Manganese distribution in the Mn-hyperaccumulator Grevillea meisneri from New Caledonia
1.Baker, A. & Brooks, R. Terrestrial higher plants which hyperaccumulate metallic elements, a review of their distribution, ecology and phytochemistry. Biorecovery 1, 81–126 (1989).CAS
Google Scholar
2.Reeves, R. D. et al. A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol. 218, 407–411 (2018).PubMed
Google Scholar
3.Reeves, R. D., Baker, A. J. M., Borhidi, A. & Berazaín, R. Nickel-accumulating plants from the ancient serpentine soils of Cuba. New Phytol. 133, 217–224 (1996).CAS
PubMed
Google Scholar
4.Reeves, R., Baker, A., Borhidi, A. & Berazaín Iturralde, R. Nickel hyperaccumulation in the serpentine flora of Cuba. Ann. Bot. 83, 29–38 (1999).CAS
Google Scholar
5.Whiting, S. N. et al. Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restor. Ecol. 12, 106–116 (2004).
Google Scholar
6.Jaffré, T., Pillon, Y., Thomine, S. & Merlot, S. The metal hyperaccumulators from New Caledonia can broaden our understanding of nickel accumulation in plants. Front. Plant Sci. 4, 279 (2013).PubMed
PubMed Central
Google Scholar
7.Losfeld, G. et al. Leaf-age and soil–plant relationships: Key factors for reporting trace-elements hyperaccumulation by plants and design applications. Environ. Sci. Pollut. Res. Int. 22, 5620–5632 (2015).CAS
PubMed
Google Scholar
8.Gei, V. et al. Tools for the discovery of hyperaccumulator plant species and understanding their ecophysiology. In Agromining: Farming for metals: Extracting unconventional resources using plants (eds Van der Ent, A. et al.) 117–133 (Springer International Publishing, 2018). https://doi.org/10.1007/978-3-319-61899-9_7.Chapter
Google Scholar
9.Gei, V. et al. A systematic assessment of the occurrence of trace element hyperaccumulation in the flora of New Caledonia. Bot. J. Linn. Soc. 194, 1–22 (2020).
Google Scholar
10.Grison, C., Escande, V. & Biton, J. Ecocatalysis: A New Integrated Approach to Scientific Ecology (Elsevier, 2015).
Google Scholar
11.Grison, C. Special issue in environmental science and pollution research: Combining phytoextraction and ecocatalysis: an environmental, ecological, ethic and economic opportunity. Environ. Sci. Pollut. Res. 22, 5589–5698 (2015).
Google Scholar
12.Grison, C., Escande, V. & Olszewski, T. K. Ecocatalysis: A new approach toward bioeconomy, chapter 25. In Bioremediation and Bioeconomy (ed. Prasad, M. N. V.) 629–663 (Elsevier, 2016). https://doi.org/10.1016/B978-0-12-802830-8.00025-3.Chapter
Google Scholar
13.Deyris, P.-A. & Grison, C. Nature, ecology and chemistry: An unusual combination for a new green catalysis, ecocatalysis. Curr. Opin. Green Sustain. Chem. 10, 6–10 (2018).
Google Scholar
14.Grison, C. & LockToyKi, Y. Ecocatalysis, a new vision of green and sustainable chemistry. Curr. Opin. Green Sustain. Chem. 29, 100461 (2021).
Google Scholar
15.Chaney, R. L., Angle, J. S., Li, Y.-M. & Baker, A. J. M. Recuperation de metaux presents dans des sols (2000).16.Chaney, R. L. et al. Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J. Environ. Qual. 36, 1429–1443 (2007).CAS
PubMed
Google Scholar
17.Li, Y.-M. et al. Development of a technology for commercial phytoextraction of nickel: Economic and technical considerations. Plant Soil 249, 107–115 (2003).CAS
Google Scholar
18.Strawn, K. Unearthing the habitat of a hyperaccumulator: Case study of the invasive plant yellowtuft (Alyssum; Brassicaceae) in Southwest Oregon, USA. Manag. Biol. Invasions 4, 249–259 (2013).
