Lipidomic profiling reveals biosynthetic relationships between phospholipids and diacylglycerol ethers in the deep-sea soft coral Paragorgia arborea
1.Holcapek, M., Liebisch, G. & Elcroos, K. Lipidomic analysis. Anal. Chem. 90, 4249–4257. https://doi.org/10.1021/acs.analchem.7b05395 (2018).CAS
Article
Google Scholar
2.Schwudke, D., Shevchenko, A., Hoffmann, N. & Ahrends, R. Lipidomics informatics for life-science. J. Biotech. 261, 131–136. https://doi.org/10.1016/j.jbiotec.2017.08.010 (2017).CAS
Article
Google Scholar
3.Hsu, F. F. Mass spectrometry-based shotgun lipidomics: A critical review from the technical point of view. Anal. Bioanal. Chem. 410, 6387–6409. https://doi.org/10.1007/s00216-018-1252-y (2018).CAS
Article
PubMed
PubMed Central
Google Scholar
4.Hu, T. & Zhang, J. L. Mass-spectrometry-based lipidomics. J. Separ. Sci. 41, 351–372. https://doi.org/10.1002/jssc.201700709 (2018).CAS
Article
Google Scholar
5.Tang, C. H., Lin, C. Y., Tsai, Y. L., Lee, S. H. & Wang, W. H. Lipidomics as a diagnostic tool of the metabolic and physiological state of managed whales: A correlation study of systemic metabolism. Zoo. Biol. 37, 440–451. https://doi.org/10.1002/zoo.21452 (2018).CAS
Article
PubMed
PubMed Central
Google Scholar
6.Li, X. B. et al. Targeted lipidomics profiling of marine phospholipids from different resources by UPLC-Q-Exactive Orbitrap/MS approach. J. Chromatog. B 1096, 107–112. https://doi.org/10.1016/j.jchromb.2018.08.018 (2018).CAS
Article
Google Scholar
7.Monroig, O., Tocher, D. R. & Navarro, J. C. Biosynthesis of polyunsaturated fatty acids in marine invertebrates: Recent advances in molecular mechanisms. Mar. Drugs 11, 3998–4018. https://doi.org/10.3390/md11103998 (2013).CAS
Article
PubMed
PubMed Central
Google Scholar
8.Kharlamenko, V. I. & Odintsova, N. A. Unusual methylene-interrupted polyunsaturated fatty acids of abyssal and hadal invertebrates. Prog. Oceanog. 178, 102132. https://doi.org/10.1016/j.pocean.2019.102132 (2019).Article
Google Scholar
9.Rezanka, T., Kolouchova, I., Gharwalova, L., Palyzova, A. & Sigler, K. Lipidomic analysis: From Archaea to mammals. Lipids 53, 5–25. https://doi.org/10.1002/lipd.12001 (2018).CAS
Article
PubMed
PubMed Central
Google Scholar
10.Lavarias, S., Dreon, M. S., Pollero, R. J. & Heras, H. Changes in phosphatidylcholine molecular species in the shrimp Macrobrachium borellii in response to a water-soluble fraction of petroleum. Lipids 40, 487–494. https://doi.org/10.1007/s11745-005-1408-y (2005).CAS
Article
PubMed
Google Scholar
11.Miniadis-Meimaroglou, S., Kora, L. & Sinanogiou, V. J. Isolation and identification of phospholipid molecular species in a wild marine shrimp Penaeus kerathurus muscle and cephalothorax. Chem. Phys. Lipids 152, 104–112. https://doi.org/10.1016/j.chemphyslip.2008.01.003 (2008).CAS
Article
PubMed
Google Scholar
12.Huang, M. X. et al. Growth and lipidomic responses of juvenile pacific white shrimp Litopenaeus vannamei to low salinity. Front. Physiol. https://doi.org/10.3389/fphys.2019.01087 (2019).Article
PubMed
PubMed Central
Google Scholar
13.Garofalaki, T. F., Miniadis-Meimaroglou, S. & Sinanoglou, V. J. Main phospholipids and their fatty acid composition in muscle and cephalothorax of the edible Mediterranean crustacean Palinurus vulgaris (spiny lobster). Chem. Phys. Lipids 140, 55–65. https://doi.org/10.1016/j.chemphyslip.2006.01.006 (2006).CAS
