More stories

  • in

    Lion and spotted hyena distributions within a buffer area of the Serengeti-Mara ecosystem

    1.Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).PubMed 

    Google Scholar 
    2.Riggio, J. et al. The size of savannah Africa: A lion’s (Panthera leo) view. Biodivers. Conserv. 22, 17–35 (2013).
    Google Scholar 
    3.Carbone, C. & Gittleman, J. L. A common rule for the scaling of carnivore density. Science 295, 2273–2276 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    4.Veldhuis, M. P. et al. Cross-boundary human impacts compromise the Serengeti-Mara ecosystem. Science 363, 1424–1428 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    5.Palomares, F. & Caro, T. M. Interspecific killing among mammalian carnivores. Am. Nat. 153, 492–508 (1999).CAS 
    PubMed 

    Google Scholar 
    6.Tanner, E. et al. Wolves contribute to disease control in a multi-host system. Sci. Rep. 9, 1–12 (2019).ADS 

    Google Scholar 
    7.O’Bryan, C. J. et al. The contribution of predators and scavengers to human well-being. Nat. Ecol. Evol. 2, 229–236 (2018).PubMed 

    Google Scholar 
    8.Prugh, L. R. & Sivy, K. J. Enemies with benefits: integrating positive and negative interactions among terrestrial carnivores. Ecol. Lett. 23, 902–918 (2020).PubMed 

    Google Scholar 
    9.Woodroffe, R. & Ginsberg, J. R. Edge effects and the extinction of populations inside protected areas. Science 280, 2126–2128 (1998).ADS 
    CAS 
    PubMed 

    Google Scholar 
    10.Wilfred, P. Towards sustainable wildlife management areas in Tanzania. Trop. Conserv. Sci. 3, 103–116 (2010).
    Google Scholar 
    11.Sinclair, A. R., Metzger, K. L., Mduma, S. A. & Fryxell, J. M. Serengeti IV: Sustaining Biodiversity in a Coupled Human-Natural System (University of Chicago Press, 2015).
    Google Scholar 
    12.Crooks, K. R. & Sanjayan, M. Connectivity Conservation Vol. 14 (Cambridge University Press, 2006).
    Google Scholar 
    13.Balme, G. A., Slotow, R. & Hunter, L. T. Edge effects and the impact of non-protected areas in carnivore conservation: Leopards in the Phinda-Mkhuze Complex, South Africa. Anim. Conserv. 13, 315–323 (2010).
    Google Scholar 
    14.Lindsey, P. et al. The performance of African protected areas for lions and their prey. Biol. Conserv. 209, 137–149 (2017).
    Google Scholar 
    15.Elliot, N. B. & Gopalaswamy, A. M. Toward accurate and precise estimates of lion density. Conserv. Biol. 31, 934–943 (2017).PubMed 

    Google Scholar 
    16.Masenga, E. et al. Strychnine poisoning in African wild dogs (Lycaon pictus) in the Loliondo game controlled area, Tanzania. Int. J. Biodivers. Conserv. 5, 367–370 (2013).
    Google Scholar 
    17.Metzger, K., Sinclair, A., Hilborn, R., Hopcraft, J. G. C. & Mduma, S. A. Evaluating the protection of wildlife in parks: The case of African buffalo in Serengeti. Biodivers. Conserv. 19, 3431–3444 (2010).
    Google Scholar 
    18.Mogensen, N. L., Ogutu, J. O. & Dabelsteen, T. The effects of pastoralism and protection on lion behaviour, demography and space use in the Mara Region of Kenya. Afr. Zool. 46, 78–87 (2011).
    Google Scholar 
    19.Kiffner, C., Meyer, B., Mühlenberg, M. & Waltert, M. Plenty of prey, few predators: what limits lions Panthera leo in Katavi National Park, western Tanzania?. Oryx 43, 52–59 (2009).
    Google Scholar 
    20.Kiffner, C., Stoner, C. & Caro, T. Edge effects and large mammal distributions in a national park. Anim. Conserv. 16, 97–107 (2013).
    Google Scholar 
    21.Newmark, W. D. Isolation of African protected areas. Front. Ecol. Environ. 6, 321–328 (2008).
    Google Scholar 
    22.Hofer, H. & East, M. Population dynamics, population size, and the commuting system of Serengeti spotted hyenas. Serengeti II Dyn. Manag. Conserv. Ecosyst. 2, 332 (1995).
    Google Scholar 
    23.Holekamp, K. E. & Dloniak, S. M. Intraspecific variation in the behavioral ecology of a tropical carnivore, the spotted hyena. Adv. Study Behav. 42, 189–229 (2010).
    Google Scholar 
    24.Crooks, K. R. Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv. biol. 16, 488–502 (2002).
    Google Scholar 
    25.Martin, J. et al. Accounting for non-independent detection when estimating abundance of organisms with a Bayesian approach. Methods Ecol. Evol. 2, 595–601 (2011).ADS 

    Google Scholar 
    26.Prins, H. H., Grootenhuis, J. G. & Dolan, T. T. Wildlife Conservation by Sustainable Use Vol. 12 (Springer Science & Business Media, 2012).
    Google Scholar 
    27.Knapp, E. J. Why poaching pays: a summary of risks and benefits illegal hunters face in Western Serengeti, Tanzania. Trop. Conserv. Sci. 5, 434–445 (2012).ADS 

    Google Scholar 
    28.Revilla, E., Palomares, F. & Delibes, M. Edge-core effects and the effectiveness of traditional reserves in conservation: Eurasian badgers in Doñana National Park. Conserv. Biol. 15, 148–158 (2001).
    Google Scholar 
    29.Lindsey, P. A. et al. The bushmeat trade in African savannas: Impacts, drivers, and possible solutions. Biol. Conserv. 160, 80–96 (2013).
    Google Scholar 
    30.Ikanda, D. & Packer, C. Ritual vs. retaliatory killing of African lions in the Ngorongoro Conservation Area, Tanzania. Endanger. Species Res. 6, 67–74 (2008).
    Google Scholar 
    31.Belant, J. L. et al. Estimating lion abundance using N-mixture models for social species. Sci. Rep. 6, 1–9 (2016).
    Google Scholar 
    32.Hofer, H. & East, M. L. The commuting system of Serengeti spotted hyaenas: how a predator copes with migratory prey I. Social organization. Anim. Behav. 46, 547–557 (1993).
    Google Scholar 
    33.Durant, S. M. et al. Long-term trends in carnivore abundance using distance sampling in Serengeti National Park, Tanzania. J. Appl. Ecol. 48, 1490–1500 (2011).
    Google Scholar 
    34.Swanson, A. B. Living with Lions: Spatiotemporal Aspects of Coexistence in Savanna Carnivores (University of Minnesota, 2014).
    Google Scholar 
    35.Masenga, E. H., Lyamuya, R. D., Mjingo, E. E., Fyumagwa, R. D. & Røskaft, E. Communal knowledge and perceptions of African wild dog (Lycaon pictus) reintroduction in the western part of Serengeti National Park, Tanzania. Int. J. Biodivers. Conserv. 9, 122–129 (2017).
    Google Scholar 
    36.Hopcraft, J. G. C., Sinclair, A. & Packer, C. Planning for success: Serengeti lions seek prey accessibility rather than abundance. J. Anim. Ecol. 74, 559–566 (2005).
    Google Scholar 
    37.Packer, C. & Pusey, A. E. Adaptations of female lions to infanticide by incoming males. Am. Nat. 121, 716–728 (1983).
    Google Scholar 
    38.Kruuk, H. & Turner, M. Comparative notes on predation by lion, leopard, cheetah and wild dog in the Serengeti area, East Africa. Mammalia 31, 1–27 (1967).
    Google Scholar 
    39.Green, D. S., Johnson-Ulrich, L., Couraud, H. E. & Holekamp, K. E. Anthropogenic disturbance induces opposing population trends in spotted hyenas and African lions. Biodiver. Conserv. 27, 871–889. https://doi.org/10.1007/s10531-017-1469-7 (2018).Article 

    Google Scholar 
    40.Kolowski, J. M., Katan, D., Theis, K. R. & Holekamp, K. E. Daily patterns of activity in the spotted hyena. J. Mamm. 88, 1017–1028 (2007).
    Google Scholar 
    41.Šálek, M., Kreisinger, J., Sedláček, F. & Albrecht, T. Do prey densities determine preferences of mammalian predators for habitat edges in an agricultural landscape?. Landsc. Urban Plan. 98, 86–91 (2010).
    Google Scholar 
    42.Mosser, A., Fryxell, J. M., Eberly, L. & Packer, C. Serengeti real estate: density vs. fitness-based indicators of lion habitat quality. Ecol. Lett. 12, 1050–1060 (2009).PubMed 

    Google Scholar 
    43.Schmitt, J. A. Improving Conservation Efforts in the Serengeti Ecosystem, Tanzania: An Examination of Knowledge, Benefits, Costs, and Attitudes (University of Minnesota, 2010).
    Google Scholar 
    44.Makacha, S., Msingwa, M. J. & Frame, G. W. Threats to the Serengeti herds. Oryx 16, 437–444 (1982).
    Google Scholar 
    45.Crosmary, W.-G. et al. Lion densities in selous game reserve, Tanzania. Afr. J. Wildl. Res. 48, 1–6 (2018).
    Google Scholar 
    46.Belant, J. L. et al. Track surveys do not provide accurate or precise lion density estimates in serengeti. Glob. Ecol. 19, e00651 (2019).
    Google Scholar 
    47.Midlane, N., O’Riain, M. J., Balme, G. A. & Hunter, L. T. B. To track or to call: comparing methods for estimating population abundance of African lions Panthera leo in Kafue National Park. Biodiver. Conserv. 24, 1311–1327. https://doi.org/10.1007/s10531-015-0858-z (2015).Article 

    Google Scholar 
    48.Ogutu, J. O. & Dublin, H. T. The response of lions and spotted hyaenas to sound playbacks as a technique for estimating population size. Afr. J. Ecol. 36, 83–95. https://doi.org/10.1046/j.1365-2028.1998.113-89113.x (1998).Article 