Google Scholar
19.Grison, C. et al. Psychotria douarrei and Geissois pruinosa, novel resources for the plant-based catalytic chemistry. RSC Adv. 3, 22340–22345 (2013).ADS
CAS
Google Scholar
20.Lange, B. et al. Copper and cobalt mobility in soil and accumulation in a metallophyte as influenced by experimental manipulation of soil chemical factors. Chemosphere 146, 75–84 (2016).ADS
CAS
PubMed
Google Scholar
21.Grison, C. M. et al. The leguminous species Anthyllis vulneraria as a Zn-hyperaccumulator and eco-Zn catalyst resources. Environ. Sci. Pollut. Res. 22, 5667–5676 (2015).CAS
Google Scholar
22.Escande, V. et al. Ecological catalysis and phytoextraction: Symbiosis for future. Appl. Catal. B 146, 279–288 (2014).CAS
Google Scholar
23.Liu, C. et al. Element case studies: Rare earth elements. In Agromining: Farming for Metals (Springer, 2018). https://doi.org/10.1007/978-3-319-61899-9_1924.Lahl, U. & Hawxwell, K. A. REACH—The new European chemicals law. Environ. Sci. Technol. 40, 7115–7121 (2006).ADS
CAS
PubMed
Google Scholar
25.Sarrailh, J.-M. La revégétalisation des exploitations minières: l’exemple de la Nouvelle-Calédonie. Bois For. Trop. (2002).26.Losfeld, G. et al. Phytoextraction from mine spoils: Insights from New Caledonia. Environ. Sci. Pollut. Res. 22, 5608–5619 (2015).CAS
Google Scholar
27.Garel, C. et al. Structure and composition of first biosourced Mn-rich catalysts with a unique vegetal footprint. Mater. Today Sustain. https://doi.org/10.1016/j.mtsust.2019.100020 (2019).Article
Google Scholar
28.Jaffré, T. Accumulation du manganèse par les Protéacées de Nouvelle Calédonie. Compt. Rend. Acad. Sci. (Paris) Sér. D 289, 425–428 (1979).
Google Scholar
29.Jaffré, T. Plantes de Nouvelle Calédonie permettant de revégétaliser des sites miniers (SLN, 1992).
Google Scholar
30.Jaffré, T. Accumulation du manganèse par des espèces associées aux terrains ultrabasiques de Nouvelle Calédonie. Compt. Rend. Acad. Sci. Paris Sér. D 284, 1573–1575 (1977).
Google Scholar
31.Luçon, S., Marion, F., Niel, J. F. & Pelletier, B. Réhabilitation des sites miniers sur roches ultramafiques en Nouvelle-Calédonie. In Ecologie des milieux sur roches ultramafiques et sur sols métallifères: actes de la deuxième conférence internationale sur l’écologie des milieux serpentiniques Vol. III (eds Jaffré, T. et al.) 297–303 (ORSTOM, 1997).
Google Scholar
32.Reeves, R. D. Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil 249, 57–65 (2003).CAS
Google Scholar
33.L’Huillier, L. et al. La restauration des sites miniers. In Mines et environnement en Nouvelle Calédonie: les milieux sur substrats ultramafiques et leur restauration (eds L’Huillier, L. et al.) 147–230 (IAC, 2010).
Google Scholar
34.Udo, H., Barrault, J. & Gâteblé, G. Multiplication et valorisation horticole de plantes indigènes à la Nouvelle-Calédonie: Compte-rendu des essais 2011 (2011).35.Jaffré, T. Etude écologique du peuplement végétal des sols dérivés de roches ultrabasiques en Nouvelle Calédonie (ORSTOM, 1980).
Google Scholar
36.Baker, A., Mcgrath, S., Reeves, R. & Smith, J. A. C. Metal hyperaccumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. Phytoremediat. Contamin. Soil Water. https://doi.org/10.1201/9780367803148-5 (2000).Article
Google Scholar
37.Bihanic, C., Richards, K., Olszewski, T. K. & Grison, C. Eco-Mn ecocatalysts: Toolbox for sustainable and green Lewis acid catalysis and oxidation reactions. ChemCatChem 12, 1529–1545 (2020).CAS
Google Scholar
38.Pillon, Y., Munzinger, J., Amir, H. & Lebrun, M. Ultramafic soils and species sorting in the flora of New Caledonia. J. Ecol. 98, 1108–1116 (2010).
