More stories

  • in

    Temperature, moisture and freeze–thaw controls on CO2 production in soil incubations from northern peatlands

    1.Huang, J. et al. Recently amplified arctic warming has contributed to a continual global warming trend. Nat. Clim. Chang. 7(12), 875–879. https://doi.org/10.1038/s41558-017-0009-5 (2017).ADS 
    Article 

    Google Scholar 
    2.Zhang, X. et al. Changes in temperature and precipitation across Canada. In Canada’s Changing Climate Report (eds Bush, E. & Lemmen, D. S.) 112–193 (Ottawa, 2019).
    Google Scholar 
    3.Koenigk, T. et al. Arctic climate change in 21st century CMIP5 simulations with EC-Earth. Clim. Dyn. 40(11–12), 2719–2743. https://doi.org/10.1007/s00382-012-1505-y (2013).Article 

    Google Scholar 
    4.Arndt, K. A., Lipson, D. A., Hashemi, J., Oechel, W. C. & Zona, D. Snow melt stimulates ecosystem respiration in Arctic ecosystems. Glob. Change Biol. 26(9), 5042–5051. https://doi.org/10.1111/gcb.15193 (2020).ADS 
    Article 

    Google Scholar 
    5.Commane, R. et al. Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra. Proc. Natl. Acad. Sci. U.S.A. 114(21), 5361–5366. https://doi.org/10.1073/pnas.1618567114 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Euskirchen, E. S., Bret-Harte, M. S., Shaver, G. R., Edgar, C. W. & Romanovsky, V. E. Long-term release of carbon dioxide from Arctic Tundra Ecosystems in Alaska. Ecosystems 20(5), 960–974. https://doi.org/10.1007/s10021-016-0085-9 (2017).CAS 
    Article 

    Google Scholar 
    7.Webb, E. E. et al. Increased wintertime CO2 loss as a result of sustained tundra warming. J. Geophys. Res. Biogeosci. 121, 249–265. https://doi.org/10.1002/2014JG002795 (2016).CAS 
    Article 

    Google Scholar 
    8.Natali, S. M. et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Chang. 9(11), 852–857. https://doi.org/10.1038/s41558-019-0592-8 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    9.Rafat, A. et al. Non-growing season carbon emissions in a northern peatland are projected to increase under global warming. Nature Communications Earth & Enviornment 2(1), 111. https://doi.org/10.1038/s43247-021-00184-w (2021).ADS 
    Article 

    Google Scholar 
    10.Yarwood, S. A. The role of wetland microorganisms in plant-litter decomposition and soil organic matter formation: A critical review. FEMS Microbiol. Ecol. 94(11), 1–17. https://doi.org/10.1093/femsec/fiy175 (2018).CAS 
    Article 

    Google Scholar 
    11.Yu, Z. C. Northern peatland carbon stocks and dynamics: A review. Biogeosciences 9(10), 4071–4085. https://doi.org/10.5194/bg-9-4071-2012 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Keenan, T. F. & Williams, C. A. The terrestrial carbon sink. Annu. Rev. Environ. Resour. 43, 219–243. https://doi.org/10.1146/annurev-environ-102017-030204 (2018).Article 

    Google Scholar 
    13.Stocker, B. D., Yu, Z., Massa, C. & Joos, F. Holocene peatland and ice-core data constraints on the timing and magnitude of CO2 emissions from past land use. Proc. Natl. Acad. Sci. 114(7), 1492–1497. https://doi.org/10.1073/pnas.1613889114 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Webster, K. L. et al. Spatially-integrated estimates of net ecosystem exchange and methane fluxes from Canadian peatlands. Carbon Balance Manage. 13(1), 5. https://doi.org/10.1186/s13021-018-0105-5 (2018).CAS 
    Article 

    Google Scholar 
    15.Byun, E., Finkelstein, S. A., Cowling, S. A. & Badiou, P. Potential carbon loss associated with post-settlement wetland conversion in southern Ontario, Canada. Carbon Balance Manag 13(1), 6. https://doi.org/10.1186/s13021-018-0094-4 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Lei, J. et al. Temporal changes in global soil respiration since 1987. Nat. Commun. 12(1), 1–9. https://doi.org/10.1038/s41467-020-20616-z (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Bona, K. A. et al. The Canadian model for peatlands (CaMP): A peatland carbon model for national greenhouse gas reporting. Ecol. Model. 431, 109164. https://doi.org/10.1016/j.ecolmodel.2020.109164 (2020).Article 

    Google Scholar 
    18.Brooks, P. D., McKnight, D. & Elder, K. Carbon limitation of soil respiration under winter snowpacks: Potential feedbacks between growing season and winter carbon fluxes. Glob. Change Biol. 11(2), 231–238. https://doi.org/10.1111/j.1365-2486.2004.00877.x (2005).ADS 
    Article 

    Google Scholar 
    19.Helbig, M. et al. Direct and indirect climate change effects on carbon dioxide fluxes in a thawing boreal forest–wetland landscape. Glob. Change Biol. 23(8), 3231–3248. https://doi.org/10.1111/gcb.13638 (2017).ADS 
    Article 

    Google Scholar 
    20.Zhang, T., Wang, G., Yang, Y., Mao, T. & Chen, X. Non-growing season soil CO2 flux and its contribution to annual soil CO2 emissions in two typical grasslands in the permafrost region of the Qinghai-Tibet Plateau. Eur. J. Soil Biol. 71, 45–52. https://doi.org/10.1016/j.ejsobi.2015.10.004 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    21.Grosse, G. et al. Vulnerability of high-latitude soil organic carbon in North America to disturbance. J. Geophys. Res. 116, G00K06. https://doi.org/10.1029/2010JG001507 (2011).CAS 
    Article 

    Google Scholar 
    22.Hamdi, S., Moyano, F., Sall, S., Bernoux, M. & Chevallier, T. Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions. Soil Biol. Biochem. 58, 115–126. https://doi.org/10.1016/j.soilbio.2012.11.012 (2013).CAS 
    Article 

    Google Scholar 
    23.Conant, R. T. et al. Temperature and soil organic matter decomposition rates—synthesis of current knowledge and a way forward. Glob. Change Biol. 17(11), 3392–3404. https://doi.org/10.1111/j.1365-2486.2011.02496.x (2011).ADS 
    Article 

    Google Scholar 
    24.Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440(7081), 165–173. https://doi.org/10.1038/nature04514 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    25.Fang, C., Smith, P., Moncrieff, J. B. & Smith, J. U. Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature 433(7021), 57–59. https://doi.org/10.1038/nature03138 (2005).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Koven, C. D., Hugelius, G., Lawrence, D. M. & Wieder, W. R. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat. Clim. Chang. 7(11), 817–822. https://doi.org/10.1038/nclimate3421 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    27.Li, J. et al. Biogeographic variation in temperature sensitivity of decomposition in forest soils. Glob. Change Biol. 26(3), 1873–1885. https://doi.org/10.1111/gcb.14838 (2020).ADS 
    Article 

    Google Scholar 
    28.Li, J., Pei, J., Pendall, E., Fang, C. & Nie, M. Spatial heterogeneity of temperature sensitivity of soil respiration: A global analysis of field observations. Soil Biol. Biochem. 141, 107675. https://doi.org/10.1016/j.soilbio.2019.107675 (2020).CAS 
    Article 

    Google Scholar 
    29.Niu, B. et al. Warming homogenizes apparent temperature sensitivity of ecosystem respiration. Sci. Adv. 7(15), eabc7358. https://doi.org/10.1126/sciadv.abc7358 (2021).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Wang, J., Wu, Q., Yuan, Z. & Kang, H. Soil respiration of alpine meadow is controlled by freeze-Thaw processes of active layer in the permafrost region of the Qinghai-Tibet Plateau. Cryosphere 14(9), 2835–2848. https://doi.org/10.5194/tc-14-2835-2020 (2020).ADS 
    Article 

    Google Scholar 
    31.Wang, Q. et al. Global synthesis of temperature sensitivity of soil organic carbon decomposition: Latitudinal patterns and mechanisms. Funct. Ecol. 33(3), 514–523. https://doi.org/10.1111/1365-2435.13256 (2019).Article 

    Google Scholar 
    32.Bradford, M. A. et al. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Chang. 6(8), 751–758. https://doi.org/10.1038/nclimate3071 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    33.Pi, K. et al. The cold region critical zone in transition: Responses to climate warming and land use change. Annu. Rev. Environ. Resour. 46(1), 1–24. https://doi.org/10.1146/annurev-environ-012220-125703 (2021).Article 

    Google Scholar 
    34.Fuss, C. B. et al. Nitrate and dissolved organic carbon mobilization in response to soil freezing variability. Biogeochemistry 131(1–2), 35–47. https://doi.org/10.1007/s10533-016-0262-0 (2016).CAS 
    Article 

    Google Scholar 
    35.Meyer, N., Welp, G. & Amelung, W. The Temperature sensitivity (Q10) of soil respiration: Controlling factors and spatial prediction at regional scale based on environmental soil classes. Glob. Biogeochem. Cycles 32(2), 306–323. https://doi.org/10.1002/2017GB005644 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    36.Moyano, F. E. et al. The moisture response of soil heterotrophic respiration: Interaction with soil properties. Biogeosciences 9(3), 1173–1182. https://doi.org/10.5194/bg-9-1173-2012 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    37.Schipper, L. A. et al. Shifts in temperature response of soil respiration between adjacent irrigated and non-irrigated grazed pastures. Agr. Ecosyst. Environ. 285, 106620. https://doi.org/10.1016/j.agee.2019.106620 (2019).CAS 
    Article 

    Google Scholar 
    38.Alster, C. J., von Fischer, J. C., Allison, S. D. & Treseder, K. K. Embracing a new paradigm for temperature sensitivity of soil microbes. Glob. Change Biol. 26(6), 3221–3229. https://doi.org/10.1111/gcb.15053 (2020).ADS 
    Article 

    Google Scholar 
    39.Baldwin, K. et al. Vegetation Zones of Canada: a Biogeoclimatic Perspective. Sault Ste. Marie, ON, Canada: Natural Resources Canada, Canadian Forest Service. Great Lake Forestry Center. https://open.canada.ca/data/en/dataset/22b0166b-9db3-46b7-9baf-6584a3acc7b1 (2019).40.Beck, H. E. et al. Present and future köppen-geiger climate classification maps at 1-km resolution. Sci. Data 5, 1–12. https://doi.org/10.1038/sdata.2018.214 (2018).Article 

    Google Scholar 
    41.Gardner, W. H. Water content. In Methods of soil analysis: Physical and mineralogical methods, agronomy series 9 (Part 1) (ed. Klute, A.) 493–544 (Soil Science Society of America, 1986). https://doi.org/10.2136/sssabookser5.1.2ed.c21.Chapter 

