and Ultravox (2.0) recording systems: Implications for early-life communication and vocalization research. J. Neurosci. Methods 309, 6–12. https://doi.org/10.1016/j.jneumeth.2018.08.015 (2018).Article 
    PubMed 

    Google Scholar 
    6.Mcloughlin, M. P., Stewart, R. & McElligott, A. G. Automated bioacoustics: Methods in ecology and conservation and their potential for animal welfare monitoring. J. R. Soc. Interface 16, 20190225. https://doi.org/10.1098/rsif.2019.0225 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Castellote, M. & Fossa, F. Measuring acoustic activity as a method to evaluate welfare in captive beluga whales (Delphinapterus leucas). Aquat. Mamm. 32, 325–333. https://doi.org/10.1578/AM.32.3.2006.325 (2006).Article 

    Google Scholar 
    8.Clapham, W. M., Fedders, J. M., Beeman, K. & Neel, J. P. S. Acoustic monitoring system to quantify ingestive behavior of free-grazing cattle. Comput. Electron. Agric. 76, 96–104. https://doi.org/10.1016/j.compag.2011.01.009 (2011).Article 

    Google Scholar 
    9.Schön, P. C. et al. Altered vocalization rate during the estrous cycle in dairy cattle. J. Dairy Sci. 90, 202–206. https://doi.org/10.3168/jds.S0022-0302(07)72621-8 (2007).Article 
    PubMed 

    Google Scholar 
    10.Cascão, I., Lammers, M. O., Prieto, R., Santos, R. S. & Silva, M. A. Temporal patterns in acoustic presence and foraging activity of oceanic dolphins at seamounts in the Azores. Sci. Rep. 10, 3610. https://doi.org/10.1038/s41598-020-60441-4 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    11.Manteuffel, G. R. & Schön, P. C. STREMODO, an innovative technique for continuous stress assessment of pigs in housing and transport. Arch. Tierzucht. 47, 173–181 (2004).
    Google Scholar 
    12.Chedad, A. et al. Recognition system for pig cough based on probabilistic neural networks. J. Agric. Eng. Res. 79, 449–457. https://doi.org/10.1006/jaer.2001.0719 (2001).Article 

    Google Scholar 
    13.Bardeli, R. et al. Detecting bird sounds in a complex acoustic environment and application to bioacoustic monitoring. Pattern Recogn. Lett. 31, 1524–1534. https://doi.org/10.1016/j.patrec.2009.09.014 (2010).Article 
    ADS 

    Google Scholar 
    14.Jones, K. E. et al. In Biodiversity Monitoring and Conservation: Bridging the Gap Between Global Commitment and Local Action (eds Collen, B., et al.) Ch. 10, (Taylor & Francis, 2013).15.Marques, T. A. et al. Estimating animal population density using passive acoustics. Biol. Rev. 88, 287–309. https://doi.org/10.1111/brv.12001 (2013).Article 
    PubMed 

    Google Scholar 
    16.Stevenson, B. C. et al. A general framework for animal density estimation from acoustic detections across a fixed microphone array. Methods Ecol. Evol. 6, 38–48. https://doi.org/10.1111/2041-210x.12291 (2015).Article 

    Google Scholar 
    17.Wrege, P. H., Rowland, E. D., Keen, S. & Shiu, Y. Acoustic monitoring for conservation in tropical forests: Examples from forest elephants. Methods Ecol. Evol. 8, 1292–1301. https://doi.org/10.1111/2041-210x.12730 (2017).Article 

    Google Scholar 
    18.Haver, S. M. et al. Comparing the underwater soundscapes of four U.S. national parks and marine sanctuaries. Front. Mar. Sci. 6, 500. https://doi.org/10.3389/fmars.2019.00500 (2019).Article 

    Google Scholar 
    19.Beason, R. D., Riesch, R. & Koricheva, J. AURITA: An affordable, autonomous recording device for acoustic monitoring of audible and ultrasonic frequencies. Bioacoustics 28, 381–396. https://doi.org/10.1080/09524622.2018.1463293 (2019).Article 

    Google Scholar 
    20.Beeman, K. H., Hopp, S. L., Owren, M. J. & Evans, C. S. E. Animal Acoustic Communication: Sound Analysis and Research Methods (Springer, 1998).
    Google Scholar 
    21.Janik, V. M. Pitfalls in the categorization of behaviour: A comparison of dolphin whistle classification methods. Anim. Behav. 57, 133–143. https://doi.org/10.1006/anbe.1998.0923 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Gillespie, D. et al. PAMGUARD: Semiautomated, open source software for real-time acoustic detection and localization of cetaceans. J. Acoust. Soc. Am. 125, 2547–2547. https://doi.org/10.1121/1.4808713 (2009).Article 
    ADS 

    Google Scholar 
    23.Kaleidoscope Pro Analysis Software [Software]. (Wildlife Acoustics, Inc. https://www.wildlifeacoustics.com (2020).24.Ruff, Z. J., Lesmeister, D. B., Duchac, L. S., Padmaraju, B. K. & Sullivan, C. M. Automated identification of avian vocalizations with deep convolutional neural networks. Remote Sens. Ecol. Conserv. 6, 79–92. https://doi.org/10.1002/rse2.125 (2020).Article 

    Google Scholar 
    25.Coffey, K. R., Marx, R. G. & Neumaier, J. F. DeepSqueak: A deep learning-based system for detection and analysis of ultrasonic vocalizations. Neuropsychopharmacology 44, 859–868. https://doi.org/10.1038/s41386-018-0303-6 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Oikarinen, T. et al. Deep convolutional network for animal sound classification and source attribution using dual audio recordings. J. Acoust. Soc. Am. 145, 654–662. https://doi.org/10.1121/1.5087827 (2019).Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    27.Pozzi, L., Gamba, M. & Giacoma, C. The use of artificial neural networks to classify primate vocalizations: A pilot study on black lemurs. Am. J. Primatol. 72, 337–348. https://doi.org/10.1002/ajp.20786 (2010).Article 
    PubMed 

    Google Scholar 
    28.Gamba, M. et al. Comparative analysis of the vocal repertoire of Eulemur: A dynamic time warping approach. Int. J. Primatol. 36, 894–910. https://doi.org/10.1007/s10764-015-9861-1 (2015).Article 

    Google Scholar 
    29.Pozzi, L., Gamba, M. & Giacoma, C. In Leaping Ahead: Advances in Prosimian Biology. (ed Masters, J.) Ch. 34, 305–313 (Springer, 2013).30.Heinicke, S. et al. Assessing the performance of a semi-automated acoustic monitoring system for primates. Methods Ecol. Evol. 6, 753–763. https://doi.org/10.1111/2041-210x.12384 (2015).Article 

