More stories

  • in

    Breaking the bias: how to deliver gender equity in conservation

    In many conservation projects, women are alone on all-male teams.Credit: Getty

    My career in conservation spans more than 20 countries, and workplaces ranging from universities, governments and consultancies to community-based and global non-governmental organizations (NGOs). Currently, I work as the Asia-Pacific director of gender and equity at The Nature Conservancy, one of the largest global conservation NGOs: it has more than 4,000 staff members and is active in more than 80 countries. I am responsible for ensuring that all our endeavours across the Asia-Pacific to address biodiversity loss and the climate crisis are inclusive and equitable.My career has been incredibly diverse: from monitoring saltwater crocodiles (Crocodylus porosus) in northern Australia to working with women on gender-based violence in Papua New Guinea to speaking at international climate meetings. But one theme has remained a constant: gender-based discrimination, which not only holds women back, but holds the world back from addressing the crises of climate change and biodiversity loss.Discrimination is by no means an experience unique to me or just a few women. A review of 230 peer-reviewed articles1, of which I was the lead author, confirmed a sobering truth: women everywhere are excluded from decisions about conservation and natural resources, from small and remote communities in biodiversity hotspots to large conservation organizations themselves. In every country, and in almost every setting and organization, women are routinely disadvantaged in conservation just because they are women.
    Collection: Fieldwork
    Unconscious bias is normal and natural, and all of us have it: it is how our brains make sense of the world. But when unexamined bias or deliberate discrimination influences decision-making, perpetuates stereotypes and keeps women from reaching their potential, they create rippling negative impacts on society and the future of our planet. Whether gender stereotypes are overtly hostile (such as ‘women are too emotional to lead fieldwork’) or seemingly benign (‘women are naturally good at organizing and supporting the team’ or ‘we need a strong, decisive leader’ — that is, a man), they hold women back in their conservation careers.An uneven playing fieldConservation has historically been a male-dominated profession. Just 3–11% of wildlife rangers are women2, and only 11% of the top-publishing authors in conservation and ecology are women3. A strong masculine culture is often associated with the profession, which can intimidate women. Many women in the sector experience sexual harassment and anxiety about their personal safety — particularly when they are the only woman on a project, which is often the case.Furthermore, women usually pay a heavy price for calling out cultures that are not inclusive. From surveying conservation professionals, I found that nearly 20% of women fear reprisal when speaking out against bias4. Their fears are warranted; many are sidelined or branded as ‘difficult’ or ‘frustrating’ if they draw attention to discrimination or poor behaviour, or try to slow down the decision-making process if it is not inclusive.In my career, I have been told that I wouldn’t be considered for an exciting project because it would be too physically demanding, be unsafe for a woman to be alone in a remote setting or require too much time away from my young family. Decisions that are made on your behalf are infuriating — and can come at both a career cost and a financial cost. Conversely, I have been offered opportunities because I have a masculine, gender-neutral name, and the people in charge assumed that I was a man before they had met me. I was then met with surprise and scepticism when I turned up and they realized that ‘Robyn James’ is a woman. I have always held my own in these situations, but the constant pressure to prove I belonged was exhausting and came at a personal cost5,6.My experiences are those of someone who holds deep and unearned privilege: I am a white cis woman with sufficient income to support my family, and I can speak and write English (the primary language of science) well. These factors increase my opportunities to contribute. Many conservationists and scientists who are women do not have those privileges. Some are also discriminated against owing to racism in a world that favours whiteness, and those who live in places where the cost of education and health care is high, wages are low and basic services such as power and Internet are intermittent face further disadvantages.As an ally and sponsor for women in conservation and science, I am determined to leverage my position to change this. I’m focused on breaking down walls and smashing the glass ceiling for women across the sector.Here are a few ways I am using the power I have to make conservation and science more inclusive. Hopefully these ideas will help others to share their solutions or to be better allies to women.Women are needed as leadersWomen who are conservation and environmental-science graduate students or are at early career stages often tell me that they don’t often see women at senior levels7, and that leaders don’t make them feel included. I am part of an informal group of women in senior positions in conservation, representing several organizations, who attend events for undergraduates and early-career professionals. We aim to share our journeys and to be visible to women who are just starting out. We model diverse leadership styles to show alternatives to masculine ‘command and control’ leadership, which these women might have more often experienced.Women routinely undersell themselves and do not apply for promotions, so we actively encourage our younger peers to apply for positions and support them by providing feedback on CVs and sharing interview techniques, for example. I am also part of a formal mentoring and sponsorship programme to support women — especially those in the lower-income countries — to navigate and excel in systems that are not designed with their success in mind. We work through issues to do with self-esteem and confidence: some women have understandably taken biased attitudes on board, and do not realize that they are worthy of progressing in their careers. I work with them to help them to understand how incredible they really are.

    Conservation scientist Robyn James works with women on the Solomon Islands.Credit: Madlyn Ero

    At The Nature Conservancy, we have developed a network of more than 50 women who can share their experiences and challenges in a safe supportive environment. We ensure that we work with women to address practical challenges they encounter. These efforts range from dedicated sessions on how to address gender bias in their teams and workplaces, to working through examples of how to make progress on gender equity in the field of conservation, where speaking up might clash with cultural norms or put women at risk of retaliation.Making work more inclusiveMy research with The Nature Conservancy on gender and conservation science publishing has shown that women are vastly under-represented8: less than 2% of authors were women in lower-income countries. The organization subsequently enlisted an experienced, well-published conservation scientist to work with women across the Asia-Pacific and support them in the publishing process, from developing research ideas to submitting final publications. I ensure my own published research includes authors with diverse perspectives. For example, for the three publications that were part of my PhD research1,4,8, 86% (19) of the authors are women, of which 68% (13) are first-time authors, 47% (9) are women of colour and 5 (26%) are in lower-income countries. This demonstrates that intentional efforts make a difference.Even the wording of job descriptions can exclude women. Language inherently has gendered associations, so including words such as confident, decisive, strong and outspoken in job postings has been found to attract men and deter women from applying. Many of my colleagues have felt intimidated by the tone of conservation job advertisements, which seem to be written for men. At The Nature Conservancy, we check our job descriptions and organizational plans and strategies for gendered language using a gender decoder, a tool that assesses text for masculine-coded language that could unconsciously discourage women from applying or keep women from feeling engaged with a work programme or strategy. (You can see what the decoder finds in this article here).Wherever patriarchy is deeply entrenched, men are often favoured for higher education and technical training — and women miss out. Many conservation roles have standard and mandatory educational and technical qualifications, so women are often automatically excluded from even being able to apply for a role they could otherwise be suited for.Changes in the fieldMy leadership team and I have worked to address some of the systems and processes that might inadvertently disadvantage women. For example, in the Solomon Islands, an archipelago in the south Pacific, marine conservation and research roles that require a scuba licence immediately exclude many women in the country from applying, because almost none have access to scuba training given that men are generally prioritized for training and development opportunities. In most places where The Nature Conservancy works, our employees will only ever need a mask and snorkel. Therefore, a small change in the job description means that many more women can apply. Adjusting our standard mandatory requirements has led to some fantastic women successfully applying and becoming high-performing members of our conservation teams. We now carefully omit any technical requirements that are not essential to a role or that can be easily obtained through on-the-job training.We ensure women are included in the teams that develop and implement workplace health and safety protocols, and have broadened our definition of workplace health and safety to include psychological safety and protection from gender-based violence (including sexual harassment). We worked with experienced professionals in this area to develop organization-wide guidance for our staff and partners. We also develop tailored plans depending on the country we are in to specifically address safety for women. For example, in Papua New Guinea, some women on our teams made it clear that it was unsafe for them to travel home after dark on public transport. In this country, more than two-thirds of women have experienced violence. We commissioned an official work vehicle to take staff home after hours.We ensure women have basic field equipment that is suitable for them. We provide women’s sizes in all protective gear: everything from gloves for fire protection to life jackets. This is organized before a trip or fieldwork takes place.We are also implementing protocols to ensure our conservation teams are diverse and that women are not on their own among all-male research groups. This is not only safer for women, but has repeatedly led to better conservation outcomes: the women notice things that have previously been missed. For example, in Mongolia, women in herding communities are often unable to attend important research meetings about grassland management because there is no access to toilets or because training sessions are held at times when they have caring obligations. The women on the project noticed this, and worked with the herders to ensure the infrastructure was adequate and the schedule was adjusted so that they could participate and share their unique perspectives on improving grassland conservation.Women benefit from more women being in the sector. From early-career to senior positions, representation matters. But this alone is not enough. Historically male-dominated sectors, such as conservation, that now have a relatively equal gender balance in undergraduate courses need to push for cultural change as well. This is the most difficult part of my role: challenging male leaders and systems that are not designed for women to succeed.Although we need to listen and respond to the needs of women, this is never something that should be the burden of women alone to fix. Strong leadership across our sector that prioritizes gender equity and inclusion in conservation, and provides resources to achieve it, is crucial.Women will thrive in conservation science if we keep pushing to move from equality to inclusion. Inclusion means not only that women are present, but that workplaces and programmes are designed and tailored with and for them. We shouldn’t be surprised or blame women when they don’t succeed in conservation and science workplaces and programmes that are still not actively including them. Women make up more than 50% of the population; we need to have a say in the future of our planet! More

  • in

    When legislation to protect wildlife becomes a problem

    Most legislation to protect wildlife currently focuses on prohibiting deliberate destruction and excessive exploitation of resources. However, that approach fails to address emerging threats such as climate change. Many species will go extinct long before emissions-reduction schemes are realized.
    Competing Interests
    The authors declare no competing interests. More

  • in

    Unexpected fishy microbiomes

    Authors and AffiliationsCenter for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, DenmarkMorten T. Limborg & Jacob A. RasmussenSanger Institute, Wellcome Trust Genome Campus, Hinxton, UKPhysilia Y. S. ChuaAuthorsMorten T. LimborgPhysilia Y. S. ChuaJacob A. RasmussenCorresponding authorsCorrespondence to
    Morten T. Limborg or Physilia Y. S. Chua. More

  • in

    Higher productivity in forests with mixed mycorrhizal strategies

    Liang, J. et al. Positive biodiversity-productivity relationship predominant in global forests. Science 354, aaf8957 (2016).Article 
    PubMed 

    Google Scholar 
    Huang, Y. et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362, 80–83 (2018).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Luo, S. et al. Community‐wide trait means and variations affect biomass in a biodiversity experiment with tree seedlings. Oikos 129, 799–810 (2020).Article 

    Google Scholar 
    Pérez-Harguindeguy, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167–234 (2013).Article 

    Google Scholar 
    Bergmann, J. et al. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6, 1–10 (2020).Article 

    Google Scholar 
    Freschet, G. T. et al. Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. N. Phytol. 232, 1123–1158 (2021).Article 

    Google Scholar 
    Zhong, Y. et al. Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide. Nat. Commun. 12, 1–12 (2021).Article 
    ADS 

    Google Scholar 
    Carteron, A., Vellend, M. & Laliberté, E. Mycorrhizal dominance reduces local tree species diversity across US forests. Nat. Ecol. Evol. 6, 370–374 (2022).Article 
    PubMed 

    Google Scholar 
    Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal‐associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. N. Phytol. 199, 41–51 (2013).Article 
    CAS 

