More stories

  • in

    Incorporating the field border effect to reduce the predicted uncertainty of pollen dispersal model in Asia

    Dispersal modelsIn this study, the dispersal model consists of two parts, namely, kernel and observation model (Fig. 1). The main purpose of the kernel was employed to estimate the proportion of pollen dispersed from location s′ to location s and calculate the expected number of CP grains. The observation model used the expected number of CP grains as a parameter and described the number of CP grains at location s (Ys) by a specific distribution in the following:$${Y}_{s}sim fleft(left.{y}_{s}right|{{varvec{theta}}}_{s}right),$$
    (1)
    where f indicates the probability density function (PDF) of the specific distribution. The θs is the parameter vector of the distribution. This study constructed eight different dispersal models combined with two observation models, two kernels, and two conditions of the field border (FB) effect (Table 1). The details of the kernels and observation models were described in the following subsections.Figure 1Graphical summary of the establishment of the dispersal model using ZIP distribution observation model as an example.Full size imageTable 1 List of dispersal models constructed in this study.Full size tableKernelsThe kernel indicates the probability when the pollen emitted at location s′ and would fall down at location s. It can be expressed as γ(s, s′), where s′ is the source location closest to location s. Numerous kernels have been used to describe various dispersal phenomena24. The output of the kernel represents the donor pollen density of location s. In order to calculate the expected number of CP grains, the donor pollen density is multiplied by the average total grain number described as follows:$${lambda }_{s}=Ktimes gamma left(s,{s}^{^{prime}}right),$$
    (2)
    where λs and K indicate the expected number of CP grains at location s and the average number of grains per cob, respectively. The effect of the FB was introduced into the kernel to suit to the small-scale farming system in Asia. This study assumed that the relation between the pollen density at the first recipient row and the width of the FB displayed an exponential decrease25,26. To evaluate the improvement of the kernel with the FB effect, the kernels without the FB effect were also established in this study.The compound exponential kernel (γExpo) has been used in the previous pollen dispersal study27. Our study introduced the FB effect into this kernel. Therefore, the form of the compound exponential kernel can be expressed as follows:$$gamma_{{{text{Expo}}}} left( {s,s^{prime}} right) = left{ {begin{array}{*{20}l} {K_{e} exp left( { – a_{1} d^{*} left( {s,s^{prime}} right)} right)exp left( { – ksqrt {FB} } right),} \ {K_{e} exp left( { – a_{1} D – a_{2} left( {d^{*} left( {s,s^{prime}} right) – D} right)} right)exp left( { – ksqrt {FB} } right),} \ end{array} } right.begin{array}{*{20}l} {{text{if}},, d^{*} left( {s,s^{prime}} right) le D} \ {{text{if}} ,,d^{*} left( {s,s^{prime}} right) > D,} \ end{array}$$
    (3)
    where Ke, a1, a2, k, D are the parameters of the kernel. d*(s, s′) indicates the shortest distance between locations s′ and s in which the width of the FB has been subtracted. In the compound exponential kernel without the FB effect, the exponential term of the FB effect was removed and the d*(s, s′) was replaced directly by the shortest distance between s′ and s.The second kernel applied in this study was the modified Cauchy kernel (γCauchy) which was based on the PDF of the Cauchy distribution and the concept of compound distribution. The modified Cauchy kernel is represented as follows:$$gamma_{Cauchy} left( {s,s^{prime}} right) = left{ {begin{array}{*{20}l} {frac{2beta }{{pi left[ {beta^{2} + d^{*} left( {s,s^{prime}} right)^{2} } right]}}{text{exp}}left( { – ksqrt {FB} } right),} \ {frac{2beta }{{pi left[ {beta^{2} + D^{2} + c_{1} left( {d^{*} left( {s,s^{prime}} right) – D} right)^{2} } right]}}{text{exp}}left( { – ksqrt {FB} } right),} \ end{array} } right.begin{array}{*{20}l} {{text{if}} ,,d^{*} left( {s,s^{prime}} right) le D} \ {{text{if}} ,,d^{*} left( {s,s^{prime}} right) > D,} \ end{array}$$
    (4)
    where the β indicates the decline rate of the curve. Parameters of k and D are same as the compound exponential kernel. c1 indicates the relative slow decrease of pollen density at further distances. Similarly, in the modified Cauchy kernel without the FB effect, the term of the FB effect was removed and the d*(s, s′) was replaced directly by the shortest distance between s′ and s in which the row spacing (0.75 m) had been subtracted.Observation modelsBecause of the high proportions of zero value observations, the present study assumed that the CP grain count followed the zero-inflated Poisson (ZIP) distribution to account for zero-excess condition28. The ZIP distribution was first proposed by Lambert29, and several studies had applied the ZIP distribution to deal with the CP data27,30. The ZIP distribution consists of a Dirac distribution in zero and a Poisson distribution. Therefore, the distribution of CP grain count at location s (Ys) can be expressed as follows:$${Y}_{s}sim mathrm{ZIP}left(1-{q}_{s},{uplambda }_{s}right),$$
    (5)
    where qs indicates the probability of an observation following a Poisson distribution, and λs is the parameter of Poisson distribution calculated by Eq. (2). Furthermore, the parameter qs can be assumed to depend on the shortest distance between the recipient and donor plants. The border effect is also included in the estimation of qs because it is related to the distance effect. The relationship among distance, border, and the qs can be described using the following logistic function:$${q}_{s}=frac{1}{1+mathrm{exp}({b}_{1}-{b}_{2}{d}^{*}left(s,{s}^{^{prime}}right))},$$
    (6)
    where b1 and b2 are the parameters of the logistic function. The d*(s, s′) was the shortest distance between s′ and s in the version of dispersal models without the FB effect. The Poisson distribution was also used as an observation model for comparison with the ZIP observation model.Experimental and meteorological data collectionThe pollen dispersal data were collected from experiments performed in 2009 and 2010 at the geographic coordinates 23° 47′ N, 120° 26′ E, and an altitude of 20 m. These experiments were coded as 2009-1, 2009-2, and 2010-1, respectively. The experiment 2009-2 was divided into 2009-2A (without the FB) and 2009-2B (with the FB) based on the presence of the FB. The different layouts of the field experiments were designed to investigate the effect of the FB. Two commercial glutinous maize varieties, black pearl (purple grain) and Tainan No. 23 (white grain), were selected as the pollen donor and pollen recipient, respectively. The distance between the plants in a row was 25 cm, whereas the distance between the rows was 75 cm. The recipient plots consisted of 82 and 91 rows in 2009 and 2010 experiments, respectively.The CP rate was determined based on the differences in grain color on recipient cobs as a result of the xenia effect31. In the sampling framework, the whole field was divided into many grids and corn samples were collected from each grid in the whole field. The CP rate of each grid was calculated using the method presented in a previous study32 and defined as:$$mathrm{CP}left(%right)=left[sum_{i=1}^{n}{Cob}_{i}/left(ntimes Kright)right],$$
    (7)

    where Cobi and n indicate ith cob and total number of cobs in the grid, respectively. K is the average grain number per cob. Meteorological data were collected from the meteorological station at geographic coordinates 23° 35′ N, 120° 27′ E, and an altitude of 20 m. The detailed experimental setup was described in our previous study33. The study complies with relevant institutional, national, and international guidelines and legislation.Statistical analysesAll statistical analyses were performed using SAS (Statistical Analysis System, version 9.4). The dispersal model parameters were estimated by two methods. First, the nonlinear model estimation was conducted by PROC NLMIXED to evaluate the fitting and predictive abilities of dispersal models. Then the dispersal models with the observation model performed better fitting ability were re-estimated using the Bayesian estimation method to assess the uncertainty by PROC MCMC. In the Bayesian method, the noninformative prior distribution was used to estimate all parameters (Supplementary Table S1). The iteration of Markov Chain was 500,000 times and the burn-in was set to 450,000 iterations. In order to reduce the autocorrelations in the chain, the thinned value was set to 25.The validation method used in this study was the threefold cross-validation for the results of both estimation methods. The data from three experiments were combined and randomly partitioned into three sub-datasets. To avoid the heterogeneity of the different field designs and distances among sub-datasets, the observations from the same field design and same distance were considered as a group, and then partitioned into three parts. Each sub-dataset contained one part of all groups. At each validation run, two sub-datasets were selected as the training set, and the remaining one was used for validation.The fitting ability of the dispersal models was evaluated based on two criteria, namely, Akaike information criterion (AIC), Deviance, and coefficient of determination (R2). The smaller values of AIC or deviance indicate a better fitting. The higher R2 value represents a better fitting performance. The correlation coefficient (r) between the predicted and actual CP rates was used to assess the predictive ability. The deviance information criterion (DIC) was used to evaluate the performance of dispersal model fitting for the Bayesian estimation. The criterion values calculated from three training and validation sets were averaged to assess the overall results. The uncertainty of the model parameter was quantified by the standard deviation (SD) of parameter posterior distribution. The 95% credible intervals of posterior predictive distribution constructed by the 2.5th and 97.5th percentiles of 200,000 samples generated from the posterior predictive distribution were used to assess the predictive uncertainty. Furthermore, to assess the zero-excess condition, the percentage of observed zero CP grain events was compared with the Poisson probability of the zero CP grain event. A zero-excess condition occurred if the observed percentage was higher than the Poisson probability34. More

  • in

    Horizontal gene transfer and adaptive evolution in bacteria

    1.Maynard Smith, J., Feil, E. J. & Smith, N. H. Population structure and evolutionary dynamics of pathogenic bacteria. Bioessays 22, 1115–1122 (2000).
    Google Scholar 
    2.Garud, N. R., Good, B. H., Hallatschek, O. & Pollard, K. S. Evolutionary dynamics of bacteria in the gut microbiome within and across hosts. PLoS Biol. 17, e3000102 (2019). Using metagenomic samples form the human gut microbiome, the authors infer lineage structure from within-host polymorphisms in more than 40 species to show adaptation on short timescales can be seeded by HGT.PubMed 
    PubMed Central 

    Google Scholar 
    3.Frazão, N., Sousa, A., Lässig, M. & Gordo, I. Horizontal gene transfer overrides mutation in Escherichia coli colonizing the mammalian gut. Proc. Natl Acad. Sci. USA 116, 17906–17915 (2019). Using the mouse microbiome as a study system, the authors show that rapid, phage-mediated HGT can transfer beneficial genes — already present in a resident strain — to an invading strain.PubMed 
    PubMed Central 

    Google Scholar 
    4.Smith, J. M., Smith, N. H., O’Rourke, M. & Spratt, B. G. How clonal are bacteria? Proc. Natl Acad. Sci. USA 90, 4384–4388 (1993).PubMed 
    PubMed Central 

    Google Scholar 
    5.Dykhuizen, D. E. & Green, L. Recombination in Escherichia coli and the definition of biological species. J. Bacteriol. 173, 7257–7268 (1991).PubMed 
    PubMed Central 

    Google Scholar 
    6.Feil, E. J. et al. Recombination within natural populations of pathogenic bacteria: short-term empirical estimates and long-term phylogenetic consequences. Proc. Natl Acad. Sci. USA 98, 182–187 (2001).PubMed 
    PubMed Central 

    Google Scholar 
    7.Suerbaum, S. et al. Free recombination within Helicobacter pylori. PNAS 95, 12619–12624 (1998).PubMed 
    PubMed Central 

    Google Scholar 
    8.Smillie, C. S. et al. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480, 241–244 (2011).PubMed 

    Google Scholar 
    9.Lozupone, C. A. et al. The convergence of carbohydrate active gene repertoires in human gut microbes. Proc. Natl Acad. Sci. USA 105, 15076–15081 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    10.Bradley, P. H., Nayfach, S. & Pollard, K. S. Phylogeny-corrected identification of microbial gene families relevant to human gut colonization. PLoS Computational Biol. 14, e1006242 (2018). The authors use phylogenetic linear regression to control for important confounders and identify genes potentially involved in adaptation to the human gut.
    Google Scholar 
    11.Andreani, N. A., Hesse, E. & Vos, M. Prokaryote genome fluidity is dependent on effective population size. ISME J. 11, 1719–1721 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    12.Mcinerney, J. O., Mcnally, A. & Connell, M. J. O. Why prokaryotes have pangenomes. Nat. Publ. Gr. 2, 1–5 (2017).
    Google Scholar 
    13.Shapiro, B. J. The population genetics of pangenomes. Nat. Microbiol. 2, 1005860 (2017).
    Google Scholar 
    14.Vos, M. & Eyre-walker, A. Are pangenomes adaptive or not? Nat. Microbiol. https://doi.org/10.1038/s41564-017-0067-5 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Johnsborg, O., Eldholm, V. & Håvarstein, L. S. Natural genetic transformation: prevalence, mechanisms and function. Res. Microbiol. 158, 767–778 (2007).PubMed 

    Google Scholar 
    16.Johnston, C., Martin, B., Fichant, G., Polard, P. & Claverys, J. P. Bacterial transformation: distribution, shared mechanisms and divergent control. Nat. Rev. Microbiol. 12, 181–196 (2014).PubMed 

    Google Scholar 
    17.Pimentel, Z. T. & Zhang, Y. Evolution of the natural transformation protein, ComEC, in Bacteria. Front. Microbiol. 9, 1–10 (2018).
    Google Scholar 
    18.Roux, S., Hallam, S. J., Woyke, T. & Sullivan, M. B. Viral dark matter and virus–host interactions resolved from publicly available microbial genomes. eLife 4, 1–20 (2015).
    Google Scholar 
    19.Camarillo-Guerrero, L. F. et al. Massive expansion of human gut bacteriophage diversity. Cell 184, 1098–1109.e9 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    20.Guglielmini, J., Quintais, L., Garcillán-Barcia, M. P., de la Cruz, F. & Rocha, E. P. C. The repertoire of ice in prokaryotes underscores the unity, diversity, and ubiquity of conjugation. PLoS Genet. 7, e1002222 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    21.Dubey, G. P. & Ben-Yehuda, S. Intercellular nanotubes mediate bacterial communication. Cell 144, 590–600 (2011).PubMed 

    Google Scholar 
    22.Abe, K., Nomura, N. & Suzuki, S. Biofilms: hot spots of horizontal gene transfer (HGT) in aquatic environments, with a focus on a new HGT mechanism. FEMS Microbiol. Ecol. 96, 1–12 (2020).
    Google Scholar 
    23.Bárdy, P. et al. Structure and mechanism of DNA delivery of a gene transfer agent. Nat. Commun. 11, 3034 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    24.Hasegawa, H., Suzuki, E. & Maeda, S. Horizontal plasmid transfer by transformation in Escherichia coli: environmental factors and possible mechanisms. Front. Microbiol. 9, 1–6 (2018).
    Google Scholar 
    25.Seitz, P. & Blokesch, M. Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria. FEMS Microbiol. Rev. 37, 336–363 (2013).PubMed 

    Google Scholar 
    26.Wall, D. Kin recognition in bacteria. Annu. Rev. Microbiol. 70, 143–160 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    27.Frye, S. A., Nilsen, M., Tønjum, T. & Ambur, O. H. Dialects of the DNA uptake sequence in Neisseriaceae. PLoS Genet. https://doi.org/10.1371/journal.pgen.1003458 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Redfield, R. J. et al. Evolution of competence and DNA uptake specificity in the Pasteurellaceae. BMC Evol. Biol. 6, 1–15 (2006).
    Google Scholar 
    29.Dion, M. B., Oechslin, F. & Moineau, S. Phage diversity, genomics and phylogeny. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-019-0311-5 (2020).Article 
    PubMed 

    Google Scholar 
    30.Siguier, P., Gourbeyre, E. & Chandler, M. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol. Rev. 38, 865–891 (2014).PubMed 

    Google Scholar 
    31.Vulić, M., Dionisio, F., Taddei, F. & Radman, M. Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. Proc. Natl Acad. Sci. USA 94, 9763–9767 (1997).PubMed 
    PubMed Central 

    Google Scholar 
    32.Majewski, J. et al. Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation. J. Bacteriol. 182, 1016–1023 (2000).PubMed 
    PubMed Central 

    Google Scholar 
    33.Wyres, K. L. et al. Pneumococcal capsular switching: a historical perspective. J. Infect. Dis. 207, 439–449 (2013).PubMed 

    Google Scholar 
    34.Hallet, B. & Sherratt, D. J. Transposition and site-specific recombination: adapting DNA cut-and-paste mechanisms to a variety of genetic rearrangements. FEMS Microbiol. Rev. 21, 157–178 (1997).PubMed 

    Google Scholar 
    35.Durrant, M. G., Li, M. M., Siranosian, B. A., Montgomery, S. B. & Bhatt, A. S. A bioinformatic analysis of integrative mobile genetic elements highlights their role in bacterial adaptation. Cell Host Microbe 27, 140–153.e9 (2020).PubMed 