Google Scholar
39.Bidwell, S. D., Woodrow, I. E., Batianoff, G. N. & Sommer-Knudsen, J. Hyperaccumulation of manganese in the rainforest tree Austromyrtus bidwillii (Myrtaceae) from Queensland, Australia. Funct. Plant Biol. 29, 899–905 (2002).CAS
PubMed
Google Scholar
40.Fernando, D. R. et al. Foliar Mn accumulation in eastern Australian herbarium specimens: Prospecting for ‘new’ Mn hyperaccumulators and potential applications in taxonomy. Ann. Bot. 103, 931–939 (2009).CAS
PubMed
PubMed Central
Google Scholar
41.Mizuno, T. et al. Age-dependent manganese hyperaccumulation in Chengiopanax sciadophylloides (Araliaceae). J. Plant Nutr. 31, 1811–1819 (2008).CAS
Google Scholar
42.Xue, S. G. et al. Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Environ. Pollut. 131, 393–399 (2004).CAS
PubMed
Google Scholar
43.Yang, S. X., Deng, H. & Li, M. S. Manganese uptake and accumulation in a woody hyperaccumulator, Schima superba. Plant Soil Environ. 54, 441–446 (2008).CAS
Google Scholar
44.Proctor, J., Phillipps, C., Duff, G. K., Heaney, A. & Robertson, F. M. Ecological studies on Gunung Silam, a small ultrabasic Mountain in Sabah, Malaysia. II. Some Forest Processes. J. Ecol. 77, 317–331 (1989).CAS
Google Scholar
45.Graham, R. D., Hannam, R. J. & Uren, N. C. Manganese in Soils and Plants. https://doi.org/10.1007/978-94-009-2817-6 (Springer Netherlands, 1988).46.Loneragan, J. F. Distribution and movement of manganese in plants. In Manganese in Soils and Plants (eds Graham, R. D. et al.) 113–124 (Springer Netherlands, 1988). https://doi.org/10.1007/978-94-009-2817-6_9.Chapter
Google Scholar
47.Taiz, L. & Zeiger, E. Plant Physiology 3rd edn. (Sinauer Associates Inc., 2002).
Google Scholar
48.Burnell, J. N. The biochemistry of manganese in plants. In Manganese in Soils and Plants (eds Graham, R. D. et al.) 125–137 (Springer Netherlands, 1988). https://doi.org/10.1007/978-94-009-2817-6_10.Chapter
Google Scholar
49.Lidon, F. C., Barreiro, M. G. & Ramalho, J. C. Manganese accumulation in rice: Implications for photosynthetic functioning. J. Plant Physiol. 161, 1235–1244 (2004).CAS
PubMed
Google Scholar
50.Rengel, Z. Availability of Mn, Zn and Fe in the rhizosphere. J. Soil Sci. Plant Nutr. 15, 397–409 (2015).
Google Scholar
51.Schmidt, S. B., Jensen, P. E. & Husted, S. Manganese deficiency in plants: The impact on photosystem II. Trends Plant Sci. 21, 622–632 (2016).CAS
PubMed
Google Scholar
52.Wissemeier, A. H. & Horst, W. J. Simplified methods for screening cowpea cultivars for manganese leaf-tissue tolerance. Crop Sci. 31, 435–439 (1991).CAS
Google Scholar
53.Joardar Mukhopadhyay, M. & Sharma, A. Manganese in cell metabolism of higher plants. Bot. Rev. 57, 117–149 (1991).
Google Scholar
54.Lynch, J. & St. Clair, S. Mineral stress: The missing link in understanding how global climate change will affect plants in real world soils. Field Crops Res. 90, 101–115 (2004).