Article
PubMed
PubMed Central
Google Scholar
14.Rey, F. et al. Unravelling polar lipids dynamics during embryonic development of two sympatric brachyuran crabs (Carcinus maenas and Necora puber) using lipidomics. Sci. Rep. 5, 14549. https://doi.org/10.1038/srep14549 (2015).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
15.Rey, F., Alves, E., Domingues, P., Domingues, M. R. M. & Calado, R. A lipidomic perspective on the embryogenesis of two commercially important crabs, Carcinus maenas and Necora puber. Bull. Mar. Sci. 94, 1395–1411. https://doi.org/10.5343/bms.2017.1140 (2018).Article
Google Scholar
16.de Souza, L. M. et al. Glyco- and sphingophosphonolipids from the medusa Phyllorhiza punctata: NMR and ESI-MS/MS fingerprints. Chem. Phys. Lipids 145, 85–96 (2007).Article
PubMed
PubMed Central
Google Scholar
17.Zhu, S. et al. Lipid profile in different parts of edible jellyfish Rhopilema esculentum. J. Agric. Food Chem. 63, 8283–8291. https://doi.org/10.1021/acs.jafc.5b03145 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
18.Kostetsky, E. Y., Sanina, N. M. & Velansky, P. V. The thermotropic behavior and major molecular species composition of the phospholipids of echinoderms. Russ. J. Mar. Biol. 40, 131–139. https://doi.org/10.1134/s1063074014020059 (2014).CAS
Article
Google Scholar
19.Yin, F. W. et al. Identification of glycerophospholipid molecular species of mussel (Mytilus edulis) lipids by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Food Chem. 213, 344–351. https://doi.org/10.1016/j.foodchem.2016.06.094 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
20.Chen, Q. S. et al. Mechanism of phospholipid hydrolysis for oyster Crassostrea plicatula phospholipids during storage using shotgun lipidomics. Lipids 52, 1045–1058. https://doi.org/10.1007/s11745-017-4305-7 (2017).CAS
Article
PubMed
Google Scholar
21.Liu, Z. Y. et al. Characterization of glycerophospholipid molecular species in six species of edible clams by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Food Chem. 219, 419–427. https://doi.org/10.1016/j.foodchem.2016.09.160 (2017).CAS
Article
PubMed
Google Scholar
22.Chan, C. Y. & Wang, W. X. A lipidomic approach to understand copper resilience in oyster Crassostrea hongkongensis. Aquatic Toxicol. 204, 160–170. https://doi.org/10.1016/j.aquatox.2018.09.011 (2018).CAS
Article
Google Scholar
23.Facchini, L., Losito, I., Cataldi, T. R. I. & Palmisano, F. Seasonal variations in the profile of main phospholipids in Mytilus galloprovincialis mussels: A study by hydrophilic interaction liquid chromatography-electrospray ionization Fourier transform mass spectrometry. J. Mass Spectrom. 53, 1–20. https://doi.org/10.1002/jms.4029 (2018).ADS
CAS
Article
PubMed
Google Scholar
24.Tran, Q. T. et al. Fatty acid, lipid classes and phospholipid molecular species composition of the marine clam Meretrix lyrata (Sowerby 1851) from Cua Lo Beach, Nghe An Province, Vietnam. Molecules https://doi.org/10.3390/molecules24050895 (2019).Article
PubMed
PubMed Central
Google Scholar
25.Wu, Z. X. et al. Lipid profile and glycerophospholipid molecular species in two species of edible razor clams Sinonovacula constricta and Solen gouldi. Lipids 54, 347–356. https://doi.org/10.1002/lipd.12153 (2019).CAS
Article
PubMed
Google Scholar