    Google Scholar 
    36.Rajeev, L., Malanowska, K. & Gardner, J. F. Challenging a paradigm: the role of DNA homology in tyrosine recombinase reactions. Microbiol. Mol. Biol. Rev. 73, 300–309 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    37.Hickman, A. B., Chandler, M. & Dyda, F. Integrating prokaryotes and eukaryotes: DNA transposases in light of structure. Crit. Rev. Biochem. Mol. Biol. 45, 50–69 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    38.Oliveira, P. H., Touchon, M., Cury, J. & Rocha, E. P. C. The chromosomal organization of horizontal gene transfer in bacteria. Nat. Commun. 8, 1–10 (2017).
    Google Scholar 
    39.Wadsworth, C. B., Arnold, B. J., Sater, M. R. A. & Grad, Y. Azithromycin resistance through interspecific acquisition of an epistasis-dependent efflux pump component and transcriptional regulator in Neisseria gonorrhoeae. mBio 9, 1–17 (2018).
    Google Scholar 
    40.Arevalo, P., VanInsberghe, D., Elsherbini, J., Gore, J. & Polz, M. F. A reverse ecology approach based on a biological definition of microbial populations. Cell 178, 820–834.e14 (2019). The authors create a metric of recent gene flow to define ecological populations and discover genes that have experienced positive selection across populations.PubMed 

    Google Scholar 
    41.Croucher, N. J. et al. Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict. PLoS Biol. 14, 1–42 (2016). A model of transformation with known bias towards the acquisition of shorter alleles suggests HGT may effectively purge bacterial genomes of parasitic MGEs.
    Google Scholar 
    42.Apagyi, K. J., Fraser, C. & Croucher, N. J. Transformation asymmetry and the evolution of the bacterial accessory genome. Mol. Biol. Evol. 35, 575–581 (2018).PubMed 

    Google Scholar 
    43.Mira, A., Ochman, H. & Moran, N. A. Deletional bias and the evolution of bacterial genomes. Trends Genet. 17, 589–596 (2001).PubMed 

    Google Scholar 
    44.Kuo, C.-H. & Ochman, H. Deletional bias across the three domains of life. Genome Biol. Evol. 1, 145–152 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    45.Lawrence, J. G. & Roth, J. R. Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics 143, 1843–1860 (1996).PubMed 
    PubMed Central 

    Google Scholar 
    46.Hehemann, J. H. et al. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464, 908–912 (2010).PubMed 

    Google Scholar 
    47.Campbell, A. Prophage insertion sites. Res. Microbiol. 154, 277–282 (2003).PubMed 

    Google Scholar 
    48.Chu, N. D. et al. A mobile element in mutS drives hypermutation in a marine Vibrio. mBio 8, 1–13 (2017).
    Google Scholar 
    49.Bobay, L. M., Rocha, E. P. C. & Touchon, M. The adaptation of temperate bacteriophages to their host genomes. Mol. Biol. Evol. 30, 737–751 (2013).PubMed 

    Google Scholar 
    50.Lee, H., Doak, T. G., Popodi, E., Foster, P. L. & Tang, H. Insertion sequence-caused large-scale rearrangements in the genome of Escherichia coli. Nucleic Acids Res. 44, 7109–7119 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    51.Parkhill, J. et al. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat. Genet. 35, 32–40 (2003).PubMed 

    Google Scholar 
    52.Moran, N. A. & Plague, G. R. Genomic changes following host restriction in bacteria. Curr. Opin. Genet. Dev. 14, 627–633 (2004).PubMed 

    Google Scholar 
    53.Hendry, T. et al. Ongoing transposon-mediated genome reduction in the luminous bacterial symbionts of deep-sea ceratioid anglerfishes. mBio https://doi.org/10.1128/mBio.01033-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Waterworth, S. C. et al. Horizontal gene transfer to a defensive symbiont with a reduced genome in a multipartite beetle microbiome. mBio https://doi.org/10.1128/mBio.02430-19 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Vos, M. et al. Rates of lateral gene transfer in prokaryotes: high but why? Trends Microbiol. 23, 598–605 (2015).PubMed 

    Google Scholar 
    56.Cohen, E., Kessler, D. A. & Levine, H. Recombination dramatically speeds up evolution of finite populations. Phys. Rev. Lett. 94, 1–4 (2005).
    Google Scholar 
    57.Levin, B. R. & Cornejo, O. E. The population and evolutionary dynamics of homologous gene recombination in bacteria. PLoS Genet. https://doi.org/10.1371/journal.pgen.1000601 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Arnold, B. J. et al. Weak epistasis may drive adaptation in recombining bacteria. Genetics 208, 1247–1260 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    59.Moradigaravand, D. & Engelstädter, J. The effect of bacterial recombination on adaptation on fitness landscapes with limited peak accessibility. PLoS Comput. Biol. 8, 35–37 (2012).
    Google Scholar 
    60.Cooper, T. F. Recombination speeds adaptation by reducing competition between beneficial mutations in populations of Escherichia coli. PLoS Biol. 5, 1899–1905 (2007).
    Google Scholar 
    61.Winkler, J. & Kao, K. C. Harnessing recombination to speed adaptive evolution in Escherichia coli. Metab. Eng. 14, 487–495 (2012).PubMed 

    Google Scholar 
    62.Chu, H. Y., Sprouffske, K. & Wagner, A. The role of recombination in evolutionary adaptation of Escherichia coli to a novel nutrient. J. Evol. Biol. 30, 1692–1711 (2017).PubMed 

    Google Scholar 
    63.Arnold, B. et al. Fine-scale haplotype structure reveals strong signatures of positive selection in a recombining bacterial pathogen. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msz225 (2019).Article 
    PubMed Central 

    Google Scholar 
    64.Yahara, K. et al. The landscape of realized homologous recombination in pathogenic bacteria. Mol. Biol. Evol. 33, 456–471 (2016).PubMed 

    Google Scholar 
    65.Engelstädter, J. & Moradigaravand, D. Adaptation through genetic time travel? Fluctuating selection can drive the evolution of bacterial transformation. Proc. R. Soc. B Biol. Sci. 281, 20132609 (2014).
    Google Scholar 
    66.Cohan, F. M. Periodic selection and ecological diversity in bacteria. Selective Sweep https://doi.org/10.1007/0-387-27651-3_7 (2007).Article 

    Google Scholar 
    67.Shapiro, B. J., David, L. A., Friedman, J. & Alm, E. J. Looking for Darwin’s footprints in the microbial world. Trends Microbiol. 17, 196–204 (2009).PubMed 

    Google Scholar 
    68.Shapiro, B. J. et al. Population genomics of early events in the ecological differentiation of bacteria. Science 336, 48–51 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    69.Rosen, M., Davison, M., Bhaya, D. & Fisher, D. S. Fine-scale diversity and extensive recombination in a quasisexual bacterial population occupying a broad niche. Science 348, 1019–1024 (2015).PubMed 

    Google Scholar 
    70.Bendall, M. L. et al. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations. ISME J. 10, 1589–1601 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    71.Porter, S. S., Chang, P. L., Conow, C. A., Dunham, J. P. & Friesen, M. L. Association mapping reveals novel serpentine adaptation gene clusters in a population of symbiotic Mesorhizobium. ISME J. 11, 248–262 (2017).PubMed 

    Google Scholar 
    72.Crits-Christoph, A., Olm, M. R., Diamond, S., Bouma-Gregson, K. & Banfield, J. F. Soil bacterial populations are shaped by recombination and gene-specific selection across a grassland meadow. ISME J. https://doi.org/10.1038/s41396-020-0655-x (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Woods, L. C. et al. Horizontal gene transfer potentiates adaptation by reducing selective constraints on the spread of genetic variation. Proc. Natl Acad. Sci. USA 117, 26868–26875 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    74.Miralles, R., Gerrish, P. J., Moya, A. & Elena, S. F. Clonal interference and the evolution of RNA viruses. Science 285, 1745–1747 (1999).PubMed 

    Google Scholar 
    75.De Visser, J. A. G. M., Zeyl, C. W., Gerrish, P. J., Blanchard, J. L. & Lenski, R. E. Diminishing returns from mutation supply rate in asexual populations. Science 283, 404–406 (1999).PubMed 

    Google Scholar 
    76.Good, B. H., Rouzine, I. M., Balick, D. J., Hallatschek, O. & Desai, M. M. Distribution of fixed beneficial mutations and the rate of adaptation in asexual populations. Proc. Natl Acad. Sci. USA 109, 4950–4955 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    77.Takeuchi, N., Cordero, O. X., Koonin, E. V. & Kaneko, K. Gene-specific selective sweeps in bacteria and archaea caused by negative frequency-dependent selection. BMC Biol. 13, 1–11 (2015). The authors show that in the presence of NFDS, genes or mutations that are unconditionally beneficial can spread through populations only via HGT, giving rise to gene-specific sweeps.
    Google Scholar 
    78.Corander, J. et al. Frequency-dependent selection in vaccine-associated pneumococcal population dynamics. Nat. Ecol. Evol. 2017, 1950–1960 (2018).
    Google Scholar 
    79.Rodriguez-Valera, F. et al. Explaining microbial population genomics through phage predation. Nat. Rev. Microbiol. 7, 828–836 (2009).PubMed 

    Google Scholar 
    80.Good, B. H., McDonald, M. J., Barrick, J. E., Lenski, R. E. & Desai, M. M. The dynamics of molecular evolution over 60,000 generations. Nature 551, 45–50 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    81.Ramiro, R. S., Durão, P., Bank, C. & Gordo, I. Low mutational load allows for high mutation rate variation in gut commensal bacteria. PLoS Biol. https://doi.org/10.1101/568709 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Holt, R. D. Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proc. Natl Acad. Sci. USA 106, 19659–19665 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    83.Cohan, F. M. Transmission in the origins of bacterial diversity, from ecotypes to phyla. Microbiol. Spectr. https://doi.org/10.1128/9781555819743.ch18 (2017).Article 
    PubMed 

    Google Scholar 
    84.Fondi, M. et al. “Every gene is everywhere but the environment selects”: global geolocalization of gene sharing in environmental samples through network analysis. Genome Biol. Evol. 8, 1388–1400 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    85.Cohan, F. M. The effects of rare but promiscuous genetic exchange on evolutionary divergence in prokaryotes. Am. Nat. 143, 965–986 (1994).
    Google Scholar 
    86.Majewski, J. & Cohan, F. M. Adapt globally, act locally: the effect of selective sweeps on bacterial sequence diversity. Genetics 152, 1459–1474 (1999).PubMed 
    PubMed Central 

    Google Scholar 
    87.Messer, P. W. & Petrov, D. A. Population genomics of rapid adaptation by soft selective sweeps. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2013.08.003 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    88.Cui, Y. et al. Epidemic clones, oceanic gene pools, and Eco-LD in the free living marine pathogen Vibrio parahaemolyticus. Mol. Biol. Evol. 32, 1396–1410 (2015).PubMed 

    Google Scholar 
    89.Skwark, M. et al. Interacting networks of resistance, virulence and core machinery genes identified by genome-wide epistasis analysis. PLoS Genet. https://doi.org/10.1371/journal.pgen.1006508 (2016).Article 

    Google Scholar 
    90.Pensar, J. et al. Genome-wide epistasis and co-selection study using mutual information. Nucleic Acids Res. 47, e112–e112 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    91.Puranen, S. et al. SuperDCA for genome-wide epistasis analysis. Microb. Genomics 4, e000184 (2018).
    Google Scholar 
    92.Whelan, F. J., Rusilowicz, M. & McInerney, J. O. Coinfinder: detecting significant associations and dissociations in pangenomes. Microb. Genomics 6, e000338 (2020).
    Google Scholar 
    93.Slomka, S. et al. Experimental evolution of bacillus subtilis reveals the evolutionary dynamics of horizontal gene transfer and suggests adaptive and neutral effects. Genetics 216, 543–558 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    94.Maddamsetti, R. & Lenski, R. E. Analysis of bacterial genomes from an evolution experiment with horizontal gene transfer shows that recombination can sometimes overwhelm selection. PLoS Genet. 14, 1–30 (2018).
    Google Scholar 
    95.Knöppel, A., Lind, P. A., Lustig, U., Näsvall, J. & Andersson, D. I. Minor fitness costs in an experimental model of horizontal gene transfer in bacteria. Mol. Biol. Evol. 31, 1220–1227 (2014).PubMed 

    Google Scholar 
    96.Collins, R. E. & Higgs, P. G. Testing the infinitely many genes model for the evolution of the bacterial core genome and pangenome. Mol. Biol. Evol. 29, 3413–3425 (2012).PubMed 

    Google Scholar 
    97.Baumdicker, F., Hess, W. R. & Pfaffelhuber, P. The infinitely many genes model for the distributed genome of bacteria. Genome Biol. Evol. 4, 443–456 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    98.Haegeman, B. & Weitz, J. S. A neutral theory of genome evolution and the frequency distribution of genes. BMC Genomics 13, 196 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    99.Hughes, A. L. Evidence for abundant slightly deleterious polymorphisms in bacterial populations. Genetics 169, 533–538 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    100.Van Passel, M. W. J., Marri, P. R. & Ochman, H. The emergence and fate of horizontally acquired genes in Escherichia coli. PLoS Comput. Biol. 4, e1000059 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    101.Hao, W. & Golding, G. B. The fate of laterally transferred genes: life in the fast lane to adaptation or death. Genome Res. 16, 636–643 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    102.Lerat, E., Daubin, V., Ochman, H. & Moran, N. A. Evolutionary origins of genomic repertoires in bacteria. 3, e130 (2005).103.Lobkovsky, A. E., Wolf, Y. I. & Koonin, E. V. Gene frequency distributions reject a neutral model of genome evolution. Genome Biol. Evol. 5, 233–242 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    104.Sela, I., Wolf, Y. I. & Koonin, E. V. Theory of prokaryotic genome evolution. Proc. Natl Acad. Sci. USA 113, 11399–11407 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    105.Charlesworth, B. Effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. https://doi.org/10.1038/nrg2526 (2009).Article 
    PubMed 

    Google Scholar 
    106.Cohan, F. M. & Perry, E. B. A systematics for discovering the fundamental units of bacterial diversity. Curr. Biol. 17, 373–386 (2007).
    Google Scholar 
    107.Domingo-Sananes, M. R. & McInerney, J. O. Selection-based model of prokaryote pangenomes. bioRxiv https://doi.org/10.1101/782573 (2019).Article 

    Google Scholar 
    108.Azarian, T. et al. Frequency-dependent selection can forecast evolution in Streptococcus pneumoniae. PLoS Biol. 18, e3000878 (2020). The authors provide evidence that NFDS is a pervasive evolutionary force that shapes the accessory genome of S. pneumoniae.PubMed 
    PubMed Central 

    Google Scholar 
    109.Bobay, L. M., Touchon, M. & Rocha, E. P. C. Pervasive domestication of defective prophages by bacteria. Proc. Natl Acad. Sci. USA 111, 12127–12132 (2014). Although prophages can be considered parasitic, the authors show evidence of purifying selection within prophage genes, suggesting that they serve a beneficial purpose within their bacterial hosts.PubMed 
    PubMed Central 

    Google Scholar 
    110.Puigbò, P., Lobkovsky, A. E., Kristensen, D. M., Wolf, Y. I. & Koonin, E. V. Genomes in turmoil: quantification of genome dynamics in prokaryote supergenomes. BMC Med. 12, 1–19 (2014).
    Google Scholar 
    111.Lynch, M. Streamlining and simplification of microbial genome architecture. Annu.Rev.Microbiol. 60, 327–349 (2006).PubMed 

    Google Scholar 
    112.Bobay, L. & Ochman, H. Factors driving effective population size and pan-genome evolution in bacteria. BMC Evol. Biol. 18, 15 (2018).
    Google Scholar 
    113.Brito, I. L. et al. Mobile genes in the human microbiome are structured from global to individual scales. Nature 535, 435–439 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    114.Evans, T. G. Considerations for the use of transcriptomics in identifying the ‘genes that matter’ for environmental adaptation. J. Exp. Biol. 218, 1925–1935 (2015).PubMed 

    Google Scholar 
    115.Cain, A. K. et al. A decade of advances in transposon-insertion sequencing. Nat. Rev. Genet. 21, 526–540 (2020).PubMed 

    Google Scholar 
    116.Wu, M. et al. Genetic determinants of in vivo fitness and diet responsiveness in multiple human gut Bacteroides. Science (80-.) 350, aac5992 (2015).
    Google Scholar 
    117.Poulsen, B. E. et al. Defining the core essential genome of Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 116, 10072–10080 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    118.Pál, C., Papp, B. & Lercher, M. J. Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat. Genet. 37, 1372–1375 (2005).PubMed 

    Google Scholar 
    119.Ansari, A. & Didelot, X. Inference of the properties of the recombination process from whole bacterial genomes. Genetics 196, 253–265 (2014).PubMed 

    Google Scholar 
    120.Lin, M. & Kussell, E. Inferring bacterial recombination rates from large-scale sequencing datasets. Nat. Methods 16, 199–204 (2019). The authors develop a fast and clever method that uses linkage information to estimate recombination rates and the diversity of the gene pool that has contributed alleles to the sample via HGT.PubMed 

