More stories

  • in

    Community similarity and species overlap between habitats provide insight into the deep reef refuge hypothesis

    1.Wilson, E. O. Introduction. in Biodiversity II: understanding and protecting our biological resources (eds. Reaka-Kudla, M. L., Wilson, D. E. & Wilson, E. O.) 1–3 (Joseph Henry Press, 1997).2.Lovejoy, T. E. Biodiversity: what is it? in Biodiversity II: Understanding and protecting our biological resources (eds. Reaka-Kudla, M. L., Wilson, D. E. & Wilson, E. O.) 7–14 (Joseph Henry Press, 1997).3.Ehrlich, P. R. & Wilson, E. O. Biodiversity studies: Science and policy. Science 253, 758–762 (1991).ADS 
    CAS 
    Article 

    Google Scholar 
    4.Myers, R. A. & Ottensmeyers, C. A. Extinction risk in marine species. in Marine Conservation Biology: The Science of Maintaining the Sea’s Biodiversity (eds. Norse, E. A. & Crowder, L. B.) 58–79 (Island Press, 2005).5.Reaka-Kudla, M. L. The global biodiversity of coral reefs: a comparison with rain forests. in Biodiversity II: understanding and protecting our biological resources (eds. Reaka-Kudla, M. L., Wilson, D. E. & Wilson, E. O.) 83–108 (Joseph Henry Press, 1997).6.Briggs, J. C. Marine extinctions and conservation. Mar. Biol. 158, 485–488 (2011).Article 

    Google Scholar 
    7.Harley, C. D. G. et al. The impacts of climate change in coastal marine systems: Climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).ADS 
    Article 

    Google Scholar 
    8.Dupont, S., Dorey, N. & Thorndyke, M. What meta-analysis can tell us about vulnerability of marine biodiversity to ocean acidification?. Estuar. Coast. Shelf Sci. 89, 182–185 (2010).ADS 
    Article 

    Google Scholar 
    9.Stork, N. E. Measuring global biodiversity and its decline. in Biodiversity II: understanding and protecting our biological resources (eds. Reaka-Kudla, M. L., Wilson, D. E. & Wilson, E. O.) 41–68 (Joseph Henry Press, 1997).10.Richards, Z. T. & Day, J. C. Biodiversity of the Great Barrier Reef—How adequately is it protected? PeerJ 6, e4747 (2018).11.Pyle, R. L. & Copus, J. M. Mesophotic Coral Ecosystems: introduction and overview. in Mesophotic Coral Ecosystems (eds. Loya, Y., Puglise, K. A. & Bridge, T. C. L.) vol. 12 3–27 (Springer International Publishing, 2019).12.Hinderstein, L. M. et al. Theme section on ‘Mesophotic coral ecosystems: Characterization, ecology, and management’. Coral Reefs 29, 247–251 (2010).ADS 
    Article 

    Google Scholar 
    13.Bongaerts, P., Ridgway, T., Sampayo, E. M. & Hoegh-Guldberg, O. Assessing the ‘deep reef refugia’ hypothesis: Focus on Caribbean reefs. Coral Reefs 29, 309–327 (2010).Article 

    Google Scholar 
    14.Bongaerts, P. & Smith, T. B. Beyond the “Deep Reef Refuge” hypothesis: a conceptual framework to characterize persistence at depth. in Mesophotic Coral Ecosystems (eds. Loya, Y., Puglise, K. A. & Bridge, T. C. L.) vol. 12, 881–895 (Springer International Publishing, 2019).15.Vermeij, G. J. Survival during biotic crises: the properties and evolutionary significance of refuges. Dyn. Extinct. 231–246 (1986).16.Glynn, P. W. Coral reef bleaching: Facts, hypotheses and implications. Glob. Change Biol. 2, 495–509 (1996).ADS 
    Article 

    Google Scholar 
    17.Riegl, B. & Piller, W. E. Possible refugia for reefs in times of environmental stress. Int. J. Earth Sci. 92, 520–531 (2003).Article 

    Google Scholar 
    18.Halfar, J., Godinez-Orta, L., Riegl, B., Valdez-Holguin, J. E. & Borges, J. M. Living on the edge: high-latitude Porites carbonate production under temperate eutrophic conditions. Coral Reefs 24, 582–592 (2005).ADS 
    Article 

    Google Scholar 
    19.Loya, Y., Eyal, G., Treibitz, T., Lesser, M. P. & Appeldoorn, R. Theme section on mesophotic coral ecosystems: Advances in knowledge and future perspectives. Coral Reefs 35, 1–9 (2016).ADS 
    Article 

    Google Scholar 
    20.Laverick, J. H. et al. To what extent do mesophotic coral ecosystems and shallow reefs share species of conservation interest? A systematic review. Environ. Evid. 7, 15 (2018).Article 

    Google Scholar 
    21.Smith, T. B., Glynn, P. W., Maté, J. L., Toth, L. T. & Gyory, J. A depth refugium from catastrophic coral bleaching prevents regional extinction. Ecology 95, 1663–1673 (2014).Article 

    Google Scholar 
    22.Smith, T. B. et al. Caribbean mesophotic coral ecosystems are unlikely climate change refugia. Glob. Change Biol. 22, 2756–2765 (2016).ADS 
    Article 

    Google Scholar 
    23.Holstein, D. M., Smith, T. B., Gyory, J. & Paris, C. B. Fertile fathoms: Deep reproductive refugia for threatened shallow corals. Sci. Rep. 5 (2015).24.Holstein, D. M., Paris, C. B., Vaz, A. C. & Smith, T. B. Modeling vertical coral connectivity and mesophotic refugia. Coral Reefs 35, 23–37 (2016).ADS 
    Article 

    Google Scholar 
    25.Holstein, D. M., Smith, T. B. & Paris, C. B. Depth-independent reproduction in the reef coral Porites astreoides from shallow to mesophotic zones. PLoS ONE 11, e0146068 (2016).26.Assis, J. et al. Deep reefs are climatic refugia for genetic diversity of marine forests. J. Biogeogr. 43, 833–844 (2016).Article 

    Google Scholar 
    27.Bongaerts, P. et al. Deep reefs are not universal refuges: Reseeding potential varies among coral species. Sci. Adv. 3, e1602373 (2017).28.Muir, P. R., Marshall, P. A., Abdulla, A. & Aguirre, J. D. Species identity and depth predict bleaching severity in reef-building corals: Shall the deep inherit the reef?. Proc. R. Soc. B. 284, 20171551 (2017).Article 

    Google Scholar 
    29.Semmler, R. F., Hoot, W. C. & Reaka, M. L. Are mesophotic coral ecosystems distinct communities and can they serve as refugia for shallow reefs?. Coral Reefs 36, 433–444 (2017).ADS 
    Article 

    Google Scholar 
    30.Kavousi, J. & Keppel, G. Clarifying the concept of climate change refugia for coral reefs. ICES J. Mar. Sci. 75, 43–49 (2018).Article 

    Google Scholar 
    31.Morais, J. & Santos, B. A. Limited potential of deep reefs to serve as refuges for tropical Southwestern Atlantic corals. Ecosphere 9, e02281 (2018).32.Pereira, P. H. C., Macedo, C. H., Nunes, J. de A. C. C., Marangoni, L. F. de B. & Bianchini, A. Effects of depth on reef fish communities: Insights of a “deep refuge hypothesis” from Southwestern Atlantic reefs. PLoS ONE 13, e0203072 (2018).33.Rocha, L. A. et al. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science 361, 281–284 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Slattery, M. et al. The Pulley Ridge deep reef is not a stable refugia through time. Coral Reefs 37, 391–396 (2018).ADS 
    Article 

    Google Scholar 
    35.Kavousi, J. Biological interactions: The overlooked aspects of marine climate change refugia. Glob. Change Biol. 25, 3571–3573 (2019).ADS 
    Article 

    Google Scholar 
    36.Baselga, A. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness: Species replacement and nestedness. Glob. Ecol. Biogeogr. 21, 1223–1232 (2012).Article 

    Google Scholar 
    37.Fisher, R. et al. Species richness on coral reefs and the pursuit of convergent global estimates. Curr. Biol. 25, 500–505 (2015).CAS 
    Article 

    Google Scholar 
    38.Montgomery, A. D., Fenner, D. & Toonen, R. J. Annotated checklist for stony corals of American Sāmoa with reference to mesophotic depth records. ZK 849, 1–170 (2019).39.Colwell, R. K. et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 5, 3–21 (2012).Article 

    Google Scholar 
    40.Rooney, J. et al. Mesophotic coral ecosystems in the Hawaiian Archipelago. Coral Reefs 29, 361–367 (2010).ADS 
    Article 

    Google Scholar 
    41.Bridge, T. C. L. et al. Diversity of Scleractinia and Octocorallia in the mesophotic zone of the Great Barrier Reef, Australia. Coral Reefs 31, 179–189 (2012).ADS 
    Article 

    Google Scholar 
    42.Pyle, R. L. et al. A comprehensive investigation of mesophotic coral ecosystems in the Hawaiian Archipelago. PeerJ 4, e2475 (2016).43.Muir, P. R. & Pichon, M. Biodiversity of reef-building, Scleractinian corals. in Mesophotic Coral Ecosystems (eds. Loya, Y., Puglise, K. A. & Bridge, T. C. L.) vol. 12, 589–620 (Springer International Publishing, 2019).44.Spalding, H. L. et al. The Hawaiian Archipelago. in Mesophotic Coral Ecosystems (eds. Loya, Y., Puglise, K. A. & Bridge, T. C. L.) vol. 12, 445–464 (Springer International Publishing, 2019).45.Turak, E. & DeVantier, L. Reef-building corals of the upper mesophotic zone of the Central Indo-West Pacific. in Mesophotic Coral Ecosystems (eds. Loya, Y., Puglise, K. A. & Bridge, T. C. L.) vol. 12, 621–651 (Springer International Publishing, 2019).46.Vermeij, G. J. & Grosberg, R. K. Rarity and persistence. Ecol. Lett. 21, 3–8 (2018).Article 