Google Scholar
55.Alejandro, S., Höller, S., Meier, B. & Peiter, E. Manganese in plants: From acquisition to subcellular allocation. Front. Plant Sci 11, 300 (2020).PubMed
PubMed Central
Google Scholar
56.Shao, J. F., Yamaji, N., Shen, R. F. & Ma, J. F. The key to Mn homeostasis in plants: Regulation of Mn transporters. Trends Plant Sci. 22, 215–224 (2017).CAS
PubMed
Google Scholar
57.Millaleo, R., Reyes-Diaz, M., Ivanov, A. G., Mora, M. L. & Alberdi, M. Manganese as essential and toxic element for plants: Transport, accumulation and resistance mechanisms. J. Soil Sci. Plant Nutr. 10, 470–481 (2010).
Google Scholar
58.Vázquez, M. D. et al. Localization of zinc and cadmium in Thlaspi caerulescens (Brassicaceae), a metallophyte that can hyperaccumulate both metals. J. Plant Physiol. 140, 350–355 (1992).
Google Scholar
59.Krämer, U., Grime, G. W., Smith, J. A. C., Hawes, C. R. & Baker, A. J. M. Micro-PIXE as a technique for studying nickel localization in leaves of the hyperaccumulator plant Alyssum lesbiacum. Nucl. Instrum. Methods Phys. Res. Sect. B 130, 346–350 (1997).ADS
Google Scholar
60.Küpper, H., Lombi, E., Zhao, F.-J. & McGrath, S. P. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212, 75–84 (2000).PubMed
Google Scholar
61.Küpper, H., Lombi, E., Zhao, F.-J., Wieshammer, G. & McGrath, S. P. Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. J. Exp. Bot. 52, 2291–2300 (2001).PubMed
Google Scholar
62.Mesjasz-Przybyłowicz, J., Przybyłowicz, W. & Pineda, C. Nuclear microprobe studies of elemental distribution in apical leaves of the Ni hyperaccumulator Berkheya coddii. S. Afr. J. Sci. 97, 591 (2001).
Google Scholar
63.Robinson, B. H., Lombi, E., Zhao, F. J. & McGrath, S. P. Uptake and distribution of nickel and other metals in the hyperaccumulator Berkheya coddii. New Phytol. 158, 279–285 (2003).CAS
Google Scholar
64.Bidwell, S. D., Crawford, S. A., Woodrow, I. E., Sommer-Knudsen, J. & Marshall, A. T. Sub-cellular localization of Ni in the hyperaccumulator, Hybanthus floribundus (Lindley) F. Muell. Plant Cell Environ. 27, 705–716 (2004).CAS
Google Scholar
65.Memon, A. R., Chino, M., Takeoka, Y., Hara, K. & Yatazawa, M. Distribution of manganese in leaf tissues of manganese accumulator: Acanthopanax sciadophylloides as revealed by Electronprobe X-Ray Microanalyzer. J. Plant Nutr. 2, 457–476 (1980).CAS
Google Scholar
66.Memon, A. R., Chino, M., Hara, K. & Yatazawa, M. Microdistribution of manganese in the leaf tissues of different plant species as revealed by X-ray microanalyzer. Physiol. Plant. 53, 225–232 (1981).CAS
Google Scholar
67.Xu, X. et al. Distribution and mobility of manganese in the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Plant Soil 285, 323–331 (2006).CAS
Google Scholar
68.Fernando, D. R. et al. Novel pattern of foliar metal distribution in a manganese hyperaccumulator. Funct. Plant Biol. 35, 193 (2008).CAS
PubMed
Google Scholar
69.Fernando, D. R. et al. Foliar manganese accumulation by Maytenus founieri (Celastraceae) in its native New Caledonian habitats: Populational variation and localization by X-ray microanalysis. New Phytol. 177, 178–185 (2008).CAS
PubMed
Google Scholar
70.Fernando, D. R. et al. Manganese accumulation in the leaf mesophyll of four tree species: A PIXE/EDAX localization study. New Phytol. 171, 751–757 (2006).CAS
PubMed
Google Scholar
71.Fernando, D. R. et al. Variability of Mn hyperaccumulation in the Australian rainforest tree Gossia bidwillii (Myrtaceae). Plant Soil 293, 145–152 (2007).CAS