    Google Scholar 
    49.Belant, J. L. et al. Temporal and spatial variation of broadcasted vocalizations does not reduce lion Panthera leo habituation. Wildl. Biol. wlb. 00287 (2017).50.Cozzi, G., Broekhuis, F., McNutt, J. & Schmid, B. Density and habitat use of lions and spotted hyenas in northern Botswana and the influence of survey and ecological variables on call-in survey estimation. Biodiver. Conserv. 22, 2937–2956 (2013).
    Google Scholar 
    51.M’soka, J., Creel, S., Becker, M. S. & Droge, E. Spotted hyaena survival and density in a lion depleted ecosystem: The effects of prey availability, humans and competition between large carnivores in African savannahs. Biol. Conserv. 201, 348–355 (2016).
    Google Scholar 
    52.Croes, B. et al. The impact of trophy hunting on lions (Panthera leo) and other large carnivores in the Bénoué Complex, northern Cameroon. Biol. Conserv. 144, 3064–3072 (2011).
    Google Scholar 
    53.Whitman, K., Starfield, A. M., Quadling, H. S. & Packer, C. Sustainable trophy hunting of African lions. Nature 428, 175–178 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    54.National Bureau of Statistics. Tanzania in Figures 2012 (The United Republic of Tanzania, 2013).55.McNaughton, S. Serengeti grassland ecology: The role of composite environmental factors and contingency in community organization. Ecol. Monograph. 53, 291–320 (1983).
    Google Scholar 
    56.Reed, D., Anderson, T., Dempewolf, J., Metzger, K. & Serneels, S. The spatial distribution of vegetation types in the Serengeti ecosystem: the influence of rainfall and topographic relief on vegetation patch characteristics. J. Biogeogr. 36, 770–782 (2009).
    Google Scholar 
    57.Sollmann, R., Gardner, B., Belant, J. L., Wilton, C. M. & Beringer, J. Habitat associations in a recolonizing, low‐density black bear population. Ecosphere 7 (2016).58.Royle, J. A. & Dorazio, R. M. Hierarchical Modeling and Inference in Ecology: The Analysis of Data from Populations, Metapopulations and Communities (Elsevier, 2008).
    Google Scholar 
    59.Chandler, R. B., Royle, J. A. & King, D. I. Inference about density and temporary emigration in unmarked populations. Ecology 92, 1429–1435 (2011).PubMed 

    Google Scholar 
    60.Royle, J. A. N-mixture models for estimating population size from spatially replicated counts. Biometrics 60, 108–115 (2004).MathSciNet 
    PubMed 
    MATH 

    Google Scholar 
    61.Kellner, K. & Meredith, M. Package ‘jagsUI’. (2021).62.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2021).63.Gelman, A., Hwang, J. & Vehtari, A. Understanding predictive information criteria for Bayesian models. Stat. Comput. 24, 997–1016 (2014).MathSciNet 
    MATH 

    Google Scholar 
    64.Kuo, L. & Mallick, B. Variable selection for regression models. Indian J. Stat. 65–81 (1998).65.Congdon, P. Bayesian Models for Categorical Data (John Wiley and Sons, 2005).MATH 

    Google Scholar  More

  • in

    Investing wisely in land restoration

    1.Mirzabaev, A., Sacande, M., Motlagh, F., Shyrokaya, A. & Martucci, A. Nat. Sustain. https://doi.org/10.1038/s41893-021-00801-8 (2021).2.Barbier, E. B. & Hochard, J. P. Nat. Sustain. 1, 623–631 (2018).Article 

    Google Scholar 
    3.Deininger, K. & Jin, S. Eur. Econ. Rev. 50, 1245–1277 (2006).Article 

    Google Scholar 
    4.Barbier, E. B. Environ. Dev. Econ. 15, 635–660 (2010).Article 

    Google Scholar 
    5.Nkonya, E., Mirzabaev, A. & von Braun, J. in Economics of Land Degradation and Improvement—A Global Assessment for Sustainable Development (eds. Nkonya, E., Mirzabaev, A. & von Braun, J.) 1–14 (Springer, Cham, 2016).6.Barbier, E. B. & Hochard, J. P. Rev. Environ. Econ. Policy 12, 26–47 (2018).Article 

    Google Scholar  More

  • in

    Compendium of 530 metagenome-assembled bacterial and archaeal genomes from the polar Arctic Ocean

    1.IPCC. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (in the press).2.Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Meltofte, H. (ed.) Arctic Biodiversity Assessment: Status and Trends in Arctic Biodiversity (CAFF International Secretariat, 2013).4.Wassmann, P. & Reigstad, M. Future Arctic Ocean seasonal ice zones and implications for pelagic-benthic coupling. Oceanography 24, 220–231 (2011).
    Google Scholar 
    5.Bunse, C. & Pinhassi, J. Marine bacterioplankton seasonal succession dynamics. Trends Microbiol. 25, 494–505 (2017).CAS 
    PubMed 

    Google Scholar 
    6.Olli, K. et al. Seasonal variation in vertical flux of biogenic matter in the marginal ice zone and the central Barents Sea. J. Mar. Syst. 38, 189–204 (2002).
    Google Scholar 
    7.Riedel, A., Michel, C., Gosselin, M. & LeBlanc, B. Winter–spring dynamics in sea-ice carbon cycling in the coastal Arctic Ocean. J. Mar. Syst. 74, 918–932 (2008).
    Google Scholar 
    8.Joli, N., Monier, A., Logares, R. & Lovejoy, C. Seasonal patterns in Arctic prasinophytes and inferred ecology of Bathycoccus unveiled in an Arctic winter metagenome. ISME J. 11, 1372–1385 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    9.Alonso-Sáez, L., Sánchez, O., Gasol, J. M., Balagué, V. & Pedrós-Alio, C. Winter-to-summer changes in the composition and single-cell activity of near-surface Arctic prokaryotes. Environ. Microbiol. 10, 2444–2454 (2008).PubMed 

    Google Scholar 
    10.Alonso-Sáez, L. et al. Role for urea in nitrification by polar marine Archaea. Proc. Natl Acad. Sci. USA 109, 17989–17994 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    11.Boetius, A., Anesio, A. M., Deming, J. W., Mikucki, J. A. & Rapp, J. Z. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat. Rev. Microbiol. 13, 677–690 (2015).CAS 
    PubMed 

    Google Scholar 
    12.Circumpolar Biodiversity Monitoring Program, Conservation of Arctic Flora and Fauna. State of the Arctic Marine Biodiversity Report (Conservation of Arctic Flora and Fauna International Secretariat, 2017).13.Kirchman, D. L., Cottrell, M. T. & Lovejoy, C. The structure of bacterial communities in the western Arctic Ocean as revealed by pyrosequencing of 16S rRNA genes. Environ. Microbiol. 12, 1132–1143 (2010).CAS 
    PubMed 

    Google Scholar 
    14.Galand, P. E., Casamayor, E. O., Kirchman, D. L., Potvin, M. & Lovejoy, C. Unique archaeal assemblages in the Arctic Ocean unveiled by massively parallel tag sequencing. ISME J. 3, 860–869 (2009).CAS 
    PubMed 

    Google Scholar 
    15.Pedrós-Alió, C., Potvin, M. & Lovejoy, C. Diversity of planktonic microorganisms in the Arctic Ocean. Prog. Oceanogr. 139, 233–243 (2015).
    Google Scholar 
    16.Amaral-Zettler, L. et al. in Life in the World’s Oceans: Diversity, Distribution, and Abundance (ed. McIntyre, A. D.) 221–245 (Blackwell Publishing Ltd, 2010).17.Christman, G. D., Cottrell, M. T., Popp, B. N., Gier, E. & Kirchman, D. L. Abundance, diversity, and activity of ammonia-oxidizing prokaryotes in the coastal Arctic Ocean in summer and winter. Appl. Environ. Microbiol. 77, 2026–2034 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Alonso-Sáez, L., Galand, P. E., Casamayor, E. O., Pedrós-Alió, C. & Bertilsson, S. High bicarbonate assimilation in the dark by Arctic bacteria. ISME J. 4, 1581–1590 (2010).PubMed 

    Google Scholar 
    19.Galand, P. E., Lovejoy, C., Pouliot, J., Garneau, M.-È. & Vincent, W. F. Microbial community diversity and heterotrophic production in a coastal Arctic ecosystem: a stamukhi lake and its source waters. Limnol. Oceanogr. 53, 813–823 (2008).
    Google Scholar 
    20.Nguyen, D. et al. Winter diversity and expression of proteorhodopsin genes in a polar ocean. ISME J. 9, 1835–1845 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    21.Cifuentes-Anticevic, J. et al. Proteorhodopsin phototrophy in Antarctic coastal waters. mSphere 6, e00525–21 (2021).CAS 
    PubMed Central 

    Google Scholar 
    22.Ghiglione, J.-F. et al. Pole-to-pole biogeography of surface and deep marine bacterial communities. Proc. Natl Acad. Sci. USA 109, 17633–17638 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Salazar, G. et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 179, 1068–1083.e21 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Kraemer, S., Ramachandran, A., Colatriano, D., Lovejoy, C. & Walsh, D. A. Diversity and biogeography of SAR11 bacteria from the Arctic Ocean. ISME J. 14, 79–90 (2020).PubMed 

    Google Scholar 
    25.Cao, S. et al. Structure and function of the Arctic and Antarctic marine microbiota as revealed by metagenomics. Microbiome 8, 47 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    26.Sunagawa, S. et al. Tara Oceans: towards global ocean ecosystems biology. Nat. Rev. Microbiol. 18, 428–445 (2020).CAS 
    PubMed 

    Google Scholar 
    27.Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).CAS 
    PubMed 

    Google Scholar 
    29.Delmont, T. O. et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat. Microbiol. 3, 804–813 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097.e21 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Aagaard, K., Swift, J. H. & Carmack, E. C. Thermohaline circulation in the Arctic Mediterranean Seas. J. Geophys. Res. Oceans 90, 4833–4846 (1985).
    Google Scholar 
    32.Dupont, C. L. et al. Genomes and gene expression across light and productivity gradients in eastern subtropical Pacific microbial communities. ISME J. 9, 1076–1092 (2015).CAS 
    PubMed 

    Google Scholar 
    33.Franzosa, E. A. et al. Relating the metatranscriptome and metagenome of the human gut. Proc. Natl Acad. Sci. USA 111, E2329–E2338 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Jones, S. E. & Lennon, J. T. Dormancy contributes to the maintenance of microbial diversity. Proc. Natl Acad. Sci. USA 107, 5881–5886 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Mestre, M. & Höfer, J. The microbial conveyor belt: connecting the globe through dispersion and dormancy. Trends Microbiol. 29, 482–492 (2021).CAS 
    PubMed 

    Google Scholar 
    36.Ciufo, S. et al. Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI. Int. J. Syst. Evol. Microbiol. 68, 2386–2392 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    37.Chaumeil, P-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).PubMed Central 