    Google Scholar 
    47.Kammer, T. W., Baumiller, T. K. & Ausich, W. I. Evolutionary significance of differential species longevity in Osagean-Meramecian (Mississippian) crinoid clades. Paleobiology 24, 155–176 (1998).
    Google Scholar 
    48.Jones, G. P., Julian, C. M. & Munday, P. L. Rarity in coral reef fish communities. in Coral reef fishes: dynamics and diversity in a complex ecosystem (ed. Sale, P. F.) 81–102 (Academic Press, 2006).49.Yang, Q., Liu, G., Casazza, M., Gonella, F. & Yang, Z. Three dimensions of biodiversity: New perspectives and methods. Ecol. Indic. 130, 108099 (2021).50.Richards, Z. T. Rarity in the coral genus Acropora: Implications for biodiversity conservation. (James Cook University, 2009).51.Soares, M. de O. Marginal reef paradox: A possible refuge from environmental changes? Ocean Coast. Manag. 185, 105063 (2020).52.Soares, M. de O. et al. Why do mesophotic coral ecosystems have to be protected? Sci. Total Environ. 726, 138456 (2020).53.White, K. N. et al. Typhoon damage on a shallow mesophotic reef in Okinawa, Japan. PeerJ 1, e151 (2013).54.Smith, T. B., Holstein, D. M. & Ennis, R. S. Disturbance in mesophotic coral ecosystems and linkages to conservation and management. in Mesophotic Coral Ecosystems (eds. Loya, Y., Puglise, K. A. & Bridge, T. C. L.) vol. 12, 911–929 (Springer International Publishing, 2019).55.Pinheiro, H. T., Eyal, G., Shepherd, B. & Rocha, L. A. Ecological insights from environmental disturbances in mesophotic coral ecosystems. Ecosphere 10, e02666 (2019).56.Veron, J. E. N. Corals of the world. (Australian Institute of Marine Science, 2000).57.Luzon, K. S., Lin, M.-F., Ablan Lagman, Ma. C. A., Licuanan, W. R. Y. & Chen, C. A. Resurrecting a subgenus to genus: molecular phylogeny of Euphyllia and Fimbriaphyllia (order Scleractinia; Family Euphyllidae; clade V). PeerJ 5, e4074 (2017).58.Eyal, G. et al. Euphyllia paradivisa, a successful mesophotic coral in the northern Gulf of Eilat/Aqaba, Red Sea. Coral Reefs 35, 91–102 (2016).ADS 
    Article 

    Google Scholar 
    59.Eyal, G., Tamir, R., Kramer, N., Eyal-Shaham, L. & Loya, Y. The Red Sea: Israel. in Mesophotic Coral Ecosystems (eds. Loya, Y., Puglise, K. A. & Bridge, T. C. L.) vol. 12, 199–214 (Springer International Publishing, 2019).60.Tamir, R., Eyal, G., Kramer, N., Laverick, J. H. & Loya, Y. Light environment drives the shallow‐to‐mesophotic coral community transition. Ecosphere 10 (2019).61.Fujii, T., Kitano, Y. F. & Tachikawa, H. New distributional records of three species of Euphylliidae (Cnidaria, Anthozoa, Hexacorallia, Scleractinia) from the Ryukyu Islands, Japan. Spec. Div. 25, 275–282 (2020).Article 

    Google Scholar 
    62.Longenecker, K., Roberts, T. E. & Colin, P. L. Papua New Guinea. in Mesophotic Coral Ecosystems (eds. Loya, Y., Puglise, K. A. & Bridge, T. C. L.) vol. 12 321–336 (Springer International Publishing, 2019).63.NOAA, [National Oceanic and Atmospheric Administration]. Endangered and threatened species; Critical habitat for the threatened Indo-Pacific corals. 85 FR 76262 (50 CFR Part 223 and 226) 76262–76299 (2020).64.Maragos, J. E., Hunter, C. L. & Meier, K. Z. Reefs and corals observed during the 1991–92 American Samoa coastal resources inventory. 50 (1994).65.Coles, S. et al. Introduced marine species in Pago Pago Harbor, Fagatele Bay and the National Park Coast, American Samoa. 182 (2003).66.Montgomery, A. D. et al. American Samoa. in Mesophotic Coral Ecosystems (eds. Loya, Y., Puglise, K. A. & Bridge, T. C. L.) vol. 12 387–407 (Springer International Publishing, 2019).67.Wallace, C. C. Staghorn corals of the world: A revision of the coral genus Acropora (Scleractinia; Astrocoeniina; Acroporidae) worldwide, with emphasis on morphology, phylogeny and biogeography. (Csiro Publishing, 1999).68.Hoeksema, B. W. Taxonomy, phylogeny and biogeography of mushroom corals (Scleractinina: Fungiidae). Zoologische Verhandelingen 254, 1–295 (1989).
    Google Scholar 
    69.World Register of Marine Species: WoRMS. Available online: http://www.marinespecies.org/. Accessed on 9/9/2020 (2020). https://doi.org/10.14284/170.70.Hsieh, T. C., Ma, K. H. & Chao, A. Interpolation and extrapolation for species diversity. (2020).71.Chao, A. et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).Article 

    Google Scholar 
    72.Baselga, A. et al. Partitioning beta diversity into turnover and nestedness components ver. 1.5.2. (2020).73.Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for Primer: Guide to software and statistical methods. 218 (2008).74.Clarke, K. R. & Gorley, R. N. Getting started with PRIMER 7. 18 http://updates.primer-e.com/primer7/manuals/Getting_started_with_PRIMER_7.pdf (2015).75.Gaston, K. What is rarity? in Rarity 1–21 (Chapman & Hall, 1994). More

  • in

    Genetic determinants of endophytism in the Arabidopsis root mycobiome

    1.Hou, S. et al. A microbiota–root–shoot circuit favours Arabidopsis growth over defence under suboptimal light. Nat. Plants 7, 1078–1092 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Durán, P. et al. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175, 973–983.e14 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    3.van der Heijden, M. G., Bruin, S., de, Luckerhoff, L., van Logtestijn, R. S. & Schlaeppi, K. A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment. ISME J. 10, 389–399 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    4.Carrión, V. J. et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 366, 606–612 (2019).ADS 
    PubMed 

    Google Scholar 
    5.Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E. E. & van der Heijden, M. G. A. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat. Commun. 10, 1–10 (2019).CAS 

    Google Scholar 
    6.Martin, F. M., Uroz, S. & Barker, D. G. Ancestral alliances: Plant mutualistic symbioses with fungi and bacteria. Science 356 (2017).7.Nagy, L. G. et al. in The Fungal Kingdom 35–56 (ASM Press, 2017). https://doi.org/10.1128/9781555819583.ch2.8.Brundrett, M. C. & Tedersoo, L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. N. Phytol. 220, 1108–1115 (2018).
    Google Scholar 
    9.Delavaux, C. S. et al. Mycorrhizal fungi influence global plant biogeography. Nat. Ecol. Evol. 3, 424–429 (2019).PubMed 

    Google Scholar 
    10.Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 1–10 (2019).CAS 

    Google Scholar 
    11.Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    12.Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant–microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18, 607–621 (2020).CAS 
    PubMed 

    Google Scholar 
    13.Lugtenberg, B. J. J., Caradus, J. R. & Johnson, L. J. Fungal endophytes for sustainable crop production. FEMS Microbiol. Ecol. 92, fiw194 (2016).PubMed 

    Google Scholar 
    14.Glynou, K. et al. The local environment determines the assembly of root endophytic fungi at a continental scale. Environ. Microbiol. 18, 2418–2434 (2016).CAS 
    PubMed 

    Google Scholar 
    15.Glynou, K., Nam, B., Thines, M. & Maciá-Vicente, J. G. Facultative root-colonizing fungi dominate endophytic assemblages in roots of nonmycorrhizal Microthlaspi species. N. Phytol. 217, 1190–1202 (2018).
    Google Scholar 
    16.U’Ren, J. M. et al. Host availability drives distributions of fungal endophytes in the imperilled boreal realm. Nat. Ecol. Evol. 3, 1430–1437 (2019).PubMed 

    Google Scholar 
    17.Maciá-Vicente, J. G., Piepenbring, M. & Koukol, O. Brassicaceous roots as an unexpected diversity hot-spot of helotialean endophytes. IMA Fungus 11, 1–23 (2020).
    Google Scholar 
    18.Thiergart, T. et al. Root microbiota assembly and adaptive differentiation among European Arabidopsis populations. Nat. Ecol. Evol. 4, 122–131 (2020).PubMed 

    Google Scholar 
    19.Oita, S. et al. Climate and seasonality drive the richness and composition of tropical fungal endophytes at a landscape scale. Commun. Biol. 4, 1–11 (2021).
    Google Scholar 
    20.Vannier, N., Bittebiere, A. K., Mony, C. & Vandenkoornhuyse, P. Root endophytic fungi impact host plant biomass and respond to plant composition at varying spatio-temporal scales. Fungal Ecol. 44, 100907 (2020).
    Google Scholar 
    21.Jumpponen, A., Herrera, J., Porras-Alfaro, A. & Rudgers, J. Biogeography of root-associated fungal endophytes. Biogeography of Mycorrhizal Symbiosis 195–222. https://doi.org/10.1007/978-3-319-56363-3_10 (2017).22.Bokati, D., Herrera, J. & Poudel, R. Soil influences colonization of root-associated fungal endophyte communities of maize, wheat, and their progenitors. J. Mycol. 2016, 1–9 (2016).
    Google Scholar 
    23.Card, S. D. et al. Beneficial endophytic microorganisms of Brassica – A review. Biol. Control 90, 102–112 (2015).
    Google Scholar 
    24.Junker, C., Draeger, S. & Schulz, B. A fine line – endophytes or pathogens in Arabidopsis thaliana. Fungal Ecol. 5, 657–662 (2012).
    Google Scholar 
    25.Fesel, P. H. & Zuccaro, A. Dissecting endophytic lifestyle along the parasitism/mutualism continuum in Arabidopsis. Curr. Opin. Microbiol. 32, 103–112 (2016).PubMed 

    Google Scholar 
    26.Kia, S. H. et al. Influence of phylogenetic conservatism and trait convergence on the interactions between fungal root endophytes and plants. ISME J. 11, 777–790 (2017).PubMed 