    Google Scholar 
    42.Webster, K. L., Creed, I. F., Bourbonnière, R. A. & Beall, F. D. Controls on the heterogeneity of soil respiration in a tolerant hardwood forest. J. Geophys. Res. 113(G3), G03018. https://doi.org/10.1029/2008JG000706 (2008).ADS 
    Article 

    Google Scholar 
    43.Quinton, W. L. & Baltzer, J. L. The active-layer hydrology of a peat plateau with thawing permafrost (Scotty Creek, Canada). Hydrogeol. J. 21(1), 201–220. https://doi.org/10.1007/s10040-012-0935-2 (2013).ADS 
    Article 

    Google Scholar 
    44.Davidson, E. A., Savage, K., Verchot, L. V. & Navarro, R. Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agric. For. Meteorol. 113(1–4), 21–37. https://doi.org/10.1016/S0168-1923(02)00100-4 (2002).ADS 
    Article 

    Google Scholar 
    45.Rezanezhad, F., Couture, R. M., Kovac, R., O’Connell, D. & Van Cappellen, P. Water table fluctuations and soil biogeochemistry: An experimental approach using an automated soil column system. J. Hydrol. 509, 245–256. https://doi.org/10.1016/j.jhydrol.2013.11.036 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    46.Fang, C. & Moncrieff, J. B. The dependence of soil CO2 efflux on temperature. Soil Biol. Biochem. 33(2), 155–165. https://doi.org/10.1016/S0038-0717(00)00125-5 (2001).CAS 
    Article 

    Google Scholar 
    47.Alster, C. J., Koyama, A., Johnson, N. G., Wallenstein, M. D. & von Fischer, J. C. Temperature sensitivity of soil microbial communities: An application of macromolecular rate theory to microbial respiration. J. Geophys. Res. Biogeosci. 121(6), 1420–1433. https://doi.org/10.1002/2016JG003343 (2016).Article 

    Google Scholar 
    48.Hobbs, J. K. et al. Change in heat capacity for enzyme catalysis determines temperature dependence of enzyme catalyzed rates. ACS Chem. Biol. 8(11), 2388–2393. https://doi.org/10.1021/cb4005029 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Robinson, J. M. et al. Rapid laboratory measurement of the temperature dependence of soil respiration and application to changes in three diverse soils through the year. Biogeochemistry 133(1), 101–112. https://doi.org/10.1007/s10533-017-0314-0 (2017).CAS 
    Article 

    Google Scholar 
    50.Schipper, L. A., Hobbs, J. K., Rutledge, S. & Arcus, V. L. Thermodynamic theory explains the temperature optima of soil microbial processes and high Q10 values at low temperatures. Glob. Change Biol. 20(11), 3578–3586. https://doi.org/10.1111/gcb.12596 (2014).ADS 
    Article 

    Google Scholar 
    51.Webster, K. L., Creed, I. F., Malakoff, T. & Delaney, K. Potential Vulnerability of Deep Carbon Deposits of Forested Swamps to Drought. Soil Sci. Soc. Am. J. 78(3), 1097–1107. https://doi.org/10.2136/sssaj2013.10.0436 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    52.Loranty, M. M. et al. Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosciences 15(17), 5287–5313. https://doi.org/10.5194/bg-15-5287-2018 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    53.Roy-Léveillée, P., Burn, C. R. & Mcdonald, I. D. Vegetation-Permafrost Relations within the Forest-Tundra Ecotone near Old Crow, Northern Yukon, Canada. Permafr. and Periglac. Process. 25(2), 127–135. https://doi.org/10.1002/ppp.1805 (2014).Article 

    Google Scholar 
    54.Zhang, Y., Sherstiukov, A. B., Qian, B., Kokelj, S. V. & Lantz, T. C. Impacts of snow on soil temperature observed across the circumpolar north. Environ. Res. Lett. 13(4), 1e7. https://doi.org/10.1088/1748-9326/aab1e7 (2018).CAS 
    Article 

    Google Scholar 
    55.Sjögersten, S. et al. Temperature response of ex-situ greenhouse gas emissions from tropical peatlands: Interactions between forest type and peat moisture conditions. Geoderma 324, 47–55. https://doi.org/10.1016/j.geoderma.2018.02.029 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    56.Bradford, M. A. et al. Cross-biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaptation. Nat. Ecol. Evol. 3(2), 223–231. https://doi.org/10.1038/s41559-018-0771-4 (2019).Article 
    PubMed 

    Google Scholar 
    57.Frey, S. D., Lee, J., Melillo, J. M. & Six, J. The temperature response of soil microbial efficiency and its feedback to climate. Nat. Clim. Chang. 3(4), 395–398. https://doi.org/10.1038/nclimate1796 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    58.Moinet, G. Y. K. et al. Temperature sensitivity of decomposition decreases with increasing soil organic matter stability. Sci. Total Environ. 704, 135460. https://doi.org/10.1016/j.scitotenv.2019.135460 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    59.Naylor, D. et al. Soil microbiomes under climate change and implications for carbon cycling. Annu. Rev. Environ. Resour. 45, 29–59. https://doi.org/10.1146/annurev-environ-012320-082720 (2020).Article 

    Google Scholar 
    60.Bradford, M. A. Thermal adaptation of decomposer communities in warming soils. Front. Microbiol. 4, 1–16. https://doi.org/10.3389/fmicb.2013.00333 (2013).Article 

    Google Scholar 
    61.Jackson, R. B. et al. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol. Evol. Syst. 48, 419–445. https://doi.org/10.1146/annurev-ecolsys-112414-054234 (2017).Article 

    Google Scholar 
    62.Hararuk, O., Shaw, C. & Kurz, W. A. Constraining the organic matter decay parameters in the CBM-CFS3 using Canadian National Forest Inventory data and a Bayesian inversion technique. Ecol. Model. 364, 1–12. https://doi.org/10.1016/j.ecolmodel.2017.09.008 (2017).CAS 
    Article 

    Google Scholar 
    63.Franzluebbers, A. J. Microbial activity in response to water-filled pore space of variably eroded southern Piedmont soils. Appl. Soil. Ecol. 11(1), 91–101. https://doi.org/10.1016/S0929-1393(98)00128-0 (1999).Article 

    Google Scholar 
    64.Rezanezhad, F. et al. Structure of peat soils and implications for water storage, flow and solute transport: A review update for geochemists. Chem. Geol. 429, 75–84. https://doi.org/10.1016/j.chemgeo.2016.03.010 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    65.Stirling, E., Fitzpatrick, R. W. & Mosley, L. M. Drought effects on wet soils in inland wetlands and peatlands. Earth Sci. Rev. 210, 103387. https://doi.org/10.1016/j.earscirev.2020.103387 (2020).CAS 
    Article 

    Google Scholar 
    66.Wickland, K. P. & Neff, J. C. Decomposition of soil organic matter from boreal black spruce forest: Environmental and chemical controls. Biogeochemistry 87(1), 29–47. https://doi.org/10.1007/s10533-007-9166-3 (2008).Article 

    Google Scholar 
    67.Arnold, C., Ghezzehei, T. A. & Berhe, A. A. Decomposition of distinct organic matter pools is regulated by moisture status in structured wetland soils. Soil Biol. Biochem. 81, 28–37. https://doi.org/10.1016/j.soilbio.2014.10.029 (2015).CAS 
    Article 

    Google Scholar 
    68.Moyano, F. E., Manzoni, S. & Chenu, C. Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models. Soil Biol. Biochem. 59, 72–85. https://doi.org/10.1016/j.soilbio.2013.01.002 (2013).CAS 
    Article 

    Google Scholar 
    69.Sierra, C. A., Malghani, S. & Loescher, H. W. Interactions among temperature, moisture, and oxygen concentrations in controlling decomposition rates in a boreal forest soil. Biogeosciences 14(3), 703–710. https://doi.org/10.5194/bg-14-703-2017 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    70.McCarter, C. P. R. et al. Pore-scale controls on hydrological and geochemical processes in peat: Implications on interacting processes. Earth Sci. Rev. 207, 103227. https://doi.org/10.1016/j.earscirev.2020.103227 (2020).CAS 
    Article 

    Google Scholar 
    71.Strack, M. et al. Effect of water table drawdown on peatland dissolved organic carbon export and dynamics. Hydrol. Process. 22(17), 3373–3385. https://doi.org/10.1002/hyp.6931 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    72.Leclair, M., Whittington, P. & Price, J. Hydrological functions of a mine-impacted and natural peatland-dominated watershed, James Bay Lowland. J. Hydrol. Reg. Stud. 4, 732–747. https://doi.org/10.1016/j.ejrh.2015.10.006 (2015).Article 

    Google Scholar 
    73.Treat, C. C. et al. Effects of permafrost aggradation on peat properties as determined from a pan-Arctic synthesis of plant macrofossils. J. Geophys. Res. Biogeosci. 121(1), 78–94. https://doi.org/10.1002/2015JG003061 (2016).CAS 
    Article 

    Google Scholar 
    74.Günther, A. et al. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat. Commun. 11(1), 1–5. https://doi.org/10.1038/s41467-020-15499-z (2020).CAS 
    Article 

    Google Scholar 
    75.Schädel, C. et al. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nat. Clim. Chang. 6(10), 950–953. https://doi.org/10.1038/nclimate3054 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    76.Hemes, K. S., Chamberlain, S. D., Eichelmann, E., Knox, S. H. & Baldocchi, D. D. A biogeochemical compromise: The high methane cost of sequestering carbon in restored wetlands. Geophys. Res. Lett. 45, 6081–6091. https://doi.org/10.1029/2018GL077747 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    77.Davidson, E. A., Samanta, S., Caramori, S. S. & Savage, K. The Dual Arrhenius and Michaelis-Menten kinetics model for decomposition of soil organic matter at hourly to seasonal time scales. Glob. Change Biol. 18, 371–384. https://doi.org/10.1111/j.1365-2486.2011.02546.x (2012).ADS 
    Article 

    Google Scholar 
    78.Matzner, E. & Borken, W. Do freeze-thaw events enhance C and N losses from soils of different ecosystems? A review. Eur. J. Soil Sci. 59(2), 274–284. https://doi.org/10.1111/j.1365-2389.2007.00992.x (2008).Article 

    Google Scholar 
    79.Song, Y., Zou, Y., Wang, G. & Yu, X. Altered soil carbon and nitrogen cycles due to the freeze-thaw effect: A meta-analysis. Soil Biol. Biochem. 109, 35–49. https://doi.org/10.1016/j.soilbio.2017.01.020 (2017).CAS 
    Article 

    Google Scholar 
    80.Wang, J. et al. Effects of freezing-thawing cycle on peatland active organic carbon fractions and enzyme activities in the Da Xing’anling Mountains. Northeast China. Environmental Earth Sciences 72(6), 1853–1860. https://doi.org/10.1007/s12665-014-3094-z (2014).CAS 
    Article 