26.Zhang, Y. Y. et al. Evaluation of lipid profile in different tissues of Japanese abalone Haliotis discus hannai Ino with UPLC-ESI-Q-TOF-MS-based lipidomic study. Food Chem. 265, 49–56. https://doi.org/10.1016/j.foodchem.2018.05.077 (2018).CAS
Article
PubMed
Google Scholar
27.Rey, F. et al. Coping with starvation: Contrasting lipidomic dynamics in the cells of two sacoglossan sea slugs incorporating stolen plastids from the same macroalga. Integr. Comp. Biol. 60, 43–56. https://doi.org/10.1093/icb/icaa019 (2020).CAS
Article
PubMed
Google Scholar
28.Imbs, A. B. & Grigorchuk, V. P. Lipidomic study of the influence of dietary fatty acids on structural lipids of cold-water nudibranch molluscs. Sci. Rep. 9, 20013. https://doi.org/10.1038/s41598-019-56746-8 (2019).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
29.Gold, D. A. et al. Lipidomics of the sea sponge Amphimedon queenslandica and implication for biomarker geochemistry. Geobiol. 15, 836–843. https://doi.org/10.1111/gbi.12253 (2017).CAS
Article
Google Scholar
30.Imbs, A. B., Dang, L. P. T. & Nguyen, K. B. Comparative lipidomic analysis of phospholipids of hydrocorals and corals from tropical and cold-water regions. PLoS ONE 14, e0215759. https://doi.org/10.1371/journal.pone.0215759 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
31.Imbs, A. B., Ermolenko, E. V., Grigorchuk, V. P. & Dang, L. T. P. Seasonal variation in the lipidome of two species of Millepora hydrocorals from Vietnam coastal waters (the South China Sea). Coral Reefs 40, 719–734. https://doi.org/10.1007/s00338-021-02073-2 (2021).Article
Google Scholar
32.Sogin, E. M., Putnam, H. M., Anderson, P. E. & Gates, R. D. Metabolomic signatures of increases in temperature and ocean acidification from the reef-building coral, Pocillopora damicornis. Metabolomics 12, 71 (2016).Article
Google Scholar
33.Tang, C. H., Lin, C. Y., Lee, S. H. & Wang, W. H. Membrane lipid profiles of coral responded to zinc oxide nanoparticle-induced perturbations on the cellular membrane. Aquatic Toxicol. 187, 72–81. https://doi.org/10.1016/j.aquatox.2017.03.021 (2017).CAS
Article
Google Scholar
34.Tang, C. H., Shi, S. H., Lin, C. Y., Li, H. H. & Wang, W. H. Using lipidomic methodology to characterize coral response to herbicide contamination and develop an early biomonitoring model. Sci. Total Environ. 648, 1275–1283. https://doi.org/10.1016/j.scitotenv.2018.08.296 (2019).ADS
CAS
Article
Google Scholar
35.Imbs, A. B., Dang, L. P. T., Rybin, V. G., Nguyen, N. T. & Pham, L. Q. Distribution of very-long-chain fatty acids between molecular species of different phospholipid classes of two soft corals. Biochem. Anal. Biochem. 4, 205. https://doi.org/10.4172/2161-1009.1000205 (2015).CAS
Article
Google Scholar
36.Imbs, A. B. & Dang, L. T. P. The molecular species of phospholipids of the cold-water soft coral Gersemia rubiformis (Ehrenberg, 1834) (Alcyonacea, Nephtheidae). Russ. J. Mar. Biol. 43, 239–244. https://doi.org/10.1134/s1063074017030051 (2017).CAS
Article
Google Scholar
37.Sikorskaya, T. V. & Imbs, A. B. Study of total lipidome of the Sinularia siaesensis soft coral. Russ. J. Bioorg. Chem. 44, 712–723. https://doi.org/10.1134/S1068162019010151 (2018).CAS
Article
Google Scholar
38.Sikorskaya, T. V. Investigation of the total lipidoma from a zoantharia Palythoa sp. Chem. Nat. Comp. 56, 44–49. https://doi.org/10.1007/s10600-020-02940-4 (2020).CAS
Article