    Google Scholar 
    27.Lahrmann, U. et al. Mutualistic root endophytism is not associated with the reduction of saprotrophic traits and requires a noncompromised plant innate immunity. N. Phytol. 207, 841–857 (2015).CAS 

    Google Scholar 
    28.Hacquard, S. et al. Survival trade-offs in plant roots during colonization by closely related beneficial and pathogenic fungi. Nat. Commun. 7, 1–13 (2016).
    Google Scholar 
    29.Hiruma, K. et al. Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell 165, 464–474 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Almario, J. et al. Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition. Proc. Natl Acad. Sci. USA 114, E9403–E9412 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Kohler, A. et al. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat. Genet. 47, 410–415 (2015).CAS 
    PubMed 

    Google Scholar 
    32.Miyauchi, S. et al. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat. Commun. 11, 1–17 (2020).
    Google Scholar 
    33.Spatafora, J. W., Sung, G. H. J. M. S., Hywel-Jones, N. L. & White, J. F. Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Mol. Ecol. 16, 1701–1711 (2007).CAS 
    PubMed 

    Google Scholar 
    34.Xu, X. H. et al. The rice endophyte Harpophora oryzae genome reveals evolution from a pathogen to a mutualistic endophyte. Sci. Rep. 4, 1–9 (2014).CAS 

    Google Scholar 
    35.Weiß, M., Waller, F., Zuccaro, A. & Selosse, M. Sebacinales – one thousand and one interactions with land plants. N. Phytol. 211, 20–40 (2016).
    Google Scholar 
    36.Knapp, D. G. et al. Comparative genomics provides insights into the lifestyle and reveals functional heterogeneity of dark septate endophytic fungi. Sci. Rep. 8, 6321 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Hettiarachchige, I. K. et al. Global changes in asexual Epichloë transcriptomes during the early stages, from seed to seedling, of symbiotum establishment. Microorg 9, 991 (2021).
    Google Scholar 
    38.Větrovský, T. et al. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci. Data 7, 1–14 (2020).
    Google Scholar 
    39.Agler, M. T. et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 14, e1002352 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    40.Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).
    Google Scholar 
    41.Selosse, M.-A., Schneider-Maunoury, L. & Martos, F. Time to re-think fungal ecology? Fungal ecological niches are often prejudged. N. Phytol. 217, 968–972 (2018).
    Google Scholar 
    42.Zuccaro, A. et al. Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathog. 7, e1002290 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.David, A. S. et al. Draft genome sequence of Microdochium bolleyi, a dark septate fungal endophyte of beach grass. Genome Announc. 4, e00270-16 (2016).44.Walker, A. K. et al. Full genome of Phialocephala scopiformis DAOMC 229536, a fungal endophyte of spruce producing the potent anti-insectan compound rugulosin. Genome Announc. 4, e01768-15 (2016).45.Wu, W. et al. Characterization of four endophytic fungi as potential consolidated bioprocessing hosts for conversion of lignocellulose into advanced biofuels. Appl. Microbiol. Biotechnol. 101.6, 2603–2618 (2017).
    Google Scholar 
    46.Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 1–14 (2019).
    Google Scholar 
    47.Csűös, M. Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics 26, 1910–1912 (2010).
    Google Scholar 
    48.Shah, F. et al. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. N. Phytol. 209, 1705–1719 (2016).CAS 

    Google Scholar 
    49.Pellegrin, C., Morin, E., Martin, F. M. & Veneault-Fourrey, C. Comparative analysis of secretomes from ectomycorrhizal fungi with an emphasis on small-secreted proteins. Front. Microbiol. 6, 1278 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    50.Tung Ho, L. S. & Ané, C. A linear-time algorithm for gaussian and non-gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).
    Google Scholar 
    51.Klopfenstein, D. V. et al. GOATOOLS: A Python library for Gene Ontology analyses. Sci. Rep. 8, 1–17 (2018).CAS 

    Google Scholar 
    52.Szklarczyk, D. et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Schulz, B. & Boyle, C. The endophytic continuum. Mycol. Res. 109, 661–686 (2005).PubMed 

    Google Scholar 
    54.Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    56.Curran, D. M., Gilleard, J. S. & Wasmuth, J. D. MIPhy: identify and quantify rapidly evolving members of large gene fam. PeerJ 2018, e4873 (2018).
    Google Scholar 
    57.Atanasova, L. et al. Evolution and functional characterization of pectate lyase PEL12, a member of a highly expanded Clonostachys rosea polysaccharide lyase 1 family. BMC Microbiol. 18, 1–19 (2018).
    Google Scholar 
    58.Keim, J., Mishra, B., Sharma, R., Ploch, S. & Thines, M. Root-associated fungi of Arabidopsis thaliana and Microthlaspi perfoliatum. Fungal Divers 66, 99–111 (2014).
    Google Scholar 
    59.Vannier, N., Agler, M. & Hacquard, S. Microbiota-mediated disease resistance in plants. PLoS Pathog. 15, e1007740 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Hassani, M. A., Durán, P. & Hacquard, S. Microbial interactions within the plant holobiont. Microbiome 6, 1–17 (2018).
    Google Scholar 
    61.Getzke, F., Thiergart, T. & Hacquard, S. Contribution of bacterial-fungal balance to plant and animal health. Curr. Opin. Microbiol. 49, 66–72 (2019).CAS 
    PubMed 

    Google Scholar 
    62.Wolinska, K. W. et al. Tryptophan metabolism and bacterial commensals prevent fungal dysbiosis in Arabidopsis roots. Proc. Natl Acad Sci USA. 118, e2111521118 (2021).PubMed 

    Google Scholar 
    63.Lofgren, L. A. et al. Genome-based estimates of fungal rDNA copy number variation across phylogenetic scales and ecological lifestyles. Mol. Ecol. 28, 721–730 (2019).PubMed 

    Google Scholar 
    64.Karasov, T. L. et al. Arabidopsis thaliana and Pseudomonas pathogens exhibit stable associations over evolutionary timescales. Cell Host Microbe 24, 168–179.e4 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Karasov, T. L. et al. The relationship between microbial population size and disease in the Arabidopsis thaliana phyllosphere. Preprint at https://doi.org/10.1101/828814 (2020).66.Benen, J. A. E., Kester, H. C. M., Pařenicová, L. & Visser, J. Characterization of Aspergillus niger pectate lyase A. Biochemistry 39, 15563–15569 (2000).CAS 
    PubMed 

    Google Scholar 
    67.Bauer, S., Vasu, P., Persson, S., Mort, A. J. & Somerville, C. R. Development and application of a suite of polysaccharide-degrading enzymes for analyzing plant cell walls. Proc. Natl Acad. Sci. USA 103, 11417–11422 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Bacic, A. Breaking an impasse in pectin biosynthesis. Proc. Natl Acad. Sci. USA 103, 5639–5640 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Vogel, J. Unique aspects of the grass cell wall. Curr. Opin. Plant Biol. 11, 301–307 (2008).CAS 
    PubMed 

    Google Scholar 
    70.Bacete, L. et al. Arabidopsis response reGUlator 6 (ARR6) modulates plant cell-wall composition and disease resistance. Mol. Plant-Microbe Interact. 33, 767–780 (2020).CAS 
    PubMed 

    Google Scholar 
    71.Molina, A. et al. Arabidopsis cell wall composition determines disease resistance specificity and fitness. Proc. Natl Acad. Sci. USA 118, 2021 (2021).
    Google Scholar 
    72.Sun, Z.-B. et al. Biology and applications of Clonostachys rosea. J. Appl. Microbiol. 129, 486–495 (2020).PubMed 

    Google Scholar 
    73.Broberg, M. et al. Comparative genomics highlights the importance of drug efflux transporters during evolution of mycoparasitism in Clonostachys subgenus Bionectria (Fungi, Ascomycota, Hypocreales). Evol. Appl. 14, 476–497 (2021).CAS 
    PubMed 

    Google Scholar 
    74.Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Chin, C. S. et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13, 1050–1054 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Grabherr, M. G. et al. Trinity: Reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 29, 644 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Grigoriev, I. V. et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 42, D699–D704 (2014).CAS 
    PubMed 

    Google Scholar 
    78.Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).CAS 
    PubMed 

    Google Scholar 
    79.Solovyev, V., Kosarev, P., Seledsov, I. & Vorobyev, D. Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol. 7, S10 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    80.Cohen, O., Ashkenazy, H., Belinky, F., Huchon, D. & Pupko, T. GLOOME: gain-loss mapping engine. Bioinformatics 26, 2914–2915 (2010).CAS 
    PubMed 

    Google Scholar 
    81.Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Machine Learning Res. http://scikit-learn.sourceforge.net. (2011).82.Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness. In Methods in Molecular Biology vol. 1962, 227–245 (Humana Press Inc., 2019).83.Morin, E. et al. Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina. N. Phytol. 222, 1584–1598 (2019).CAS 

    Google Scholar 
    84.Cantarel, B. I. et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37, 233–238 (2009).
    Google Scholar 
    85.Rawlings, N. D., Barrett, A. J. & Finn, R. Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 44, D343–D350 (2016).CAS 
    PubMed 

    Google Scholar 
    86.Fischer, M. & Pleiss, J. The Lipase Engineering Database: a navigation and analysis tool for protein families. Nucleic Acids Res. 31, 319–321 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.Cock, P. J. A. et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    88.Deorowicz, S., Debudaj-Grabysz, A. & Gudys, A. FAMSA: Fast and accurate multiple sequence alignment of huge protein families. Sci. Rep. 6, 1–13 (2016).
    Google Scholar 
    89.Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).90.Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    91.Morris, J. H. et al. ClusterMaker: a multi-algorithm clustering plugin for Cytoscape. BMC Bioinforma. 12, 436 (2011).CAS 

    Google Scholar 
    92.Gruber, B. D., Giehl, R. F. H., Friedel, S. & von Wirén, N. Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol. 163, 161–179 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    93.Hedges, L. V. Distribution Theory for Glass’s estimator of effect size and related estimators. J. Educ. Stat. 6, 107–128 (1981).
    Google Scholar 
    94.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    95.Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).CAS 

