1.Sanderson, E. W. et al. The human footprint and the last of the wild. Bioscience 52, 891 (2002).
Google Scholar
2.Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).ADS
CAS
PubMed
Google Scholar
3.Birk, S. et al. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat. Ecol. Evol. 4, 1060–1068 (2020).PubMed
Google Scholar
4.EU Water Framework Directive Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000, establishing a framework for Community action in the field of water policy (2000).5.Valiente-Banuet, A. et al. Beyond species loss: The extinction of ecological interactions in a changing world. Funct. Ecol. 29, 299–307 (2015).
Google Scholar
6.Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323–329 (2019).ADS
Google Scholar
7.Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).ADS
CAS
PubMed
Google Scholar
8.Haddeland, I. et al. Global water resources affected by human interventions and climate change. Proc. Natl. Acad. Sci. U.S.A. 111, 3251–3256 (2014).ADS
CAS
PubMed
Google Scholar
9.Stanton, J. C., Shoemaker, K. T., Pearson, R. G. & Akçakaya, H. R. Warning times for species extinctions due to climate change. Glob. Change Biol. 21, 1066–1077 (2015).ADS
Google Scholar
10.Jarić, I., Lennox, R. J., Kalinkat, G., Cvijanović, G. & Radinger, J. Susceptibility of European freshwater fish to climate change: Species profiling based on life-history and environmental characteristics. Glob. Change Biol. 25, 448–458 (2019).ADS
Google Scholar
11.Gaston, K. J., Jackson, S. F., Cantú-Salazar, L. & Cruz-Piñón, G. The ecological performance of protected areas. Annu. Rev. Ecol. Evol. Syst. 39, 93–113 (2008).
Google Scholar
12.Kati, V. et al. Hotspots, complementarity or representativeness? Designing optimal small-scale reserves for biodiversity conservation. Biol. Conserv. 120, 471–480 (2004).
Google Scholar
13.Everall, N. C. et al. Comparability of macroinvertebrate biomonitoring indices of river health derived from semi-quantitative and quantitative methodologies. Ecol. Indic. 78, 437–448 (2017).
Google Scholar
14.Gieswein, A., Hering, D. & Lorenz, A. W. Development and validation of a macroinvertebrate-based biomonitoring tool to assess fine sediment impact in small mountain streams. Sci. Total Environ. 652, 1290–1301 (2019).ADS
PubMed
Google Scholar
15.Coates, S., Waugh, A., Anwar, A. & Robson, M. Efficacy of a multi-metric fish index as an analysis tool for the transitional fish component of the Water Framework Directive. Mar. Pollut. Bull. 55, 225–240 (2007).CAS
PubMed
Google Scholar
16.Feld, C. K. & Hering, D. Community structure or function: Effects of environmental stress on benthic macroinvertebrates at different spatial scales. Freshw. Biol. 52, 1380–1399 (2007).
Google Scholar
17.Dobson, A., Lafferty, K. D., Kuris, A. M., Hechinger, R. F. & Jetz, W. Homage to Linnaeus: How many parasites? How many hosts? Proc. Natl. Acad. Sci. 105, 11482–11489 (2008).ADS
CAS
PubMed
PubMed Central
Google Scholar
18.Carlson, C. J., Zipfel, C. M., Garnier, R. & Bansal, S. Global estimates of mammalian viral diversity accounting for host sharing. Nat. Ecol. Evol. 3, 1070–1075 (2019).PubMed
Google Scholar
19.Poulin, R. Parasite biodiversity revisited: Frontiers and constraints. Int. J. Parasitol. 44, 581–589 (2014).PubMed
Google Scholar
20.Thomas, F. et al. Parasites and ecosystem engineering: What roles could they play? Oikos 84, 167 (1999).
Google Scholar
21.Hudson, P. J., Dobson, A. P. & Lafferty, K. D. Is a healthy ecosystem one that is rich in parasites? Trends Ecol. Evol. 21, 381–385 (2006).PubMed
Google Scholar
22.Lefèvre, T. et al. The ecological significance of manipulative parasites. Trends Ecol. Evol. 24, 41–48 (2009).PubMed
Google Scholar
23.Frainer, A., McKie, B. G., Amundsen, P. A., Knudsen, R. & Lafferty, K. D. Parasitism and the biodiversity-functioning relationship. Trends Ecol. Evol. 33, 260–268 (2018).PubMed
Google Scholar
24.Lafferty, K. D. & Morris, A. K. Altered behavior of parasitized Killifish increases susceptibility to predation by bird final hosts. Ecology 77, 1390–1397 (1996).
