1.Maynard Smith, J., Feil, E. J. & Smith, N. H. Population structure and evolutionary dynamics of pathogenic bacteria. Bioessays 22, 1115–1122 (2000).
Google Scholar
2.Garud, N. R., Good, B. H., Hallatschek, O. & Pollard, K. S. Evolutionary dynamics of bacteria in the gut microbiome within and across hosts. PLoS Biol. 17, e3000102 (2019). Using metagenomic samples form the human gut microbiome, the authors infer lineage structure from within-host polymorphisms in more than 40 species to show adaptation on short timescales can be seeded by HGT.PubMed
PubMed Central
Google Scholar
3.Frazão, N., Sousa, A., Lässig, M. & Gordo, I. Horizontal gene transfer overrides mutation in Escherichia coli colonizing the mammalian gut. Proc. Natl Acad. Sci. USA 116, 17906–17915 (2019). Using the mouse microbiome as a study system, the authors show that rapid, phage-mediated HGT can transfer beneficial genes — already present in a resident strain — to an invading strain.PubMed
PubMed Central
Google Scholar
4.Smith, J. M., Smith, N. H., O’Rourke, M. & Spratt, B. G. How clonal are bacteria? Proc. Natl Acad. Sci. USA 90, 4384–4388 (1993).PubMed
PubMed Central
Google Scholar
5.Dykhuizen, D. E. & Green, L. Recombination in Escherichia coli and the definition of biological species. J. Bacteriol. 173, 7257–7268 (1991).PubMed
PubMed Central
Google Scholar
6.Feil, E. J. et al. Recombination within natural populations of pathogenic bacteria: short-term empirical estimates and long-term phylogenetic consequences. Proc. Natl Acad. Sci. USA 98, 182–187 (2001).PubMed
PubMed Central
Google Scholar
7.Suerbaum, S. et al. Free recombination within Helicobacter pylori. PNAS 95, 12619–12624 (1998).PubMed
PubMed Central
Google Scholar
8.Smillie, C. S. et al. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480, 241–244 (2011).PubMed
Google Scholar
9.Lozupone, C. A. et al. The convergence of carbohydrate active gene repertoires in human gut microbes. Proc. Natl Acad. Sci. USA 105, 15076–15081 (2008).PubMed
PubMed Central
Google Scholar
10.Bradley, P. H., Nayfach, S. & Pollard, K. S. Phylogeny-corrected identification of microbial gene families relevant to human gut colonization. PLoS Computational Biol. 14, e1006242 (2018). The authors use phylogenetic linear regression to control for important confounders and identify genes potentially involved in adaptation to the human gut.
Google Scholar
11.Andreani, N. A., Hesse, E. & Vos, M. Prokaryote genome fluidity is dependent on effective population size. ISME J. 11, 1719–1721 (2017).PubMed
PubMed Central
Google Scholar
12.Mcinerney, J. O., Mcnally, A. & Connell, M. J. O. Why prokaryotes have pangenomes. Nat. Publ. Gr. 2, 1–5 (2017).
Google Scholar
13.Shapiro, B. J. The population genetics of pangenomes. Nat. Microbiol. 2, 1005860 (2017).
Google Scholar
14.Vos, M. & Eyre-walker, A. Are pangenomes adaptive or not? Nat. Microbiol. https://doi.org/10.1038/s41564-017-0067-5 (2017).Article
PubMed
PubMed Central
Google Scholar
15.Johnsborg, O., Eldholm, V. & Håvarstein, L. S. Natural genetic transformation: prevalence, mechanisms and function. Res. Microbiol. 158, 767–778 (2007).PubMed
Google Scholar
16.Johnston, C., Martin, B., Fichant, G., Polard, P. & Claverys, J. P. Bacterial transformation: distribution, shared mechanisms and divergent control. Nat. Rev. Microbiol. 12, 181–196 (2014).PubMed
Google Scholar
17.Pimentel, Z. T. & Zhang, Y. Evolution of the natural transformation protein, ComEC, in Bacteria. Front. Microbiol. 9, 1–10 (2018).
Google Scholar
18.Roux, S., Hallam, S. J., Woyke, T. & Sullivan, M. B. Viral dark matter and virus–host interactions resolved from publicly available microbial genomes. eLife 4, 1–20 (2015).