    Google Scholar 
    31.Turesson, H. K., Ribeiro, S., Pereira, D. R., Papa, J. P. & de Albuquerque, V. H. C. Machine learning algorithms for automatic classification of marmoset vocalizations. PLoS One 11, e0163041. https://doi.org/10.1371/journal.pone.0163041 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Bergler, C. et al. ORCA-SPOT: An automatic killer whale sound detection toolkit using deep learning. Sci. Rep. 9, 10997. https://doi.org/10.1038/s41598-019-47335-w (2019).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    33.Shiu, Y. et al. Deep neural networks for automated detection of marine mammal species. Sci. Rep. 10, 607. https://doi.org/10.1038/s41598-020-57549-y (2020).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    34.Zeppelzauer, M., Hensman, S. & Stoeger, A. S. Towards an automated acoustic detection system for free-ranging elephants. Bioacoustics 24, 13–29. https://doi.org/10.1080/09524622.2014.906321 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Venter, P. J. & Hanekom, J. J. Automatic detection of African elephant (Loxodonta africana) infrasonic vocalisations from recordings. Biosyst. Eng. 106, 286–294. https://doi.org/10.1016/j.biosystemseng.2010.04.001 (2010).Article 

    Google Scholar 
    36.Mac Aodha, O. et al. Bat detective-Deep learning tools for bat acoustic signal detection. PLoS Comput. Biol. 14, e1005995. https://doi.org/10.1371/journal.pcbi.1005995 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Henriquez, A. et al. An automatic acoustic bat identification system based on the audible spectrum. Expert Syst. Appl. 41, 5451–5465. https://doi.org/10.1016/j.eswa.2014.02.021 (2014).Article 

    Google Scholar 
    38.Hoy, M. B. Alexa, Siri, Cortana, and more: An introduction to voice assistants. Med. Ref. Serv. Q. 37, 81–88. https://doi.org/10.1080/02763869.2018.1404391 (2018).Article 
    PubMed 

    Google Scholar 
    39.López, G., Quesada, L. & Guerrero, L. A. In Advances in Human Factors and Systems Interaction. AHFE 2017. Advances in Intelligent Systems and Computing Vol. 592 (ed. Nunes, I.) (Springer, 2018).40.Ren, S., He, K., Girshick, R. & Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031 (2017).Article 
    PubMed 

    Google Scholar 
    41.Barker, D. J., Herrera, C. & West, M. O. Automated detection of 50-kHz ultrasonic vocalizations using template matching in XBAT. J. Neurosci. Methods 236, 68–75. https://doi.org/10.1016/j.jneumeth.2014.08.007 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Zimmermann, E. In Leaping Ahead: Advances in Prosimian Biology (eds. Masters, J., Gamba, M., & Génin, F.) Ch. 32, 287–295 (Springer, 2013).43.Schopf, C., Schmidt, S. & Zimmermann, E. Moderate evidence for a Lombard effect in a phylogenetically basal primate. PeerJ 4, e2328. https://doi.org/10.7717/peerj.2328 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Niaussat, M. M. & Petter, J. J. Etude de la sensibilité auditive d’un lémurien malgache: Microcebus murinus (J.-F. Miller, 1777). Mammalia 44, 553–558. https://doi.org/10.1515/mamm.1980.44.4.553 (1980).Article 

    Google Scholar 
    45.Hasiniaina, A. F. et al. Evolutionary significance of the variation in acoustic communication of a cryptic nocturnal primate radiation (Microcebus spp.). Ecol. Evol. 10, 3784–3797. https://doi.org/10.1002/ece3.6177 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Braune, P., Schmidt, S. & Zimmermann, E. Acoustic divergence in the communication of cryptic species of nocturnal primates (Microcebus ssp.). BMC Biol. 6, 19. https://doi.org/10.1186/1741-7007-6-19 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Leliveld, L. M. C., Scheumann, M. & Zimmermann, E. Acoustic correlates of individuality in the vocal repertoire of a nocturnal primate (Microcebus murinus). J. Acoust. Soc. Am. 129, 2278–2288. https://doi.org/10.1121/1.3559680 (2011).Article 
    PubMed 
    ADS 

    Google Scholar 
    48.Scheumann, M., Zimmermann, E. & Deichsel, G. Context-specific calls signal infants’ needs in a strepsirrhine primate, the gray mouse lemur (Microcebus murinus). Dev. Psychobiol. 49, 708–718. https://doi.org/10.1002/dev.20234 (2007).Article 
    PubMed 

    Google Scholar 
    49.Zimmermann, E. In Handbook of Mammalian Vocalization: An Integrative Neuroscience Approach. (ed. Brudzynski, S. M.) 215–225 (Academic Press, 2010).50.Zimmermann, E. In Handbook of Ultrasonic Vocalization: A Window into the Emotional Brain vol. 25 (ed. Brudzynski, S. M.) 521–533 (Academic Press, 2018).51.Buesching, C. D., Heistermann, M., Hodges, J. K. & Zimmermann, E. Multimodal oestrus advertisement in a small nocturnal prosimian, Microcebus murinus. Folia Primatol. 69(1), 295–308. https://doi.org/10.1159/000052718 (1998).Article 

    Google Scholar 
    52.Scheumann, M., Linn, S. & Zimmermann, E. Vocal greeting during mother–infant reunions in a nocturnal primate, the gray mouse lemur (Microcebus murinus). Sci. Rep. 7, 10321. https://doi.org/10.1038/s41598-017-10417-8 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    53.Braune, P., Schmidt, S. & Zimmermann, E. Spacing and group coordination in a nocturnal primate, the golden brown mouse lemur (Microcebus ravelobensis): The role of olfactory and acoustic signals. Behav. Ecol. Sociobiol. 58, 587–596. https://doi.org/10.1007/s00265-005-0944-4 (2005).Article 

    Google Scholar 
    54.Kessler, S. E., Scheumann, M., Nash, L. T. & Zimmermann, E. Paternal kin recognition in the high frequency/ultrasonic range in a solitary foraging mammal. BMC Ecol. 12, 26. https://doi.org/10.1186/1472-6785-12-26 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Zimmermann, E. & Hafen, T. G. Colony specificity in a social call of mouse lemurs (Microcebus ssp.). Am. J. Primatol. 54, 129–141. https://doi.org/10.1002/ajp.1018 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    56.Hafen, T., Neveu, H., Rumpler, Y., Wilden, I. & Zimmermann, E. Acoustically dimorphic advertisement calls separate morphologically and genetically homogenous populations of the grey mouse lemur (Microcebus murinus). Folia Primatol. 69, 342–356. https://doi.org/10.1159/000052723 (1998).Article 

    Google Scholar 
    57.Zimmermann, E. & Lerch, C. The complex acoustic design of an advertisement call in male mouse lemurs (Microcebus murinus, Prosimii, Primates) and sources of its variation. Ethology 93, 211–224. https://doi.org/10.1111/j.1439-0310.1993.tb00990.x (1993).Article 

    Google Scholar 
    58.Zimmermann, E. Castration affects the emission of an ultrasonic vocalization in a nocturnal primate, the grey mouse lemur (Microcebus murinus). Physiol. Behav. 60, 693–697. https://doi.org/10.1016/0031-9384(96)81674-X (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    59.Keenan, S., Lemasson, A. & Zuberbühler, K. Graded or discrete? A quantitative analysis of Campbell’s monkey alarm calls. Anim. Behav. 85, 109–118. https://doi.org/10.1016/j.anbehav.2012.10.014 (2013).Article 

    Google Scholar 
    60.Tallet, C. et al. Encoding of situations in the vocal repertoire of piglets (Sus scrofa): A comparison of discrete and graded classifications. PLoS One 8, e71841. https://doi.org/10.1371/journal.pone.0071841 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    61.Hasiniaina, A. F. et al. High frequency/ultrasonic communication in a critically endangered nocturnal primate, Claire’s mouse lemur (Microcebus mamiratra). Am. J. Primatol. https://doi.org/10.1002/ajp.22866 (2018).Article 
    PubMed 