    Google Scholar 
    121.Marttinen, P. et al. Detection of recombination events in bacterial genomes from large population samples. Nucleic Acids Res. 40, 1–12 (2012).
    Google Scholar 
    122.Didelot, X. & Wilson, D. J. ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLoS Comput. Biol. 11, 1–18 (2015).
    Google Scholar 
    123.Croucher, N. J. et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. https://doi.org/10.1371/journal.pcbi.1004041 (2015).124.Mostowy, R. et al. Efficient inference of recent and ancestral recombination within bacterial populations. Mol. Biol. Evol. 34, 1167–1182 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    125.Yahara, K., Didelot, X., Ansari, M. A., Sheppard, S. K. & Falush, D. Efficient inference of recombination hot regions in bacterial genomes. Mol. Biol. Evol. 31, 1593–1605 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    126.Daubin, V., Moran, N. A. & Ochman, H. Phylogenetics and the cohesion of bacterial genomes. Science 301, 829–832 (2003).PubMed 

    Google Scholar 
    127.Daubin, V. & Szollosi, G. Horizontal gene transfer and the tree of life. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1007/978-94-007-2941-4_37 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    128.Bertelli, C., Tilley, K. E. & Brinkman, F. S. L. Microbial genomic island discovery, visualization and analysis. Brief. Bioinform. 20, 1685–1698 (2019).PubMed 

    Google Scholar 
    129.Rocha, E. P. C. et al. Comparisons of dN/dS are time dependent for closely related bacterial genomes. J. Theor. Biol. 239, 226–235 (2006).PubMed 

    Google Scholar 
    130.Kryazhimskiy, S. & Plotkin, J. B. The population genetics of dN/dS. PLoS Genet. https://doi.org/10.1371/journal.pgen.1000304 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    131.Charlesworth, B. & Charlesworth, D. Elements of Evolutionary Genetics (Roberts and Company Publishers, 2010).132.Castillo-Ramírez, S. et al. The impact of recombination on dN/dS within recently emerged bacterial clones. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1002129 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    133.David, S. et al. Dynamics and impact of homologous recombination on the evolution of Legionella pneumophila. PLoS Genet. 13, 1–21 (2017).
    Google Scholar 
    134.Dillon, M., Thakur, S., Almeida, R. & Guttman, D. Recombination of ecologically and evolutionarily significant loci maintains genetic cohesion in the Pseudomonas syringae species complex. Genome Biol. https://doi.org/10.1101/227413 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    The influence of rainfall and tillage on wheat yield parameters and weed population in monoculture versus rotation systems

    1.Navarra, A. & Tubiana, L. (eds) Regional Assessment of Climate Change in the Mediterranean, Advances in Global Change Research (Springer Netherlands, 2013). https://doi.org/10.1007/978-94-007-5772-1.Book 

    Google Scholar 
    2.Solomon, S. S. IPCC (2007): Climate Change the Physical Science Basis. AGUFM 2007, U43D-01 (2007).3.Seneviratne, S. et al. Changes in Climate Extremes and Their Impacts on the Natural Physical Environment: An Overview of the IPCC SREX report, Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC) (2012).4.Bates, B., Kundzewicz, Z. & Wu, S. Climate Change and Water. Intergovernmental Panel on Climate Change Secretariat (2008).5.Neve, P., Vila-Aiub, M. & Phytologist, F.R.-N. Evolutionary-thinking in agricultural weed management. New Phytol. 184(4), 783–793 (2009).Article 

    Google Scholar 
    6.Harrison, M. T., Cullen, B. R. & Rawnsley, R. P. Modelling the sensitivity of agricultural systems to climate change and extreme climatic events. Agric. Syst. https://doi.org/10.1016/j.agsy.2016.07.006 (2016).Article 

    Google Scholar 
    7.Moret, D., Arrúe, J. L., López, M. V. & Gracia, R. Winter barley performance under different cropping and tillage systems in semiarid Aragon (NE Spain). Eur. J. Agron. 26, 54–63. https://doi.org/10.1016/j.eja.2006.08.007 (2007).Article 

    Google Scholar 
    8.FAO (Food and Agriculture Organization). Rome: Introduction to Conservation Agriculture (Its Principles and Benefits). http://teca.fao.org/technology/introduction-conservationagriculture-its-principles-benefits (2013).9.Kertész, À. & Madarász, B. Conservation agriculture in Europe. Int. Soil Water Conserv. Res. 2(1), 91–96 (2014).Article 

    Google Scholar 
    10.Álvaro-Fuentes, J., López, M. V., Cantero-Martínez, C. & Arrúe, J. L. Tillage effects on soil organic carbon fractions in Mediterranean dryland agroecosystems. Soil Sci. Soc. Am. J. 72, 541–547 (2008).ADS 
    Article 

    Google Scholar 
    11.Bouchery, Y., Ghaffari, A., Jemai, Z. & Dallery, Y. Including sustainability criteria into inventory models. Eur. J. Oper. Res. 222, 229–240 (2012).MathSciNet 
    Article 

    Google Scholar 
    12.Soane, B. D. et al. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Tillage Res. 118, 66–87 (2012).Article 

    Google Scholar 
    13.Madejón, E. et al. Effect of long-term conservation tillage on soil biochemical properties in Mediterranean Spanish areas. Soil Tillage Res. 105, 55–62 (2009).Article 

    Google Scholar 
    14.De Vita, P., Di Paolo, E., Fecondo, G., Di Fonzo, N. & Pisante, M. No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil Tillage Res. 92, 69–78. https://doi.org/10.1016/j.still.2006.01.012 (2007).Article 

    Google Scholar 
    15.Giambalvo, D. et al. Faba bean grain yield, N2 fixation, and weed infestation in a long-term tillage experiment under rainfed Mediterranean conditions. Plant Soil 360, 215–227. https://doi.org/10.1007/s11104-012-1224-5 (2012).CAS 
    Article 

    Google Scholar 
    16.Ruisi, P. et al. Conservation tillage in a semiarid Mediterranean environment: Results of 20 years of research. Ital. J. Agron. 9(560), 1–7. https://doi.org/10.4081/ija.2014.560 (2014).Article 

    Google Scholar 
    17.Plaza-Bonilla, D., Cantero-Martínez, C., Viñas, P. & Álvaro-Fuentes, J. Soil aggregation and organic carbon protection in a no-tillage chronosequence under Mediterranean conditions. Geoderma 193–194, 76–82 (2013).ADS 
    Article 

    Google Scholar 
    18.Barberi, P. & Lo Cascio, B. Long-term tillage and crop rotation effects on weed seed bank size and composition. Weed Res. 41(4), 325–340. https://doi.org/10.1046/j.1365-3180.2001.00241.x (2001).Article 

    Google Scholar 
    19.Batey, T. & McKenzie, D. C. Soil compaction: Identification directly in the field. Soil Use Manag. 22, 123–131. https://doi.org/10.1111/j.1475-2743.2006.00017.x (2006).Article 

    Google Scholar 
    20.Lampurlanés, J., Plaza-Bonilla, D., Álvaro-Fuentes, J. & Cantero-Martínez, C. Long-term analysis of soil water conservation and crop yield under different tillage systems in Mediterranean rainfed conditions. Field Crops Res. 198, 59–67. https://doi.org/10.1016/j.fcr.2016.02.010 (2016).Article 

    Google Scholar 
    21.Ruisi, P. et al. Weed seedbank size and composition in a long-term tillage and crop sequence experiment. Weed Res. 55, 320–328. https://doi.org/10.1111/wre.12142 (2015).Article 

    Google Scholar 
    22.Mahli, S. S. & Lemke, R. Tillage, crop residue and N fertilizer effects on crop yield, nutrient uptake, soil quality and nitrous oxide gasemissions in a second 4-yr rotation cycle. Soil Tillage Res. 96, 269–283. https://doi.org/10.1016/j.still.2007.06.011 (2007).Article 

    Google Scholar 
    23.Santín-Montanyá, M. I., Gandía, M. L., Zambrana, E. & Tenorio, J. L. Effects of tillage systems on wheat and weed water relationships over time when growing together, in semiarid conditions. Ann. Appl. Biol. 177, 256–265. https://doi.org/10.1111/aab.12620 (2020).Article 

    Google Scholar 
    24.Chaghazardi, H. R., Jahansouz, M. R., Ahmadi, A. & Gorji, M. Effects of tillage management on productivity of wheat and chickpea under cold, rainfed conditions in western Iran. Soil Tillage Res. 162, 26–33. https://doi.org/10.1016/j.still.2016.04.010 (2016).Article 

    Google Scholar 
    25.López-Bellido, L., Fuentes, M., Castillo, J. E., López-Garrido, F. J. & Fernández, E. J. Long-term tillage, crop rotation, and nitrogen fertiliser effects on wheat yield under rainfed Mediterranean conditions. Agron. J. 88, 783–791 (1996).Article 

    Google Scholar 
    26.Cantero-Martínez, C., Angás, P. & Lampurlanés, J. Long-term yield and water use efficiency under various tillage systems in Mediterranean rainfed conditions. Ann. Appl. Biol. 150, 293–305. https://doi.org/10.1111/j.1744-7348.2007.00142.x (2007).Article 

    Google Scholar 
    27.Campiglia, E., Mancinelli, R., De Stefanis, E., Pucciarmati, S. & Radicetti, E. The long-term effects of conventional and organic ropping systems, tillage managements and weather conditions on yield and grain quality of durum wheat (Triticum durum Desf.) in the Mediterranean environment of central Italy. Field Crops Res. 176, 34–44. https://doi.org/10.1016/j.fcr.2015.02.021 (2015).Article 

    Google Scholar 
    28.Bennett, A. J., Bending, G. D., Chandler, D., Hilton, S. & Mills, P. Meeting the demand for crop production: The challenge of yield decline in crops grown in short rotations. Biol. Rev. 87, 52–71 (2012).Article 

    Google Scholar 
    29.Plourde, J. D., Pijanowski, B. C. & Pekin, B. K. Evidence for increased monoculture cropping in the Central United States. Agric. Ecosyst. Environ. 165, 50–59 (2013).Article 

    Google Scholar 
    30.Seymour, M., Kirkegaard, J. A., Peoples, M. B., White, P. F. & French, R. J. Break-crop benefits to wheat in Western Australia—Insights from over three decades of research. Crop Pasture Sci. 63, 1 (2012).Article 

    Google Scholar 
    31.Wang, H. & Ortiz-Bobea, A. Market-driven corn monocropping in the U.S. Midwest. Agric. Resour. Econ. Rev. 48, 274–296 (2019).Article 

    Google Scholar 
    32.Tekin, S., Yazar, A. & Barut, H. Comparison of wheat-based rotation systems vs monocropping under dryland Mediterranean conditions. Int. J. Agric. Biol. Eng. 10, 203–213. https://doi.org/10.25165/j.ijabe.20171005.3443 (2017).Article 

    Google Scholar 
    33.Ryan, J., Singh, M. & Pala, M. Long-term cereal-based rotation trials in the Mediterranean region: Implications for cropping sustainability. Adv. Agron. 97, 273–319. https://doi.org/10.1016/S0065-2113(07)00007-7 (2008).CAS 
    Article 

    Google Scholar 
    34.Bowles, T. M. et al. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2, 284–293 (2020).Article 

    Google Scholar 
    35.Marini, L. et al. Crop rotations sustain cereal yields under a changing climate. Environ. Res. Lett. 15(12), 124011 (2020).Article 

    Google Scholar 
    36.Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    37.Amato, G. et al. Long-term tillage and crop sequence effects on wheat grain yield and quality. Agron. J. 105, 1317–1327 (2013).Article 

    Google Scholar 
    38.Loke, P. F., Kotzé, E. & Du Preez, C. C. Impact of long-term wheat production management practices on soil acidity, phosphorus and some micronutrients in a semi-arid Plinthosol. Soil Res. 51, 415–426. https://doi.org/10.1071/SR12359 (2013).CAS 
    Article 

    Google Scholar 
    39.Martin-Rueda, I. et al. Tillage and crop rotation effects on barley yield and soil nutrients on a Calciortidic Haploxeralf. Soil Tillage Res. 92, 1–9 (2007).Article 

    Google Scholar 
    40.Hadjichristodoulou, A. The relationship of grain yield with harvest index and total biological yield of barley in drylands. Tech. Bull. 126, 1–10 (1991).
    Google Scholar 
    41.Zimdahl, R. L. Weed-Crop Competition: A Review 49–50, 109–145 (Blackwell Publishing, 2004).42.Nkoa, R., Owen, M. D. K. & Swanton, C. J. Weed abundance, distribution, diversity, and community analyses. Weed Sci. 63, 64–90. https://doi.org/10.1614/ws-d-13-00075.1 (2015).Article 

    Google Scholar 
    43.Ter Braak, C. J. F. Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 1167–1179 (1986).Article 

    Google Scholar 
    44.Fried, G., Petit, S. & Reboud, X. A specialist-generalist classification of the arable flora and its response to changes in agricultural practices. BMC Ecol. 10, 20 (2010).Article 

    Google Scholar 
    45.Korres, N. E. et al. Cultivars to face climate change effects on crops and weeds: A review. Agron. Sustain. Dev. 36, 1–22. https://doi.org/10.1007/s13593-016-0350-5 (2016).Article 

    Google Scholar 
    46.Acevedo, E. H., Silva, P. C., Silva, H. R. & Solar, B. R. Wheat production in Mediterranean environments. In Wheat: Ecology and Physiology of Yield Determination 295–331 (1999).47.Ramesh, K., Matloob, A., Aslam, F., Florentine, S. K. & Chauhan, B. S. Weeds in a changing climate: Vulnerabilities, consequences, and implications for future weed management. Front. Plant Sci. 8, 1–12. https://doi.org/10.3389/fpls.2017.00095 (2017).CAS 
    Article 

    Google Scholar 
    48.Calzarano, F. et al. Durum wheat quality, yield and sanitary status under conservation agriculture. Agriculture https://doi.org/10.3390/agriculture8090140 (2018).Article 

    Google Scholar 
    49.Santín-Montanyá, M. I., Fernández-Getino, A. P., Zambrana, E. & Tenorio, J. L. Effects of tillage on winter wheat production in Mediterranean dryland fields. Arid Land Res. Manag. 31(3), 269–282. https://doi.org/10.1080/15324982.2017.1307289 (2017).Article 

    Google Scholar 
    50.Shimshi, D., Bielorai, H. & Mantell, A. Irrigation of field crops. In Arid Zone Irrigation 369–381 (Springer, 1973).51.Schultz, J. E. Crop production in a rotation trial at Tarlee, South Australia. Aust. J. Exp. Agric. 35, 865–876. https://doi.org/10.1071/EA9950865 (1995).Article 

    Google Scholar 
    52.Alarcón, R. et al. Effects of no-tillage and non-inversion tillage on weed community diversity and crop yield over nine years in a Mediterranean cereal-legume cropland. Soil Tillage Res. 179, 54–62. https://doi.org/10.1016/j.still.2018.01.014 (2018).Article 

    Google Scholar 
    53.Šíp, V., Vavera, R., Chrpová, J., Kusá, H. & Růžek, P. Winter wheat yield and quality related to tillage practice, input level and environmental conditions. Soil Tillage Res. 132, 77–85. https://doi.org/10.1016/j.still.2013.05.002 (2013).Article 

    Google Scholar 
    54.Woźniak, A. Effect of cereal monoculture and tillage systems on grain yield and weed infestation of winter durum wheat. Int. J. Plant Prod. 14, 1–8. https://doi.org/10.1007/s42106-019-00062-8 (2020).Article 

    Google Scholar 
    55.Schulte, B. J., Tomasek, B. J., Davis, A. S., Andersson, L. & Benoit, D. L. An investigation to enhance understanding of the stimulation of weed seedling emergence by soil disturbance. Weed Res. 54, 1–12. https://doi.org/10.1111/wre.12054 (2014).Article 

    Google Scholar 
    56.Calado, J. M. G., Basch, G. & de Carvalho, M. Weed emergence as influenced by soil moisture and air temperature. J. Pest Sci. 82, 81–88. https://doi.org/10.1007/s10340-008-0225-x (2009).Article 

    Google Scholar 
    57.Siddique, K. H. M. et al. Innovations in agronomy for food legumes. A review. Agron. Sustain. Dev. 32, 45–64 (2012).Article 

    Google Scholar 
    58.Payne, W. A., Rasmussen, P. E., Chen, C. & Ramig, R. E. Assessing simple wheat and pea models using data from a long-term tillage experiment. Agron. J. 93, 250–260. https://doi.org/10.2134/agronj2001.931250x (2001).Article 

    Google Scholar 
    59.Machado, S., Petrie, S., Rhinhart, K. & Ramig, R. E. Tillage effects on water use and grain yield of winter wheat and green pea in rotation. Agron. J. 100, 154–162. https://doi.org/10.2134/agrojnl2006.0218 (2008).Article 

    Google Scholar 
    60.Copec, K., Filipovic, D., Husnjak, S., Kovacev, I. & Kosustic, S. Effects of tillage systems on soil water content and yield in maize and winter wheat production. Plant Soil Environ. 61(5), 213–219. https://doi.org/10.17221/156/2015-pse (2015).Article 

