1.Weinert, L. A., Araujo-Jnr, E. V., Ahmed, M. Z. & Welch, J. J. The incidence of bacterial endosymbionts in terrestrial arthropods. Proc. R. Soc. B: Biol. Sci. 282, 20150249 (2015).
Google Scholar
2.Werren, J. H. Biology of Wolbachia. Annu Rev. Entomol. 42, 587–609 (1997).CAS
PubMed
Google Scholar
3.Turelli, M. & Hoffmann, A. A. Rapid spread of an inherited incompatibility factor in California Drosophila. Nature 353, 440–442 (1991).CAS
PubMed
Google Scholar
4.Werren, J. H., Baldo, L. & Clark, M. E. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6, 741–751 (2008).CAS
PubMed
Google Scholar
5.Teixeira, L., Ferreira, A. & Ashburner, M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. Plos Biol. 6, e2 (2008).PubMed
Google Scholar
6.Hedges, L. M., Brownlie, J. C., O’Neill, S. L. & Johnson, K. N. Wolbachia and virus protection in insects. Science 322, 702 (2008).CAS
PubMed
Google Scholar
7.Rocha, M. N. et al. Pluripotency of Wolbachia against Arboviruses: the case of yellow fever. Gates Open Res. 3, 161 (2019).PubMed
PubMed Central
Google Scholar
8.Moreira, L. A. et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139, 1268–1278 (2009).PubMed
Google Scholar
9.Dutra, H. L. et al. Wolbachia blocks currently circulating zika virus isolates in Brazilian Aedes aegypti mosquitoes. Cell Host Microbe 19, 771–774 (2016).CAS
PubMed
PubMed Central
Google Scholar
10.Aliota, M. T. et al. The wMel strain of Wolbachia reduces transmission of chikungunya virus in Aedes aegypti. PLoS Negl. Trop. Dis. 10, e0004677 (2016).PubMed
PubMed Central
Google Scholar
11.Schmidt, T. L. et al. Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes aegypti. PLoS Biol. 15, e2001894 (2017).PubMed
PubMed Central
Google Scholar
12.Ryan, P. A. et al. Establishment of wMel Wolbachia in Aedes aegypti mosquitoes and reduction of local dengue transmission in Cairns and surrounding locations in northern Queensland, Australia. Gates Open Res. 3, 1547 (2020).PubMed
PubMed Central
Google Scholar
13.Indriani, C. et al. Reduced dengue incidence following deployments of Wolbachia-infected Aedes aegypti in Yogyakarta, Indonesia: a quasi-experimental trial using controlled interrupted time series analysis. Gates Open Res. 4, 50 (2020).PubMed
PubMed Central
Google Scholar
14.Zug, R. & Hammerstein, P. Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biol. Rev. Camb. Philos. Soc. 90, 89–111 (2015).PubMed
Google Scholar
15.Shi, M. et al. No detectable effect of Wolbachia wMel on the prevalence and abundance of the RNA virome of Drosophila melanogaster. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2018.1165 (2018).16.Webster, C. L. et al. The discovery, distribution, and evolution of viruses associated with Drosophila melanogaster. PLoS Biol. 13, e1002210 (2015).PubMed
PubMed Central
Google Scholar
17.Pimentel, A. C., Cesar, C. S., Martins, M. & Cogni, R. The antiviral effects of the symbiont bacteria Wolbachia in insects. Front Immunol. 11, 626329 (2021).PubMed
PubMed Central
Google Scholar
18.Kriesner, P., Hoffmann, A. A., Lee, S. F., Turelli, M. & Weeks, A. R. Rapid sequential spread of two Wolbachia variants in Drosophila simulans. PLoS Pathog. 9, e1003607 (2013).CAS
PubMed
PubMed Central
Google Scholar
19.Weeks, A. R., Turelli, M., Harcombe, W. R., Reynolds, K. T. & Hoffmann, A. A. From parasite to mutualist: rapid evolution of Wolbachia in natural populations of Drosophila. PLoS Biol. 5, e114 (2007).PubMed
PubMed Central
Google Scholar
20.Hoffmann, A. A. & Turelli, M. Unidirectional incompatibility in Drosophila simulans: inheritance, geographic variation and fitness effects. Genetics 119, 435–444 (1988).CAS
PubMed
PubMed Central
Google Scholar
21.Cross, S. T. et al. Partitiviruses infecting Drosophila melanogaster and Aedes aegypti exhibit efficient biparental vertical transmission. J. Virol. https://doi.org/10.1128/jvi.01070-20 (2020).22.Webster, C. L., Longdon, B., Lewis, S. H. & Obbard, D. J. Twenty-five new viruses associated with the Drosophilidae (Diptera). Evolut. Bioinforma. online 12, 13–25 (2016).CAS
Google Scholar
23.Jousset, F. X. & Plus, N. Study of the vertical transmission and horizontal transmission of “Drosophila melanogaster” and “Drosophila immigrans” picornavirus (author’s transl). Ann. Microbiol. 126, 231–249 (1975).CAS
Google Scholar
24.Jousset, F. X., Plus, N., Croizier, G. & Thomas, M. Existence in Drosophila of 2 groups of picornavirus with different biological and serological properties. C. R. Acad. Hebd. Seances Acad. Sci. D. 275, 3043–3046 (1972).CAS
PubMed
Google Scholar
25.Kapun, M. et al. Genomic Analysis of European Drosophila melanogaster populations reveals longitudinal structure, continent-wide selection, and previously unknown DNA viruses. Mol. Biol. Evol. 37, 2661–2678 (2020).CAS
PubMed
PubMed Central
Google Scholar
26.Medd, N. C. et al. The virome of Drosophila suzukii, an invasive pest of soft fruit. Virus Evol. 4, vey009 (2018).PubMed
PubMed Central
Google Scholar
27.Longdon, B. et al. The evolution, diversity, and host associations of rhabdoviruses. Virus Evol. 1, vev014 (2015).PubMed
