Temperature, moisture and freeze–thaw controls on CO2 production in soil incubations from northern peatlands
1.Huang, J. et al. Recently amplified arctic warming has contributed to a continual global warming trend. Nat. Clim. Chang. 7(12), 875–879. https://doi.org/10.1038/s41558-017-0009-5 (2017).ADS
Article
Google Scholar
2.Zhang, X. et al. Changes in temperature and precipitation across Canada. In Canada’s Changing Climate Report (eds Bush, E. & Lemmen, D. S.) 112–193 (Ottawa, 2019).
Google Scholar
3.Koenigk, T. et al. Arctic climate change in 21st century CMIP5 simulations with EC-Earth. Clim. Dyn. 40(11–12), 2719–2743. https://doi.org/10.1007/s00382-012-1505-y (2013).Article
Google Scholar
4.Arndt, K. A., Lipson, D. A., Hashemi, J., Oechel, W. C. & Zona, D. Snow melt stimulates ecosystem respiration in Arctic ecosystems. Glob. Change Biol. 26(9), 5042–5051. https://doi.org/10.1111/gcb.15193 (2020).ADS
Article
Google Scholar
5.Commane, R. et al. Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra. Proc. Natl. Acad. Sci. U.S.A. 114(21), 5361–5366. https://doi.org/10.1073/pnas.1618567114 (2017).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
6.Euskirchen, E. S., Bret-Harte, M. S., Shaver, G. R., Edgar, C. W. & Romanovsky, V. E. Long-term release of carbon dioxide from Arctic Tundra Ecosystems in Alaska. Ecosystems 20(5), 960–974. https://doi.org/10.1007/s10021-016-0085-9 (2017).CAS
Article
Google Scholar
7.Webb, E. E. et al. Increased wintertime CO2 loss as a result of sustained tundra warming. J. Geophys. Res. Biogeosci. 121, 249–265. https://doi.org/10.1002/2014JG002795 (2016).CAS
Article
Google Scholar
8.Natali, S. M. et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Chang. 9(11), 852–857. https://doi.org/10.1038/s41558-019-0592-8 (2019).ADS
CAS
Article
Google Scholar
9.Rafat, A. et al. Non-growing season carbon emissions in a northern peatland are projected to increase under global warming. Nature Communications Earth & Enviornment 2(1), 111. https://doi.org/10.1038/s43247-021-00184-w (2021).ADS
Article
Google Scholar
10.Yarwood, S. A. The role of wetland microorganisms in plant-litter decomposition and soil organic matter formation: A critical review. FEMS Microbiol. Ecol. 94(11), 1–17. https://doi.org/10.1093/femsec/fiy175 (2018).CAS
Article
Google Scholar
11.Yu, Z. C. Northern peatland carbon stocks and dynamics: A review. Biogeosciences 9(10), 4071–4085. https://doi.org/10.5194/bg-9-4071-2012 (2012).ADS
CAS
Article
Google Scholar
12.Keenan, T. F. & Williams, C. A. The terrestrial carbon sink. Annu. Rev. Environ. Resour. 43, 219–243. https://doi.org/10.1146/annurev-environ-102017-030204 (2018).Article
Google Scholar
13.Stocker, B. D., Yu, Z., Massa, C. & Joos, F. Holocene peatland and ice-core data constraints on the timing and magnitude of CO2 emissions from past land use. Proc. Natl. Acad. Sci. 114(7), 1492–1497. https://doi.org/10.1073/pnas.1613889114 (2017).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
14.Webster, K. L. et al. Spatially-integrated estimates of net ecosystem exchange and methane fluxes from Canadian peatlands. Carbon Balance Manage. 13(1), 5. https://doi.org/10.1186/s13021-018-0105-5 (2018).CAS
Article
Google Scholar
15.Byun, E., Finkelstein, S. A., Cowling, S. A. & Badiou, P. Potential carbon loss associated with post-settlement wetland conversion in southern Ontario, Canada. Carbon Balance Manag 13(1), 6. https://doi.org/10.1186/s13021-018-0094-4 (2018).CAS
Article
PubMed
PubMed Central
Google Scholar