Google Scholar
39.Garrett, T. A., Hwang, J., Schmeitzel, J. L. & Schwarz, J. Lipidomics of Aiptasia pallida and Symbiodinium: A model system for investigating the molecular basis of coral symbiosis. Faseb J. 25, 9382. https://doi.org/10.1096/fasebj.25.1_supplement.938.2 (2011).Article
Google Scholar
40.Schmeitzel, J. L., Klein, J., Smith, M., Schwarz, J. & Garrett, T. A. Comparative lipidomic analysis of the symbiosis between Aiptasia pallida and Symbiodinium. FASEB J. 26, 7891. https://doi.org/10.1096/fasebj.26.1_supplement.789.1 (2012).Article
Google Scholar
41.Garrett, T. A., Schmeitzel, J. L., Klein, J. A., Hwang, J. J. & Schwarz, J. A. Comparative lipid profiling of the cnidarian Aiptasia pallida and its dinoflagellate symbiont. PLoS ONE 8, e57975. https://doi.org/10.1371/journal.pone.0057975 (2013).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
42.Bosh, T. V. & Long, P. Q. A Comparison of the composition of wax ester molecular species of different coral groups (Subclasses Hexacorallia and Octocorallia). Russ. J. Mar. Biol. 43, 471–478. https://doi.org/10.1134/s1063074017060049 (2017).CAS
Article
Google Scholar
43.Sogin, E. Development and application of metabolomics for reef-building corals Ph.D. – Zoology thesis, University of Hawaii at Manoa (2015).44.Sikorskaya, T. V., Ermolenko, E. V. & Imbs, A. B. Effect of experimental thermal stress on lipidomes of the soft coral Sinularia sp. and its symbiotic dinoflagellates. J. Exp. Mar. Biol. Ecol. 524, 151295. https://doi.org/10.1016/j.jembe.2019.151295 (2020).Article
Google Scholar
45.Sikorskaya, T. V. & Imbs, A. B. Coral lipidomes and their changes during coral bleaching. Russ. J. Bioorg. Chem. 46, 643–656. https://doi.org/10.1134/s1068162020050234 (2020).CAS
Article
Google Scholar
46.Rosset, S. et al. Lipidome analysis of Symbiodiniaceae reveals possible mechanisms of heat stress tolerance in reef coral symbionts. Coral Reefs 38, 1241–1253. https://doi.org/10.1007/s00338-019-01865-x (2019).ADS
Article
Google Scholar
47.Imbs, A. B. & Chernyshev, A. V. Tracing of lipid markers of soft corals in a polar lipidome of the nudibranch mollusk Tritonia tetraquetra from the Sea of Okhotsk. Polar Biol. 42, 245–256. https://doi.org/10.1007/s00300-018-2418-y (2019).Article
Google Scholar
48.Imbs, A. B., Latyshev, N. A., Dautova, T. N. & Latypov, Y. Y. Distribution of lipids and fatty acids in corals by their taxonomic position and presence of zooxanthellae. Mar. Ecol. Prog. Ser. 409, 65–75. https://doi.org/10.3354/meps08622 (2010).ADS
CAS
Article
Google Scholar
49.McIntyre, T. M., Snyder, F. & Marathe, G. K. Ether-linked lipids and their bioactive species. In Biochemistry of Lipids, Lipoproteins and Membranes (eds Vance, D. E. & Vance, J. E.) 245–276 (Elsevier, 2008).Chapter
Google Scholar
50.Vance, J. E. Phospholipid synthesis and transport in mammalian cells. Traffic 16, 1–18. https://doi.org/10.1111/tra.12230 (2015).CAS
Article
PubMed
Google Scholar
51.Sundahl, H., Buhl-Mortensen, P. & Buhl-Mortensen, L. Distribution and suitable habitat of the cold-water corals Lophelia pertusa, Paragorgia arborea, and Primnoa resedaeformis on the Norwegian continental shelf. Front. Mar. Sci. 7, 22. https://doi.org/10.3389/fmars.2020.00213 (2020).Article
Google Scholar