    Google Scholar 
    96.Zhu, A., Ibrahim, J. G. & Love, M. I. Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics 35, 2084–2092 (2019).CAS 
    PubMed 

    Google Scholar 
    97.Mesny, F. Genomic determinants of endophytism in the Arabidopsis root mycobiome. GitHub https://doi.org/10.5281/zenodo.5642698 (2021). More

  • in

    Protozoa populations are ecosystem engineers that shape prokaryotic community structure and function of the rumen microbial ecosystem

    1.Pernthaler J. Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol. 2005;3:537–46.CAS 
    PubMed 

    Google Scholar 
    2.Gast RJ, Sanders RW, Caron DA. Ecological strategies of protists and their symbiotic relationships with prokaryotic microbes. Trends Microbiol. 2009;17:563–9.CAS 
    PubMed 

    Google Scholar 
    3.Wein T, Romero Picazo D, Blow F, Woehle C, Jami E, Reusch TBH, et al. Currency, exchange, and inheritance in the evolution of symbiosis. Trends Microbiol. 2019;27:836–49.CAS 
    PubMed 

    Google Scholar 
    4.Ushida K, Newbold CJ, Jouany J-P. Interspecies hydrogen transfer between the rumen ciliate Polyplastron multivesiculatum and Methanosarcina barkeri. J Gen Appl Microbiol. 1997;43:129–31.CAS 
    PubMed 

    Google Scholar 
    5.D’Souza G, Shitut S, Preussger D, Yousif G, Waschina S, Kost C. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat Prod Rep. 2018;35:455–88.PubMed 

    Google Scholar 
    6.Graf JS, Schorn S, Kitzinger K, Ahmerkamp S, Woehle C, Huettel B, et al. Anaerobic endosymbiont generates energy for ciliate host by denitrification. Nature. 2021;591:445–50.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Bell T, Bonsall MB, Buckling A, Whiteley AS, Goodall T, Griffiths RI. Protists have divergent effects on bacterial diversity along a productivity gradient. Biol Lett. 2010;6:639–42.PubMed 
    PubMed Central 

    Google Scholar 
    8.Johnke J, Baron M, de Leeuw M, Kushmaro A, Jurkevitch E, Harms H, et al. A generalist protist predator enables coexistence in multitrophic predator-prey systems containing a phage and the bacterial predator bdellovibriot. Front Ecol Evol. 2017;5:536.
    Google Scholar 
    9.Leibold MA. A graphical model of keystone predators in food webs: trophic regulation of abundance, incidence, and diversity patterns in communities. Am Nat. 1996;147:784–812.
    Google Scholar 
    10.Glücksman E, Bell T, Griffiths RI, Bass D. Closely related protist strains have different grazing impacts on natural bacterial communities. Environ Microbiol. 2010;12:3105–13.PubMed 

    Google Scholar 
    11.Espinoza-Vergara G, Hoque MM, McDougald D, Noorian P. The impact of protozoan predation on the pathogenicity of Vibrio cholerae. Front Microbiol. 2020;11:17.PubMed 
    PubMed Central 

    Google Scholar 
    12.Gao Z, Karlsson I, Geisen S, Kowalchuk G, Jousset A. Protists: puppet masters of the rhizosphere microbiome. Trends Plant Sci. 2019;24:165–76.CAS 
    PubMed 

    Google Scholar 
    13.Rosenberg K, Bertaux J, Krome K, Hartmann A, Scheu S, Bonkowski M. Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana. ISME J. 2009;3:675–84.CAS 
    PubMed 

    Google Scholar 
    14.Chudnovskiy A, Mortha A, Kana V, Kennard A, Ramirez JD, Rahman A, et al. Host-protozoan interactions protect from mucosal infections through activation of the inflammasome. Cell. 2016;167:444–.e14.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Nieves-Ramírez ME, Partida-Rodríguez O, Laforest-Lapointe I, Reynolds LA, Brown EM, Valdez-Salazar A, et al. Asymptomatic intestinal colonization with protist blastocystis is strongly associated with distinct microbiome ecological patterns. mSystems. 2018;3:e00007–18.PubMed 
    PubMed Central 

    Google Scholar 
    16.Mizrahi I. Rumen symbioses. In: Eugene Rosenberg, Edward F. DeLong, Stephen Lory, Erko Stackebrandt, Thompson F, editors. The Prokaryotes. Springer Berlin Heidelberg; 2013. p. 533–44.17.Sylvester JT, Karnati SKR, Yu Z, Morrison M, Firkins JL. Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. J Nutr. 2004;134:3378–84.CAS 
    PubMed 

    Google Scholar 
    18.Newbold CJ, de la Fuente G, Belanche A, Ramos-Morales E, McEwan NR. The role of ciliate protozoa in the rumen. Front Microbiol. 2015;6:1313.PubMed 
    PubMed Central 

    Google Scholar 
    19.Firkins JL, Yu Z, Park T, Plank JE. Extending Burk Dehority’s perspectives on the role of ciliate protozoa in the rumen. Front Microbiol. 2020;11:123.PubMed 
    PubMed Central 

    Google Scholar 
    20.Williams AG, Coleman GS. The rumen protozoa. New York, NY: Springer Science & Business Media; 2012.21.Solomon R, Jami E. Rumen protozoa: from background actors to featured role in microbiome research. Environ Microbiol Rep. 2021;13:45–49.PubMed 

    Google Scholar 
    22.Shabat SKB, Sasson G, Doron-Faigenboim A, Durman T, Yaacoby S, Berg Miller ME, et al. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. ISME J. 2016;10:2958.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Lima J, Auffret MD, Stewart RD, Dewhurst RJ, Duthie C-A, Snelling TJ, et al. Identification of rumen microbial genes involved in pathways linked to appetite, growth, and feed conversion efficiency in cattle. Front Genet. 2019;10:701.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Jami E, White BA, Mizrahi I. Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLoS ONE. 2014;9:e85423.PubMed 
    PubMed Central 

    Google Scholar 
    25.Delgado B, Bach A, Guasch I, González C, Elcoso G, Pryce JE, et al. Whole rumen metagenome sequencing allows classifying and predicting feed efficiency and intake levels in cattle. Sci Rep. 2019;9:11.PubMed 
    PubMed Central 

    Google Scholar 
    26.Wallace RJ, Sasson G, Garnsworthy PC, Tapio I, Gregson E, Bani P, et al. A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions. Sci Adv. 2019;5:eaav8391.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Belanche A, de la Fuente G, Pinloche E, Newbold CJ, Balcells J. Effect of diet and absence of protozoa on the rumen microbial community and on the representativeness of bacterial fractions used in the determination of microbial protein synthesis. J Anim Sci. 2012;90:3924–36.CAS 
    PubMed 

    Google Scholar 
    28.Belanche A, de la Fuente G, Moorby JM, Newbold CJ. Bacterial protein degradation by different rumen protozoal groups. J Anim Sci. 2012;90:4495–504.CAS 
    PubMed 

    Google Scholar 
    29.Belanche A, de la Fuente G, Newbold CJ. Effect of progressive inoculation of fauna-free sheep with holotrich protozoa and total-fauna on rumen fermentation, microbial diversity and methane emissions. FEMS Microbiol Ecol. 2015;91:fiu026.PubMed 

    Google Scholar 
    30.Hackmann TJ, Firkins JL. Maximizing efficiency of rumen microbial protein production. Front Microbiol. 2015;6:465.PubMed 
    PubMed Central 

    Google Scholar 
    31.Popova M, Martin C, Rochette Y, Graviou D, Morgavi DP. Methanogenesis kinetics and fermentation patterns in the rumen of sheep with or without protozoa. In: Ruminant physiology: digestion, metabolism and effects of nutrition on reproduction and welfare. Netherlands: Wageningen Academic publishers; 2009. 320.32.Levy B, Jami E. Exploring the prokaryotic community associated within the rumen ciliate protozoa population. Front Microbiol. 2018;9:2526.PubMed 
    PubMed Central 

    Google Scholar 
    33.Borrel G, Brugère J-F, Gribaldo S, Schmitz RA, Moissl-Eichinger C. The host-associated archaeome. Nat Rev Microbiol. 2020;18:622–36.CAS 
    PubMed 

    Google Scholar 
    34.Lloyd D, Williams AG, Amann R, Hayes AJ, Durrant L, Ralphs JR. Intracellular prokaryotes in rumen ciliate protozoa: Detection by confocal laser scanning microscopy after in situ hybridization with fluorescent 16S rRNA probes. Eur J Protistol. 1996;32:523–31.
    Google Scholar 
    35.Jouany JP. Effect of rumen protozoa on nitrogen utilization by ruminants. J Nutr. 1996;126:1335S–46S.CAS 
    PubMed 

    Google Scholar 
    36.Coleman GS, Sandford DC. The engulfment and digestion of mixed rumen bacteria and individual bacterial species by single and mixed species of rumen ciliate protozoa grown in-vivo. J Agric Sci. 1979;92:729–42.
    Google Scholar 
    37.Zachut M, Honig H, Striem S, Zick Y, Boura-Halfon S, Moallem U. Periparturient dairy cows do not exhibit hepatic insulin resistance, yet adipose-specific insulin resistance occurs in cows prone to high weight loss. J Dairy Sci. 2013;96:5656–69.CAS 
    PubMed 

    Google Scholar 
    38.National Research Council. 2001. Nutrient Requirements of Dairy Cattle: Seventh Revised Edition. Washington, DC: The National Academies Press; 2001.39.Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.CAS 
    PubMed 

    Google Scholar 
    40.Stevenson DM, Weimer PJ. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl Microbiol Biotechnol. 2007;75:165–74.CAS 
    PubMed 

    Google Scholar 
    41.NIH HMP Working Group, Peterson J, Garges S, Giovanni M, McInnes P, Wang L, et al. The NIH human microbiome project. Genome Res. 2009;19:2317–23.
    Google Scholar 
    42.Tapio I, Shingfield KJ, McKain N, Bonin A, Fischer D, Bayat AR, et al. Oral samples as non-invasive proxies for assessing the composition of the rumen microbial community. PLoS ONE. 2016;11:e0151220.PubMed 
    PubMed Central 