Google Scholar
19.Camarillo-Guerrero, L. F. et al. Massive expansion of human gut bacteriophage diversity. Cell 184, 1098–1109.e9 (2021).PubMed
PubMed Central
Google Scholar
20.Guglielmini, J., Quintais, L., Garcillán-Barcia, M. P., de la Cruz, F. & Rocha, E. P. C. The repertoire of ice in prokaryotes underscores the unity, diversity, and ubiquity of conjugation. PLoS Genet. 7, e1002222 (2011).PubMed
PubMed Central
Google Scholar
21.Dubey, G. P. & Ben-Yehuda, S. Intercellular nanotubes mediate bacterial communication. Cell 144, 590–600 (2011).PubMed
Google Scholar
22.Abe, K., Nomura, N. & Suzuki, S. Biofilms: hot spots of horizontal gene transfer (HGT) in aquatic environments, with a focus on a new HGT mechanism. FEMS Microbiol. Ecol. 96, 1–12 (2020).
Google Scholar
23.Bárdy, P. et al. Structure and mechanism of DNA delivery of a gene transfer agent. Nat. Commun. 11, 3034 (2020).PubMed
PubMed Central
Google Scholar
24.Hasegawa, H., Suzuki, E. & Maeda, S. Horizontal plasmid transfer by transformation in Escherichia coli: environmental factors and possible mechanisms. Front. Microbiol. 9, 1–6 (2018).
Google Scholar
25.Seitz, P. & Blokesch, M. Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria. FEMS Microbiol. Rev. 37, 336–363 (2013).PubMed
Google Scholar
26.Wall, D. Kin recognition in bacteria. Annu. Rev. Microbiol. 70, 143–160 (2016).PubMed
PubMed Central
Google Scholar
27.Frye, S. A., Nilsen, M., Tønjum, T. & Ambur, O. H. Dialects of the DNA uptake sequence in Neisseriaceae. PLoS Genet. https://doi.org/10.1371/journal.pgen.1003458 (2013).Article
PubMed
PubMed Central
Google Scholar
28.Redfield, R. J. et al. Evolution of competence and DNA uptake specificity in the Pasteurellaceae. BMC Evol. Biol. 6, 1–15 (2006).
Google Scholar
29.Dion, M. B., Oechslin, F. & Moineau, S. Phage diversity, genomics and phylogeny. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-019-0311-5 (2020).Article
PubMed
Google Scholar
30.Siguier, P., Gourbeyre, E. & Chandler, M. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol. Rev. 38, 865–891 (2014).PubMed
Google Scholar
31.Vulić, M., Dionisio, F., Taddei, F. & Radman, M. Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. Proc. Natl Acad. Sci. USA 94, 9763–9767 (1997).PubMed
PubMed Central
Google Scholar
32.Majewski, J. et al. Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation. J. Bacteriol. 182, 1016–1023 (2000).PubMed
PubMed Central
Google Scholar
33.Wyres, K. L. et al. Pneumococcal capsular switching: a historical perspective. J. Infect. Dis. 207, 439–449 (2013).PubMed
Google Scholar
34.Hallet, B. & Sherratt, D. J. Transposition and site-specific recombination: adapting DNA cut-and-paste mechanisms to a variety of genetic rearrangements. FEMS Microbiol. Rev. 21, 157–178 (1997).PubMed
Google Scholar
35.Durrant, M. G., Li, M. M., Siranosian, B. A., Montgomery, S. B. & Bhatt, A. S. A bioinformatic analysis of integrative mobile genetic elements highlights their role in bacterial adaptation. Cell Host Microbe 27, 140–153.e9 (2020).PubMed
Google Scholar
36.Rajeev, L., Malanowska, K. & Gardner, J. F. Challenging a paradigm: the role of DNA homology in tyrosine recombinase reactions. Microbiol. Mol. Biol. Rev. 73, 300–309 (2009).PubMed
PubMed Central
Google Scholar
37.Hickman, A. B., Chandler, M. & Dyda, F. Integrating prokaryotes and eukaryotes: DNA transposases in light of structure. Crit. Rev. Biochem. Mol. Biol. 45, 50–69 (2010).PubMed
PubMed Central
Google Scholar
38.Oliveira, P. H., Touchon, M., Cury, J. & Rocha, E. P. C. The chromosomal organization of horizontal gene transfer in bacteria. Nat. Commun. 8, 1–10 (2017).
