More stories

  • in

    Pending bill could devastate Brazil’s Serra do Divisor National Park

    1.Barbosa, L. C., Alves, M. A. S. & Grelle, C. E. V. Land Use Policy 104, 105384 (2021).Article 

    Google Scholar 
    2.PL 6024/2019 (Câmara dos Deputados, 2021); https://go.nature.com/3p8ygLo3.Serra do Divisor National Park. https://go.nature.com/3rcbdSg (UNESCO, 2021).4.F. A. Obermüller et al. Lista de espécies de plantas vasculares do Parque Nacional da Serra do Divisor. Catálogo de Plantas das Unidades de Conservação do Brasil https://go.nature.com/3HTJjAs (Jardim Botânico do Rio de Janeiro, 2020).5.Livro Temático/Recursos naturais: Biodiversidade e ambientes do Acre (ACRE, 2010).6.Hansen, M. C. et al. Sci. Adv. 6, eaax8574 (2020).Article 

    Google Scholar 
    7.Grilli, M. Base de dados do DNIT prevê expansão da BR-364 dentro de unidade de conservação. Revista Globo Rural https://go.nature.com/3DUgQYX (2021).8.Orlando, S. A Estrada do Pacífico no comércio exterior do Acre. ac24horas.com https://go.nature.com/3raofzL (2020).9.Mascarenhas, F. et al. Desenvolv e Meio Ambient 48, 236–262 (2018).Article 

    Google Scholar 
    10.Castro, W. Reserva Extrativista Chico Mendes lidera lista de Áreas Protegidas que mais perdem floresta por desmatamento desde Agosto de 2020. SOS Amazonia https://go.nature.com/3CU5jra (2021).11.Fá, J. E. et al. Front. Ecol. Environ. 18, 135–140 (2020).Article 

    Google Scholar 
    12.Bernard, E., Penna, L. A. & Araújo, E. Conserv. Biol. 28, 939–950 (2014).CAS 
    Article 

    Google Scholar 
    13.Kroner, R. E. G. et al. Science 364, 881–886 (2019).Article 

    Google Scholar 
    14.Ferrante, L. & Fearnside, P. M. Science 369, 634 (2020).Article 

    Google Scholar 
    15.Laurance, W. F. & Balmford, A. Nature 495, 308–309 (2013).CAS 
    Article 

    Google Scholar 
    16.Kehoe, L. et al. One Earth 3, 268–272 (2020).Article 

    Google Scholar  More

  • in

    Occurrence of crop pests and diseases has largely increased in China since 1970

    1.Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).ADS 
    CAS 

    Google Scholar 
    2.The Future of Food and Agriculture—Alternative Pathways to 2050 (Food and Agriculture Organization of the United Nations, 2018).3.Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).ADS 
    CAS 

    Google Scholar 
    5.Zhang, W. et al. Closing yield gaps in China by empowering smallholder farmers. Nature 537, 671–674 (2016).ADS 
    CAS 

    Google Scholar 
    6.Chakraborty, S. & Newton, A. C. Climate change, plant diseases and food security: an overview. Plant Pathol. 60, 2–14 (2011).
    Google Scholar 
    7.Oerke, E. C. Crop losses to pests. J. Agri. Sci. 144, 31–43 (2005).
    Google Scholar 
    8.Bebber, D. P., Ramotowski, M. A. T. & Gurr, S. J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3, 985–988 (2013).ADS 

    Google Scholar 
    9.Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916–919 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Delcour, I., Spanoghe, P. & Uyttendaele, M. Literature review: impact of climate change on pesticide use. Food Res. Int. 68, 7–15 (2015).
    Google Scholar 
    11.Ziska, L. H. Increasing minimum daily temperatures are associated with enhanced pesticide use in cultivated soybean along a latitudinal gradient in the mid-western United States. PLoS ONE 9, e98516 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Lamichhane, J. R. et al. Robust cropping systems to tackle pests under climate change. A review. Agron. Sustain. Dev. 35, 443–459 (2014).
    Google Scholar 
    13.Bebber, D. P. et al. Many unreported crop pests and pathogens are probably already present. Glob. Change Biol. 25, 2703–2713 (2019).ADS 

    Google Scholar 
    14.Bale, J. S. et al. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 1–16 (2002).ADS 

    Google Scholar 
    15.Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N. & Travers, S. E. Climate change effects on plant disease: genomes to ecosystems. Annu. Rev. Phytopathol. 44, 489–509 (2006).CAS 

    Google Scholar 
    16.Hruska, A. J. Fall armyworm (Spodoptera frugiperda) management by smallholders. CAB Rev. 14, 1–11 (2019).
    Google Scholar 
    17.Sutherst, R. W. et al. Adapting to crop pest and pathogen risks under a changing climate. Wiley Interdiscip. Rev. Clim. Change 2, 220–237 (2011).
    Google Scholar 
    18.Donatelli, M. et al. Modelling the impacts of pests and diseases on agricultural systems. Agric. Syst. 155, 213–224 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Jones, J. W. et al. Toward a new generation of agricultural system data, models, and knowledge products: state of agricultural systems science. Agric. Syst. 155, 269–288 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    20.Miller, S. A., Beed, F. D. & Harmon, C. L. Plant disease diagnostic capabilities and networks. Annu. Rev. Phytopathol. 47, 15–38 (2009).CAS 

    Google Scholar 
    21.Bebber, D. P., Holmes, T., Smith, D. & Gurr, S. J. Economic and physical determinants of the global distributions of crop pests and pathogens. New Phytol. 202, 901–910 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    22.Savary, S. et al. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3, 430–439 (2019).
    Google Scholar 
    23.An early warning news about the mirgating condition of Fall Armyworm in China from National Agro-Tech Extension and Service Center https://www.natesc.org.cn/News/des?id=eaf064ae-6582-47c1-a9f3-a58969fd47b3&kind=HYTX (in Chinese, available in Nov.2021).24.Piao, S. et al. The impacts of climate change on water resources and agriculture in China. Nature 467, 43–51 (2010).ADS 
    CAS 

    Google Scholar 
    25.Chown, S. L., Sorensen, J. G. & Terblanche, J. S. Water loss in insects: an environmental change perspective. J. Insect Physiol. 57, 1070–1084 (2011).CAS 

    Google Scholar 
    26.Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).ADS 
    CAS 

    Google Scholar 
    27.National Agricultural Technology Extension and Service Center. Technical Specification Manual of Major Crop Pest and Disease Observation and Forecast in China (China Agriculture Press, 2010).28.Olfert, O., Weiss, R. M. & Elliott, R. H. Bioclimatic approach to assessing the potential impact of climate change on wheat midge (Diptera: Cecidomyiidae) in North America. Can. Entomol. 148, 52–67 (2015).
    Google Scholar 
    29.Savary, S., Teng, P. S., Willocquet, L. & Nutter, F. W. Quantification and modeling of crop losses: a review of purposes. Annu. Rev. Phytopathol. 44, 89–112 (2006).CAS 

    Google Scholar 
    30.Chakraborty, S. Migrate or evolve: options for plant pathogens under climate change. Glob. Change Biol. 19, 1985–2000 (2013).ADS 

    Google Scholar 
    31.Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Chaloner, T. M., Gurr, S. J. & Bebber, D. P. Plant pathogen infection risk tracks global crop yields under climate change. Nat. Clim. Change 11, 710–715 (2021).ADS 

    Google Scholar 
    33.Carvalho, J. L. N. et al. Agronomic and environmental implications of sugarcane straw removal: a major review. Glob. Change Biol. Bioenergy 9, 1181–1195 (2017).CAS 

    Google Scholar 
    34.Savary, S., Horgan, F., Willocquet, L. & Heong, K. L. A review of principles for sustainable pest management in rice. Crop Prot. 32, 54–63 (2012).
    Google Scholar 
    35.Frolking, S. et al. Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China. Glob. Biogeochem. Cycles 16, 38-31–38-10 (2002).
    Google Scholar 
    36.Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).
    Google Scholar 
    37.Harvell, C. D. et al. Climate warming and disease risks for terrestrial and marine biota. Science 296, 2158–2162 (2002).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Scherm, H. Climate change: can we predict the impacts on plant pathology and pest management? Can. J. Plant Pathol. 26, 267–273 (2004).
    Google Scholar 
    39.Cheke, R. A. & Tratalos, J. A. Migration, patchiness, and population processes illustrated by two migrant pests. Bioscience 57, 145–154 (2007).
    Google Scholar 
    40.Eyring, V. et al. Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).ADS 

    Google Scholar 
    41.O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).ADS 

    Google Scholar 
    42.van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).ADS 

    Google Scholar 
    43.Lange, S. Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0). Geosci. Model Dev. 12, 3055–3070 (2019).ADS 

    Google Scholar 
    44.Gregory, P. J., Johnson, S. N., Newton, A. C. & Ingram, J. S. Integrating pests and pathogens into the climate change/food security debate. J. Exp. Bot. 60, 2827–2838 (2009).CAS 

    Google Scholar 
    45.Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements FAO irrigation and drainage paper 56 (FAO, 1998).46.Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    47.Kahiluoto, H. et al. Decline in climate resilience of European wheat. Proc. Natl Acad. Sci. USA 116, 123–128 (2019).CAS 

    Google Scholar 
    48.Folke, C. et al. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557–581 (2004).
    Google Scholar 
    49.Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019).ADS 
    CAS 