    Google Scholar 
    43.Wobbrock JO, Findlater L, Gergle D, Higgins JJ. The aligned rank transform for nonparametric factorial analyses using only ANOVA procedures. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York, NY, USA: Association for Computing Machinery; 2011. p. 143–6.44.Elkin LA, Kay M, Higgins JJ, Wobbrock JO. An aligned rank transform procedure for multifactor contrast tests. https://arxiv.org/abs/2102.11824.45.Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 

    Google Scholar 
    48.Hammer Ø, Harper DAT, Ryan PD. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;4:9.
    Google Scholar 
    49.Oksanen J. vegan: community ecology package. R package version 2.5-7. 2011. http://cran.r-project.org/package=vegan.50.van den Boogaart KG, Tolosana-Delgado R. ‘compositions’: a unified R package to analyze compositional data. Comput Geosci. 2008;34:320–38.
    Google Scholar 
    51.Krzywinski M, Altman N, Blainey P. Points of significance: nested designs. For studies with hierarchical noise sources, use a nested analysis of variance approach. Nat Methods. 2014;11:977–8.CAS 
    PubMed 

    Google Scholar 
    52.R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2019.53.Chernomor O, von Haeseler A, Minh BQ. Terrace aware data structure for phylogenomic inference from supermatrices. Syst Biol. 2016;65:997–1008.PubMed 
    PubMed Central 

    Google Scholar 
    54.Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:256–9.
    Google Scholar 
    55.Belanche A, de la Fuente G, Newbold CJ. Study of methanogen communities associated with different rumen protozoal populations. FEMS Microbiol Ecol. 2014;90:663–77.CAS 
    PubMed 

    Google Scholar 
    56.Ungerfeld EM. Metabolic hydrogen flows in rumen fermentation: principles and possibilities of interventions. Front Microbiol. 2020;11:589.PubMed 
    PubMed Central 

    Google Scholar 
    57.Bonder MJ, Kurilshikov A, Tigchelaar EF, Mujagic Z, Imhann F, Vila AV, et al. The effect of host genetics on the gut microbiome. Nat Genet. 2016;48:1407–12.CAS 
    PubMed 

    Google Scholar 
    58.Henderson G, Cox F, Ganesh S, Jonker A, Young W, Global Rumen Census Collaborators, et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep.2015;5:1–15.
    Google Scholar 
    59.Fukami T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst. 2015;46:1–23.
    Google Scholar 
    60.Shaani Y, Zehavi T, Eyal S, Miron J, Mizrahi I. Microbiome niche modification drives diurnal rumen community assembly, overpowering individual variability and diet effects. ISME J. 2018;12:2446–57.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Paul RG, Williams AG, Butler RD. Hydrogenosomes in the rumen entodiniomorphid ciliate Polyplastron multivesiculatum. J Gen Microbiol. 1990;136:1981–9.CAS 
    PubMed 

    Google Scholar 
    62.Greening C, Geier R, Wang C, Woods LC, Morales SE, McDonald MJ, et al. Diverse hydrogen production and consumption pathways influence methane production in ruminants. ISME J. 2019;13:2617–32.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Gong J, Qing Y, Zou S, Fu R, Su L, Zhang X, et al. Protist-bacteria associations: gammaproteobacteria and alphaproteobacteria are prevalent as digestion-resistant bacteria in ciliated protozoa. Front Microbiol. 2016;7:498.PubMed 
    PubMed Central 

    Google Scholar 
    64.Park T, Yu Z. Do ruminal ciliates select their preys and prokaryotic symbionts? Front Microbiol. 2018;9:1710.PubMed 
    PubMed Central 

    Google Scholar 
    65.Matz C, Nouri B, McCarter L, Martinez-Urtaza J. Acquired type III secretion system determines environmental fitness of epidemic Vibrio parahaemolyticus in the interaction with bacterivorous protists. PLoS ONE. 2011;6:e20275.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Kamke J, Soni P, Li Y, Ganesh S, Kelly WJ, Leahy SC, et al. Gene and transcript abundances of bacterial type III secretion systems from the rumen microbiome are correlated with methane yield in sheep. BMC Res Notes. 2017;10:367.PubMed 
    PubMed Central 

    Google Scholar 
    67.Jami E, Mizrahi I. Composition and similarity of bovine rumen microbiota across individual animals. PLoS ONE. 2012;7:e33306.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Brulc JM, Antonopoulos DA, Miller ME, Wilson MK, Yannarell AC, Dinsdale EA, et al. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci USA. 2009;106:1948–53.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Indugu N, Vecchiarelli B, Baker LD, Ferguson JD, Vanamala JKP, Pitta DW. Comparison of rumen bacterial communities in dairy herds of different production. BMC Microbiol. 2017;17:190.PubMed 
    PubMed Central 

    Google Scholar 
    70.Pope PB, Smith W, Denman SE, Tringe SG, Barry K, Hugenholtz P, et al. Isolation of Succinivibrionaceae implicated in low methane emissions from Tammar wallabies. Science. 2011;333:646–8.CAS 
    PubMed 

    Google Scholar 
    71.Saleem M, Fetzer I, Dormann CF, Harms H, Chatzinotas A. Predator richness increases the effect of prey diversity on prey yield. Nat Commun. 2012;3:1305.PubMed 

    Google Scholar 
    72.Simek K, Vrba J, Pernthaler J, Posch T, Hartman P, Nedoma J, et al. Morphological and compositional shifts in an experimental bacterial community influenced by protists with contrasting feeding modes. Appl Environ Microbiol. 1997;63:587–95.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Socolar J, Washburne A. Prey carrying capacity modulates the effect of predation on prey diversity. Am Nat. 2015;186:333–47.PubMed 

    Google Scholar 
    74.Gutierrez J. Observations on bacterial feeding by the rumen ciliate Isotricha prostoma. J Protozool. 1958;5:122–6.
    Google Scholar 
    75.Coleman GS. The metabolism of Escherichia coli and other bacteria by Entodinium caudatum. J Gen Microbiol. 1964;37:209–23.CAS 
    PubMed 

    Google Scholar 
    76.Canter EJ, Cuellar-Gempeler C, Pastore AI, Miller TE, Mason OU. Predator identity more than predator richness structures aquatic microbial assemblages in Sarracenia purpurea leaves. Ecology. 2018;99:652–60.PubMed 

    Google Scholar 
    77.Paine RT. Food web complexity and species diversity. Am Nat. 1966;100:65–75.
    Google Scholar 
    78.Audebert C, Even G, Cian A, Loywick A, Merlin S, Blastocystis Investigation Group,et al. Colonization with the enteric protozoa Blastocystis is associated with increased diversity of human gut bacterial microbiota. Sci Rep. 2016;6:25255.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    79.Chabé M, Lokmer A, Ségurel L. Gut protozoa: friends or foes of the human gut microbiota? Trends Parasitol. 2017;33:925–34.PubMed 

    Google Scholar 
    80.Asgari M, Steiner CF. Interactive effects of productivity and predation on zooplankton diversity. Oikos. 2017;126:1617–24.CAS 

    Google Scholar 
    81.Tokura M, Ushida K, Miyazaki K, Kojima Y. Methanogens associated with rumen ciliates. FEMS Microbiol Ecol. 1997;22:137–43.CAS 

    Google Scholar 
    82.Irbis C, Ushida K. Detection of methanogens and proteobacteria from a single cell of rumen ciliate protozoa. J Gen Appl Microbiol. 2004;50:203–12.CAS 
    PubMed 

    Google Scholar 
    83.Karakoç C, Radchuk V, Harms H, Chatzinotas A. Interactions between predation and disturbances shape prey communities. Sci Rep. 2018;8:2968.PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Past climate conditions predict the influence of nitrogen enrichment on the temperature sensitivity of soil respiration

    1.Bond-Lamberty, B. & Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 464, 579–582 (2010).CAS 

    Google Scholar 
    2.Raich, J. W., Potter, C. S. & Bhagawati, D. Interannual variability in global soil respiration, 1980–94. Glob. Change Biol. 8, 800–812 (2002).
    Google Scholar 
    3.Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition feedbacks to climate change. Nature 440, 165–173 (2006).CAS 

    Google Scholar 
    4.Feng, X., Simpson, A. J., Wilson, K. P., Williams, D. D. & Simpson, M. J. Increased cuticular carbon sequestration and lignin oxidation in response to soil warming. Nat. Geosci. 1, 836–839 (2008).CAS 

    Google Scholar 
    5.Heimann, H. & Reichstein, R. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292 (2008).CAS 

    Google Scholar 
    6.Fang, C. et al. Impacts of warming and nitrogen addition on soil autotrophic and heterotrophic respiration in a semi-arid environment. Agr. Forest Meteorol. 248, 449–457 (2018).
    Google Scholar 
    7.Wang, Q., Liu, S., Wang, Y., Tian, P. & Sun, T. Influences of N deposition on soil microbial respiration and its temperature sensitivity depend on N type in a temperate forest. Agr. Forest Meteorol. 260–261, 240–246 (2018).
    Google Scholar 
    8.Zhong, Y. Q. W., Yan, W. M., Zong, Y. Z. & Shangguan, Z. P. The effects of nitrogen enrichment on soil CO2 fluxes depending on temperature and soil properties. Global Ecol. Biogeogr. 25, 475–488 (2016).
    Google Scholar 
    9.Yu, G. R. et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nat. Geosci. 12, 424–429 (2019).CAS 

    Google Scholar 
    10.Coucheney, E., Strömgren, M., Lerch, T. Z. & Herrmann, A. M. Long-term fertilization of a boreal Norway spruce forest increases the temperature sensitivity of soil organic carbon mineralization. Ecol. Evol. 3, 5177–5188 (2013).
    Google Scholar 
    11.Jiang, J. S., Guo, S. L., Wang, R., Liu, Q. F. & Sun, Q. Q. Effects of nitrogen fertilization on soil respiration and temperature sensitivity in spring maize field in semi-arid regions on loess plateau. Environ. Sci. 36, 1802–1809 (2015).
    Google Scholar 
    12.Wang, Q., Zhao, X., Tian, P., Liu, S. & Sun, Z. Bioclimate and arbuscular mycorrhizal fungi regulate continental biogeographic variations in effect of nitrogen deposition on the temperature sensitivity of soil organic carbon decomposition. Land Degrad. Dev. 32, 936–945 (2021).
    Google Scholar 
    13.Schindlbacher, A., Zechmeister-Boltenstern, S. & Jandl, R. Carbon losses due to soil warming: do autotrophic and heterotrophic soil respiration respond equally? Glob. Change Biol. 15, 901–903 (2009).
    Google Scholar 
    14.Carey, J. C. et al. Temperature response of soil respiration largely unaltered with experimental warming. Proc. Natl Acad. Sci. 113, 13797–13802 (2016).CAS 