    Google Scholar 
    38.Nelson, W. C., Tully, B. J. & Mobberley, J. M. Biases in genome reconstruction from metagenomic data. PeerJ 8, e10119 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    39.Alneberg, J. et al. Ecosystem-wide metagenomic binning enables prediction of ecological niches from genomes. Commun. Biol. 3, 119 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    40.Tully, B. J., Graham, E. D. & Heidelberg, J. F. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data 5, 170203 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Christensen, M. & Nilsson, A. E. Arctic sea ice and the communication of climate change. Pop. Commun. 15, 249–268 (2017).
    Google Scholar 
    42.Jaffe, A. L., Castelle, C. J., Dupont, C. L. & Banfield, J. F. Lateral gene transfer shapes the distribution of RuBisCO among candidate phyla radiation bacteria and DPANN Archaea. Mol. Biol. Evol. 36, 435–446 (2019).CAS 
    PubMed 

    Google Scholar 
    43.Kono, T. et al. A RuBisCO-mediated carbon metabolic pathway in methanogenic archaea. Nat. Commun. 8, 14007 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Sato, T., Atomi, H. & Imanaka, T. Archaeal type III RuBisCOs function in a pathway for AMP metabolism. Science 315, 1003–1006 (2007).CAS 
    PubMed 

    Google Scholar 
    45.Tabita, F. R., Satagopan, S., Hanson, T. E., Kreel, N. E. & Scott, S. S. Distinct form I, II, III, and IV Rubisco proteins from the three kingdoms of life provide clues about Rubisco evolution and structure/function relationships. J. Exp. Bot. 59, 1515–1524 (2008).CAS 
    PubMed 

    Google Scholar 
    46.Yelton, A. P. et al. Global genetic capacity for mixotrophy in marine picocyanobacteria. ISME J. 10, 2946–2957 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Cordero, P. R. F. et al. Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. ISME J. 13, 2868–2881 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.King, G. M. & Weber, C. F. Distribution, diversity and ecology of aerobic CO-oxidizing bacteria. Nat. Rev. Microbiol. 5, 107–118 (2007).CAS 
    PubMed 

    Google Scholar 
    49.Sunagawa, S. et al. Ocean plankton. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).PubMed 

    Google Scholar 
    50.Sul, W. J., Oliver, T. A., Ducklow, H. W., Amaral-Zettler, L. A. & Sogin, M. L. Marine bacteria exhibit a bipolar distribution. Proc. Natl Acad. Sci. USA 110, 2342–2347 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Roller, B. R. K., Stoddard, S. F. & Schmidt, T. M. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat. Microbiol. 1, 16160 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Levins, R. Evolution in Changing Environments: Some Theoretical Explorations (Princeton Univ. Press, 1968).
    Google Scholar 
    53.Colwell, R. K. & Futuyma, D. J. On the measurement of niche breadth and overlap. Ecology 52, 567–576 (1971).PubMed 

    Google Scholar 
    54.Massana, R. & Logares, R. Eukaryotic versus prokaryotic marine picoplankton ecology. Environ. Microbiol. 15, 1254–1261 (2013).PubMed 

    Google Scholar 
    55.Székely, A. J., Berga, M. & Langenheder, S. Mechanisms determining the fate of dispersed bacterial communities in new environments. ISME J. 7, 61–71 (2013).PubMed 

    Google Scholar 
    56.Brooks, J. P. et al. The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies. BMC Microbiol. 15, 66 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    57.Logares, R. et al. Biogeography of bacterial communities exposed to progressive long-term environmental change. ISME J. 7, 937–948 (2013).CAS 
    PubMed 

    Google Scholar 
    58.Ruiz-González, C. et al. Higher contribution of globally rare bacterial taxa reflects environmental transitions across the surface ocean. Mol. Ecol. 28, 1930–1945 (2019).PubMed 

    Google Scholar 
    59.Staley, J. T. & Gosink, J. J. Poles apart: biodiversity and biogeography of sea ice bacteria. Annu. Rev. Microbiol. 53, 189–215 (1999).CAS 
    PubMed 

    Google Scholar 
    60.Chaffron, S. et al. Environmental vulnerability of the global ocean epipelagic plankton community interactome. Sci. Adv. 7, eabg1921 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Estrada, E. Characterization of topological keystone species: local, global and “meso-scale” centralities in food webs. Ecol. Complex. 4, 48–57 (2007).
    Google Scholar 
    62.Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).CAS 
    PubMed 

    Google Scholar 
    63.Tully, B. J., Sachdeva, R., Graham, E. D. & Heidelberg, J. F. 290 metagenome-assembled genomes from the Mediterranean Sea: a resource for marine microbiology. PeerJ 2017, e3558 (2017).
    Google Scholar 
    64.Deep ocean metagenomes provide insight into the metabolic architecture of bathypelagic microbial communities. Commun. Biol. 4, 604 (2021).65.Pesant, S. et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci. Data 2, 150023 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Alberti, A. et al. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Sci. Data 4, 170093 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    71.Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    72.Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Huang, X. & Madan, A. CAP3: a DNA sequence assembly program. Genome Res. 9, 868–877 (1999).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).CAS 
    PubMed 

    Google Scholar 
    77.Wheeler, T. J. & Eddy, S. R. nhmmer: DNA homology search with profile HMMs. Bioinformatics 29, 2487–2489 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Jain, C., Rodriguez-R, L. M., Phillipy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    79.Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9, e1003118 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    80.Vieira-Silva, S. & Rocha, E. P. C. The systemic imprint of growth and its uses in ecological (meta)genomics. PLoS Genet. 6, e1000808 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    81.Pertea, G. & Pertea, M. GFF utilities: GffRead and GffCompare. F1000Res. 9, ISCB Comm J-304 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    82.Aylward, F. O. & Santoro, A. E. Heterotrophic Thaumarchaeota with ultrasmall genomes are widespread in the ocean. mSystems 5, e00415–20 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    83.Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    84.Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2––approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    85.Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    86.Louca, S., Doebeli, M. & Parfrey, L. W. Correcting for 16S rRNA gene copy numbers in microbiome surveys remains an unsolved problem. Microbiome 6, 41 (2018).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Unexpected myriad of co-occurring viral strains and species in one of the most abundant and microdiverse viruses on Earth

    1.Roux S, Adriaenssens EM, Dutilh BE, Koonin EV, Kropinski AM, Krupovic M, et al. Minimum information about an uncultivated virus genome (MIUVIG). Nat Biotechnol 2019;37:29–37.PubMed 

    Google Scholar 
    2.Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M, Mikhailova N, et al. Uncovering Earth’s virome. Nature. 2016;536:425–30.PubMed 

    Google Scholar 
    3.Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti A, et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell. 2019;177:1109–23.PubMed 
    PubMed Central 

    Google Scholar 
    4.Kavagutti VS, Andrei AŞ, Mehrshad M, Salcher MM, Ghai R. Phage-centric ecological interactions in aquatic ecosystems revealed through ultra-deep metagenomics. Microbiome. 2019;7:1–15.
    Google Scholar 
    5.Schulz F, Alteio L, Goudeau D, Ryan EM, Yu FB, Malmstrom RR, et al. Hidden diversity of soil giant viruses. Nat Commun 2018;9:1–9.
    Google Scholar 
    6.Trubl G, Jang H Bin, Roux S, Emerson JB, Solonenko N, Vik DR, et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems 2018;3:e00076–18.PubMed 
    PubMed Central 

    Google Scholar 
    7.Guerin E, Shkoporov A, Stockdale SR, Clooney AG, Ryan FJ, Sutton TDS, et al. Biology and taxonomy of crAss-like bacteriophages, the most abundant virus in the human gut. Cell Host Microbe. 2018;24:653–664.e6.PubMed 

    Google Scholar 
    8.Martinez-Hernandez F, Fornas O, Lluesma Gomez M, Bolduc B, de la Cruz Peña MJ, Martínez JM, et al. Single-virus genomics reveals hidden cosmopolitan and abundant viruses. Nat Commun 2017;8:1–13.
    Google Scholar 
    9.Aguirre de Cárcer D, Angly FE, Alcamí A. Evaluation of viral genome assembly and diversity estimation in deep metagenomes. BMC Genomics. 2014;15:1–12.
    Google Scholar 
    10.Roux S, Emerson JB, Eloe-Fadrosh EA, Sullivan MB. Benchmarking viromics: an in silico evaluation of metagenome-enabled estimates of viral community composition and diversity. PeerJ. 2017;5:e3817.PubMed 
    PubMed Central 

    Google Scholar 
    11.Avrani S, Wurtzel O, Sharon I, Sorek R, Lindell D. Genomic island variability facilitates Prochlorococcus-virus coexistence. Nature. 2011;474:604–8.PubMed 

    Google Scholar 
    12.Rodriguez-Valera F, Martin-Cuadrado A-B, Rodriguez-Brito B, Pasic L, Thingstad TF, Rohwer F, et al. Explaining microbial population genomics through phage predation. Nat Rev Microbiol 2009;7:828–36.PubMed 

    Google Scholar 
    13.Marston MF, Pierciey FJ, Shepard A, Gearin G, Qi J, Yandava C, et al. Rapid diversification of coevolving marine Synechococcus and a virus. Proc Natl Acad Sci USA 2012;109:4544–9.PubMed 
    PubMed Central 

    Google Scholar 
    14.Enav H, Kirzner S, Lindell D, Mandel-Gutfreund Y, Béjà O. Adapt sub-Optim hosts is a Driv viral Diversif ocean Nat Comm 2018;9:1–11.
    Google Scholar 
    15.Boon M, Holtappels D, Lood C, van Noort V, Lavigne R. Host range expansion of pseudomonas virus LUZ7 is driven by a conserved tail fiber mutation. PHAGE. 2020;1:87–90.
    Google Scholar 
    16.Bernheim A, Sorek R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat Rev Microbiol 2020;18:113–9.PubMed 

    Google Scholar 
    17.Sørensen MA, Kurland CG, Pedersen S. Codon usage determines translation rate in Escherichia coli. J Mol Biol 1989;207:365–77.PubMed 

    Google Scholar 
    18.Varenne S, Buc J, Lloubes R, Lazdunski C. Translation is a non-uniform process. Effect of tRNA availability on the rate of elongation of nascent polypeptide chains. J Mol Biol 1984;180:549–76.PubMed 

    Google Scholar 
    19.Yu CH, Dang Y, Zhou Z, Wu C, Zhao F, Sachs MS, et al. Codon Usage Influences the Local Rate of Translation Elongation to Regulate Co-translational Protein Folding. Mol Cell. 2015;59:744–54.PubMed 
    PubMed Central 

    Google Scholar 
    20.Plotkin JB, Kudla G. Synonymous but not the same: The causes and consequences of codon bias. Nat Rev Genet 2011;12:32–42.PubMed 

    Google Scholar 
    21.Chu D, Wei L. Nonsynonymous, synonymous and nonsense mutations in human cancer-related genes undergo stronger purifying selections than expectation. BMC Cancer. 2019;19:359.PubMed 
    PubMed Central 