    Google Scholar 
    62.Boersma, P. Praat, a system for doing phonetics by computer. Glot Int. 5, 341–345 (2001).
    Google Scholar 
    63.Owren, M. J. GSU Praat Tools: Scripts for modifying and analyzing sounds using Praat acoustics software. Behav. Res. Methods 40, 822–829. https://doi.org/10.3758/Brm.40.3.822 (2008).Article 
    PubMed 

    Google Scholar 
    64.R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).65.Fränti, P. & Sieranoja, S. How much can k-means be improved by using better initialization and repeats?. Pattern Recogn. 93, 95–112. https://doi.org/10.1016/j.patcog.2019.04.014 (2019).Article 
    ADS 

    Google Scholar 
    66.Patterson, J. & Gibson, A. Deep Learning: A Practitioner’s Approach. (O’Reilly Media, Inc., 2017).67.Field, A. Discovering Statistics Using IBM SPSS Statistics (Englisch). 3rd ed. (Sage Publication, 2009).68.Clink, D. J., Tasirin, J. S. & Klinck, H. Vocal individuality and rhythm in male and female duet contributions of a nonhuman primate. Curr. Zool. 66, 173–186. https://doi.org/10.1093/cz/zoz035 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Romero-Mujalli, D., Tárano, Z., Cobarrubia, S. & Barreto, G. Caracterización de silbidos de Tursiops truncatus (Cetacea: Delphinidae) y su asociación con el comportamiento en superficie. Revista Argentina de Ciencias del Comportamiento 6, 15–29. https://doi.org/10.32348/1852.4206.v6.n1.6362 (2014).Article 

    Google Scholar 
    70.Papale, E., Gamba, M., Perez-Gil, M., Martin, V. M. & Giacoma, C. Dolphins adjust species-specific frequency parameters to compensate for increasing background noise. PLoS One 10, e0121711. https://doi.org/10.1371/journal.pone.0121711 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.García, N. C., Barreira, A. S., Kopuchian, C. & Tubaro, P. L. Intraspecific and interspecific vocal variation in three Neotropical cardinalids (Passeriformes: Fringillidae) and its relationship with body mass. Emu 114, 129–136. https://doi.org/10.1071/MU13010 (2014).Article 

    Google Scholar 
    72.Lostanlen, V., Salamon, J., Farnsworth, A., Kelling, S. & Bello, J. P. Robust sound event detection in bioacoustic sensor networks. PLoS One 14, e0214168. https://doi.org/10.1371/journal.pone.0214168 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Albin, A. PraatR: An architecture for controlling the phonetics software “Praat” with the R programming language. J. Acoust. Soc. Am. 135, 2198. https://doi.org/10.1121/1.4877175 (2014).Article 
    ADS 

    Google Scholar  More

  • in

    Allergenicity to worldwide invasive grass Cortaderia selloana as environmental risk to public health

    SettingThis study was conducted in Cantabria, a region of the North coast of Spain.Design and patientsA cross-sectional study with prospective data collection was performed at the Allergy Services of the Marqués de Valdecilla University Hospital in Santander and the Sierrallana Hospital in Torrelavega (Cantabria, Spain).98 patients diagnosed of rhinoconjunctivitis, asthma or both, caused by sensitization to grass pollen, were included in a sequential way from October 2015 to March 2016.Written informed consent was obtained from all patients before entering the study. The study met the principles of the 1975 Helsinki declaration and was reviewed and approved by the local Research Committee of Cantabria (CEIC reference number 2015.207).A serum sample was obtained from each patient and stored at – 20 °C until used.Pollen extract preparationAll methods were performed in accordance with the relevant guidelines and regulations.Cortaderia selloana (CS) pollen was obtained commercially (Iber-Polen, Jaén, Spain) and then extracted at a 1:10 (w/v) ratio in PBS pH 6.5 with magnetic stirring for 90 min. at 5 °C. The soluble fraction was separated by centrifugation. After dialysis against PBS, the extract was filtered through 0, 22 µm filters. Protein content was determined by Bradford method (BioRad, Hercules, CA, USA). Two different batches were obtained (07 and 09) with consistent results.Part of the extract was adjusted to 0.25 mg protein/ml and formulated in PBS with 50% glycerol, phenol 0.51% (SPT buffer). The remaining extract was stored in aliquots at − 20 °C.Phleum pratense (Phl) pollen extract was made as described for CS. The origin of the pollen in this case was ALK Source Materials, Post Falls, Idaho, USA.The protein profiles of the CS or the Phl extracts were determined by polyacrylamide electrophoresis in the presence of sodium dodecyl sulphate (SDS-PAGE) under reducing conditions (Invitrogen-Novex tricine gels 10–20% acrylamide, Fisher Scientific, SL, Madrid Spain).Skin prick testPatients were skin prick tested (SPT) with a commercial extract (ALK-Abelló, S.A. Madrid, Spain) of Phl and the CS extract. Histamine dihydrochloride solution (10 mg/ml) and SPT buffer were used as positive and negative control (no reaction), respectively.The SPT wheal areas were measured by planimetry. A cut-off area of 7 mm2 (about 3 mm average diameter) or higher was considered a positive test result (histamine).The CS extract was tested in 10 control subjects, that were not sensitised to grass pollen, with negative result (no reaction).IgE assaysSerum samples were tested for IgE antibodies against Phleum pratense (Phl) pollen extract and the allergens Phl p 1, Phl p 5, Phl p 7 (polcalcin) and Phl p 12 (profilin) (ImmunoCap FEIA, Thermo Fisher Scientific, Barcelona, Spain).In addition, specific IgE against Phl and CS pollen extracts was determined by RAST (Radio Allergo Sorbent Test). Paper discs were activated with CNBr and sensitised with the pollen extracts as described by Ceska et al.21. Phl and CS discs were incubated overnight with 50 µL of the patient’s serum and after washing (0.1% Tween-20 in PBS), with approximately 100,000 cpm of the iodine 125–labeled anti-IgE mAb HE-2 for 3 h as described22. Finally, the discs were washed, and their radioactivity was determined in a gamma counter. sIgE values in kilounits per litre were determined by interpolating in a standard curve built up with Lolium perenne—sensitised discs and 4 dilutions of a serum pool from patients with grass allergy, which was previously calibrated in arbitrary kU/l.A cut-off value of 0.35 kU/l was considered positive for both ImmunoCap and RAST. There was a very significant correlation between the sIgE against Phl determined by both methods (r Spearman = 0.8874, p  More

  • in

    Forecasting water quality parameters using artificial neural network for irrigation purposes