    Google Scholar 
    15.Lyu, M., Giardina, C. P. & Litton, C. M. Interannual variation in rainfall modulates temperature sensitivity of carbon allocation and flux in a tropical montane wet forest. Glob. Change Biol. 27, 3824–3836 (2021).
    Google Scholar 
    16.Wang, Q. et al. Global synthesis of temperature sensitivity of soil organic carbon decomposition: latitudinal patterns and mechanisms. Funct. Ecol. 33, 514–523 (2019).
    Google Scholar 
    17.Li, J. et al. Biogeographic variation in temperature sensitivity of decomposition in forest soils. Glob. Change Biol. 26, 1873–1885 (2020).
    Google Scholar 
    18.Delgado-Baquerizo, M. et al. Palaeoclimate explains a unique proportion of the global variation in soil bacterial communities. Nat. Ecol. Evol. 1, 1339–1347 (2017).
    Google Scholar 
    19.Delgado-Baquerizo, M. et al. Climate legacies drive global soil carbon stocks in terrestrial ecosystems. Sci. Adv. 3, e1602008 (2017).
    Google Scholar 
    20.Delgado-Baquerizo, M. et al. Ecological drivers of soil microbial diversity and soil biological networks in the southern hemisphere. Ecology 99, 583–596 (2018).
    Google Scholar 
    21.Ding, J. Y. & Eldridge, D. J. Contrasting global effects of woody plant removal on ecosystem structure, function and composition. Perspect. Plant Ecol. 39, 125460 (2019).
    Google Scholar 
    22.Eldridge, D. J. & Delgado-Baquerizo, M. The influence of climatic legacies on the distribution of dryland biocrust communities. Glob. Change Biol. 25, 327–336 (2019).
    Google Scholar 
    23.Pärtel, M., Chiarucci, A., Chytrý, M. & Pillar, V. D. Mapping plant community ecology. J. Veg. Sci. 26, 1–3 (2017).
    Google Scholar 
    24.Richter, D. D. & Yaalon, D. H. “The changing model of soil” revisited. Soil Sci. Soc. Am. J. 76, 766–778 (2012).CAS 

    Google Scholar 
    25.Lyons, S. K. et al. Holocene shifts in the assembly of plant and animal communities implicate human impacts. Nature 529, 80–83 (2016).
    Google Scholar 
    26.Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).CAS 

    Google Scholar 
    27.Delgado-Baquerizo, M. et al. Carbon content and climate variability drive global soil bacterial diversity patterns. Ecol. Monogr. 86, 373–390 (2016).
    Google Scholar 
    28.Maestre, F. T., Delgado-Baquerizo, M., Jeffries, T. C., Eldridge, D. J. & Singh, B. K. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl Acad. Sci. 112, 15684–15689 (2015).CAS 

    Google Scholar 
    29.Monger, C. et al. Legacy effects in linked ecological–soil–geomorphic systems of drylands. Front. Ecol. Environ. 13, 13–19 (2016).
    Google Scholar 
    30.Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000).CAS 

    Google Scholar 
    31.Fierer, N., Colman, B. P., Schimel, J. P. & Jackson, R. B. Predicting the temperature dependence of microbial respiration in soil: a continental-scale analysis. Glob. Biogeochem. Cy. 20, GB3026 (2006).
    Google Scholar 
    32.Peng, S., Piao, S., Wang, T., Sun, J. & Shen, Z. Temperature sensitivity of soil respiration in different ecosystems in China. Soil Biol. Biochem. 41, 1008–1014 (2009).CAS 

    Google Scholar 
    33.Xu, Z. et al. Temperature sensitivity of soil respiration in China’s forest ecosystems: patterns and controls. Appl. Soil Ecol. 93, 105–110 (2015).
    Google Scholar 
    34.Niu, B. et al. Warming homogenizes apparent temperature sensitivity of ecosystem respiration. Sci. Adv. 7, eabc7358 (2021).
    Google Scholar 
    35.Janssens, I. A. et al. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 3, 315–322 (2010).CAS 

    Google Scholar 
    36.Yan, G. Y. et al. Sequestration of atmospheric CO2 in boreal forest carbon pools in northeastern China: Effects of nitrogen deposition. Agr. Forest Meteorol. 248, 70–81 (2018).
    Google Scholar 
    37.Du, E. Z. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).CAS 

    Google Scholar 
    38.Chen, Z. M. et al. Nitrogen fertilization stimulated soil heterotrophic but not autotrophic respiration in cropland soils: A greater role of organic over inorganic fertilizer. Soil Biol. Biochem. 116, 253–264 (2018).CAS 

    Google Scholar 
    39.Chen, F. et al. Effects of N addition and precipitation reduction on soil respiration and its components in a temperate forest. Agr. Forest Meteorol. 271, 336–345 (2019).
    Google Scholar 
    40.Zhang, C. et al. Effects of simulated nitrogen deposition on soil respiration components and their temperature sensitivities in a semiarid grassland. Soil Biol. Biochem. 75, 113–123 (2014).CAS 

    Google Scholar 
    41.Moinet, G. Y. K. et al. The temperature sensitivity of soil organic matter decomposition is constrained by microbial access to substrates. Soil Biol. Biochem. 116, 333–339 (2018).CAS 

    Google Scholar 
    42.Li, Y. et al. Soil acid cations induced reduction in soil respiration under nitrogen enrichment and soil acidification. Sci. Total Environ. 615, 1535–1546 (2018).CAS 

    Google Scholar 
    43.Sanderman, J. Comment on “Climate legacies drive global soil carbon stocks in terrestrial ecosystems”. Sci. Adv. 4, e1701482 (2018).
    Google Scholar 
    44.Ding, J. et al. The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region. Nat. Commun. 10, 4195 (2019).
    Google Scholar 
    45.Gershenson, A., Bader, N. E. & Cheng, W. X. Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition. Glob. Change Biol. 15, 176–183 (2009).
    Google Scholar 
    46.Doetterl, S. et al. Soil carbon storage controlled by interactions between geochemistry and climate. Nat. Geosci. 8, 780–783 (2015).CAS 

    Google Scholar 
    47.Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).
    Google Scholar 
    48.Li, J., Ziegler, S. E., Lane, C. S. & Billings, S. A. Legacies of native climate regime govern responses of boreal soil microbes to litter stoichiometry and temperature. Soil Biol. Biochem. 66, 204–213 (2013).CAS 

    Google Scholar 
    49.Xu, M. et al. High microbial diversity stabilizes the responses of soil organic carbon decomposition to warming in the subsoil on the Tibetan Plateau. Glob. Chang. Biol. 27, 2061–2075 (2021).
    Google Scholar 
    50.Du, Y. et al. The response of soil respiration to precipitation change is asymmetric and differs between grasslands and forests. Glob. Chang. Biol. 26, 6015–6024 (2020).
    Google Scholar 
    51.Meier, I. C. & Leuschner, C. Leaf size and leaf area index in Fagus sylvatica forests: competing effects of precipitation, temperature, and nitrogen availability. Ecosystems 11, 655–669 (2008).CAS 

    Google Scholar 
    52.Li, J., Pei, J., Pendall, E., Fang, C. & Nie, M. Spatial heterogeneity of temperature sensitivity of soil respiration: A global analysis of field observations. Soil Biol. Biochem. 141, 107675 (2020).CAS 

    Google Scholar 
    53.Katz, M. H. Multivariable Analysis: A Practical Guide for Clinicians and Public Health Researchers (Cambridge Univ. Press, Cambridge, 2006).54.Leff, J. W. et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl Acad. Sci. 112, 10967–10972 (2015).CAS 

    Google Scholar 
    55.Grace, J. B. Structural Equation Modeling Natural Systems (Cambridge Univ. Press, Cambridge, 2006).56.Lefcheck, J. S. PiecewiseSEM: piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol 7, 573–579 (2016).
    Google Scholar 
    57.Bates, D. et al. lme4: Linear mixed-effects models using Eigen and S4. R package version 1, 1–13 (2017).
    Google Scholar  More

  • in

    Impacts of hydropower on the habitat of jaguars and tigers

    1.Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).CAS 

    Google Scholar 
    2.Latrubesse, E. M. et al. Damming the rivers of the Amazon basin. Nature 546, 363–369 (2017).CAS 
    PubMed 

    Google Scholar 
    3.ICOLD. International Commission on Large Dams. http://www.icold-cigb.org/ (2016).4.Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–170 (2015).
    Google Scholar 
    5.Gibson, L., Wilman, E. N. & Laurance, W. F. How green is ‘green’energy? Trends Ecol. Evol. 32, 922–935 (2017).PubMed 