    Google Scholar 
    22.Deng L, Ignacio-Espinoza JC, Gregory AC, Poulos BT, Weitz JS, Hugenholtz P, et al. Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. Nature. 2014;513:242–5.PubMed 

    Google Scholar 
    23.Edwards RA, Vega AA, Norman HM, Ohaeri M, Levi K, Dinsdale EA, et al. Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nat Microbiol 2019;4:1727–36.PubMed 
    PubMed Central 

    Google Scholar 
    24.Ignacio-Espinoza JC, Ahlgren NA, Fuhrman JA. Long-term stability and Red Queen-like strain dynamics in marine viruses. Nat. Microbiol. 2019;5:1–7.25.Coutinho FH, Rosselli R, Rodríguez-Valera F. Trends of microdiversity reveal depth-dependent evolutionary strategies of viruses in the Mediterranean. mSystems. 2019;4:1–17.
    Google Scholar 
    26.Needham DM, Sachdeva R, Fuhrman JA. Ecological dynamics and co-occurrence among marine phytoplankton, bacteria and myoviruses shows microdiversity matters. ISME J. 2017;11:1614–29.PubMed 
    PubMed Central 

    Google Scholar 
    27.Martinez-Hernandez F, Fornas Ò, Lluesma Gomez M, Garcia-Heredia I, Maestre-Carballa L, López-Pérez M, et al. Single-cell genomics uncover Pelagibacter as the putative host of the extremely abundant uncultured 37-F6 viral population in the ocean. ISME J. 2019;13:232–6.PubMed 

    Google Scholar 
    28.McMullen A, Martinez‐Hernandez F, Martinez‐Garcia M. Absolute quantification of infecting viral particles by chip‐based digital polymerase chain reaction. Environ Microbiol Rep. 2019;11:855–60.PubMed 

    Google Scholar 
    29.Marston MF, Amrich CG. Recombination and microdiversity in coastal marine cyanophages. Environ Microbiol. 2009;11:2893–903.PubMed 

    Google Scholar 
    30.Marston MF, Martiny JBH. Genomic diversification of marine cyanophages into stable ecotypes. Environ Microbiol 2016;18:4240–53.PubMed 

    Google Scholar 
    31.Cordero OX. Endemic cyanophages and the puzzle of phage-bacteria coevolution. Environ Microbiol 2017;19:420–2.PubMed 

    Google Scholar 
    32.Shannon CE. The mathematical theory of communication. 1963. MD Comput. 1997;14:306–17.PubMed 

    Google Scholar 
    33.Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature. 2016;537:689–93.PubMed 

    Google Scholar 
    34.Bobay L-M, Ochman H. Biological species in the viral world. Proc Natl Acad Sci USA 2018;115:6040–5.PubMed 
    PubMed Central 

    Google Scholar 
    35.Henson MW, Lanclos VC, Faircloth BC, Thrash JC. Cultivation and genomics of the first freshwater SAR11 (LD12) isolate. ISME J. 2018;12:1846–60.PubMed 
    PubMed Central 

    Google Scholar 
    36.Paez-Espino D, Roux S, Chen I-MA, Palaniappan K, Ratner A, Chu K, et al. IMG/VR v.2.0: an integrated data management and analysis system for cultivated and environmental viral genomes. Nucleic Acids Res. 2019;47:D678–D686.PubMed 

    Google Scholar 
    37.Brum JR, Ignacio-Espinoza JC, Kim E-H, Trubl G, Jones RM, Roux S, et al. Illuminating structural proteins in viral ‘dark matter’ with metaproteomics. Proc Natl Acad Sci USA 2016;113:2436–41.PubMed 
    PubMed Central 

    Google Scholar 
    38.Sakowski EG, Arora-Williams K, Tian F, Zayed AA, Zablocki O, Sullivan MB, et al. Interaction dynamics and virus–host range for estuarine actinophages captured by epicPCR. Nat. Microbiol. 2021;6:1–13.39.Alonso-Sáez L, Morán XAG, Clokie MR. Low activity of lytic pelagiphages in coastal marine waters. ISME J. 2018;12:2100–2.PubMed 
    PubMed Central 

    Google Scholar 
    40.Martinez‐Hernandez F, Luo E, Tominaga K, Ogata H, Yoshida T, DeLong EF, et al. Diel cycling of the cosmopolitan abundant Pelagibacter virus 37‐F6: one of the most abundant viruses in Earth. Environ Microbiol Rep. 2020;12:214–21941.Mruwat N, Carlson MCG, Goldin S, Ribalet F, Kirzner S, Hulata Y, et al. A single-cell polony method reveals low levels of infected Prochlorococcus in oligotrophic waters despite high cyanophage abundances. ISME J. 2021;15:41–54.PubMed 

    Google Scholar 
    42.de Avila e Silva S, Echeverrigaray S, Gerhardt GJL. BacPP: bacterial promoter prediction-A tool for accurate sigma-factor specific assignment in enterobacteria. J Theor Biol 2011;287:92–99.PubMed 

    Google Scholar 
    43.Sampaio M, Rocha M, Oliveira H, Dias O. Predicting promoters in phage genomes using PhagePromoter. Bioinformatics. 2019;35:5301–2.PubMed 

    Google Scholar 
    44.Allert M, Cox JC, Hellinga HW. Multifactorial determinants of protein expression in prokaryotic open reading frames. J Mol Biol. 2010;402:905–18.PubMed 
    PubMed Central 

    Google Scholar 
    45.Dressaire C, Picard F, Redon E, Loubière P, Queinnec I, Girbal L, et al. Role of mRNA stability during bacterial adaptation. PLoS ONE 2013;8:e59059.PubMed 
    PubMed Central 

    Google Scholar 
    46.Deana A, Belasco JG. Lost in translation: The influence of ribosomes on bacterial mRNA decay. Genes Dev. 2005;19:2526–33.PubMed 

    Google Scholar 
    47.Zhao Y, Temperton B, Thrash JC, Schwalbach MS, Vergin KL, Landry ZC, et al. Abundant SAR11 viruses in the ocean. Nature. 2013;494:357–60.PubMed 

    Google Scholar 
    48.Zhang Z, Qin F, Chen F, Chu X, Luo H, Zhang R, et al. Culturing novel and abundant pelagiphages in the ocean. Environ Microbiol 2020;1462-2920:15272.
    Google Scholar 
    49.Zhao Y, Qin F, Zhang R, Giovannoni SJ, Zhang Z, Sun J, et al. Pelagiphages in the Podoviridae family integrate into host genomes. Environ Microbiol. 2018;21:1989–2001.50.Morris RM, Cain KR, Hvorecny KL, Kollman JM. Lysogenic host–virus interactions in SAR11 marine bacteria. Nat Microbiol 2020;5:1011–5.PubMed 
    PubMed Central 

    Google Scholar 
    51.Konstantinidis KT, Ramette A, Tiedje JM. The bacterial species definition in the genomic era. Philos Trans R Soc Lond, B, Biol Sci 2006;361:1929–40.
    Google Scholar 
    52.Rosselló-Mora R. Updating prokaryotic taxonomy. J Bacteriol. 2005;187:6255–7.PubMed 
    PubMed Central 

    Google Scholar 
    53.Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol 2017;2:1533–42.PubMed 

    Google Scholar 
    54.Richter M, Rossello-Mora R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009;106:19126–31.PubMed 
    PubMed Central 

    Google Scholar 
    55.Pope WH, Bowman CA, Russell DA, Jacobs-Sera D, Asai DJ, Cresawn SG, et al. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity. eLife 2015;4:e06416.PubMed 
    PubMed Central 

    Google Scholar 
    56.Gregory AC, Solonenko SA, Ignacio-Espinoza JC, LaButti K, Copeland A, Sudek S, et al. Genomic differentiation among wild cyanophages despite widespread horizontal gene transfer. BMC genomics. 2016;17:930.PubMed 
    PubMed Central 

    Google Scholar 
    57.Martinez-Hernandez F, Garcia-Heredia I, Lluesma Gomez M, Maestre-Carballa L, Martínez Martínez J, Martinez-Garcia M. Droplet digital PCR for estimating absolute abundances of widespread Pelagibacter viruses. Front Microbiol 2019;10:1226.PubMed 
    PubMed Central 

    Google Scholar 
    58.Warwick-Dugdale J, Solonenko N, Moore K, Chittick L, Gregory AC, Allen MJ, et al. Long-read viral metagenomics captures abundant and microdiverse viral populations and their niche-defining genomic islands. PeerJ. 2019;7:e6800.PubMed 
    PubMed Central 

    Google Scholar 
    59.Beaulaurier J, Luo E, Eppley JM, Uyl P Den, Dai X, Burger A, et al. Assembly-free single-molecule sequencing recovers complete virus genomes from natural microbial communities. Genome Res. 2020;30:437–46.PubMed 
    PubMed Central 

    Google Scholar 
    60.Murigneux V, Rai SK, Furtado A, Bruxner TJC, Tian W, Harliwong I, et al. Comparison of long-read methods for sequencing and assembly of a plant genome. GigaScience 2020;9:giaa146.61.Wenger AM, Peluso P, Rowell WJ, Chang PC, Hall RJ, Concepcion GT, et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat Biotechnol 2019;37:1155–62.PubMed 
    PubMed Central 

    Google Scholar 
    62.Martínez Martínez J, Martinez-Hernandez F, Martinez-Garcia M. Single-virus genomics and beyond. Nat Rev Microbiol. 2020;18:705–16.PubMed 

    Google Scholar 
    63.Labonté JM, Swan BK, Poulos B, Luo H, Koren S, Hallam SJ, et al. Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton. ISME J. 2015;9:2386–99.PubMed 
    PubMed Central 

    Google Scholar 
    64.Mizuno CM, Rodriguez-Valera F, Kimes NE, Ghai R. Expanding the marine virosphere using metagenomics. PLoS Genet. 2013;9:e1003987.PubMed 
    PubMed Central 

    Google Scholar 
    65.Mizuno CM, Ghai R, Saghaï A, López-García P, Rodriguez-Valera F. Genomes of abundant and widespread viruses from the deep ocean. mBio. 2016;7:e00805–16.PubMed 
    PubMed Central 

    Google Scholar 
    66.Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinforma. 2012;13:134.
    Google Scholar 
    67.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.PubMed 
    PubMed Central 

    Google Scholar 
    68.Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–9.PubMed 

    Google Scholar 
    69.Philosof A, Yutin N, Flores-Uribe J, Sharon I, Koonin EV, Béjà O. Novel abundant oceanic viruses of uncultured marine group II Euryarchaeota. Curr Biol. 2017;27:1362–8.PubMed 
    PubMed Central 