    Google Scholar 
    81.Wu, H., Xu, X., Cheng, W., Fu, P. & Li, F. Antecedent soil moisture prior to freezing can affect quantity, composition and stability of soil dissolved organic matter during thaw. Sci. Rep. 7(1), 1–12. https://doi.org/10.1038/s41598-017-06563-8 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    82.Bao, T., Xu, X., Jia, G., Billesbach, D. P. & Sullivan, R. C. Much stronger tundra methane emissions during autumn freeze than spring thaw. Glob. Change Biol. 27(2), 376–387. https://doi.org/10.1111/gcb.15421 (2021).ADS 
    Article 

    Google Scholar 
    83.Chang, K. Y., Riley, W. J., Crill, P. M., Grant, R. F. & Saleska, S. R. Hysteretic temperature sensitivity of wetland CH4 fluxes explained by substrate availability and microbial activity. Biogeosciences 17(22), 5849–5860. https://doi.org/10.5194/bg-17-5849-2020 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    84.Neumann, R. B. et al. Warming Effects of Spring Rainfall Increase Methane Emissions From Thawing Permafrost. Geophys. Res. Lett. 46(3), 1393–1401. https://doi.org/10.1029/2018GL081274 (2019).ADS 
    Article 

    Google Scholar 
    85.Rezanezhad, F., Price, J. S. & Craig, J. R. The effects of dual porosity on transport and retardation in peat: A laboratory experiment. Can. J. Soil Sci. 92(5), 723–732. https://doi.org/10.4141/CJSS2011-050 (2012).Article 

    Google Scholar 
    86.Raz-Yaseef, N. et al. Large CO2 and CH4 emissions from polygonal tundra during spring thaw in northern Alaska. Geophys. Res. Lett. 44(1), 504–513. https://doi.org/10.1002/2016GL071220 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    87.Waldrop, M. P. et al. Carbon fluxes and microbial activities from boreal peatlands experiencing permafrost thaw. J. Geophys. Res. Biogeosci. 126(3), e2020JG005869. https://doi.org/10.1029/2020JG005869 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    88.Pulliainen, J. et al. Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018. Nature 581(7808), 294–298. https://doi.org/10.1038/s41586-020-2258-0 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Associations of the oral microbiota and Candida with taste, smell, appetite and undernutrition in older adults

    1.United Nations, Department of Economic and Social Affairs, Population Division (2019). World Population Prospects 2019: Highlights (ST/ESA/SER.A/423).2.Leij-Halfwerk, S. et al. Prevalence of protein-energy malnutrition risk in European older adults in community, residential and hospital settings, according to 22 malnutrition screening tools validated for use in adults >/=65 years: A systematic review and meta-analysis. Maturitas 126, 80–89 (2019).PubMed 

    Google Scholar 
    3.Keller, H. H., Ostbye, T. & Goy, R. Nutritional risk predicts quality of life in elderly community-living Canadians. J. Gerontol. A Biol. Sci. Med. Sci. 59(1), 68–74 (2004).PubMed 

    Google Scholar 
    4.Correia, M. I. & Waitzberg, D. L. The impact of malnutrition on morbidity, mortality, length of hospital stay and costs evaluated through a multivariate model analysis. Clin. Nutr. 22(3), 235–239 (2003).PubMed 

    Google Scholar 
    5.van der Pols-Vijlbrief, R., Wijnhoven, H. A., Schaap, L. A., Terwee, C. B. & Visser, M. Determinants of protein-energy malnutrition in community-dwelling older adults: A systematic review of observational studies. Ageing Res Rev. 18, 112–131 (2014).PubMed 

    Google Scholar 
    6.Wysokinski, A., Sobow, T., Kloszewska, I. & Kostka, T. Mechanisms of the anorexia of aging—A review. Age (Dordr). 37(4), 9821 (2015).PubMed 

    Google Scholar 
    7.Poisson, P., Laffond, T., Campos, S., Dupuis, V. & Bourdel-Marchasson, I. Relationships between oral health, dysphagia and undernutrition in hospitalised elderly patients. Gerodontology 33(2), 161–168 (2016).PubMed 

    Google Scholar 
    8.Besnard, P. et al. Obese subjects with specific gustatory papillae microbiota and salivary cues display an impairment to sense lipids. Sci. Rep. 8(1), 6742 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Feng, Y. et al. The associations between biochemical and microbiological variables and taste differ in whole saliva and in the film lining the tongue. Biomed. Res. Int. 2018, 2838052. https://doi.org/10.1155/2018/2838052 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Cattaneo, C. et al. New insights into the relationship between taste perception and oral microbiota composition. Sci. Rep. 9(1), 3549 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Cattaneo, C., Riso, P., Laureati, M., Gargari, G. & Pagliarini, E. Exploring associations between interindividual differences in taste perception, oral microbiota composition, and reported food intake. Nutrients 11(5), 1167 (2019).CAS 
    PubMed Central 

    Google Scholar 
    12.Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 486(7402), 207–214 (2012).13.Neyraud, E. & Morzel, M. Biological films adhering to the oral soft tissues: Structure, composition, and potential impact on taste perception. J. Texture Stud. 50(1), 19–26 (2019).PubMed 

    Google Scholar 
    14.Francois, A. et al. Olfactory epithelium changes in germfree mice. Sci. Rep. 6, 24687 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Paillaud, E. et al. Oral candidiasis and nutritional deficiencies in elderly hospitalised patients. Br. J. Nutr. 92(5), 861–867 (2004).CAS 
    PubMed 

    Google Scholar 
    16.Sakashita, S., Takayama, K., Nishioka, K. & Katoh, T. Taste disorders in healthy “carriers” and “non-carriers” of Candida albicans and in patients with candidosis of the tongue. J. Dermatol. 31(11), 890–897 (2004).PubMed 

    Google Scholar 
    17.Hoogendijk, E. O. et al. The Longitudinal Aging Study Amsterdam: Cohort update 2016 and major findings. Eur. J. Epidemiol. 31(9), 927–945 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    18.Hoogendijk, E. O. et al. The Longitudinal Aging Study Amsterdam: Cohort update 2019 and additional data collections. Eur. J. Epidemiol. 35(1), 61–74 (2020).PubMed 

    Google Scholar 
    19.Huisman, M. et al. Cohort profile: The Longitudinal Aging Study Amsterdam. Int. J. Epidemiol. 40(4), 868–876 (2011).PubMed 

    Google Scholar 
    20.Cederholm, T. et al. Diagnostic criteria for malnutrition—An ESPEN consensus statement. Clin. Nutr. 34(3), 335–340 (2015).CAS 
    PubMed 

    Google Scholar 
    21.Hanisah, R., Suzana, S. & Lee, F. S. Validation of screening tools to assess appetite among geriatric patients. J. Nutr. Health Aging. 16(7), 660–665 (2012).CAS 
    PubMed 

    Google Scholar 
    22.Dewhirst, F. E. et al. The human oral microbiome. J. Bacteriol. 192(19), 5002–5017 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Kaci, G. et al. Anti-inflammatory properties of Streptococcus salivarius, a commensal bacterium of the oral cavity and digestive tract. Appl. Environ. Microbiol. 80(3), 928–934 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Asakawa, M. et al. Tongue microbiota and oral health status in community-dwelling elderly adults. mSphere 3(4), e00332–18 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    25.Zupancic, K., Kriksic, V., Kovacevic, I. & Kovacevic, D. Influence of oral probiotic Streptococcus salivarius K12 on ear and oral cavity health in humans: Systematic review. Probiotics Antimicrob. Proteins 9(2), 102–110 (2017).CAS 
    PubMed 

    Google Scholar 
    26.Tagg, J. R. & Dierksen, K. P. Bacterial replacement therapy: Adapting ‘germ warfare’ to infection prevention. Trends Biotechnol. 21(5), 217–223 (2003).CAS 
    PubMed 

    Google Scholar 
    27.Guglielmetti, S. et al. Oral bacteria as potential probiotics for the pharyngeal mucosa. Appl. Environ. Microbiol. 76(12), 3948–3958 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Huttenbrink, K.B., Hummel, T., Berg, D., Gasser, T. & Hahner, A. Olfactory dysfunction: common in later life and early warning of neurodegenerative disease. Dtsch Arztebl Int. 110(1–2), 1–7, e1 (2013).29.Pavlovic, J., Racic, M., Ivkovic, N. & Jatic, Z. Comparison of nutritional status between nursing home residents and community dwelling older adults: A cross-sectional study from bosnia and herzegovina. Mater. Sociomed. 31(1), 19–24 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    30.Fluitman, K. S. et al. Poor taste and smell are associated with poor appetite, macronutrient intake, and dietary quality but not with undernutrition in older adults. J. Nutr. 151(3), 605–614 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    31.Whigham, L. D., Schoeller, D. A., Johnson, L. K. & Atkinson, R. L. Effect of clothing weight on body weight. Int. J. Obes. (Lond.) 37(1), 160–161 (2013).CAS 

    Google Scholar 
    32.Kyle, U. G., Genton, L., Karsegard, L., Slosman, D. O. & Pichard, C. Single prediction equation for bioelectrical impedance analysis in adults aged 20–94 years. Nutrition 17(3), 248–253 (2001).CAS 
    PubMed 

    Google Scholar 
    33.Sergi, G. et al. Assessing appendicular skeletal muscle mass with bioelectrical impedance analysis in free-living Caucasian older adults. Clin. Nutr. 34(4), 667–673 (2015).PubMed 

    Google Scholar 
    34.Cruz-Jentoft, A. J. et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 48(1), 16–31 (2019).PubMed 

    Google Scholar 
    35.Kiesswetter, E., Hengeveld, L. M., Keijser, B. J., Volkert, D. & Visser, M. Oral health determinants of incident malnutrition in community-dwelling older adults. J. Dent. 85, 73–80 (2019).PubMed 

    Google Scholar 
    36.Beukers, M. H. et al. Development of the HELIUS food frequency questionnaires: ethnic-specific questionnaires to assess the diet of a multiethnic population in The Netherlands. Eur. J. Clin. Nutr. 69(5), 579–584 (2015).CAS 
    PubMed 

    Google Scholar 
    37.Visser, M., Elstgeest, L. E. M., Winkens, L. H. H., Brouwer, I. A. & Nicolaou, M. Relative validity of the HELIUS Food Frequency Questionnaire for measuring dietary intake in older adult participants of the Longitudinal Aging Study Amsterdam. Nutrients 12(7), 1998 (2020).PubMed Central 

    Google Scholar 
    38.Garretsen, H. R. F. & Knibbe, R. A. Alcohol prevalentie onderzoek Rotterdam/Limburg, Landelijk Eindrapport, Ministerie van Welzijn, Volksgezondheid en Cultuur, Leidschendam (1983).39.Radloff, L. The CES-D scale: A self-reported depression scale for research in the general population. Appl. Psychol. Meas. 1, 385–401 (1977).
    Google Scholar 
    40.Folstein, M. F., Folstein, S. E. & McHugh, P. R. “Mini-mental state” A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12(3), 189–198 (1975).CAS 
    PubMed 