    Google Scholar 
    61.López-Bellido, L., López-Bellido, R. J., Redondo, R. & Benítez, J. Faba bean nitrogen fixation in a wheat-based rotation under rainfed Mediterranean conditions: Effect of tillage system. Field Crop Res. 98, 253–260 (2006).Article 

    Google Scholar 
    62.López-Bellido, R. J., López-Bellido, L., Benítez-Vega, J. & López-Bellido, F. J. Tillage system, preceding crop, and nitrogen fertilizer in wheat crop: I. Soil water content. Agron. J. 99, 59–65. https://doi.org/10.2134/agronj2006.0025 (2007).Article 

    Google Scholar 
    63.López-Bellido, L., Muñoz-Romero, V., Fernández-García, P. & López-Bellido, R. J. Ammonium accumulation in soil: The long-term effects of tillage, rotation and N rate in a Mediterranean vertisol. Soil Use Manag. 30(4), 471–479 (2014).Article 

    Google Scholar 
    64.Bilalis, D., Efthimiadis, P. & Sidiras, N. Effect of three tillage systems on weed flora in a 3-year rotation with four crops. J. Agron. Crop Sci. 186, 135–141. https://doi.org/10.1046/j.1439-037X.2001.00458.x (2001).Article 

    Google Scholar 
    65.Feledyn-Szewczyk, B., Smagacz, J., Kwiatkowski, C. A., Harasim, E. & Woźniak, A. Weed flora and soil seed bank composition as affected by tillage system in three-year crop rotation. Agriculture https://doi.org/10.3390/agriculture10050186 (2020).Article 

    Google Scholar 
    66.Pala, M., Ryan, J., Zhang, H., Singh, M. & Harris, H. C. Water-use efficiency of wheat-based rotation systems in a Mediterranean environment. Agric. Water Manag. 93, 136–144. https://doi.org/10.1016/j.agwat.2007.07.001 (2007).Article 

    Google Scholar 
    67.Légère, A., Stevenson, F. C. & Benoit, D. L. Diversity and assembly of weed communities: Contrasting responses across cropping systems. Weed Res. 45, 303–315. https://doi.org/10.1111/j.1365-3180.2005.00459.x (2005).Article 

    Google Scholar 
    68.Sans, F. X., Berner, A., Armengot, L. & Mäder, P. Tillage effects on weed communities in an organic winter wheat-sunflower-spelt cropping sequence. Weed Res. 51, 413–421. https://doi.org/10.1111/j.1365-3180.2011.00859.x (2011).Article 

    Google Scholar 
    69.Sarani, M., Oveisi, M., Mashhadi, H. R., Alizade, H. & Gonzalez-Andujar, J. L. Interactions between the tillage system and crop rotation on the crop yield and weed populations under arid conditions. Weed Biol. Manag. 14, 198–208. https://doi.org/10.1111/wbm.12047 (2014).Article 

    Google Scholar 
    70.Pardo, G. et al. Effects of reduced and conventional tillage on weed communities: Results of a long-term experiment in Southwestern Spain. Planta Daninha https://doi.org/10.1590/s0100-83582019370100152 (2019).Article 

    Google Scholar 
    71.Fennimore, S. A. & Jackson, L. E. Organic amendment and tillage effects on vegetable field weed emergence and seedbanks 1. Weed Technol. 17, 42–50. https://doi.org/10.1614/0890-037x(2003)017[0042:oaateo]2.0.co;2 (2003).Article 

    Google Scholar 
    72.Francis, A. & Warwick, S. I. The biology of Canadian weeds. 3. Lepidium draba L., L. chalepense L., L. appelianum Al-Shehbaz (updated). Can. J. Plant Sci. 88, 379–401. https://doi.org/10.4141/CJPS07100 (2008).Article 

    Google Scholar  More

  • in

    High species richness of tachinid parasitoids (Diptera: Calyptratae) sampled with a Malaise trap in Baihua Mountain Reserve, Beijing, China

    1.Wilson, E. O. The little things that run the world (The importance and conservation of invertebrates). Conserv. Biol. 1, 344–346 (1987).
    Google Scholar 
    2.Stork, N. E. How many species are there?. Biodivers. Conserv. 2, 215–232 (1993).
    Google Scholar 
    3.Erwin, T. L. Tropical forests: Their richness in Coleoptera and other arthropod species. Coleopts. Bull. 36, 74–75 (1982).
    Google Scholar 
    4.Novotny, V. et al. Low host specificity of herbivorous insects in a tropical forest. Nature 416, 841–844 (2002).CAS 
    PubMed 
    ADS 

    Google Scholar 
    5.Stork, N. E. How many species of insects and other terrestrial arthropods are there on earth?. Annu. Rev. Entomol. 63, 31–45 (2018).CAS 
    PubMed 

    Google Scholar 
    6.Linnaeus, C. Amoenitates Academicae, seu Dissertationes Variae Physicae, Medicae, Botanicae, Volume 2. (Laurentium Salvium, 1749).7.Linnaeus, C. Systema Naturae per Regna tria Naturae, Secundum Classes, Ordines, Genera, Species cum Characteribus, Differentiis, Synonymis, Locis. (Laurentium Salvium, 1758).8.Metcalf, Z. P. How many insects are there in the world?. Entomol. News 51, 219–222 (1940).
    Google Scholar 
    9.Ødegaard, F. The relative importance of trees versus lianas as hosts for phytophagous beetles (Coleoptera) in tropical forests. J. Biogeogr. 27, 283–296 (2000).
    Google Scholar 
    10.Geiger, M. F. et al. The global Malaise trap program–how well does the current barcode reference library identify flying insects in Germany? Biodivers. Data J. 4, e10671 (2016).11.D’Souza, M. L. & Hebert, P. D. N. Stable baselines of temporal turnover underlie high beta diversity in tropical arthropod communities. Mol. Ecol. 27, 2447–2460 (2018).PubMed 

    Google Scholar 
    12.Srivathsan, A. et al. Rapid, large-scale species discovery in hyperdiverse taxa using 1D MinION sequencing. Bmc. Biol. 17, 96 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Wu, Y. et al. Explaining the species richness of birds along a subtropical elevational gradient in the Hengduan Mountains. J. Biogeogr. 40, 2310–2323 (2013).
    Google Scholar 
    14.Morelli, F. et al. Taxonomic diversity, functional diversity and evolutionary uniqueness in bird communities of Beijing’s urban parks: Effects of land use and vegetation structure. Urban For. Urban Green. 23, 84–92 (2017).
    Google Scholar 
    15.White, E. P. Spatiotemporal scaling of species richness: Patterns, processes and implications. In Scaling biodiversity (eds Storch, D. et al.) 325–346 (Cambridge University Press, 2007).
    Google Scholar 
    16.Schwartz, M. D. Phenology: An Integrative Environmental Science. (Springer, 2013).17.Brehm, G., Colwell, R. K. & Kluge, J. The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient. Glob. Ecol. Biogeogr. 16, 205–219 (2007).
    Google Scholar 
    18.Sundqvist, M. K., Sanders, N. J. & Wardle, D. A. Community and ecosystem responses to elevational gradients: Processes, mechanisms, and insights for global change. Annu. Rev. Ecol. Evol. Syst. 44, 261–280 (2013).
    Google Scholar 
    19.Le, C. M., Wilson, S. W. & Soulier-Perkins, A. Elevational gradient of Hemiptera (Heteroptera, Auchenorrhyncha) on a tropical mountain in Papua New Guinea. PeerJ 3, e978 (2015).
    Google Scholar 
    20.McCravy, K. W. A review of sampling and monitoring methods for beneficial arthropods in agroecosystems. Insects 9, 170 (2018).PubMed Central 

    Google Scholar 
    21.Karlsson, D. et al. The Swedish Malaise trap project: A 15 year retrospective on a countrywide insect inventory. Biodivers. Data J. 8, e47255 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    22.Borkent, A. et al. Remarkable fly (Diptera) diversity in a patch of Costa Rican cloud forest: Why inventory is a vital science. Zootaxa 4402, 53–90 (2018).PubMed 

    Google Scholar 
    23.Fraser, S. E. M., Dytham, C. & Mayhew, P. J. The effectiveness and optimal use of Malaise traps for monitoring parasitoid wasps. Insect Conserv. Divers. 1, 22–31 (2008).
    Google Scholar 
    24.Gaston, K. J., Gauld, I. D. & Hanson, P. The size and composition of the hymenopteran fauna of Costa Rica. J. Biogeogr. 23, 105–113 (1996).
    Google Scholar 
    25.Townes, H. K. Design of a Malaise trap. Proc. Entomol. Soc. Wash. 64, 253–262 (1962).
    Google Scholar 
    26.O’Hara, J. E. History of tachinid classification (Diptera, Tachinidae). ZooKeys 316, 1–34 (2013).
    Google Scholar 
    27.O’Hara, J. E., Henderson, S. J. & Wood, D. M. Preliminary Checklist of the Tachinidae of the World. Version 2.1. http://www.nadsdiptera.org/Tach/WorldTachs/Checklist/Worldchecklist.html (2020).28.Stireman, J. O., O’Hara, J. E. & Wood, D. M. Tachinidae: Evolution, behavior, and ecology. Annu. Rev. Entomol. 51, 525–555 (2006).CAS 
    PubMed 

    Google Scholar 
    29.Cerretti, P. et al. Signal through the noise? Phylogeny of the Tachinidae (Diptera) as inferred from morphological evidence. Syst. Entomol. 39, 335–353 (2014).
    Google Scholar 
    30.Stireman, J. O., Dyer, L. A. & Greeney, H. F. Specialised generalists? Food web structure of a tropical tachinid-caterpillar community. Insect Conserv. Diver. 10, 367–384 (2017).
    Google Scholar 
    31.Belshaw, R. Tachinid (Diptera) assemblages in habitats of a secondary succession in southern Britain. Entomology 111, 151–161 (1992).
    Google Scholar 
    32.Inclán, D. J. & Stireman, J. O. Tachinid (Diptera: Tachinidae) Parasitoid diversity and temporal abundance at a single site in the northeastern United States. Ann. Entomol. Soc. Am. 104, 287–296 (2011).
    Google Scholar 
    33.Cerretti, P., Whitmore, D., Mason, F. & Taglianti, A. V. Survey on the spatio-temporal distribution of tachinid flies: Using Malaise traps (Diptera, Tachinidae). In Invertebrati diuna foresta della Pianura Padana, Bosco della Fontana, Secondo contributo (eds Cerretti, P. et al.) 229–256 (Springer, 2004).34.Stireman, J. O. Alpha and beta diversity of a tachinid parasitoid community. Ann. Entomol. Soc. Am. 101, 362–370 (2008).
    Google Scholar 
    35.Pei, W. Y. et al. Species diversity of Tachinidae in Baihuashan National Nature Reserve of Beijing, China. J. Environ. Entomol. 41, 1218–1225 (2019).
    Google Scholar 
    36.Zhao, Y. et al. Fauna resource investigation of Tachinidae (Diptera) from Mt. Huangyi, Eastern Liaoning, China. J. Environ. Entomol. 41, 1208–1217 (2019).
    Google Scholar 
    37.Zhang, Y. Z. et al. Fauna resource investigation of Tachinidae (Diptera) from the grasslands, Inner Mongolia of China. J. Environ. Entomol. 40, 1353–1363 (2018).
    Google Scholar 
    38.Zhang, C. T. et al. Preliminary investigation on Tachinidae (Diptera) of Hanma National Nature Reserve, Inner Mongolia, China. J. Environ. Entomol. 35, 257–264 (2017).CAS 

    Google Scholar 
    39.Liang, H. C. et al. Fauna resource of Tachinidae in Liaoning Hun River Source Nature Reserve of China. J. Environ. Entomol. 38, 1214–1223 (2016).
    Google Scholar 
    40.Zhang, C. T. et al. Faunistic investigation of Tachinidae in Liaoning Bailang Mountain National Nature Reserve of China. J. Environ. Entomol. 37, 726–734 (2015).
    Google Scholar 
    41.Zhang, D. et al. Study on Tachinidae fauna in Songshan National Nature Reserve of Beijing, China. Chin. J. Vector Biol. Control 22, 459–465 (2011).
    Google Scholar 
    42.Herting, B. & Dely-Draskovits, A. Family Tachinidae. In Catalogue of Palaearctic Diptera. Volume 13. Anthomyiidae–Tachinidae. (eds Soós, A. & Papp, L.) 118–458 (Hungarian Natural History Museum, 1993).43.O’Hara, J. E. & Henderson, S. J. World Genera of the Tachinidae (Diptera) and Their Regional Occurrence. Version 11.0. http://www.nadsdiptera.org/Tach/WorldTachs/Genera/Worldgenera.html (2020).44.Tschorsnig, H. P. & Richter, V. A. Family Tachinidae. In Contributions to a Manual of Palaearctic Diptera (with special reference to flies of economic importance) (eds Papp, L. & Darvas, B) 691–827 (Higher Brachycera Science Herald Press, 1998).45.Cerretti, P., Tschorsnig, H. P., Lopresti, M. & Giovanni, F. D. MOSCHweb: A matrix-based interactive key to the genera of the Palaearctic Tachinidae (Insecta, Diptera). ZooKeys 205, 5–18 (2012).
    Google Scholar 
    46.Andersen, S. Revision of European species of Phytomyptera Rondani (Diptera: Tachinidae). Insect Syst. Evol. 19, 43–80 (1988).
    Google Scholar 
    47.Andersen, S. The Siphonini (Diptera: Tachinidae) of Europe. Fauna Entomol. Scand. 33, 1–146 (1996).
    Google Scholar 
    48.Chao, C. M. et al. Tachinidae. In Flies of China Vol. 2 (eds Xue, W. Q. & Chao, C. M.) (Liaoning Science and Technology Press, 1998).
    Google Scholar 
    49.Chao, C. M. et al. Fauna Sinica. Insecta. Vol. 23. Diptera. Tachinidae (1) (Science Press, 2001).
    Google Scholar 
    50.O’Hara, J. E., Shima, H. & Zhang, C. T. Annotated catalogue of the Tachinidae (Insecta: Diptera) of China. Zootaxa 2190, 1–236 (2009).
    Google Scholar 
    51.Tachi, T. & Shima, H. Systematic study of the genus Peribaea Robineau-Desvoidy of East Asia (Diptera: Tachinidae). Tijdschr. voor Entomol. 145, 115–144 (2002).
    Google Scholar 
    52.Tschorsnig, H. P. Preliminary Host Catalogue of Palaearctic Tachinidae (Diptera). http://www.nadsdiptera.org/Tach/WorldTachs/CatPalHosts/Home.html (2017).53.Zhang, C. T., Shima, H. & Chen, X. L. A review of the genus Dexia Meigen in the Palearctic and Oriental Regions (Diptera: Tachinidae). Zootaxa 2705, 1–81 (2010).
    Google Scholar 
    54.Colwell, R. K. Estimates: Statistical Estimation of Species Richness and Shared Species from Samples. Version 9.1.0. http://viceroy.eeb.uconn.edu/estimates/ (2019).55.Oksanen, J. F. et al. Vegan: Community Ecology Package. R Package Version 2.4-3. https://CRAN.R-project.org/package=vegan. Accessed 20 May 2018 (2017).56.Mielke, P. W. 34 Meteorological applications of permutation techniques based on distance functions. Handb. Stat. 4, 813–830 (1984).
    Google Scholar 
    57.Ge, Y. et al. Exotic spartina alterniflora invasion changes temporal dynamics and composition of spider community in a salt marsh of Yangtze Estuary, China. Estuar. Coast. Shelf. Sci. 239, 106755 (2020).
    Google Scholar 
    58.Haq, F. et al. Multivariate approach to the classification and ordination of the forest ecosystem of Nandiar valley western Himalayas. Ecol. Indic. 80, 232–241 (2017).
    Google Scholar 
    59.Oara, J. E., Zhang, C. T. & Shima, H. Catalogue of the Tachinidae (Insecta: Diptera) of China. In Catalogue of Life China: 2021 Annual Checklist, Volume 2 Animals, Insect (VI), Diptera (3) (eds Yang, D. et al.) 845–1170 (The Biodiversity Committee of Chinese Academy of Sciences, 2021).60.McCain, C. M. & Grytnes, J. A. Elevational gradients in species richness. In Encyclopedia of Life Sciences (eds Wiley, J. & Ltd, S.) 1–10 (Wiley, 2010).
    Google Scholar 
    61.Zhang, J. T., Xu, B. & Li, M. Vegetation patterns and species diversity along elevational and disturbance gradients in the Baihua Mountain Reserve, Beijing, China. Mt. Res. Dev. 33, 170–178 (2013).ADS 