    Google Scholar 
    Averill, C., Turner, B. L. & Finzi, A. C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505, 543–545 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Craig, M. E. et al. Tree mycorrhizal type predicts within‐site variability in the storage and distribution of soil organic matter. Glob. Chang. Biol. 24, 3317–3330 (2018).Article 
    ADS 
    PubMed 

    Google Scholar 
    van der Heijden, M. G. A. et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72 (1998).Article 
    ADS 

    Google Scholar 
    Klironomos, J. N., McCune, J., Hart, M. & Neville, J. The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecol. Lett. 3, 137–141 (2000).Article 

    Google Scholar 
    Wagg, C., Jansa, J., Stadler, M., Schmid, B. & Van Der Heijden, M. G. A. Mycorrhizal fungal identity and diversity relaxes plant-plant competition. Ecology 92, 1303–1313 (2011).Article 
    PubMed 

    Google Scholar 
    Luo, S., Schmid, B., De Deyn, G. B. & Yu, S. Soil microbes promote complementarity effects among co‐existing trees through soil nitrogen partitioning. Funct. Ecol. 32, 1879–1889 (2018).Article 

    Google Scholar 
    Ferlian, O. et al. Mycorrhiza in tree diversity–ecosystem function relationships: conceptual framework and experimental implementation. Ecosphere 9, e02226 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tedersoo, L. & Bahram, M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biol. Rev. 94, 1857–1880 (2019).Article 
    PubMed 

    Google Scholar 
    Rineau, F. et al. The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry. Environ. Microbiol. 14, 1477–1487 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lindahl, B. D. & Tunlid, A. Ectomycorrhizal fungi – potential organic matter decomposers, yet not saprotrophs. N. Phytol. 205, 1443–1447 (2015).Article 
    CAS 

    Google Scholar 
    Hodge, A. Arbuscular mycorrhizal fungi influence decomposition of, but not plant nutrient capture from, glycine patches in soil. N. Phytol. 151, 725–734 (2001).Article 
    CAS 

    Google Scholar 
    Read, D. J. & Perez-Moreno, J. Mycorrhizas and nutrient cycling in ecosystems – A journey towards relevance? N. Phytol. 157, 475–492 (2003).Article 
    CAS 

    Google Scholar 
    Toju, H., Kishida, O., Katayama, N. & Takagi, K. Networks depicting the fine-scale co-occurrences of fungi in soil horizons. PLoS ONE 11, 1–18 (2016).Article 

    Google Scholar 
    Taylor, D. L. et al. A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecol. Monogr. 84, 3–20 (2014).Article 

    Google Scholar 
    Chen, W. et al. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proc. Natl Acad. Sci. USA 113, 8741–8746 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, X. et al. Partitioning of soil phosphorus among arbuscular and ectomycorrhizal trees in tropical and subtropical forests. Ecol. Lett. 21, 713–723 (2018).Article 
    PubMed 

    Google Scholar 
    Averill, C., Bhatnagar, J. M., Dietze, M. C., Pearse, W. D. & Kivlin, S. N. Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proc. Natl Acad. Sci. USA 116, 23163–23168 (2019).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dietrich, P. et al. Tree diversity effects on productivity depend on mycorrhizae and life strategies in a temperate forest experiment. Ecology 104, e3896 https://doi.org/10.1002/ecy.3896 (2022).Averill, C., Dietze, M. C. & Bhatnagar, J. M. Continental-scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks. Glob. Chang. Biol. 24, 4544–4553 (2018).Article 
    ADS 
    PubMed 

    Google Scholar 
    Jo, I., Fei, S., Oswalt, C. M., Domke, G. M. & Phillips, R. P. Shifts in dominant tree mycorrhizal associations in response to anthropogenic impacts. Sci. Adv. 5, eaav6358, (2019).Fei, S. et al. Impacts of climate on the biodiversity-productivity relationship in natural forests. Nat. Commun. 9, 5436 (2018).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bongers, F. J. et al. Functional diversity effects on productivity increase with age in a forest biodiversity experiment. Nat. Ecol. Evol. 5, 1594–1603 (2021).Article 
    PubMed 

    Google Scholar 
    Schoener, T. W. Resource partitioning in ecological communities. Science 185, 27–39 (1974).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Tilman, D., Lehman, C. L. & Thomson, K. T. Plant diversity and ecosystem productivity: theoretical considerations. Proc. Natl Acad. Sci. USA 94, 1857–1861 (1997).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schwilk, D. W. & Ackerly, D. D. Limiting similarity and functional diversity along environmental gradients. Ecol. Lett. 8, 272–281 (2005).Article 

    Google Scholar 
    Wagg, C., Jansa, J., Schmid, B. & van der Heijden, M. G. A. Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecol. Lett. 14, 1001–1009 (2011).Article 
    PubMed 

    Google Scholar 
    Agerer, R. Exploration types of ectomycorrhizae: a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11, 107–114 (2001).Article 

    Google Scholar 
    Cheng, L. et al. Mycorrhizal fungi and roots are complementary in foraging within nutrient patches. Ecology 97, 2815–2823 (2016).Article 
    PubMed 

    Google Scholar 
    Wambsganss, J. et al. Tree species mixing causes a shift in fine-root soil exploitation strategies across European forests. Funct. Ecol. 35, 1886–1902 (2021).Article 
    CAS 

    Google Scholar 
    Gerz, M., Guillermo Bueno, C., Ozinga, W. A., Zobel, M. & Moora, M. Niche differentiation and expansion of plant species are associated with mycorrhizal symbiosis. J. Ecol. 106, 254–264 (2018).Article 
    CAS 

    Google Scholar 
    Niklaus, P. A., Baruffol, M., He, J. S., Ma, K. & Schmid, B. Can niche plasticity promote biodiversity–productivity relationships through increased complementarity? Ecology 98, 1104–1116 (2017).Article 
    PubMed 

    Google Scholar 
    Barry, K. E. et al. The future of complementarity: disentangling causes from consequences. Trends Ecol. Evol. 34, 167–180 (2019).Article 
    PubMed 

    Google Scholar 
    Jacobs, L. M., Sulman, B. N., Brzostek, E. R., Feighery, J. J. & Phillips, R. P. Interactions among decaying leaf litter, root litter and soil organic matter vary with mycorrhizal type. J. Ecol. 106, 502–513 (2018).Article 
    CAS 

    Google Scholar 
    Midgley, M. G., Brzostek, E. & Phillips, R. P. Decay rates of leaf litters from arbuscular mycorrhizal trees are more sensitive to soil effects than litters from ectomycorrhizal trees. J. Ecol. 103, 1454–1463 (2015).Article 

    Google Scholar 
    Kumar, A., Phillips, R. P., Scheibe, A., Klink, S. & Pausch, J. Organic matter priming by invasive plants depends on dominant mycorrhizal association. Soil Biol. Biochem. 140, 107645 (2020).Article 
    CAS 

    Google Scholar 
    Tedersoo, L., Bahram, M. & Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 367, eaba1223 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kitajima, K. & Poorter, L. Functional basis for resource niche partitioning by tropical trees. Trop. For. community Ecol. 1936, 160–181 (2008).MacArthur, R. H. Patterns of species diverstiy. Biol. Rev. 40, 510–533 (1965).Article 

    Google Scholar 
    Pellissier, V., Barnagaud, J. Y., Kissling, W. D., Şekercioğlu, Ç. & Svenning, J. C. Niche packing and expansion account for species richness–productivity relationships in global bird assemblages. Glob. Ecol. Biogeogr. 27, 604–615 (2018).Article 

    Google Scholar 
    Huang, Y. et al. Effects of enemy exclusion on biodiversity–productivity relationships in a subtropical forest experiment. J. Ecol. 110, 2167–2178. https://doi.org/10.1111/1365-2745.13940 (2022).Tilman, D. Community invasibility, recruitment limitation, and grassland biodiversity. Ecology 78, 81–92 (1997).Article 

    Google Scholar 
    Feng, Y. et al. Multispecies forest plantations outyield monocultures across a broad range of conditions. Science 376, 865–868 (2022).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Harper, J. L. Population biology of plants. (1977).Ewel, J. J. Designing agricultural ecosystems for the humid tropics. Annu. Rev. Ecol. Syst. 17, 245–271 (1986).Article 

    Google Scholar 
    Grossiord, C. Having the right neighbors: how tree species diversity modulates drought impacts on forests. N. Phytol. 228, 42–49 (2020).Article 

    Google Scholar 
    Allen, M. F. Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zo. J. 6, 291–297 (2007).Article 

    Google Scholar 
    Brzostek, E. R. et al. Chronic water stress reduces tree growth and the carbon sink of deciduous hardwood forests. Glob. Chang. Biol. 20, 2531–2539 (2014).Article 
    ADS 
    PubMed 

    Google Scholar 
    Liese, R., Lübbe, T., Albers, N. W. & Meier, I. C. The mycorrhizal type governs root exudation and nitrogen uptake of temperate tree species. Tree Physiol. 38, 83–95 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Linton, M. J., Sperry, J. S. & Williams, D. G. Limits to water transport in Juniperus osteosperma and Pinus edulis: Implications for drought tolerance and regulation of transpiration. Funct. Ecol. 12, 906–911 (1998).Article 

    Google Scholar 
    Johnson, D. M. et al. Co-occurring woody species have diverse hydraulic strategies and mortality rates during an extreme drought. Plant. Cell Environ. 41, 576–588 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lin, G. et al. Mycorrhizal associations of tree species influence soil nitrogen dynamics via effects on soil acid–base chemistry. Glob. Ecol. Biogeogr. 31, 168–182 (2022).Article 

    Google Scholar 
    Read, D. J. Mycorrhizas in ecosystems. Experientia 47, 376–391 (1991).Article 

    Google Scholar 
    Hobbie, S. E. Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol. Evol. 30, 357–363 (2015).Article 
    PubMed 

    Google Scholar 
    De Schrijver, A. et al. Tree species traits cause divergence in soil acidification during four decades of postagricultural forest development. Glob. Chang. Biol. 18, 1127–1140 (2012).Article 
    ADS 

    Google Scholar 
    Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Braghiere, R. K. et al. Modeling global carbon costs of plant nitrogen and phosphorus acquisition. J. Adv. Model. Earth Syst. 14, 1–23 (2022).Article 

    Google Scholar 
    Eisenhauer, N. et al. Biotic interactions as mediators of context-dependent biodiversity-ecosystem functioning relationships. Res. Ideas Outcomes 8, e85873 (2022).Article 

    Google Scholar 
    Fisher, J. B. et al. Tree-mycorrhizal associations detected remotely from canopy spectral properties. Glob. Chang. Biol. 22, 2596–2607 (2016).Article 
    ADS 
    PubMed 

    Google Scholar 
    Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 1–10 (2019).Article 
    CAS 

    Google Scholar 
    Burrill, E. A. et al. The forest inventory and analysis database. USDA . Serv. 2, 1026 (2015).
    Google Scholar 
    Chao, A., Chiu, C.-H. & Jost, L. Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through hill numbers. Annu. Rev. Ecol. Evol. Syst. 45, 297–324 (2014).Article 

    Google Scholar 
    Cleland, D. T. et al. Ecological subregions: Sections and subsections for the conterminous United States. Gen. Tech. Rep. WO-76D (2007).Soudzilovskaia, N. A. et al. FungalRoot: global online database of plant mycorrhizal associations. N. Phytol. 227, 955–966 (2020).Article 