Google Scholar
72.Fernando, D. R., Marshall, A., Baker, A. J. M. & Mizuno, T. Microbeam methodologies as powerful tools in manganese hyperaccumulation research: present status and future directions. Front. Plant Sci. 4, 319 (2013).73.Fernando, D. R., Woodrow, I. E., Baker, A. J. M. & Marshall, A. T. Plant homeostasis of foliar manganese sinks: Specific variation in hyperaccumulators. Planta 236, 1459–1470 (2012).CAS
PubMed
Google Scholar
74.Fernando, D. R., Marshall, A. T. & Green, P. T. Cellular ion interactions in two endemic tropical rainforest species of a novel metallophytic tree genus. Tree Physiol. 38, 119–128 (2018).CAS
PubMed
Google Scholar
75.Bihanic, C. et al. Eco-CaMnOx: A greener generation of eco-catalysts for eco-friendly oxidation processes. ACS Sustain. Chem. Eng. 8, 4044–4057 (2020).CAS
Google Scholar
76.Park, Y. J. & Doeff, M. M. Synthesis and electrochemical characterization of M2Mn3O8 (M = Ca, Cu) compounds and derivatives. Solid State Ion. 177, 893–900 (2006).CAS
Google Scholar
77.Harper, F. A. et al. Metal coordination in hyperaccumulating plants studied using EXAFS. In Synchrotron Radiation Department Scientific Reports 102 (eds Murphy, B. et al.) (Central Laboratory of Research Councils, 1999).
Google Scholar
78.Rabier, J., Laffont-Schwob, I., Notonier, R., Fogliani, B. & Bouraïma-Madjèbi, S. Anatomical element localization by EDXS in Grevillea exul var. exul under nickel stress. Environ. Pollut. 156, 1156–1163 (2008).CAS
PubMed
Google Scholar
79.Fernando, D. R., Mizuno, T., Woodrow, I. E., Baker, A. J. M. & Collins, R. N. Characterization of foliar manganese (Mn) in Mn (hyper)accumulators using X-ray absorption spectroscopy. New Phytol. 188, 1014–1027 (2010).CAS
PubMed
Google Scholar
80.Fritsch, E. Les sols. In Atlas de la Nouvelle Calédonie (eds Bonvallot, J. et al.) 73–76 (IRD, 2012).
Google Scholar
81.Isnard, S., L’huillier, L., Rigault, F. & Jaffré, T. How did the ultramafic soils shape the flora of the New Caledonian hotspot?. Plant Soil 403, 53–76 (2016).CAS
Google Scholar
82.Jaffré, T. Composition chimique et conditions de l’alimentation minérale des plantes sur roches ultrabasiques (Nouvelle Calédonie). Cah. ORSTOM. Sér. Biol. 11, 53–63 (1976).
Google Scholar
83.Majourau, P. & Pillon, Y. A review of Grevillea (Proteaceae) from New Caledonia with the description of two new species. Phytotaxa 477, 243–252 (2020).
Google Scholar
84.Jaffré, T. & Latham, M. Contribution à l’étude des relations sol-végétation sur un massif de roches ultrabasiques de la côte Ouest de la Nouvelle Calédonie: le Boulinda. Adansonia. Série 2(14), 311–336 (1974).
Google Scholar
85.L’Huillier, L. et al. Mines et environnement en Nouvelle-Caledonie: les milieux sur substrats ultramafiques et leur restauration (IAC, 2010).
Google Scholar
86.Purnell, H. M. Studies of the family Proteaceae. I. Anatomy and morphology of the roots of some Victorian species. Aust. J. Bot. 8, 38–50 (1960).
Google Scholar
87.Lamont, B. B. Structure, ecology and physiology of root clusters—A review. Plant Soil 248, 1–19 (2003).CAS
Google Scholar
88.Shane, M. W. & Lambers, H. Manganese accumulation in leaves of Hakea prostrata (Proteaceae) and the significance of cluster roots for micronutrient uptake as dependent on phosphorus supply. Physiol. Plant. 124, 441–450 (2005).CAS
Google Scholar
89.Dinkelaker, B., Hengeler, C. & Marschner, H. Distribution and function of proteoid roots and other root clusters. Bot. Acta 108, 183–200 (1995).