Google Scholar
39.Wadsworth, C. B., Arnold, B. J., Sater, M. R. A. & Grad, Y. Azithromycin resistance through interspecific acquisition of an epistasis-dependent efflux pump component and transcriptional regulator in Neisseria gonorrhoeae. mBio 9, 1–17 (2018).
Google Scholar
40.Arevalo, P., VanInsberghe, D., Elsherbini, J., Gore, J. & Polz, M. F. A reverse ecology approach based on a biological definition of microbial populations. Cell 178, 820–834.e14 (2019). The authors create a metric of recent gene flow to define ecological populations and discover genes that have experienced positive selection across populations.PubMed
Google Scholar
41.Croucher, N. J. et al. Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict. PLoS Biol. 14, 1–42 (2016). A model of transformation with known bias towards the acquisition of shorter alleles suggests HGT may effectively purge bacterial genomes of parasitic MGEs.
Google Scholar
42.Apagyi, K. J., Fraser, C. & Croucher, N. J. Transformation asymmetry and the evolution of the bacterial accessory genome. Mol. Biol. Evol. 35, 575–581 (2018).PubMed
Google Scholar
43.Mira, A., Ochman, H. & Moran, N. A. Deletional bias and the evolution of bacterial genomes. Trends Genet. 17, 589–596 (2001).PubMed
Google Scholar
44.Kuo, C.-H. & Ochman, H. Deletional bias across the three domains of life. Genome Biol. Evol. 1, 145–152 (2009).PubMed
PubMed Central
Google Scholar
45.Lawrence, J. G. & Roth, J. R. Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics 143, 1843–1860 (1996).PubMed
PubMed Central
Google Scholar
46.Hehemann, J. H. et al. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464, 908–912 (2010).PubMed
Google Scholar
47.Campbell, A. Prophage insertion sites. Res. Microbiol. 154, 277–282 (2003).PubMed
Google Scholar
48.Chu, N. D. et al. A mobile element in mutS drives hypermutation in a marine Vibrio. mBio 8, 1–13 (2017).
Google Scholar
49.Bobay, L. M., Rocha, E. P. C. & Touchon, M. The adaptation of temperate bacteriophages to their host genomes. Mol. Biol. Evol. 30, 737–751 (2013).PubMed
Google Scholar
50.Lee, H., Doak, T. G., Popodi, E., Foster, P. L. & Tang, H. Insertion sequence-caused large-scale rearrangements in the genome of Escherichia coli. Nucleic Acids Res. 44, 7109–7119 (2016).PubMed
PubMed Central
Google Scholar
51.Parkhill, J. et al. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat. Genet. 35, 32–40 (2003).PubMed
Google Scholar
52.Moran, N. A. & Plague, G. R. Genomic changes following host restriction in bacteria. Curr. Opin. Genet. Dev. 14, 627–633 (2004).PubMed
Google Scholar
53.Hendry, T. et al. Ongoing transposon-mediated genome reduction in the luminous bacterial symbionts of deep-sea ceratioid anglerfishes. mBio https://doi.org/10.1128/mBio.01033-18 (2018).Article
PubMed
PubMed Central
Google Scholar
54.Waterworth, S. C. et al. Horizontal gene transfer to a defensive symbiont with a reduced genome in a multipartite beetle microbiome. mBio https://doi.org/10.1128/mBio.02430-19 (2020).Article
PubMed
PubMed Central
Google Scholar
55.Vos, M. et al. Rates of lateral gene transfer in prokaryotes: high but why? Trends Microbiol. 23, 598–605 (2015).PubMed
Google Scholar
56.Cohen, E., Kessler, D. A. & Levine, H. Recombination dramatically speeds up evolution of finite populations. Phys. Rev. Lett. 94, 1–4 (2005).