    Google Scholar 
    62.Huang, Y. et al. The effects of habitat area, vegetation structure and insect richness on breeding bird populations in Beijing urban parks. Urban For. Urban Green. 14, 1027–1039 (2015).
    Google Scholar 
    63.Eldegard, K., Totland, Ø. & Moe, S. R. Edge effects on plant communities along power line clearings. J. Appl. Ecol. 52, 871–880 (2015).
    Google Scholar 
    64.Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).
    Google Scholar 
    65.Harper, K. A. et al. Edge influence on forest structure and composition in fragmented landscapes. Conserv. Biol. 19, 768–782 (2005).
    Google Scholar 
    66.Laurance, W. F. et al. Habitat fragmentation, variable edge effects, and the landscape-divergence hypothesis. PLoS ONE 2, e1017 (2007).67.Stireman, J. O. III., Cerretti, P., Whitmore, D., Hardersen, S. & Gianelle, D. Composition and stratification of a tachinid (Diptera: Tachinidae) parasitoid community in a European temperate plain forest. Insect Conserv. Divers. 5, 346–357 (2012).
    Google Scholar 
    68.Burington, Z. L. et al. Latitudinal patterns in tachinid parasitoid diversity (Diptera: Tachinidae): A review of the evidence. Insect Conserv. Divers. 13, 419–431 (2020).
    Google Scholar 
    69.Campbell, J. W., Hanula, J. L. & Waldrop, T. A. Effects of prescribed fire and fire surrogates on floral visiting insects of the blue ridge province in North Carolina. Biol. Conserv. 134, 393–404 (2007).
    Google Scholar 
    70.Alfred, D. J. et al. A study on five sampling methods of parasitic hymenopterans in rice ecosystem. Biol. Control. 32, 187–192 (2018).
    Google Scholar 
    71.Wells, W. & Decker, T. A comparison of three types of insect traps for collecting non-Formicidae Hymenoptera on the Island of Dominica. Southwest. Entomol. 31, 59–68 (2006).
    Google Scholar  More

  • in

    Limited thermal plasticity may constrain ecosystem function in a basally heat tolerant tropical telecoprid dung beetle, Allogymnopleurus thalassinus (Klug, 1855)

    1.Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Synthesis Report (Intergovernmental Panel on Climate Change, Geneva) p 52 (2014). https://www.ipcc.ch/report/ar5/wg2/2.Easterling, D. R., Meehl, G. A., Parmesan, C., Karl, T. R. & Mearns, L. O. Climate extremes: Observations, modelling and impacts. Science 5487, 2068–2074 (2000).ADS 

    Google Scholar 
    3.Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: Synthesis Report (Intergovernmental Panel on Climate Change, Geneva) p 52 (2007). https://www.ipcc.ch/report/ar5/syr/4.Ju, R. T., Zhu, H. Y., Gao, L., Zhu, X. H. & Li, B. Increase in both temperature means, and extremes likely facilitates invasive herbivore outbreaks. Sci. Rep. 5, 15715. https://doi.org/10.1038/srep15715 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    5.World Meteorological Organisation (WMO). State of the Climate in Africa. WMO-No. 1253. 2020. Available at: https://library.wmo.int/doc_num.php?explnum_id=10421. Accessed 12 September 2021.6.Dube, O. P. Impact of climate change vulnerability and adaptation options: Exploring the case for Botswana through Southern Africa: A review. Botswana Notes Rec. 35, 147–168 (2003).
    Google Scholar 
    7.Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. 105, 6668–6672 (2008).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    8.Perkins-Kirkpatrick, S. E. & Lewis, S. C. Increasing trends in regional heatwaves. Nat. Commun. 11, 3357. https://doi.org/10.1038/s41467-020-16970-7(2020).9.National Oceanic and Atmospheric Administration (NOAA). Astounding heat obliterates all-time records across the Pacific Northwest and Western Canada in June 2021. Climate. Gov. Science and Information for Climate smart Nation. Available at: https://www.climate.gov/news-features/event-tracker/astounding-heat-obliterates-all-time-records-across-pacific-northwest. Accessed 03 July, 2021.10.UK Met Office. Record breaking Heat wave, July 2019. (2020). Available at: https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/weather/learn-about/uk-past-events/interesting/2019/2019_007_july_heatwave.pdf. Accessed 10 June, 2021.11.Kendon, M. et al. State of the UK Climate 2019. Int. J. Climatol. 40, 1–69 (2020).
    Google Scholar 
    12.Head, L., Adams, M., McGregor, H. V. & Toole, S. Climate change and Australia. Wiley Interdiscipl. Rev. WIREs Clim. Change 5, 175–197 (2014).
    Google Scholar 
    13.Nangombe, S. et al. Record-breaking climate extremes in Africa under stabilized 1.5 °C and 2 °C Global warming scenarios. Nat. Clim. Change 8, 375–380 (2018).14.Gergis, J., Ashcroft, L. & Whetton, P. A. historical perspective on Australian temperature extremes. Clim. Dyn. 55, 843–868 (2020).
    Google Scholar 
    15.Carpaneto, G. M., Mazziotta, A. & Valerio, L. Inferring species decline from collection records: roller dung beetles in Italy (Coleoptera, Scarabaeidae). Divers. Distrib. 13, 903–919 (2007).
    Google Scholar 
    16.Walther, G. R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).CAS 
    PubMed 
    ADS 

    Google Scholar 
    17.Chown, S. L. & Nicolson, S. W. Insect Physiological Ecology: Mechanisms and Patterns (Oxford University Press, 2004).
    Google Scholar 
    18.Huey, R. B. & Kearney, M. R. Dynamics of death by heat. Science 369, 1163. https://doi.org/10.1126/science.abe0320 (2020).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    19.Jørgensen, L. B. et al. A unifying model to estimate thermal tolerance limits in ectotherms across static, dynamic and fluctuating exposures to thermal stress. Sci. Rep. 11, 12840. https://doi.org/10.1038/s41598-021-92004-6 (2021)20.Buyantuyev, A. & Wu, J. Urban heat islands and landscape heterogeneity: Linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landsc. Ecol. 25, 17–33 (2010).
    Google Scholar 
    21.Aalto, J., Riihimäki, H., Meineri, E., Hylander, K. & Luoto, M. Revealing topoclimatic heterogeneity using meteorological station data. Int. J. Climatol. 37, 544–556 (2017).
    Google Scholar 
    22.Holley, J. M. & Andrew, N. R. Experimental warming alters the relative survival and emigration of two dung beetle species from an Australian dung pat community. Austral. Ecol. 44, 800–811 (2019).
    Google Scholar 
    23.Giannini, T. C. et al. Pollination services at risk: Bee habitats will decrease owing to climate change in Brazil. Ecol. Model. 244, 127–131 (2012).
    Google Scholar 
    24.Wu, X. W. & Sun, S. C. Artificial warming advances egg laying and decreases larval size in the dung beetle, Aphodius erractus (Coleoptera: Scarabaeidae) in a Tibetan alpine meadow. Ann. Zool. Fennici. 49, 174–181 (2012).
    Google Scholar 
    25.Mamantov, M. A. & Sheldon, K. S. Behavioural responses to warming differentially impact survival in introduced and native dung beetles. J. Anim. Ecol. 90, 273–281 (2021).PubMed 

    Google Scholar 
    26.Clusella-Trullas, S., Blackburn, T. N. & Chown, S. L. Climate predictors of temperature performance curves parameters in ectotherms. Am. Nat. 177, 738–751 (2011).PubMed 

    Google Scholar 
    27.Ma, G., Rudolf, V. H. & Ma, C. S. Extreme temperature events alter demographic rates, relative fitness and community structure. Glob. Change Biol. 21, 1794–1808 (2014).ADS 

    Google Scholar 
    28.Gunderson, A. R. & Stillman, J. H. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc. R. Soc. B 282, 20150401. https://doi.org/10.1098/rspb.2015.0401 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.van Heerwaarden, B., Kellermann, V. & Sgrò, C. M. Limited scope for plasticity to increase upper thermal limits. Funct. Ecol. 30, 1947–1956 (2016).
    Google Scholar 
    30.Nyamukondiwa, C., Terblamche, J. S., Marshall, K. E. & Sinclair, B. K. Basal cold but not heat tolerance constrains plasticity among Drosophila species (Diptera: Drosophilidae). J. Evol. Biol. 24, 1927–1938 (2011).CAS 
    PubMed 

    Google Scholar 
    31.Blackburn, S., van Heerwaarden, B., Kellermann, V. & Sgró, C. M. Evolutionary capacity of upper thermal limits: Beyond single trait assessments. J. Exp. Biol. 217, 1918–1924 (2014).PubMed 

    Google Scholar 
    32.Bowler, K. & Terblanche, J. S. Insect thermal tolerance: What is the role of ontogeny, ageing and senescence?. Biol. Rev. Camb. Philos. Soc. 83, 339–355 (2008).PubMed 

    Google Scholar 
    33.Barley, J. M., Cheng, B. S., Sasaki, M., Gignoux-Wolfsohn, S., Hays, C. G., Putnam, A. B., Sheth, S., Villeneuve, A. R. & Kelly, M. Limited plasticity in thermally tolerant ectotherm populations: Evidence for a trade-off. Proc. R. Soc. B (2021). https://doi.org/10.1098/rspb.2021.0765.34.Sgrò, C. M., Terblanche, J. S. & Hoffmann, A. A. What can plasticity contribute to insect responses to climate change?. Annu. Rev. Entomol. 61, 433–451 (2016).PubMed 

    Google Scholar 
    35.Pincebourde, S. & Woods, H. A. There is plenty of room at the bottom: Microclimates drive insect vulnerability to climate change. Curr. Opin. Insect Sci. 41, 63–70 (2020).PubMed 

    Google Scholar 
    36.Woods, A., Pincebourde, S., Dillon, M. E. & Terblanche, J. S. Extended phenotypes: Buffers or amplifiers of climate change?. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2021.05.010 (2021).Article 
    PubMed 

    Google Scholar 
    37.Gunderson, A. R., Dillon, M. E. & Stillman, J. H. Estimating the benefits of plasticity in ectotherm heat tolerance under natural thermal variability. Funct. Ecol. 31, 1529–1539 (2017).
    Google Scholar 
    38.Esperk, T., Kjaersgaard, A., Walters, R. J., Berger, D. & Blanckenhorn, W. U. Plastic and evolutionary responses to heat stress in a temperate dung fly: Negative correlation between basal and induced heat tolerance?. J. Evol. Biol. 29, 900–915 (2016).CAS 
    PubMed 

    Google Scholar 
    39.Calosi, P., Bilton, D. T. & Spicer, J. I. Thermal tolerance, acclimatory capacity and vulnerability to global climate change. Biol. Lett. 4, 99–102 (2008).PubMed 

    Google Scholar 
    40.van Heerwaarden, B. & Kellermann, V. Does plasticity trade off with basal heat tolerance?. Trends Ecol. Evol. 35, 874–885 (2020).PubMed 

    Google Scholar 
    41.Malhi, Y., Franklin, J., Seddon, N., Solan, M., Turner, M. G., Field, C. B. & Knowlton, N. Climate change and ecosystems: threats, opportunities and solutions. Philos. Trans. R. Soc. B 375, 20190104. https://doi.org/10.1098/rstb.2019.0104 (2020).42.Stillman, J. H. Heat waves, the new normal: Summertime temperature extremes will impact animals, ecosystems, and human communities. Physiology 34, 86–100 (2019).CAS 
    PubMed 

    Google Scholar 
    43.Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Ecology—Putting the heat on tropical animals. Science 320, 1296–1297 (2008).CAS 
    PubMed 

    Google Scholar 
    44.Kelley, A. M. The role thermal physiology plays in species invasion. Conserv. Physiol. 10, 2. https://doi.org/10.1093/conphys/cou045 (2014).CAS 
    Article 

    Google Scholar 
    45.Mitchell, K. A., Sgró, C. M. & Hoffmann, A. A. Phenotypic plasticity in upper thermal limits is weakly related to Drosophila species distributions. Funct. Ecol. 25, 661–670 (2011).
    Google Scholar 
    46.Allen, J. L., Chown, S. L., Janion-Scheepers, C. & Clusella-Trullas, S. Interactions between rates of temperature change and acclimation affect latitudinal patterns of warming tolerance. Conserv. Physiol. 4, 1–14 (2020).
    Google Scholar 
    47.Edwards, P. B. & Aschenborn, H. H. Patterns of nesting and dung burial in onitis dung beetles: Implications for pasture productivity and fly control. J. Appl. Ecol. 24, 837–851 (1987).
    Google Scholar 
    48.Bertone, M. A., Green, J. T., Washburn, S. P., Poore, M. H. & Watson, D. W. The contribution of tunneling dung beetles to pasture soil nutrition. Forage Grazinglands https://doi.org/10.1094/FG-2006-0711-02-RS (2006).Article 

    Google Scholar 
    49.Yamada, D., Imura, O., Shi, K. & Shibuya, T. Effect of tunneler dung beetles on cattle dung decomposition, soil nutrients and herbage growth. Grassl. Sci. 53, 121–129 (2007).
    Google Scholar 
    50.Slade, E. M. & Roslin, T. Dung beetle species interactions and multifunctionality are affected by an experimentally warmed climate. Oikos 125, 1607–1616 (2016).
    Google Scholar 
    51.Yoshihara, Y. & Sato, S. The relationship between dung beetle species richness and ecosystem functioning. Appl. Soil Ecol. 88, 21–25 (2015).
    Google Scholar 
    52.Manning, P., Slade, E. M., Beynon, S. A. & Lewis, O. T. Functionally rich dung beetle assemblages are required to provide multiple ecosystem services. Agric. Ecosyst. Environ. 218, 87–94 (2016).
    Google Scholar 
    53.Milotić, T. et al. Functionally richer communities improve ecosystem functioning: Dung removal and secondary seed dispersal by dung beetles in the Western Palaearctic. J. Biogeogr. 46, 70–82 (2019).
    Google Scholar 
    54.Slade, E. M., Riutta, T., Roslin, T. & Tuomisto, H. L. The role of dung beetles in reducing greenhouse gas emissions from cattle farming. Sci. Rep. 6, 18140. https://doi.org/10.1038/srep1814 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    55.Penttilä, A. et al. Quantifying beetle-mediated effects on gas fluxes from dung pats. PLoS ONE 8, e71454. https://doi.org/10.1371/journal.pone.0071454 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    56.Spector, S. Scarabaeine dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae): An invertebrate focal taxon for biodiversity research and conservation. Coleopt. Bull. 5, 71–83 (2006).
    Google Scholar 
    57.Osberg, D. C., Hanrahan, S. A. & Doube, B.M. The spatial distribution of Allogymnopleurus thalassinus Klug and A. consocius (Pringuey) (Coleoptera: Scarabaeidae) in an area of mixed soil types in South Africa. J. Entomol. Soc. S. Afr. 55, 85–92 (1992).58.Global Biodiversity Information Facility (GBIF). Allogymnopleurus thalassinus (Klug. 1855) (2020) Available at: https://www.gbif.org/species/1093939. Online Database. Accessed 29 December, 2020.59.Doube, B. M. Dung beetles of Southern Africa. (In: Hanski, I & Cambefort, Y. eds, Chapter 8). In Dung beetle ecology 133–155 (Princeton University Press, Princeton, 2014).60.Janssens, A. Monographie des Gymnopleurides. Verhandelingen Koninklijk Natuurhistorisch Museum Belgie. Brussel, 2, 1–74 (1940).61.Gotcha, N., Machekano, H., Cuthbert, R. N. & Nyamukondiwa, C. Low-temperature tolerance in coprophagic beetle species (Coleoptera: Scarabaeidae): Implications for ecological services. Ecol. Entomol. https://doi.org/10.1111/een.13054 (2021).62.Gittings, T., Giller, P. S. & Stakelum, G. Dung decomposition in contrasting temperate pastures in relation to dung beetle and earthworm activity. Pedobiologia, 38, 455–474 (1994).63.Rosenlew, H. & Roslin, T. Habitat fragmentation and the functional efficiency of temperate dung beetles. Oikos 117, 1659–1666 (2008).
    Google Scholar 
    64.Mitchell, K. A. & Hoffmann, A. A. Thermal ramping rate influences evolutionary potential and species differences for upper thermal limits in Drosophila. Funct. Ecol. 24, 694–700 (2010).
    Google Scholar 
    65.Terblanche, J. S., Nyamukondiwa, C. & Kleynhans, E. Thermal variability alters climatic stress resistance and plastic responses in a globally invasive pest, the Mediterranean fruit fly (Ceratitis capitata). Entomol. Exp. Appl. 137, 304–315 (2010).
    Google Scholar 
    66.Janzen, D. H. Why mountain passes are higher in tropics. Am. Nat. 101, 233–249 (1967).
    Google Scholar 
    67.Somero, G. N. The physiology of climate change: How potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).CAS 
    PubMed 

    Google Scholar 
    68.Overgaard, J., Kristensen, T. N., Mitchell, K. A. & Hoffmann, A. A. Thermal tolerance in widespread and tropical Drosophila species: Does phenotypic plasticity increase with latitude?. Am. Nat. 178, S80–S96 (2011).PubMed 

    Google Scholar 
    69.Terblanche, J. S. et al. Ecologically relevant measures of tolerance to potentially lethal temperatures. J. Exp. Biol. 214, 3713–3725 (2011).PubMed 

    Google Scholar 
    70.Giménez Gómez, V.C., Verdú, J. R. & Zurita, G. A. Thermal niche helps to explain the ability of dung beetles to exploit disturbed habitats. Sci. Rep. 10, 13364. https://doi.org/10.1038/s41598-020-70284-8 (2020).71.Gotcha, N., Machekano, H., Cuthbert, R. N. & Nyamukondiwa, C. Heat tolerance may determine activity time in coprophagic beetle species (Coleoptera: Scarabaeidae). Insect Sci. https://doi.org/10.1111/1744-7917.12844 (2020).Article 
    PubMed 