52.Vysotskii, M. V. & Svetashev, V. I. Identification, isolation and characterization of tetracosapolyenoic acids in lipids of marine coelenterates. Biochim. Biophys. Acta 1083, 161–165. https://doi.org/10.1016/0005-2760(91)90037-I (1991).CAS
Article
PubMed
Google Scholar
53.Imbs, A. B., Demidkova, D. A. & Dautova, T. N. Lipids and fatty acids of cold-water soft corals and hydrocorals: A comparison with tropical species and implications for coral nutrition. Mar. Biol. 163, 202. https://doi.org/10.1007/s00227-016-2974-z (2016).CAS
Article
Google Scholar
54.Magnusson, C. D. & Haraldsson, G. G. Ether lipids. Chem. Phys. Lipids 164, 315–340 (2011).CAS
Article
PubMed
Google Scholar
55.Mann, J. & Skeaff, M. Triacylglycerols in Encyclopedia of Life Sciences, 1–9 (Nature Publishing Group, 2001).56.Imbs, A. B., Yakovleva, I. M., Latyshev, N. A. & Pham, L. Q. Biosynthesis of polyunsaturated fatty acids in zooxanthellae and polyps of corals. Russ. J. Mar. Biol. 36, 452–457. https://doi.org/10.1134/S1063074010060076 (2010).CAS
Article
Google Scholar
57.Treignier, C., Tolosa, I., Grover, R., Reynaud, S. & Ferrier-Pages, C. Carbon isotope composition of fatty acids and sterols in the scleractinian coral Turbinaria reniformis: Effect of light and feeding. Limnol. Oceanog. 54, 1933–1940 (2009).ADS
CAS
Article
Google Scholar
58.Kabeya, N. et al. Genes for de novo biosynthesis of omega-3 polyunsaturated fatty acids are widespread in animals. Science Advances 4, eaar6849, https://doi.org/10.1126/sciadv.aar6849 (2018).59.Rybin, V. G., Imbs, A. B., Demidkova, D. A. & Ermolenko, E. V. Identification of molecular species of monoalkyldiacylglycerol from the squid Berryteuthis magister using liquid chromatography–APCI high-resolution mass spectrometry. Chem. Phys. Lipids 202, 55–61 (2017).CAS
Article
PubMed
PubMed Central
Google Scholar
60.Imbs, A. B., Dang, L. P. T., Rybin, V. G. & Svetashev, V. I. Fatty acid, lipid class, and phospholipid molecular species composition of the soft coral Xenia sp. (Nha Trang Bay, the South China Sea, Vietnam). Lipids 50, 575–589. https://doi.org/10.1007/s11745-015-4021-0 (2015).CAS
Article
Google Scholar
61.Folch, J., Lees, M. & Sloane Stanley, G. H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509 (1957).CAS
Article
PubMed
Google Scholar
62.Svetashev, V. I. Mild method for preparation of 4,4-dimethyloxazoline derivatives of polyunsaturated fatty acids for GC–MS. Lipids 46, 463–467. https://doi.org/10.1007/s11745-011-3550-4 (2011).CAS
Article
PubMed
Google Scholar
63.Brügger, B. Lipidomics: Analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry in Annual Review of Biochemistry (ed. Kornberg, R. D.). Vol. 83, 79–98 (Annual Reviews, 2014).64.Wagner, S. & Richling, E. LC-ESI-MS determination of phospholipids and lysophospholipids. Chromatographia 72, 659–664. https://doi.org/10.1365/s10337-010-1698-3 (2010).CAS
Article
Google Scholar
65.Wang, R. et al. Identification of ceramide 2-aminoethylphosphonate molecular species from different aquatic products by NPLC/Q-Exactive-MS. Food Chem. 304, 10. https://doi.org/10.1016/j.foodchem.2019.125425 (2020).CAS
Article
Google Scholar
66.Hsu, F. F. & Turk, J. Electrospray ionization with low-energy collisionally activated dissociation tandem mass spectrometry of glycerophospholipids: Mechanisms of fragmentation and structural characterization. J. Chromatog. B 877, 2673–2695. https://doi.org/10.1016/j.jchromb.2009.02.033 (2009).CAS
Article
Google Scholar More