    Google Scholar 
    41.Landis, B. N. et al. “Taste Strips”—a rapid, lateralized, gustatory bedside identification test based on impregnated filter papers. J. Neurol. 256(2), 242–248 (2009).PubMed 

    Google Scholar 
    42.Mueller, C. A., Pintscher, K. & Renner, B. Clinical test of gustatory function including umami taste. Ann. Otol. Rhinol. Laryngol. 120(6), 358–362 (2011).PubMed 

    Google Scholar 
    43.Hummel, T., Kobal, G., Gudziol, H. & Mackay-Sim, A. Normative data for the “Sniffin’ Sticks” including tests of odor identification, odor discrimination, and olfactory thresholds: An upgrade based on a group of more than 3,000 subjects. Eur. Arch. Otorhinolaryngol. 264(3), 237–243 (2007).CAS 
    PubMed 

    Google Scholar 
    44.Arganini, C. & Sinesio, F. Chemosensory impairment does not diminish eating pleasure and appetite in independently living older adults. Maturitas 82(2), 241–244 (2015).PubMed 

    Google Scholar 
    45.de Jong, N., Mulder, I., de Graaf, C. & van Staveren, W. A. Impaired sensory functioning in elders: the relation with its potential determinants and nutritional intake. J. Gerontol. A Biol. Sci. Med. Sci. 54(8), B324–B331 (1999).PubMed 

    Google Scholar 
    46.Fluitman, K. S. et al. The association of olfactory function with BMI, appetite, and prospective weight change in Dutch community-dwelling older adults. J. Nutr. Health Aging 23(8), 746–752 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Gopinath, B. et al. Olfactory impairment in older adults is associated with poorer diet quality over 5 years. Eur. J. Nutr. 55(3), 1081–1087 (2016).CAS 
    PubMed 

    Google Scholar 
    48.Karpa, M. J. et al. Prevalence and neurodegenerative or other associations with olfactory impairment in an older community. J. Aging Health. 22(2), 154–168 (2010).PubMed 

    Google Scholar 
    49.Smoliner, C., Fischedick, A., Sieber, C. C. & Wirth, R. Olfactory function and malnutrition in geriatric patients. J. Gerontol. A Biol. Sci. Med. Sci. 68(12), 1582–1588 (2013).PubMed 

    Google Scholar 
    50.Keijser, B. J. F. et al. Dose-dependent impact of oxytetracycline on the veal calf microbiome and resistome. BMC Genom. 20(1), 65 (2019).
    Google Scholar 
    51.Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. U. S. A. 108(Suppl 1), 4516–4522 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    52.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13(7), 581–583 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Guiver, M., Levi, K. & Oppenheim, B. A. Rapid identification of candida species by TaqMan PCR. J. Clin. Pathol. 54(5), 362–366 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria (2018).55.Wickham, H. Elegant Graphics for Data Analysis (Springer-Verlag, 2016).MATH 

    Google Scholar 
    56.Oksanen, J., et al. Vegan: Community Ecology Package. R package 2018.57.Cailliez, F. The analytical solution of the additive constant problem. Psychometrika 48(2), 305–308 (1983).MathSciNet 
    MATH 

    Google Scholar 
    58.Love, M. I., Wolfgang, H. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15(12), 550 (2014).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Impact of a nonnative parasitoid species on intraspecific interference and offspring sex ratio

    1.Sih, A., Crowley, P., McPeek, M., Petranka, J. & Strohmeier, K. Predation, competition, and prey communities: A review of field experiments. Annu. Rev. Ecol. S. 16, 269–311 (1985).
    Google Scholar 
    2.Schmitz, O. J. et al. From individuals to ecosystem function: Toward an integration of evolutionary and ecosystem ecology. Ecology 89, 2436–2445 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    3.Sih, A., Englund, G. & Wooster, D. Emergent impacts of multiple predators on prey. Trends Ecol. Evol. 13, 350–355 (1998).CAS 
    PubMed 

    Google Scholar 
    4.Holt, R. D. Predation, apparent competition, and structure of prey communities. Theor. Popul. Biol. 12, 197–229 (1977).MathSciNet 
    CAS 
    PubMed 

    Google Scholar 
    5.Bonsall, M. B. & Hassell, M. P. Apparent competition structures ecological assemblages. Nature 388, 371–373 (1997).CAS 
    ADS 

    Google Scholar 
    6.Tuda, M. & Shimada, M. Complexity, evolution, and persistence in host–parasitoid experimental systems with Callosobruchus beetles as the host. Adv. Ecol. Res. 37, 37–75 (2005).
    Google Scholar 
    7.Briggs, C. J., Nisbet, R. M. & Murdoch, W. W. Coexistence of competing parasitoid species on a host with a variable life cycle. Theor. Popul. Biol. 44, 341–373 (1993).MATH 

    Google Scholar 
    8.Peri, E., Cusumano, A., Amodeo, V., Wajnberg, E. & Colazza, S. Intraguild interactions between two egg parasitoids of a true bug in semi-field and field conditions. PLoS ONE 9, e99876 (2014).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    9.Pekas, A., Tena, A., Harvey, J. A., Garcia-Marí, F. & Frago, E. Host size and spatiotemporal patterns mediate the coexistence of specialist parasitoids. Ecology 97, 1345–1356 (2016).PubMed 

    Google Scholar 
    10.DeLong, J. P. & Vasseur, D. A. Mutual interference is common and mostly intermediate in magnitude. BMC Ecol. 11, 1 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    11.Hassell, M. P. & Varley, G. C. New inductive population model for insect parasites and its bearing on biological control. Nature 223, 1133–1137 (1969).CAS 
    PubMed 
    ADS 

    Google Scholar 
    12.Hassell, M. P. Mutual interference between searching insect parasites. J. Anim. Ecol. 40, 473–486 (1971).
    Google Scholar 
    13.Charnov, E. L., Orians, G. H. & Hyatt, K. Ecological implications of resource depression. Am. Nat. 110, 247–259 (1976).
    Google Scholar 
    14.Free, C. A., Beddington, J. R. & Lawton, J. H. On the inadequacy of simple models of mutual interference for parasitism and predation. J. Anim. Ecol. 46, 543–554 (1977).
    Google Scholar 
    15.Visser, M. E., Jones, T. H. & Driessen, G. Interference among insect parasitoids: A multi-patch experiment. J. Anim. Ecol. 68, 108–120 (1999).
    Google Scholar 
    16.Beddington, J. R. Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44, 331–340 (1975).
    Google Scholar 
    17.DeAngelis, D. L., Goldstein, R. A. & O’Neill, R. V. A model for trophic interaction. Ecology 56, 881–892 (1975).
    Google Scholar 
    18.Arditi, R., Callois, J. M., Tyutyunov, Y. & Jost, C. Does mutual interference always stability predator–prey dynamics? A comparison of models. C. R. Biol. 327, 1037–1057 (2004).PubMed 

    Google Scholar 
    19.Abrams, P. A. Why ratio dependence is (still) a bad model of predation. Biol. Rev. 90, 794–814 (2015).PubMed 

    Google Scholar 
    20.Pedersen, B. S. & Mills, N. J. Single vs. multiple introduction in biological control: The roles of parasitoid efficiency, antagonism, and niche overlap. J. Appl. Ecol. 41, 973–984 (2004).
    Google Scholar 
    21.Amarasekare, P. Interference competition and species coexistence. Proc. R. Soc. B 269, 2550–2641 (2002).
    Google Scholar 
    22.Mohamad, R., Wajnberg, E., Monge, J. P. & Goubault, M. The effect of direct interspecific competition on patch exploitation strategies in parasitoid wasps. Oecologia 177, 305–315 (2015).PubMed 
    ADS 

    Google Scholar 
    23.Elliott, J. M. Interspecific interference and the functional response of four species of carnivorous stoneflies. Freshw. Biol. 48, 1527–1539 (2004).
    Google Scholar 
    24.Nakamichi, Y., Tuda, M. & Wajnberg, E. Intraspecific interference between native parasitoids modified by a non-native parasitoid and its consequence on population dynamics. Ecol. Entomol. 45, 1263–1271 (2020).
    Google Scholar 
    25.Trivers, R. L. & Willard, D. E. Natural selection of parental ability to vary the sex ratio of offspring. Science 179, 90–92 (1973).CAS 
    PubMed 
    ADS 

    Google Scholar 
    26.Appleby, B. M., Petty, S. J., Blakey, J. K., Rainey, P. & Macdonald, D. W. Does variation of sex ratio enhance reproductive success of offspring in tawny owls (Strix aluco)?. Proc. R. Soc. B 264, 1111–1116 (1997).PubMed Central 
    ADS 

    Google Scholar 
    27.Nishimura, K. & Jahn, G. C. Sex allocation of three solitary ectoparasitic wasp species on bean weevil larvae: Sex ratio change with host quality and local mate competition. J. Ethol. 14, 27–33 (1996).
    Google Scholar 
    28.Shimada, M. & Fujii, K. Niche modification and stability of competitive systems. I. Niche modification process. Res. Popul. Ecol. 27, 185–201 (1985).
    Google Scholar 
    29.Utida, S. Population fluctuation, an experimental and theoretical approach. Cold Spring Harb. Symp. Quant. Biol. 22, 139–151 (1957).
    Google Scholar 
    30.Utida, S. Cyclic fluctuations of population density intrinsic to the host–parasitoid system. Ecology 38, 442–449 (1957).
    Google Scholar 
    31.Fujii, K. Studies on the interspecies competition between the azuki bean weevil and the southern cowpea weevil. III. Some characteristics of strains of two species. Res. Popul. Ecol. 10, 87–98 (1968).
    Google Scholar 
    32.Bellows, T. S. Analytical models for laboratory populations of Callosobruchus chinensis and C. maculatus (Coleoptera, Bruchidae). J. Anim. Ecol. 51, 263–287 (1982).
    Google Scholar 
    33.Tuda, M. Density dependence depends on scale; at larval resource patch and at whole population. Res. Popul. Ecol. 35, 261–271 (1993).
    Google Scholar 
    34.Tuda, M. & Shimada, M. Developmental schedules and persistence of experimental host–parasitoid systems at two different temperatures. Oecologia 103, 283–291 (1995).PubMed 
    ADS 

    Google Scholar 
    35.Tuda, M., Chou, L.-Y., Niyomdham, C., Buranapanichpan, S. & Tateishi, Y. Ecological factors associated with pest status in Callosobruchus (Coleoptera: Bruchidae): High host specificity of non-pests to Cajaninae (Fabaceae). J. Stored Prod. Res. 41, 31–45 (2005).
    Google Scholar 
    36.Tuda, M., Rönn, J., Buranapanichpan, S., Wasano, N. & Arnqvist, G. Evolutionary diversification of the bean beetle genus Callosobruchus (Coleoptera: Bruchidae): Traits associated with stored-product pest status. Mol. Ecol. 15, 3541–3551 (2006).CAS 
    PubMed 