    Google Scholar 
    Gallion, J. et al. Indiana DNR State Forest Properties Report of Continuous Forest Inventory (CFI) Summary of years 2015–2019. 1–25 (2020).Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007).Article 

    Google Scholar 
    Craven, D. et al. A cross-scale assessment of productivity–diversity relationships. Glob. Ecol. Biogeogr. 29, 1940–1955 (2020).Article 

    Google Scholar 
    Paquette, A. & Messier, C. The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob. Ecol. Biogeogr. 20, 170–180 (2011).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ (2020).Dowle, M. & Srinivasan, A. data.table: Extension of ‘data.frame‘. R package version 1.14.2 (2021).Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 0.4.0 (2020).Dunnington, D. ggspatial: Spatial Data Framework for ggplot2. R package version 1.1.5 (2021).Robert, J. Hijmans. raster: Geographic Data Analysis and Modeling. R package version 3.5-2 (2021).Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A Grammar of Data Manipulation. R package version 1.0.8 (2022).Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Lefcheck, J. S. piecewiseSEM: piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar 
    Luo, S. et al. High productivity in forests with mixed mycorrhizal strategies. Figshare https://doi.org/10.6084/m9.figshare.22060238. (2023). More

  • in

    Top-down and bottom-up effects modulate species co-existence in a context of top predator restoration

    Alston, J. M. et al. Reciprocity in restoration ecology: When might large carnivore reintroduction restore ecosystems?. Biol. Conserv. 234, 82–89 (2019).Article 

    Google Scholar 
    Ripple, W. J. & Beschta, R. L. Large predators limit herbivore densities in northern forest ecosystems. Eur. J. Wildl. Res. 58, 733–742 (2012).Article 

    Google Scholar 
    Estes, J. A. & Duggins, D. O. Sea otters and kelp forests in Alaska: Generality and variation in a community ecological paradigm. Ecol. Monogr. 65, 75–100 (1995).Article 

    Google Scholar 
    Schmitz, O. J., Beckerman, A. P. & O’Brien, K. M. Behaviorally mediated trophic cascades: Effects of predation risk on food web interactions. Ecology 78, 1388–1399 (1997).Article 

    Google Scholar 
    Power, M. E. Top-down and bottom-up forces in food webs: Do plants have primacy. Ecology 73, 733–746 (1992).Article 

    Google Scholar 
    Travers, T., Lea, M. A., Alderman, R., Terauds, A. & Shaw, J. Bottom-up effect of eradications: The unintended consequences for top-order predators when eradicating invasive prey. J. Appl. Ecol. 58, 801–811 (2021).Article 

    Google Scholar 
    Stoessel, M., Elmhagen, B., Vinka, M., Hellström, P. & Angerbjörn, A. The fluctuating world of a tundra predator guild: bottom-up constraints overrule top-down species interactions in winter. Ecography (Cop.) 42, 488–499 (2019).Article 

    Google Scholar 
    Wolf, C. & Ripple, W. J. Rewilding the world ’s large carnivores. R. Soc. Open Sci. 5, 172235 (2018).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Krofel, M. & Jerina, K. Mind the cat: Conservation management of a protected dominant scavenger indirectly affects an endangered apex predator. Biol. Conserv. 197, 40–46 (2016).Article 

    Google Scholar 
    Prugh, L. R. & Sivy, K. J. Enemies with benefits: Integrating positive and negative interactions among terrestrial carnivores. Ecol. Lett. https://doi.org/10.1111/ele.13489 (2020).Article 
    PubMed 

    Google Scholar 
    Caro, T. M. & Stoner, C. J. The potential for interspecific competition among African carnivores. Biol. Conserv. 110, 67–75 (2003).Article 

    Google Scholar 
    Linnell, J. D. C. & Strand, O. Interference interactions, co-existence and conservation of mammalian carnivores. Divers. Distrib. 6, 169–176 (2000).Article 

    Google Scholar 
    Newsome, T. M. et al. Top predators constrain mesopredator distributions. Nat. Commun. 8, 15469 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Crooks, K. & Soulé, M. Mesopredator release and avifaunal extinctions in a fragmented system. Nature 400, 563–566 (1999).Article 
    ADS 
    CAS 

    Google Scholar 
    Schoener, T. W. Resource partitioning in ecological communities. Science 185, 27–39 (1974).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Fedriani, J. M., Fuller, T. K., Sauvajot, R. M. & York, E. C. Competition and intraguild predation among three sympatric carnivores. Oecologia 125, 258–270 (2000).Article 
    ADS 
    PubMed 

    Google Scholar 
    Monterroso, P., Díaz-Ruiz, F., Lukacs, P. M., Alves, P. C. & Ferreras, P. Ecological traits and the spatial structure of competitive coexistence among carnivores. Ecology 101, 1–16 (2020).Article 

    Google Scholar 
    Karanth, K. U. et al. Spatio-temporal interactions facilitate large carnivore sympatry across a resource gradient. Proc. R. Soc. B Biol. Sci. 284, 20161860 (2017).Article 

    Google Scholar 
    Ferreiro-Arias, I., Isla, J., Jordano, P. & Benítez-López, A. Fine-scale coexistence between Mediterranean mesocarnivores is mediated by spatial, temporal, and trophic resource partitioning. Ecol. Evol. 11, 15520–15533 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Di Bitetti, M. S., De Angelo, C. D., Di Blanco, Y. E. & Paviolo, A. Niche partitioning and species coexistence in a Neotropical felid assemblage. Acta Oecol. 36, 403–412 (2010).Article 
    ADS 

    Google Scholar 
    Carvalho, J. C. & Gomes, P. Feeding resource partitioning among four sympatric carnivores in the Peneda-Gerês National Park (Portugal). J. Zool. 263, 275–283 (2004).Article 

    Google Scholar 
    Gil-Sánchez, J. M., Mañá-Varela, B., Herrera-Sánchez, F. J. & Urios, V. Spatio-temporal ecology of a carnivore community in middle atlas NW of Morocco. Zoology 146, 125904 (2021).Article 
    PubMed 

    Google Scholar 
    Monterroso, P., Alves, P. C. & Ferreras, P. Plasticity in circadian activity patterns of mesocarnivores in Southwestern Europe: Implications for species coexistence. Behav. Ecol. Sociobiol. 68, 1403–1417 (2014).Article 

    Google Scholar 
    Gallagher, A. J., Creel, S., Wilson, R. P. & Cooke, S. J. Energy landscapes and the landscape of fear. Trends Ecol. Evol. 32, 88–96 (2017).Article 
    PubMed 

    Google Scholar 
    Sergio, F. & Hiraldo, F. Intraguild predation in raptor assemblages: A review. Ibis 150, 132–145 (2008).Article 

    Google Scholar 
    Jiménez, J. et al. Restoring apex predators can reduce mesopredator abundances. Biol. Conserv. 238, 108234 (2019).Article 

    Google Scholar 
    Palomares, F., Ferreras, P., Fedriani, J. M. & Delibes, M. Spatial relationships between Iberian lynx and other carnivores in an area of south-western Spain. J. Appl. Ecol. 33, 5–13 (1996).Article 

    Google Scholar 
    Wooster, E. I. F., Ramp, D., Lundgren, E. J., O’Neill, A. J. & Wallach, A. D. Red foxes avoid apex predation without increasing fear. Behav. Ecol. 32, 895–902 (2021).Article 

    Google Scholar 
    Santos, F. et al. Prey availability and temporal partitioning modulate felid coexistence in Neotropical forests. PLoS ONE 14, 1–23 (2019).Article 

    Google Scholar 
    Barrientos, R. & Virgós, E. Reduction of potential food interference in two sympatric carnivores by sequential use of shared resources. Acta Oecol. 30, 107–116 (2006).Article 
    ADS 

    Google Scholar 
    MacArthur, R. H. & Pianka, E. R. On optimal use of a patchy environment. Am. Nat. 100, 603–609 (1966).Article 

    Google Scholar 
    López-Martín, J. M. Comparison of feeding behaviour between stone marten and common genet: living in coexistence. Martes Carniv. Communities 137–155 (2006).Sarmento, P. et al. Adapt or perish: How the Iberian lynx reintroduction affects fox abundance and behaviour. Hystrix Ital. J. Mammal. 32, 48–54 (2021).
    Google Scholar 
    Forsyth, D. M., Ramsey, D. S. L. & Woodford, L. P. Estimating abundances, densities, and interspecific associations in a carnivore community. J. Wildl. Manag. 83, 1090–1102 (2019).Article 

    Google Scholar 
    Monterroso, P. et al. Disease-mediated bottom-up regulation: An emergent virus affects a keystone prey, and alters the dynamics of trophic webs. Sci. Rep. 6, 1–9 (2016).Article 

    Google Scholar 
    Ritchie, E. G. et al. Ecosystem restoration with teeth: What role for predators?. Trends Ecol. Evol. 27, 265–271 (2012).Article 
    PubMed 

    Google Scholar 
    Santos-Reis, M. et al. Relationships between stone martens, genets and cork oak woodlands in Portugal. Martens Fish. Hum.-Altered Environ. Int. Perspect. https://doi.org/10.1007/0-387-22691-5_7 (2004).Article 

    Google Scholar 
    Goszczyński, J., Posłuszny, M., Pilot, M. & Gralak, B. Patterns of winter locomotion and foraging in two sympatric marten species: Martes martes and Martes foina. Can. J. Zool. 85, 239–249 (2007).Article 
    ADS 

    Google Scholar 
    Díaz-Ruiz, F., Caro, J., Delibes-Mateos, M., Arroyo, B. & Ferreras, P. Drivers of red fox (Vulpes vulpes) daily activity: Prey availability, human disturbance or habitat structure?. J. Zool. 298, 128–138 (2016).Article 

    Google Scholar 
    Zanón Martínez, J. I., Seoane, J., Kelly, M. J., Sarasola, J. H. & Travaini, A. Assessing carnivore spatial co-occurrence and temporal overlap in the face of human interference in a semi-arid forest. Ecol. Appl. https://doi.org/10.1002/eap.2482 (2021).Article 
    PubMed 

    Google Scholar 
    Allen, M. L., Sibarani, M. C., Utoyo, L. & Krofel, M. Terrestrial mammal community richness and temporal overlap between tigers and other carnivores in Bukit Barisan Selatan National Park Sumatra. Anim. Biodivers. Conserv. 1, 97–107 (2020).Article 

    Google Scholar 
    Vilella, M., Ferrandiz-Rovira, M. & Sayol, F. Coexistence of predators in time: Effects of season and prey availability on species activity within a Mediterranean carnivore guild. Ecol. Evol. 10, 11408–11422 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Santos, N. et al. Protein metabolism and physical fitness are physiological determinants of body condition in Southern European carnivores. Sci. Rep. 10, 1–11 (2020).Article 

    Google Scholar 
    Ferreras, P., Travaini, A., Cristina Zapata, S. & Delibes, M. Short-term responses of mammalian carnivores to a sudden collapse of rabbits in Mediterranean Spain. Basic Appl. Ecol. 12, 116–124 (2011).Article 

    Google Scholar 
    Moreno, S. Reproduction of Garden Dormouse Eliomys quercinus lusitanicus, in southwest Spain. Mammalia 52, 401–408 (1988).Article 