    Google Scholar 
    72.Nyamukondiwa, C., Chidawanyika, F., Machekano, H., Mutamiswa, R., Sands, B., Mdigiswa, N. & Wall, R. Climate variability differentially impacts thermal fitness traits in three coprophagic beetle species. PLOS One 13(6), e0198610. https://doi.org/10.1371/journal.pone.0198610 (2018).73.Jumbam, K., Jackson, S., Terblanche, J. S., McGeoch, M. A. & Chown, S. Acclimation effects on critical and lethal thermal limits of workers of the Argentine ant, Linepithema humile. J. Insect Physiol. 54, 1008–1014 (2008).CAS 
    PubMed 

    Google Scholar 
    74.Dallas, H. F. & Rivers-Moore, N. A. Critical thermal maxima of aquatic macroinvertebrates: Towards identifying bioindicators of thermal alteration. Hydrobiologia 679, 61–76 (2012).
    Google Scholar 
    75.Gallego, B., Verdú, J. R. & Lobo, J. M. Comparative thermoregulation between different species of dung beetles (Coleoptera: Geotrupinae). J. Thermal Biol. 74, 84–91 (2018).
    Google Scholar 
    76.Qari, S. A. Thermal tolerance of the marine crab, Portunus pelagicus (Brachyura, Portunidae). Crustaceana 87, 827–833 (2014).
    Google Scholar 
    77.Azra, M. N., Mohamad, A., Hidir, A., Taufik, M., Abol-Munafi, A. B. & Ikhwanuddin, M. Critical thermal maxima of two species of intertidal crabs, Scylla olivacea and Thalamita crenata at different acclimation temperatures. Aquacul. Rep. 17, 100301. https://doi.org/10.1016/j.aqrep.2020.100301 (2020)78.Lutterschmidt, W. I. & Hutchison, V. H. The critical thermal maximum: History and critique. Can. J. Zool. 75, 1561–1574 (1997).
    Google Scholar 
    79.Käfer, H. et al. Insects 11, 197. https://doi.org/10.3390/insects11030197 (2020).Article 
    PubMed Central 

    Google Scholar 
    80.Gehring, W. J. & Wehner, R. Heat shock protein synthesis and thermotolerance in Cataglyphis, an ant from the Sahara desert. Proc Natl. Acad. Sci. 92, 2994–2998 (1995).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    81.Bishop, T. R., Robertson, M. P., Van Rensburg, B. & Parr, C. L. Coping with the cold: Minimum temperatures and thermal tolerances dominate the ecology of mountain ants. Ecol. Entomol. 42, 105–114 (2017).
    Google Scholar 
    82.Smolka, J. et al. Dung beetles use their dung ball as a mobile thermal refuge. Curr. Biol. 20, R863–R864. https://doi.org/10.1016/j.cub.2012.08.057 (2012).CAS 
    Article 

    Google Scholar 
    83.Terblanche, J. S., Deere, J. A., Clusella-Trullas, S., Janion, C. & Chown, S. L. Critical thermal limits depend on methodological context. Proc. R. Soc. B: Biol. Sci. 274, 2935–2943 (2007).
    Google Scholar 
    84.Chown, S. L., Jumbam, K. R., Sørensen, J. G. & Terblanche, J. S. Phenotypic variance, plasticity and heritability estimates of critical thermal limits depend on methodological context. Funct. Ecol. 23, 133–140 (2009).
    Google Scholar 
    85.Hoffmann, A. A., Sørensen, J. G. & Loeschcke, V. Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. J. Thermal Biol. 28, 175–216 (2003).
    Google Scholar 
    86.Pelster, B. & Burggren, W. W. Responses to environmental stressors in developing animals: Costs and benefits of phenotypic plasticity. In Development and environment (eds Burggren, W. & Dubansky, B.) (Springer, Cham, 2018).
    Google Scholar 
    87.Kristensen, T. N., Kjeldal, H., Schou, M. F. & Nielsen, J. L. Proteomic data reveal a physiological basis for costs and benefits associated with thermal acclimation. J. Exp. Biol. 219, 969–976 (2016).PubMed 

    Google Scholar 
    88.Chanthy, P., Martin, R. J., Gunning, R. V., & Andrew, N. R. The effects of thermal acclimation on lethal temperatures and critical thermal limits in the green vegetable bug, Nezara viridula (L.) (Hemiptera: Pentatomidae). Front. Physiol. 3, 465 https://doi.org/10.3389/fphys.2012.00465 (2012).89.Anthony, S. E., Buddle, C. M., Høye, T. T., Hein, N. & Sinclair, B. J. Thermal acclimation has limited effect on thermal tolerance of summer collected Arctic and sub-Arctic wolf spiders. Comp. Biochem. Physiol. Part A, Mol. Integr. Physiol. 257, 110974 (2021).90.Hofmann, G. & Somero, G. Evidence for protein damage at environmental temperatures: seasonal changes in levels of ubiquitin conjugates and hsp70 in the intertidal mussel Mytilus trossulus. J. Exp. Biol. 198, 1509–1518 (1995).CAS 
    PubMed 

    Google Scholar 
    91.Munang, R., Thiaw, I., Alverson, K., Liu, J. & Han, Z. The role of ecosystem services in climate change adaptation and disaster risk reduction. Curr. Opin. Environ. Sustain. 5, 47–52 (2013).
    Google Scholar 
    92.Department of Wildlife and National Parks (DWNP). Aerial census of animals in Botswana 2012 dry season. Gaborone, Republic of Botswana (2012).93.Braga, R. F., Korasaki, V., Andresen, E. & Louzada, J. Dung beetle community and functions along a habitat-disturbance gradient in the amazon: A rapid assessment of ecological functions associated to biodiversity. PLoS ONE 8, e57786. https://doi.org/10.1371/journal.pone.0057786 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    94.Niino, M. et al. Diel flight activity and habitat preference of dung beetles (Coleoptera: Scarabaeidae) in Peninsular Malaysia. Raffles Bull. Zool. 62, 795–804 (2014).
    Google Scholar 
    95.Beetles of Africa. The Website for the Beetle Collector. Online database available at: http://www.beetlesofafrica.com (2021). Accessed 22 April, 2020.96.Mathur, V. & Schmidt, P. S. Adaptive patterns of phenotypic plasticity in laboratory and field environments in Drosophila melanogaster. Evol. 71, 465–474 (2017).
    Google Scholar 
    97.Chidawanyika, F., Nyamukondiwa, C., Strathie, L., Fischer, K. Effects of thermal regimes, starvation and age on heat tolerance of the Parthenium Beetle Zygogramma bicolorata (Coleoptera: Chrysomelidae) following dynamic and static protocols. PLoS ONE 12(1), e0169371. https://doi.org/10.1371/journal.pone.0169371 (2017).98.Moretti, M. et al. Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Funct. Ecol. 31, 558–567 (2017).
    Google Scholar 
    99.El-Saadi, M. I., Ritchie, M. W., Davis, H. E. & MacMillan, H. A. Warm periods in repeated cold stresses protect Drosophila against iono-regulatory collapse, chilling injury, and reproductive deficits. J. Insect Physiol. 123, 104055. https://doi.org/10.1016/j.jinsphys.2020.104055 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    100.Morley, S. A., Peck, L. S., Sunday, J. M., Heiser, S. & Bates, A. E. Physiological acclimation and persistence of ectothermic species under extreme heat events. Glob. Ecol. Biogeogr. 28, 1018–1037 (2019).
    Google Scholar 
    101.Nyamukondiwa, C. & Terblanche, J. S. Within-generation variation of critical thermal limits in adult Mediterranean and Natal fruit flies Ceratitis capitata and Ceratitis rosa: Thermal history affects short-term responses to temperature. Physiol. Entomol. 35, 255–264 (2010).
    Google Scholar 
    102.Weldon, C. W., Terblanche, J. S. & Chown, S. L. Time-course for attainment and reversal of acclimation to constant temperature in two Ceratitis species. J. Thermal Biol. 36, 479–485 (2011).
    Google Scholar 
    103.Sullivan, J. T., Ozman-Sullivan, S. K., Lumaret, J. P., Zalucki, M. P. & Baxter, G. Does one size suit all? Dung pad size and ball production by Scarabaeus sacer (Coleoptera: Scarabaeidae: Scarabaeinae). Eur. J. Entomol. 113, 70–75 (2016).
    Google Scholar 
    104.Nervo, B., Tocco, C., Caprio, C., Palestrini, C. & Rolando, A. Effects of body mass on dung removal efficiency in dung beetles. PLoS ONE 9, e107699. https://doi.org/10.1371/journal.pone.0107699 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    105.Slade, E. M., Mann, D. J., Villanueva, J. M. & Lewis, O. T. Experimental evidence for the effects of dung beetle functional group richness and composition on ecosystem function in a tropical forest. J. Anim. Ecol. 76, 1094–1104 (2007).PubMed 

    Google Scholar 
    106.R Core Team. R: A Language and environment for Statistical computing. R Foundation for Statistical computing, Vienna, Austria. 2021. Available at: https://www.R-project.org/.107.Wobbrock, J. O., Findlater, L., Gergle, D. & Higgins, J. J. The aligned rank transform for nonparametric factorial analyses using only ANOVA procedures, in Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI ’11). Vancouver, British Columbia (May 7–12, 2011) 143–146 (ACM Press, New York, 2011).108.Elkin, L. A., Kay, M., Higgins, J. & Wobbrock, J. O. An aligned rank transform procedure for multifactor contrast tests, in Proceedings of the ACM Symposium on User Interface Software and Technology (UIST ’21). Virtual Event (October 10–13, 2021) (ACM Press, New York, NY, 2021). More

  • in

    Acoustic differentiation and classification of wild belugas and narwhals using echolocation clicks

    1.Madsen, P. T. & Wahlberg, M. Recording and quantification of ultrasonic echolocation clicks from free-ranging toothed whales. Deep. Res. Part I(54), 1421–1444 (2007).
    Google Scholar 
    2.Au, W. W. L. Sonar of Dolphins (Springer, 1993).
    Google Scholar 
    3.Reeves, R. R. et al. Distribution of endemic cetaceans in relation to hydrocarbon development and commercial shipping in a warming Arctic. Mar. Policy 44, 375–389 (2014).
    Google Scholar 
    4.Hauser, D. D. W. et al. Habitat selection by two beluga whale populations in the Chukchi and Beaufort seas. PLoS One 12, e0172755 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    5.Vacquié-Garcia, J., Lydersen, C., Ims, R. A. & Kovacs, K. M. Habitats and movement patterns of white whales Delphinapterus leucas in Svalbard, Norway in a changing climate. Mov. Ecol. 6, 21 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    6.Lydersen, C., Martin, A. R., Kovacs, K. M. & Gjertz, I. Summer and autumn movements of white whales Delphinapterus leucas in Svalbard, Norway. Mar. Ecol. Prog. Ser. 219, 265–274 (2001).ADS 

    Google Scholar 
    7.Innes, S. et al. Surveys of belugas and narwhals in the Canadian High Arctic in 1996. NAMMCO Sci. Publ. 4, 169–190 (2002).
    Google Scholar 
    8.Smith, T. G. & Martin, A. R. Distribution and movements of belugas, Delphinapterus leucas, in the Canadian High Arctic. Can. J. Fish. Aquat. Sci. 51, 1653–1663 (1994).
    Google Scholar 
    9.Hobbs, R. et al. Global review of the conservation status of Monodontid stocks. Mar. Fish. Rev. 81, 1–53 (2019).ADS 

    Google Scholar 
    10.Frost, K. J. & Lowry, L. F. Distribution, abundance, and movements of beluga whales, Delphinapterus leucas, in coastal waters of western Alaska. In Advances in Research on the Beluga Whale, Delphinapterus leucas Vol. 224 (eds Smith, T. G. et al.) 39–57 (Canadian Bulletin of Fisheries and Aquatic Sciences, 1990).
    Google Scholar 
    11.Lewis, A. E., Hammill, M. O., Power, M., Doidge, D. W. & Lesage, V. Movement and aggregation of eastern Hudson Bay beluga whales (Delphinapterus leucas): A comparison of patterns found through satellite telemetry and Nunavik Traditional Ecological Knowledge. Arctic 62, 13–24 (2009).
    Google Scholar 
    12.Ahonen, H., Stafford, K. M., Lydersen, C., Steur, L. D. & Kovacs, K. M. A multi-year study of narwhal occurrence in the western Fram Strait—detected via passive acoustic monitoring. Polar Res. 38, 1–14 (2019).
    Google Scholar 
    13.Heide-Jørgensen, M. P. et al. The migratory behaviour of narwhals (Monodon monoceros). Can. J. Zool. 81, 1298–1305 (2003).
    Google Scholar 
    14.Richard, P. R. et al. Baffin Bay narwhal population distribution and numbers: Aerial surveys in the Canadian High Arctic, 2002–04. Arctic 63, 85–99 (2010).
    Google Scholar 
    15.Dietz, R., Heide-Jørgensen, M. P., Richard, P. R. & Acquarone, M. Summer and fall movements of narwhals (Monodon monoceros) from northeastern Baffin Island towards northern Davis Strait. Arctic 54, 244–261 (2001).
    Google Scholar 
    16.Castellote, M. et al. Monitoring white whales (Delphinapterus leucas) with echolocation loggers. Polar Biol. 36, 493–509 (2013).
    Google Scholar 
    17.Frouin-Mouy, H., Kowarski, K., Martin, B. & Bröker, K. Seasonal trends in acoustic detection of marine mammals in Baffin Bay and Melville Bay, Northwest Greenland. Arctic 70, 59–76 (2017).
    Google Scholar 
    18.Sousa-Lima, R. S., Norris, T. F., Oswald, J. N. & Fernandes, D. P. A review and inventory of fixed autonomous recorders for passive acoustic monitoring of marine mammals. Aquat. Mamm. 39, 23–53 (2013).
    Google Scholar 
    19.Zhong, M. et al. Beluga whale acoustic signal classification using deep learning neural network models. J. Acoust. Soc. Am. 147, 1834–1841 (2020).ADS 
    PubMed 

    Google Scholar 
    20.Castellote, M. et al. Seasonal distribution and foraging occurrence of Cook Inlet beluga whales based on passive acoustic monitoring. Endanger. Species Res. 41, 225–243 (2020).
    Google Scholar 
    21.Sjare, B. L. & Smith, T. G. The vocal repertoire of white whales, Delphinapterus leucas, summering in Cunningham Inlet, Northwest Territories. Can. J. Zool. 64, 407–415 (1986).
    Google Scholar 
    22.Chmelnitsky, E. G. & Ferguson, S. H. Beluga whale, Delphinapterus leucas, vocalizations from the Churchill River, Manitoba, Canada. J. Acoust. Soc. Am. 131, 4821–4835 (2012).ADS 
    PubMed 

    Google Scholar 
    23.Marcoux, M., Auger-Méthé, M. & Humphries, M. M. Variability and context specificity of narwhal (Monodon monoceros) whistles and pulsed calls. Mar. Mammal Sci. 28, 649–665 (2012).
    Google Scholar 
    24.Garland, E. C., Castellote, M. & Berchok, C. L. Beluga whale (Delphinapterus leucas) vocalizations and call classification from the eastern Beaufort Sea population. J. Acoust. Soc. Am. 137, 3054–3067 (2015).ADS 
    PubMed 

    Google Scholar 
    25.Rasmussen, M. H., Koblitz, J. C. & Laidre, K. L. Buzzes and high-frequency clicks recorded from narwhals (Monodon monoceros) at their wintering ground. Aquat. Mamm. 41, 256–264 (2015).
    Google Scholar 
    26.McCullough, J. L. K., Simonis, A. E., Sakai, T. & Oleson, E. M. Acoustic classification of false killer whales in the Hawaiian islands based on comprehensive vocal repertoire. JASA Express Lett. 1, 071201 (2021).
    Google Scholar 
    27.Ford, J. K. B. & Fisher, H. D. Underwater acoustic signals of the narwhal (Monodon monoceros). Can. J. Zool. 56, 552–560 (1978).
    Google Scholar 
    28.Rankin, S. et al. Acoustic classification of dolphins in the California Current using whistles, echolocation clicks, and burst pulses. Mar. Mammal Sci. 33, 520–540 (2017).
    Google Scholar 
    29.Walmsley, S. F., Rendell, L., Hussey, N. E. & Marcoux, M. Vocal sequences in narwhals (Monodon monoceros). J. Acoust. Soc. Am. 147, 1078–1091 (2020).ADS 
    PubMed 

    Google Scholar 
    30.Shapiro, A. D. Preliminary evidence for signature vocalizations among free-ranging narwhals (Monodon monceros). J. Acoust. Soc. Am. 120, 1695–1705 (2006).ADS 
    PubMed 