    Google Scholar 
    37.Tuda, M. Applied evolutionary ecology of insects in the subfamily Bruchinae (Coleoptera: Chrysomelidae). Appl. Entomol. Zool. 42, 337–346 (2007).
    Google Scholar 
    38.Clausen, C. P. Introduced Parasites and Predators of Arthropod Pests and Weeds: A World Review (United States Department of Agriculture Handbook, 1978).
    Google Scholar 
    39.Schmale, I., Wäckers, F. L., Cardona, C. & Dorn, S. Control potential of three hymenopteran parasitoid species against the bean weevil in stored beans: The effect of adult parasitoid nutrition on longevity and progeny production. Biol. Control 21, 134–139 (2001).
    Google Scholar 
    40.Vamosi, S. M., den Hollander, M. D. & Tuda, M. Egg dispersion is more important than competition type for herbivores attacked by a parasitoid. Popul. Ecol. 53, 319–326 (2011).
    Google Scholar 
    41.Shimada, M. Population fluctuation and persistence of one-host–two parasitoid systems depending on resource distribution: From parasitizing behavior to population dynamics. Res. Popul. Ecol. 41, 69–79 (1999).
    Google Scholar 
    42.Baker, J. E., Perez-Mendoza, J. & Beeman, R. W. Multiple mating potential in a pteromalid wasp determined by using an insecticide resistance marker. J. Entomol. Sci. 33, 165–170 (1998).
    Google Scholar 
    43.Yamamura, K. Transformation using (x + 0.5) to stabilize the variance of populations. Res. Popul. Ecol. 41, 229–234 (1999).
    Google Scholar 
    44.Hamilton, W. D. Extraordinary sex ratios. Science 156, 477–488 (1967).CAS 
    PubMed 
    ADS 

    Google Scholar 
    45.Waage, J. K. & Lane, J. B. The reproductive strategy of a parasitic wasp: II. Sex allocation and local mate competition in Trichogramma evanescens. J. Anim. Behav. 53, 417–426 (1984).
    Google Scholar 
    46.Strand, M. R. Variable sex ratio strategy of Telonomus heliothidis (Hymenoptera: Scelionidae): Adaptation to host and conspecific density. Oecologia 77, 219–224 (1988).CAS 
    PubMed 
    ADS 

    Google Scholar 
    47.Hassell, M. P. The Dynamics of Arthropod Predator-Prey Systems (Princeton University Press, 1978).MATH 

    Google Scholar 
    48.Godfray, H. C. J. Parasitoids: Behavioral and Evolutionary Ecology (Princeton University Press, 1994).
    Google Scholar 
    49.Wen, B., Smith, L. & Brower, J. H. Competition between Anisopteromalus calandrae and Choetospila elegans (Hymenoptera: Pteromalidae) at different parasitoid densities on immature maize weevils (Coleoptera: Curculionidae) in corn. Environ. Entomol. 23, 367–373 (1994).
    Google Scholar 
    50.Wen, B. & Brower, J. H. Competition between Anisopteromalus calandrae and Choetospila elegans (Hymenoptera: Pteromalidae) at different parasitoid densities on immature rice weevils (Coleoptera: Curculionidae) in wheat. Biol. Control 5, 151–157 (1995).
    Google Scholar 
    51.Campan, E. & Benrey, B. Behavior and performance of a specialist and a generalist parasitoid of bruchids on wild and cultivated beans. Biol. Control 30, 220–228 (2004).
    Google Scholar 
    52.Choi, W. I., Yoon, T. J. & Ryoo, M. I. Host-size-dependent feeding behaviour and progeny sex ratio of Anisopteromalus calandrae (Hym., Pteromalidae). J. Appl. Entomol. 125, 71–77 (2001).
    Google Scholar 
    53.Wai, K. M. Intra- and interspecific larval competition among wasps parasitic to bean weevil larvae. Thesis—University of Tsukuba, D.Sc. (A), no. 714 (1990).54.Heimpel, G. E. & Cock, M. J. W. Shifting paradigms in the history of classical biological control. Biocontrol 63, 27–37 (2018).
    Google Scholar 
    55.Miksanek, J. R. & Heimpel, G. E. Density-dependent lifespan and estimation of life expectancy for a parasitoid with implications for population dynamics. Oecologia 194, 311–320 (2020).PubMed 
    ADS 

    Google Scholar 
    56.Kidd, N. A. C. & Jervis, M. A. The effects of host-feeding behaviour on the dynamics of parasitoid–host interactions, and the implications for biological control. Res. Popul. Ecol. 31, 235–274 (1989).
    Google Scholar 
    57.Comins, H. N. & Wellings, P. W. Density-related parasitoid sex-ratio: Influence on host–parasitoid population dynamics. J. Anim. Ecol. 54, 583–594 (1985).
    Google Scholar 
    58.Hassell, M. P., Waage, J. K. & May, R. M. Variable parasitoid sex ratios and their effect on host–parasitoid dynamics. J. Anim. Ecol. 52, 889–904 (1983).
    Google Scholar 
    59.Skalski, G. T. & Gilliam, J. F. Functional responses with predator interference: Viable alternatives to the Holling Type II model. Ecology 82, 3083–3092 (2001).
    Google Scholar 
    60.Kratina, P., Vos, M., Bateman, A. & Anholt, B. R. Functional responses modified by predator density. Oecologia 159, 425–433 (2008).PubMed 
    ADS 

    Google Scholar 
    61.Freedman, H. I. Stability analysis of a predator–prey system with mutual interference and density-dependent death rates. Bull. Math. Biol. 41, 67–78 (1979).MathSciNet 
    MATH 

    Google Scholar 
    62.Erbe, L. H. & Freedman, H. I. Modeling persistence and mutual interference among subpopulations of ecological communities. Bull. Math. Biol. 47, 295–304 (1985).MathSciNet 
    MATH 

    Google Scholar 
    63.Alonso, D., Bartumeus, F. & Catalan, J. Mutual interference between predators can give rise to Turing spatial patterns. Ecology 83, 28–34 (2002).
    Google Scholar 
    64.May, R. M. & Hassell, M. P. The dynamics of multiparasitoid–host interactions. Am. Nat. 117, 234–261 (1981).MathSciNet 

    Google Scholar 
    65.Wajnberg, E., Curty, C. & Colazza, S. Genetic variation in the mechanisms of direct mutual interference in a parasitic wasp: Consequences in terms of patch-time allocation. J. Anim. Ecol. 73, 1179–1189 (2004).
    Google Scholar 
    66.Okuyama, T. Parasitoid aggregation and interference in host–parasitoid dynamics. Ecol. Entomol. 41, 473–479 (2016).
    Google Scholar 
    67.Jeffs, C. T. & Lewis, O. T. Effects of climate warming on host–parasitoid interactions. Ecol. Entomol. 38, 209–218 (2013).
    Google Scholar 
    68.Laws, A. N. Climate change effects on predator–prey interactions. Curr. Opin. Insect Sci. 23, 28–34 (2017).PubMed 

    Google Scholar 
    69.Tougeron, K., Brodeur, J., Le Lann, C. & van Baaren, J. How climate change affects the seasonal ecology of insect parasitoids. Ecol. Entomol. 45, 167–181 (2020).
    Google Scholar 
    70.Tuda, M. & Bonsall, M. B. Evolutionary and population dynamics of host–parasitoid interactions. Res. Popul. Ecol. 41, 81–91 (1999).
    Google Scholar 
    71.Outreman, Y. et al. Multi-scale and antagonist selection on life-history traits in parasitoids: A community ecology perspective. Funct. Ecol. 32, 736–751 (2018).
    Google Scholar  More