    Google Scholar 
    50.Clark, J. S. Why environmental scientists are becoming Bayesians. Ecol. Lett. 8, 2–14 (2005).
    Google Scholar 
    51.Clark, J. S. & Gelfand, A. E. A future for models and data in environmental science. Trends Ecol. Evol. 21, 375–380 (2006).
    Google Scholar 
    52.Gelfand, A. E. & Smith, A. F. M. Sampling-based approaches to calculating marginal densities. J. Am. Stat. Assoc. 85, 398–409 (1990).MathSciNet 
    MATH 

    Google Scholar 
    53.Lunn, D., Spiegelhalter, D., Thomas, A. & Best, N. The BUGS project: evolution, critique and future directions. Stat. Med. 28, 3049–3067 (2009).MathSciNet 

    Google Scholar 
    54.Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998).MathSciNet 

    Google Scholar  More

  • in

    Geological evidence of an unreported historical Chilean tsunami reveals more frequent inundation

    The Chaihuín stratigraphyCore transects (Fig. 2b) reveal three sand layers, intercalated between herbaceous peats, that are laterally extensive over 600 m across the marsh (Fig. 3a). In all cases, the sand layers have sharp lower contacts and transitional upper contacts. Ten accelerator mass spectrometric (AMS) radiocarbon dates modelled using a Bayesian phased sequence model provide the chronology (Fig. 3c and Supplementary Table 1). The age of plant macrofossils immediately beneath the upper layer, sand A, are consistent with burial by the 1960 tsunami. The age model places the deposition of the middle sand B at 1600–1820 and lower layer, sand C, at 1486–1616 CE. The calibrated age ranges for sands B and C are reasonably broad due to plateaux in the radiocarbon calibration curve, which affect dates from the seventeenth to twentieth centuries21.Fig. 3: Geological evidence from Chaihuín.a Stratigraphy of selected coring transects showing three laterally extensive sand sheets. Transect locations X–X’ and Y–Y’ shown on Fig. 2; b sedimentology of sand sheets, including grain size, sorting and clastic composition (%) classified relative to six modern environments established by discriminant analysis (see Supplementary Discussion), with images of sands A and B in CN17/8. Box-and-whisker plots show the statistical parameters measured in sand samples with the horizontal line inside the box representing the median, the box representing the upper and lower quartiles, the whiskers representing the minimum and maximum values excluding any outliers and the crosses the extreme outlier values. The number within each box indicates the number of samples in each group; c probability density functions (95.4%) of radiocarbon dates and modelled ages for the three earthquakes. Full radiocarbon results in Supplementary Table 1.Full size imageThe sedimentology and mineralogical signatures of the sand sheets are described in detail elsewhere based on over 100 hand-driven cores22 and summarised in Supplementary Discussion; here we analyse diatoms in three representative cores and present reconstructions of marsh surface elevation change over time from a diatom-based transfer function (Fig. 4 and Supplementary Data 1). From diatom analysis of the three cores, we identified 170 species indicative of differing tolerances to tidal inundation. Only 14 species were absent from a previously published modern training set that includes 29 samples from Chaihuín20, and 9 of these species constituted 2% of any sample (comprising 4–5% in 2 non-sand samples).Fig. 4: Diatom assemblages and estimates of land-level change derived from a regional south-central Chile transfer function for three cores from Chaihuín.a–c Diatom assemblage summaries and dominant taxa in cores CN14/5 (a), CN17/8 (b) and CN18/11 (c) at elevations of 0.88, 0.89 and 1.10 m above mean sea level (MSL), respectively. Elevation optima of diatom species are classified based on weighted averaging of the modern training set and reported relative to mean higher high water (MHHW). The modern analogue technique was used to calculate the squared chord distance to the closest modern analogue, and the threshold for a fossil sample having a close modern analogue is defined as the 20th percentile of the dissimilarity values (MinDC) for the modern training set44. Reconstructed palaeomarsh surface elevations (PMSE) and coseismic subsidence are shown from the weighted averaging partial least squares (WA-PLS) model only. d Estimates of coseismic subsidence in 1737 from three cores and three different diatom-based transfer function approaches, showing 95.4% uncertainties.Full size imageThe laterally extensive uppermost coarse to medium-grained sand sheet (A) is mid grey, varies in thickness between 1 and 19 cm, has a median grain size of 0.49 mm and is upwards fining (0.27–0.71 mm) in 61 cores (80% of those in which A is preserved, massive in the others). The marsh grades steeply into freshwater scrub, and there is no sand unit in cores just above the high marsh limit. There is an abrupt contact between the sand and dark brown silty herbaceous peat below, which contains plant material including below-ground stems (rhizomes) of Scirpus americanus. In many cores, there are rip-up clasts (~2 cm) of peat encased in the sand sheet, as well as vegetation rooted in the peat below. The peat below the sand sheet contains a diatom assemblage that is almost entirely composed of species found on the contemporary high marsh above mean higher high water (MHHW) (e.g. Eunotia praerupta, Nitzschia acidoclinata), with higher elevation optima than the diatoms found in the herbaceous peat above the sand unit (e.g. Rhopalodia constricta) (Fig. 4a). The overlying peat also contains low, albeit important, percentages (5–24%) of taxa with elevation optima below MHHW. By contrast to the peats, sand A is dominated by species with lower elevation optima (59–72% of the total assemblage have optima below MHHW), including Achnanthes reversa and Planothidium delicatulum.The middle brown-grey to dark grey mica-rich coarse to medium-grained sand sheet (B) is similarly laterally extensive across the entire marsh, varying in thickness between 2 and 32 cm. It has a median grain size of 0.47 mm and is upwards-fining (0.38–0.68 mm) in 31 cores (50% of those in which B is preserved, massive in others), but rip-up clasts of peat were only occasionally observed. In some cases, we observe a 2–4-cm-thick cap of horizontally bedded detrital plant fragments and wood at the top of the sand layer. The sand sheet abruptly overlays a red-brown to dark brown silty herbaceous peat with variable silt content and humification. Humidophila contenta dominates the diatom assemblage in the peat below sand B (up to 37% of the assemblage) and is also present in the peat overlying the sand sheet, which remains dominated by species with elevation optima above MHHW. In the core from the lowest contemporary marsh elevation (CN14/5, Fig. 4a), there is an increase in low marsh diatom species (elevation optima below MHHW) above the sand compared to below (e.g. A. reversa, P. delicatulum). Diatom assemblages are relatively consistent across the five samples from the sand unit, with 54–76% of the assemblages being species with elevation optima below MHHW, including A. reversa, Fallacia tenera and P. delicatulum.A third sand deposit (C) is found in 16 cores at the southern end of the marsh, although still traceable over 200 m and across most cores that penetrated deep enough to potentially sample sand C. The deposit is a dark grey fine to medium-grained massive sand (median grain size 0.25 mm, range 0.22-0.29 mm), with a maximum thickness of 51 cm and contains occasional rip-up clasts from the buried organic unit below encased in the sand. The basal contact is abrupt, with the sand overlying a brown clayey silt with occasional herbaceous plant remains, humified organic matter and woody plant material. The organic horizon below sand C contains more diatom species typically found at lower elevations in the tidal frame than the peats below A and B (Fig. 4a). There is also a change in species composition approaching the top of the peat, with abundances of Opephora pacifica and Pseudostaurosira perminuta decreasing and H. contenta and E. perpusilla increasing from the base to top of the peat below sand C. Also in contrast to the other two buried organic deposits, there is a change in species composition approaching the top of the peat and samples immediately above and below sand unit C have very similar diatom assemblages, dominated by H. contenta and E. perpusilla. Diatom preservation in the sand unit was very poor, and it was not possible to obtain representative counts from this unit.Brown silty herbaceous peats separate the three sand sheets, deposited intertidally on the basis of their diatom composition. In addition to the relative variations in freshwater and brackish diatom composition of peats described above, the peat units also vary in their degree of humification. While peats below sands A and C contain humified organic matter, the peat below sand B is unhumified. Additionally, two layers of highly humified black peat were observed immediately above and below sand A in low marsh cores from the southwest of the marsh, varying in thickness between 1 and 15 cm.Evidence for a locally sourced tsunamiWe interpret all three sand sheets as being deposited by locally sourced tsunamis, rather than far-field tsunamis or non-seismic processes (e.g. storms, river floods or aeolian processes). This is based primarily on coincident land deformation, and also upon their lateral extent, diatom composition, and sedimentological signatures. Dealing first with the latter lines of reasoning, sands A and B are not only dominated by marine sublittoral and epipsammic diatom species but also contain substantial numbers of benthic silty intertidal mudflat and freshwater taxa, which also dominate the underlying peats. This is consistent with mixed diatom assemblages in tsunami deposits worldwide and indicative of tsunamis eroding, transporting and redepositing diatoms from diverse environments as they cross coastal and inland areas23,24,25,26. The presence of marine and tidal flat diatoms excludes deposition of sand by river flooding25,27, and statistical comparison of the sedimentological and mineralogical signatures of the sands with modern depositional environments, reported by Aedo et al.22 and summarised in Supplementary Discussion, further supports a seaward rather fluvial sediment source. We observe a maximum sedimentary contribution of 12% from upstream fluvial sources (Fig. 3b) and do not observe erosional or depositional features characteristic of fluvial flood deposits, such as a high basal mud content reflective of suspended loads during the initial stages of flooding or inverse grading as energy