Google Scholar
25.Mouritsen, K. N. & Poulin, R. Parasitism, community structure and biodiversity in intertidal ecosystems. Parasitology 124, 101–117 (2002).
Google Scholar
26.Marcogliese, D. J. Parasites: Small players with crucial roles in the ecological theater. EcoHealth 1, 151–164 (2004).
Google Scholar
27.Lagrue, C. & Poulin, R. Intra- and interspecific competition among helminth parasites: Effects on Coitocaecum parvum life history strategy, size and fecundity. Int. J. Parasitol. 38, 1435–1444 (2008).PubMed
Google Scholar
28.Rosenkranz, M., Poulin, R. & Selbach, C. Behavioural impacts of trematodes on their snail host: Species-specific effects or generalised response? Ethology 124, 790–795 (2018).
Google Scholar
29.Lafferty, K. D. et al. Parasites in food webs: The ultimate missing links. Ecol. Lett. 11, 533–546 (2008).PubMed
PubMed Central
Google Scholar
30.Thieltges, D. W. et al. Parasites as prey in aquatic food webs: Implications for predator infection and parasite transmission. Oikos 122, 1473–1482 (2013).
Google Scholar
31.Thieltges, D. W., Jensen, K. T. & Poulin, R. The role of biotic factors in the transmission of free-living endohelminth stages. Parasitology 135, 407–426 (2008).CAS
PubMed
Google Scholar
32.Kuris, A. M. et al. Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454, 515–518 (2008).ADS
CAS
PubMed
Google Scholar
33.Preston, D. L., Orlofske, S. A., Lambden, J. P. & Johnson, P. T. J. Biomass and productivity of trematode parasites in pond ecosystems. J. Anim. Ecol. 82, 509–517 (2013).PubMed
Google Scholar
34.Soldánová, M., Selbach, C. & Sures, B. The early worm catches the bird? Productivity and patterns of Trichobilharzia szidati cercarial emission from Lymnaea stagnalis. PLoS ONE 11, e0149678 (2016).PubMed
PubMed Central
Google Scholar
35.Vidal-Martínez, V. M., Pech, D., Sures, B., Purucker, S. T. & Poulin, R. Can parasites really reveal environmental impact? Trends Parasitol. 26, 44–51 (2010).PubMed
Google Scholar
36.Shea, J. et al. The use of parasites as indicators of ecosystem health as compared to insects in freshwater lakes of the Inland Northwest. Ecol. Indic. 13, 184–188 (2012).
Google Scholar
37.Sures, B., Nachev, M., Selbach, C. & Marcogliese, D. J. Parasite responses to pollution: What we know and where we go in ‘environmental parasitology’. Parasit. Vectors 10, 65 (2017).PubMed
PubMed Central
Google Scholar
38.Esch, G. W. The transmission of digenetic trematodes: Style, elegance, complexity. Integr. Comp. Biol. 42, 304–312 (2002).PubMed
Google Scholar
39.Byers, J. E., Altman, I., Grosse, A. M., Huspeni, T. C. & Maerz, J. C. Using parasitic trematode larvae to quantify an elusive vertebrate host. Conserv. Biol. 25, 85–93 (2010).PubMed
Google Scholar
40.Moore, C. S., Gittman, R. K., Puckett, B. J., Wellman, E. H. & Blakeslee, A. M. H. If you build it, they will come: Restoration positively influences free-living and parasite diversity in a restored tidal marsh. Food Webs 25, e00167 (2020).
Google Scholar
41.Dougherty, E. R. et al. Paradigms for parasite conservation. Conserv. Biol. 30, 724–733 (2016).MathSciNet
PubMed
Google Scholar
42.Carlson, C. J. et al. A global parasite conservation plan. Biol. Conserv. 250, 108596 (2020).
Google Scholar
43.Kwak, M. L., Heath, A. C. G. & Cardoso, P. Methods for the assessment and conservation of threatened animal parasites. Biol. Conserv. 248, 108696 (2020).
Google Scholar
44.Votýpka, J., Kment, P., Yurchenko, V. & Lukeš, J. Endangered monoxenous trypanosomatid parasites: A lesson from island biogeography. Biodivers. Conserv. 29, 3635–3667 (2020).
Google Scholar
45.Carlson, C. J. et al. Parasite biodiversity faces extinction and redistribution in a changing climate. Sci. Adv. 3, e1602422 (2017).ADS
PubMed
PubMed Central
Google Scholar
46.Lafferty, K. D. Biodiversity loss decreases parasite diversity: Theory and patterns. Philos. Trans. R. Soc. B Biol. Sci. 367, 2814–2827 (2012).