    Google Scholar 
    Bakaloudis, D. E., Vlachos, C. G., Papakosta, M. A., Bontzorlos, V. A. & Chatzinikos, E. N. Diet composition and feeding strategies of the stone marten (Martes foina) in a typical mediterranean ecosystem. Sci. World J. 2012, 1–11 (2012).Article 

    Google Scholar 
    Pereira, L. M., Owen-Smith, N. & Moleón, M. Facultative predation and scavenging by mammalian carnivores: Seasonal, regional and intra-guild comparisons. Mamm. Rev. 44, 44–55 (2014).Article 

    Google Scholar 
    Gil-Sánchez, J. M., Ballesteros-Duperón, E. & Bueno-Segura, J. F. Feed ing ecology of the Iberian lynx Lynx pardinus in east ern. Acta Theriol. (Warsz) 51, 85–90 (2006).Article 

    Google Scholar 
    Krofel, M., Huber, D. & Kos, I. Diet of Eurasian lynx Lynx lynx in the northern Dinaric Mountains (Slovenia and Croatia). Acta Theriol. (Warsz) 56, 315–322 (2011).Article 

    Google Scholar 
    Virgós, E., Baniandrés, N., Burgos, T. & Recio, M. R. Intraguild predation by the eagle owl determines the space use of a mesopredator carnivore. Diversity 12, 13–15 (2020).Article 

    Google Scholar 
    Gordon, C. E., Feit, A., Grüber, J. & Letnic, M. Mesopredator suppression by an apex predator alleviates the risk of predation perceived by small prey. Proc. R. Soc. B Biol. Sci. 282, 20142870 (2015).Article 

    Google Scholar 
    Draper, J. P., Young, J. K., Schupp, E. W., Beckman, N. G. & Atwood, T. B. Frugivory and seed dispersal by carnivorans. Front. Ecol. Evol. 10, 864864 (2022).Article 

    Google Scholar 
    González-Varo, J. P., López-Bao, J. V. & Guitián, J. Functional diversity among seed dispersal kernels generated by carnivorous mammals. J. Anim. Ecol. 82, 562–571 (2013).Article 
    PubMed 

    Google Scholar 
    Virgós, E., Llorente, M. & Cortés, Y. Geographical variation in genet (Genetta genetta L.) diet: A literature review. Mamm. Rev. 29, 117–126 (1999).Article 

    Google Scholar 
    Fedriani, J. M., Ayllón, D., Wiegand, T. & Grimm, V. Intertwined effects of defaunation, increased tree mortality and density compensation on seed dispersal. Ecography (Cop.) 43, 1352–1363 (2020).Article 

    Google Scholar 
    Burgos, T. et al. Predation risk can modify the foraging behaviour of frugivorous carnivores: Implications of rewilding apex predators for plant–animal mutualisms. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13682 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Escribano-Ávila, G. et al. Spanish juniper gain expansion opportunities by counting on a functionally diverse dispersal assemblage community. Ecol. Evol. 3, 3751–3763 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gazzola, A. & Balestrieri, A. Nutritional ecology provides insights into competitive interactions between closely related Martes species. Mamm. Rev. 50, 82–90 (2020).Article 

    Google Scholar 
    Simón, M. A. et al. Diez años de conservación del lince ibérico, 326 (2012).Royle, J. A., Chandler, R. B., Sollmann, R. & Gardner, B. Spatial Capture-Recapture (Elsevier, 2014).
    Google Scholar 
    Rodríguez, A. & Calzada, J. Lynx pardinus (errata version published in 2020). The IUCN Red List of Threatened Species 2015. https://doi.org/10.2305/IUCN.UK.2015-2.RLTS.T12520A174111773.en (Accessed 27 January 2023) (2015).Gil-Sánchez, J. M. et al. The use of camera trapping for estimating Iberian lynx (Lynx pardinus) home ranges. Eur. J. Wildl. Res. 57, 1203–1211 (2011).Article 

    Google Scholar 
    Gerber, B. D., Karpanty, S. M. & Kelly, M. J. Evaluating the potential biases in carnivore capture-recapture studies associated with the use of lure and varying density estimation techniques using photographic-sampling data of the Malagasy civet. Popul. Ecol. 54, 43–54 (2012).Article 

    Google Scholar 
    Jiménez, J., Díaz-Ruiz, F., Monterroso, P., Tobajas, J. & Ferreras, P. Occupancy data improves parameter precision in spatial capture–recapture models. Ecol. Evol. https://doi.org/10.1002/ece3.9250 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ferreras, P., DÍaz-Ruiz, F. & Monterroso, P. Improving mesocarnivore detectability with lures in camera-trapping studies. Wildl. Res. 45, 505–517 (2018).Article 

    Google Scholar 
    Ridout, M. S. & Linkie, M. Estimating overlap of daily activity patterns from camera trap data. J. Agric. Biol. Environ. Stat. 14, 322–337 (2009).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Jiménez, J. et al. Estimating carnivore community structures. Sci. Rep. https://doi.org/10.1038/srep41036 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Genovesi, P., Sinibaldi, I. & Boitani, L. Spacing patterns and territoriality of the stone marten. Can. J. Zool. 75, 1966–1971 (1997).Article 

    Google Scholar 
    Royle, J. A. & Converse, S. J. Hierarchical spatial capture-recapture models: Modelling population density in stratified populations. Methods Ecol. Evol. 5, 37–43 (2014).Article 

    Google Scholar 
    Palomares, F. & Delibes, M. Spatio-temporal ecology and behavior of European genets in southwestern Spain. J. Mammal. 75, 714–724 (1994).Article 

    Google Scholar 
    Camps, D. Jineta – Genetta genetta. En Encicl. Virtual los Vertebr. Españoles. Salvador. A., Barja, I. (Eds.). Mus. Nac. Ciencias Nat. Madrid. https://www.vertebradosibericos.org/ (2017).Efford, M. Density estimation in live-trapping studies. Oikos 106, 598–610 (2004).Article 

    Google Scholar 
    de Valpine, P. et al. Programming with models: Writing statistical algorithms for general model structures with NIMBLE. J. Comput. Graph. Stat. 26, 403–413 (2017).Article 
    MathSciNet 

    Google Scholar 
    NIMBLE Development Team. NIMBLE user manual (2017).Morin, D. J., Waits, L. P., McNitt, D. C. & Kelly, M. J. Efficient single-survey estimation of carnivore density using fecal DNA and spatial capture-recapture: A bobcat case study. Popul. Ecol. 60, 197–209 (2018).Article 

    Google Scholar 
    Gelman, A. et al. Bayesian Data Analysis (CRC Press, 2013).Book 

    Google Scholar 
    Weitzman, M. S. Measure of the Overlap of Income Distribution of White and Negro Families in the United States. Technical report No 22 (1970).Jammalamadaka, S. R. & Sengupta, A. Topics in Circular Statistics. Series on Multivariate Analyisis Vol. 5 (World Scientific, 2001).Book 

    Google Scholar 
    Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (CRC Press, 1994).Book 
    MATH 

    Google Scholar 
    Mielke, P. W., Berry, K. J. & Johnson, E. S. Multi-response permutation proccedures for a priori classifications. Commun. Stat. Theory Methods 5, 1409–1424 (1976).Article 
    MATH 

    Google Scholar 
    Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 20170213 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. lme4: Linear mixed-effects models. R Packag. version 1.1.21 (2020).Barton, K. Package “MuMIn: Multi-model inference” for R. R Packag. Version 1.9.5 45 (2013). More

  • in

    Minke whale feeding rate limitations suggest constraints on the minimum body size for engulfment filtration feeding

    Dove, A. D. & Pierce, S. J. Whale Sharks: Biology, Ecology, and Conservation (CRC Press, 2021).Friedman, M. et al. 100-million-year dynasty of giant planktivorous bony fishes in the Mesozoic seas. Science 327, 990–993 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Friedman, M. Parallel evolutionary trajectories underlie the origin of giant suspension-feeding whales and bony fishes. Proc. R. Soc. B https://doi.org/10.1098/rspb.2011.1381 (2011).Sanderson, S. L. & Wassersug, R. in The Skull: Functional and Evolutionary Mechanisms Vol. 3 (eds Hanken, J. & Hall, B. K.) 37–112 (Univ. Chicago Press, 1993).Rowat, D. & Brooks, K. A review of the biology, fisheries and conservation of the whale shark Rhincodon typus. J. Fish Biol. 80, 1019–1056 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Pimiento, C., Cantalapiedra, J. L., Shimada, K., Field, D. J. & Smaers, J. B. Evolutionary pathways toward gigantism in sharks and rays. Evolution 73, 588–599 (2019).Article 
    PubMed 

    Google Scholar 
    Stiefel, K. M. Evolutionary trends in large pelagic filter-feeders. Hist. Biol. 33, 1477–1488 (2021).Article 

    Google Scholar 
    Goldbogen, J. & Madsen, P. The largest of August Krogh animals: physiology and biomechanics of the blue whale revisited. Comp. Biochem. Physiol. A 254, 110894 (2021).Article 
    CAS 

    Google Scholar 
    Jørgensen, C. B. Quantitative aspects of filter feeding in invertebrates. Biol. Rev. 30, 391–453 (1955).Article 

    Google Scholar 
    Radke, R. J. & Kahl, U. Effects of a filter‐feeding fish [silver carp, Hypophthalmichthys molitrix (Val.)] on phyto‐and zooplankton in a mesotrophic reservoir: results from an enclosure experiment. Freshw. Biol. 47, 2337–2344 (2002).Article 

    Google Scholar 
    Schiemer, F. in Perspectives in Tropical Limnology (eds Schiemer, F. & Boland, K.T.) 65–76 (SPB Academic Publishing, 1996).Carey, N. & Goldbogen, J. A. Kinematics of ram filter feeding and beat-glide swimming in the northern anchovy Engraulis mordax. J. Exp. Biol. 220, 2717–2725 (2017).PubMed 

    Google Scholar 
    Haines, G. E. & Sanderson, S. L. Integration of swimming kinematics and ram suspension feeding in a model American paddlefish, Polyodon spathula. J. Exp. Biol. 220, 4535–4547 (2017).PubMed 

    Google Scholar 
    Paig‐Tran, E. M., Kleinteich, T. & Summers, A. P. The filter pads and filtration mechanisms of the devil rays: variation at macro and microscopic scales. J. Morphol. 274, 1026–1043 (2013).Article 
    PubMed 

    Google Scholar 
    Jacobsen, I. P. & Bennett, M. B. A comparative analysis of feeding and trophic level ecology in stingrays (Rajiformes; Myliobatoidei) and electric rays (Rajiformes: Torpedinoidei). PLoS ONE 8, e71348 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ellis, J. Occurrence of pelagic stingray Pteroplatytrygon violacea (Bonaparte, 1832) in the North Sea. J. Fish Biol. 71, 933–937 (2007).Article 

    Google Scholar 
    Werth, A. J. & Potvin, J. Baleen hydrodynamics and morphology of cross-flow filtration in balaenid whale suspension feeding. PLoS ONE 11, e0150106 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Orton, L. S. & Brodie, P. F. Engulfing mechanics of fin whales. Can. J. Zool. 65, 2898–2907 (1987).Article 