16.Lei, J. et al. Temporal changes in global soil respiration since 1987. Nat. Commun. 12(1), 1–9. https://doi.org/10.1038/s41467-020-20616-z (2021).ADS
CAS
Article
Google Scholar
17.Bona, K. A. et al. The Canadian model for peatlands (CaMP): A peatland carbon model for national greenhouse gas reporting. Ecol. Model. 431, 109164. https://doi.org/10.1016/j.ecolmodel.2020.109164 (2020).Article
Google Scholar
18.Brooks, P. D., McKnight, D. & Elder, K. Carbon limitation of soil respiration under winter snowpacks: Potential feedbacks between growing season and winter carbon fluxes. Glob. Change Biol. 11(2), 231–238. https://doi.org/10.1111/j.1365-2486.2004.00877.x (2005).ADS
Article
Google Scholar
19.Helbig, M. et al. Direct and indirect climate change effects on carbon dioxide fluxes in a thawing boreal forest–wetland landscape. Glob. Change Biol. 23(8), 3231–3248. https://doi.org/10.1111/gcb.13638 (2017).ADS
Article
Google Scholar
20.Zhang, T., Wang, G., Yang, Y., Mao, T. & Chen, X. Non-growing season soil CO2 flux and its contribution to annual soil CO2 emissions in two typical grasslands in the permafrost region of the Qinghai-Tibet Plateau. Eur. J. Soil Biol. 71, 45–52. https://doi.org/10.1016/j.ejsobi.2015.10.004 (2015).ADS
CAS
Article
Google Scholar
21.Grosse, G. et al. Vulnerability of high-latitude soil organic carbon in North America to disturbance. J. Geophys. Res. 116, G00K06. https://doi.org/10.1029/2010JG001507 (2011).CAS
Article
Google Scholar
22.Hamdi, S., Moyano, F., Sall, S., Bernoux, M. & Chevallier, T. Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions. Soil Biol. Biochem. 58, 115–126. https://doi.org/10.1016/j.soilbio.2012.11.012 (2013).CAS
Article
Google Scholar
23.Conant, R. T. et al. Temperature and soil organic matter decomposition rates—synthesis of current knowledge and a way forward. Glob. Change Biol. 17(11), 3392–3404. https://doi.org/10.1111/j.1365-2486.2011.02496.x (2011).ADS
Article
Google Scholar
24.Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440(7081), 165–173. https://doi.org/10.1038/nature04514 (2006).ADS
CAS
Article
PubMed
Google Scholar
25.Fang, C., Smith, P., Moncrieff, J. B. & Smith, J. U. Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature 433(7021), 57–59. https://doi.org/10.1038/nature03138 (2005).ADS
CAS
Article
PubMed
Google Scholar
26.Koven, C. D., Hugelius, G., Lawrence, D. M. & Wieder, W. R. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat. Clim. Chang. 7(11), 817–822. https://doi.org/10.1038/nclimate3421 (2017).ADS
CAS
Article
Google Scholar
27.Li, J. et al. Biogeographic variation in temperature sensitivity of decomposition in forest soils. Glob. Change Biol. 26(3), 1873–1885. https://doi.org/10.1111/gcb.14838 (2020).ADS
Article
Google Scholar
28.Li, J., Pei, J., Pendall, E., Fang, C. & Nie, M. Spatial heterogeneity of temperature sensitivity of soil respiration: A global analysis of field observations. Soil Biol. Biochem. 141, 107675. https://doi.org/10.1016/j.soilbio.2019.107675 (2020).CAS
Article
Google Scholar
29.Niu, B. et al. Warming homogenizes apparent temperature sensitivity of ecosystem respiration. Sci. Adv. 7(15), eabc7358. https://doi.org/10.1126/sciadv.abc7358 (2021).ADS
Article
PubMed
PubMed Central
Google Scholar
30.Wang, J., Wu, Q., Yuan, Z. & Kang, H. Soil respiration of alpine meadow is controlled by freeze-Thaw processes of active layer in the permafrost region of the Qinghai-Tibet Plateau. Cryosphere 14(9), 2835–2848. https://doi.org/10.5194/tc-14-2835-2020 (2020).ADS
Article
Google Scholar