    The result of this study is presented in three categories, namely; the descriptive statistics, the water quality test result and the ANN model and the model evaluation performance, respectively.The descriptive statistics result is presented in Tables 1, 2, 3, 4. This describes the basic features of the data in this study. They provide simple summaries about the sample and the measures such as the mean, median, maximum, minimum and standard deviation, respectively.Table 1 Descriptive statistics of the analyzed water quality at point 1.Full size tableTable 2 Descriptive statistics of the analyzed water quality at point 2.Full size tableTable 3 Descriptive statistics of the analyzed water quality at point 3.Full size tableTable 4 Descriptive statistics of the analyzed water quality at point 4.Full size tableThe descriptive statistics in Tables 1,2, 3, 4 shows that the mean values of the data set ranges from 6.29 to 6.34, 1956.21 to 2458.19, 3.35 to 7.39 and 39.13 to 51.06 for Ph, TDS (mg/l), EC (dS/m) and Na (mg/l), respectively. The median values of the data set ranges from 6.31 to 6.39, 2010.00 to 2439.50, 3.14 to 4.24 and 39.13 to 51.06 for pH, TDS (mg/l), EC (dS/m) and Na (mg/l), respectively. The Maximum values data set ranges from 6.48 to 6.64, 2286.00 to 2742.00, 2.21 to 5.82, and 64.50 to 88.45 for Ph, TDS (mg/l), EC (dS/m) and Na (mg/l), respectively. The minimum values dataset ranges from 6.00 to 6.09, 1367.00 to 2199.00, 2.01 to 3.18, and 21.21 to 40.24 for Ph, TDS (mg/l), EC (dS/m) and Na (mg/l), respectively. The standard deviation values ranges from 0.08 to 0.16, 114.47 to 213.04, 0.23 to 31.49 and 14.06 to 8.16 for Ph, TDS (mg/l), EC (dS/m) and Na (mg/l), respectively. The low values of standard deviation recorded in this study shows that data set were very close to the mean of the dataset.The water quality analysis test result indicates the level of concentrations of the TDS (mg/l), EC (dS/m) and Na (mg/l) in the Ele river in Nnewi, Anambra State Nigeria. The FAO standard for irrigation water quality for TDS, EC and Na are 0–2000, 0–3 and 0–40, respectively. The water quality results show that the pH values which ranges from 6.01 to 6.87 were within the FAO standard in all the points for both rainy and dry seasons, whereas the TDS (mg/l), EC (dS/m) and Na (mg/l) parametric values range from 2001 to 2506, 3.01 to 5.76, and 40.42 to 73.45 respectively, were above the FAO standard from point 1 to point 3 and falls within the FAO standard at point 4 with values ranging from 1003 to 1994, 2.01 to 2.78 and 31.24 to 39.44, respectively. However, during the dry season, the TDS, EC, and Na values range from 2002 to 2742, 3.04 to 5.82 and 40.14 to 88.45 respectively, were all above the FAO standard. Anthropogenic pollution emitted into water bodies has recently been identified as a significant source of pollutants that need immediate action in order to avoid serious environmental effects11.The results equally revealed that the concentrations decrease along the sampling points going downstream. It is noteworthy that irrigation water with a pH outside the normal range may cause a nutritional imbalance or may contain a toxic ion which is harmful to crops19. The high concentrations of TDS as observed in this study are likely to increase the salinity of the river water, change the taste of the water, and as well decrease the dissolved oxygen level of the surface water making it difficult for the survival of plants and aquatic organisms7.Moreover, these anions and cations which increase the electric conductivity in water affect irrigation adversely since salts settle at crop root zones making it difficult for infiltration, absorption of moisture and nutrients necessary for crop production.The ANN model and forecast for the water quality parameters are shown from Figs. 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19. Considering the water quality permissible range, River quality modeling and forecast shows different variations seasonally such that the pollution level during dry season was higher than the rainy season.Figure 4(A and B): pH model and forecast graph at point 1.Full size imageFigure 5(A and B): TDS model and forecast graph at point 1.Full size imageFigure 6(A and B): EC model and forecast graph at point 1.Full size imageFigure 7(A and B): Na model and Forecast graph at point 1.Full size imageFigure 8(A and B): Ph model and Forecast graph at point 2.Full size imageFigure 9(A and B): TDS model and Forecast graph at point 2.Full size imageFigure 10(A and B): EC model and Forecast graph at point 2.Full size imageFigure 11(A and B): Na model and Forecast graph at point 2.Full size imageFigure 12(A and B): Ph model and Forecast graph at point 3.Full size imageFigure 13(A and B): TDS model and Forecast graph at point 3.Full size imageFigure 14(A and B): EC model and Forecast graph at point 3.Full size imageFigure 15(A and B): Na model and Forecast graph at point 3.Full size imageFigure 16(A and B): pH model and Forecast graph at point 4.Full size imageFigure 17(A and B): TDS model and Forecast graph at point.Full size imageFigure 18(A and B): EC model and Forecast graph at point 4.Full size imageFigure 19(A and B): Na model and Forecast graph at point 4.Full size imageGenerally, the artificial neural network model the actual data set very well. At various sampling points, the developed ANN models descriptively show insignificant values in deviation for the actual data set. There were continues variations in the developed models and forecasts over time. The feed-forward Multilayer Neural Network (FFMNN) Model Performance Evaluation Results are shown in Table 5. The model performance evaluation was carried out based on the developed ANN model training, Testing and forecast, respectively. The model performance evaluation was carried out using the coefficient of multiple determination R2 and Root Mean Squared Error (RMSE).Table 5 Statistical measurement of the trained, test and forecast model.Full size tableThe R2 values were generally observed to have varied in the second decimal place for the training, testing and forecast model, respectively.The training performance evaluation shows that R2 values ranges from 0.981 to 0.990, 0.981 to 0.988, 0.981 to 0.989 and 0981 to 0.989, for pH, TDS, EC, and Na, respectively. The training results shows that the pH model have the best performance followed by EC, and Na.Also, the testing performance shows that the R2 value ranges from 0.952 to 0.967, 0.953 to 0.970, 0.951 to 0.967 and 0.953 to 0.968, for pH, TDS, EC and Na, respectively. However, the testing performance evaluation shows that TDS had the best performance. The forecast performance evaluation shows that the R2 values ranges from 0.945 to 0.968, 0.946 to 0.968, 0.944 to 0.967 and 0.949 to 0.965 for pH, TDS, EC and Na respectively. It was however discovered that the TDS made best forecast followed by the pH. The water quality forecast performance was further evaluated using the Root Mean Squared Error (RMSE) which ranges from 0.022 to 0.088, 0.012 to 0.087, 0.015 to 0.085and 0.014 to 0.084 for pH, TDS, EC and Na, respectively. The ANN model performed very well as their coefficient of multiple determinations R2 were very close 1, which is in agreement with the study of Awu et al. (2017) and Abrahart et al., (2005). On comparing the performance of the training model to the testing model and forecast, it shows that the training set performed better than the testing set followed by the forecast as its coefficient of multiple determinations, R2, was much closer to 1. More

  • in

    Correction to: Unexpected myriad of co-occurring viral strains and species in one of the most abundant and microdiverse viruses on Earth

    AffiliationsDepartment of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, SpainFrancisco Martinez-Hernandez, Inmaculada Garcia-Heredia & Manuel Martinez-GarciaDepartment of Biology, University of North Carolina at Greensboro, Greensboro, NC, USAAwa Diop & Louis-Marie BobayAuthorsFrancisco Martinez-HernandezAwa DiopInmaculada Garcia-HerediaLouis-Marie BobayManuel Martinez-GarciaCorresponding authorCorrespondence to
    Manuel Martinez-Garcia. More

