More stories

  • in

    Lipidomic profiling reveals biosynthetic relationships between phospholipids and diacylglycerol ethers in the deep-sea soft coral Paragorgia arborea

    1.Holcapek, M., Liebisch, G. & Elcroos, K. Lipidomic analysis. Anal. Chem. 90, 4249–4257. https://doi.org/10.1021/acs.analchem.7b05395 (2018).CAS 
    Article 

    Google Scholar 
    2.Schwudke, D., Shevchenko, A., Hoffmann, N. & Ahrends, R. Lipidomics informatics for life-science. J. Biotech. 261, 131–136. https://doi.org/10.1016/j.jbiotec.2017.08.010 (2017).CAS 
    Article 

    Google Scholar 
    3.Hsu, F. F. Mass spectrometry-based shotgun lipidomics: A critical review from the technical point of view. Anal. Bioanal. Chem. 410, 6387–6409. https://doi.org/10.1007/s00216-018-1252-y (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Hu, T. & Zhang, J. L. Mass-spectrometry-based lipidomics. J. Separ. Sci. 41, 351–372. https://doi.org/10.1002/jssc.201700709 (2018).CAS 
    Article 

    Google Scholar 
    5.Tang, C. H., Lin, C. Y., Tsai, Y. L., Lee, S. H. & Wang, W. H. Lipidomics as a diagnostic tool of the metabolic and physiological state of managed whales: A correlation study of systemic metabolism. Zoo. Biol. 37, 440–451. https://doi.org/10.1002/zoo.21452 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Li, X. B. et al. Targeted lipidomics profiling of marine phospholipids from different resources by UPLC-Q-Exactive Orbitrap/MS approach. J. Chromatog. B 1096, 107–112. https://doi.org/10.1016/j.jchromb.2018.08.018 (2018).CAS 
    Article 

    Google Scholar 
    7.Monroig, O., Tocher, D. R. & Navarro, J. C. Biosynthesis of polyunsaturated fatty acids in marine invertebrates: Recent advances in molecular mechanisms. Mar. Drugs 11, 3998–4018. https://doi.org/10.3390/md11103998 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Kharlamenko, V. I. & Odintsova, N. A. Unusual methylene-interrupted polyunsaturated fatty acids of abyssal and hadal invertebrates. Prog. Oceanog. 178, 102132. https://doi.org/10.1016/j.pocean.2019.102132 (2019).Article 

    Google Scholar 
    9.Rezanka, T., Kolouchova, I., Gharwalova, L., Palyzova, A. & Sigler, K. Lipidomic analysis: From Archaea to mammals. Lipids 53, 5–25. https://doi.org/10.1002/lipd.12001 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Lavarias, S., Dreon, M. S., Pollero, R. J. & Heras, H. Changes in phosphatidylcholine molecular species in the shrimp Macrobrachium borellii in response to a water-soluble fraction of petroleum. Lipids 40, 487–494. https://doi.org/10.1007/s11745-005-1408-y (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Miniadis-Meimaroglou, S., Kora, L. & Sinanogiou, V. J. Isolation and identification of phospholipid molecular species in a wild marine shrimp Penaeus kerathurus muscle and cephalothorax. Chem. Phys. Lipids 152, 104–112. https://doi.org/10.1016/j.chemphyslip.2008.01.003 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Huang, M. X. et al. Growth and lipidomic responses of juvenile pacific white shrimp Litopenaeus vannamei to low salinity. Front. Physiol. https://doi.org/10.3389/fphys.2019.01087 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Garofalaki, T. F., Miniadis-Meimaroglou, S. & Sinanoglou, V. J. Main phospholipids and their fatty acid composition in muscle and cephalothorax of the edible Mediterranean crustacean Palinurus vulgaris (spiny lobster). Chem. Phys. Lipids 140, 55–65. https://doi.org/10.1016/j.chemphyslip.2006.01.006 (2006).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Rey, F. et al. Unravelling polar lipids dynamics during embryonic development of two sympatric brachyuran crabs (Carcinus maenas and Necora puber) using lipidomics. Sci. Rep. 5, 14549. https://doi.org/10.1038/srep14549 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Rey, F., Alves, E., Domingues, P., Domingues, M. R. M. & Calado, R. A lipidomic perspective on the embryogenesis of two commercially important crabs, Carcinus maenas and Necora puber. Bull. Mar. Sci. 94, 1395–1411. https://doi.org/10.5343/bms.2017.1140 (2018).Article 