increases28.Meteorologically driven deposition of the sands, either during storm surges or other transient sea-level fluctuation events (e.g. El Niño), is discounted as the diatoms in the overlying organic units demonstrate lasting ecological change27,29. While a non-tsunamigenic earthquake followed closely in time by a large storm surge may impact diatom assemblages in the same way, there are several further characteristics of the three sand sheets which are consistent with a tsunami origin, even though these, in themselves, are not diagnostic. These include the lateral extent (traceable across 230 m), upwards-fining grain size of sand sheets A and B, and clasts of underlying peats observed within sands A and C and occasionally within B. The absence of extreme climatic phenomena, such as hurricanes and tropical storms, in the Chaihuín area during the historic period also minimises the possibility of finding storm deposits. However, while it is recognised that the above criteria cannot be used individually to confirm tsunami deposition, it is the combination of all sedimentological and diatom evidence that we use here in support of the most compelling evidence for tsunami deposition, which comes from the accompanying abrupt land-level change. The latter rules out deposition by tsunamis sourced in the far-field, storms or aeolian processes.Evidence for coseismic land-level changeFollowing established criteria30,31, we use the sedimentary and diatom evidence to propose that the Chaihuín sequence records three earthquake events, associated with vertical coseismic deformation and tsunami deposition. Diatom assemblages from immediately below sand layers A and B are characterised by species with higher elevation preferences than those found immediately above the sands, suggesting decreases in marsh surface elevation consistent with coseismic subsidence (Fig. 4). Diatom assemblages show minimal change across sand layer C; instead a transition occurs prior to event C whereby species with lower elevation preferences are replaced by those with higher elevation preferences, indicating net emergence prior to event C followed by minimal coseismic subsidence.The transfer function reconstructs 0.35 ± 0.42 m of subsidence occurred in event A, which local testimony and radiocarbon dating confirm to be the 1960 earthquake. Compared to our previous estimate for this event20, refining the transfer function method and expanding the modern training set here, reduces the uncertainty by 0.26 m. Reconstructed subsidence agrees with observations of 0.7 ± 0.4 m19. By contrast, the transfer function reconstructs very minor subsidence of 0.10 ± 0.36 m occurred in event C, but this needs confirmation from analyses of additional cores.The transfer function predicts that coseismic subsidence occurred in event B, with reconstructions varying between 0.10 ± 0.33 and 0.52 ± 0.39 m, and averaging 0.22 ± 0.38 m (Fig. 4d). While this is close to the detection limit of coseismic land-level change30 and the error term is large compared to the amount of deformation, we interpret event B as being associated with net submergence for two reasons. First, changes in diatom-inferred marsh elevations between pre- and post-earthquake samples are greater than other sample-to-sample changes. Second, all nine reconstructions, regardless of core location or transfer function approach, indicate submergence rather than a mixture of submergence and emergence (Fig. 4d).Linking the geologic and historical recordsDespite the broad modelled age ranges for events B and C of 1600–1820 and 1486–1616 CE, respectively, each range only includes one historically reported earthquake. If the historical catalogue is complete, sands B and C represent tsunamis accompanying the 1737 and 1575 earthquakes, respectively. Although other great tsunamigenic earthquakes occurred in the time range of event B (1657, 1730, 1751), their rupture areas have been placed much further north8,32 and therefore are very unlikely sources for the observed deformation. Age ranges do not include 1837; therefore, absence of evidence for this earthquake at Chaihuín supports the chronicle-based interpretation that the 1837 rupture area lies further south11,16. The preservation of turbidites from 1837 at sites to the north of Chaihuín14 is consistent with observations of earthquake-triggered turbidites some distance outside the rupture zone, as observed for the Mw 8.8 2010 Maule earthquake14.Implications for the rupture depth in 1737The Chaihuín record provides the first evidence for crustal deformation during the 1737 earthquake and the first evidence for the earthquake being tsunamigenic. While the nearshore bathymetry and orientation of the coastline may amplify tsunami inundation and the abundant sediment source may enhance the potential for evidence creation during even moderate tsunamis, the direction of land-level change at Chaihuín (subsidence) calls for reconsideration of the associated rupture depth. While correlation with evidence of shaking-induced turbidites from Calafquén and Riñihue lakes14, along with the absence of a 1737 event in sedimentary records from Río Maullín and Chucalén to the south9,11, supports the hypothesis that a smaller section of the plate interface ruptured in 1737 (between 39 and 41°S) than in 1960 and 157514, the Chaihuín record also forms an important constraint on the depth of local slip in 1737.By combining deformation and tsunami modelling, we show that our evidence of coastal subsidence and tsunami inundation at Chaihuín is better explained by offshore, shallow megathrust slip rather than by deeper slip below land as previously suggested16 (Fig. 5 and Supplementary Fig. 1). This is demonstrated by a simple numerical experiment designed to find the most likely depth range of the causative earthquake rupture that can explain the coastal subsidence inferred at Chaihuín and also the tsunami inundation.Fig. 5: Results of model tests to show that the 1737 rupture must have been confined to the offshore region at shallower fault depths than previously proposed.a The lower panel shows the trench-normal section of the megathrust and seafloor geometry at the latitude of Chaihuín used in the modelling experiment. The upper panel shows the bell-shaped slip distributions for a suite of eight earthquake ruptures and the middle panel shows the modelled vertical surface deformations using an elastic dislocation model (see “Methods”). The red and blue curves are the deep and shallow ruptures used as illustrative examples in the text. In this suite of models, the rupture width and peak slip are fixed at 100 km and 1 m, respectively, and the rupture location is systematically shifted horizontally in the trench-normal direction to represent ruptures at different depths. b Summary plot showing the modelled coastal uplift (left vertical axis) and tsunami runup (right vertical axis) predicted by the suite of models. Note that coastal subsidence can only be produced by offshore ruptures, with slip shallower than ~20 km. Ruptures deeper than this produce uplift at the coast. This opposing pattern of coastal deformation between shallow versus deeper ruptures is insensitive to how much slip is prescribed at the fault. Supplementary Fig. 1 shows the results for two different suite of models, in which the rupture width varies by fixing the updip (Supplementary Fig. 1a) and downdip (Supplementary Fig. 1b) limits.Full size imageOur numerical approach (see also “Methods”) leverages the sensitivity of the deformation sign (uplift or subsidence) and tsunami size at the Chaihuín coast to the depth of megathrust slip33 (Fig. 5). An earthquake rupture with maximum slip at 33 km fault depth (Fig. 5a, red model), as previously inferred from historical records16, will result in coastal uplift and a relatively small tsunami. Instead, if the rupture occurs offshore (Fig. 5a, blue model), the deformation will result in coastal subsidence and a much larger tsunami. From a systematic analysis in which the hypothetical rupture models are shifted horizontally in the trench-normal direction or vertically in the depth direction (Fig. 5a, upper panel), we conclude that subsidence at the Chaihuín coast could only be produced by ruptures placed mainly offshore, at average megathrust depths shallower than 20 km (Fig. 5b, downward triangles). Deeper ruptures will produce coastal uplift and consequent smaller tsunamis (Fig. 5b). The same conclusion is reached by varying the rupture width with fixed updip and downdip limits (Supplementary Fig. 1).Our conclusions are independent of the use of a normalised unit displacement in all models (i.e. 1 m at the centre of its corresponding bell-shaped rupture) because the opposing effects of deep versus shallow ruptures at Chaihuín are insensitive to the magnitude of slip involved and depend on its locus. The amount of slip determines the magnitude of deformation but not its sign due to the elastic response of the crust during earthquakes34. However, with evidence at only one location we only feel confident to constrain the depth range but not the magnitude nor along-strike extent of the causative slip. Therefore, from our numerical experiment we conclude that to produce subsidence at the Chaihuín coast, an offshore rupture likely shallower than 20 km is required as a deeper source would result in coastal uplift. This is also consistent with the inferred tsunami heights (Fig. 5b), which are larger for a shallower rupture and therefore more likely to produce inundation on land independent of the local topography. This geologically-based inference of an offshore rupture (blue curve in Fig. 5b) contrasts with the deeper rupture below land (red curve in Fig. 5b) previously inferred from historical observations alone16.Implications for tsunami recurrence intervalsThe average interval between the three events preserved at Chaihuín, 193 years, is shorter than the interval proposed for full segment 1960-style ruptures of 270-280 years9,11,14. This supports the notion that the Chilean subduction zone displays a variable rupture mode, in which the size, depth, tsunamigenic potential and recurrence interval vary between earthquakes10. Of greatest importance, however, is the shorter average recurrence interval of tsunami inundation than previously reported. With the addition of the 1737 tsunami alongside previously known events in 1960, 1837 and 1575, the historical recurrence interval for tsunamis generated anywhere along the Valdivia segment of the Chilean subduction zone is reduced to 130 years. This holds even if the inferred tsunami inundation is not associated with the 1737 earthquake, but with another earthquake of similar age missed in the historical catalogue. More