  • in

    Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century

    Cropland-mapping extent and time intervalsThe global boundaries for the cropland mapping were informed by the US Geological Survey (USGS) Global Food Security-Support Analysis Data at 30 m (GFSAD)11. The cropland mapping extent was defined using the geographic 1° × 1° grid. We included every 1° × 1° grid cell that contains cropland area according to the GFSAD. Small islands were excluded due to the absence of Landsat geometrically corrected data (Supplementary Fig. 1).The cropland mapping was performed at 4-year intervals (2000–2003, 2004–2007, 2008–2011, 2012–2015 and 2016–2019). Use of a long interval (rather than a single year) increased the number of clear-sky satellite observations in the time-series, which improves representation of land-surface phenology and the accuracy of cropland detection. For each 4-year interval, we mapped an area as cropland if a growing crop was detected during any of these years. In this way, we implemented the criterion of the maximum fallow length: if an area was not used as cropland for >4 years, it was not included in the cropland map for the corresponding time interval.Landsat dataWe employed the global 16-day normalized surface reflectance Landsat Analysis Ready Data (Landsat ARD19) as input data for cropland mapping. The Landsat ARD were generated from the entire Landsat archive from 1997 to 2019. The Landsat top-of-atmosphere reflectance was normalized using globally consistent MODIS surface reflectance as a normalization target. Individual Landsat images were aggregated into 16-day composites by prioritizing clear-sky observations.For each 4-year interval, we created a single annualized gap-free 16-day observation time-series. For each 16-day interval, we selected the observation with the highest near-infrared reflectance value (to prioritize observations with the highest vegetation cover) from 4 years of Landsat data. Observations contaminated by haze, clouds and cloud shadows, as indicated by the Landsat ARD quality layer, were removed from the analysis. If no clear-sky data were available for a 16-day interval, we filled the missing reflectance values using linear interpolation.The annualized, 16-day time-series within each 4-year interval were transformed into a set of multitemporal metrics that provide consistent land-surface phenology inputs for global cropland mapping. Metrics include selected ranks, inter-rank averages and amplitudes of surface reflectance and vegetation index values, and surface reflectance averages for selected land-surface phenology stages defined by vegetation indices (that is, surface reflectance for the maximum and minimum greenness periods). The multitemporal metrics methodology is provided in detail19,38. The Landsat metrics were augmented with elevation data39. In this way, we created spatially consistent inputs for each of the 4-year intervals. The complete list of input metrics is presented in Supplementary Table 1.Global cropland mappingGlobal cropland mapping included three stages that enabled extrapolation of visually delineated cropland training data to a temporally consistent, global cropland map time-series using machine learning. At all three stages, we employed bagged decision tree ensembles40 as a supervised classification algorithm that used class presence and absence data as the dependent variables, and a set of multitemporal metrics as independent variables at a Landsat ARD pixel scale. The bagged decision tree results in a per-pixel cropland probability layer, which has a threshold of 0.5 to obtain a cropland map.The first stage consisted of performing individual cropland classifications for a set of 924 Landsat ARD 1° × 1° tiles for the 2016–2019 interval (Supplementary Fig. 1). The tiles were chosen to represent diverse global agriculture landscapes. Classification training data (cropland class presence and absence) were manually selected through visual interpretation of Landsat metric composites and high-resolution data from Google Earth. An individual supervised classification model (bagged decision trees) was calibrated and applied to each tile.At the second stage, we used the 924 tiles that had been classified as cropland/other land and the 2016–2019 metric set to train a series of regional cropland mapping models. The classification was iterated by adding training tiles and assessing the results until the resulting map was satisfactory. We then applied the regional models to each of the preceding 4-year intervals, thus creating a preliminary time-series of global cropland maps.At the third stage, we used the preliminary global cropland maps as training data to generate temporally consistent global cropland data. As the regional models applied at the second stage were calibrated using 2016–2019 data alone, classification errors may arise due to Landsat data inconsistencies before 2016. The goal of this third stage was to create a robust spatiotemporally consistent set of locally calibrated cropland detection models. For each 1° × 1° Landsat ARD tile (13,451 tiles total), we collected training data for each 4-year interval from the preliminary cropland extent maps within a 3° radius of the target tile, with preference to select stable cropland and non-cropland pixels as training. Training data from all intervals were used to calibrate a single decision tree ensemble for each ARD tile. The per-tile models were then applied to each time interval, and the results were post-processed to remove single cropland class detections and omissions within time-series and eliminate cropland patches More

  • in

    Fire effects on the persistence of soil organic matter and long-term carbon storage