Google Scholar
90.Castillo-Michel, H. A., Larue, C., Pradas del Real, A. E., Cotte, M. & Sarret, G. Practical review on the use of synchrotron based micro- and nano- X-ray fluorescence mapping and X-ray absorption spectroscopy to investigate the interactions between plants and engineered nanomaterials. Plant Physiol. Biochem. 110, 13–32 (2017).CAS
PubMed
Google Scholar
91.Vantelon, D. et al. The LUCIA beamline at SOLEIL. J. Synchrotron Radiat. 23, 635–640 (2016).CAS
PubMed
Google Scholar
92.Solé, V. A., Papillon, E., Cotte, M., Walter, P. & Susini, J. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim. Acta Part B 62, 63–68 (2007).ADS
Google Scholar
93.Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).CAS
PubMed
Google Scholar
94.Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).CAS
PubMed
Google Scholar
95.Losfeld, G. L’association de la phytoextraction et de l’écocatalyse : un nouveau concept de chimie verte, une opportunité pour la remédiation de sites miniers. (Montpellier 2, 2014).96.van der Ent, A. et al. X-ray fluorescence elemental mapping of roots, stems and leaves of the nickel hyperaccumulators Rinorea cf. bengalensis and Rinorea cf. javanica (Violaceae) from Sabah (Malaysia), Borneo. Plant Soil. https://doi.org/10.1007/s11104-019-04386-2 (2020).Article
Google Scholar
97.Belli, M. et al. X-ray absorption near edge structures (XANES) in simple and complex Mn compounds. Solid State Commun. 35, 355–361 (1980).ADS
CAS
Google Scholar
98.van der Ent, A. et al. X-ray elemental mapping techniques for elucidating the ecophysiology of hyperaccumulator plants. New Phytol. 218, 432–452 (2018).PubMed
Google Scholar
99.Neumann, G. & Martinoia, E. Cluster roots—An underground adaptation for survival in extreme environments. Trends Plant Sci. 7, 162–167 (2002).CAS
PubMed
Google Scholar
100.Memon, A. R. & Yatazawa, M. Nature of manganese complexes in manganese accumulator plant—Acanthopanax sciadophylloides. J. Plant Nutr. 7, 961–974 (1984).CAS
Google Scholar
101.Xu, X., Shi, J., Chen, X., Chen, Y. & Hu, T. Chemical forms of manganese in the leaves of manganese hyperaccumulator Phytolacca acinosa Roxb. (Phytolaccaceae). Plant Soil 318, 197 (2008).
Google Scholar
102.Fernando, D. R., Baker, A. J. M. & Woodrow, I. E. Physiological responses in Macadamia integrifolia on exposure to manganese treatment. Aust. J. Bot. 57, 406 (2009).CAS
Google Scholar
103.Fernando, D. R., Batianoff, G. N., Baker, A. J. & Woodrow, I. E. In vivo localization of manganese in the hyperaccumulator Gossia bidwillii (Benth.) N. Snow & Guymer (Myrtaceae) by cryo-SEM/EDAX. Plant Cell Environ. 29, 1012–1020 (2006).CAS
PubMed
Google Scholar
104.Léon, V. et al. Effects of three nickel salts on germinating seeds of Grevillea exul var. rubiginosa, an endemic serpentine Proteaceae. Ann. Bot. https://doi.org/10.1093/aob/mci066 (2005).Article
PubMed
PubMed Central
Google Scholar
105.Jaffré, T., Latham, M. & Schmid, M. Aspects de l’influence de l’extraction du minerai de nickel sur la végétation et les sols en Nouvelle-Calédonie. Cah. ORSTOM. Sér. Biol. 12, 307–321 (1977).