    Google Scholar 
    Shadwick, R. E., Goldbogen, J. A., Potvin, J., Pyenson, N. D. & Vogl, A. W. Novel muscle and connective tissue design enables high extensibility and controls engulfment volume in lunge-feeding rorqual whales. J. Exp. Biol. 216, 2691–2701 (2013).PubMed 

    Google Scholar 
    Shadwick, R. E., Goldbogen, J. A., Pyenson, N. D. & Whale, J. C. Structure and function in the lunge feeding apparatus: mechanical properties of the fin whale mandible. Anat. Rec. 300, 1953–1962 (2017).Article 

    Google Scholar 
    Werth, A. J., Ito, H. & Ueda, K. Multiaxial movements at the minke whale temporomandibular joint. J. Morphol. 281, 402–412 (2020).Article 
    PubMed 

    Google Scholar 
    Lambertsen, R., Ulrich, N. & Straley, J. Frontomandibular stay of Balaenopteridae: a mechanism for momentum recapture during feeding. J. Mammal. 76, 877–899 (1995).Article 

    Google Scholar 
    Pyenson, N. D. et al. Discovery of a sensory organ that coordinates lunge feeding in rorqual whales. Nature 485, 498–501 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Goldbogen, J. A. et al. How baleen whales feed: the biomechanics of engulfment and filtration. Annu. Rev. Mar. Sci. 9, 367–386 (2017).Article 
    CAS 

    Google Scholar 
    Bierlich, K. C. et al. A Bayesian approach for predicting photogrammetric uncertainty in morphometric measurements derived from drones. Mar. Ecol. Prog. Ser. 673, 193–210 (2021).Article 

    Google Scholar 
    Slater, G. J., Goldbogen, J. A. & Pyenson, N. D. Independent evolution of baleen whale gigantism linked to Plio-Pleistocene ocean dynamics. Proc. R. Soc. B 284, 20170546 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lockyer, C. Growth and energy budgets of large baleen whales from the Southern Hemisphere. Food Agric. Organ. 3, 379–487 (1981).
    Google Scholar 
    Mackintosh, A. & Wheeler, J. Southern blue and fin whales. Discover. Rep. 1, 257–540 (1929).Smith, F. A. & Lyons, S. K. How big should a mammal be? A macroecological look at mammalian body size over space and time. Phil. Trans. R. Soc. B 366, 2364–2378 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gearty, W., McClain, C. R. & Payne, J. L. Energetic tradeoffs control the size distribution of aquatic mammals. Proc. Natl Acad. Sci. USA 115, 4194–4199 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lockyer, C. Body weights of some species of large whales. ICES J. Mar. Sci. 36, 259–273 (1976).Article 

    Google Scholar 
    Goldbogen, J. A. Physiological constraints on marine mammal body size. Proc. Natl Acad. Sci. USA 115, 3995–3997 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goldbogen, J. A. et al. Why whales are big but not bigger: physiological drivers and ecological limits in the age of ocean giants. Science 366, 1367–1372 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cade, D. E. et al. Social exploitation of extensive, ephemeral, environmentally controlled prey patches by super-groups of rorqual whales. Anim. Behav. 182, 251–266 (2021).Article 

    Google Scholar 
    Goldbogen, J. A. et al. Scaling of lunge‐feeding performance in rorqual whales: mass‐specific energy expenditure increases with body size and progressively limits diving capacity. Funct. Ecol. 26, 216–226 (2012).Article 

    Google Scholar 
    Kahane-Rapport, S. R. & Goldbogen, J. A. Allometric scaling of morphology and engulfment capacity in rorqual whales. J. Morphol. 279, 1256–1268 (2018).Article 
    PubMed 

    Google Scholar 
    Kahane-Rapport, S. R. et al. Lunge filter feeding biomechanics constrain rorqual foraging ecology across scale. J. Exp. Biol. https://doi.org/10.1242/jeb.224196 (2020).McNab, B. K. Complications inherent in scaling the basal rate of metabolism in mammals. Q. Rev. Biol. 63, 25–54 (1988).Article 
    CAS 
    PubMed 

    Google Scholar 
    Boyd, I. in Marine Mammal Biology: An Evolutionary Approach (ed. Hoelzel, A. R.) 247–277 (Blackwell Science Ltd, 2002).Kleiber, M. Body size and metabolism. Hilgardia 6, 315–353 (1932).Article 
    CAS 

    Google Scholar 
    West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).Article 
    CAS 
    PubMed 

    Google Scholar 
    Corkeron, P. J. & Connor, R. C. Why do baleen whales migrate? Mar. Mamm. Sci. 15, 1228–1245 (1999).Article 

    Google Scholar 
    Lockyer, C. Review of baleen whale (Mysticeti) reproduction and implications for management. Rep. Int. Whal. Commn 6, 27–50 (1984).
    Google Scholar 
    Lockyer, C. All creatures great and smaller: a study in cetacean life history energetics. J. Mar. Biol. Assoc. UK 87, 1035–1045 (2007).Article 

    Google Scholar 
    Frazer, J. & Huggett, A. S. G. Specific foetal growth rates of cetaceans. J. Zool. 169, 111–126 (1973).Article 

    Google Scholar 
    Zhou, M. & Dorland, R. D. Aggregation and vertical migration behavior of Euphausia superba. Deep Sea Res. II 51, 2119–2137 (2004).Article 

    Google Scholar 
    Gough, W. T. et al. Scaling of swimming performance in baleen whales. J. Exp. Biol. 222, jeb204172 (2019).Article 
    PubMed 

    Google Scholar 
    Cade, D. E. et al. Predator-scale spatial analysis of intra-patch prey distribution reveals the energetic drivers of rorqual whale super group formation. Funct. Ecol. 35, 894–908 (2021).Article 
    CAS 

    Google Scholar 
    Gough, W. T. et al. Scaling of oscillatory kinematics and Froude efficiency in baleen whales. J. Exp. Biol. 224, jeb237586 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Croll, D. A., Kudela, R. & Tershy, B. R. in Whales, Whaling, and Ocean Ecosystems (eds Estes, J. A. et al.) Ch. 16 (Univ. California Press, 2006).Woodward, B. L., Winn, J. P. & Fish, F. E. Morphological specializations of baleen whales associated with hydrodynamic performance and ecological niche. J. Morphol. 267, 1284–1294 (2006).Article 
    PubMed 

    Google Scholar 
    Webb, P. W. & De Buffrénil, V. Locomotion in the biology of large aquatic vertebrates. Trans. Am. Fish. Soc. 119, 629–641 (1990).Article 

    Google Scholar 
    Acevedo-Gutiérrez, A., Croll, D. & Tershy, B. High feeding costs limit dive time in the largest whales. J. Exp. Biol. 205, 1747–1753 (2002).Article 
    PubMed 

    Google Scholar 
    Goldbogen, J. A. et al. Mechanics, hydrodynamics and energetics of blue whale lunge feeding: efficiency dependence on krill density. J. Exp. Biol. 214, 131–146 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Potvin, J., Cade, D. E., Werth, A. J., Shadwick, R. E. & Goldbogen, J. A. Rorqual lunge-feeding energetics near and away from the kinematic threshold of optimal efficiency. Integr. Org. Biol. 3, obab005 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pyenson, N. D. The ecological rise of whales chronicled by the fossil record. Curr. Biol. 27, R558–R564 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Williams, T. M. in Whales, Whaling, and Ocean Ecosystems (eds Estes, J. A. et al.) Ch. 15 (Univ. California Press, 2006).Tackaberry, J. E. et al. From a calf’s perspective: humpback whale nursing behavior on two US feeding grounds. PeerJ 8, e8538 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huang, S.-L., Chou, L.-S. & Ni, I.-H. Comparable length at weaning in cetaceans. Mar. Mamm. Sci. 25, 875–887 (2009).Article 

    Google Scholar 
    Rice, D. Marine Mammals of the World: Systematics and Distribution (Society for Marine Mammalogy Special Publication, 1998).McNamara, J. M. & Houston, A. I. The effect of a change in foraging options on intake rate and predation rate. Am. Nat. 144, 978–1000 (1994).Article 

    Google Scholar 
    Mittelbach, G. G. Foraging efficiency and body size: a study of optimal diet and habitat use by bluegills. Ecology 62, 1370–1386 (1981).Article 

    Google Scholar 
    Robbins, C. T. et al. Optimizing protein intake as a foraging strategy to maximize mass gain in an omnivore. Oikos 116, 1675–1682 (2007).Article 

    Google Scholar 
    Werth, A. J. et al. Filtration area scaling and evolution in mysticetes: trophic niche partitioning and the curious cases of sei and pygmy right whales. Biol. J. Linn. Soc. 125, 264–279 (2018).Article 

    Google Scholar 
    Leslie, M. S., Peredo, C. M. & Pyenson, N. D. Norrisanima miocaena, a new generic name and redescription of a stem balaenopteroid mysticete (Mammalia, Cetacea) from the Miocene of California. PeerJ 7, e7629 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marx, F. G. & Uhen, M. D. Climate, critters, and cetaceans: Cenozoic drivers of the evolution of modern whales. Science 327, 993–996 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Perrin, W. F. Why are there so many kinds of whales and dolphins? Bioscience 41, 460–462 (1991).Article 

    Google Scholar 
    Kot, B. W., Sears, R., Zbinden, D., Borda, E. & Gordon, M. S. Rorqual whale (Balaenopteridae) surface lunge‐feeding behaviors: standardized classification, repertoire diversity, and evolutionary analyses. Mar. Mamm. Sci. 30, 1335–1357 (2014).Article 

    Google Scholar 
    Segre, P. S. et al. Scaling of maneuvering performance in baleen whales: larger whales outperform expectations. J. Exp. Biol. 225, jeb243224 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kawamura, A. A review of food of balaenopterid whales. Sci. Rep. Whales Res. Inst. 32, 155–197 (1980).
    Google Scholar 
    Iwata, T. et al. Tread-water feeding of Bryde’s whales. Curr. Biol. 27, R1154–R1155 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    McMillan, C. J., Towers, J. R. & Hildering, J. The innovation and diffusion of “trap‐feeding,” a novel humpback whale foraging strategy. Mar. Mamm. Sci. 35, 779–796 (2019).Article 

    Google Scholar 
    Robbins, J. & Mattila, D. Estimating Humpback Whale (Megaptera novaeangliae) Entanglement Rates on the Basis of Scar Evidence (Northeast Fisheries Science Center, 2004).Horwood, J. in Encyclopedia of Marine Mammals 2nd edn (eds Wursig, B et al.) 1001–1003 (Elsevier, 2009).Haug, T., Lindstrøm, U. & Nilssen, K. T. Variations in minke whale (Balaenoptera acutorostrata) diet and body condition in response to ecosystem changes in the Barents Sea. Sarsia 87, 409–422 (2002).Article 

    Google Scholar 
    García-Vernet, R., Borrell, A., Víkingsson, G., Halldórsson, S. D. & Aguilar, A. Ecological niche partitioning between baleen whales inhabiting Icelandic waters. Prog. Oceanogr. 199, 102690 (2021).Article 

    Google Scholar 
    Cade, D. E., Carey, N., Domenici, P., Potvin, J. & Goldbogen, J. A. Predator-informed looming stimulus experiments reveal how large filter feeding whales capture highly maneuverable forage fish. Proc. Natl Acad. Sci. USA 117, 472–478 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Deméré, T. A., McGowen, M. R., Berta, A. & Gatesy, J. Morphological and molecular evidence for a stepwise evolutionary transition from teeth to baleen in mysticete whales. Syst. Biol. 57, 15–37 (2008).Article 
    PubMed 