    1.Paustian, K. et al. Climate-smart soils. Nature 532, 49–57 (2016).
    Google Scholar 
    2.Jackson, R. B. et al. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol. Evol. Syst. 48, 419–445 (2017).
    Google Scholar 
    3.Lal, R. Global potential of soil carbon sequestration to mitigate the greenhouse effect. CRC Crit. Rev. Plant Sci. 22, 151–184 (2003).
    Google Scholar 
    4.Scurlock, J. M. O. & Hall, D. O. The global carbon sink: a grassland perspective. Glob. Chang. Biol. 4, 229–233 (1998).
    Google Scholar 
    5.Pellegrini, A. F. A. et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553, 194–198 (2018).
    Google Scholar 
    6.Grace, J. et al. Productivity and carbon fluxes of tropical savannas. J. Biogeogr. 33, 387–400 (2006).
    Google Scholar 
    7.Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).
    Google Scholar 
    8.Jones, M. W., Santín, C., van der Werf, G. R. & Doerr, S. H. Global fire emissions buffered by the production of pyrogenic carbon. Nat. Geosci. 12, 742–747 (2019).
    Google Scholar 
    9.Bodí, M. B. et al. Wildland fire ash: production, composition and eco-hydro-geomorphic effects. Earth Sci. Rev. 130, 103–127 (2014).
    Google Scholar 
    10.Certini, G., Nocentini, C., Knicker, H., Arfaioli, P. & Rumpel, C. Wildfire effects on soil organic matter quantity and quality in two fire-prone Mediterranean pine forests. Geoderma 167–168, 148–155 (2011).
    Google Scholar 
    11.Jiménez-Morillo, N. T. et al. Fire effects in the molecular structure of soil organic matter fractions under Quercus suber cover. Catena 145, 266–273 (2016).
    Google Scholar 
    12.Certini, G. Effects of fire on properties of forest soils: a review. Oecologia 143, 1–10 (2005).
    Google Scholar 
    13.Lehmann, J. et al. Australian climate–carbon cycle feedback reduced by soil black carbon. Nat. Geosci. 1, 832–835 (2008).
    Google Scholar 
    14.Santin, C. et al. Towards a global assessment of pyrogenic carbon from vegetation fires. Glob. Chang. Biol. 22, 76–91 (2016).
    Google Scholar 
    15.Czimczik, C. I. & Masiello, C. A. Controls on black carbon storage in soils. Global Biogeochem. Cycles https://doi.org/10.1029/2006GB002798 (2007).16.Bird, M. I., Wynn, J. G., Saiz, G., Wurster, C. M. & McBeath, A. The pyrogenic carbon cycle. Annu. Rev. Earth Planet. Sci. 43, 273–298 (2015).
    Google Scholar 
    17.Randerson, J. T., Chen, Y., van der Werf, G. R., Rogers, B. M. & Morton, D. C. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2012JG002128 (2012).18.Archibald, S., Lehmann, C. E. R., Gómez-Dans, J. L. & Bradstock, R. A. Defining pyromes and global syndromes of fire regimes. Proc. Natl Acad. Sci. USA 110, 6442–6447 (2013).
    Google Scholar 
    19.Bond, W. J., Woodward, F. I. & Midgley, G. F. The global distribution of ecosystems in a world without fire. New Phytol. 165, 525–538 (2005).
    Google Scholar 
    20.Chuvieco, E. et al. Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens. Environ. 225, 45–64 (2019).
    Google Scholar 
    21.Bowman, D. M. J. S. et al. Fire in the Earth system. Science 324, 481–484 (2009).
    Google Scholar 
    22.Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).
    Google Scholar 
    23.Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).
    Google Scholar 
    24.Nave, L. E., Vance, E. D., Swanston, C. W. & Curtis, P. S. Fire effects on temperate forest soil C and N storage. Ecol. Appl. 21, 1189–1201 (2011).
    Google Scholar 
    25.McKee, W. H. Changes in Soil Fertility Following Prescribed Burning on Coastal Plain Pine Sites Research Paper-RE-234 (US Department of Agriculture, 1982).26.Fynn, R. W. S., Haynes, R. J. & O’Connor, T. G. Burning causes long-term changes in soil organic matter content of a South African grassland. Soil Biol. Biochem. 35, 677–687 (2003).
    Google Scholar 
    27.Roscoe, R., Buurman, P., Velthorst, E. J. & Pereira, J. A. A. Effects of fire on soil organic matter in a “cerrado sensu-stricto” from southeast Brazil as revealed by changes in δ13C. Geoderma 95, 141–160 (2000).
    Google Scholar 
    28.Phillips, D. H., Foss, J. E., Buckner, E. R., Evans, R. M. & FitzPatrick, E. A. Response of surface horizons in an oak forest to prescribed burning. Soil Sci. Soc. Am. J. 64, 754–760 (2000).
    Google Scholar 
    29.Walker, X. J. et al. Fuel availability not fire weather controls boreal wildfire severity and carbon emissions. Nat. Clim. Chang. 10, 1130–1136 (2020).
    Google Scholar 
    30.Hartford, R. & Frandsen, W. When it’s hot, it’s hot… or maybe it’s not! (Surface flaming may not portend extensive soil heating). Int. J. Wildland Fire 2, 139–144 (1992).
    Google Scholar 
    31.Pellegrini, A. F. A. et al. Frequent burning causes large losses of carbon from deep soil layers in a temperate savanna. J. Ecol. 108, 1426–1441 (2020).
    Google Scholar 
    32.Wardle, D. A., Hörnberg, G., Zackrisson, O., Kalela-Brundin, M. & Coomes, D. A. Long-term effects of wildfire on ecosystem properties across an island area gradient. Science 300, 972–975 (2003).
    Google Scholar 
    33.Mack, M. C. et al. Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees. Science 372, 280–283 (2021).
    Google Scholar 
    34.Pellegrini, A. F. A., Hoffmann, W. A. & Franco, A. C. Carbon accumulation and nitrogen pool recovery during transitions from savanna to forest in central Brazil. Ecology 95, 342–352 (2014).
    Google Scholar 
    35.Johnson, D. W. & Curtis, P. S. Effects of forest management on soil C and N storage: meta analysis. For. Ecol. Manage. 140, 227–238 (2001).
    Google Scholar 
    36.González-Pérez, J. A., González-Vila, F. J., Almendros, G. & Knicker, H. The effect of fire on soil organic matter—a review. Environ. Int. 30, 855–870 (2004).
    Google Scholar 
    37.Scharenbroch, B. C., Nix, B., Jacobs, K. A. & Bowles, M. L. Two decades of low-severity prescribed fire increases soil nutrient availability in a Midwestern, USA oak (Quercus) forest. Geoderma 183–184, 80–91 (2012).
    Google Scholar 
    38.Boyer, W. D. & Miller, J. H. Effect of burning and brush treatments on nutrient and soil physical properties in young longleaf pine stands. For. Ecol. Manage. 70, 311–318 (1994).
    Google Scholar 
    39.Martin, A., Mariotti, A., balesdent, J., Lavelle, P. & Vuattoux, R. Estimate of organic matter turnover rate in a savanna soil by 13C natural abundance measurements. Soil Biol. Biochem. 22, 517–523 (1990).
    Google Scholar 
    40.McKee, W. H. & Lewis, C. E. Influence of burning and grazing on soil nutrient properties and tree growth on a Georgia coastal plain site after 40 years. In Proc. Second Biennial Southern Silvicultural Research Station Conference (Ed. Jones, E. P. J.) 79–86 (US Department of Agriculture, 1983).41.Neill, C., Patterson, W. A. & Crary, D. W. Responses of soil carbon, nitrogen and cations to the frequency and seasonality of prescribed burning in a Cape Cod oak-pine forest. For. Ecol. Manage. 250, 234–243 (2007).
    Google Scholar 
    42.Russell-Smith, J., Whitehead, P. J., Cook, G. D. & Hoare, J. L. Response of Eucalyptus-dominated savanna to frequent fires: lessons from Munmarlary, 1973–1996. Ecol. Monogr. 73, 349–375 (2003).
    Google Scholar 
    43.Guinto, D. F., Xu, Z. H., House, A. P. N. & Saffigna, P. G. Soil chemical properties and forest floor nutrients under repeated prescribed-burning in eucalypt forests of south-east Queensland, Australia. N. Z. J. For. Sci. 31, 170–187 (2001).