  • in

    Counting using deep learning regression gives value to ecological surveys

    DatasetsIn this study, datasets from two fundamentally different real-world ecological use cases were employed. The objects of interest in these images were manually counted in previous studies2,8,36,37, without the aim of DL applications.Microscopic images of otolith ringsThe first dataset consists of 3585 microscopic images of otoliths (i.e., hearing stones) of plaice (Pleuronectes platessa). Newly settled juvenile plaice of various length classes were collected at stations along the North Sea and Wadden Sea coast during 23 sampling campaigns conducted over 6 years. Each individual fish was measured, the sagittal otoliths were removed and microscopic images of two zoom levels ((10times 20) and (10times 10), depending on fish length) were made. Post-settlement daily growth rings outside the accessory growth centre were then counted by eye6,7. In this dataset, images of otoliths with less than 16 and more than 45 rings were scarce (Fig. 6). Therefore, a stratified random design was used to select 120 images to evaluate the model performance over the full range of ring counts: all 3585 images were grouped in eight bins according to their label (Fig. 6) and from each bin 15 images were randomly selected for the test set. Out of the remaining 3465 images, 80% of the images were randomly selected for training and 20% were used as a validation set, which is used to estimate the model performance and optimise hyperparameters during training.Figure 6Distribution of the labels (i.e., number of post-settlement rings) of all images in the otolith dataset ((n=3585)).Full size imageAerial images of sealsThe second dataset consists of 11,087 aerial images (named ‘main dataset’ from now onwards) of hauled out grey seals (Halichoerus grypus) and harbour seals (Phoca vitulina), collected between 2005 and 2019 in the Dutch part of the Wadden Sea2,36. Surveys for both species were performed multiple times each year: approximately three times during pupping season and twice during the moult8. During these periods, seals haul out on land in larger numbers. Images were taken manually through the airplane window whenever seals were sighted, while flying at a fixed height of approximately 150m, using different focal lengths (80-400mm). Due to variations in survey conditions (e.g., weather, lighting) and image composition (e.g., angle of view, distance towards seals), this main dataset is highly variable. Noisy labels further complicated the use of this dataset: seals present in multiple (partially) overlapping images were counted only once, and were therefore not included in the count label of each image. Recounting the seals on all images in this dataset to deal with these noisy labels would be a tedious task, compromising one of the main aims of this study of reducing annotation efforts. Instead, only a selection of the main dataset was recounted and used for training and testing. First, 100 images were randomly selected (and recounted) for the test set. In the main dataset, images with a high number of seals were scarce, while images with a low number of seals were abundant (Fig. 7, panel A). Therefore, as with the otoliths, all 11,087 images were grouped into 20 bins according to their label (Fig. 7, panel A), after which five images were randomly selected from each bin for the test set. Second, images of sufficient quality and containing easily identifiable were selected from the main dataset (and recounted) for training and validation, until 787 images were retained (named ‘seal subset 1’). In order to create images with zero seals (i.e., just containing the background) and to remove seals that are only partly photographed along the image borders, some of these images were cropped. The dimensions of those cropped images were preserved and, if required, the image-level annotation was modified accordingly. The resulting ‘seal subset 1’ only contains images with zero to 99 seals (Fig. 7, panel B). These 787 images were then randomly split in a training (80%) and validation set (20%). In order to still take advantage of the remaining 10,200 images from the main dataset, a two-step label refinement was performed (see the section “Dealing with noisy labels: two-step label refinement” below).Figure 7Distribution of the labels (i.e., number of seals) in (A) the seal main dataset ((n=11{,}087)), (B) ‘seal subset 1’ ((n=787)) and (C) ‘seal subset 2’ ((n=100)).Full size imageConvolutional neural networksCNNs are a particular type of artificial neural network. Similar to a biological neural network, where many neurons are connected by synapses, these models consist of a series of connected artificial neurons (i.e., nodes), grouped into layers that are applied one by one. In a CNN, each layer receives an input and produces an output by performing a convolution between the neurons (now organised into a rectangular filter) and each spatial input location and its surroundings. This convolution operator computes a dot product at each location in the input (image or previous layer’s output), encoding the correlation between the local input values and the learnable filter weights (i.e., neurons). After this convolution, an activation function is applied so that the final output of the network can represent more than just a linear combination of the inputs. Each layer performs calculations on the inputs it receives from the previous layer, before sending it to the next layer. Regular layers that ingest all previous outputs rather than a local neighbourhood are sometimes also employed at the end; these are called “fully-connected” layers. The number of layers determines the depth of the network. More layers introduce a larger number of free (learnable) parameters, as does a higher number of convolutional filters per layer or larger filter sizes. A final layer usually projects the intermediate, high-dimensional outputs into a vector of size C (the number of categories) in the case of classification, into a single number in the case of regression (ours), or into a custom number of outputs representing arbitrarily complex parameters, such as the class label and coordinates of a bounding box in the case of object detection. During training, the model is fed with many labelled examples to learn the task at hand: the parameters of the neurons are updated to minimise a loss (provided by an error function measuring the discrepancy between predictions and labels; in our case this is the Huber loss as described below). To do so, the gradient and its derivative with respect to each neuron in the last layer is computed; modifying neurons by following their gradients downwards allows reducing the loss (and thereby improving model prediction) for the current image accordingly. Since the series of layers in a CNN can be seen as a set of nested, differentiable functions, the chain rule can be applied to also compute gradients for the intermediate, hidden layers and modify neurons therein backwards until the first layer. This process is known as backpropagation38. With the recent increase of computational power and labelled dataset sizes, these models are now of increasing complexity (i.e., they have higher numbers of learnable parameters in the convolutional filters and layers).CNNs come in many layer configurations, or architectures. One of the most widely used CNN architecture is the ResNet20, which introduced the concept of residual blocks: in ResNets, the input to a residual block (i.e., a group of convolutional layers with nonlinear activations) is added to its output in an element-wise manner. This allows the block to focus on learning residual patterns on top of its inputs. Also, it enables learning signals to by-pass entire blocks, which stabilises training by avoiding the problem of vanishing gradients39. As a consequence, ResNets were the first models that could be trained even with many layers in series and provided a significant increase in accuracy.Model selection and trainingFor the otolith dataset, we employed ResNet20 architectures of various depths (i.e., ResNet18, ResNet34, ResNet50, ResNet101 and ResNet152, where the number corresponds to the number of hidden layers in the model, see Supplementary S1). These ResNet models were pretrained on ImageNet40, which is a large benchmark dataset containing millions of natural images annotated with thousands of categories. Pre-training on ImageNet is a commonly employed methodology to train a CNN efficiently, as it will already have learned how to recognise common recurring features, such as edges and basic geometrical patterns, which would have to be learned from zero otherwise. Therefore, pre-training reduces the required amount of training data significantly.Figure 8Schematic representation of the CNN used in this study. The classification output layer of the pretrained ResNet18 is replaced by two fully-connected layers. The model is trained with a Huber loss.Full size imageWe modified the ResNet architecture to perform a regression task. To do so, we replaced the classification output layer with two fully-connected layers that map to 512 neurons after the first layer and to a single continuous variable after the second layer23 (Fig. 8). Since the final task to be performed is regression, the loss function is a loss function that is tailored for regression. In our experiments we tested both a Mean Squared Error and a Smooth L1 (i.e., Huber) loss21 (see Supplementary S1). The Huber loss is more robust against outliers and is defined as follows:$$begin{aligned} {mathscr {L}}(y,{hat{y}})=frac{1}{n}sum _i^{n} z_i end{aligned}$$
    (1)
    where (z_i) is given by$$begin{aligned} z_i= {left{ begin{array}{ll} 0.5times (y_i-{hat{y}}_i)^2, &{}quad text {if } |y_i-{hat{y}}_i| More

  • in

    Linking migratory performance to breeding phenology and productivity in an Afro-Palearctic long-distance migrant

    1.Vickery, J. A. et al. The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis (Lond. 1759) 156, 1–22 (2014).
    Google Scholar 
    2.Rosenberg, K. V. et al. Decline of the North American avifauna. Science 366, 120–124 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    3.Knight, S. M. et al. Constructing and evaluating a continent-wide migratory songbird network across the annual cycle. Ecol. Monogr. 88, 445–460 (2018).
    Google Scholar 
    4.Alves, J. A. et al. Costs, benefits, and fitness consequences of different migratory strategies. Ecology 94, 11–17 (2013).ADS 
    PubMed 

    Google Scholar 
    5.van Wijk, R. E., Schaub, M. & Bauer, S. Dependencies in the timing of activities weaken over the annual cycle in a long-distance migratory bird. Behav. Ecol. Sociobiol. 71, 71–73 (2017).
    Google Scholar 
    6.Donald, P. F., Sanderson, F. J., Burfield, I. J. & van Bommel, F. P. J. Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990–2000. Agric. Ecosyst. Environ. 116, 189–196 (2006).
    Google Scholar 
    7.Bowler, D. E., Heldbjerg, H., Fox, A. D., Jong, M. & Böhning-Gaese, K. Long-term declines of European insectivorous bird populations and potential causes. Conserv. Biol. 0, 1–11 (2019).
    Google Scholar 
    8.Harrison, X. A., Blount, J. D., Inger, R., Norris, D. R. & Bearhop, S. Carry-over effects as drivers of fitness differences in animals. J. Anim. Ecol. 80, 4–18 (2010).PubMed 

    Google Scholar 
    9.Emmenegger, T., Hahn, S. & Bauer, S. Individual migration timing of common nightingales is tuned with vegetation and prey phenology at breeding sites. BMC Ecol. 14, 1–8 (2014).
    Google Scholar 
    10.Morrison, C. A., Alves, J. A., Gunnarsson, T. G., Þórisson, B. & Gill, J. A. Why do earlier-arriving migratory birds have better breeding success?. Ecol. Evol. 9, 8856–8864 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    11.Cooper, N. W., Murphy, M. T., Redmond, L. J. & Dolan, A. C. Reproductive correlates of spring arrival date in the Eastern Kingbird Tyrannus tyrannus. J. Ornithol. 152, 143–152 (2011).
    Google Scholar 
    12.Nilsson, C., Klaassen, R. H. G. & Alerstam, T. Differences in speed and duration of bird migration between spring and autumn. Am. Nat. 181, 837–845 (2013).PubMed 

    Google Scholar 
    13.Gow, E. A. et al. Effects of spring migration distance on tree swallow reproductive success within and among flyways. Front. Ecol. Evol. 7, 380 (2019).ADS 

    Google Scholar 
    14.Saino, N. et al. Sex-dependent carry-over effects on timing of reproduction and fecundity of a migratory bird. J. Anim. Ecol. 86, 239–249 (2017).PubMed 

    Google Scholar 
    15.Briedis, M., Hahn, S. & Adamík, P. Cold spell en route delays spring arrival and decreases apparent survival in a long-distance migratory songbird. BMC Ecol. 17, 1–8 (2017).
    Google Scholar 
    16.McKinnon, E. A., Macdonald, C. M., Gilchrist, H. G. & Love, O. P. Spring and fall migration phenology of an arctic-breeding passerine. J. Ornithol. 157, 681–693 (2016).
    Google Scholar 
    17.Woodworth, B. K. et al. Differential migration and the link between winter latitude, timing of migration, and breeding in a songbird. Oecologia 181, 413–422 (2016).ADS 
    PubMed 

    Google Scholar 
    18.Saino, N. et al. Ecological conditions during winter predict arrival date at the breeding quarters in a trans-Saharan migratory bird. Ecol. Lett. 7, 21–25 (2004).
    Google Scholar 
    19.Norris, D. R., Marra, P. P., Kyser, T. K., Sherry, T. W. & Ratcliffe, L. M. Tropical winter habitat limits reproductive success on the temperate breeding grounds in a migratory bird. Proc. R. Soc. B Biol. Sci. 271, 59–64 (2004).
    Google Scholar 
    20.Bearhop, S., Hilton, G. M., Votier, S. C. & Waldron, S. Stable isotope ratios indicate that body condition in migrating passerines is influenced by winter habitat. Proc. R. Soc. London B Biol. Sci. 271, S215–S218 (2004).
    Google Scholar 
    21.Ockendon, N., Leech, D. & Pearce-Higgins, J. W. Climatic effects on breeding grounds are more important drivers of breeding phenology in migrant birds than carry- over effects from wintering grounds. Biol. Lett. 9 (2013).22.Arbeiter, S., Schulze, M., Tamm, P. & Hahn, S. Strong cascading effect of weather conditions on prey availability and annual breeding performance in European bee-eaters Merops apiaster. J. Ornithol. 157, 155–163 (2016).
    Google Scholar 
    23.Harrison, X. A. et al. Environmental conditions during breeding modify the strength of mass-dependent carry-over effects in a migratory bird. PLoS ONE 8, e77783 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Swift, R. J., Rodewald, A. D., Johnson, J. A., Andres, B. A. & Senner, N. R. Seasonal survival and reversible state effects in a long-distance migratory shorebird. J. Anim. Ecol. 89, 2043–2055 (2020).PubMed 

    Google Scholar 
    25.Brust, V., Bastian, H. V., Bastian, A. & Schmoll, T. Determinants of between-year burrow re-occupation in a colony of the European bee-eater Merops apiaster. Ecol. Evol. 5, 3223–3230 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    26.Lessells, C. M. & Krebs, J. R. Age and breeding performance of European bee-eaters. Auk 106, 375–382 (1989).
    Google Scholar 
    27.Pârâu, L. G. et al. Dynamics in numbers of group-roosting individuals in relation to pair-sleeping occurrence and onset of egg-laying in European Bee-eaters Merops apiaster. J. Ornithol. 158, 1119–1122 (2017).
    Google Scholar 
    28.Hoi, H., Darolová, A., Krištofík, J. & Hoi, C. The effect of the ectoparasite Carnus hemapterus on immune defence, condition, and health of nestling European Bee-eaters. J. Ornithol. 159, 291–302 (2018).
    Google Scholar 
    29.Kapun, M., Darolová, A., Krištofik, J., Mahr, K. & Hoi, H. Distinct colour morphs in nestling European Bee-eaters Merops apiaster: Is there an adaptive value?. J. Ornithol. 152, 1001–1005 (2011).
    Google Scholar 
    30.Lessells, C. M. & Avery, M. I. Hatching asynchrony in european bee-eaters merops apiaster. J. Anim. Ecol. 58, 815–835 (1989).
    Google Scholar 
    31.Arbeiter, S., Schulze, M., Todte, I. & Hahn, S. Das Zugverhalten und die Ausbreitung von in Sachsen-Anhalt brütenden Bienenfressern (Merops apiaster). Berichte der Vogelwarte Hiddensee 21, 33–40 (2012).
    Google Scholar 
    32.Dhanjal-Adams, K. L. et al. Spatiotemporal group dynamics in a long-distance migratory bird. Curr. Biol. 28, 2824-2830.e3 (2018).CAS 
    PubMed 