31.Wang, Q. et al. Global synthesis of temperature sensitivity of soil organic carbon decomposition: Latitudinal patterns and mechanisms. Funct. Ecol. 33(3), 514–523. https://doi.org/10.1111/1365-2435.13256 (2019).Article
Google Scholar
32.Bradford, M. A. et al. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Chang. 6(8), 751–758. https://doi.org/10.1038/nclimate3071 (2016).ADS
CAS
Article
Google Scholar
33.Pi, K. et al. The cold region critical zone in transition: Responses to climate warming and land use change. Annu. Rev. Environ. Resour. 46(1), 1–24. https://doi.org/10.1146/annurev-environ-012220-125703 (2021).Article
Google Scholar
34.Fuss, C. B. et al. Nitrate and dissolved organic carbon mobilization in response to soil freezing variability. Biogeochemistry 131(1–2), 35–47. https://doi.org/10.1007/s10533-016-0262-0 (2016).CAS
Article
Google Scholar
35.Meyer, N., Welp, G. & Amelung, W. The Temperature sensitivity (Q10) of soil respiration: Controlling factors and spatial prediction at regional scale based on environmental soil classes. Glob. Biogeochem. Cycles 32(2), 306–323. https://doi.org/10.1002/2017GB005644 (2018).ADS
CAS
Article
Google Scholar
36.Moyano, F. E. et al. The moisture response of soil heterotrophic respiration: Interaction with soil properties. Biogeosciences 9(3), 1173–1182. https://doi.org/10.5194/bg-9-1173-2012 (2012).ADS
CAS
Article
Google Scholar
37.Schipper, L. A. et al. Shifts in temperature response of soil respiration between adjacent irrigated and non-irrigated grazed pastures. Agr. Ecosyst. Environ. 285, 106620. https://doi.org/10.1016/j.agee.2019.106620 (2019).CAS
Article
Google Scholar
38.Alster, C. J., von Fischer, J. C., Allison, S. D. & Treseder, K. K. Embracing a new paradigm for temperature sensitivity of soil microbes. Glob. Change Biol. 26(6), 3221–3229. https://doi.org/10.1111/gcb.15053 (2020).ADS
Article
Google Scholar
39.Baldwin, K. et al. Vegetation Zones of Canada: a Biogeoclimatic Perspective. Sault Ste. Marie, ON, Canada: Natural Resources Canada, Canadian Forest Service. Great Lake Forestry Center. https://open.canada.ca/data/en/dataset/22b0166b-9db3-46b7-9baf-6584a3acc7b1 (2019).40.Beck, H. E. et al. Present and future köppen-geiger climate classification maps at 1-km resolution. Sci. Data 5, 1–12. https://doi.org/10.1038/sdata.2018.214 (2018).Article
Google Scholar
41.Gardner, W. H. Water content. In Methods of soil analysis: Physical and mineralogical methods, agronomy series 9 (Part 1) (ed. Klute, A.) 493–544 (Soil Science Society of America, 1986). https://doi.org/10.2136/sssabookser5.1.2ed.c21.Chapter
Google Scholar
42.Webster, K. L., Creed, I. F., Bourbonnière, R. A. & Beall, F. D. Controls on the heterogeneity of soil respiration in a tolerant hardwood forest. J. Geophys. Res. 113(G3), G03018. https://doi.org/10.1029/2008JG000706 (2008).ADS
Article
Google Scholar
43.Quinton, W. L. & Baltzer, J. L. The active-layer hydrology of a peat plateau with thawing permafrost (Scotty Creek, Canada). Hydrogeol. J. 21(1), 201–220. https://doi.org/10.1007/s10040-012-0935-2 (2013).ADS
Article
Google Scholar
44.Davidson, E. A., Savage, K., Verchot, L. V. & Navarro, R. Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agric. For. Meteorol. 113(1–4), 21–37. https://doi.org/10.1016/S0168-1923(02)00100-4 (2002).ADS
Article
Google Scholar
45.Rezanezhad, F., Couture, R. M., Kovac, R., O’Connell, D. & Van Cappellen, P. Water table fluctuations and soil biogeochemistry: An experimental approach using an automated soil column system. J. Hydrol. 509, 245–256. https://doi.org/10.1016/j.jhydrol.2013.11.036 (2014).ADS