  • in

    Ecological adaptation and phylogenetic analysis of microsymbionts nodulating Polhillia, Wiborgia and Wiborgiella species in the Cape fynbos, South Africa

    1.Stirton, C. H. Polhillia, a new genus of papilionoid legumes endemic to South Africa. South African J. Bot. 52, 167–180 (1986).
    Google Scholar 
    2.Boatwright, J. S., Tilney, P. M. & Van Wyk, B.-E. Taxonomy of Wiborgiella (Crotalarieae, Fabaceae), a genus endemic to the greater Cape Region of South Africa. Syst. Bot. 35, 325–340 (2010).
    Google Scholar 
    3.Moiloa, N. A., Chimphango, S. B. M. & Muasya, A. M. A phylogenetic study of the genus Wiborgia (Crotalarieae, Fabaceae). South African J. Bot. 115, 179–193 (2018).
    Google Scholar 
    4.Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    5.Goldblatt, P. & Manning, J. C. Plant diversity of the Cape region of southern Africa. Ann. Missouri Bot. Gard. 281–302 (2002).6.Forest, F., Colville, J. F. & Cowling, R. M. Evolutionary diversity patterns in the Cape flora of South Africa. in Phylogenetic Diversity 167–187 (Springer, 2018).7.Boatwright, J. S. & Cupido, C. N. Aspalathus crewiana sp. Nov. (Crotalarieae, Fabaceae) from the Western Cape Province, South Africa. Nord. J. Bot. 29, 513–517 (2011).
    Google Scholar 
    8.Mpai, T., Jaiswal, S. K. & Dakora, F. D. Accumulation of phosphorus and carbon and the dependency on biological N-2 fixation for nitrogen nutrition in Polhillia, Wiborgia and Wiborgiella species growing in natural stands in cape fynbos, South Africa. SYMBIOSIS (2020).9.Van Zwieten, L. et al. Enhanced biological N 2 fixation and yield of faba bean (Vicia faba L.) in an acid soil following biochar addition: Dissection of causal mechanisms. Plant Soil 395, 7–20 (2015).
    Google Scholar 
    10.Jaiswal, S. K., Naamala, J. & Dakora, F. D. Nature and mechanisms of aluminium toxicity, tolerance and amelioration in symbiotic legumes and rhizobia. Biol. Fertil. Soils https://doi.org/10.1007/s00374-018-1262-0 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Araújo, S. S. et al. Abiotic stress responses in legumes: Strategies used to cope with environmental challenges. CRC. Crit. Rev. Plant Sci. 34, 237–280 (2015).
    Google Scholar 
    12.Etesami, H., Alikhani, H. & Akbari, A. Evaluation of plant growth hormones production (IAA) ability by Iranian soils rhizobial strains and effects of superior strains application on wheat growth. World Appl. Sci. J. 6, 1576–1584 (2009).CAS 

    Google Scholar 
    13.Ibny, F. Y. I., Jaiswal, S. K., Mohammed, M. & Dakora, F. D. Symbiotic effectiveness and ecologically adaptive traits of native rhizobial symbionts of Bambara groundnut (Vigna subterranea L. Verdc.) in Africa and their relationship with phylogeny. Sci. Rep. 9, 1–17 (2019).CAS 

    Google Scholar 
    14.Kanu, S. A. & Dakora, F. D. Symbiotic nitrogen contribution and biodiversity of root-nodule bacteria nodulating Psoralea species in the Cape Fynbos, South Africa. Soil Biol. Biochem. 54, 68–76 (2012).CAS 

    Google Scholar 
    15.Lemaire, B. et al. Symbiotic diversity, specificity and distribution of rhizobia in native legumes of the Core Cape Subregion (South Africa). FEMS Microbiol. Ecol. 91, 2–17 (2015).
    Google Scholar 
    16.Brink, C., Postma, A. & Jacobs, K. Rhizobial diversity and function in rooibos (Aspalathus linearis) and honeybush (Cyclopia spp.) plants: A review. South African J. Bot. 110, 80–86 (2017).
    Google Scholar 
    17.Dludlu, M. N., Chimphango, S. B. M., Walker, G., Stirton, C. H. & Muasya, A. M. Horizontal gene transfer among rhizobia of the Core Cape Subregion of southern Africa. South African J. Bot. 118, 342–352 (2018).CAS 

    Google Scholar 
    18.Aliero, B. L. Effects of sulphuric acid, mechanical scarification and wet heat treatments on germination of seeds of African locust bean tree, Parkia biglobosa. African J. Biotechnol. 3, 179–181 (2004).CAS 

    Google Scholar 
    19.Hematifar, M., Tehranifar, A. & Abedi, B. Facilitating Seed Germination of Eight Species of Hawthorn (Crataegus spp.) Native of Iran, Using Chemical Scarification and Cold Stratification. Iran. J. Seed Res. 4, 13–22 (2018).
    Google Scholar 
    20.Vincent, J. M. A Manual for the Practical Study of Root-Nodule Bacteria: A Manual for the Practical Study of Root-Nodule Bacteria Vol. 15 (Blackwell Scientific, 1970).
    Google Scholar 
    21.Unkovich, M. & Baldock, J. Measurement of asymbiotic N2 fixation in Australian agriculture. Soil Biol. Biochem. 40, 2915–2921 (2008).CAS 

    Google Scholar 
    22.Somasegaran, P. & Hoben, H. J. Handbook for Rhizobia: Methods in Legume-Rhizobium Technology (Springer, 2012).
    Google Scholar 
    23.Sneath, P. H. A., Sokal, R. R. Numerical taxonomy. The principles and practice of numerical classification. (1973).24.Rohlf, F. J., Applied Biostatistics, I. & Exeter Software (Firm). NTSYS-pc : Numerical taxonomy and multivariate analysis system. (Applied Biostatistics, Inc., 2009).25.Hall, T. BioEdit version 7.0. 0. Distributed by the author, website: www.mbio.ncsu.edu/BioEdit/bioedit.html. (2004).26.Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Nei, M. & Kumar, S. Molecular Evolution and Phylogenetics (Oxford University Press, 2000).
    Google Scholar 
    29.Saitou, N. & Nei, M. The neighbor-joining method : A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).CAS 
    PubMed 

    Google Scholar 
    30.Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783–791 (1985).PubMed 

    Google Scholar 
    31.Morón, B. et al. Low pH changes the profile of nodulation factors produced by Rhizobium tropici CIAT899. Chem. Biol. 12, 1029–1040 (2005).PubMed 

    Google Scholar 
    32.Moroenyane, I., Chimphango, S. B. M., Wang, J., Kim, H. K. & Adams, J. M. Deterministic assembly processes govern bacterial community structure in the Fynbos, South Africa. Microb. Ecol. 72, 313–323 (2016).CAS 
    PubMed 

    Google Scholar 
    33.Dabo, M., Jaiswal, S. K. & Dakora, F. D. Phylogenetic evidence of allopatric speciation of bradyrhizobia nodulating cowpea ( Vigna unguiculata L. walp ) in South African and Mozambican soils Department of Crop Sciences, Tshwane University of Technology, Private Bag Chemistry Department. Tshw. FEMS Microbiol. Ecol. 19, 1–14 (2019).
    Google Scholar 
    34.Singh, S. K., Jaiswal, S. K., Vaishampayan, A. & Dhar, B. Physiological behavior and antibiotic response of soybean (Glycine max L.) nodulating rhizobia isolated from Indian soils. African J. Microbiol. Res. 7, 2093–2102 (2013).
    Google Scholar 
    35.Hayat, R., Ali, S., Amara, U., Khalid, R. & Ahmed, I. Soil beneficial bacteria and their role in plant growth promotion: A review. Ann. Microbiol. 60, 579–598 (2010).
    Google Scholar 
    36.Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).CAS 
    PubMed 

    Google Scholar 
    37.Maseko, S. T. & Dakora, F. D. Rhizosphere acid and alkaline phosphatase activity as a marker of P nutrition in nodulated Cyclopia and Aspalathus species in the Cape fynbos of South Africa. South African J. Bot. 89, 289–295 (2013).CAS 

    Google Scholar 
    38.Dludlu, M. N., Chimphango, S., Stirton, C. H. & Muasya, A. M. Differential preference of burkholderia and mesorhizobium to pH and soil types in the core cape subregion, South Africa. Genes 9, 2 (2017).PubMed Central 

    Google Scholar 
    39.Graham, P. H. et al. Acid pH tolerance in strains of Rhizobium and Bradyrhizobium, and initial studies on the basis for acid tolerance of Rhizobium tropici UMR1899. Can. J. Microbiol. 40, 198–207 (1994).CAS 

    Google Scholar 
    40.Fikri-Benbrahim, K., Chraibi, M., Lebrazi, S., Moumni, M. & Ismaili, M. Phenotypic and Genotypic Diversity and Symbiotic Effectiveness of Rhizobia Isolated from Acacia sp. Grown in Morocco. J. Agric. Sci. Technol. 19, (2017).41.Moumni, M., Fikri-Benbrahim, K., Ismaili, M., Lebrazi, S. & Chraibi, M. Phenotypic and G enotypic D iversity and S ymbiotic E ffectiveness of R hizobia I solated from Acacia sp. G rown in Morocco. JKUAT (2018). http://hdl.handle.net/123456789/373842.Farissi, M. et al. Growth, nutrients concentrations, and enzymes involved in plants nutrition of alfalfa populations under saline conditions. (2014).43.Lebrazi, S. & Benbrahim, K. F. Environmental stress conditions affecting the N2 fixing Rhizobium-legume symbiosis and adaptation mechanisms. African J. Microbiol. Res. 8, 4053–4061 (2014).
    Google Scholar 
    44.Bhargava, Y., Murthy, J. S. R., Kumar, T. V. R. & Rao, M. N. Phenotypic, stress tolerance and plant growth promoting characteristics of rhizobial isolates from selected wild legumes of semiarid region, Tirupati, India. Adv. Microbiol. 6, 1 (2016).CAS 

    Google Scholar 
    45.Sankhla, I. S. et al. Molecular characterization of nitrogen fixing microsymbionts from root nodules of Vachellia (Acacia) jacquemontii, a native legume from the Thar Desert of India. Plant Soil 410, 21–40 (2017).CAS 