    Google Scholar 
    70.Vik DR, Roux S, Brum JR, Bolduc B, Emerson JB, Padilla CC, et al. Putative archaeal viruses from the mesopelagic ocean. PeerJ. 2017;5:e3428.PubMed 
    PubMed Central 

    Google Scholar 
    71.Bin Jang H, Bolduc B, Zablocki O, Kuhn JH, Roux S, Adriaenssens EM, et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat Biotechnol 2019;37:632–9.
    Google Scholar 
    72.Bobay L-M, Ellis BS-H, Ochman H. ConSpeciFix: classifying prokaryotic species based on gene flow. Bioinformatics. 2018;34:3738–40.PubMed 
    PubMed Central 

    Google Scholar 
    73.Bobay L-M, Ochman H. Biological species are universal across life’s domains. Genome Biol Evol. 2017;9:491–501.PubMed Central 

    Google Scholar 
    74.Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.
    Google Scholar 
    75.Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.PubMed 
    PubMed Central 

    Google Scholar 
    76.Harris CD, Torrance EL, Raymann K, Bobay L-M. CoreCruncher: Fast and robust construction of core genomes in large prokaryotic data sets. Mol. Biol. Evol. 2020;38:727–734.77.Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.PubMed 
    PubMed Central 

    Google Scholar 
    78.Rice P, Longden L, Bleasby A EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 2000. Elsevier Ltd., 16: 276–779.Džunková M, Low SJ, Daly JN, Deng L, Rinke C, Hugenholtz P. Defining the human gut host–phage network through single-cell viral tagging. Nat Microbiol 2019;4:2192–203.PubMed 

    Google Scholar 
    80.Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.PubMed 
    PubMed Central 

    Google Scholar 
    81.Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.PubMed 
    PubMed Central 

    Google Scholar 
    82.Swan BK, Ehrhardt CJ, Reifel KM, Moreno LI, Valentine DL. Archaeal and bacterial communities respond differently to environmental gradients in anoxic sediments of a california hypersaline lake, the Salton Sea. Appl Environ Microbiol 2010;76:757–68.PubMed 

    Google Scholar 
    83.Baran N, Goldin S, Maidanik I, Lindell D. Quantification of diverse virus populations in the environment using the polony method. Nat Microbiol 2018;3:62–72.PubMed 

    Google Scholar  More

  • in

    Horizontal gene transfer and adaptive evolution in bacteria

    1.Maynard Smith, J., Feil, E. J. & Smith, N. H. Population structure and evolutionary dynamics of pathogenic bacteria. Bioessays 22, 1115–1122 (2000).
    Google Scholar 
    2.Garud, N. R., Good, B. H., Hallatschek, O. & Pollard, K. S. Evolutionary dynamics of bacteria in the gut microbiome within and across hosts. PLoS Biol. 17, e3000102 (2019). Using metagenomic samples form the human gut microbiome, the authors infer lineage structure from within-host polymorphisms in more than 40 species to show adaptation on short timescales can be seeded by HGT.PubMed 
    PubMed Central 

    Google Scholar 
    3.Frazão, N., Sousa, A., Lässig, M. & Gordo, I. Horizontal gene transfer overrides mutation in Escherichia coli colonizing the mammalian gut. Proc. Natl Acad. Sci. USA 116, 17906–17915 (2019). Using the mouse microbiome as a study system, the authors show that rapid, phage-mediated HGT can transfer beneficial genes — already present in a resident strain — to an invading strain.PubMed 
    PubMed Central 

    Google Scholar 
    4.Smith, J. M., Smith, N. H., O’Rourke, M. & Spratt, B. G. How clonal are bacteria? Proc. Natl Acad. Sci. USA 90, 4384–4388 (1993).PubMed 
    PubMed Central 

    Google Scholar 
    5.Dykhuizen, D. E. & Green, L. Recombination in Escherichia coli and the definition of biological species. J. Bacteriol. 173, 7257–7268 (1991).PubMed 
    PubMed Central 

    Google Scholar 
    6.Feil, E. J. et al. Recombination within natural populations of pathogenic bacteria: short-term empirical estimates and long-term phylogenetic consequences. Proc. Natl Acad. Sci. USA 98, 182–187 (2001).PubMed 
    PubMed Central 

    Google Scholar 
    7.Suerbaum, S. et al. Free recombination within Helicobacter pylori. PNAS 95, 12619–12624 (1998).PubMed 
    PubMed Central 

    Google Scholar 
    8.Smillie, C. S. et al. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480, 241–244 (2011).PubMed 

    Google Scholar 
    9.Lozupone, C. A. et al. The convergence of carbohydrate active gene repertoires in human gut microbes. Proc. Natl Acad. Sci. USA 105, 15076–15081 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    10.Bradley, P. H., Nayfach, S. & Pollard, K. S. Phylogeny-corrected identification of microbial gene families relevant to human gut colonization. PLoS Computational Biol. 14, e1006242 (2018). The authors use phylogenetic linear regression to control for important confounders and identify genes potentially involved in adaptation to the human gut.
    Google Scholar 
    11.Andreani, N. A., Hesse, E. & Vos, M. Prokaryote genome fluidity is dependent on effective population size. ISME J. 11, 1719–1721 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    12.Mcinerney, J. O., Mcnally, A. & Connell, M. J. O. Why prokaryotes have pangenomes. Nat. Publ. Gr. 2, 1–5 (2017).
    Google Scholar 
    13.Shapiro, B. J. The population genetics of pangenomes. Nat. Microbiol. 2, 1005860 (2017).
    Google Scholar 
    14.Vos, M. & Eyre-walker, A. Are pangenomes adaptive or not? Nat. Microbiol. https://doi.org/10.1038/s41564-017-0067-5 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Johnsborg, O., Eldholm, V. & Håvarstein, L. S. Natural genetic transformation: prevalence, mechanisms and function. Res. Microbiol. 158, 767–778 (2007).PubMed 

    Google Scholar 
    16.Johnston, C., Martin, B., Fichant, G., Polard, P. & Claverys, J. P. Bacterial transformation: distribution, shared mechanisms and divergent control. Nat. Rev. Microbiol. 12, 181–196 (2014).PubMed 

    Google Scholar 
    17.Pimentel, Z. T. & Zhang, Y. Evolution of the natural transformation protein, ComEC, in Bacteria. Front. Microbiol. 9, 1–10 (2018).
    Google Scholar 
    18.Roux, S., Hallam, S. J., Woyke, T. & Sullivan, M. B. Viral dark matter and virus–host interactions resolved from publicly available microbial genomes. eLife 4, 1–20 (2015).
    Google Scholar 
    19.Camarillo-Guerrero, L. F. et al. Massive expansion of human gut bacteriophage diversity. Cell 184, 1098–1109.e9 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    20.Guglielmini, J., Quintais, L., Garcillán-Barcia, M. P., de la Cruz, F. & Rocha, E. P. C. The repertoire of ice in prokaryotes underscores the unity, diversity, and ubiquity of conjugation. PLoS Genet. 7, e1002222 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    21.Dubey, G. P. & Ben-Yehuda, S. Intercellular nanotubes mediate bacterial communication. Cell 144, 590–600 (2011).PubMed 

    Google Scholar 
    22.Abe, K., Nomura, N. & Suzuki, S. Biofilms: hot spots of horizontal gene transfer (HGT) in aquatic environments, with a focus on a new HGT mechanism. FEMS Microbiol. Ecol. 96, 1–12 (2020).
    Google Scholar 
    23.Bárdy, P. et al. Structure and mechanism of DNA delivery of a gene transfer agent. Nat. Commun. 11, 3034 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    24.Hasegawa, H., Suzuki, E. & Maeda, S. Horizontal plasmid transfer by transformation in Escherichia coli: environmental factors and possible mechanisms. Front. Microbiol. 9, 1–6 (2018).
    Google Scholar 
    25.Seitz, P. & Blokesch, M. Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria. FEMS Microbiol. Rev. 37, 336–363 (2013).PubMed 

    Google Scholar 
    26.Wall, D. Kin recognition in bacteria. Annu. Rev. Microbiol. 70, 143–160 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    27.Frye, S. A., Nilsen, M., Tønjum, T. & Ambur, O. H. Dialects of the DNA uptake sequence in Neisseriaceae. PLoS Genet. https://doi.org/10.1371/journal.pgen.1003458 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Redfield, R. J. et al. Evolution of competence and DNA uptake specificity in the Pasteurellaceae. BMC Evol. Biol. 6, 1–15 (2006).
    Google Scholar 
    29.Dion, M. B., Oechslin, F. & Moineau, S. Phage diversity, genomics and phylogeny. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-019-0311-5 (2020).Article 
    PubMed 

    Google Scholar 
    30.Siguier, P., Gourbeyre, E. & Chandler, M. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol. Rev. 38, 865–891 (2014).PubMed 

    Google Scholar 
    31.Vulić, M., Dionisio, F., Taddei, F. & Radman, M. Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. Proc. Natl Acad. Sci. USA 94, 9763–9767 (1997).PubMed 
    PubMed Central 

    Google Scholar 
    32.Majewski, J. et al. Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation. J. Bacteriol. 182, 1016–1023 (2000).PubMed 
    PubMed Central 

    Google Scholar 
    33.Wyres, K. L. et al. Pneumococcal capsular switching: a historical perspective. J. Infect. Dis. 207, 439–449 (2013).PubMed 

    Google Scholar 
    34.Hallet, B. & Sherratt, D. J. Transposition and site-specific recombination: adapting DNA cut-and-paste mechanisms to a variety of genetic rearrangements. FEMS Microbiol. Rev. 21, 157–178 (1997).PubMed 

    Google Scholar 
    35.Durrant, M. G., Li, M. M., Siranosian, B. A., Montgomery, S. B. & Bhatt, A. S. A bioinformatic analysis of integrative mobile genetic elements highlights their role in bacterial adaptation. Cell Host Microbe 27, 140–153.e9 (2020).PubMed 

    Google Scholar 
    36.Rajeev, L., Malanowska, K. & Gardner, J. F. Challenging a paradigm: the role of DNA homology in tyrosine recombinase reactions. Microbiol. Mol. Biol. Rev. 73, 300–309 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    37.Hickman, A. B., Chandler, M. & Dyda, F. Integrating prokaryotes and eukaryotes: DNA transposases in light of structure. Crit. Rev. Biochem. Mol. Biol. 45, 50–69 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    38.Oliveira, P. H., Touchon, M., Cury, J. & Rocha, E. P. C. The chromosomal organization of horizontal gene transfer in bacteria. Nat. Commun. 8, 1–10 (2017).
    Google Scholar 
    39.Wadsworth, C. B., Arnold, B. J., Sater, M. R. A. & Grad, Y. Azithromycin resistance through interspecific acquisition of an epistasis-dependent efflux pump component and transcriptional regulator in Neisseria gonorrhoeae. mBio 9, 1–17 (2018).
    Google Scholar 
    40.Arevalo, P., VanInsberghe, D., Elsherbini, J., Gore, J. & Polz, M. F. A reverse ecology approach based on a biological definition of microbial populations. Cell 178, 820–834.e14 (2019). The authors create a metric of recent gene flow to define ecological populations and discover genes that have experienced positive selection across populations.PubMed 