    Google Scholar 
    44.Köster, K., Berninger, F., Lindén, A., Köster, E. & Pumpanen, J. Recovery in fungal biomass is related to decrease in soil organic matter turnover time in a boreal fire chronosequence. Geoderma 235–236, 74–82 (2014).
    Google Scholar 
    45.O’Donnell, J. A. et al. The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska: implications for post-thaw carbon loss. Glob. Chang. Biol. 17, 1461–1474 (2011).
    Google Scholar 
    46.Butnor, J. R. et al. Vertical distribution and persistence of soil organic carbon in fire-adapted longleaf pine forests. For. Ecol. Manage. 390, 15–26 (2017).
    Google Scholar 
    47.Sollins, P., Homann, P. & Caldwell, B. A. Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 74, 65–105 (1996).
    Google Scholar 
    48.Six, J., Conant, R. T., Paul, E. A. & Paustian, K. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241, 155–176 (2002).
    Google Scholar 
    49.Shi, Z. et al. The age distribution of global soil carbon inferred from radiocarbon measurements. Nat. Geosci. 13, 555–559 (2020).
    Google Scholar 
    50.Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).
    Google Scholar 
    51.Lutzow, M. V. et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review. Eur. J. Soil Sci. 57, 426–445 (2006).
    Google Scholar 
    52.Keiluweit, M., Wanzek, T., Kleber, M., Nico, P. & Fendorf, S. Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nat. Commun. 8, 1771 (2017).
    Google Scholar 
    53.Six, J., Bossuyt, H., Degryze, S. & Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 79, 7–31 (2004).
    Google Scholar 
    54.Mataix-Solera, J., Cerdà, A., Arcenegui, V., Jordán, A. & Zavala, L. M. Fire effects on soil aggregation: a review. Earth Sci. Rev. 109, 44–60 (2011).
    Google Scholar 
    55.Chen, H. Y. H. & Shrestha, B. M. Stand age, fire and clearcutting affect soil organic carbon and aggregation of mineral soils in boreal forests. Soil Biol. Biochem. 50, 149–157 (2012).
    Google Scholar 
    56.Arocena, J. M. & Opio, C. Prescribed fire-induced changes in properties of sub-boreal forest soils. Geoderma 113, 1–16 (2003).
    Google Scholar 
    57.Jian, M., Berhe, A. A., Berli, M. & Ghezzehei, T. A. Vulnerability of physically protected soil organic carbon to loss under low severity fires. Front. Environ. Sci. 6, 66 (2018).
    Google Scholar 
    58.Debano, L. F. The role of fire and soil heating on water repellency in wildland environments: a review. J. Hydrol. 231, 195–206 (2000).
    Google Scholar 
    59.Hallett, P. D. et al. Disentangling the impact of AM fungi versus roots on soil structure and water transport. Plant Soil 314, 183–196 (2009).
    Google Scholar 
    60.Bardgett, R. D., Mommer, L. & De Vries, F. T. Going underground: root traits as drivers of ecosystem processes. Trends Ecol. Evol. 29, 692–699 (2014).
    Google Scholar 
    61.Hartnett, D. C., Potgieter, A. F. & Wilson, G. W. T. Fire effects on mycorrhizal symbiosis and root system architecture in southern African savanna grasses. Afr. J. Ecol. 42, 328–337 (2004).
    Google Scholar 
    62.Eom, A.-H., Hartnett, D. C., Wilson, G. W. T. & Figge, D. A. H. The effect of fire, mowing and fertilizer amendment on arbuscular mycorrhizas in tallgrass prairie. Am. Midl. Nat. 142, 55–70 (1999).
    Google Scholar 
    63.Sankey, J. B. et al. Climate, wildfire, and erosion ensemble foretells more sediment in western USA watersheds. Geophys. Res. Lett. 44, 8884–8892 (2017).
    Google Scholar 
    64.Van Oost, K. et al. Legacy of human-induced C erosion and burial on soil-atmosphere C exchange. Proc. Natl Acad. Sci. USA 109, 19492–19497 (2012).
    Google Scholar 
    65.Kleber, M. et al. Mineral-organic associations: formation, properties, and relevance in soil environments. Advances in Agronomy 130, 1–140 (2015).
    Google Scholar 
    66.Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M. & Hendricks, D. M. Mineral control of soil organic carbon storage and turnover. Nature 389, 170–173 (1997).
    Google Scholar 
    67.Baldock, J. A. & Skjemstad, J. O. Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org. Geochem. 31, 697–710 (2000).
    Google Scholar 
    68.Kaiser, K. & Guggenberger, G. Mineral surfaces and soil organic matter. Eur. J. Soil Sci. 54, 219–236 (2003).
    Google Scholar 
    69.Knicker, H. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 85, 91–118 (2007).
    Google Scholar 
    70.Ketterings, Q. M., Bigham, J. M. & Laperche, V. Changes in soil mineralogy and texture caused by slash-and-burn fires in Sumatra, Indonesia. Soil Sci. Soc. Am. J. 64, 1108–1117 (2000).
    Google Scholar 
    71.Ulery, A. L., Graham, R. C. & Bowen, L. H. Forest fire effects on soil phyllosilicates in California. Soil Sci. Soc. Am. J. 60, 309–315 (1996).
    Google Scholar 
    72.Fernández, I., Cabaneiro, A. & Carballas, T. Organic matter changes immediately after a wildfire in an atlantic forest soil and comparison with laboratory soil heating. Soil Biol. Biochem. 29, 1–11 (1997).
    Google Scholar 
    73.Heckman, K., Campbell, J., Powers, H., Law, B. & Swanston, C. The influence of fire on the radiocarbon signature and character of soil organic matter in the Siskiyou national forest, Oregon, USA. Fire Ecol. 9, 40–56 (2013).
    Google Scholar 
    74.Knicker, H., González-Vila, F. J. & González-Vázquez, R. Biodegradability of organic matter in fire-affected mineral soils of Southern Spain. Soil Biol. Biochem. 56, 31–39 (2013).
    Google Scholar 
    75.Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob. Chang. Biol. 19, 988–995 (2013).
    Google Scholar 
    76.Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter: fourteen years on. Soil Biol. Biochem. 105, A3–A8 (2017).
    Google Scholar 
    77.Neff, J., Harden, J. & Gleixner, G. Fire effects on soil organic matter content, composition, and nutrients in boreal interior Alaska. Can. J. For. 35, 2178–2187 (2005).
    Google Scholar 
    78.Harden, J. W. et al. Chemistry of burning the forest floor during the FROSTFIRE experimental burn, interior Alaska, 1999. Glob. Biogeochem. Cycles https://doi.org/10.1029/2003GB002194 (2004).79.DeLuca, T. H. & Aplet, G. H. Charcoal and carbon storage in forest soils of the Rocky Mountain West. Front. Ecol. Environ. 6, 18–24 (2008).
    Google Scholar 
    80.Preston, C. M. & Schmidt, M. W. I. Black (pyrogenic) carbon in boreal forests: a synthesis of current knowledge and uncertainties. Biogeosci. Discuss. 3, 211–271 (2006).
    Google Scholar 
    81.Krishnaraj, S. J., Baker, T. G., Polglase, P. J., Volkova, L. & Weston, C. J. Prescribed fire increases pyrogenic carbon in litter and surface soil in lowland Eucalyptus forests of south-eastern Australia. For. Ecol. Manage. 366, 98–105 (2016).
    Google Scholar 
    82.Singh, N., Abiven, S., Torn, M. S. & Schmidt, M. W. I. Fire-derived organic carbon in soil turns over on a centennial scale. Biogeosciences 9, 2847–2857 (2012).
    Google Scholar 
    83.Knicker, H., Almendros, G., González-Vila, F. J., Martin, F. & Lüdemann, H. D. 13C- and 15N-NMR spectroscopic examination of the transformation of organic nitrogen in plant biomass during thermal treatment. Soil Biol. Biochem. 28, 1053–1060 (1996).