    Google Scholar 
    33.Hahn, S. et al. Range-wide migration corridors and non-breeding areas of a northward expanding Afro-Palaearctic migrant, the European Bee-eater Merops apiaster. Ibis (Lond. 1859) 162, 345–355 (2019).
    Google Scholar 
    34.Fry, C. H. The bee-eaters. (T & A D Polyser Ltd, 1984).35.Ramos, R. et al. Population genetic structure and long-distance dispersal of a recently expanding migratory bird. Mol. Phylogenet. Evol. 99, 194–203 (2016).PubMed 

    Google Scholar 
    36.Jacobsen, L. B. et al. Annual spatiotemporal migration schedules in three larger insectivorous birds: European nightjar, common swift and common cuckoo. Anim. Biotelem1 5, 1–11 (2017).
    Google Scholar 
    37.Åkesson, S., Klaassen, R., Holmgren, J., Fox, J. W. & Hedenström, A. Migration routes and strategies in a highly aerial migrant, the common Swift Apus apus, revealed by light-level. Geolocators. PLoS One 7, e41195 (2012).ADS 
    PubMed 

    Google Scholar 
    38.Carneiro, C., Gunnarsson, T. G. & Alves, J. A. Faster migration in autumn than in spring: seasonal migration patterns and non-breeding distribution of Icelandic Whimbrels Numenius phaeopus islandicus. J. Avian Biol. 50 (2019).39.Sapir, N. et al. Migration by soaring or flapping: numerical atmospheric simulations reveal that turbulence kinetic energy dictates bee-eater flight mode. Proc. R. Soc. B Biol. Sci. 278, 3380–3386 (2011).
    Google Scholar 
    40.Lemke, H. W. et al. Annual cycle and migration strategies of a Trans-Saharan migratory songbird: a geolocator study in the great reed warbler. PLoS ONE 8, e79209 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Briedis, M. et al. A full annual perspective on sex-biased migration timing in long-distance migratory birds. Proc. R. Soc. B Biol. Sci. 286, 20182821 (2019).
    Google Scholar 
    42.Fransson, T. Timing and speed of migration in North and West European populations of Sylvia warblers. J. Avian Biol. 26, 39–48 (1995).
    Google Scholar 
    43.Briedis, M., Hahn, S., Krist, M. & Adamík, P. Finish with a sprint: evidence for time-selected last leg of migration in a long-distance migratory songbird. Ecol. Evol. 8, 6899–6908 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    44.Alerstam, T. Strategies for the transition to breeding in time-selected bird migration. Ardea 94, 347–357 (2006).
    Google Scholar 
    45.Arizaga, J., Willemoes, M., Unamuno, E., Unamuno, J. M. & Thorup, K. Following year-round movements in Barn Swallows using geolocators: could breeding pairs remain together during the winter?. Bird Study 62, 141–145 (2015).
    Google Scholar 
    46.Tøttrup, A. P. et al. Drought in Africa caused delayed arrival of European songbirds. Science 338, 1307 (2012).ADS 
    PubMed 

    Google Scholar 
    47.Smith, R. J. & Moore, F. R. Arrival timing and seasonal reproductive performance in a long-distance migratory landbird. Behav. Ecol. Sociobiol. 57, 231–239 (2005).
    Google Scholar 
    48.IPMA. Climate bulletin, June 2017, Portugal. http://www.ipma.pt/resources.www/docs/im.publicacoes/edicoes.online/20170719/bXUzZOgrqXmTjnUVRtro/cli_20170601_20170630_pcl_mm_co_pt.pdf (2017).49.Kearney, M., Shine, R. & Porter, W. P. The potential for behavioral thermoregulation to buffer ‘cold-blooded’ animals against climate warming. Proc. Natl. Acad. Sci. U.S.A. 106, 3835–3840 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Cunningham, S. J., Martin, R. O., Hojem, C. L. & Hockey, P. A. R. Temperatures in excess of critical thresholds threaten nestling growth and survival in a rapidly-warming Arid Savanna: a study of common fiscals. PLoS ONE 8 (2013).51.Cruz-Mcdonnell, K. K. & Wolf, B. O. Rapid warming and drought negatively impact population size and reproductive dynamics of an avian predator in the arid southwest. Glob. Chang. Biol. 22, 237–253 (2016).ADS 
    PubMed 

    Google Scholar 
    52.Shukla, P. R. et al. Technical summary. IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems (2019).53.Persson, C. Age structure, sex ratios and survival rates in a south Swedish Sand martin (Riparia riparia) population, 1964 to 1984. J. Zool. 1, 639–670 (1987).
    Google Scholar 
    54.Costa, J. S., Rocha, A. D., Correia, R. A. & Alves, J. A. Developing and validating a nestling photographic aging guide for cavity-nesting birds: an example with the European Bee-eater (Merops apiaster). Avian Res. 11, 1–8 (2020).
    Google Scholar 
    55.Lisovski, S., Wotherspoon, S. & Sumner, M. TwGeos: Basic data processing for light-level geolocation archival tags. R package version 0.1.2. (2016). 56.Lisovski, S. et al. Geolocation by light: accuracy and precision affected by environmental factors. Methods Ecol. Evol. 3, 603–612 (2012).
    Google Scholar 
    57.Wotherspoon, S., Sumner, M. & Lisovski, S. R package SGAT: solar/satellite geolocation for animal tracking (2016).58.Lisovski, S. et al. Light-level geolocator analyses: a user’s guide. J. Anim. Ecol. 89, 221–236 (2019).PubMed 

    Google Scholar 
    59.Lisovski, S. & Hahn, S. GeoLight—processing and analysing light-based geolocator data in R. Methods Ecol. Evol. 3, 1055–1059 (2012).
    Google Scholar 
    60.Mazerolle, M. J. AICcmodavg: model selection and multimodel inference based on (Q)AIC(c). R package version 2.2–2. (2019).61.Team, R. C. R: a language and environment for statistical computing. (2017). More

  • in

    More than skin deep

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Predators buffer impacts

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Predation increases multiple components of microbial diversity in activated sludge communities

    1.Seviour RJ, Kragelund C, Kong Y, Eales K, Nielsen JL, Nielsen PH. Ecophysiology of the Actinobacteria in activated sludge systems. Antonie Van Leeuw J Microb. 2008;94:21–33.
    Google Scholar 
    2.Jiang X-T, Ye L, Ju F, Wang Y-L, Zhang T. Toward an intensive longitudinal understanding of activated sludge bacterial assembly and dynamics. Environ Sci Technol. 2018;52:8224–32.CAS 
    PubMed 

    Google Scholar 
    3.Fiałkowska E, Pajdak-Stós A. The role of Lecane rotifers in activated sludge bulking control. Water Res. 2008;42:2483–90.PubMed 

    Google Scholar 
    4.Madoni P. Protozoa in wastewater treatment processes: a minireview. Ital J Zool. 2011;78:3–11.
    Google Scholar 
    5.Ye L, Mei R, Liu W-T, Ren H, Zhang X-X. Machine learning-aided analyses of thousands of draft genomes reveal specific features of activated sludge processes. Microbiome. 2020;8:16.PubMed 
    PubMed Central 

    Google Scholar 
    6.Peces M, Astals S, Jensen P, Clarke W. Deterministic mechanisms define the long-term anaerobic digestion microbiome and its functionality regardless of the initial microbial community. Water Res. 2018;141:366–76.CAS 
    PubMed 

    Google Scholar 
    7.Wu L, Ning D, Zhang B, Li Y, Zhang P, Shan X, et al. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nat Microbiol. 2019;4:1183–95.CAS 
    PubMed 

    Google Scholar 
    8.Cox HH, Deshusses MA. Biomass control in waste air biotrickling filters by protozoan predation. Biotechnol Bioeng. 1999;62:216–24.CAS 
    PubMed 

    Google Scholar 
    9.Madoni P. A sludge biotic index (SBI) for the evaluation of the biological performance of activated sludge plants based on the microfauna analysis. Water Res. 1994;28:67–75.CAS 

    Google Scholar 
    10.Ratsak C, Maarsen K, Kooijman S. Effects of protozoa on carbon mineralization in activated sludge. Water Res. 1996;30:1–12.CAS 

    Google Scholar 
    11.Pogue AJ, Gilbride KA. Impact of protozoan grazing on nitrification and the ammonia- and nitrite-oxidizing bacterial communities in activated sludge. Can J Microbiol. 2007;53:559–71.CAS 
    PubMed 

    Google Scholar 
    12.Esteban G, Tellez C, Bautista LM. Dynamics of ciliated protozoa communities in activated-sludge process. Water Res. 1991;25:967–72.
    Google Scholar 
    13.Madoni P, Davoli D, Chierici E. Comparative analysis of the activated sludge microfauna in several sewage treatment works. Water Res. 1993;27:1485–91.CAS 

    Google Scholar 
    14.Otto S, Harms H, Wick LY. Effects of predation and dispersal on bacterial abundance and contaminant biodegradation. FEMS Microbiol Ecol. 2017;93:fiw241.PubMed 

    Google Scholar 
    15.Peralta-Maraver I, Reiss J, Robertson AL. Interplay of hydrology, community ecology and pollutant attenuation in the hyporheic zone. Sci Total Environ. 2018;610:267–75.PubMed 

    Google Scholar 
    16.Yang JW, Wu W, Chung C-C, Chiang K-P, Gong G-C, Hsieh C-H. Predator and prey biodiversity relationship and its consequences on marine ecosystem functioning—interplay between nanoflagellates and bacterioplankton. ISME J. 2018;12:1532–42.PubMed 
    PubMed Central 

    Google Scholar 
    17.Seiler C, van Velzen E, Neu TR, Gaedke U, Berendonk TU, Weitere M. Grazing resistance of bacterial biofilms: a matter of predators’ feeding trait. FEMS Microbiol Ecol. 2017;93:fix112.
    Google Scholar 
    18.Burian A, Nielsen JM, Winder M. Food quantity-quality interactions and their impact on consumer behavior and trophic transfer. Ecol Monogr. 2020;90:e01395.
    Google Scholar 
    19.Schmitz OJ. Effects of predator functional diversity on grassland ecosystem function. Ecology. 2009;90:2339–45.PubMed 