    Google Scholar 
    46.Rathi, S. et al. Selection of Bradyrhizobium or Ensifer symbionts by the native Indian caesalpinioid legume Chamaecrista pumila depends on soil pH and other edaphic and climatic factors. FEMS Microbiol. Ecol. 94, 1–17 (2018).
    Google Scholar 
    47.Choudhary, D., Rai, M. K., Shekhawat, N. S. & Kataria, V. In vitro propagation of Farsetia macrantha Blatt. & Hallb.: An endemic and threatened plant of Indian Thar Desert. Plant Cell, Tissue Organ Cult. 142, 519–526 (2020).CAS 

    Google Scholar 
    48.de Castro Pires, R. et al. Soil characteristics determine the rhizobia in association with different species of Mimosa in central Brazil. Plant Soil 423, 411–428 (2018).
    Google Scholar 
    49.Verma, J. P., Yadav, J., Tiwari, K. N. & Kumar, A. Effect of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture. Ecol. Eng. 51, 282–286 (2013).
    Google Scholar 
    50.Datta, C. & Basu, P. S. Indole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub, Cajanus cajan. Microbiol. Res. 155, 123–127 (2000).CAS 
    PubMed 

    Google Scholar 
    51.Brink, C. J. Plant Growth-Promoting Properties of Fynbos Rhizobia and Their Diversity (Stellenbosch University, 2018).
    Google Scholar 
    52.Naamala, J., Jaiswal, S. K. & Dakora, F. D. Antibiotics resistance in Rhizobium: Type, process, mechanism and benefit for agriculture. Curr. Microbiol. 72, 804–816 (2016).CAS 
    PubMed 

    Google Scholar 
    53.Baba, T. & Schneewind, O. Instruments of microbial warfare: Bacteriocin synthesis, toxicity and immunity. Trends Microbiol. 6, 66–71 (1998).CAS 
    PubMed 

    Google Scholar 
    54.Menezes, K. A. S., Nunes, G. F. O. & Sampaio, A. A. Diversity of new root nodule bacteria from Erythrina velutina Willd., a native legume from the Caatinga dry forest (Northeastern Brazil). Rev Cienc Agrárias 39, 222–233 (2016).
    Google Scholar 
    55.Pagano, M. C. Rhizobia associated with neotropical tree Centrolobium tomentosum used in riparian restoration. Plant, Soil Environ. 54, 498–508 (2008).CAS 

    Google Scholar 
    56.Hong, W., Zeng, J. & Xie, J. Antibiotic drugs targeting bacterial RNAs. Acta Pharm. Sin. B 4, 258–265 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    57.Elliott, G. N. et al. Nodulation of Cyclopia spp. (Leguminosae, Papilionoideae) by Burkholderia tuberum. Ann. Bot. 100, 1403–1411 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Hassen, A. I., Bopape, F. L., Habig, J. & Lamprecht, S. C. Nodulation of rooibos (Aspalathus linearis Burm. f.), an indigenous South African legume, by members of both the α-proteobacteria and β-proteobacteria. Biol. Fertil. Soils 48, 295–303 (2012).CAS 

    Google Scholar 
    59.Gerding, M., O’Hara, G. W., Bräu, L., Nandasena, K. & Howieson, J. G. Diverse Mesorhizobium spp. with unique nodA nodulating the South African legume species of the genus Lessertia. Plant Soil 358, 385–401 (2012).CAS 

    Google Scholar 
    60.Lemaire, B. et al. Recombination and horizontal transfer of nodulation and ACC deaminase (acdS) genes within Alpha-and Beta-proteobacteria nodulating legumes of the Cape Fynbos biome. FEMS Microbiol. Ecol. 91, (2015).61.Gogarten, J. P., Doolittle, W. F. & Lawrence, J. G. Prokaryotic evolution in light of gene transfer. Mol. Biol. Evol. 19, 2226–2238 (2002).CAS 
    PubMed 

    Google Scholar 
    62.Andrews, M. et al. Horizontal transfer of symbiosis genes within and between rhizobial genera: Occurrence and importance. Genes 9, 321 (2018).PubMed Central 

    Google Scholar 
    63.Turner, S. L. & Young, J. P. W. The glutamine synthetases of rhizobia : Phylogenetics and evolutionary implications. 17, 309–319 (2000).64.Gevers, D. et al. Re-evaluating prokaryotic species. Nat. Rev. Microbiol. 3, 733 (2005).CAS 
    PubMed 

    Google Scholar 
    65.Ormeño-Orrillo, E. et al. Phylogenetic evidence of the transfer of nodZ and nolL genes from Bradyrhizobium to other rhizobia. Mol. Phylogenet. Evol. 67, 626–630 (2013).PubMed 

    Google Scholar 
    66.Parker, M. A., Lafay, B., Burdon, J. J. & Van Berkum, P. Conflicting phylogeographic patterns in rRNA and nifD indicate regionally restricted gene transfer in Bradyrhizobiumaa. Microbiology 148, 2557–2565 (2002).CAS 
    PubMed 

    Google Scholar 
    67.Duran, D. et al. Bradyrhizobium paxllaeri sp. Nov. and Bradyrhizobium icense sp. Nov., nitrogen-fixing rhizobial symbionts of Lima bean (Phaseolus lunatus L.) in Peru. Int. J. Syst. Evol. Microbiol. 64, 2072–2078 (2014).PubMed 

    Google Scholar 
    68.Grönemeyer, J. L., Kulkarni, A., Berkelmann, D., Hurek, T. & Reinhold-Hurek, B. Identification and characterization of rhizobia indigenous to the Okavango region in Sub-Saharan Africa. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.02417-14 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Rogel, M. A., Ormeno-Orrillo, E. & Romero, E. M. Symbiovars in rhizobia reflect bacterial adaptation to legumes. Syst. Appl. Microbiol. 34, 96–104 (2011).PubMed 

    Google Scholar 
    70.Lindstrom, K., Murwira, M., Willems, A. & Altier, N. The biodiversity of beneficial microbe-host mutualism : The case of rhizobia. Res. Microbiol. 161, 453–463 (2010).PubMed 

    Google Scholar 
    71.Barcellos, F. G., Menna, P., da Silva Batista, J. S. & Hungria, M. Evidence of horizontal transfer of symbiotic genes from a Bradyrhizobium japonicum inoculant strain to indigenous diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian Savannah soil. Appl. Environ. Microbiol. 73, 2635–2643 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Jourand, P., Mateille, T., Fargette, M. & Rapior, S. Nematostatic activity of aqueous extracts of West African Crotalaria species. Nematology 6, 765–771 (2004).
    Google Scholar 
    73.Chen, W.-M. et al. Legume symbiotic nitrogen fixation by β-proteobacteria is widespread in nature. J. Bacteriol. 185, 7266–7272 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Aoki, S., Ito, M. & Iwasaki, W. From β-to α-proteobacteria: The origin and evolution of rhizobial nodulation genes nodIJ. Mol. Biol. Evol. 30, 2494–2508 (2013).CAS 
    PubMed 

    Google Scholar 
    75.Moulin, L., Béna, G., Boivin-Masson, C. & Stkepkowski, T. Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co-transfer within the Bradyrhizobium genus. Mol. Phylogenet. Evol. 30, 720–732 (2004).CAS 
    PubMed 

    Google Scholar 
    76.Lu, Y. L. et al. Genetic diversity and biogeography of rhizobia associated with Caragana species in three ecological regions of China. Syst. Appl. Microbiol. 32, 351–361 (2009).CAS 
    PubMed 

    Google Scholar 
    77.Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Quantitative mismatch between empirical temperature-size rule slopes and predictions based on oxygen limitation

    ModelAt a given temperature i there should be a maximum body mass, Mmaxi, for which the maximum temperature-dependent surface-specific flux of oxygen, fmaxi (with unit mass O2 area−1 time−1) allows for oxygen uptake to match consumption, and where a further increase in size would lead to an oxygen deficit. This can be expressed as:$$fma{x}_{i}cdot Ama{x}_{i}={k}_{i}Mma{{x}_{i}}^{beta },$$
    (1)
    where the left side of the equation gives oxygen uptake and the right side represents oxygen demand. Amaxi is the maximum surface area used for oxygen uptake. Thus, the exact area of the organism that should be considered here will depend on the type of organism (i.e. gill surface area [e.g. fish] or other specific areas of the body surface where oxygen uptake occurs [e.g. ventral body region of Daphnia]). β is the allometric scaling exponent describing the relationship between body mass and oxygen consumption, and ki is the parameter describing temperature-dependent oxygen consumption (with unit mass O2 body mass−1 time−1). The relationship between A and M can be expressed as A = α∙Mc, where the constant α gives the mass specific surface area used for oxygen uptake (with units area mass−1) when M = 1. The constant c is the allometric scaling exponent describing the relationship between body mass and area over which oxygen can diffuse. Thus, since maximum body size will only be limited by oxygen availability when oxygen demand increases faster than supply with increasing body size, the model is only valid for c  More

  • in

    A food web approach reveals the vulnerability of biocontrol services by birds and bats to landscape modification at regional scale

    1.Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).CAS 
    Article 
    ADS 

    Google Scholar 
    2.Fischer, J. & Lindenmayer, D. Landscape modification and habitat fragmentation: a synthesis. Global Ecol. Biogepogr. 16, 265–280 (2005).Article 

    Google Scholar 
    3.Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121 (2019).Article 
    ADS 

    Google Scholar 
    4.Boyles, J., Cryan, P., McCracken, G. F. & Kunz, T. H. Economic importance of bats in agriculture. Science 332, 41–42 (2011).Article 
    ADS 