    Google Scholar 
    41.Croucher, N. J. et al. Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict. PLoS Biol. 14, 1–42 (2016). A model of transformation with known bias towards the acquisition of shorter alleles suggests HGT may effectively purge bacterial genomes of parasitic MGEs.
    Google Scholar 
    42.Apagyi, K. J., Fraser, C. & Croucher, N. J. Transformation asymmetry and the evolution of the bacterial accessory genome. Mol. Biol. Evol. 35, 575–581 (2018).PubMed 

    Google Scholar 
    43.Mira, A., Ochman, H. & Moran, N. A. Deletional bias and the evolution of bacterial genomes. Trends Genet. 17, 589–596 (2001).PubMed 

    Google Scholar 
    44.Kuo, C.-H. & Ochman, H. Deletional bias across the three domains of life. Genome Biol. Evol. 1, 145–152 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    45.Lawrence, J. G. & Roth, J. R. Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics 143, 1843–1860 (1996).PubMed 
    PubMed Central 

    Google Scholar 
    46.Hehemann, J. H. et al. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464, 908–912 (2010).PubMed 

    Google Scholar 
    47.Campbell, A. Prophage insertion sites. Res. Microbiol. 154, 277–282 (2003).PubMed 

    Google Scholar 
    48.Chu, N. D. et al. A mobile element in mutS drives hypermutation in a marine Vibrio. mBio 8, 1–13 (2017).
    Google Scholar 
    49.Bobay, L. M., Rocha, E. P. C. & Touchon, M. The adaptation of temperate bacteriophages to their host genomes. Mol. Biol. Evol. 30, 737–751 (2013).PubMed 

    Google Scholar 
    50.Lee, H., Doak, T. G., Popodi, E., Foster, P. L. & Tang, H. Insertion sequence-caused large-scale rearrangements in the genome of Escherichia coli. Nucleic Acids Res. 44, 7109–7119 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    51.Parkhill, J. et al. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat. Genet. 35, 32–40 (2003).PubMed 

    Google Scholar 
    52.Moran, N. A. & Plague, G. R. Genomic changes following host restriction in bacteria. Curr. Opin. Genet. Dev. 14, 627–633 (2004).PubMed 

    Google Scholar 
    53.Hendry, T. et al. Ongoing transposon-mediated genome reduction in the luminous bacterial symbionts of deep-sea ceratioid anglerfishes. mBio https://doi.org/10.1128/mBio.01033-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Waterworth, S. C. et al. Horizontal gene transfer to a defensive symbiont with a reduced genome in a multipartite beetle microbiome. mBio https://doi.org/10.1128/mBio.02430-19 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Vos, M. et al. Rates of lateral gene transfer in prokaryotes: high but why? Trends Microbiol. 23, 598–605 (2015).PubMed 

    Google Scholar 
    56.Cohen, E., Kessler, D. A. & Levine, H. Recombination dramatically speeds up evolution of finite populations. Phys. Rev. Lett. 94, 1–4 (2005).
    Google Scholar 
    57.Levin, B. R. & Cornejo, O. E. The population and evolutionary dynamics of homologous gene recombination in bacteria. PLoS Genet. https://doi.org/10.1371/journal.pgen.1000601 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Arnold, B. J. et al. Weak epistasis may drive adaptation in recombining bacteria. Genetics 208, 1247–1260 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    59.Moradigaravand, D. & Engelstädter, J. The effect of bacterial recombination on adaptation on fitness landscapes with limited peak accessibility. PLoS Comput. Biol. 8, 35–37 (2012).
    Google Scholar 
    60.Cooper, T. F. Recombination speeds adaptation by reducing competition between beneficial mutations in populations of Escherichia coli. PLoS Biol. 5, 1899–1905 (2007).
    Google Scholar 
    61.Winkler, J. & Kao, K. C. Harnessing recombination to speed adaptive evolution in Escherichia coli. Metab. Eng. 14, 487–495 (2012).PubMed 

    Google Scholar 
    62.Chu, H. Y., Sprouffske, K. & Wagner, A. The role of recombination in evolutionary adaptation of Escherichia coli to a novel nutrient. J. Evol. Biol. 30, 1692–1711 (2017).PubMed 

    Google Scholar 
    63.Arnold, B. et al. Fine-scale haplotype structure reveals strong signatures of positive selection in a recombining bacterial pathogen. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msz225 (2019).Article 
    PubMed Central 

    Google Scholar 
    64.Yahara, K. et al. The landscape of realized homologous recombination in pathogenic bacteria. Mol. Biol. Evol. 33, 456–471 (2016).PubMed 

    Google Scholar 
    65.Engelstädter, J. & Moradigaravand, D. Adaptation through genetic time travel? Fluctuating selection can drive the evolution of bacterial transformation. Proc. R. Soc. B Biol. Sci. 281, 20132609 (2014).
    Google Scholar 
    66.Cohan, F. M. Periodic selection and ecological diversity in bacteria. Selective Sweep https://doi.org/10.1007/0-387-27651-3_7 (2007).Article 

    Google Scholar 
    67.Shapiro, B. J., David, L. A., Friedman, J. & Alm, E. J. Looking for Darwin’s footprints in the microbial world. Trends Microbiol. 17, 196–204 (2009).PubMed 

    Google Scholar 
    68.Shapiro, B. J. et al. Population genomics of early events in the ecological differentiation of bacteria. Science 336, 48–51 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    69.Rosen, M., Davison, M., Bhaya, D. & Fisher, D. S. Fine-scale diversity and extensive recombination in a quasisexual bacterial population occupying a broad niche. Science 348, 1019–1024 (2015).PubMed 

    Google Scholar 
    70.Bendall, M. L. et al. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations. ISME J. 10, 1589–1601 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    71.Porter, S. S., Chang, P. L., Conow, C. A., Dunham, J. P. & Friesen, M. L. Association mapping reveals novel serpentine adaptation gene clusters in a population of symbiotic Mesorhizobium. ISME J. 11, 248–262 (2017).PubMed 

    Google Scholar 
    72.Crits-Christoph, A., Olm, M. R., Diamond, S., Bouma-Gregson, K. & Banfield, J. F. Soil bacterial populations are shaped by recombination and gene-specific selection across a grassland meadow. ISME J. https://doi.org/10.1038/s41396-020-0655-x (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Woods, L. C. et al. Horizontal gene transfer potentiates adaptation by reducing selective constraints on the spread of genetic variation. Proc. Natl Acad. Sci. USA 117, 26868–26875 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    74.Miralles, R., Gerrish, P. J., Moya, A. & Elena, S. F. Clonal interference and the evolution of RNA viruses. Science 285, 1745–1747 (1999).PubMed 

    Google Scholar 
    75.De Visser, J. A. G. M., Zeyl, C. W., Gerrish, P. J., Blanchard, J. L. & Lenski, R. E. Diminishing returns from mutation supply rate in asexual populations. Science 283, 404–406 (1999).PubMed 

    Google Scholar 
    76.Good, B. H., Rouzine, I. M., Balick, D. J., Hallatschek, O. & Desai, M. M. Distribution of fixed beneficial mutations and the rate of adaptation in asexual populations. Proc. Natl Acad. Sci. USA 109, 4950–4955 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    77.Takeuchi, N., Cordero, O. X., Koonin, E. V. & Kaneko, K. Gene-specific selective sweeps in bacteria and archaea caused by negative frequency-dependent selection. BMC Biol. 13, 1–11 (2015). The authors show that in the presence of NFDS, genes or mutations that are unconditionally beneficial can spread through populations only via HGT, giving rise to gene-specific sweeps.
    Google Scholar 
    78.Corander, J. et al. Frequency-dependent selection in vaccine-associated pneumococcal population dynamics. Nat. Ecol. Evol. 2017, 1950–1960 (2018).
    Google Scholar 
    79.Rodriguez-Valera, F. et al. Explaining microbial population genomics through phage predation. Nat. Rev. Microbiol. 7, 828–836 (2009).PubMed 

    Google Scholar 
    80.Good, B. H., McDonald, M. J., Barrick, J. E., Lenski, R. E. & Desai, M. M. The dynamics of molecular evolution over 60,000 generations. Nature 551, 45–50 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    81.Ramiro, R. S., Durão, P., Bank, C. & Gordo, I. Low mutational load allows for high mutation rate variation in gut commensal bacteria. PLoS Biol. https://doi.org/10.1101/568709 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Holt, R. D. Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proc. Natl Acad. Sci. USA 106, 19659–19665 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    83.Cohan, F. M. Transmission in the origins of bacterial diversity, from ecotypes to phyla. Microbiol. Spectr. https://doi.org/10.1128/9781555819743.ch18 (2017).Article 
    PubMed 

    Google Scholar 
    84.Fondi, M. et al. “Every gene is everywhere but the environment selects”: global geolocalization of gene sharing in environmental samples through network analysis. Genome Biol. Evol. 8, 1388–1400 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    85.Cohan, F. M. The effects of rare but promiscuous genetic exchange on evolutionary divergence in prokaryotes. Am. Nat. 143, 965–986 (1994).
    Google Scholar 
    86.Majewski, J. & Cohan, F. M. Adapt globally, act locally: the effect of selective sweeps on bacterial sequence diversity. Genetics 152, 1459–1474 (1999).PubMed 
    PubMed Central 

    Google Scholar 
    87.Messer, P. W. & Petrov, D. A. Population genomics of rapid adaptation by soft selective sweeps. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2013.08.003 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    88.Cui, Y. et al. Epidemic clones, oceanic gene pools, and Eco-LD in the free living marine pathogen Vibrio parahaemolyticus. Mol. Biol. Evol. 32, 1396–1410 (2015).PubMed 

    Google Scholar 
    89.Skwark, M. et al. Interacting networks of resistance, virulence and core machinery genes identified by genome-wide epistasis analysis. PLoS Genet. https://doi.org/10.1371/journal.pgen.1006508 (2016).Article 