Google Scholar
47.Cizauskas, C. A. et al. Parasite vulnerability to climate change: An evidence-based functional trait approach. R. Soc. Open Sci. 4, 160535 (2017).ADS
PubMed
PubMed Central
Google Scholar
48.Watson, D. M., Milner, K. V. & Leigh, A. Novel application of species richness estimators to predict the host range of parasites. Int. J. Parasitol. 47, 31–39 (2017).PubMed
Google Scholar
49.Vannatta, J. T. & Minchella, D. J. Parasites and their impact on ecosystem nutrient cycling. Trends Parasitol. 34, 452–455 (2018).CAS
PubMed
Google Scholar
50.Jorge, F. & Poulin, R. Poor geographical match between the distributions of host diversity and parasite discovery effort. Proc. R. Soc. B Biol. Sci. 285, 20180072 (2018).
Google Scholar
51.Faltýnková, A. Larval trematodes (Digenea) in molluscs from small water bodies near České Budějovice, Czech Republic. Acta Parasitol. 50, 49–55 (2005).
Google Scholar
52.Żbikowska, E. Digenea species in chosen populations of freshwater snails in northern and central part of Poland. Wiadomości Parazytol. 53, 301–308 (2007).
Google Scholar
53.Schwelm, J., Soldánová, M., Vyhlídalová, T., Sures, B. & Selbach, C. Small but diverse: Larval trematode communities in the small freshwater planorbids Gyraulus albus and Segmentina nitida (Gastropoda: Pulmonata) from the Ruhr River, Germany. Parasitol. Res. 117, 241–255 (2018).CAS
PubMed
Google Scholar
54.Selbach, C., Soldánová, M., Feld, C. K., Kostadinova, A. & Sures, B. Hidden parasite diversity in a European freshwater system. Sci. Rep. 10, 2694 (2020).ADS
CAS
PubMed
PubMed Central
Google Scholar
55.Gibson, D. I. & Bray, R. A. The evolutionary expansion and host-parasite relationships of the Digenea. Int. J. Parasitol. 24, 1213–1226 (1994).CAS
PubMed
Google Scholar
56.Gordy, M. A., Kish, L., Tarrabain, M. & Hanington, P. C. A comprehensive survey of larval digenean trematodes and their snail hosts in central Alberta, Canada. Parasitol. Res. 115, 3867–3880 (2016).PubMed
Google Scholar
57.Soldánová, M. et al. Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake. Int. J. Parasitol. 47, 327–345 (2017).PubMed
Google Scholar
58.Faltýnková, A. & Haas, W. Larval trematodes in freshwater molluscs from the Elbe to Danube rivers (Southeast Germany): Before and today. Parasitol. Res. 99, 572–582 (2006).PubMed
Google Scholar
59.Faltýnková, A., Našincová, V. & Kablásková, L. Larval trematodes (Digenea) of the great pond snail, Lymnaea stagnalis (L.), (Gastropoda, pulmonata) in Central Europe: A survey of species and key to their identification. Parasite 14, 39–51 (2007).PubMed
Google Scholar
60.Faltýnková, A., Našincová, V. & Kablásková, L. Larval trematodes (Digenea) of planorbid snails (Gastropoda: Pulmonata) in Central Europe: A survey of species and key to their identification. Syst. Parasitol. 69, 155–178 (2008).PubMed
Google Scholar
61.Faltýnková, A., Sures, B. & Kostadinova, A. Biodiversity of trematodes in their intermediate mollusc and fish hosts in the freshwater ecosystems of Europe. Syst. Parasitol. 93, 283–293 (2016).PubMed
Google Scholar
62.Soldánová, M., Selbach, C., Sures, B., Kostadinova, A. & Perez-del-Olmo, A. Larval trematode communities in Radix auricularia and Lymnaea stagnalis in a reservoir system of the Ruhr River. Parasit. Vectors 3, 56 (2010).PubMed
PubMed Central
Google Scholar
63.Kamiya, T., O’Dwyer, K., Nakagawa, S. & Poulin, R. Host diversity drives parasite diversity: Meta-analytical insights into patterns and causal mechanisms. Ecography (Cop.) 37, 689–697 (2014).
Google Scholar
64.Johnson, P. T. J. & Thieltges, D. W. Diversity, decoys and the dilution effect: How ecological communities affect disease risk. J. Exp. Biol. 213, 961–970 (2010).CAS
PubMed
Google Scholar
65.Lagrue, C. & Poulin, R. Local diversity reduces infection risk across multiple freshwater host-parasite associations. Freshw. Biol. 60, 2445–2454 (2015).