    Google Scholar 
    Stafford, K. M., Fox, C. G. & Clark, D. S. Long-range acoustic detection and localization of blue whale calls in the northeast Pacific Ocean. J. Acoust. Soc. Am. 104, 3616–3625 (1998).Article 
    CAS 
    PubMed 

    Google Scholar 
    Totterdell, J. A. et al. The first three records of killer whales (Orcinus orca) killing and eating blue whales (Balaenoptera musculus). Mar. Mamm. Sci. 38, 1286–1301 (2022).Article 

    Google Scholar 
    Cade, D. E., Friedlaender, A. S., Calambokidis, J. & Goldbogen, J. A. Kinematic diversity in rorqual whale feeding mechanisms. Curr. Biol. 26, 2617–2624 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Goldbogen, J. A. et al. Using digital tags with integrated video and inertial sensors to study moving morphology and associated function in large aquatic vertebrates. Anat. Rec. 300, 1935–1941 (2017).Article 
    CAS 

    Google Scholar 
    Bierlich, K. et al. Comparing uncertainty associated with 1-, 2-, and 3D aerial photogrammetry-based body condition measurements of baleen whales. Front. Mar. Sci. 8, 1729 (2021).Article 

    Google Scholar 
    Cade, D. E. et al. Tools for integrating inertial sensor data with video bio-loggers, including estimation of animal orientation, motion, and position. Anim. Biotelemetry https://doi.org/10.1186/s40317-021-00256-w (2021).Cade, D. E., Barr, K. R., Calambokidis, J., Friedlaender, A. S. & Goldbogen, J. A. Determining forward speed from accelerometer jiggle in aquatic environments. J. Exp. Biol. 221, jeb170449 (2018).PubMed 

    Google Scholar 
    Wilson, R. P. et al. All at sea with animal tracks; methodological and analytical solutions for the resolution of movement. Deep Sea Res. II 54, 193–210 (2007).Article 

    Google Scholar 
    Potvin, J., Cade, D. E., Werth, A. J., Shadwick, R. E. & Goldbogen, J. A. A perfectly inelastic collision: bulk prey engulfment by baleen whales and dynamical implications for the world’s largest cetaceans. Am. J. Phys. 88, 851–863 (2020).Article 

    Google Scholar 
    Torres, W. I. & Bierlich, K. MorphoMetriX: a photogrammetric measurement GUI for morphometric analysis of megafauna. J. Open Source Softw. 5, 1825 (2020).Article 

    Google Scholar 
    Suter, H. & Houston, A. I. How to model optimal group size in social carnivores. Am. Nat. 197, 473–485 (2021).Article 
    PubMed 

    Google Scholar 
    Hazen, E. L., Friedlaender, A. S. & Goldbogen, J. A. Blue whale (Balaenoptera musculus) optimize foraging efficiency by balancing oxygen use and energy gain as a function of prey density. Sci. Adv. 1, e1500469 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Doniol-Valcroze, T., Lesage, V., Giard, J. & Michaud, R. Optimal foraging theory predicts diving and feeding strategies of the largest marine predator. Behav. Ecol. 22, 880–888 (2011).Article 

    Google Scholar 
    Gough, W. T. et al. Fast and furious: energetic tradeoffs and scaling of high-speed foraging in rorqual whales. Integr. Org. Biol. 4, obac038 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laws, R. M. The ecology of the Southern Ocean. Am. Sci. 73, 26–40 (1985).
    Google Scholar 
    Brown, S. & Lockyer, C. in Antarctic Ecology Vol. 2 (ed. Laws, R. M.) (Academic Press, 1984).Peters, R. H. The Ecological Implications of Body Size Vol. 2 Ch. 7 (Cambridge Univ. Press, 1986).Rall, B. C. et al. Universal temperature and body-mass scaling of feeding rates. Phil. Trans. R. Soc. B 367, 2923–2934 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evans, E. & Miller, D. Comparative nutrition, growth and longevity. Proc. Nutr. Soc. 27, 121–129 (1968).Article 
    CAS 
    PubMed 

    Google Scholar 
    Farlow, J. O. A consideration of the trophic dynamics of a Late Cretaceous large‐dinosaur community (Oldman Formation). Ecology 57, 841–857 (1976).Article 

    Google Scholar 
    Harestad, A. S. & Bunnel, F. Home range and body weight – a reevaluation. Ecology 60, 389–402 (1979).Article 

    Google Scholar 
    Schoener, T. W. Sizes of feeding territories among birds. Ecology 49, 123–141 (1968).Article 

    Google Scholar 
    Calder, W. A. in Avian Energetics (ed. Paynter, R. A.) 86–151 (Nuttall Ornithological Club, 1974).Savage, V. M., Deeds, E. J. & Fontana, W. Sizing up allometric scaling theory. PLoS Comp. Biol. 4, e1000171 (2008).Article 

    Google Scholar 
    Kolokotrones, T., Savage, V., Deeds, E. J. & Fontana, W. Curvature in metabolic scaling. Nature 464, 753–756 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hudson, L. N., Isaac, N. J. & Reuman, D. C. The relationship between body mass and field metabolic rate among individual birds and mammals. J. Anim. Ecol. 82, 1009–1020 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Predicting metabolomic profiles from microbial composition through neural ordinary differential equations

    Donia, M. S. & Fischbach, M. A. Small molecules from the human microbiota. Science 349, 1254766 (2015).Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).Article 

    Google Scholar 
    Koppel, N., Rekdal, V. M. & Balskus, E. P. Chemical transformation of xenobiotics by the human gut microbiota. Science 356, eaag2770 (2017).Myhrstad, M. C., Tunsjø, H., Charnock, C. & Telle-Hansen, V. H. Dietary fiber, gut microbiota, and metabolic regulation—current status in human randomized trials. Nutrients 12, 859 (2020).Article 

    Google Scholar 
    Lin, R., Liu, W., Piao, M. & Zhu, H. A review of the relationship between the gut microbiota and amino acid metabolism. Amino Acids 49, 2083–2090 (2017).Article 

    Google Scholar 
    Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004).Article 

    Google Scholar 
    Flint, H. J., Scott, K. P., Louis, P. & Duncan, S. H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 9, 577–589 (2012).Article 

    Google Scholar 
    Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).Article 

    Google Scholar 
    Yang, Q. et al. Metabolomics biotechnology, applications, and future trends: a systematic review. RSC Adv. 9, 37245–37257 (2019).Article 

    Google Scholar 
    Castelli, F. A. et al. Metabolomics for personalized medicine: the input of analytical chemistry from biomarker discovery to point-of-care tests. Anal. Bioanal. Chem. 414, 759–789 (2022).Article 

    Google Scholar 
    Dias-Audibert, F. L. et al. Combining machine learning and metabolomics to identify weight gain biomarkers. Front. Bioeng. Biotechnol. 8, 6 (2020).Article 

    Google Scholar 
    Zheng, C., Zhang, S., Ragg, S., Raftery, D. & Vitek, O. Identification and quantification of metabolites in 1H NMR spectra by Bayesian model selection. Bioinformatics 27, 1637–1644 (2011).Article 

    Google Scholar 
    Information Resources Management Association. Bioinformatics: Concepts, Methodologies, Tools, and Applications (IGI Global, 2013).Johnson, C. H. & Gonzalez, F. J. Challenges and opportunities of metabolomics. J. Cell. Physiol. 227, 2975–2981 (2012).Article 

    Google Scholar 
    Ayling, M., Clark, M. D. & Leggett, R. M. New approaches for metagenome assembly with short reads. Brief. Bioinform. 21, 584–594 (2020).Article 

    Google Scholar 
    Brumfield, K. D., Huq, A., Colwell, R. R., Olds, J. L. & Leddy, M. B. Microbial resolution of whole genome shotgun and 16S amplicon metagenomic sequencing using publicly available neon data. PLoS ONE 15, e0228899 (2020).Article 

    Google Scholar 
    Garza, D. R., van Verk, M. C., Huynen, M. A. & Dutilh, B. E. Towards predicting the environmental metabolome from metagenomics with a mechanistic model. Nat. Microbiol. 3, 456–460 (2018).Article 

    Google Scholar 
    Noecker, C. et al. Metabolic model-based integration of microbiome taxonomic and metabolomic profiles elucidates mechanistic links between ecological and metabolic variation. MSystems 1, e00013–15 (2016).Article 

    Google Scholar 
    Yin, X. et al. A comparative evaluation of tools to predict metabolite profiles from microbiome sequencing data. Front. Microbiol. 11, 3132 (2020).Article 

    Google Scholar 
    Kettle, H., Louis, P., Holtrop, G., Duncan, S. H. & Flint, H. J. Modelling the emergent dynamics and major metabolites of the human colonic microbiota. Environ. Microbiol. 17, 1615–1630 (2015).Article 

    Google Scholar 
    Quinn, R. A. et al. Niche partitioning of a pathogenic microbiome driven by chemical gradients. Sci. Adv. 4, eaau1908 (2018).Article 

    Google Scholar 
    Wang, T., Goyal, A., Dubinkina, V. & Maslov, S. Evidence for a multi-level trophic organization of the human gut microbiome. PLoS Comput. Biol. 15, e1007524 (2019).Article 

    Google Scholar 
    Goyal, A., Wang, T., Dubinkina, V. & Maslov, S. Ecology-guided prediction of cross-feeding interactions in the human gut microbiome. Nat. Commun. 12, 1335 (2021).Mallick, H. et al. Predictive metabolomic profiling of microbial communities using amplicon or metagenomic sequences. Nat. Commun. 10, 3136 (2019).Article 

    Google Scholar 
    Le, V., Quinn, T. P., Tran, T. & Venkatesh, S. Deep in the bowel: highly interpretable neural encoder–decoder networks predict gut metabolites from gut microbiome. BMC Genom. 21, 256 (2020).Reiman, D., Layden, B. T. & Dai, Y. MiMeNet: exploring microbiome–metabolome relationships using neural networks. PLoS Comput. Biol. 17, e1009021 (2021).Article 

    Google Scholar 
    Morton, J. T. et al. Learning representations of microbe–metabolite interactions. Nat. Methods 16, 1306–1314 (2019).Article 

    Google Scholar 
    Chen, R. T., Rubanova, Y., Bettencourt, J. & Duvenaud, D. Neural ordinary differential equations. In Advances in Neural Information Processing Systems 31, 6572–6583 (NeurIPS, 2018).Lu, Y., Zhong, A., Li, Q. & Dong, B. Beyond finite layer neural networks: bridging deep architectures and numerical differential equations. In International Conference on Machine Learning 3276–3285 (PMLR, 2018).Qiu, C., Bendickson, A., Kalyanapu, J. & Yan, J. Accuracy and architecture studies of residual neural network solving ordinary differential equations. Preprint at arXiv https://doi.org/10.48550/arXiv.2101.03583 (2021).Dutta, S., Rivera-Casillas, P. & Farthing, M. W. Neural ordinary differential equations for data-driven reduced order modeling of environmental hydrodynamics. Preprint at https://doi.org/10.48550/arXiv.2104.13962 (2021).Marsland III, R. et al. Available energy fluxes drive a transition in the diversity, stability, and functional structure of microbial communities. PLoS Comput. Biol. 15, e1006793 (2019).Article 