Google Scholar
57.Levin, B. R. & Cornejo, O. E. The population and evolutionary dynamics of homologous gene recombination in bacteria. PLoS Genet. https://doi.org/10.1371/journal.pgen.1000601 (2009).Article
PubMed
PubMed Central
Google Scholar
58.Arnold, B. J. et al. Weak epistasis may drive adaptation in recombining bacteria. Genetics 208, 1247–1260 (2018).PubMed
PubMed Central
Google Scholar
59.Moradigaravand, D. & Engelstädter, J. The effect of bacterial recombination on adaptation on fitness landscapes with limited peak accessibility. PLoS Comput. Biol. 8, 35–37 (2012).
Google Scholar
60.Cooper, T. F. Recombination speeds adaptation by reducing competition between beneficial mutations in populations of Escherichia coli. PLoS Biol. 5, 1899–1905 (2007).
Google Scholar
61.Winkler, J. & Kao, K. C. Harnessing recombination to speed adaptive evolution in Escherichia coli. Metab. Eng. 14, 487–495 (2012).PubMed
Google Scholar
62.Chu, H. Y., Sprouffske, K. & Wagner, A. The role of recombination in evolutionary adaptation of Escherichia coli to a novel nutrient. J. Evol. Biol. 30, 1692–1711 (2017).PubMed
Google Scholar
63.Arnold, B. et al. Fine-scale haplotype structure reveals strong signatures of positive selection in a recombining bacterial pathogen. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msz225 (2019).Article
PubMed Central
Google Scholar
64.Yahara, K. et al. The landscape of realized homologous recombination in pathogenic bacteria. Mol. Biol. Evol. 33, 456–471 (2016).PubMed
Google Scholar
65.Engelstädter, J. & Moradigaravand, D. Adaptation through genetic time travel? Fluctuating selection can drive the evolution of bacterial transformation. Proc. R. Soc. B Biol. Sci. 281, 20132609 (2014).
Google Scholar
66.Cohan, F. M. Periodic selection and ecological diversity in bacteria. Selective Sweep https://doi.org/10.1007/0-387-27651-3_7 (2007).Article
Google Scholar
67.Shapiro, B. J., David, L. A., Friedman, J. & Alm, E. J. Looking for Darwin’s footprints in the microbial world. Trends Microbiol. 17, 196–204 (2009).PubMed
Google Scholar
68.Shapiro, B. J. et al. Population genomics of early events in the ecological differentiation of bacteria. Science 336, 48–51 (2012).PubMed
PubMed Central
Google Scholar
69.Rosen, M., Davison, M., Bhaya, D. & Fisher, D. S. Fine-scale diversity and extensive recombination in a quasisexual bacterial population occupying a broad niche. Science 348, 1019–1024 (2015).PubMed
Google Scholar
70.Bendall, M. L. et al. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations. ISME J. 10, 1589–1601 (2016).PubMed
PubMed Central
Google Scholar
71.Porter, S. S., Chang, P. L., Conow, C. A., Dunham, J. P. & Friesen, M. L. Association mapping reveals novel serpentine adaptation gene clusters in a population of symbiotic Mesorhizobium. ISME J. 11, 248–262 (2017).PubMed
Google Scholar
72.Crits-Christoph, A., Olm, M. R., Diamond, S., Bouma-Gregson, K. & Banfield, J. F. Soil bacterial populations are shaped by recombination and gene-specific selection across a grassland meadow. ISME J. https://doi.org/10.1038/s41396-020-0655-x (2020).Article
PubMed
PubMed Central
Google Scholar
73.Woods, L. C. et al. Horizontal gene transfer potentiates adaptation by reducing selective constraints on the spread of genetic variation. Proc. Natl Acad. Sci. USA 117, 26868–26875 (2020).PubMed
PubMed Central
Google Scholar
74.Miralles, R., Gerrish, P. J., Moya, A. & Elena, S. F. Clonal interference and the evolution of RNA viruses. Science 285, 1745–1747 (1999).PubMed
Google Scholar
75.De Visser, J. A. G. M., Zeyl, C. W., Gerrish, P. J., Blanchard, J. L. & Lenski, R. E. Diminishing returns from mutation supply rate in asexual populations. Science 283, 404–406 (1999).PubMed
Google Scholar
76.Good, B. H., Rouzine, I. M., Balick, D. J., Hallatschek, O. & Desai, M. M. Distribution of fixed beneficial mutations and the rate of adaptation in asexual populations. Proc. Natl Acad. Sci. USA 109, 4950–4955 (2012).PubMed
PubMed Central
Google Scholar
77.Takeuchi, N., Cordero, O. X., Koonin, E. V. & Kaneko, K. Gene-specific selective sweeps in bacteria and archaea caused by negative frequency-dependent selection. BMC Biol. 13, 1–11 (2015). The authors show that in the presence of NFDS, genes or mutations that are unconditionally beneficial can spread through populations only via HGT, giving rise to gene-specific sweeps.