    Google Scholar 
    5.Puig-Montserrat, X. et al. Pest control service provided by bats in Mediterranean rice paddies: linking agroecosystems structure to ecological functions. Mamm. Biol. 80, 237–245 (2015).Article 

    Google Scholar 
    6.Maas, B. et al. Bird and bat predation services in tropical forests and agroforestry landscapes. Biol. Rev. 91, 1081–1101 (2015).Article 

    Google Scholar 
    7.Maes, J. et al. Mapping ecosystem services for policy support and decision making in the European Union. Ecosyst. Serv. 1, 31–39 (2012).Article 

    Google Scholar 
    8.Alkemade, R., Burkhard, B., Crossman, N. D., Nedkov, S. & Petz, K. Quantifying ecosystem services and indicators for science, policy and practice. Ecol. Indic. 37, 161–162 (2014).Article 

    Google Scholar 
    9.Mandle, L. et al. Assessing ecosystem service provision under climate change to support conservation and development planning in Myanmar. PLoS ONE 12(9), 23 (2017).Article 

    Google Scholar 
    10.Dang, A. N., Jackson, B. M., Benavidez, R. & Tomscha, S. A. Review of ecosystem service assessments: Pathways for policy integration in Southeast Asia. Ecosyst. Serv. 49, 101266 (2021).Article 

    Google Scholar 
    11.Eurostats. Agriculture, Forestry and Fisheries. European Statistics. https://ec.europa.eu/eurostat (2021).12.Eurostats. Pests and diseases in viticulture. EIP-AGRI Focus Group. https://ec.europa.eu/eip/agriculture/ (2019).13.Eurostats. Pests and diseases of the olive tree. EIP-AGRI Focus Group. https://ec.europa.eu/eip/agriculture/ (2019).14.EPPO. EPPO Global Database. https://gd.eppo.int (2018).15.Chaplin-Kramer, R., O’Rourke, M. E., Blitzer, L. J. & Kremen, C. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 14, 922–932 (2011).Article 

    Google Scholar 
    16.Equipa Atlas. Atlas das Aves Nidificantes em Portugal (1999–2005). Instituto da Conservação da Natureza e da Biodiversidade, Sociedade Portuguesa para o Estudo das Aves, Parque Natural da Madeira e Secretaria Regional do Ambiente e do Mar. Assírio & Alvim, Lisboa (2008).17.Rainho, A., Alves, P., Amorim, F. & Marques, J. T. Atlas dos morcegos: de Portugal continental. Instituto da Conservação da Natureza e das Florestas (2013).18.Herrera, J. M., Ploquin, E., Rodriguez-Pérez, J. & Obeso, J. R. Determining habitat suitability of a mountain bumblebee fauna: a baseline approach for testing the impact of climate change on species distribution and abundance. J. Biogeogr. 41, 700–712 (2014).Article 

    Google Scholar 
    19.Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    20.Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).Article 
    ADS 

    Google Scholar 
    21.Jiménez-Valverde, A., Lobo, J. M. & Hortal, J. Not as good as they seem: the importance of concepts in species distribution modelling. Divers. Distrib. 14, 885–890 (2008).Article 

    Google Scholar 
    22.Tylianakis, J. M., Laliberté, E., Nielsen, A. & Bascompte, J. Conservation of species interaction networks. Biol. Conserv. 143, 2270–2279 (2010).Article 

    Google Scholar 
    23.Valiente-Banuet, A. et al. Beyond species loss: the extinction of ecological interactions in a changing world. Funct. Ecol. 29, 299–307 (2015).Article 

    Google Scholar 
    24.Karp, D. S. et al. Forest bolsters bird abundance, pest control, and coffee yield. Ecol. Lett. 16, 1339–1347 (2013).Article 

    Google Scholar 
    25.Maas, B., Clough, Y. & Tscharntke, T. Bats and birds increase crop yield in tropical agroforestry landscapes. Ecol. Lett. 16, 1480–1487 (2013).Article 

    Google Scholar 
    26.Barbaro, L. et al. Avian pest control in vineyards is driven by interactions between bird functional diversity and landscape heterogeneity. J. App. Ecol. 54, 500–508 (2016).Article 

    Google Scholar 
    27.Paiola, A. et al. Exploring the potential of vineyards for biodiversity conservation and delivery of biodiversity-mediated ecosystem services: a global-scale systematic review. Sci. Total Environ. 706, 135839 (2020).CAS 
    Article 
    ADS 

    Google Scholar 
    28.Charbonnier, Y. et al. Pest control services provided by bats in vineyard landscapes. Agric. Ecosyst. Environ. 306, 107207 (2021).CAS 
    Article 

    Google Scholar 
    29.Rey, P. J. et al. Landscape-moderated biodiversity effects of ground herb cover in olive groves: implications for regional biodiversity conservation. Agr. Ecosyst. Environ. 277, 61–73 (2020).Article 

    Google Scholar 
    30.Morgado, R. et al. A Mediterranean silent spring? The effects of olive farming intensification on breeding bird communities. Agric. Ecosyst. Environ. 288, 106694 (2020).Article 

    Google Scholar 
    31.Martínez-Núñez, C. et al. Direct and indirect effects of agricultural practices, landscape complexity and climate on insectivorous birds, pest abundance and damage in olive groves. Agric. Ecosyst. Environ. 304, 107145 (2020).Article 

    Google Scholar 
    32.Herrera, J. M., Costa, P., Medinas, D., Marques, J. T. & Mira, A. Community composition and activity of insectivorous bats in Mediterranean olive farms. Anim. Conserv. 18, 557–566 (2015).Article 

    Google Scholar 
    33.Costa, A. et al. Structural simplification compromises the potential of common insectivorous bats to provide biocontrol services against the major olive pest Prays oleae. Agric. Ecosyst. Environ. 287, 106708 (2020).Article 

    Google Scholar 
    34.Puig-Montserrat, X., Mas, M., Flaquer, C., Tuneu-Corrala, C. & López-Baucells, A. Benefits of organic olive farming for the conservation of gleaning bats. Agric. Ecosyst. Environ. 313, 107361 (2021).Article 

    Google Scholar 
    35.Rey, P. J. Preserving frugivorous birds in agro-ecosystems: lessons from Spanish olive orchards. J. Appl. Ecol. 48, 228–237 (2011).Article 

    Google Scholar 
    36.Rodríguez-San Pedro, A. et al. Influence of agricultural management on bat activity and species richness in vineyards of central Chile. J. Mamm. 99, 1495–1502 (2018).
    Google Scholar 
    37.Pithon, J. A., Beaujouan, V., Daniel, H., Pain, G. & Vallet, J. Are vineyards important habitats for birds at local or landscape scales?. Basic Appl. Ecol. 17, 240–251 (2016).Article 

    Google Scholar 
    38.Froidevaux, J. S. P., Louboutin, B. & Jones, G. Does organic farming enhance biodiversity in Mediterranean vineyards? A case study with bats and arachnids. Agr. Ecosyst. Environ. 249, 112–122 (2017).Article 

    Google Scholar 
    39.Van der Biest, K. et al. Aligning biodiversity conservation and ecosystem services in spatial planning: focus on ecosystem processes. Sci. Total Environ. 712, 136350 (2020).Article 
    ADS 

    Google Scholar 
    40.Janzen, D. H. Latent extinction-the living dead. Encycl. Biodivers. 3, 689–699 (2001).Article 

    Google Scholar 
    41.Herrera, J. M. et al. Generalities of vertebrate responses to landscape composition and configuration gradients in a highly heterogeneous Mediterranean region. J. Biogeogr. 43, 1203–1214 (2016).Article 

    Google Scholar 
    42.Ponti, L., Gutierrez, A. P., Rutid, P. M. & Dell’Aquila, A. Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers. Proc. Nat. Acad. Sci. 111, 5598–5603 (2014).CAS 
    Article 
    ADS 

    Google Scholar 
    43.Silva, L. P. et al. Advancing the integration of multi-marker metabarcoding data in dietary analysis of trophic generalists. Mol. Ecol. Resour. 19, 1420–1432 (2019).Article 

    Google Scholar 
    44.Pejchar, L. et al. Net effects of birds in agroecosystems. Bioscience 68, 896–904 (2018).
    Google Scholar 
    45.Alberdi, A. et al. DNA metabarcoding and spatial modelling link diet diversification with distribution homogeneity in European bats. Nat. Comm. 11, 1154 (2020).CAS 
    Article 
    ADS 

    Google Scholar  More

  • in

    Fruiting character variability in wild individuals of Malania oleifera, a highly valued endemic species

    Weight and dimensions of fruit and stoneThe mean weight of a fruit from a particular tree ranged from 21.25 ± 4.26 to 58.26 ± 10.44 g, with the weight of the heaviest mean fruit weight being 2.74 times that of the lightest. Similarly, the mean stone weight ranged from 8.99 ± 2.35 to 20.32 ± 3.14 g, with a 2.26 times difference between the heaviest and lightest stones (Table 2). There were significant differences (p  More

  • in

    The Southern Ocean Exchange: porous boundaries between humpback whale breeding populations in southern polar waters

    1.Clapham, P. J. & Mead, J. G. Sharing the space: Review of humpback whale occurrence in the Amazonian equatorial coast. In: Mammalian Species: Megaptera novaeangliae. American Society of Mammalogists Issue, vol 604, 5 (1999). https://doi.org/10.1016/j.gecco.2019.e00854.2.Rasmussen, K. et al. Southern Hemisphere humpback whales wintering off Central America: Insights from water temperature into the longest mammalian migration. Biol. Lett. 3, 302–305. https://doi.org/10.1098/rsbl.2007.0067 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.De Weerdt, J., Ramos, E. A. & Cheeseman, T. Northernmost records of Southern Hemisphere humpback whales (Megaptera novaeangliae) migrating from the Antarctic Peninsula to the Pacific coast of Nicaragua. Mar. Mamm. Sci. 36, 1015–1021. https://doi.org/10.1111/mms.12677 (2020).Article 