    Google Scholar 
    6.Wu, H. et al. Effects of dam construction on biodiversity: a review. J. Clean. Prod. 221, 480–489 (2019).
    Google Scholar 
    7.Palmeirim, A. F., Peres, C. A. & Rosas, F. C. Giant otter population responses to habitat expansion and degradation induced by a mega hydroelectric dam. Biol. Conserv. 174, 30–38 (2014).
    Google Scholar 
    8.Fearnside, P. M. Decision making on amazon dams: politics trumps uncertainty in the Madeira River sediments controversy. Water Altern. 6, 313–325 (2013).9.Fearnside, P. M. Greenhouse gas emissions from Brazil’s Amazonian hydroelectric dams. Environ. Res. Lett. 11, 011002 (2016).
    Google Scholar 
    10.Finer, M. & Jenkins, C. N. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLoS ONE 7, e35126 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Chen, G., Powers, R. P., de Carvalho, L. M. & Mora, B. Spatiotemporal patterns of tropical deforestation and forest degradation in response to the operation of the Tucuruí hydroelectric dam in the Amazon basin. Appl. Geogr. 63, 1–8 (2015).
    Google Scholar 
    12.Hunter, W. C., Anderson, B. W. & Ohmart, R. D. Avian community structure changes in a mature floodplain forest after extensive flooding. J. Wildl. Manag. 51, 495–502 (1987).13.Andriolo, A. et al. Severe population decline of marsh deer, Blastocerus dichotomus (Cetartiodactyla: Cervidae), a threatened species, caused by flooding related to a hydroelectric power plant. Zool. Curitiba 30, 630–638 (2013).
    Google Scholar 
    14.Irving, G. J., Round, P. D., Savini, T., Lynam, A. J. & Gale, G. A. Collapse of a tropical forest bird assemblage surrounding a hydroelectric reservoir. Glob. Ecol. Conserv. 16, e00472 (2018).
    Google Scholar 
    15.Carbone, C. & Gittleman, J. L. A common rule for the scaling of carnivore density. Science 295, 2273–2276 (2002).CAS 
    PubMed 

    Google Scholar 
    16.Quigley, H. et al. Panthera onca (errata version published in 2018). The IUCN Red List of Threatened Species 2017: e.T15953A123791436 (2017).17.Dinerstein, E. et al. The fate of wild tigers. BioScience 57, 508–514 (2007).
    Google Scholar 
    18.Goodrich, J. et al. Panthera tigris. The IUCN Red List of Threatened Species 2015: e.T15955A50659951 (2015).19.Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Roberge, J. & Angelstam, P. Usefulness of the umbrella species concept as a conservation tool. Conserv. Biol. 18, 76–85 (2004).
    Google Scholar 
    21.Jędrzejewski, W. et al. Estimating large carnivore populations at global scale based on spatial predictions of density and distribution—application to the jaguar (Panthera onca). PLoS ONE 13, e0194719 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    22.GTRP. Global Tiger Recovery Program. Glob. Tiger Initiat. Secr. (World Bank, 2010).23.Desbiez, A. L. & de Paula, R. C. Species conservation planning: the jaguar National Action Plan for Brazil. Cat News 7, 4–7 (2012).
    Google Scholar 
    24.Achard, F. et al. Determination of deforestation rates of the world’s humid tropical forests. Science 297, 999–1002 (2002).CAS 
    PubMed 

    Google Scholar 
    25.Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).CAS 

    Google Scholar 
    26.Terborgh, J. et al. Ecological meltdown in predator-free forest fragments. Science 294, 1923–1926 (2001).CAS 
    PubMed 

    Google Scholar 
    27.Gibson, L. et al. Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. Science 341, 1508–1510 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Sollmann, R., Torres, N. M. & Silveira, L. Jaguar conservation in Brazil: the role of protected areas. Cat News 4, 15 (2008).
    Google Scholar 
    29.Cullen Junior, L., Sana, D. A., Lima, F., de Abreu, K. C. & Uezu, A. Selection of habitat by the jaguar, Panthera onca (Carnivora: Felidae), in the upper Paraná River, Brazil. Zool. Curitiba 30, 379–387 (2013).
    Google Scholar 
    30.Eriksson, C. E. et al. Extensive aquatic subsidies lead to territorial breakdown and high density of an apex predator. Ecology https://doi.org/10.1002/ecy.3543 (2021).31.Sanderson, E. W. How many animals do we want to save? The many ways of setting population target levels for conservation. BioScience 56, 911–922 (2006).
    Google Scholar 
    32.Luskin, M. S., Albert, W. R. & Tobler, M. W. Sumatran tiger survival threatened by deforestation despite increasing densities in parks. Nat. Commun. 8, 1–9 (2017).
    Google Scholar 
    33.Wikramanayake, E. et al. A landscape‐based conservation strategy to double the wild tiger population. Conserv. Lett. 4, 219–227 (2011).
    Google Scholar 
    34.Sunarto, S. et al. Tigers need cover: multi-scale occupancy study of the big cat in Sumatran forest and plantation landscapes. PLoS ONE 7, e30859 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Hyde, J. L., Bohlman, S. A. & Valle, D. Transmission lines are an under-acknowledged conservation threat to the Brazilian Amazon. Biol. Conserv. 228, 343–356 (2018).
    Google Scholar 
    36.Espinosa, S., Celis, G. & Branch, L. C. When roads appear jaguars decline: Increased access to an Amazonian wilderness area reduces potential for jaguar conservation. PLoS ONE 13, e0189740 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    37.Thompson, P. L., Rayfield, B. & Gonzalez, A. Loss of habitat and connectivity erodes species diversity, ecosystem functioning, and stability in metacommunity networks. Ecography 40, 98–108 (2017).
    Google Scholar 
    38.Linkie, M., Haidir, I. A., Nugroho, A. & Dinata, Y. Conserving tigers Panthera tigris in selectively logged Sumatran forests. Biol. Conserv. 141, 2410–2415 (2008).
    Google Scholar 
    39.Sharma, S. et al. Forest corridors maintain historical gene flow in a tiger metapopulation in the highlands of central India. Proc. R. Soc. B Biol. Sci. 280, 20131506 (2013).
    Google Scholar 
    40.Kinnaird, M. F., Sanderson, E. W., O’Brien, T. G., Wibisono, H. T. & Woolmer, G. Deforestation trends in a tropical landscape and implications for endangered large mammals. Conserv. Biol. 17, 245–257 (2003).
    Google Scholar 
    41.Ramesh, K. et al. Status of tiger and prey species in Panna Tiger Reserve, Madhya Pradesh: capture-recapture and distance sampling estimates. Technical Report (Wildlife Institute of India, 2013).42.Romero‐Muñoz, A. et al. Habitat loss and overhunting synergistically drive the extirpation of jaguars from the Gran Chaco. Divers. Distrib. 25, 176–190 (2019).
    Google Scholar 
    43.Alho, C. J. Hydropower dams and reservoirs and their impacts on Brazil’s biodiversity and natural habitats: a review. World J. Adv. Res. Rev. 6, 205–215 (2020).
    Google Scholar 
    44.Dobson, A. et al. Habitat loss, trophic collapse, and the decline of ecosystem services. Ecology 87, 1915–1924 (2006).PubMed 

    Google Scholar 
    45.Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).CAS 

    Google Scholar 
    46.Fearnside, P. M. Brazil’s Balbina Dam: environment versus the legacy of the pharaohs in Amazonia. Environ. Manag. 13, 401–423 (1989).
    Google Scholar 
    47.Fearnside, P. M. Dams in the Amazon: Belo Monte and Brazil’s hydroelectric development of the Xingu River Basin. Environ. Manag. 38, 16–27 (2006).
    Google Scholar 
    48.Milder, J. C., Scherr, S. J. & Bracer, C. Trends and future potential of payment for ecosystem services to alleviate rural poverty in developing countries. Ecol. Soc. 15, 4 (2010).49.Ceballos, G. et al. Jaguar distribution, biological corridors and protected areas in Mexico: from science to public policies. Landsc. Ecol. https://doi.org/10.1007/s10980-021-01264-0 (2021).50.Le Saout, S. et al. Protected areas and effective biodiversity conservation. Science 342, 803–805 (2013).PubMed 

    Google Scholar 
    51.Sabu, M. M., Pasha, S. V., Reddy, C. S., Singh, R. & Jaishanker, R. The effectiveness of tiger conservation landscapes in decreasing deforestation in South Asia: a remote sensing-based study. Spat. Inf. Res. 1–13, https://doi.org/10.1007/s41324-021-00411-8 (2021).52.Joshi, A. R. et al. Tracking changes and preventing loss in critical tiger habitat. Sci. Adv. 2, e1501675 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    53.Ritter, C. D. et al. Environmental impact assessment in Brazilian Amazonia: challenges and prospects to assess biodiversity. Biol. Conserv. 206, 161–168 (2017).
    Google Scholar 
    54.Thompson, J. J. et al. Environmental and anthropogenic factors synergistically affect space use of jaguars. Curr. Biol. 31, 3457–3466 (2021).CAS 
    PubMed 

    Google Scholar 
    55.Food and agriculture organization of the united nations. AQUASTAT – FAO’s global information system on water and agriculture. https://www.fao.org/aquastat/en/databases/dams (2016).56.Tortato, F. R. et al. Infanticide in a jaguar (Panthera onca) population—does the provision of livestock carcasses increase the risk? Acta Ethol. 20, 69–73 (2017).
    Google Scholar 
    57.Chanchani, P., Gerber, B. D. & Noon, B. R. Elevated potential for intraspecific competition in territorial carnivores occupying fragmented landscapes. Biol. Conserv. 227, 275–283 (2018).
    Google Scholar  More

  • in

    Global warming and China’s crop pests

    1.Tian, H. et al. Proc. Natl Acad. Sci. USA 108, 14521–14526 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Sugihara, G. Nature 378, 559–560 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Bebber, D. P., Ramotowski, M. A. T. & Gurr, S. J. Nat. Clim. Change 3, 985–988 (2013).ADS 
    Article 

    Google Scholar 
    4.Bebber, D. P. et al. Glob. Change Biol. 25, 2703–2713 (2019).ADS 
    Article 

    Google Scholar 
    5.Wang, C. et al. Nat. Food https://doi.org/10.1038/s43016-021-00428-0 (2021).6.Pasiecznik, N. M. et al. EPPO Bull. 35, 1–7 (2005).Article 

    Google Scholar 
    7.Paini, D. R. et al. Proc. Natl Acad. Sci. USA 113, 7575–7579 (2016).CAS 
    Article 

    Google Scholar 
    8.Chaloner, T. M., Gurr, S. J. & Bebber, D. P. Nat. Clim. Change 11, 710–715 (2021).ADS 
    Article 

    Google Scholar 
    9.Deutsch, C. A. et al. Science 361, 916–919 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Delgado-Baquerizo, M. et al. Nat. Clim. Change 10, 550–554 (2020).ADS 
    Article 

    Google Scholar 
    11.Wright, B. D. Appl. Econ. Perspect. Policy 33, 32–58 (2011).Article 