Google Scholar
78.Corander, J. et al. Frequency-dependent selection in vaccine-associated pneumococcal population dynamics. Nat. Ecol. Evol. 2017, 1950–1960 (2018).
Google Scholar
79.Rodriguez-Valera, F. et al. Explaining microbial population genomics through phage predation. Nat. Rev. Microbiol. 7, 828–836 (2009).PubMed
Google Scholar
80.Good, B. H., McDonald, M. J., Barrick, J. E., Lenski, R. E. & Desai, M. M. The dynamics of molecular evolution over 60,000 generations. Nature 551, 45–50 (2017).PubMed
PubMed Central
Google Scholar
81.Ramiro, R. S., Durão, P., Bank, C. & Gordo, I. Low mutational load allows for high mutation rate variation in gut commensal bacteria. PLoS Biol. https://doi.org/10.1101/568709 (2020).Article
PubMed
PubMed Central
Google Scholar
82.Holt, R. D. Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proc. Natl Acad. Sci. USA 106, 19659–19665 (2009).PubMed
PubMed Central
Google Scholar
83.Cohan, F. M. Transmission in the origins of bacterial diversity, from ecotypes to phyla. Microbiol. Spectr. https://doi.org/10.1128/9781555819743.ch18 (2017).Article
PubMed
Google Scholar
84.Fondi, M. et al. “Every gene is everywhere but the environment selects”: global geolocalization of gene sharing in environmental samples through network analysis. Genome Biol. Evol. 8, 1388–1400 (2016).PubMed
PubMed Central
Google Scholar
85.Cohan, F. M. The effects of rare but promiscuous genetic exchange on evolutionary divergence in prokaryotes. Am. Nat. 143, 965–986 (1994).
Google Scholar
86.Majewski, J. & Cohan, F. M. Adapt globally, act locally: the effect of selective sweeps on bacterial sequence diversity. Genetics 152, 1459–1474 (1999).PubMed
PubMed Central
Google Scholar
87.Messer, P. W. & Petrov, D. A. Population genomics of rapid adaptation by soft selective sweeps. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2013.08.003 (2013).Article
PubMed
PubMed Central
Google Scholar
88.Cui, Y. et al. Epidemic clones, oceanic gene pools, and Eco-LD in the free living marine pathogen Vibrio parahaemolyticus. Mol. Biol. Evol. 32, 1396–1410 (2015).PubMed
Google Scholar
89.Skwark, M. et al. Interacting networks of resistance, virulence and core machinery genes identified by genome-wide epistasis analysis. PLoS Genet. https://doi.org/10.1371/journal.pgen.1006508 (2016).Article
Google Scholar
90.Pensar, J. et al. Genome-wide epistasis and co-selection study using mutual information. Nucleic Acids Res. 47, e112–e112 (2019).PubMed
PubMed Central
Google Scholar
91.Puranen, S. et al. SuperDCA for genome-wide epistasis analysis. Microb. Genomics 4, e000184 (2018).
Google Scholar
92.Whelan, F. J., Rusilowicz, M. & McInerney, J. O. Coinfinder: detecting significant associations and dissociations in pangenomes. Microb. Genomics 6, e000338 (2020).
Google Scholar
93.Slomka, S. et al. Experimental evolution of bacillus subtilis reveals the evolutionary dynamics of horizontal gene transfer and suggests adaptive and neutral effects. Genetics 216, 543–558 (2020).PubMed
PubMed Central
Google Scholar
94.Maddamsetti, R. & Lenski, R. E. Analysis of bacterial genomes from an evolution experiment with horizontal gene transfer shows that recombination can sometimes overwhelm selection. PLoS Genet. 14, 1–30 (2018).