CAS
Article
Google Scholar
46.Fang, C. & Moncrieff, J. B. The dependence of soil CO2 efflux on temperature. Soil Biol. Biochem. 33(2), 155–165. https://doi.org/10.1016/S0038-0717(00)00125-5 (2001).CAS
Article
Google Scholar
47.Alster, C. J., Koyama, A., Johnson, N. G., Wallenstein, M. D. & von Fischer, J. C. Temperature sensitivity of soil microbial communities: An application of macromolecular rate theory to microbial respiration. J. Geophys. Res. Biogeosci. 121(6), 1420–1433. https://doi.org/10.1002/2016JG003343 (2016).Article
Google Scholar
48.Hobbs, J. K. et al. Change in heat capacity for enzyme catalysis determines temperature dependence of enzyme catalyzed rates. ACS Chem. Biol. 8(11), 2388–2393. https://doi.org/10.1021/cb4005029 (2013).CAS
Article
PubMed
Google Scholar
49.Robinson, J. M. et al. Rapid laboratory measurement of the temperature dependence of soil respiration and application to changes in three diverse soils through the year. Biogeochemistry 133(1), 101–112. https://doi.org/10.1007/s10533-017-0314-0 (2017).CAS
Article
Google Scholar
50.Schipper, L. A., Hobbs, J. K., Rutledge, S. & Arcus, V. L. Thermodynamic theory explains the temperature optima of soil microbial processes and high Q10 values at low temperatures. Glob. Change Biol. 20(11), 3578–3586. https://doi.org/10.1111/gcb.12596 (2014).ADS
Article
Google Scholar
51.Webster, K. L., Creed, I. F., Malakoff, T. & Delaney, K. Potential Vulnerability of Deep Carbon Deposits of Forested Swamps to Drought. Soil Sci. Soc. Am. J. 78(3), 1097–1107. https://doi.org/10.2136/sssaj2013.10.0436 (2014).ADS
CAS
Article
Google Scholar
52.Loranty, M. M. et al. Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosciences 15(17), 5287–5313. https://doi.org/10.5194/bg-15-5287-2018 (2018).ADS
CAS
Article
Google Scholar
53.Roy-Léveillée, P., Burn, C. R. & Mcdonald, I. D. Vegetation-Permafrost Relations within the Forest-Tundra Ecotone near Old Crow, Northern Yukon, Canada. Permafr. and Periglac. Process. 25(2), 127–135. https://doi.org/10.1002/ppp.1805 (2014).Article
Google Scholar
54.Zhang, Y., Sherstiukov, A. B., Qian, B., Kokelj, S. V. & Lantz, T. C. Impacts of snow on soil temperature observed across the circumpolar north. Environ. Res. Lett. 13(4), 1e7. https://doi.org/10.1088/1748-9326/aab1e7 (2018).CAS
Article
Google Scholar
55.Sjögersten, S. et al. Temperature response of ex-situ greenhouse gas emissions from tropical peatlands: Interactions between forest type and peat moisture conditions. Geoderma 324, 47–55. https://doi.org/10.1016/j.geoderma.2018.02.029 (2018).ADS
CAS
Article
Google Scholar
56.Bradford, M. A. et al. Cross-biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaptation. Nat. Ecol. Evol. 3(2), 223–231. https://doi.org/10.1038/s41559-018-0771-4 (2019).Article
PubMed
Google Scholar
57.Frey, S. D., Lee, J., Melillo, J. M. & Six, J. The temperature response of soil microbial efficiency and its feedback to climate. Nat. Clim. Chang. 3(4), 395–398. https://doi.org/10.1038/nclimate1796 (2013).ADS
CAS
Article
Google Scholar
58.Moinet, G. Y. K. et al. Temperature sensitivity of decomposition decreases with increasing soil organic matter stability. Sci. Total Environ. 704, 135460. https://doi.org/10.1016/j.scitotenv.2019.135460 (2020).ADS
CAS
Article
PubMed
Google Scholar
59.Naylor, D. et al. Soil microbiomes under climate change and implications for carbon cycling. Annu. Rev. Environ. Resour. 45, 29–59. https://doi.org/10.1146/annurev-environ-012320-082720 (2020).Article