    Google Scholar 
    20.Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ, et al. Trophic downgrading of planet Earth. Science. 2011;333:301–6.CAS 
    PubMed 

    Google Scholar 
    21.Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, et al. Biodiversity loss and its impact on humanity. Nature. 2012;486:59–67.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Isbell F, Calcagno V, Hector A, Connolly J, Harpole WS, Reich PB, et al. High plant diversity is needed to maintain ecosystem services. Nature. 2011;477:199–202.CAS 
    PubMed 

    Google Scholar 
    23.Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun. 2016;7:10541.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.McCann KS. The diversity–stability debate. Nature. 2000;405:228.CAS 
    PubMed 

    Google Scholar 
    25.Pennekamp F, Pontarp M, Tabi A, Altermatt F, Alther R, Choffat Y, et al. Biodiversity increases and decreases ecosystem stability. Nature. 2018;563:109–12.CAS 
    PubMed 

    Google Scholar 
    26.Saikaly PE, Oerther DB. Diversity of dominant bacterial taxa in activated sludge promotes functional resistance following toxic shock loading. Microb Ecol. 2011;61:557–67.CAS 
    PubMed 

    Google Scholar 
    27.Worm B, Lotze HK, Hillebrand H, Sommer U. Consumer versus resource control of species diversity and ecosystem functioning. Nature. 2002;417:848–51.CAS 
    PubMed 

    Google Scholar 
    28.Gauzens B, Legendre S, Lazzaro X, Lacroix G. Intermediate predation pressure leads to maximal complexity in food webs. Oikos. 2016;125:595–603.
    Google Scholar 
    29.Chase JM, Biro EG, Ryberg WA, Smith KG. Predators temper the relative importance of stochastic processes in the assembly of prey metacommunities. Ecol Lett. 2009;12:1210–8.PubMed 

    Google Scholar 
    30.Paine RT. Food web complexity and species diversity. Am Nat. 1966;100:65–75.
    Google Scholar 
    31.Gliwicz ZM, Wursbaugh WA, Szymanska E. Absence of predation eliminates coexistence: experience from the fish–zooplankton interface. Fifty years after the “Homage to Santa Rosalia”: old and new paradigms on biodiversity in aquatic ecosystems. Springer; 2010. p. 103–17.32.Terborgh JW. Toward a trophic theory of species diversity. Proc Natl Acad Sci USA. 2015;112:11415–22.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Kondoh M. Unifying the relationships of species richness to productivity and disturbance. Proc R Soc B-Biol Sci. 2001;268:269–71.CAS 

    Google Scholar 
    34.Hutchinson GE. The paradox of the plankton. Am Nat. 1961;95:137–45.
    Google Scholar 
    35.Al-Shahwani S, Horan N. The use of protozoa to indicate changes in the performance of activated sludge plants. Water Res. 1991;25:633–8.CAS 

    Google Scholar 
    36.Torsvik V, Øvreås L, Thingstad TF. Prokaryotic diversity-magnitude, dynamics, and controlling factors. Science. 2002;296:1064–6.CAS 
    PubMed 

    Google Scholar 
    37.Papadimitriou C, Papatheodoulou A, Takavakoglou V, Zdragas A, Samaras P, Sakellaropoulos G, et al. Investigation of protozoa as indicators of wastewater treatment efficiency in constructed wetlands. Desalination. 2010;250:378–82.CAS 

    Google Scholar 
    38.Rossberg AG. Food webs and biodiversity: foundations, models, data. John Wiley & Sons; 2013.39.Vage S, Bratbak G, Egge J, Heldal M, Larsen A, Norland S, et al. Simple models combining competition, defence and resource availability have broad implications in pelagic microbial food webs. Ecol Lett. 2018;21:1440–52.PubMed 

    Google Scholar 
    40.Landry M, Hassett R. Estimating the grazing impact of marine micro-zooplankton. Mar Biol. 1982;67:283–8.
    Google Scholar 
    41.Dolan J, Gallegos C, Moigis A. Dilution effects on microzooplankton in dilution grazing experiments. Mar Ecol Prog Ser. 2000;200:127–39.CAS 

    Google Scholar 
    42.Dottorini G, Michaelsen TY, Kucheryavskiy S, Andersen KS, Kristensen JM, Peces M, et al. Mass-immigration determines the assembly of activated sludge microbial communities. Proc Natl Acad Sci USA; 2021;118:e2021589118.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Stevens-Garmon J, Drewes JE, Khan SJ, McDonald JA, Dickenson ERV. Sorption of emerging trace organic compounds onto wastewater sludge solids. Water Res. 2011;45:3417–26.CAS 
    PubMed 

    Google Scholar 
    44.Gasol JM, Morán XAG. Flow cytometric determination of microbial abundances and its use to obtain indices of community structure and relative activity. Hydrocarbon and lipid microbiology protocols. Springer; 2015. p. 159–87.45.Ram AP, Chaibi-Slouma S, Keshri J, Colombet J, Sime-Ngando T. Functional responses of bacterioplankton diversity and metabolism to experimental bottom-up and top-down forcings. Microb Ecol. 2016;72:347–58.
    Google Scholar 
    46.Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 2011;108:4516–22.CAS 
    PubMed 

    Google Scholar 
    47.Hugerth LW, Muller EE, Hu YO, Lebrun LA, Roume H, Lundin D, et al. Systematic design of 18S rRNA gene primers for determining eukaryotic diversity in microbial consortia. Plos One. 2014;9:e95567.PubMed 
    PubMed Central 

    Google Scholar 
    48.D’Amore R, Ijaz UZ, Schirmer M, Kenny JG, Gregory R, Darby AC, et al. A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling. BMC Genom. 2016;17:55.
    Google Scholar 
    49.Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D596.PubMed 
    PubMed Central 

    Google Scholar 
    52.Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likelihood trees for large alignments. Plos One. 2010;5:10.
    Google Scholar 
    53.Faith DP. Conservation evaluation and phylogenetic diversity. Biol Conserv. 1992;61:1–10.
    Google Scholar 
    54.Tsirogiannis C, Sandel B. PhyloMeasures: a package for computing phylogenetic biodiversity measures and their statistical moments. Ecography. 2016;39:709–14.
    Google Scholar 
    55.Wobbrock JO, Findlater L, Gergle D, Higgins JJ, Acm. The aligned rank transform for nonparametric factorial analyses using only ANOVA procedures. Association Computing Machinery: New York; 2011.56.Burnham KP, Anderson DR. Model selection and multimodel interference: a practical information—theoretic approach. Springer: New York, USA; 2002.57.Arndt D, Xia J, Liu Y, Zhou Y, Guo AC, Cruz JA, et al. METAGENassist: a comprehensive web server for comparative metagenomics. Nucleic Acids Res. 2012;40:W88–W95.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.R Development Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2015. ISBN 3-900051-07-0, http://wwwR-projectorg.59.Calbet A, Landry MR. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol Oceanogr. 2004;49:51–57.CAS 

    Google Scholar 
    60.Kiorboe T. How zooplankton feed: mechanisms, traits and trade-offs. Biol Rev. 2011;86:311–39.PubMed 

    Google Scholar 
    61.Juergens K, Matz C. Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie Van Leeuw J Microb. 2002;81:413–34.
    Google Scholar 
    62.Hammill E, Kratina P, Beckerman A, Anholt BR. Precise time interactions between behavioural and morphological defences. Oikos. 2010;119:494–9.
    Google Scholar 
    63.Pernthaler J. Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol. 2005;3:537–46.CAS 
    PubMed 

    Google Scholar 
    64.Visser MD, Muller‐Landau HC, Wright SJ, Rutten G, Jansen PA. Tri‐trophic interactions affect density dependence of seed fate in a tropical forest palm. Ecol Lett. 2011;14:1093–1100.PubMed 

    Google Scholar 
    65.Bagchi R, Gallery RE, Gripenberg S, Gurr SJ, Narayan L, Addis CE, et al. Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature. 2014;506:85–88.CAS 
    PubMed 

    Google Scholar 
    66.Kratina P, Vos M, Anholt BR. Species diversity modulates predation. Ecology. 2007;88:1917–23.PubMed 

    Google Scholar 
    67.Jaworski CC, Bompard A, Genies L, Amiens-Desneux E, Desneux N. Preference and prey switching in a generalist predator attacking local and invasive alien pests. Plos One. 2013;8:e82231.PubMed 
    PubMed Central 

    Google Scholar 
    68.Coblentz KE, DeLong JP. Predator‐dependent functional responses alter the coexistence and indirect effects among prey that share a predator. Oikos. 2020;129:1404–14.
    Google Scholar 
    69.Madoni P. Estimates of ciliated protozoa biomass in activated sludge and biofilm. Bioresour Technol. 1994;48:245–9.CAS 

    Google Scholar 
    70.Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E. The influence of functional diversity and composition on ecosystem processes. Science. 1997;277:1300–2.CAS 

    Google Scholar 
    71.Sato Y, Hori T, Navarro RR, Habe H, Ogata A. Functional maintenance and structural flexibility of microbial communities perturbed by simulated intense rainfall in a pilot-scale membrane bioreactor. Appl Microbiol Biot. 2016;100:6447–56.CAS 

    Google Scholar 
    72.Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc Natl Acad Sci USA. 2007;104:18123–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Srivastava DS, Cadotte MW, MacDonald AAM, Marushia RG, Mirotchnick N. Phylogenetic diversity and the functioning of ecosystems. Ecol Lett. 2012;15:637–48.PubMed 

    Google Scholar 
    74.Yachi S, Loreau M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci USA. 1999;96:1463–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Mori AS, Isbell F, Seidl R. β-diversity, community assembly, and ecosystem functioning. Trends Ecol Evol. 2018;33:549–64.PubMed 

    Google Scholar 
    76.Hammill E, Hawkins CP, Greig HS, Kratina P, Shurin JB, Atwood TB. Landscape heterogeneity strengthens the relationship between β‐diversity and ecosystem function. Ecology. 2018;99:2467–75.PubMed 

    Google Scholar 
    77.Ellingsen KE, Yoccoz NG, Tveraa T, Frank KT, Johannesen E, Anderson MJ, et al. The rise of a marine generalist predator and the fall of beta diversity. Glob Change Biol. 2020;26:2897–907.
    Google Scholar 
    78.Weisse T. The significance of inter-and intraspecific variation in bacterivorous and herbivorous protists. Antonie Van Leeuw J Microb. 2002;81:327–41.
    Google Scholar 
    79.Nierychlo M, Andersen KS, Xu Y, Green N, Jiang C, Albertsen M, et al. MiDAS 3: an ecosystem-specific reference database, taxonomy and knowledge platform for activated sludge and anaerobic digesters reveals species-level microbiome composition of activated sludge. Water Res. 2020;182:115955.CAS 
    PubMed 

    Google Scholar  More