Google Scholar
95.Knöppel, A., Lind, P. A., Lustig, U., Näsvall, J. & Andersson, D. I. Minor fitness costs in an experimental model of horizontal gene transfer in bacteria. Mol. Biol. Evol. 31, 1220–1227 (2014).PubMed
Google Scholar
96.Collins, R. E. & Higgs, P. G. Testing the infinitely many genes model for the evolution of the bacterial core genome and pangenome. Mol. Biol. Evol. 29, 3413–3425 (2012).PubMed
Google Scholar
97.Baumdicker, F., Hess, W. R. & Pfaffelhuber, P. The infinitely many genes model for the distributed genome of bacteria. Genome Biol. Evol. 4, 443–456 (2012).PubMed
PubMed Central
Google Scholar
98.Haegeman, B. & Weitz, J. S. A neutral theory of genome evolution and the frequency distribution of genes. BMC Genomics 13, 196 (2012).PubMed
PubMed Central
Google Scholar
99.Hughes, A. L. Evidence for abundant slightly deleterious polymorphisms in bacterial populations. Genetics 169, 533–538 (2005).PubMed
PubMed Central
Google Scholar
100.Van Passel, M. W. J., Marri, P. R. & Ochman, H. The emergence and fate of horizontally acquired genes in Escherichia coli. PLoS Comput. Biol. 4, e1000059 (2008).PubMed
PubMed Central
Google Scholar
101.Hao, W. & Golding, G. B. The fate of laterally transferred genes: life in the fast lane to adaptation or death. Genome Res. 16, 636–643 (2006).PubMed
PubMed Central
Google Scholar
102.Lerat, E., Daubin, V., Ochman, H. & Moran, N. A. Evolutionary origins of genomic repertoires in bacteria. 3, e130 (2005).103.Lobkovsky, A. E., Wolf, Y. I. & Koonin, E. V. Gene frequency distributions reject a neutral model of genome evolution. Genome Biol. Evol. 5, 233–242 (2013).PubMed
PubMed Central
Google Scholar
104.Sela, I., Wolf, Y. I. & Koonin, E. V. Theory of prokaryotic genome evolution. Proc. Natl Acad. Sci. USA 113, 11399–11407 (2016).PubMed
PubMed Central
Google Scholar
105.Charlesworth, B. Effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. https://doi.org/10.1038/nrg2526 (2009).Article
PubMed
Google Scholar
106.Cohan, F. M. & Perry, E. B. A systematics for discovering the fundamental units of bacterial diversity. Curr. Biol. 17, 373–386 (2007).
Google Scholar
107.Domingo-Sananes, M. R. & McInerney, J. O. Selection-based model of prokaryote pangenomes. bioRxiv https://doi.org/10.1101/782573 (2019).Article
Google Scholar
108.Azarian, T. et al. Frequency-dependent selection can forecast evolution in Streptococcus pneumoniae. PLoS Biol. 18, e3000878 (2020). The authors provide evidence that NFDS is a pervasive evolutionary force that shapes the accessory genome of S. pneumoniae.PubMed
PubMed Central
Google Scholar
109.Bobay, L. M., Touchon, M. & Rocha, E. P. C. Pervasive domestication of defective prophages by bacteria. Proc. Natl Acad. Sci. USA 111, 12127–12132 (2014). Although prophages can be considered parasitic, the authors show evidence of purifying selection within prophage genes, suggesting that they serve a beneficial purpose within their bacterial hosts.PubMed
PubMed Central
Google Scholar
110.Puigbò, P., Lobkovsky, A. E., Kristensen, D. M., Wolf, Y. I. & Koonin, E. V. Genomes in turmoil: quantification of genome dynamics in prokaryote supergenomes. BMC Med. 12, 1–19 (2014).
Google Scholar
111.Lynch, M. Streamlining and simplification of microbial genome architecture. Annu.Rev.Microbiol. 60, 327–349 (2006).PubMed
Google Scholar
112.Bobay, L. & Ochman, H. Factors driving effective population size and pan-genome evolution in bacteria. BMC Evol. Biol. 18, 15 (2018).