Google Scholar
66.Song, Z. & Proctor, H. Parasite prevalence in intermediate hosts increases with waterbody age and abundance of final hosts. Oecologia 192, 311–321 (2020).ADS
PubMed
Google Scholar
67.Welsh, J. E., Van Der Meer, J., Brussaard, C. P. D. & Thieltges, D. W. Inventory of organisms interfering with transmission of a marine trematode. J. Mar. Biol. Assoc. U.K. 94, 697–702 (2014).
Google Scholar
68.Gopko, M., Mironova, E., Pasternak, A., Mikheev, V. & Taskinen, J. Freshwater mussels (Anodonta anatina) reduce transmission of a common fish trematode (eye fluke, Diplostomum pseudospathaceum). Parasitology 144, 1971–1979 (2017).CAS
PubMed
Google Scholar
69.Vielma, S., Lagrue, C., Poulin, R. & Selbach, C. Non-host organisms impact transmission at two different life stages in a marine parasite. Parasitol. Res. 118, 111–117 (2019).PubMed
Google Scholar
70.Kudlai, O., Stunženas, V. & Tkach, V. The taxonomic identity and phylogenetic relationships of Cercaria pugnax and C. helvetica XII (Digenea: Lecithodendriidae) based on morphological and molecular data. Folia Parasitol. (Praha) 62, 1–7 (2015).
Google Scholar
71.Dunn, R. R., Harris, N. C., Colwell, R. K., Koh, L. P. & Sodhi, N. S. The sixth mass coextinction: Are most endangered species parasites and mutualists? Proc. R. Soc. B Biol. Sci. 276, 3037–3045 (2009).
Google Scholar
72.Selbach, C., Soldánová, M., Georgieva, S., Kostadinova, A. & Sures, B. Integrative taxonomic approach to the cryptic diversity of Diplostomum spp. in lymnaeid snails from Europe with a focus on the ‘Diplostomum mergi’ species complex. Parasit. Vectors 8, 300 (2015).PubMed
PubMed Central
Google Scholar
73.Marcogliese, D. J. Parasites of the superorganism: Are they indicators of ecosystem health? Int. J. Parasitol. 35, 705–716 (2005).PubMed
Google Scholar
74.MacKenzie, K., Williams, H. H., Williams, B., McVicar, A. H. & Siddall, R. Parasites as indicators of water quality and the potential use of helminth transmission in marine pollution studies. Adv. Parasitol. 35, 85–144 (1995).CAS
PubMed
Google Scholar
75.Anderson, T. K. & Sukhdeo, M. V. K. Qualitative community stability determines parasite establishment and richness in estuarine marshes. PeerJ 2013, 1–14 (2013).
Google Scholar
76.Neutel, A. M. Stability in real food webs: Weak links in long loops. Science 296, 1120–1123 (2002).ADS
CAS
PubMed
Google Scholar
77.Glöer, P. Süßwassergastropoden Nord- und Mitteleuropas: Mollusca I: Bestimmungsschlüssel, Lebensweise, Verbreitung (ConchBooks, 2002).
Google Scholar
78.Welter-Schultes, F. European Non-marine Molluscs, a Guide for Species Identification (Planet Poster Editions, 2012).
Google Scholar
79.Brühne, M. & Scharbert, A. Die Erschließung des Bienener Altrheins für die Rheinfischfauna. Naturschutz und Biologische Vielfalt (2005).80.Hugghins, E. J. Life history of a strigeid trematode, Hysteromorpha triloba (Rudolphi, 1819) Lutz, 1931. II. Sporocyst through adult. Trans. Am. Microsc. Soc. 73, 221 (1954).
Google Scholar
81.Našincová, V. & Scholz, T. The life cycle of Asymphylodora tincae (Modeer 1790) (Trematoda: Monorchiidae): A unique development in monorchiid trematodes. Parasitol. Res. 80, 192–197 (1994).PubMed
Google Scholar
82.Georgieva, S. et al. New cryptic species of the ‘revolutum’ group of Echinostoma (Digenea: Echinostomatidae) revealed by molecular and morphological data. Parasit. Vectors 6, 64 (2013).PubMed
PubMed Central
Google Scholar
83.Grabner, D. S. et al. Invaders, natives and their enemies: Distribution patterns of amphipods and their microsporidian parasites in the Ruhr Metropolis, Germany. Parasit. Vectors 8, 419 (2015).PubMed
PubMed Central
Google Scholar
84.Bush, A. O., Lafferty, K. D., Lotz, J. M. & Shostak, A. W. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 83, 575 (1997).CAS
PubMed
Google Scholar
85.Niewiadomska, K. Family Cyathocotylidae Mühling, 1898. In Keys to the Trematoda Vol. 1 (eds Gibson, D. I. et al.) 201–214 (CABI Publishing Wallingford & Natural History Museum, 2002).