    Google Scholar 
    90.Pensar, J. et al. Genome-wide epistasis and co-selection study using mutual information. Nucleic Acids Res. 47, e112–e112 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    91.Puranen, S. et al. SuperDCA for genome-wide epistasis analysis. Microb. Genomics 4, e000184 (2018).
    Google Scholar 
    92.Whelan, F. J., Rusilowicz, M. & McInerney, J. O. Coinfinder: detecting significant associations and dissociations in pangenomes. Microb. Genomics 6, e000338 (2020).
    Google Scholar 
    93.Slomka, S. et al. Experimental evolution of bacillus subtilis reveals the evolutionary dynamics of horizontal gene transfer and suggests adaptive and neutral effects. Genetics 216, 543–558 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    94.Maddamsetti, R. & Lenski, R. E. Analysis of bacterial genomes from an evolution experiment with horizontal gene transfer shows that recombination can sometimes overwhelm selection. PLoS Genet. 14, 1–30 (2018).
    Google Scholar 
    95.Knöppel, A., Lind, P. A., Lustig, U., Näsvall, J. & Andersson, D. I. Minor fitness costs in an experimental model of horizontal gene transfer in bacteria. Mol. Biol. Evol. 31, 1220–1227 (2014).PubMed 

    Google Scholar 
    96.Collins, R. E. & Higgs, P. G. Testing the infinitely many genes model for the evolution of the bacterial core genome and pangenome. Mol. Biol. Evol. 29, 3413–3425 (2012).PubMed 

    Google Scholar 
    97.Baumdicker, F., Hess, W. R. & Pfaffelhuber, P. The infinitely many genes model for the distributed genome of bacteria. Genome Biol. Evol. 4, 443–456 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    98.Haegeman, B. & Weitz, J. S. A neutral theory of genome evolution and the frequency distribution of genes. BMC Genomics 13, 196 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    99.Hughes, A. L. Evidence for abundant slightly deleterious polymorphisms in bacterial populations. Genetics 169, 533–538 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    100.Van Passel, M. W. J., Marri, P. R. & Ochman, H. The emergence and fate of horizontally acquired genes in Escherichia coli. PLoS Comput. Biol. 4, e1000059 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    101.Hao, W. & Golding, G. B. The fate of laterally transferred genes: life in the fast lane to adaptation or death. Genome Res. 16, 636–643 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    102.Lerat, E., Daubin, V., Ochman, H. & Moran, N. A. Evolutionary origins of genomic repertoires in bacteria. 3, e130 (2005).103.Lobkovsky, A. E., Wolf, Y. I. & Koonin, E. V. Gene frequency distributions reject a neutral model of genome evolution. Genome Biol. Evol. 5, 233–242 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    104.Sela, I., Wolf, Y. I. & Koonin, E. V. Theory of prokaryotic genome evolution. Proc. Natl Acad. Sci. USA 113, 11399–11407 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    105.Charlesworth, B. Effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. https://doi.org/10.1038/nrg2526 (2009).Article 
    PubMed 

    Google Scholar 
    106.Cohan, F. M. & Perry, E. B. A systematics for discovering the fundamental units of bacterial diversity. Curr. Biol. 17, 373–386 (2007).
    Google Scholar 
    107.Domingo-Sananes, M. R. & McInerney, J. O. Selection-based model of prokaryote pangenomes. bioRxiv https://doi.org/10.1101/782573 (2019).Article 

    Google Scholar 
    108.Azarian, T. et al. Frequency-dependent selection can forecast evolution in Streptococcus pneumoniae. PLoS Biol. 18, e3000878 (2020). The authors provide evidence that NFDS is a pervasive evolutionary force that shapes the accessory genome of S. pneumoniae.PubMed 
    PubMed Central 

    Google Scholar 
    109.Bobay, L. M., Touchon, M. & Rocha, E. P. C. Pervasive domestication of defective prophages by bacteria. Proc. Natl Acad. Sci. USA 111, 12127–12132 (2014). Although prophages can be considered parasitic, the authors show evidence of purifying selection within prophage genes, suggesting that they serve a beneficial purpose within their bacterial hosts.PubMed 
    PubMed Central 

    Google Scholar 
    110.Puigbò, P., Lobkovsky, A. E., Kristensen, D. M., Wolf, Y. I. & Koonin, E. V. Genomes in turmoil: quantification of genome dynamics in prokaryote supergenomes. BMC Med. 12, 1–19 (2014).
    Google Scholar 
    111.Lynch, M. Streamlining and simplification of microbial genome architecture. Annu.Rev.Microbiol. 60, 327–349 (2006).PubMed 

    Google Scholar 
    112.Bobay, L. & Ochman, H. Factors driving effective population size and pan-genome evolution in bacteria. BMC Evol. Biol. 18, 15 (2018).
    Google Scholar 
    113.Brito, I. L. et al. Mobile genes in the human microbiome are structured from global to individual scales. Nature 535, 435–439 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    114.Evans, T. G. Considerations for the use of transcriptomics in identifying the ‘genes that matter’ for environmental adaptation. J. Exp. Biol. 218, 1925–1935 (2015).PubMed 

    Google Scholar 
    115.Cain, A. K. et al. A decade of advances in transposon-insertion sequencing. Nat. Rev. Genet. 21, 526–540 (2020).PubMed 

    Google Scholar 
    116.Wu, M. et al. Genetic determinants of in vivo fitness and diet responsiveness in multiple human gut Bacteroides. Science (80-.) 350, aac5992 (2015).
    Google Scholar 
    117.Poulsen, B. E. et al. Defining the core essential genome of Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 116, 10072–10080 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    118.Pál, C., Papp, B. & Lercher, M. J. Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat. Genet. 37, 1372–1375 (2005).PubMed 

    Google Scholar 
    119.Ansari, A. & Didelot, X. Inference of the properties of the recombination process from whole bacterial genomes. Genetics 196, 253–265 (2014).PubMed 

    Google Scholar 
    120.Lin, M. & Kussell, E. Inferring bacterial recombination rates from large-scale sequencing datasets. Nat. Methods 16, 199–204 (2019). The authors develop a fast and clever method that uses linkage information to estimate recombination rates and the diversity of the gene pool that has contributed alleles to the sample via HGT.PubMed 

    Google Scholar 
    121.Marttinen, P. et al. Detection of recombination events in bacterial genomes from large population samples. Nucleic Acids Res. 40, 1–12 (2012).
    Google Scholar 
    122.Didelot, X. & Wilson, D. J. ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLoS Comput. Biol. 11, 1–18 (2015).
    Google Scholar 
    123.Croucher, N. J. et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. https://doi.org/10.1371/journal.pcbi.1004041 (2015).124.Mostowy, R. et al. Efficient inference of recent and ancestral recombination within bacterial populations. Mol. Biol. Evol. 34, 1167–1182 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    125.Yahara, K., Didelot, X., Ansari, M. A., Sheppard, S. K. & Falush, D. Efficient inference of recombination hot regions in bacterial genomes. Mol. Biol. Evol. 31, 1593–1605 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    126.Daubin, V., Moran, N. A. & Ochman, H. Phylogenetics and the cohesion of bacterial genomes. Science 301, 829–832 (2003).PubMed 

    Google Scholar 
    127.Daubin, V. & Szollosi, G. Horizontal gene transfer and the tree of life. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1007/978-94-007-2941-4_37 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    128.Bertelli, C., Tilley, K. E. & Brinkman, F. S. L. Microbial genomic island discovery, visualization and analysis. Brief. Bioinform. 20, 1685–1698 (2019).PubMed 

    Google Scholar 
    129.Rocha, E. P. C. et al. Comparisons of dN/dS are time dependent for closely related bacterial genomes. J. Theor. Biol. 239, 226–235 (2006).PubMed 

    Google Scholar 
    130.Kryazhimskiy, S. & Plotkin, J. B. The population genetics of dN/dS. PLoS Genet. https://doi.org/10.1371/journal.pgen.1000304 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    131.Charlesworth, B. & Charlesworth, D. Elements of Evolutionary Genetics (Roberts and Company Publishers, 2010).132.Castillo-Ramírez, S. et al. The impact of recombination on dN/dS within recently emerged bacterial clones. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1002129 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    133.David, S. et al. Dynamics and impact of homologous recombination on the evolution of Legionella pneumophila. PLoS Genet. 13, 1–21 (2017).
    Google Scholar 
    134.Dillon, M., Thakur, S., Almeida, R. & Guttman, D. Recombination of ecologically and evolutionarily significant loci maintains genetic cohesion in the Pseudomonas syringae species complex. Genome Biol. https://doi.org/10.1101/227413 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Prevalence of Toxoplasma gondii infection among small mammals in Tatarstan, Russian Federation

    Study area and samplingSmall mammals (murid rodents and shrews) were captured using mouse-type snap traps in Tatarstan, Russian Federation (Fig. 1, Table S1). Area type (urban or rural), vegetation (forest or field) and distance from trapping points to the nearest human settlement were recorded. The distinction between forest and field was made based on the UN Food and Agriculture Organization’s criteria23,24. Each administrative division in the Tatarstan was defined to be urban or rural by the Federal Service of State Statistics of Russian Federation25. Based on these criteria, Kazan city and Naberezhnye Chelny city were classified as urban districts and Vysokogorsky district, Yelabuzhsky district, Laishevsky district, Mamadyshsky district, Nizhnekamsky district, Pestrechinsky district and Tukayevsky district were classified as rural districts. Small mammals were captured during the spring and fall periods of 2016 and 2017. Fifty traps were placed in a line every 5 m in one place. Traps were baited and left for one night. Animal suffering was minimized as snap traps cause rapid death in murid rodents and shrews. Each captured small mammal’s species, age, and sex were morphologically identified using a reference guide26, and the animals were then stored at − 20 °C until their brains were isolated.EthicsAll experiments were performed in compliance with relevant Russian and Japanese and institutional laws and guidelines and were approved by the Ministry of Health of the Russian Federation and the Animal Research Committee of Gifu University (Permit Nos. MU 3.1.1029-01, and 17060, respectively). Study was carried out in compliance with the ARRIVE guidelines (https://arriveguidelines.org).DNA extraction and PCRBrain tissue samples were prepared as described previously12. Brain samples stored at − 20 °C were transferred to a − 86 °C deep freezer. Each deep-frozen whole brain sample was homogenized in 1 ml of a 0.9% saline solution. Total DNA was extracted from the brain tissues of each small mammal using a Genomic DNA Purification Kit (Promega, Madison, WI, USA), following the manufacturer’s instructions. Nested PCR was performed with the Takara PCR Amplification Kit (Takara Bio Inc., Foster City, California, USA) according to the manufacturer’s instructions. The primer sets and PCR conditions used to detect the B1 gene from T. gondii were those described previously12.MappingSpatial referencing of the sampling sites was conducted using global positioning system navigation with a Garmin eTrex 10 device. Visualization of cartographic data and measurements of the distances from the trapping points to the nearest human settlements were performed using QGIS 3.12 software27. Geodetic coordinates were projected into planar rectangular coordinates in the Universal Transverse Mercator projection on the WGS-84 ellipsoid (Universal Transverse Mercator, zone 39N). The overview map of the European part of Russia was made in the Lambert Conformal Conic Projection. Map coordinates are represented as geodetic coordinates (WGS-84, degrees and minutes north latitude and east longitude). To visualize thematic objects (administrative boundaries, forests, agricultural lands, and water bodies), a set of vector data layers, NextGIS (Russia), was purchased from OpenStreetMap and contributors, 2021 (https://data.nextgis.com). Data license: ODbL.Dataset and statistical analysesMultivariate logistic regression was performed using the R statistical software package (version 3.6.3)28 to assess the trapping point area (urban or rural), vegetation (forest or field), small mammal species type (alien or non-alien species), age (0–2 months-old juveniles, 3–6 months-old adults or ≧ 6 months old), sex (male or female) and distance from trapping points to the nearest human settlements as risk factors for PCR positivity. According to previous reports2,13,16,17,18, four species, Mi. arvalis, A. flavicollis, A. agrarius, A. uralensis, and three species, My. glareolus, S. araneus and D. nitedula are considered alien and non-alien species, respectively. Quantitative data were replaced with 0 or 1 dummy variables, and age data were replaced by 0, 1 and 2 for juveniles, adults and elders, respectively. Multicollinearity of the explanatory variables was evaluated using Spearman’s coefficient29 calculated using dplyr, FSA and psych packages30,31,32. None of the Spearman’s coefficients were  > 0.6. To find the best fit model, a forward selection procedure was used. Predictive performance and model fitting were assessed using the area under the receiver operating characteristic (ROC) curve, area under the curve (AUC) and corrected Akaike’s information criterion (AICc) with Akaike weight (Wi). AICc and Wi were calculated using the MuMIN package33, and the AUC was calculated using the R pROC package34. P-values of  More