    Google Scholar 
    31.Simões Amorim, T. O. et al. Integrative bioacoustics discrimination of eight delphinid species in the western South Atlantic Ocean. PLoS One 14, e0217977 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    32.Stafford, K. M., Laidre, K. L. & Heide-Jørgensen, M. P. First acoustic recordings of narwhals (Monodon monoceros) in winter. Mar. Mammal Sci. 28, 197–207 (2012).
    Google Scholar 
    33.Castellote, M. et al. Dual instrument passive acoustic monitoring of belugas in Cook Inlet, Alaska. J. Acoust. Soc. Am. 139, 2697–2707 (2016).ADS 
    PubMed 

    Google Scholar 
    34.Lammers, M. O. et al. Passive acoustic monitoring of Cook Inlet beluga whales (Delphinapterus leucas). J. Acoust. Soc. Am. 134, 2497–2504 (2013).ADS 
    PubMed 

    Google Scholar 
    35.Roch, M. A., Stinner-Sloan, J., Baumann-Pickering, S. & Wiggins, S. M. Compensating for the effects of site and equipment variation on delphinid species identification from their echolocation clicks. J. Acoust. Soc. Am. 137, 22–29 (2015).ADS 
    PubMed 

    Google Scholar 
    36.Au, W. W., Penner, R. H., Carder, D. A. & Scronce, B. Demonstration of adaptation in beluga whale echolocation signals. J. Acoust. Soc. Am. 77, 726–730 (1985).ADS 
    CAS 
    PubMed 

    Google Scholar 
    37.Au, W. W. L., Penner, R. H. & Turl, C. W. Propagation of beluga echolocation signals. J. Acoust. Soc. Am. 82, 807–813 (1987).ADS 
    CAS 
    PubMed 

    Google Scholar 
    38.Roy, N., Simard, Y., Gervaise, C. & Dtn, E. 3D tracking of foraging belugas from their clicks: Experiment from a coastal hydrophone array. Appl. Acoust. 71, 1050–1056 (2010).
    Google Scholar 
    39.Zahn, M. J., Laidre, K. L., Stilz, P., Rasmussen, M. H. & Koblitz, J. C. Vertical sonar beam width of wild belugas (Delphinapterus leucas) in West Greenland. PLoS One 16, e0257054 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Rutenko, A. N. & Vishnyakov, A. A. Time sequences of sonar signals generated by a beluga whale when locating underwater objects. Acoust. Phys. 52, 314–323 (2006).ADS 

    Google Scholar 
    41.Koblitz, J. C., Stilz, P., Rasmussen, M. H. & Laidre, K. L. Highly directional sonar beam of narwhals (Monodon monoceros) measured with a vertical 16 hydrophone array. PLoS One 11, e0162069 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    42.Podolskiy, E. A. & Sugiyama, S. Soundscape of a narwhal summering ground in a glacier fjord (Inglefield Bredning, Greenland). J. Geophys. Res. Ocean. 125, e2020JC016116 (2020).ADS 

    Google Scholar 
    43.Miller, L. A., Pristed, J., Mohl, B. & Surlykke, A. The click-sounds of narwhals (Monodon monoceros) in Inglefield Bay, Northwest Greenland. Mar. Mammal Sci. 11, 491–502 (1995).
    Google Scholar 
    44.Marcoux, M., Auger-Methe, M., Chmelnitsky, E., Ferguson, S. H. & Humphries, M. M. Local passive acoustic monitoring of narwhal presence in the Canadian Arctic: A pilot project. Arctic 64, 307–316 (2011).
    Google Scholar 
    45.Overland, J. et al. The urgency of Arctic change. Polar Sci. 21, 6–13 (2019).ADS 

    Google Scholar 
    46.Comiso, J. C. & Hall, D. K. Climate trends in the Arctic as observed from space. WIREs Clim. Change 5, 389–409 (2014).
    Google Scholar 
    47.Kwok, R. Arctic sea ice thickness, volume, and multiyear ice coverage: Losses and coupled variability (1958–2018). Environ. Res. Lett. 13, 105005 (2018).
    Google Scholar 
    48.Overland, J. E. & Wang, M. When will the summer Arctic be nearly sea ice free?. Geophys. Res. Lett. 40, 2097–2101 (2013).ADS 

    Google Scholar 
    49.Smith, L. C. & Stephenson, S. R. New Trans-Arctic shipping routes navigable by midcentury. Proc. Natl. Acad. Sci. U.S.A. 110, E1191–E1195 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Hauser, D. D. W., Laidre, K. L. & Stern, H. L. Vulnerability of Arctic marine mammals to vessel traffic in the increasingly ice-free Northwest Passage and Northern Sea Route. Proc. Natl. Acad. Sci. U.S.A. 115, 7617–7622 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Halliday, W. D., Pine, M. K. & Insley, S. J. Underwater noise and Arctic marine mammals: Review and policy recommendations. Environ. Rev. 28, 438–448 (2020).
    Google Scholar 
    52.Halliday, W. D. et al. Underwater sound levels in the Canadian Arctic, 2014–2019. Mar. Pollut. Bull. 168, 112437 (2021).CAS 
    PubMed 

    Google Scholar 
    53.Kochanowicz, Z. et al. Using western science and Inuit knowledge to model ship-source noise exposure for cetaceans (marine mammals) in Tallurutiup Imanga (Lancaster Sound), Nunavut, Canada. Mar. Policy 130, 104557 (2021).
    Google Scholar 
    54.Stewart, R. E. A., Lesage, V., Lawson, J. W., Cleator, H. & Martin, K. A. Science technical review of the draft Environmental Impact Statement (EIS) for Baffinland’s Mary River Project (Canadian Science Advisory Secretariat, Fisheries and Oceans Canada, 2011).
    Google Scholar 
    55.Heide-Jørgensen, M. P., Hansen, R. G., Westdal, K., Reeves, R. R. & Mosbech, A. Narwhals and seismic exploration: Is seismic noise increasing the risk of ice entrapments?. Biol. Conserv. 158, 50–54 (2013).
    Google Scholar 
    56.Blackwell, S. B., Greene, C. R. & Richardson, W. J. Drilling and operational sounds from an oil production island in the ice-covered Beaufort Sea. J. Acoust. Soc. Am. 116, 3199–3211 (2004).ADS 
    PubMed 

    Google Scholar 
    57.Yang, W. et al. Anthropogenic sound exposure-induced stress in captive dolphins and implications for cetacean health. Front. Mar. Sci. 8, 606736 (2021).
    Google Scholar 
    58.Erbe, C. & Farmer, D. M. Zones of impact around icebreakers affecting beluga whales in the Beaufort Sea. J. Acoust. Soc. Am. 108, 1332–1340 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    59.Heide-Jørgensen, M. P. et al. Behavioral response study on seismic airgun and vessel exposures in narwhals. Front. Mar. Sci. 8, 658173 (2021).
    Google Scholar 
    60.Gillespie, D., Mellinger, D. K., Gordon, J. & Al, E. PAMGUARD: Semiautomated, open source software for real-time acoustic detection and localization of cetaceans. Proc. Inst. Acoust. 30, 54–62 (2008).
    Google Scholar 
    61.Sakai, T. PAMpal: Load and process passive acoustic data. R package version 0.12.6. http://cran.r-project.org/package=PAMpal (2021).62.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing http://www.r-project.org/ (2021).63.Griffiths, E. T. et al. Detection and classification of narrow-band high frequency echolocation clicks from drifting recorders. J. Acoust. Soc. Am. 147, 3511–3522 (2020).ADS 
    PubMed 

    Google Scholar 
    64.Baumann-Pickering, S., Wiggins, S. M., Hildebrand, J. A., Roch, M. A. & Schnitzler, H. Discriminating features of echolocation clicks of melon-headed whales (Peponocephala electra), bottlenose dolphins (Tursiops truncatus), and Gray’s spinner dolphins (Stenella longirostris longirostris). J. Acoust. Soc. Am. 128, 2212–2224 (2010).ADS 
    PubMed 

    Google Scholar 
    65.Sakai, T. PAMpal standardClickCalcs. https://taikisan21.github.io/PAMpal/StandardCalcs.html (2021).66.Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 
    67.Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).MathSciNet 
    PubMed 
    MATH 

    Google Scholar 
    68.Anderson, M. J. Permutational Multivariate Analysis of Variance (PERMANOVA). Wiley StatsRef Stat. Ref. Online https://doi.org/10.1002/9781118445112.stat07841 (2017).Article 

    Google Scholar 
    69.Pearson, K. On lines and planes of closest fit to systems of points in space. Philos. Mag. 2, 559–572 (1901).MATH 

    Google Scholar 
    70.Lever, J., Krzywinski, M. & Altman, N. Principal component analysis. Nat. Methods 14, 641–642 (2017).CAS 

    Google Scholar 
    71.Jackson, D. A. Stopping rules in principal components analysis: A comparison of heuristical and statistical approaches. Ecology 74, 2204–2214 (1993).
    Google Scholar 
    72.Oksanen, J. et al. Vegan: Community ecology package. R package version 2.5-7. https://cran.r-project.org/package=vegan (2020).73.Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).MATH 

    Google Scholar 
    74.Yang, L. et al. Description and classification of echolocation clicks of Indian Ocean humpback (Sousa plumbea) and Indo-Pacific bottlenose (Tursiops aduncus) dolphins from Menai Bay, Zanzibar, East Africa. PLoS One 15, e0230319 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Archer, F. I., Rankin, S., Stafford, K. M., Castellote, M. & Delarue, J. Quantifying spatial and temporal variation of North Pacific fin whale (Balaenoptera physalus) acoustic behavior. Mar. Mammal Sci. 36, 224–245 (2020).
    Google Scholar 
    76.Ross, J. C. & Allen, P. E. Random Forest for improved analysis efficiency in passive acoustic monitoring. Ecol. Inform. 21, 34–39 (2014).
    Google Scholar 
    77.Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
    Google Scholar 
    78.Archer, E. rfPermute: Estimate permutation p-values for Random Forest importance metrics. R package version 2.5. https://github.com/EricArcher/rfPermute (2021).79.Gurevich, V. S. & Evans, W. E. Echolocation discrimination of complex planar targets by the Beluga whale (Delphinapterus leucas). J. Acoust. Soc. Am. 60, S5 (1976).ADS 

    Google Scholar 
    80.Soldevilla, M. S. et al. Classification of Risso’s and Pacific white-sided dolphins using spectral properties of echolocation clicks. J. Acoust. Soc. Am. 124, 609–624 (2008).ADS 
    PubMed 

    Google Scholar 
    81.Morisaka, T., Yoshida, Y., Akune, Y., Mishima, H. & Nishimoto, S. Exchange of ‘signature’ calls in captive belugas (Delphinapterus leucas). J. Ethol. 31, 141–149 (2013).
    Google Scholar 
    82.Vergara, V., Michaud, R. & Barrett-Lennard, L. G. What can captive whales tell us about their wild counterparts? Identification, usage, and ontogeny of contact calls in belugas (Delphinapterus leucas). Int. J. Comp. Psychol. 23, 278–309 (2010).
    Google Scholar 
    83.Vergara, V. & Mikus, M. A. Contact call diversity in natural beluga entrapments in an Arctic estuary: Preliminary evidence of vocal signatures in wild belugas. Mar. Mammal Sci. 35, 434–465 (2019).
    Google Scholar 
    84.Panova, E. M. et al. Intraspecific variability in the ‘vowel’-like sounds of beluga whales (Delphinapterus leucas): Intra- and interpopulation comparisons. Mar. Mammal Sci. 32, 452–465 (2016).
    Google Scholar 
    85.Ames, A. E., Blackwell, S. B., Tervo, O. M. & Heide-Jørgensen, M. P. Evidence of stereotyped contact call use in narwhal (Monodon monoceros) mother-calf communication. PLoS One 16, e0254393 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    86.Baumann-Pickering, S. et al. False killer whale and short-finned pilot whale acoustic identification. Endanger. Species Res. 28, 97–108 (2015).
    Google Scholar 
    87.Halliday, W. D. et al. Potential exposure of beluga and bowhead whales to underwater noise from ship traffic in the Beaufort and Chukchi Seas. Ocean Coast. Manag. 204, 105473 (2021).
    Google Scholar 
    88.Laidre, K. L., Jørgensen, O. A. & Treble, M. A. Deep-ocean predation by a high Arctic cetacean. ICES J. Mar. Sci. 61, 430–440 (2004).
    Google Scholar 
    89.Laidre, K. L., Heide-Jørgensen, M. P., Dietz, R., Hobbs, R. C. & Jørgensen, O. A. Deep-diving by narwhals Monodon monoceros: Differences in foraging behavior between wintering areas?. Mar. Ecol. Prog. Ser. 261, 269–281 (2003).ADS 

    Google Scholar 
    90.Lydersen, C. & Kovacs, K. M. A review of the ecology and status of white whales (Delphinapterus leucas) in Svalbard, Norway. Polar Res. 40, 5509 (2021).
    Google Scholar 
    91.Hauser, D. D. W. et al. Regional diving behavior of Pacific Arctic beluga whales Delphinapterus leucas and possible associations with prey. Mar. Ecol. Prog. Ser. 541, 245–264 (2015).ADS 

    Google Scholar 
    92.Ragen, T. J., Huntington, H. P. & Hovelsrud, G. K. Conservation of Arctic marine mammals faced with climate change. Ecol. Appl. 18, S166–S174 (2008).PubMed 

    Google Scholar 
    93.Laidre, K. L. et al. Quantifying the sensitivity of Arctic marine mammals to climate-induced habitat change. Ecol. Appl. 18, S97–S125 (2008).PubMed 

    Google Scholar 
    94.Heide-Jørgensen, M. P., Dietz, R., Laidre, K. L. & Richard, P. Autumn movements, home ranges, and winter density of narwhals (Monodon monoceros) tagged in Tremblay Sound, Baffin Island. Polar Biol. 25, 331–341 (2002).
    Google Scholar 
    95.Hauser, D. D. W., Laidre, K. L., Suydam, R. S. & Richard, P. R. Population-specific home ranges and migration timing of Pacific Arctic beluga whales (Delphinapterus leucas). Polar Biol. 37, 1171–1183 (2014).
    Google Scholar 
    96.Huntington, H. P. A preliminary assessment of threats to Arctic marine mammals and their conservation in the coming decades. Mar. Policy 33, 77–82 (2009).
    Google Scholar 
    97.Gregersen, U., Hopper, J. R. & Knutz, P. C. Basin seismic stratigraphy and aspects of prospectivity in the NE Baffin Bay, Northwest Greenland. Mar. Pet. Geol. 46, 1–18 (2013).
    Google Scholar 
    98.McCauley, R. D. et al. Widely used marine seismic survey air gun operations negatively impact zooplankton. Nat. Ecol. Evol. 1, 0195 (2017).
    Google Scholar  More

  • in

    Hatching phenology is lagging behind an advancing snowmelt pattern in a high-alpine bird

    1.Helm, B. et al. Annual rhythms that underlie phenology: Biological time-keeping meets environmental change. Proc. R. Soc. B Biol. Sci. 280, 20130016 (2013).
    Google Scholar 
    2.Bradshaw, W. E. & Holzapfel, C. M. Evolution of animal photoperiodism. Annu. Rev. Ecol. Evol. Syst. 38, 1–25 (2007).
    Google Scholar 
    3.Dawson, A. Control of the annual cycle in birds: Endocrine constraints and plasticity in response to ecological variability. Philos. Trans. R. Soc. B Biol. Sci. 363, 1621–1633 (2008).
    Google Scholar 
    4.Dawson, A., King, V. M., Bentley, G. E. & Ball, G. F. Photoperiodic control of seasonality in birds. J. Biol. Rhythms 16, 365–380 (2001).CAS 
    PubMed 

    Google Scholar 
    5.Wingfield, J. C. & Kenagy, G. J. Natural regulation of reproductive cycles. Vertebr. Endocrinol. Fundam. Biomed. Implic. 4, 181–241 (1991).
    Google Scholar 
    6.Hahn, T. P., Pereyra, M. E., Sharbaugh, S. M. & Bentley, G. E. Physiological responses to photoperiod in three cardueline finch species. Gen. Comp. Endocrinol. 137, 99–108 (2004).CAS 
    PubMed 

    Google Scholar 
    7.Perfito, N., Meddle, S. L., Tramontin, A. D., Sharp, P. J. & Wingfield, J. C. Seasonal gonadal recrudescence in song sparrows: Response to temperature cues. Gen. Comp. Endocrinol. 143, 121–128 (2005).CAS 
    PubMed 

    Google Scholar 
    8.Shutt, J. D. et al. The environmental predictors of spatio-temporal variation in the breeding phenology of a passerine bird. Proc. R. Soc. B Biol. Sci. 286, 20190952 (2019).
    Google Scholar 
    9.Drake, A. & Martin, K. Rainfall and nest site competition delay mountain bluebird and tree swallow breeding but do not impact productivity. Auk 137, 1–18 (2020).
    Google Scholar 
    10.Bison, M. et al. Best environmental predictors of breeding phenology differ with elevation in a common woodland bird species. Ecol. Evolut. https://doi.org/10.1002/ece3.6684 (2020).Article 