Google Scholar
86.Möhl, K. et al. Biology of Alaria spp. and human exposition risk to Alaria mesocercariae-a review. Parasitol. Res. 105, 1–15 (2009).PubMed
Google Scholar
87.Brown, R., Soldánová, M., Barrett, J. & Kostadinova, A. Small-scale to large-scale and back: Larval trematodes in Lymnaea stagnalis and Planorbarius corneus in Central Europe. Parasitol. Res. 108, 137–150 (2011).PubMed
Google Scholar
88.Niewiadomska, K. Family Diplostomidae Poirier, 1886. In Keys to the Trematoda Vol. 1 (eds Gibson, D. I. et al.) 167–196 (CABI Publishing Wallingford & Natural History Museum, 2002).
Google Scholar
89.Tkach, V. V., Kudlai, O. & Kostadinova, A. Molecular phylogeny and systematics of the Echinostomatoidea Looss, 1899 (Platyhelminthes: Digenea). Int. J. Parasitol. 46, 171–185 (2016).PubMed
Google Scholar
90.Kostadinova, A. & Gibson, D. A redescription of Uroproctepisthmium bursicola (Creplin, 1837) n. comb. (Digenea: Echinostomatidae), and re-evaluations of the genera Episthmium Lühe, 1909 and Uroproctepisthmium Fischthal & Kuntz, 1976. Syst. Parasitol. 50, 63–67 (2001).CAS
PubMed
Google Scholar
91.Kudlai, O. Biology of Neoacanthoparyphium echinatoides (Trematoda, Echinostomatidae) in north-western Priazov’ye (Ukraine). Vestn. Zool. 23, 102–106 (2009).
Google Scholar
92.Selbach, C. et al. Morphological and molecular data for larval stages of four species of Petasiger Dietz, 1909 (Digenea: Echinostomatidae) with an updated key to the known cercariae from the Palaearctic. Syst. Parasitol. 89, 153–166 (2014).PubMed
Google Scholar
93.Bray, R. A. Family Lissorchiidae Magath, 1917. In Keys to the Trematoda Vol. 3 (eds Bray, R. A. et al.) 177–186 (CABI Publishing Wallingford & Natural History Museum, 2008).
Google Scholar
94.Zikmundová, J., Georgieva, S., Faltýnková, A., Soldánová, M. & Kostadinova, A. Species diversity of Plagiorchis Lühe, 1899 (Digenea: Plagiorchiidae) in lymnaeid snails from freshwater ecosystems in central Europe revealed by molecules and morphology. Syst. Parasitol. 88, 37–54 (2014).PubMed
Google Scholar
95.Kanarek, G., Zaleśny, G., Sitko, J. & Tkach, V. V. The systematic position and structure of the genus Leyogonimus Ginetsinskaya, 1948 (Platyhelminthes: Digenea) with comments on the taxonomy of the superfamily Microphalloidea Ward, 1901. Acta Parasitol. 62, 617–624 (2017).CAS
PubMed
Google Scholar
96.Tkach, V. V., Snyder, S. D. & Świderski, Z. On the phylogenetic relationships of some members of Macroderoididae and Ochetosomatidae (Digenea, Plagiorchioidea). Acta Parasitol. 46, 267–275 (2001).
Google Scholar
97.Roy, C. L. & St-Louis, V. Spatio-temporal variation in prevalence and intensity of trematodes responsible for waterfowl die-offs in faucet snail-infested waterbodies of Minnesota, USA. Int. J. Parasitol. Parasites Wildl. 6, 162–176 (2017).PubMed
PubMed Central
Google Scholar
98.Kostadinova, A. Family Echinostomatidae Looss, 1899. In Keys to the Trematoda Vol. 2 (eds Jones, A. et al.) 9–64 (CABI Publishing Wallingford & Natural History Museum, 2005).
Google Scholar
99.Niewiadomska, K. Family Strigeidae Railliet, 1919. In Keys to the Trematoda Vol. 1 (eds Gibson, D. I. et al.) 231–241 (CABI Publishing & Natural History Museum, 2002).
Google Scholar More