Google Scholar
106.Boyd, R. S. & Martens, S. The raison d’etre for metal hyperaccumulation by plants (1992).107.Krämer, U., Pickering, I. J., Prince, R. C., Raskin, I. & Salt, D. E. Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol. 122, 1343–1353 (2000).PubMed
PubMed Central
Google Scholar
108.Asemaneh, T., Ghaderian, S. M., Crawford, S. A., Marshall, A. T. & Baker, A. J. M. Cellular and subcellular compartmentation of Ni in the Eurasian serpentine plants Alyssum bracteatum, Alyssum murale (Brassicaceae) and Cleome heratensis (Capparaceae). Planta 225, 193–202 (2006).CAS
PubMed
Google Scholar
109.Küpper, H., Jie Zhao, F. & McGrath, S. P. Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol. 119, 305–312 (1999).PubMed Central
Google Scholar
110.Abubakari, F. et al. Incidence of hyperaccumulation and tissue-level distribution of manganese, cobalt and zinc in the genus Gossia (Myrtaceae). Metallomics https://doi.org/10.1093/mtomcs/mfab008 (2021).Article
PubMed
Google Scholar
111.White, P. J. Long-distance transport in the xylem and phloem, chapter 3. In Marschner’s Mineral Nutrition of Higher Plants 3rd edn (ed. Marschner, P.) 49–70 (Academic Press, 2012). https://doi.org/10.1016/B978-0-12-384905-2.00003-0.Chapter
Google Scholar
112.Marschner, H. Marschner’s Mineral Nutrition of Higher Plants (Academic Press, 2012). https://doi.org/10.1016/C2009-0-63043-9.Book
Google Scholar
113.Fernando, D. R. et al. Does foliage metal accumulation influence plant-insect interactions? A field study of two sympatric tree metallophytes. Funct. Plant Biol. 45, 945–956 (2018).CAS
PubMed
Google Scholar
114.Pearson, R. G. Hard and soft acids and bases, HSAB, part 1: Fundamental principles. J. Chem. Educ. 45, 581 (1968).CAS
Google Scholar
115.Alejandro, S., Höller, S., Meier, B. & Peiter, E. Manganese in plants: From acquisition to subcellular allocation. Front. Plant Sci. 11, 300 (2020).PubMed
PubMed Central
Google Scholar
116.Hirschi, K. D., Korenkov, V. D., Wilganowski, N. L. & Wagner, G. J. Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol. 124, 125–134 (2000).CAS
PubMed
PubMed Central
Google Scholar
117.Wu, Z. et al. An endoplasmic reticulum-bound Ca(2+)/Mn(2+) pump, ECA1, supports plant growth and confers tolerance to Mn(2+) stress. Plant Physiol. 130, 128–137 (2002).CAS
PubMed
PubMed Central
Google Scholar
118.Pittman, J. K. Managing the manganese: Molecular mechanisms of manganese transport and homeostasis. New Phytol. 167, 733–742 (2005).CAS
PubMed
Google Scholar
119.Mills, R. F. et al. ECA3, a Golgi-localized P2A-type ATPase, plays a crucial role in manganese nutrition in Arabidopsis. Plant Physiol. 146, 116–128 (2008).ADS
CAS
PubMed
PubMed Central
Google Scholar
120.Mizuno, T., Emori, K. & Ito, S. Manganese hyperaccumulation from non-contaminated soil in Chengiopanax sciadophylloides Franch. et Sav. and its correlation with calcium accumulation. Soil Sci. Plant Nutr. 59, 591–602 (2013).CAS
Google Scholar
121.Tordoff, G. M., Baker, A. J. M. & Willis, A. J. Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 41, 219–228 (2000).ADS
CAS
PubMed
Google Scholar
122.Grossnickle, S. & Ivetic, V. Direct seeding in reforestation—A field performance review. REFORESTA https://doi.org/10.21750/REFOR.4.07.46 (2017).Article
Google Scholar
123.Bermúdez-Contreras, A. I., Ede, F., Waymouth, V., Miller, R. & Aponte, C. Revegetation technique changes root mycorrhizal colonisation and root fungal communities: The advantage of direct seeding over transplanting tube-stock in riparian ecosystems. Plant Ecol. https://doi.org/10.1007/s11258-020-01031-2 (2020).Article
Google Scholar More