PubMed Central
Google Scholar
28.Schoonvaere, K., Smagghe, G., Francis, F. & de Graaf, D. C. Study of the metatranscriptome of eight social and solitary wild bee species reveals novel viruses and bee parasites. Front. Microbiol. 9, 177 (2018).PubMed
PubMed Central
Google Scholar
29.Pettersson, J. H., Shi, M., Eden, J. S., Holmes, E. C. & Hesson, J. C. Meta-transcriptomic comparison of the RNA viromes of the mosquito vectors Culex pipiens and Culex torrentium in Northern Europe. Viruses https://doi.org/10.3390/v11111033 (2019).30.Mahar, J. E., Shi, M., Hall, R. N., Strive, T. & Holmes, E. C. Comparative analysis of RNA virome composition in rabbits and associated ectoparasites. J. Virol. https://doi.org/10.1128/jvi.02119-19 (2020).31.Martinez, J. et al. Symbionts commonly provide broad spectrum resistance to viruses in insects: a comparative analysis of Wolbachia strains. PLoS Pathogens https://doi.org/10.1371/journal.ppat.1004369 (2014).32.Cross, S. T. et al. Galbut virus infection minimally influences Drosophila melanogaster fitness traits in a strain and sex-dependent manner. Preprint at bioRxiv https://doi.org/10.1101/2021.05.18.444759 (2021).33.Yampolsky, L. Y., Webb, C. T., Shabalina, S. A. & Kondrashov, A. S. Rapid accumulation of a vertically transmitted parasite triggered by relaxation of natural selection among hosts. Evolut. Ecol. Res. 1, 581–589 (1999).
Google Scholar
34.Wilfert, L. & Jiggins, F. M. The dynamics of reciprocal selective sweeps of host resistance and a parasite counter-adaptation in Drosophila. Evolution 67, 761–773 (2013).CAS
PubMed
Google Scholar
35.Chrostek, E., Martins, N., Marialva, M. S. & Teixeira, L. Wolbachia conferred antiviral protection is determined by developmental temperature. mBio 12, e0292320 (2021).PubMed
Google Scholar
36.Ortiz-Baez, A. S., Shi, M., Hoffmann, A. A. & Holmes, E. C. RNA virome diversity and Wolbachia infection in individual Drosophila simulans flies. J. Gen. Virol. 102, 001639 (2021).
Google Scholar
37.Haine, E. R. Symbiont-mediated protection. Proc. Biol. Sci. 275, 353–361 (2008).PubMed
Google Scholar
38.Martinez, J. et al. Addicted? Reduced host resistance in populations with defensive symbionts. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2016.0778 (2016).39.Cogni, R. et al. Variation in Drosophila melanogaster central metabolic genes appears driven by natural selection both within and between populations. P R. Soc. B-Biol. Sci. 282, 20142688 (2015).CAS
Google Scholar
40.Cogni, R. et al. On the long-term stability of clines in some metabolic genes in Drosophila melanogaster. Sci. Rep. https://doi.org/10.1038/srep42766 (2017).41.Longdon, B. et al. The causes and consequences of changes in virulence following pathogen host shifts. PLoS Pathogens https://doi.org/10.1371/journal.ppat.1004728 (2015).42.Longdon, B., Hadfield, J. D., Webster, C. L., Obbard, D. J. & Jiggins, F. M. Host phylogeny determines viral persistence and replication in novel hosts. PLoS Pathog. 7, e1002260 (2011).CAS
PubMed
PubMed Central
Google Scholar
43.Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, pdb.prot5448 (2010).PubMed
Google Scholar
44.Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).CAS
PubMed
PubMed Central
Google Scholar
45.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS
PubMed
Google Scholar
46.Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS
PubMed
PubMed Central
Google Scholar
47.Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).CAS
PubMed
PubMed Central
Google Scholar
48.Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).CAS
Google Scholar
49.Notredame, C., Higgins, D. G. & Heringa, J. T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205–217 (2000).CAS
PubMed
Google Scholar
50.Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).CAS
PubMed
PubMed Central
Google Scholar
51.Coyle, M. C., Elya, C. N., Bronski, M. & Eisen, M. B. Entomophthovirus: an insect-derived iflavirus that infects a behavior manipulating fungal pathogen of dipterans. Preprint at bioRxiv https://doi.org/10.1101/371526 (2018).52.Longdon, B. et al. Vertically transmitted rhabdoviruses are found across three insect families and have dynamic interactions with their hosts. P Roy Soc B-Biol Sci https://doi.org/10.1098/rspb.2016.2381 (2017).53.Untergasser, A. et al. Primer3-new capabilities and interfaces. Nucleic Acids Res. 40, e115 (2012).CAS
PubMed
PubMed Central
Google Scholar
54.Ye, J. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinforma. 13, 134 (2012).CAS
Google Scholar
55.Lefever, S., Pattyn, F., Hellemans, J. & Vandesompele, J. Single-nucleotide polymorphisms and other mismatches reduce performance of quantitative PCR assays. Clin. Chem. 59, 1470–1480 (2013).CAS
PubMed
Google Scholar
56.Hadfield, J. D. MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package. 2010 33, 22, (2010).57.Cogni, R., Ding, S. D., Pimentel, A. C., Day, J. P. & Jiggins, F. M. https://doi.org/10.5281/zenodo.5525967 (Zenodo 2021). More