    Google Scholar 
    4.Mikhalev, Y. A. Humpback whales Megaptera novaeangliae in the Arabian Sea. Mar. Ecol. Prog. Ser. 149, 13–21. https://doi.org/10.3354/meps149013 (1997).ADS 
    Article 

    Google Scholar 
    5.Ristau, N. G. et al. Sharing the space: Review of humpback whale occurrence in the Amazonian Equatorial Coast. Glob. Ecol. Conserv. 22, e00854. https://doi.org/10.1016/j.gecco.2019.e00854 (2020).Article 

    Google Scholar 
    6.Kellogg, R. What is known of the migration of some of the whalebone whales U.S.G.P.O. In Publication Smithsonian Institution, 2997 Rex Nan Kivell Collection, NK5765, 467e494, 2997 (2) leaves of plates (Smithsonian Publication, 1929).7.Clapham, P. J. Humpback whale. In Megaptera novaeangliae. Encyclopedia of Marine Mammals, 3rd edn, 489–492. (Academic Press, 2018). https://doi.org/10.1016/B978-0-12-804327-1.00154-0.8.Chereskin, E. et al. Song structure and singing activity of two separate humpback whales populations wintering off the coast of Caño Island in Costa Rica. J. Acoust. Soc. Am. 146, EL509–EL515 (2020).Article 

    Google Scholar 
    9.Jackson, J. et al. Global diversity and oceanic divergence of humpback whales (Megaptera novaeangliae). Proc. R. Soc. B 281, 20133222. https://doi.org/10.1098/rspb.2013.3222 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Baker, C. S. et al. Abundant mitochondrial DNA variation and world-wide population structure in humpback whales. Proc. Natl. Acad. Sci. 90, 8239–8243 (1993).ADS 
    CAS 
    Article 

    Google Scholar 
    11.Palsbøll, P. J. et al. Distribution of mtDNA haplotypes in North Atlantic humpback whales: The influence of behaviour on population structure. Mar. Ecol. Progr. Ser. 116, 1–10 (1995).ADS 
    Article 

    Google Scholar 
    12.Rosenbaum, H. C. et al. First circumglobal assessment of Southern Hemisphere humpback whale mitochondrial genetic variation and implications for management. Endang. Species Res. 32, 551–567. https://doi.org/10.3354/esr00822 (2017).Article 

    Google Scholar 
    13.Kershaw, F. et al. Multiple processes drive genetic structure of humpback whale (Megaptera novaeangliae) populations across spatial scales. Mol. Ecol. 26, 977–994. https://doi.org/10.1111/mec.13943 (2017).Article 
    PubMed 

    Google Scholar 
    14.Baker, C. S. et al. Strong maternal fidelity and natal philopatry shape genetic structure in North Pacific humpback whales. Mar. Ecol. Progr. Ser. 494, 291–306 (2013).ADS 
    Article 

    Google Scholar 
    15.Garland, E. C. et al. Dynamic horizontal cultural transmission of humpback whale song at the ocean basin scale. Curr. Biol. 21, 687–691. https://doi.org/10.1016/j.cub.2011.03.019 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Garland, E. C. et al. Humpback whale song on the Southern Ocean feeding grounds: Implications for cultural transmission. PLoS ONE 8, 11. https://doi.org/10.1371/journal.pone.0079422 (2013).CAS 
    Article 

    Google Scholar 
    17.Donovan, G. A. Review of IWC stock boundaries. In Report of the International Whaling Commission (Special Issue), vol. 13, 39–68 (1991).18.IWC. JCRM (Supplement), vol. 15, 287–288 (2014).19.Félix, F. & Guzmán, H. M. Satellite tracking and sighting data analyses of Southeast Pacific humpback whales (Megaptera novaeangliae): Is the migratory route coastal or oceanic?. Aquat. Mamm. 40, 329–340. https://doi.org/10.1578/AM.40.4.2014.329 (2014).Article 

    Google Scholar 
    20.Albertson, G. R. et al. Temporal stability and mixed-stock analyses of humpback whales (Megaptera novaeangliae) in the nearshore waters of the Western Antarctic Peninsula. Polar Biol. 41, 323–340. https://doi.org/10.1007/s00300-017-2193-1 (2018).Article 

    Google Scholar 
    21.Acevedo, J. et al. First evidence of interchange of humpback whales (Megaptera novaeangliae) between the Magellan Strait and Antarctic Peninsula feeding grounds. Polar Biol. 44, 613–619. https://doi.org/10.1007/s00300-021-02827-2 (2021).Article 

    Google Scholar 
    22.Andriolo, A., Kinas, P. G., Engel, M. H., Martins, C. C. A. & Rufino, A. M. Humpback whales within the Brazilian breeding ground: Distribution and population size estimate. Endanger. Species Res. 11, 233–243. https://doi.org/10.3354/esr00282 (2010).Article 

    Google Scholar 
    23.Martins, C. C. A., Andriolo, A., Engel, M. H., Kinas, P. G. & Saito, C. H. Identifying priority areas for humpback whale conservation at Eastern Brazilian Coast. Ocean Coast. Manag. 75, 63–71. https://doi.org/10.1016/j.ocecoaman.2013.02.006 (2013).Article 

    Google Scholar 
    24.Dalla Rosa, L. et al. Feeding ground of the eastern South Pacific humpback whale population include the south Orkney island. Polar Res. 31, 17324. https://doi.org/10.3402/polar.v31i0.17324 (2012).Article 

    Google Scholar 
    25.Zerbini, A. N. et al. Satellite-monitored movements of humpback whales Megaptera novaeangliae in the southwest Atlantic Ocean. Mar. Ecol. Prog. Ser. 313, 295e304. https://doi.org/10.3354/meps313295 (2006).Article 

    Google Scholar 
    26.Zerbini, A. et al. Migration and summer destinations of humpback whales (Megaptera novaeangliae) in the western South Atlantic Ocean. J. Cetacean Res. Manag. 3, 113–118. https://doi.org/10.47536/jcrm.vi.315 (2011).Article 

    Google Scholar 
    27.Engel, M. H. et al. Mitochondrial DNA diversity of the Southwestern Atlantic humpback whale (Megaptera novaeangliae) breeding area off Brazil, and the potential connections to Antarctic feeding areas. Conserv. Genet. 9, 1253e1262. https://doi.org/10.1007/s10592-007-9453-5 (2008).CAS 
    Article 

    Google Scholar 
    28.Engel, M. H. & Martin, A. R. Feeding grounds of the western South Atlantic humpback whale population. Mar. Mamm. Sci. 25, 964e969. https://doi.org/10.1111/j.1748-7692.2009.00301.x (2009).Article 

    Google Scholar 
    29.IWC. Report of the workshop on the comprehensive assessment of Southern hemisphere humpback whales. J. Cetacean Res. Manag. 1, 1–50 (2011).30.Horton, T., Zerbini, A., Andriolo, A., Danilewicz, D. & Sucunza, F. Multi-decadal humpback whale migratory route fidelity despite oceanographic and geomagnetic change. Front. Mar. Sci. 7, 414. https://doi.org/10.3389/fmars.2020.00414 (2020).Article 

    Google Scholar 
    31.Stevick, P. T. et al. Population spatial structuring on the feeding grounds in North Atlantic humpback whales (Megaptera novaeangliae). J. Zool. 270, 244e255. https://doi.org/10.1111/j.1469-7998.2006.00128.x (2006).Article 

    Google Scholar 
    32.IWC. Report of the scientific committee. Rep. Int. Whal. Commun. 48, 53–118 (1998).33.Cypriano-Souza, A. L. et al. Genetic differentiation between humpback whales (Megaptera novaeangliae) from Atlantic and Pacific breeding grounds of South America. Mar. Mamm. Sci. 33, 457–479. https://doi.org/10.1111/mms.12378 (2017).CAS 
    Article 

    Google Scholar 
    34.IWC. J. Cetacean Res. Manag. (Supplement) 7, 235–246 (2005).35.Dalla Rosa, L., Secchi, E. R., Maia, Y. G., Zerbini, A. N. & Heide-Jørgensen, M. P. Movements of satellite-monitored humpback whales on their feeding ground along the Antarctic Peninsula. Polar Biol. 31, 771–781 (2008).Article 

    Google Scholar 
    36.Bombosch, A. et al. Predictive habitat modelling of humpback (Megaptera novaeangliae) and Antarctic minke (Balaenoptera bonaerensis) whales in the Southern Ocean as a planning tool for seismic surveys. Deep Sea Res. (I Oceanogr. Res. Pap.) 91, 101–114. https://doi.org/10.1016/j.dsr.2014.05.017 (2014).ADS 
    Article 

    Google Scholar 
    37.Stevick, P. et al. Migrations of individually identified humpback whales between the Antarctic Peninsula and South America. J. Cetacean Res. Manag. 6, 109–113 (2004).
    Google Scholar 
    38.Pomilla, C. & Rosenbaum, H. C. Against the current: An inter-oceanic whale migration event. Biol. Lett. 1, 476–479. https://doi.org/10.1098/rsbl.2005.0351 (2005).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Stevick, P. T. et al. A quarter of a world away: Female humpback whale moves 10 000 km between breeding areas. Biol. Lett. 7, 299–302. https://doi.org/10.1098/rsbl.2010.0717 (2011).Article 
    PubMed 