Google Scholar
60.Bradford, M. A. Thermal adaptation of decomposer communities in warming soils. Front. Microbiol. 4, 1–16. https://doi.org/10.3389/fmicb.2013.00333 (2013).Article
Google Scholar
61.Jackson, R. B. et al. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol. Evol. Syst. 48, 419–445. https://doi.org/10.1146/annurev-ecolsys-112414-054234 (2017).Article
Google Scholar
62.Hararuk, O., Shaw, C. & Kurz, W. A. Constraining the organic matter decay parameters in the CBM-CFS3 using Canadian National Forest Inventory data and a Bayesian inversion technique. Ecol. Model. 364, 1–12. https://doi.org/10.1016/j.ecolmodel.2017.09.008 (2017).CAS
Article
Google Scholar
63.Franzluebbers, A. J. Microbial activity in response to water-filled pore space of variably eroded southern Piedmont soils. Appl. Soil. Ecol. 11(1), 91–101. https://doi.org/10.1016/S0929-1393(98)00128-0 (1999).Article
Google Scholar
64.Rezanezhad, F. et al. Structure of peat soils and implications for water storage, flow and solute transport: A review update for geochemists. Chem. Geol. 429, 75–84. https://doi.org/10.1016/j.chemgeo.2016.03.010 (2016).ADS
CAS
Article
Google Scholar
65.Stirling, E., Fitzpatrick, R. W. & Mosley, L. M. Drought effects on wet soils in inland wetlands and peatlands. Earth Sci. Rev. 210, 103387. https://doi.org/10.1016/j.earscirev.2020.103387 (2020).CAS
Article
Google Scholar
66.Wickland, K. P. & Neff, J. C. Decomposition of soil organic matter from boreal black spruce forest: Environmental and chemical controls. Biogeochemistry 87(1), 29–47. https://doi.org/10.1007/s10533-007-9166-3 (2008).Article
Google Scholar
67.Arnold, C., Ghezzehei, T. A. & Berhe, A. A. Decomposition of distinct organic matter pools is regulated by moisture status in structured wetland soils. Soil Biol. Biochem. 81, 28–37. https://doi.org/10.1016/j.soilbio.2014.10.029 (2015).CAS
Article
Google Scholar
68.Moyano, F. E., Manzoni, S. & Chenu, C. Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models. Soil Biol. Biochem. 59, 72–85. https://doi.org/10.1016/j.soilbio.2013.01.002 (2013).CAS
Article
Google Scholar
69.Sierra, C. A., Malghani, S. & Loescher, H. W. Interactions among temperature, moisture, and oxygen concentrations in controlling decomposition rates in a boreal forest soil. Biogeosciences 14(3), 703–710. https://doi.org/10.5194/bg-14-703-2017 (2017).ADS
CAS
Article
Google Scholar
70.McCarter, C. P. R. et al. Pore-scale controls on hydrological and geochemical processes in peat: Implications on interacting processes. Earth Sci. Rev. 207, 103227. https://doi.org/10.1016/j.earscirev.2020.103227 (2020).CAS
Article
Google Scholar
71.Strack, M. et al. Effect of water table drawdown on peatland dissolved organic carbon export and dynamics. Hydrol. Process. 22(17), 3373–3385. https://doi.org/10.1002/hyp.6931 (2008).ADS
CAS
Article
Google Scholar
72.Leclair, M., Whittington, P. & Price, J. Hydrological functions of a mine-impacted and natural peatland-dominated watershed, James Bay Lowland. J. Hydrol. Reg. Stud. 4, 732–747. https://doi.org/10.1016/j.ejrh.2015.10.006 (2015).Article
Google Scholar
73.Treat, C. C. et al. Effects of permafrost aggradation on peat properties as determined from a pan-Arctic synthesis of plant macrofossils. J. Geophys. Res. Biogeosci. 121(1), 78–94. https://doi.org/10.1002/2015JG003061 (2016).CAS
Article
Google Scholar
74.Günther, A. et al. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat. Commun. 11(1), 1–5. https://doi.org/10.1038/s41467-020-15499-z (2020).CAS