    Google Scholar  More

  • in

    Pending bill could devastate Brazil’s Serra do Divisor National Park

    1.Barbosa, L. C., Alves, M. A. S. & Grelle, C. E. V. Land Use Policy 104, 105384 (2021).Article 

    Google Scholar 
    2.PL 6024/2019 (Câmara dos Deputados, 2021); https://go.nature.com/3p8ygLo3.Serra do Divisor National Park. https://go.nature.com/3rcbdSg (UNESCO, 2021).4.F. A. Obermüller et al. Lista de espécies de plantas vasculares do Parque Nacional da Serra do Divisor. Catálogo de Plantas das Unidades de Conservação do Brasil https://go.nature.com/3HTJjAs (Jardim Botânico do Rio de Janeiro, 2020).5.Livro Temático/Recursos naturais: Biodiversidade e ambientes do Acre (ACRE, 2010).6.Hansen, M. C. et al. Sci. Adv. 6, eaax8574 (2020).Article 

    Google Scholar 
    7.Grilli, M. Base de dados do DNIT prevê expansão da BR-364 dentro de unidade de conservação. Revista Globo Rural https://go.nature.com/3DUgQYX (2021).8.Orlando, S. A Estrada do Pacífico no comércio exterior do Acre. ac24horas.com https://go.nature.com/3raofzL (2020).9.Mascarenhas, F. et al. Desenvolv e Meio Ambient 48, 236–262 (2018).Article 

    Google Scholar 
    10.Castro, W. Reserva Extrativista Chico Mendes lidera lista de Áreas Protegidas que mais perdem floresta por desmatamento desde Agosto de 2020. SOS Amazonia https://go.nature.com/3CU5jra (2021).11.Fá, J. E. et al. Front. Ecol. Environ. 18, 135–140 (2020).Article 

    Google Scholar 
    12.Bernard, E., Penna, L. A. & Araújo, E. Conserv. Biol. 28, 939–950 (2014).CAS 
    Article 

    Google Scholar 
    13.Kroner, R. E. G. et al. Science 364, 881–886 (2019).Article 

    Google Scholar 
    14.Ferrante, L. & Fearnside, P. M. Science 369, 634 (2020).Article 

    Google Scholar 
    15.Laurance, W. F. & Balmford, A. Nature 495, 308–309 (2013).CAS 
    Article 

    Google Scholar 
    16.Kehoe, L. et al. One Earth 3, 268–272 (2020).Article 

    Google Scholar  More

  • in

    Occurrence of crop pests and diseases has largely increased in China since 1970

    1.Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).ADS 
    CAS 

    Google Scholar 
    2.The Future of Food and Agriculture—Alternative Pathways to 2050 (Food and Agriculture Organization of the United Nations, 2018).3.Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).ADS 
    CAS 

    Google Scholar 
    5.Zhang, W. et al. Closing yield gaps in China by empowering smallholder farmers. Nature 537, 671–674 (2016).ADS 
    CAS 

    Google Scholar 
    6.Chakraborty, S. & Newton, A. C. Climate change, plant diseases and food security: an overview. Plant Pathol. 60, 2–14 (2011).
    Google Scholar 
    7.Oerke, E. C. Crop losses to pests. J. Agri. Sci. 144, 31–43 (2005).
    Google Scholar 
    8.Bebber, D. P., Ramotowski, M. A. T. & Gurr, S. J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3, 985–988 (2013).ADS 

    Google Scholar 
    9.Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916–919 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Delcour, I., Spanoghe, P. & Uyttendaele, M. Literature review: impact of climate change on pesticide use. Food Res. Int. 68, 7–15 (2015).
    Google Scholar 
    11.Ziska, L. H. Increasing minimum daily temperatures are associated with enhanced pesticide use in cultivated soybean along a latitudinal gradient in the mid-western United States. PLoS ONE 9, e98516 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Lamichhane, J. R. et al. Robust cropping systems to tackle pests under climate change. A review. Agron. Sustain. Dev. 35, 443–459 (2014).
    Google Scholar 
    13.Bebber, D. P. et al. Many unreported crop pests and pathogens are probably already present. Glob. Change Biol. 25, 2703–2713 (2019).ADS 

    Google Scholar 
    14.Bale, J. S. et al. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 1–16 (2002).ADS 

    Google Scholar 
    15.Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N. & Travers, S. E. Climate change effects on plant disease: genomes to ecosystems. Annu. Rev. Phytopathol. 44, 489–509 (2006).CAS 

    Google Scholar 
    16.Hruska, A. J. Fall armyworm (Spodoptera frugiperda) management by smallholders. CAB Rev. 14, 1–11 (2019).
    Google Scholar 
    17.Sutherst, R. W. et al. Adapting to crop pest and pathogen risks under a changing climate. Wiley Interdiscip. Rev. Clim. Change 2, 220–237 (2011).
    Google Scholar 
    18.Donatelli, M. et al. Modelling the impacts of pests and diseases on agricultural systems. Agric. Syst. 155, 213–224 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Jones, J. W. et al. Toward a new generation of agricultural system data, models, and knowledge products: state of agricultural systems science. Agric. Syst. 155, 269–288 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    20.Miller, S. A., Beed, F. D. & Harmon, C. L. Plant disease diagnostic capabilities and networks. Annu. Rev. Phytopathol. 47, 15–38 (2009).CAS 

    Google Scholar 
    21.Bebber, D. P., Holmes, T., Smith, D. & Gurr, S. J. Economic and physical determinants of the global distributions of crop pests and pathogens. New Phytol. 202, 901–910 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    22.Savary, S. et al. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3, 430–439 (2019).
    Google Scholar 
    23.An early warning news about the mirgating condition of Fall Armyworm in China from National Agro-Tech Extension and Service Center https://www.natesc.org.cn/News/des?id=eaf064ae-6582-47c1-a9f3-a58969fd47b3&kind=HYTX (in Chinese, available in Nov.2021).24.Piao, S. et al. The impacts of climate change on water resources and agriculture in China. Nature 467, 43–51 (2010).ADS 
    CAS 

    Google Scholar 
    25.Chown, S. L., Sorensen, J. G. & Terblanche, J. S. Water loss in insects: an environmental change perspective. J. Insect Physiol. 57, 1070–1084 (2011).CAS 

    Google Scholar 
    26.Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).ADS 
    CAS 

    Google Scholar 
    27.National Agricultural Technology Extension and Service Center. Technical Specification Manual of Major Crop Pest and Disease Observation and Forecast in China (China Agriculture Press, 2010).28.Olfert, O., Weiss, R. M. & Elliott, R. H. Bioclimatic approach to assessing the potential impact of climate change on wheat midge (Diptera: Cecidomyiidae) in North America. Can. Entomol. 148, 52–67 (2015).
    Google Scholar 
    29.Savary, S., Teng, P. S., Willocquet, L. & Nutter, F. W. Quantification and modeling of crop losses: a review of purposes. Annu. Rev. Phytopathol. 44, 89–112 (2006).CAS 

    Google Scholar 
    30.Chakraborty, S. Migrate or evolve: options for plant pathogens under climate change. Glob. Change Biol. 19, 1985–2000 (2013).ADS 

    Google Scholar 
    31.Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Chaloner, T. M., Gurr, S. J. & Bebber, D. P. Plant pathogen infection risk tracks global crop yields under climate change. Nat. Clim. Change 11, 710–715 (2021).ADS 

    Google Scholar 
    33.Carvalho, J. L. N. et al. Agronomic and environmental implications of sugarcane straw removal: a major review. Glob. Change Biol. Bioenergy 9, 1181–1195 (2017).CAS 

    Google Scholar 
    34.Savary, S., Horgan, F., Willocquet, L. & Heong, K. L. A review of principles for sustainable pest management in rice. Crop Prot. 32, 54–63 (2012).
    Google Scholar 
    35.Frolking, S. et al. Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China. Glob. Biogeochem. Cycles 16, 38-31–38-10 (2002).
    Google Scholar 
    36.Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).
    Google Scholar 
    37.Harvell, C. D. et al. Climate warming and disease risks for terrestrial and marine biota. Science 296, 2158–2162 (2002).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Scherm, H. Climate change: can we predict the impacts on plant pathology and pest management? Can. J. Plant Pathol. 26, 267–273 (2004).
    Google Scholar 
    39.Cheke, R. A. & Tratalos, J. A. Migration, patchiness, and population processes illustrated by two migrant pests. Bioscience 57, 145–154 (2007).
    Google Scholar 
    40.Eyring, V. et al. Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).ADS 

    Google Scholar 
    41.O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).ADS 

    Google Scholar 
    42.van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).ADS 

    Google Scholar 
    43.Lange, S. Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0). Geosci. Model Dev. 12, 3055–3070 (2019).ADS 

    Google Scholar 
    44.Gregory, P. J., Johnson, S. N., Newton, A. C. & Ingram, J. S. Integrating pests and pathogens into the climate change/food security debate. J. Exp. Bot. 60, 2827–2838 (2009).CAS 

    Google Scholar 
    45.Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements FAO irrigation and drainage paper 56 (FAO, 1998).46.Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    47.Kahiluoto, H. et al. Decline in climate resilience of European wheat. Proc. Natl Acad. Sci. USA 116, 123–128 (2019).CAS 

    Google Scholar 
    48.Folke, C. et al. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557–581 (2004).
    Google Scholar 
    49.Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019).ADS 
    CAS 

    Google Scholar 
    50.Clark, J. S. Why environmental scientists are becoming Bayesians. Ecol. Lett. 8, 2–14 (2005).
    Google Scholar 
    51.Clark, J. S. & Gelfand, A. E. A future for models and data in environmental science. Trends Ecol. Evol. 21, 375–380 (2006).
    Google Scholar 
    52.Gelfand, A. E. & Smith, A. F. M. Sampling-based approaches to calculating marginal densities. J. Am. Stat. Assoc. 85, 398–409 (1990).MathSciNet 
    MATH 

    Google Scholar 
    53.Lunn, D., Spiegelhalter, D., Thomas, A. & Best, N. The BUGS project: evolution, critique and future directions. Stat. Med. 28, 3049–3067 (2009).MathSciNet 

    Google Scholar 
    54.Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998).MathSciNet 

    Google Scholar  More