    Google Scholar 
    40.Stevick, P. T. et al. Inter-oceanic movement of an adult female humpback whale between Pacific and Atlantic breeding grounds off South America. J. Cetacean Res. Manag. 13, 159–162 (2013).
    Google Scholar 
    41.Félix, F. et al. A new case of interoceanic movement of a humpback whale in the Southern hemisphere: The El Niño link. Aquat. Mamm. 46, 578–583. https://doi.org/10.1578/AM.46.6.2020.578 (2020).Article 

    Google Scholar 
    42.Castro, C. Engel, M., Martin, A. & Kaufman, G. Comparison of humpback whale catalogues between Ecuador, and South Georgia and Sandwich Island: Evidence of increased feeding area I boundary or overlap between feeding areas I and II? Report of the scientific committee. Rep. Int. Whal. Comm. SC/66/SH (2015).43.Cheeseman, T. et al. Advanced image recognition: A fully automated, high-accuracy photo-identification matching system for humpback whales. Mamm. Biol. https://doi.org/10.1007/s42991-021-00180-9 (in press).44.Gura, T. Citizen science: Amateur experts. Nature 496, 259–261. https://doi.org/10.1038/nj7444-259a (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    45.Chandler, M. et al. Contribution of citizen science towards international biodiversity monitoring. Biol. Conserv. 213, 280–294. https://doi.org/10.1016/j.biocon.2016.09.004 (2017).Article 

    Google Scholar 
    46.de Sherbinin, A. et al. The critical importance of citizen science data. Front. Clim. 3, 650760. https://doi.org/10.3389/fclim.2021.650760 (2021).Article 

    Google Scholar 
    47.Pallin, L. J., Robbins, J., Kellar, N., Bérubé, M. & Friedlaender, A. Validation of a blubber-based endocrine pregnancy test for humpback whales. Conserv. Physiol. https://doi.org/10.1093/conphys/coy031 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Gabriele, C. M., Straley, J. M. & Neilson, J. L. Age at first calving of female humpback whales in Southeastern Alaska. In Proceedings of the Fourth Glacier Bay Science Symposium, October 26–28, 2004: U.S. Geological Survey Scientific Investigations Report (eds. Piatt, J. F. & Gende, S. M.) vol. 2007–5047, 159–162 (2007).49.Baker, C. S. & Medrano-González, L. Worldwide distribution and diversity of humpback whale mitochondrial DNA lineages. In Molecular and Cell Biology of Marine Mammals (ed. Pfeiffer, C. J.) 84–99 (Krieger Publishing Company, 2002).
    Google Scholar 
    50.Bettridge, S. et al. Status Review of the Humpback Whale (Megaptera novaeangliae) under the Endangered Species Act. NOAA-TM-NMFS-SWFSC-540, ID#4883, 241. https://repository.library.noaa.gov/view/noaa/4883 (2015).51.IWC. Annex H: Report of the sub-committee on other Southern hemisphere whale stocks. J. Cetacean Res. Manag.(Supplement) 17, 250–282 (2016).52.Zerbini, A. et al. Assessing the recovery of an Antarctic predator from historical exploitation. R. Soc. Open Sci. 6, 190368. https://doi.org/10.1098/rsos.190368 (2019).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Zerbini, A. N., Clapham, P. J. & Wade, P. R. Assessing plausible rates of population growth in humpback whales from life-history data. Mar. Biol. 157, 1432e1793. https://doi.org/10.1007/s00227-010-1403-y (2010).Article 

    Google Scholar 
    54.Gonçalves, M. I. C. et al. Low latitude habitat use patterns of a recovering population of humpback whales. J. Mar. Biol. Assoc. U. K. 98, 1087–1096. https://doi.org/10.1017/S0025315418000255 (2018).Article 

    Google Scholar 
    55.Riekkola, L. et al. Longer migration not necessarily the costliest strategy for migrating humpback whales. Aquat. Conserv. Mar. Freshw. Ecosyst. 1, 12. https://doi.org/10.1002/aqc.3295 (2020).Article 

    Google Scholar 
    56.Pallin, L. J. et al. High pregnancy rates in humpback whales (Megaptera novaeangliae) around the Western Antarctic Peninsula, evidence of a rapidly growing population. R. Soc. Open Sci. 5, 180017. https://doi.org/10.1098/rsos.180017 (2018).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Avila, I. C. et al. Whales extend their stay in a breeding ground in the Tropical Eastern Pacific. ICES J. Mar. Sci. 77, 109–118. https://doi.org/10.1093/icesjms/fsz251 (2020).Article 

    Google Scholar 
    58.Fritsen, C. H., Memmott, J. C. & Stewart, F. J. Inter-annual sea-ice dynamics and micro-algal biomass in winter pack ice of Marguerite Bay, Antarctica. Deep Sea Res II Top. Stud. Oceanogr. 55, 2059–2067. https://doi.org/10.1016/j.dsr2.2008.04.034 (2008).ADS 
    Article 

    Google Scholar 
    59.Meyer, B. The overwintering of Antarctic krill, Euphausia superba, from an ecophysiological perspective. Polar Biol. 35, 15–37. https://doi.org/10.1007/s00300-011-1120-0 (2012).Article 

    Google Scholar 
    60.Seyboth, E. et al. Influence of krill (Euphausia superba) availability on humpback whale (Megaptera novaeangliae) reproductive rate. Mar. Mamm. Sci. https://doi.org/10.1111/mms.12805 (2021).Article 

    Google Scholar 
    61.Atkinson, A. A., Siegel, V., Pakhomov, E. & Rothery, P. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103. https://doi.org/10.1038/nature02996 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    62.Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Change 9, 142–147. https://doi.org/10.1038/s41558-018-0370-z (2019).ADS 
    Article 

    Google Scholar 
    63.Loeb, V. J. & Santora, J. A. Climate variability and spatiotemporal dynamics of five Southern Ocean krill species. Prog. Ocean. 134, 93–122. https://doi.org/10.1016/j.pocean.2015.01.002 (2015).Article 

    Google Scholar 
    64.Forcada, J., Trathan, P. & Murphy, E. J. Life history buffering in Antarctic mammals and birds against changing patterns of climate and environmental variation. Glob. Change Biol. 14, 2473–2488 (2008).ADS 
    Article 

    Google Scholar 
    65.Fielding, S. et al. Interannual variability in Antarctic krill (Euphausia superba) density at South Georgia, Southern Ocean: 1997–2013. ICES J. Mar. Sci. 71, 2578–2588. https://doi.org/10.1093/icesjms/fsu104 (2014).MathSciNet 
    Article 

    Google Scholar 
    66.Wedekin, L. L. et al. Running fast in the slow lane: Rapid population growth of humpback whales after exploitation. Mar. Ecol. Prog. Ser. 575, 195–206. https://doi.org/10.3354/meps12211 (2017).ADS 
    Article 

    Google Scholar 
    67.Rogers, A. D. et al. Antarctic futures: An assessment of climate-driven changes in ecosystem structure, function, and service provisioning in the Southern Ocean. Ann. Rev. Mar. Sci. 12, 87–120. https://doi.org/10.1146/annurev-marine-010419-011028 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    68.Glockner, D. A. & Venus, S. Determining the sex of humpback whales (Megaptera novaeangliae) in their natural environment. In Behavior and Communication of Whales. (Westview Press, 1983).69.Darling, J. D. & Berubé, M. Interactions of singing humpback whales with other males. Mar. Mamm. Sci. 17, 570–584. https://doi.org/10.1111/j.1748-7692.2001.tb01005.x (2001).Article 

    Google Scholar 
    70.Noad, M. J., Cato, D. H., Bryden, M. M., Jenner, M. N. & Jenner, K. C. S. Cultural revolution in whale songs. Nature 408, 537–537 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    71.Darling, D. J. & Sousa-Lima, R. S. Songs indicate interaction between humpback whale (Megaptera novaeangliae) populations in western and eastern South Atlantic Ocean. Mar. Mamm. Sci. 21, 557–566. https://doi.org/10.1111/j.1748-7692.2005.tb01249.x (2006).Article 

    Google Scholar 
    72.McKnight, A., Allyn, A. J., Duffy, D. C. & Irons, D. B. ‘Stepping stone’ pattern in Pacific Arctic tern migration reveals the importance of upwelling areas. Mar. Ecol. Prog. Ser. 491, 253–264. https://doi.org/10.3354/meps10469 (2013).ADS 
    Article 

    Google Scholar 
    73.Groch, K. R. et al. Cetacean morbilivirus in humpback whale’s exhaled breath. Transbound. Emerg. Dis. https://doi.org/10.1111/tbed.13883 (2020).Article 
    PubMed 

    Google Scholar 
    74.Ballance, L. T. Contributions of photographs to cetacean science. Aquat. Mamm. 44, 668–682 (2018).Article 

    Google Scholar 
    75.Kosmala, M., Wiggins, A., Swanson, A. & Simmons, B. Assessing data quality in citizen science. Front. Ecol. Environ. 14, 551–560. https://doi.org/10.1002/fee.1436 (2016).Article 

    Google Scholar 
    76.Vieira, E. A., Souza, L. R. & Longo, G. O. Diving into science and conservation: Recreational divers can monitor reef assemblages. Perspect. Ecol. Conserv. 18, 51–59. https://doi.org/10.1016/j.pecon.2019.12.001 (2020).Article 

    Google Scholar  More