Article
Google Scholar
75.Schädel, C. et al. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nat. Clim. Chang. 6(10), 950–953. https://doi.org/10.1038/nclimate3054 (2016).ADS
CAS
Article
Google Scholar
76.Hemes, K. S., Chamberlain, S. D., Eichelmann, E., Knox, S. H. & Baldocchi, D. D. A biogeochemical compromise: The high methane cost of sequestering carbon in restored wetlands. Geophys. Res. Lett. 45, 6081–6091. https://doi.org/10.1029/2018GL077747 (2018).ADS
CAS
Article
Google Scholar
77.Davidson, E. A., Samanta, S., Caramori, S. S. & Savage, K. The Dual Arrhenius and Michaelis-Menten kinetics model for decomposition of soil organic matter at hourly to seasonal time scales. Glob. Change Biol. 18, 371–384. https://doi.org/10.1111/j.1365-2486.2011.02546.x (2012).ADS
Article
Google Scholar
78.Matzner, E. & Borken, W. Do freeze-thaw events enhance C and N losses from soils of different ecosystems? A review. Eur. J. Soil Sci. 59(2), 274–284. https://doi.org/10.1111/j.1365-2389.2007.00992.x (2008).Article
Google Scholar
79.Song, Y., Zou, Y., Wang, G. & Yu, X. Altered soil carbon and nitrogen cycles due to the freeze-thaw effect: A meta-analysis. Soil Biol. Biochem. 109, 35–49. https://doi.org/10.1016/j.soilbio.2017.01.020 (2017).CAS
Article
Google Scholar
80.Wang, J. et al. Effects of freezing-thawing cycle on peatland active organic carbon fractions and enzyme activities in the Da Xing’anling Mountains. Northeast China. Environmental Earth Sciences 72(6), 1853–1860. https://doi.org/10.1007/s12665-014-3094-z (2014).CAS
Article
Google Scholar
81.Wu, H., Xu, X., Cheng, W., Fu, P. & Li, F. Antecedent soil moisture prior to freezing can affect quantity, composition and stability of soil dissolved organic matter during thaw. Sci. Rep. 7(1), 1–12. https://doi.org/10.1038/s41598-017-06563-8 (2017).ADS
CAS
Article
Google Scholar
82.Bao, T., Xu, X., Jia, G., Billesbach, D. P. & Sullivan, R. C. Much stronger tundra methane emissions during autumn freeze than spring thaw. Glob. Change Biol. 27(2), 376–387. https://doi.org/10.1111/gcb.15421 (2021).ADS
Article
Google Scholar
83.Chang, K. Y., Riley, W. J., Crill, P. M., Grant, R. F. & Saleska, S. R. Hysteretic temperature sensitivity of wetland CH4 fluxes explained by substrate availability and microbial activity. Biogeosciences 17(22), 5849–5860. https://doi.org/10.5194/bg-17-5849-2020 (2020).ADS
CAS
Article
Google Scholar
84.Neumann, R. B. et al. Warming Effects of Spring Rainfall Increase Methane Emissions From Thawing Permafrost. Geophys. Res. Lett. 46(3), 1393–1401. https://doi.org/10.1029/2018GL081274 (2019).ADS
Article
Google Scholar
85.Rezanezhad, F., Price, J. S. & Craig, J. R. The effects of dual porosity on transport and retardation in peat: A laboratory experiment. Can. J. Soil Sci. 92(5), 723–732. https://doi.org/10.4141/CJSS2011-050 (2012).Article
Google Scholar
86.Raz-Yaseef, N. et al. Large CO2 and CH4 emissions from polygonal tundra during spring thaw in northern Alaska. Geophys. Res. Lett. 44(1), 504–513. https://doi.org/10.1002/2016GL071220 (2017).ADS
CAS
Article
Google Scholar
87.Waldrop, M. P. et al. Carbon fluxes and microbial activities from boreal peatlands experiencing permafrost thaw. J. Geophys. Res. Biogeosci. 126(3), e2020JG005869. https://doi.org/10.1029/2020JG005869 (2021).ADS
CAS
Article
Google Scholar
88.Pulliainen, J. et al. Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018. Nature 581(7808), 294–298. https://doi.org/10.1038/s41586-020-2258-0 (2020).ADS
CAS
Article
PubMed
Google Scholar More