    Google Scholar 
    11.McNamara, J. M., Barta, Z., Klaassen, M. & Bauer, S. Cues and the optimal timing of activities under environmental changes. Ecol. Lett. 14, 1183–1190 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    12.Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    13.Moussus, J.-P., Clavel, J., Jiguet, F. & Julliard, R. Which are the phenologically flexible species? A case study with common passerine birds. Oikos 120, 991–998 (2011).
    Google Scholar 
    14.Chamberlain, D. et al. The altitudinal frontier in avian climate impact research. Ibis 154, 205–209 (2012).
    Google Scholar 
    15.Wipf, S., Stoeckli, V. & Bebi, P. Winter climate change in alpine tundra: Plant responses to changes in snow depth and snowmelt timing. Clim. Change 94, 105–121 (2009).ADS 

    Google Scholar 
    16.Jonas, T., Rixen, C., Sturm, M. & Stoeckli, V. How alpine plant growth is linked to snow cover and climate variability. J. Geophys. Res. Biogeosci. 113, G03013 (2008).ADS 

    Google Scholar 
    17.Kudo, G. & Hirao, A. S. Habitat-specific responses in the flowering phenology and seed set of alpine plants to climate variation: Implications for global-change impacts. Popul. Ecol. 48, 49–58 (2006).
    Google Scholar 
    18.Trant, A., Higgs, E. & Starzomski, B. M. A century of high elevation ecosystem change in the Canadian Rocky Mountains. Sci. Rep. 10, 9698 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Ceppi, P., Scherrer, S. C., Fischer, A. M. & Appenzeller, C. Revisiting Swiss temperature trends 1959–2008. Int. J. Climatol. 32, 203–213 (2012).
    Google Scholar 
    20.Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 5, 424–430 (2015).ADS 

    Google Scholar 
    21.Rosenzweig, C. et al. Attributing physical and biological impacts to anthropogenic climate change. Nature 453, 353–357 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    22.Brunetti, M. et al. Precipitation variability and changes in the greater Alpine region over the 1800–2003 period. J. Geophys. Res. Atmos. 111, D11107 (2006).ADS 

    Google Scholar 
    23.Napoli, A., Crespi, A., Ragone, F., Maugeri, M. & Pasquero, C. Variability of orographic enhancement of precipitation in the Alpine region. Sci. Rep. 9, 13352 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Diffenbaugh, N. S., Scherer, M. & Ashfaq, M. Response of snow-dependent hydrologic extremes to continued global warming. Nat. Clim. Chang. 3, 379–384 (2013).ADS 
    PubMed 

    Google Scholar 
    25.Beniston, M., Keller, F. & Goyette, S. Snow pack in the Swiss Alps under changing climatic conditions: An empirical approach for climate impacts studies. Theoret. Appl. Climatol. 74, 19–31 (2003).ADS 

    Google Scholar 
    26.Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
    Google Scholar 
    27.Saalfeld, S. T. et al. Phenological mismatch in Arctic-breeding shorebirds: Impact of snowmelt and unpredictable weather conditions on food availability and chick growth. Ecol. Evol. 9, 6693–6707 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    28.Tulp, I. & Schekkerman, H. Has prey availability for arctic birds advanced with climate change? Hindcasting the abundance of tundra arthropods using weather and seasonal variation. Arctic 61, 48–60 (2008).
    Google Scholar 
    29.Leung, M.C.-Y. et al. Phenology of hatching and food in low Arctic passerines and shorebirds: Is there a mismatch?. Arctic Sci. 4, 538–556 (2018).
    Google Scholar 
    30.Grabowski, M. M., Doyle, F. I., Reid, D. G., Mossop, D. & Talarico, D. Do Arctic-nesting birds respond to earlier snowmelt? A multi-species study in north Yukon, Canada. Polar Biol. 36, 1097–1105 (2013).
    Google Scholar 
    31.Liebezeit, J. R., Gurney, K. E. B., Budde, M., Zack, S. & Ward, D. Phenological advancement in arctic bird species: Relative importance of snow melt and ecological factors. Polar Biol. 37, 1309–1320 (2014).
    Google Scholar 
    32.Hendricks, P. Spring snow conditions, laying date, and clutch size in an alpine population of American Pipits. J. Field Ornithol. 74, 423–429 (2003).
    Google Scholar 
    33.Pereyra, M. E. Effects of snow-related environmental variation on breeding schedules and productivity of a high-altitude population of dusky flycatchers (Empidonax oberholseri). Auk 128, 746–758 (2011).
    Google Scholar 
    34.Resano-Mayor, J. et al. Snow cover phenology is the main driver of foraging habitat selection for a high-alpine passerine during breeding: implications for species persistence in the face of climate change. Biodivers. Conserv. 28, 2669–2685 (2019).
    Google Scholar 
    35.Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).MATH 

    Google Scholar 
    36.Bears, H., Martin, K. & White, G. C. Breeding in high-elevation habitat results in shift to slower life-history strategy within a single species. J. Anim. Ecol. 78, 365–375 (2009).CAS 
    PubMed 

    Google Scholar 
    37.García-González, R., Aldezabal, A., Laskurain, N. A., Margalida, A. & Novoa, C. Influence of snowmelt timing on the diet quality of pyrenean rock ptarmigan (Lagopus muta pyrenaica): Implications for reproductive success. PLoS ONE 11, e0148632 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    38.Antor, R. J. Arthropod fallout on high alpine snow patches of the Central Pyrenees, northeastern Spain. Arct. Alp. Res. 26, 72–76 (1994).
    Google Scholar 
    39.Brambilla, M. et al. Foraging habitat selection by alpine white-winged snowfinches Montifringilla nivalis during the nestling rearing period. J. Ornithol. 158, 277–286 (2017).
    Google Scholar 
    40.Heiniger, P. H. Anpassungsstrategien des Schneefinken (Montifringilla nivalis) an die extremen Umweltbedingungen des Hochgebirges. Der Ornithol. Beobachter 88, 193–207 (1991).
    Google Scholar 
    41.MacDonald, E. C., Camfield, A. F., Jankowski, J. E. & Martin, K. An alpine-breeding songbird can adjust dawn incubation rhythms to annual thermal regimes. Auk 131, 495–506 (2014).
    Google Scholar 
    42.Mortensen, L. O., Schmidt, N. M., Høye, T. T., Damgaard, C. & Forchhammer, M. C. Analysis of trophic interactions reveals highly plastic response to climate change in a tri-trophic high-arctic ecosystem. Polar Biol. 39, 1467–1478 (2016).
    Google Scholar 
    43.Grangé, J. L. Biologie de la reproduction de la Niverolle alpine Montifringilla nivalis dans les Pyrénnées occidentales françaises. Nos Oiseaux 55, 67–82 (2008).
    Google Scholar 
    44.Strinella, E., Vianale, P., Pirrello, S. & Artese, C. Biologia riproduttiva del Fringuello Alpino Montifringilla nivalis a Campo Imperatore nel Parco Nazionale del Gran Sasso e Monti della Laga (AQ). Alula 18, 95–100 (2011).
    Google Scholar 
    45.Visser, M. E. et al. Variable responses to large-scale climate change in European Parus populations. Proc. R. Soc. Lond. Ser. B Biol. Sci. 270, 367–372 (2003).
    Google Scholar 
    46.Knaus, P. et al. Schweizer Brutvogelatlas 2013–2016. Verbreitung und Bestandsentwicklung der Vögel in der Schweiz und im Fürstentum Liechtenstein. (Schweizerische Vogelwarte, 2018).47.Basist, A., Bell, G. D. & Meentemeyer, V. Statistical relationships between topography and precipitation patterns. J. Clim. 7, 1305–1315 (1994).ADS 

    Google Scholar 
    48.Hock, R. et al. High mountain areas. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds. Pörtner, H. O. et al.). 131–202. (IPCC-Intergovernmental Panel on Climate Change, 2019).49.Schmidt, N. M., Reneerkens, J., Christensen, J. H., Olesen, M. & Roslin, T. An ecosystem-wide reproductive failure with more snow in the Arctic. PLOS Biol. 17, e3000392 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Martin, K. & Wiebe, K. L. Coping mechanisms of alpine and arctic breeding birds: extreme weather and limitations to reproductive resilience. Integr. Comp. Biol. 44, 177–185 (2004).PubMed 

    Google Scholar 
    51.Williams, C. T. et al. Seasonal reproductive tactics: Annual timing and the capital-to-income breeder continuum. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160250 (2017).
    Google Scholar 
    52.Barlow, K. E. et al. Citizen science reveals trends in bat populations: The National Bat Monitoring Programme in Great Britain. Biol. Cons. 182, 14–26 (2015).
    Google Scholar 
    53.Strebel, N., Kéry, M., Schaub, M. & Schmid, H. Studying phenology by flexible modelling of seasonal detectability peaks. Methods Ecol. Evol. 5, 483–490 (2014).
    Google Scholar 
    54.Maggini, R. et al. Are Swiss birds tracking climate change?: Detecting elevational shifts using response curve shapes. Ecol. Model. 222, 21–32 (2011).
    Google Scholar 
    55.Gilg, O. et al. Climate change and the ecology and evolution of Arctic vertebrates. Ann. N. Y. Acad. Sci. 1249, 166–190 (2012).ADS 
    PubMed 

    Google Scholar 
    56.Gossmann, T. I. et al. Ice-age climate adaptations trap the alpine marmot in a state of low genetic diversity. Curr. Biol. 29, 1712–1720 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Charmantier, A. & Gienapp, P. Climate change and timing of avian breeding and migration: Evolutionary versus plastic changes. Evol. Appl. 7, 15–28 (2014).PubMed 

    Google Scholar 
    58.Klein, G., Vitasse, Y., Rixen, C., Marty, C. & Rebetez, M. Shorter snow cover duration since 1970 in the Swiss Alps due to earlier snowmelt more than to later snow onset. Clim. Change 139, 637–649 (2016).
    Google Scholar 
    59.Scridel, D. et al. A review and meta-analysis of the effects of climate change on Holarctic mountain and upland bird populations. Ibis 160, 489–515 (2018).
    Google Scholar 
    60.Strinella, E., Scridel, D., Brambilla, M., Schano, C. & Korner-Nievergelt, F. Potential sex-dependent effects of weather on apparent survival of a high-elevation specialist. Sci. Rep. 10, 8386 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Gottfried, M. et al. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Chang. 2, 111–115 (2012).ADS 

    Google Scholar 
    62.Kharouba, H. M. & Wolkovich, E. M. Disconnects between ecological theory and data in phenological mismatch research. Nat. Clim. Chang. 10, 406–415 (2020).ADS 

    Google Scholar 
    63.Summers-Smith, J. Handbook of the Birds of the World, Volume 14: Bush-Shrikes to Old World Sparrows. (2009).64.Glutz von Blotzheim, U., Bauer, K. & Bezzel, E. I: Passeridae. in Handbuch der Vögel Mitteleuropas. Vol. 12 (Akademische Verlagsgesellschaft, 1997).65.Antor, R. J. The importance of arthropod fallout on snow patches for the foraging of high-alpine birds. J. Avian Biol. 26, 81–85 (1995).
    Google Scholar 
    66.Gonseth, Y., Wohlgemuth, T., Sansonnens, B. & Buttler, A. Die Biogeographischen Regionen der Schweiz. Erläuterungen und Einteilungsstandard. Umwelt Materialien. Vol. 137 (2001).67.Thornton, P. E., Running, S. W. & White, M. A. Generating surfaces of daily meteorological variables over large regions of complex terrain. J. Hydrol. 190, 214–251 (1997).ADS 

    Google Scholar 
    68.Magnusson, J., Gustafsson, D., Hüsler, F. & Jonas, T. Assimilation of point SWE data into a distributed snow cover model comparing two contrasting methods. Water Resour. Res. 50, 7816–7835 (2014).ADS 

    Google Scholar 
    69.Helbig, N., van Herwijnen, A., Magnusson, J. & Jonas, T. Fractional snow-covered area parameterization over complex topography. Hydrol. Earth Syst. Sci. 19, 1339–1351 (2015).ADS 

    Google Scholar 
    70.Begert, M. & Frei, C. Long-term area-mean temperature series for Switzerland—Combining homogenized station data and high resolution grid data. Int. J. Climatol. 38, 2792–2807 (2018).
    Google Scholar 
    71.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. ArXiv e-prints 1406 (2015).72.R Core Team. R: A Language and Environment for Statistical Computing. (2020).73.Gelman, A. & Su, Y.-S. Arm: Data analysis using regression and multilevel/hierarchical models. (2020).74.Carpenter, B. et al. Stan: A probabilistic programming language. J. Stat. Softw. 76 (2017).75.Stan Development Team. RStan: The R interface to Stan. (2020).76.Gabry, J. shinystan: Interactive Visual and Numerical Diagnostics and Posterior Analysis for Bayesian Models. (2018).77.Pebesma, E. J. Multivariable geostatistics in S: The gstat package. Comput. Geosci. 30, 683–691 (2004).ADS 

    Google Scholar 
    78.Pebesma, E. & Bivand, R. S. S classes and methods for spatial data: the sp package. R News 5, 9–13 (2005).
    Google Scholar 
    79.Gelman, A. & Greenland, S. Are confidence intervals better termed “uncertainty intervals”?. BMJ 366, I5381 (2019).
    Google Scholar  More

  • in

    Penetrative and non-penetrative interaction between Laboulbeniales fungi and their arthropod hosts

    The micro-CT results from Arthrorhynchus agree perfectly with the previously known light microscope and transmission electron microscope images2. This emphasizes that microtomography is a good technique to visualize the type of fungal attachment to the host and especially the penetration of the cuticle, apart from the study of thallus in amber fossils17. As Jensen et al. (2019) demonstrated the presence of a haustorium in Arthrorhynchus using scanning electron microscopy, we are confident that the lack of penetration and haustorium in Rickia found by micro-CT is real. This is also in agreement with results from the scanning electron microscopical investigation of the attachment sites of R. gigas, which exhibits no indication of penetration and are very similar to those of R. wasmannii previously shown18.Despite the absence of a haustorium, and hence without any obvious means of obtaining nutrition, Rickia gigas is quite a successful fungus, being often abundant on several species of Afrotropical millipedes of the family Spirostreptidae10. It was originally described from Archispirostreptus gigas, and Tropostreptus (= ‘Spirostreptus’) hamatus20, and was subsequently reported from several other Tropostreptus species19.A further challenge for Laboulbeniales growing on millipedes is that infected millipedes, in some species even adults, may moult, shedding the exuviae with the fungus, as has been observed by us on an undescribed Rickia species on a millipede of the genus Spirobolus (family Spirobolidae).The question of how non-haustoriate Laboulbeniales obtain nutrients has been discussed by several authors18, including staining experiments using fungi of the non-haustoriate genus Laboulbenia on various beetles21. Whereas the surface of the main thallus was almost impenetrable to the dye applied (Nile Blue), the smaller appendages could sometimes be penetrated21. The dye injection into the beetle elytra upon which the fungi were sitting, actually spread from the elytron into the fungus, thus indicating that in spite of the lack of a haustorium, the fungus is able to extract nutrients from the interior of its host21.Such experiments have not been performed on Rickia species, but the possibility that nutrients may pass from the host into the basis of the fungus cannot be excluded. For this genus, or at least R. gigas, there may, however, be an alternative way to obtain nutrients: the small opening in the circular wall by which the thallus is attached to the host may allow nutrients from the surface of the millipede or from the environment to seep into the foot of the fungus. However, further experiments are needed in order to evaluate this hypothesis. Moreover, we should not exclude a potential role of primary and secondary appendages in Laboulbeniales nutrition, as we still do not understand exactly their functional role on the fungus life cycle11.The predominant position of the Laboulbeniales on the host might be related to the absence or presence of a haustorium. Thus, the haustoriate species of the genus Arthrorhynchus are most frequently encountered in large numbers on the arthrodial membranes of the host’s abdomen, although some thalli are found on legs2,22. At the arthrodial membranes the cuticle is more flexible and therefore might be easier to penetrate by a parasite. Furthermore, most tissues providing/storing nutrition (e.g., fat body) are located within the abdomen. In contrast, non-haustoriate fungi as are often located on more stiff and sclerotized body-parts like the genus Rickia on the legs or body-rings of millipedes7,20,23 or the genus Laboulbenia on the elytra of beetles21,24. A reason for this might be that the non-haustoriate forms, which are only superficially attached to the host need a more or less smooth surface for adherence and can easily become detached from a flexible surface, which is movable in itself, like the arthrodial membrane, while the haustoriate forms are firmly anchored within the hosts’ cuticle.Whereas the vast majority of the more than 2000 described species of Laboulbeniales show no sign of host penetration, haustoria have been reported from some other genera18, including Trenomyces parasitizing bird lice25,26, Hesperomyces growing on coccinellid beetles and Herpomyces on cockroaches (formerly a Laboulbeniales and now in the order Herpomycetales10), with pernicious consequences on the hosts’ fitness18,27. Micro-CT studies on these genera could help to understand the host penetration. In order to fully understand how Laboulbeniales obtain nourishment, although other approaches are, also needed—for the time being it remains a mystery how the non-haustoriate Laboulbeniales sustain themselves. More