  • in

    Penetrative and non-penetrative interaction between Laboulbeniales fungi and their arthropod hosts

    The micro-CT results from Arthrorhynchus agree perfectly with the previously known light microscope and transmission electron microscope images2. This emphasizes that microtomography is a good technique to visualize the type of fungal attachment to the host and especially the penetration of the cuticle, apart from the study of thallus in amber fossils17. As Jensen et al. (2019) demonstrated the presence of a haustorium in Arthrorhynchus using scanning electron microscopy, we are confident that the lack of penetration and haustorium in Rickia found by micro-CT is real. This is also in agreement with results from the scanning electron microscopical investigation of the attachment sites of R. gigas, which exhibits no indication of penetration and are very similar to those of R. wasmannii previously shown18.Despite the absence of a haustorium, and hence without any obvious means of obtaining nutrition, Rickia gigas is quite a successful fungus, being often abundant on several species of Afrotropical millipedes of the family Spirostreptidae10. It was originally described from Archispirostreptus gigas, and Tropostreptus (= ‘Spirostreptus’) hamatus20, and was subsequently reported from several other Tropostreptus species19.A further challenge for Laboulbeniales growing on millipedes is that infected millipedes, in some species even adults, may moult, shedding the exuviae with the fungus, as has been observed by us on an undescribed Rickia species on a millipede of the genus Spirobolus (family Spirobolidae).The question of how non-haustoriate Laboulbeniales obtain nutrients has been discussed by several authors18, including staining experiments using fungi of the non-haustoriate genus Laboulbenia on various beetles21. Whereas the surface of the main thallus was almost impenetrable to the dye applied (Nile Blue), the smaller appendages could sometimes be penetrated21. The dye injection into the beetle elytra upon which the fungi were sitting, actually spread from the elytron into the fungus, thus indicating that in spite of the lack of a haustorium, the fungus is able to extract nutrients from the interior of its host21.Such experiments have not been performed on Rickia species, but the possibility that nutrients may pass from the host into the basis of the fungus cannot be excluded. For this genus, or at least R. gigas, there may, however, be an alternative way to obtain nutrients: the small opening in the circular wall by which the thallus is attached to the host may allow nutrients from the surface of the millipede or from the environment to seep into the foot of the fungus. However, further experiments are needed in order to evaluate this hypothesis. Moreover, we should not exclude a potential role of primary and secondary appendages in Laboulbeniales nutrition, as we still do not understand exactly their functional role on the fungus life cycle11.The predominant position of the Laboulbeniales on the host might be related to the absence or presence of a haustorium. Thus, the haustoriate species of the genus Arthrorhynchus are most frequently encountered in large numbers on the arthrodial membranes of the host’s abdomen, although some thalli are found on legs2,22. At the arthrodial membranes the cuticle is more flexible and therefore might be easier to penetrate by a parasite. Furthermore, most tissues providing/storing nutrition (e.g., fat body) are located within the abdomen. In contrast, non-haustoriate fungi as are often located on more stiff and sclerotized body-parts like the genus Rickia on the legs or body-rings of millipedes7,20,23 or the genus Laboulbenia on the elytra of beetles21,24. A reason for this might be that the non-haustoriate forms, which are only superficially attached to the host need a more or less smooth surface for adherence and can easily become detached from a flexible surface, which is movable in itself, like the arthrodial membrane, while the haustoriate forms are firmly anchored within the hosts’ cuticle.Whereas the vast majority of the more than 2000 described species of Laboulbeniales show no sign of host penetration, haustoria have been reported from some other genera18, including Trenomyces parasitizing bird lice25,26, Hesperomyces growing on coccinellid beetles and Herpomyces on cockroaches (formerly a Laboulbeniales and now in the order Herpomycetales10), with pernicious consequences on the hosts’ fitness18,27. Micro-CT studies on these genera could help to understand the host penetration. In order to fully understand how Laboulbeniales obtain nourishment, although other approaches are, also needed—for the time being it remains a mystery how the non-haustoriate Laboulbeniales sustain themselves. More

  • in

    The first report of iron-rich population of adapted medicinal spinach (Blitum virgatum L.) compared with cultivated spinach (Spinacia oleracea L.)

    Collection and domestication of the wild populationsThe academic permission for collections and research on medicinal plants was obtained from the Head of Biotechnology Department, Research Institute of Modern Biological Techniques, University of Zanjan, Zanjan, Iran. The study complies with all relevant guidelines. Some populations of wild spinaches were harvested during spring season 2013 from the mountain habitat of this wild plant in the Tarom region of Zanjan province from an altitude of 2500–3000 m and were transferred to the greenhouses conditions. The domestication and cultivation experiments were conducted at Research Institute of Modern Biological Techniques, University of Zanjan, 1579° m above sea level, with 48° 28′ longitude and 36° 40′ latitude, from April 2013 to August 2020. The resulted seeds were cultured on pots to produce adequate seeds. The seedlings were transferred to the field with rows spaced 50 cm apart and also 50 cm between plants within the rows. Two seeds per hill were planted in an area of approximately 50 m2. Based on the organic conditions, no fertilization was performed. Thinning was done 25 days after emergence, leaving one plant per hill. The other cultural practices were those normally adopted for cultivation in the region.Mass selection of populationsIn the first year, phenotypic studies were performed during the growing season and weak, diseased and underdeveloped plants were removed from the field before the flowering stage. Then plants with the same phenotype and the desired traits were selected and after harvesting, their seeds were mixed. This election cycle was repeated for 5 years. In the final year, the new mass selected population was compared in a pilot project with cultivated spinach in traits such as yield, resistance to wilt, cold and pests, diseases, and mineral contents. This variety before the certification in the related national organization is a candida cultivar. It is a developed population that will be evaluated in the session of the Iranian variety of introduction committee.The seeds of cultivated spinach (Spinacia oleracea L. |Varamin 88|) were prepared from the Research Institute of Modern Biological Techniques, University of Zanjan, Zanjan, Iran.Performing tests of stability, uniformity and differentiationTo assess morphologically and differentiate advanced uniformity in the studied population (Candida cultivar), the population was managed as a randomized complete block design with three replications over 2 years according to the instructions for spinach differentiation, uniformity, and stability (DUS Testing) of the International Union New Plant Cultivation (UPOV) and some morphological traits on plants or parts of plants. The studied traits included: cotyledon length, presence or absence of anthocyanin in petiole and veins, green color intensity, shrinkage, presence of lobes in the petiole, petiole state, petiole length, foil shape, foil edge shape, tip shape, and part of the length of the petiole, the time of flowering and the color of the seeds.Mineral analysesTo compare the mineral content of mass-selected population-medicinal spinach (MSP) with cultivated spinach (Spinacia oleracea L. var. Varamin 88), both plants were planted in pots and fields on similar conditions. In five leaves stage, plant samples were taken from both leaf and crown sections. The sampling method was such that after removing half a meter from the beginning and end of each plot (to remove the marginal effect) and also removing the two sidelines, five plants were harvested randomly for plant mineral analysis. Atomic absorption spectroscopy was used to determine the mineral content including iron (Fe), zinc (Z), manganese (Mn), and copper (Cu).The dried samples of root-crown and leave were stored, and later grounded and analyzed for iron (Fe), zinc (Z), manganese (Mn), and copper (Cu) in mass-selected variety (MSP) and cultivated spinach (CSP). Studied minerals were measured using atomic absorption spectrometry in the model of GBC AVANTA (GBC scientific equipment Ltd., Melbourne, Vic., Australia).Calibration of AAS was done using the working standard prepared from commercially available metal/mineral standard solutions (1000 μg/mL, Merck, Germany). The most appropriate wavelength, hollow cathode lamp current, gas mixture flow rate, slit width, and other AAS instrument parameters for metals/minerals were selected as given in the instrument user’s manual, and background correction was used during the determination of metals/minerals. Measurements were made within the linear range of working standards used for calibration15,16.The concentrations of all the minerals were expressed as mg/1000 g (ppm) dry weight of the sample. Each value is the mean of three replicate determination ± standard deviation.Scanning electron microscopy (SEM)For SEM studies, the seeds enveloping were removed and were acetolyzed in a 1:9 sulfuric acid-acetic anhydride solution. The seeds were vigorously shaken for 5 min. Then, they were left for 24–48 h in the solution. After this time, seeds were again shaken for 5 min and then washed.in distilled water by shaking for a further 5 min. The seeds were dried overnight and then were mounted on stubs and covered with Au–Pd by sputter coater model SC 7620. After coating, coated seeds were photographed with an LEO 1450 VP Scanning Electron Microscope. All photographs were taken in the Taban laboratory (Tehran, Iran).Statistical analysisThe statistical evaluation including: data transformation, analysis of variance and comparison of means were performed (SPSS software, Version 11.0). The experiment was structured following a randomized complete block design (RCBD) with three replications. Means comparisons were conducted using an ANOVA protected the least significant difference (LSD) test, with the ANOVA confidence levels of 0.95. Data were presented with their standard deviations (SD). More