    Google Scholar 
    Franzosa, E. A. et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 4, 293–305 (2019).Article 

    Google Scholar 
    Swenson, T. L., Karaoz, U., Swenson, J. M., Bowen, B. P. & Northen, T. R. Linking soil biology and chemistry in biological soil crust using isolate exometabolomics. Nat. Commun. 9, 19 (2018).Article 

    Google Scholar 
    Litonjua, A. A. et al. Effect of prenatal supplementation with vitamin D on asthma or recurrent wheezing in offspring by age 3 years: the VDAART randomized clinical trial. JAMA 315, 362–370 (2016).Article 

    Google Scholar 
    Litonjua, A. A. et al. Six-year follow-up of a trial of antenatal vitamin D for asthma reduction. N. Engl. J. Med. 382, 525–533 (2020).Article 

    Google Scholar 
    Lee-Sarwar, K. A. et al. Integrative analysis of the intestinal metabolome of childhood asthma. J. Allergy Clin. Immunol. 144, 442–454 (2019).Article 

    Google Scholar 
    Lee-Sarwar, K. et al. Association of the gut microbiome and metabolome with wheeze frequency in childhood asthma. J. Allergy Clin. Immunol. 147, AB53 (2021).Article 

    Google Scholar 
    Harvard Willett Food Frequency Questionnaire (T.H. Chan School of Public Health, Department of Nutrition, Harvard Univ., 2015).Plan and Operation of the Third National Health and Nutrition Examination Survey, 1988–94 (National Centre for Health Statistics, 1994).Nelson, K. M., Reiber, G. & Boyko, E. J. Diet and exercise among adults with type 2 diabetes: findings from the third National Health and Nutrition Examination Survey (NHANES III). Diabetes Care 25, 1722–1728 (2002).Article 

    Google Scholar 
    Marriott, B. P., Olsho, L., Hadden, L. & Connor, P. Intake of added sugars and selected nutrients in the United States, National Health and Nutrition Examination Survey (NHANES) 2003-2006. Crit. Rev. Food Sci. Nutr. 50, 228–258 (2010).Article 

    Google Scholar 
    Moshfegh, A. Food and Nutrient Database for Dietary Studies (US Department of Agriculture, Agricultural Research Service, Food Surveys Research Group, 2022); http://www.ars.usda.gov/nea/bhnrc/fsrgRidlon, J. M., Kang, D.-J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259 (2006).Article 

    Google Scholar 
    Bachmann, V. et al. Bile salts modulate the mucin-activated type VI secretion system of pandemic Vibrio cholerae. PLoS Negl. Trop. Dis. 9, e0004031 (2015).Article 

    Google Scholar 
    Ramírez-Pérez, O., Cruz-Ramón, V., Chinchilla-López, P. & Méndez-Sánchez, N. The role of the gut microbiota in bile acid metabolism. Ann. Hepatol. 16, 21–26 (2018).Article 

    Google Scholar 
    Jia, W., Xie, G. & Jia, W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat. Rev. Gastroenterol. Hepatol. 15, 111–128 (2018).Article 

    Google Scholar 
    Heinken, A. et al. Systematic assessment of secondary bile acid metabolism in gut microbes reveals distinct metabolic capabilities in inflammatory bowel disease. Microbiome 7, 75 (2019).Duboc, H. et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut 62, 531–539 (2013).Article 

    Google Scholar 
    Thomas, J. P., Modos, D., Rushbrook, S. M., Powell, N. & Korcsmaros, T. The emerging role of bile acids in the pathogenesis of inflammatory bowel disease. Front. Immunol. 13, 246 (2022).Kristal, A. R., Peters, U. & Potter, J. D. Is it time to abandon the food frequency questionnaire? Cancer Epidemiol. Biomarkers Prev. 14, 2826–2828 (2005).Article 

    Google Scholar 
    Scalbert, A. et al. The food metabolome: a window over dietary exposure. Am. J. Clin. Nutr. 99, 1286–1308 (2014).Article 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 

    Google Scholar 
    Evans, A. M. et al. High resolution mass spectrometry improves data quantity and quality as compared to unit mass resolution mass spectrometry in high-throughput profiling metabolomics. Metabolomics 4, 1 (2014).
    Google Scholar 
    Blum, R. E. et al. Validation of a food frequency questionnaire in Native American and Caucasian children 1 to 5 years of age. Matern. Child Health J. 3, 167–172 (1999).Article 

    Google Scholar 
    Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at https://doi.org/10.48550/arXiv.1412.6980 (2014).Wang, T. wt1005203/mnode: initial release. Zenodo https://doi.org/10.5281/zenodo.7602940 (2023). More

  • in

    Climate-driven tradeoffs between landscape connectivity and the maintenance of the coastal carbon sink

    Macreadie, P. I. et al. The future of Blue Carbon science. Nat. Commun. 10, 3998 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Herbert, E. R., Windham-Myers, L. & Kirwan, M. L. Sea-level rise enhances carbon accumulation in United States tidal wetlands. One Earth 4, 425–433 (2021).Article 
    ADS 

    Google Scholar 
    Rogers, K. et al. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature 567, 91–95 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Murray, N. J. et al. The global distribution and trajectory of tidal flats. Nature 565, 222–225 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Saintilan, N. et al. Thresholds of mangrove survival under rapid sea level rise. Science 368, 1118–1121 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl Acad. Sci. USA 106, 12377–12381 (2009).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kirwan, M. L. & Gedan, K. B. Sea-level driven land conversion and the formation of ghost forests. Nat. Clim. Change 9, 450–457 (2019).Article 
    ADS 

    Google Scholar 
    Raabe, E. A. & Stumpf, R. P. Expansion of tidal marsh in response to sea-level rise: Gulf Coast of Florida, USA. Estuaries Coast. 39, 145–157 (2016).Article 

    Google Scholar 
    Ury, E. A., Yang, X., Wright, J. P. & Bernhardt, E. S. Rapid deforestation of a coastal landscape driven by sea-level rise and extreme events. Ecol. Appl. 31, e02339 (2021).Article 
    PubMed 

    Google Scholar 
    Mariotti, G. Revisiting salt marsh resilience to sea level rise: are ponds responsible for permanent land loss? J. Geophys. Res. Earth Surf. 121, 1391–1407 (2016).Article 
    ADS 

    Google Scholar 
    Schepers, L., Brennand, P., Kirwan, M. L., Guntenspergen, G. R. & Temmerman, S. Coastal marsh degradation into ponds induces irreversible elevation loss relative to sea level in a microtidal system. Geophys. Res. Lett. 47, e2020GL089121 (2020).Article 
    ADS 

    Google Scholar 
    Schieder, N. W., Walters, D. C. & Kirwan, M. L. Massive upland to wetland conversion compensated for historical marsh loss in Chesapeake Bay, USA. Estuaries Coasts 41, 940–951 (2018).Article 

    Google Scholar 
    Chmura, G. L., Anisfeld, S. C., Cahoon, D. R. & Lynch, J. C. Global carbon sequestration in tidal, saline wetland soils. Glob. Biogeochem. Cycles 17, 1111 (2003).Fourqurean, J. W. et al. Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci. 5, 505–509 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).Article 

    Google Scholar 
    Smart, L. S. et al. Aboveground carbon loss associated with the spread of ghost forests as sea levels rise. Environ. Res. Lett. 15, 104028 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Smith, A. J. & Kirwan, M. L. Sea level-driven marsh migration results in rapid net loss of carbon. Geophys. Res. Lett. 48, e2021GL092420 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Phang, V. X. H., Chou, L. M. & Friess, D. A. Ecosystem carbon stocks across a tropical intertidal habitat mosaic of mangrove forest, seagrass meadow, mudflat and sandbar. Earth Surf. Process. Landf. 40, 1387–1400 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Saavedra-Hortua, D. A., Friess, D. A., Zimmer, M. & Gillis, L. G. Sources of particulate organic matter across mangrove forests and adjacent ecosystems in different geomorphic settings. Wetlands 40, 1047–1059 (2020).Article 

    Google Scholar 
    Windham-Myers, L., Crooks, S. & Troxler, T. G. A Blue Carbon Primer: The State of Coastal Wetland Carbon Science, Practice and Policy (CRC Press, 2018).Donatelli, C., Kalra, T. S., Fagherazzi, S., Zhang, X. & Leonardi, N. Dynamics of marsh-derived sediments in lagoon-type estuaries. J. Geophys. Res. Earth Surf. 125, e2020JF005751 (2020).Article 
    ADS 

    Google Scholar 
    Hopkinson, C. S., Morris, J. T., Fagherazzi, S., Wollheim, W. M. & Raymond, P. A. Lateral marsh edge erosion as a source of sediments for vertical marsh accretion. J. Geophys. Res. Biogeosci. 123, 2444–2465 (2018).Article 
    CAS 

    Google Scholar 
    Mitchell, M. G. E., Bennett, E. M. & Gonzalez, A. Linking landscape connectivity and ecosystem service provision: current knowledge and research gaps. Ecosystems 16, 894–908 (2013).Article 

    Google Scholar 
    Pearson, R. M. et al. Disturbance type determines how connectivity shapes ecosystem resilience. Sci. Rep. 11, 1188 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grande, T. O., Aguiar, L. M. S. & Machado, R. B. Heating a biodiversity hotspot: connectivity is more important than remaining habitat. Landsc. Ecol. 35, 639–657 (2020).Article 

    Google Scholar 
    Olliver, E. A. & Edmonds, D. A. Hydrological connectivity controls magnitude and distribution of sediment deposition within the Deltaic Islands of Wax Lake Delta, LA, USA. J. Geophys. Res. Earth Surf. 126, e2021JF006136 (2021).Article 
    ADS 

    Google Scholar 
    Ward, N. D. et al. Representing the function and sensitivity of coastal interfaces in Earth system models. Nat. Commun. 11, 2458 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wohl, E. et al. Connectivity as an emergent property of geomorphic systems. Earth Surf. Process. Landf. 44, 4–26 (2019).Article 
    ADS 

    Google Scholar 
    Kirwan, M. L. & Mudd, S. M. Response of salt-marsh carbon accumulation to climate change. Nature 489, 550–553 (2012).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Rietl, A. J., Megonigal, J. P., Herbert, E. R. & Kirwan, M. L. Vegetation type and decomposition priming mediate brackish marsh carbon accumulation under interacting facets of global change. Geophys. Res. Lett. 48, e2020GL092051 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Kirwan, M. L., Walters, D. C., Reay, W. G. & Carr, J. A. Sea level driven marsh expansion in a coupled model of marsh erosion and migration. Geophys. Res. Lett. 43, 4366–4373 (2016).Article 
    ADS 

    Google Scholar 
    Mariotti, G. & Fagherazzi, S. A numerical model for the coupled long-term evolution of salt marshes and tidal flats. J. Geophys. Res. Earth Surf. 115, F01004 (2010).Theuerkauf, E. J., Stephens, J. D., Ridge, J. T., Fodrie, F. J. & Rodriguez, A. B. Carbon export from fringing saltmarsh shoreline erosion overwhelms carbon storage across a critical width threshold. Estuar. Coast. Shelf Sci. 164, 367–378 (2015).Article 
    CAS 