    Google Scholar 
    84.Waldrop, M. P. & Harden, J. W. Interactive effects of wildfire and permafrost on microbial communities and soil processes in an Alaskan black spruce forest. Glob. Chang. Biol. 14, 2591–2602 (2008).
    Google Scholar 
    85.Pellegrini, A. F. A. et al. Repeated fire shifts carbon and nitrogen cycling by changing plant inputs and soil decomposition across ecosystems. Ecol. Monogr. 90, e01409 (2020).
    Google Scholar 
    86.Wang, Q., Zhong, M. & Wang, S. A meta-analysis on the response of microbial biomass, dissolved organic matter, respiration, and N mineralization in mineral soil to fire in forest ecosystems. For. Ecol. Manage. 271, 91–97 (2012).
    Google Scholar 
    87.Dooley, S. R. & Treseder, K. K. The effect of fire on microbial biomass: a meta-analysis of field studies. Biogeochemistry 109, 49–61 (2012).
    Google Scholar 
    88.Beringer, J. et al. Fire impacts on surface heat, moisture and carbon fluxes from a tropical savanna in northern Australia. Int. J. Wildland Fire 12, 333–340 (2003).
    Google Scholar 
    89.Dove, N. C. & Hart, S. C. Fire reduces fungal species richness and in situ mycorrhizal colonization: a meta-analysis. Fire Ecol. 13, 37–65 (2017).
    Google Scholar 
    90.Pressler, Y., Moore, J. C. & Cotrufo, M. F. Belowground community responses to fire: meta-analysis reveals contrasting responses of soil microorganisms and mesofauna. Oikos 128, 309–327 (2019).
    Google Scholar 
    91.Holden, S. R., Gutierrez, A. & Treseder, K. K. Changes in soil fungal communities, extracellular enzyme activities, and litter decomposition across a fire chronosequence in Alaskan boreal forests. Ecosystems 16, 34–46 (2013).
    Google Scholar 
    92.Gongalsky, K. B. et al. Forest fire induces short-term shifts in soil food webs with consequences for carbon cycling. Ecol. Lett. 24, 438–450 (2021).
    Google Scholar 
    93.Wardle, D. A., Nilsson, M.-C. & Zackrisson, O. Fire-derived charcoal causes loss of forest humus. Science 320, 629 (2008).
    Google Scholar 
    94.Whitman, T. et al. Soil bacterial and fungal response to wildfires in the Canadian boreal forest across a burn severity gradient. Soil Biol. Biochem. 138, 107571 (2019).
    Google Scholar 
    95.Harden, J. W. et al. The role of fire in the boreal carbon budget. Glob. Chang. Biol. 6, 174–184 (2000).
    Google Scholar 
    96.Smith, H. G., Sheridan, G. J., Lane, P. N. J., Nyman, P. & Haydon, S. Wildfire effects on water quality in forest catchments: a review with implications for water supply. J. Hydrol. 396, 170–192 (2011).
    Google Scholar 
    97.Clemmensen, K. E. et al. Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol. 205, 1525–1536 (2015).
    Google Scholar 
    98.Pellegrini, A. F. A. et al. Low-intensity frequent fires in coniferous forests transform soil organic matter in ways that may offset ecosystem carbon losses. Glob. Chang. Biol. 27, 3810–3823 (2021).
    Google Scholar 
    99.Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).
    Google Scholar 
    100.Bossio, D. A. et al. The role of soil carbon in natural climate solutions. Nat. Sustain. 3, 391–398 (2020).
    Google Scholar 
    101.Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, 6497 (2020).
    Google Scholar 
    102.Walker, R. B., Coop, J. D., Parks, S. A. & Trader, L. Fire regimes approaching historic norms reduce wildfire-facilitated conversion from forest to non-forest. Ecosphere 9, e02182 (2018).
    Google Scholar 
    103.Wieder, W. R., Boehnert, J., Bonan, G. B. & Langseth, M. Regridded Harmonized World Soil Database v1.2 (Oak Ridge National Laboratory, 2014); https://doi.org/10.3334/ORNLDAAC/1247104.Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).
    Google Scholar 
    105.Oliveras, I. et al. Effects of fire regimes on herbaceous biomass and nutrient dynamics in the Brazilian savanna. Int. J. Wildland Fire 22, 368–380 (2013).
    Google Scholar 
    106.Newland, J. A. & DeLuca, T. H. Influence of fire on native nitrogen-fixing plants and soil nitrogen status in ponderosa pine – Douglas-fir forests in western Montana. Can. J. For. Res. 30, 274–282 (2000).
    Google Scholar 
    107.Bormann, B. T., Homann, P. S., Darbyshire, R. L. & Morrissette, B. A. Intense forest wildfire sharply reduces mineral soil C and N: the first direct evidence. Can. J. For. Res. 38, 2771–2783 (2008).
    Google Scholar 
    108.Reich, P. B., Peterson, D. W., Wedin, D. A. & Wrage, K. Fire and vegetation effects on productivity and nitrogen cycling across a forest-grassland continuum. Ecology 82, 1703–1719 (2001).
    Google Scholar 
    109.O’Neill, K. P., Richter, D. D. & Kasischke, E. S. Succession-driven changes in soil respiration following fire in black spruce stands of interior Alaska. Biogeochemistry 80, 1–20 (2006).
    Google Scholar 
    110.Köster, E. et al. Changes in fluxes of carbon dioxide and methane caused by fire in Siberian boreal forest with continuous permafrost. J. Environ. Manage. 228, 405–415 (2018).
    Google Scholar 
    111.Zhao, H., Tong, D. Q., Lin, Q., Lu, X. & Wang, G. Effect of fires on soil organic carbon pool and mineralization in a Northeastern China wetland. Geoderma 189–190, 532–539 (2012).
    Google Scholar 
    112.Kuzyakov, Y., Friedel, J. & Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 32, 1485–1498 (2000).
    Google Scholar 
    113.Wang, J., Xiong, Z. & Kuzyakov, Y. Biochar stability in soil: meta‐analysis of decomposition and priming effects. Glob. Change Biol. Bioenergy 8, 512–523 (2016).
    Google Scholar 
    114.Pellegrini, A. F. A. et al. Decadal changes in fire frequencies shift tree communities and functional traits. Nat. Ecol. Evol. 5, 504–512 (2021).
    Google Scholar 
    115.Peterson, D. W., Reich, P. B., Wrage, K. J. & Franklin, J. Plant functional group responses to fire frequency and tree canopy cover gradients in oak savannas and woodlands. J. Veg. Sci. 18, 3–12 (2007).
    Google Scholar 
    116.Reisser, M., Purves, R. S., Schmidt, M. W. I. & Abiven, S. Pyrogenic carbon in soils: A literature-based inventory and a global estimation of its content in soil organic carbon and stocks. Front. Earth Sci. 4, 80 (2016).
    Google Scholar 
    117.Loades, K. W., Bengough, A. G., Bransby, M. F. & Hallett, P. D. Planting density influence on fibrous root reinforcement of soils. Ecol. Eng. 36, 276–284 (2010).
    Google Scholar 
    118.Balshi, M. S. et al. The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: a process-based analysis. J. Geophys. Res. 112, G02029 (2007).
    Google Scholar 
    119.Aaltonen, H. et al. Forest fires in Canadian permafrost region: the combined effects of fire and permafrost dynamics on soil organic matter quality. Biogeochemistry 143, 257–274 (2019).
    Google Scholar 
    120.Treseder, K. K., Mack, M. C. & Cross, A. Relationships among fires, fungi, and soil dynamics in Alaskan boreal forests. Ecol. Appl. 14, 1826–1838 (2004).
    Google Scholar 
    121.Kelly, J. et al. Boreal forest soil carbon fluxes one year after a wildfire: effects of burn severity and management. Glob. Chang. Biol. 27, 4181–4195 (2021).
    Google Scholar 
    122.Aaltonen, H. et al. Temperature sensitivity of soil organic matter decomposition after forest fire in Canadian permafrost region. J. Environ. Manage. 241, 637–644 (2019).
    Google Scholar  More