Google Scholar
113.Brito, I. L. et al. Mobile genes in the human microbiome are structured from global to individual scales. Nature 535, 435–439 (2016).PubMed
PubMed Central
Google Scholar
114.Evans, T. G. Considerations for the use of transcriptomics in identifying the ‘genes that matter’ for environmental adaptation. J. Exp. Biol. 218, 1925–1935 (2015).PubMed
Google Scholar
115.Cain, A. K. et al. A decade of advances in transposon-insertion sequencing. Nat. Rev. Genet. 21, 526–540 (2020).PubMed
Google Scholar
116.Wu, M. et al. Genetic determinants of in vivo fitness and diet responsiveness in multiple human gut Bacteroides. Science (80-.) 350, aac5992 (2015).
Google Scholar
117.Poulsen, B. E. et al. Defining the core essential genome of Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 116, 10072–10080 (2019).PubMed
PubMed Central
Google Scholar
118.Pál, C., Papp, B. & Lercher, M. J. Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat. Genet. 37, 1372–1375 (2005).PubMed
Google Scholar
119.Ansari, A. & Didelot, X. Inference of the properties of the recombination process from whole bacterial genomes. Genetics 196, 253–265 (2014).PubMed
Google Scholar
120.Lin, M. & Kussell, E. Inferring bacterial recombination rates from large-scale sequencing datasets. Nat. Methods 16, 199–204 (2019). The authors develop a fast and clever method that uses linkage information to estimate recombination rates and the diversity of the gene pool that has contributed alleles to the sample via HGT.PubMed
Google Scholar
121.Marttinen, P. et al. Detection of recombination events in bacterial genomes from large population samples. Nucleic Acids Res. 40, 1–12 (2012).
Google Scholar
122.Didelot, X. & Wilson, D. J. ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLoS Comput. Biol. 11, 1–18 (2015).
Google Scholar
123.Croucher, N. J. et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. https://doi.org/10.1371/journal.pcbi.1004041 (2015).124.Mostowy, R. et al. Efficient inference of recent and ancestral recombination within bacterial populations. Mol. Biol. Evol. 34, 1167–1182 (2017).PubMed
PubMed Central
Google Scholar
125.Yahara, K., Didelot, X., Ansari, M. A., Sheppard, S. K. & Falush, D. Efficient inference of recombination hot regions in bacterial genomes. Mol. Biol. Evol. 31, 1593–1605 (2014).PubMed
PubMed Central
Google Scholar
126.Daubin, V., Moran, N. A. & Ochman, H. Phylogenetics and the cohesion of bacterial genomes. Science 301, 829–832 (2003).PubMed
Google Scholar
127.Daubin, V. & Szollosi, G. Horizontal gene transfer and the tree of life. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1007/978-94-007-2941-4_37 (2016).Article
PubMed
PubMed Central
Google Scholar
128.Bertelli, C., Tilley, K. E. & Brinkman, F. S. L. Microbial genomic island discovery, visualization and analysis. Brief. Bioinform. 20, 1685–1698 (2019).PubMed
Google Scholar
129.Rocha, E. P. C. et al. Comparisons of dN/dS are time dependent for closely related bacterial genomes. J. Theor. Biol. 239, 226–235 (2006).PubMed
Google Scholar
130.Kryazhimskiy, S. & Plotkin, J. B. The population genetics of dN/dS. PLoS Genet. https://doi.org/10.1371/journal.pgen.1000304 (2008).Article
PubMed
PubMed Central
Google Scholar
131.Charlesworth, B. & Charlesworth, D. Elements of Evolutionary Genetics (Roberts and Company Publishers, 2010).132.Castillo-Ramírez, S. et al. The impact of recombination on dN/dS within recently emerged bacterial clones. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1002129 (2011).Article
PubMed
PubMed Central
Google Scholar
133.David, S. et al. Dynamics and impact of homologous recombination on the evolution of Legionella pneumophila. PLoS Genet. 13, 1–21 (2017).
Google Scholar
134.Dillon, M., Thakur, S., Almeida, R. & Guttman, D. Recombination of ecologically and evolutionarily significant loci maintains genetic cohesion in the Pseudomonas syringae species complex. Genome Biol. https://doi.org/10.1101/227413 (2019).Article
PubMed
PubMed Central
Google Scholar More