    Google Scholar 
    Murray, A. B. Reducing model complexity for explanation and prediction. Geomorphology 90, 178–191 (2007).Article 
    ADS 

    Google Scholar 
    Murray, A. B. & Paola, C. A cellular model of braided rivers. Nature 371, 54–57 (1994).Article 
    ADS 

    Google Scholar 
    Mariotti, G. & Carr, J. Dual role of salt marsh retreat: long-term loss and short-term resilience. Water Resour. Res. 50, 2963–2974 (2014).Article 
    ADS 

    Google Scholar 
    Mudd, S. M., Howell, S. M. & Morris, J. T. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation. Estuar. Coast. Shelf Sci. 82, 377–389 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Mudd, S. M., Fagherazzi, S., Morris, J. T. & Furbish, D. J. Flow, sedimentation, and biomass production on a vegetated salt marsh in South Carolina: toward a predictive model of marsh morphologic and ecologic evolution. Ecogeomorphology Tidal Marshes 59, 165–188 (2004).Reeves, I. R. B. et al. Impacts of seagrass dynamics on the coupled long-term evolution of barrier-marsh-bay systems. J. Geophys. Res. Biogeosci. 125, e2019JG005416 (2020).Article 
    ADS 

    Google Scholar 
    Spivak, A. C., Sanderman, J., Bowen, J. L., Canuel, E. A. & Hopkinson, C. S. Global-change controls on soil-carbon accumulation and loss in coastal vegetated ecosystems. Nat. Geosci. 12, 685–692 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    de Broek, M. V. et al. Long-term organic carbon sequestration in tidal marsh sediments is dominated by old-aged allochthonous inputs in a macrotidal estuary. Glob. Change Biol. 24, 2498–2512 (2018).Article 
    ADS 

    Google Scholar 
    Noyce, G. L., Kirwan, M. L., Rich, R. L. & Megonigal, J. P. Asynchronous nitrogen supply and demand produce nonlinear plant allocation responses to warming and elevated CO2. Proc. Natl Acad. Sci. USA 116, 21623–21628 (2019).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smith, A. J., Noyce, G. L., Megonigal, J. P., Guntenspergen, G. R. & Kirwan, M. L. Temperature optimum for marsh resilience and carbon accumulation revealed in a whole-ecosystem warming experiment. Glob. Change Biol. 28, 3236–3245 (2022).Article 
    CAS 

    Google Scholar 
    Guimond, J. & Tamborski, J. Salt marsh hydrogeology: a review. Water 13, 543 (2021).Article 
    CAS 

    Google Scholar 
    Xin, P. et al. Surface water and groundwater interactions in salt marshes and their impact on plant ecology and coastal biogeochemistry. Rev. Geophys. 60, e2021RG000740 (2022).Article 
    ADS 

    Google Scholar 
    Chen, Y. & Kirwan, M. L. Climate-driven decoupling of wetland and upland biomass trends on the mid-Atlantic coast. Nat. Geosci. 15, 913–918 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Rapalee, G., Trumbore, S. E., Davidson, E. A., Harden, J. W. & Veldhuis, H. Soil Carbon stocks and their rates of accumulation and loss in a boreal forest landscape. Glob. Biogeochem. Cycles 12, 687–701 (1998).Article 
    ADS 
    CAS 

    Google Scholar 
    Stewart, C. E., Paustian, K., Conant, R. T., Plante, A. F. & Six, J. Soil carbon saturation: concept, evidence and evaluation. Biogeochemistry 86, 19–31 (2007).Article 
    CAS 

    Google Scholar 
    Zhou, T. et al. Age-dependent forest carbon sink: Estimation via inverse modeling. J. Geophys. Res. Biogeosci. 120, 2473–2492 (2015).Article 
    CAS 

    Google Scholar 
    Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerfve, B. & Cahoon, D. R. Responses of coastal wetlands to rising sea level. Ecology 83, 2869–2877 (2002).Article 

    Google Scholar 
    Kirwan, M. L., Temmerman, S., Skeehan, E. E., Guntenspergen, G. R. & Fagherazzi, S. Overestimation of marsh vulnerability to sea level rise. Nat. Clim. Change 6, 253–260 (2016).Article 
    ADS 

    Google Scholar 
    Brinson, M. M., Christian, R. R. & Blum, L. K. Multiple states in the sea-level induced transition from terrestrial forest to estuary. Estuaries 18, 648–659 (1995).Article 
    CAS 

    Google Scholar 
    Schieder, N. W. & Kirwan, M. L. Sea-level driven acceleration in coastal forest retreat. Geology 47, 1151–1155 (2019).Article 
    ADS 

    Google Scholar 
    Leonardi, N., Ganju, N. K. & Fagherazzi, S. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes. Proc. Natl Acad. Sci. USA 113, 64–68 (2016).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Feagin, R. A., Martinez, M. L., Mendoza-Gonzalez, G. & Costanza, R. Salt marsh zonal migration and ecosystem service change in response to global sea level rise: a case study from an urban region. Ecol. Soc. 15, 14 (2010).Sapkota, Y. & White, J. R. Marsh edge erosion and associated carbon dynamics in coastal Louisiana: a proxy for future wetland-dominated coastlines world-wide. Estuar. Coast. Shelf Sci. 226, 106289 (2019).Article 
    CAS 

    Google Scholar 
    Smith, K. E. L., Terrano, J. F., Khan, N. S., Smith, C. G. & Pitchford, J. L. Lateral shoreline erosion and shore-proximal sediment deposition on a coastal marsh from seasonal, storm and decadal measurements. Geomorphology 389, 107829 (2021).Article 

    Google Scholar 
    Bouma, T. J. et al. Short-term mudflat dynamics drive long-term cyclic salt marsh dynamics. Limnol. Oceanogr. 61, 2261–2275 (2016).Article 
    ADS 

    Google Scholar 
    Gillis, L. G. et al. Potential for landscape-scale positive interactions among tropical marine ecosystems. Mar. Ecol. Prog. Ser. 503, 289–303 (2014).Article 
    ADS 

    Google Scholar 
    Schuerch, M., Dolch, T., Reise, K. & Vafeidis, A. T. Unravelling interactions between salt marsh evolution and sedimentary processes in the Wadden Sea (southeastern North Sea). Prog. Phys. Geogr. Earth Environ. 38, 691–715 (2014).Article 

    Google Scholar 
    Gonneea, M. E. et al. Salt marsh ecosystem restructuring enhances elevation resilience and carbon storage during accelerating relative sea-level rise. Estuar. Coast. Shelf Sci. 217, 56–68 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    McTigue, N. et al. Sea level rise explains changing carbon accumulation rates in a salt marsh over the past two millennia. J. Geophys. Res. Biogeosci. 124, 2945–2957 (2019).Article 
    CAS 

    Google Scholar 
    Wang, F., Lu, X., Sanders, C. J. & Tang, J. Tidal wetland resilience to sea level rise increases their carbon sequestration capacity in United States. Nat. Commun. 10, 5434 (2019).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, F. et al. Global blue carbon accumulation in tidal wetlands increases with climate change. Natl Sci. Rev. 8, nwaa296 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ganju, N. K., Defne, Z., Elsey-Quirk, T. & Moriarty, J. M. Role of tidal wetland stability in lateral fluxes of particulate organic matter and carbon. J. Geophys. Res. Biogeosci. 124, 1265–1277 (2019).Article 
    CAS 

    Google Scholar 
    Krauss, K. W. et al. The role of the upper tidal estuary in wetland blue carbon storage and flux. Glob. Biogeochem. Cycles 32, 817–839 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Baustian, M. M., Stagg, C. L., Perry, C. L., Moss, L. C. & Carruthers, T. J. B. Long-term carbon sinks in marsh soils of coastal louisiana are at risk to wetland loss. J. Geophys. Res. Biogeosci. 126, e2020JG005832 (2021).Article 
    ADS 

    Google Scholar 
    DeLaune, R. D. & White, J. R. Will coastal wetlands continue to sequester carbon in response to an increase in global sea level?: a case study of the rapidly subsiding Mississippi river deltaic plain. Clim. Change 110, 297–314 (2012).Article 
    ADS 

    Google Scholar 
    Lovelock, C. E. & Duarte, C. M. Dimensions of Blue Carbon and emerging perspectives. Biol. Lett. 15, 20180781 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lovelock, C. E. & Reef, R. Variable impacts of climate change on Blue Carbon. One Earth 3, 195–211 (2020).Article 
    ADS 

    Google Scholar 
    Bernal, B. & Mitsch, W. J. Comparing carbon sequestration in temperate freshwater wetland communities. Glob. Change Biol. 18, 1636–1647 (2012).Article 
    ADS 

    Google Scholar 
    Mack, S. K., Lane, R. R., Deng, J., Morris, J. T. & Bauer, J. J. Wetland carbon models: applications for wetland carbon commercialization. Ecol. Model. 476, 110228 (2023).Article 
    CAS 

    Google Scholar 
    Young, I. R. & Verhagen, L. A. The growth of fetch limited waves in water of finite depth. Part 1. Total energy and peak frequency. Coast. Eng. 29, 47–78 (1996).Article 

    Google Scholar 
    Mariotti, G. & Fagherazzi, S. Critical width of tidal flats triggers marsh collapse in the absence of sea-level rise. Proc. Natl Acad. Sci. USA 110, 5353–5356 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koppel, J., van de, Wal, D., van der, Bakker, J. P. & Herman, P. M. J. Self‐organization and vegetation collapse in salt marsh ecosystems. Am. Nat. 165, E1–E12 (2005).Article 
    PubMed 

    Google Scholar 
    D’Alpaos, A., Lanzoni, S., Marani, M. & Rinaldo, A. Landscape evolution in tidal embayments: modeling the interplay of erosion, sedimentation, and vegetation dynamics. J. Geophys. Res. Earth Surf. 112, F01008 (2007).Kirwan, M. L. et al. Limits on the adaptability of coastal marshes to rising sea level. Geophys. Res. Lett. 37, L23401 (2010).Larsen, L. G. & Harvey, J. W. How vegetation and sediment transport feedbacks drive landscape change in the everglades and wetlands worldwide. Am. Nat. 176, E66–E79 (2010).Article 
    PubMed 

    Google Scholar 
    Smith, J. A. M. The role of Phragmites australis in mediating inland salt marsh migration in a Mid-Atlantic Estuary. PLoS ONE 8, e65091 (2013).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mariotti, G., Elsey-Quirk, T., Bruno, G. & Valentine, K. Mud-associated organic matter and its direct and indirect role in marsh organic matter accumulation and vertical accretion. Limnol. Oceanogr. 65, 2627–2641 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Ladd, C. J. T., Duggan-Edwards, M. F., Bouma, T. J., Pagès, J. F. & Skov, M. W. Sediment supply explains long-term and large-scale patterns in salt marsh lateral expansion and erosion. Geophys. Res. Lett. 46, 11178–11187 (2019).Article 
    ADS 

    Google Scholar 
    Törnqvist, T. E., Jankowski, K. L., Li, Y.-X. & González, J. L. Tipping points of Mississippi Delta marshes due to accelerated sea-level rise. Sci. Adv. 6, eaaz5512 (2020).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fagherazzi, S. et al. Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors. Rev. Geophys. 50, RG1002 (2012). More