    Google Scholar 
    16.de Souza, L. M. et al. Glyco- and sphingophosphonolipids from the medusa Phyllorhiza punctata: NMR and ESI-MS/MS fingerprints. Chem. Phys. Lipids 145, 85–96 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Zhu, S. et al. Lipid profile in different parts of edible jellyfish Rhopilema esculentum. J. Agric. Food Chem. 63, 8283–8291. https://doi.org/10.1021/acs.jafc.5b03145 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Kostetsky, E. Y., Sanina, N. M. & Velansky, P. V. The thermotropic behavior and major molecular species composition of the phospholipids of echinoderms. Russ. J. Mar. Biol. 40, 131–139. https://doi.org/10.1134/s1063074014020059 (2014).CAS 
    Article 

    Google Scholar 
    19.Yin, F. W. et al. Identification of glycerophospholipid molecular species of mussel (Mytilus edulis) lipids by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Food Chem. 213, 344–351. https://doi.org/10.1016/j.foodchem.2016.06.094 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Chen, Q. S. et al. Mechanism of phospholipid hydrolysis for oyster Crassostrea plicatula phospholipids during storage using shotgun lipidomics. Lipids 52, 1045–1058. https://doi.org/10.1007/s11745-017-4305-7 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    21.Liu, Z. Y. et al. Characterization of glycerophospholipid molecular species in six species of edible clams by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Food Chem. 219, 419–427. https://doi.org/10.1016/j.foodchem.2016.09.160 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Chan, C. Y. & Wang, W. X. A lipidomic approach to understand copper resilience in oyster Crassostrea hongkongensis. Aquatic Toxicol. 204, 160–170. https://doi.org/10.1016/j.aquatox.2018.09.011 (2018).CAS 
    Article 

    Google Scholar 
    23.Facchini, L., Losito, I., Cataldi, T. R. I. & Palmisano, F. Seasonal variations in the profile of main phospholipids in Mytilus galloprovincialis mussels: A study by hydrophilic interaction liquid chromatography-electrospray ionization Fourier transform mass spectrometry. J. Mass Spectrom. 53, 1–20. https://doi.org/10.1002/jms.4029 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    24.Tran, Q. T. et al. Fatty acid, lipid classes and phospholipid molecular species composition of the marine clam Meretrix lyrata (Sowerby 1851) from Cua Lo Beach, Nghe An Province, Vietnam. Molecules https://doi.org/10.3390/molecules24050895 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Wu, Z. X. et al. Lipid profile and glycerophospholipid molecular species in two species of edible razor clams Sinonovacula constricta and Solen gouldi. Lipids 54, 347–356. https://doi.org/10.1002/lipd.12153 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Zhang, Y. Y. et al. Evaluation of lipid profile in different tissues of Japanese abalone Haliotis discus hannai Ino with UPLC-ESI-Q-TOF-MS-based lipidomic study. Food Chem. 265, 49–56. https://doi.org/10.1016/j.foodchem.2018.05.077 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    27.Rey, F. et al. Coping with starvation: Contrasting lipidomic dynamics in the cells of two sacoglossan sea slugs incorporating stolen plastids from the same macroalga. Integr. Comp. Biol. 60, 43–56. https://doi.org/10.1093/icb/icaa019 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    28.Imbs, A. B. & Grigorchuk, V. P. Lipidomic study of the influence of dietary fatty acids on structural lipids of cold-water nudibranch molluscs. Sci. Rep. 9, 20013. https://doi.org/10.1038/s41598-019-56746-8 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Gold, D. A. et al. Lipidomics of the sea sponge Amphimedon queenslandica and implication for biomarker geochemistry. Geobiol. 15, 836–843. https://doi.org/10.1111/gbi.12253 (2017).CAS 
    Article 

    Google Scholar 
    30.Imbs, A. B., Dang, L. P. T. & Nguyen, K. B. Comparative lipidomic analysis of phospholipids of hydrocorals and corals from tropical and cold-water regions. PLoS ONE 14, e0215759. https://doi.org/10.1371/journal.pone.0215759 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Imbs, A. B., Ermolenko, E. V., Grigorchuk, V. P. & Dang, L. T. P. Seasonal variation in the lipidome of two species of Millepora hydrocorals from Vietnam coastal waters (the South China Sea). Coral Reefs 40, 719–734. https://doi.org/10.1007/s00338-021-02073-2 (2021).Article 

    Google Scholar 
    32.Sogin, E. M., Putnam, H. M., Anderson, P. E. & Gates, R. D. Metabolomic signatures of increases in temperature and ocean acidification from the reef-building coral, Pocillopora damicornis. Metabolomics 12, 71 (2016).Article 

    Google Scholar 
    33.Tang, C. H., Lin, C. Y., Lee, S. H. & Wang, W. H. Membrane lipid profiles of coral responded to zinc oxide nanoparticle-induced perturbations on the cellular membrane. Aquatic Toxicol. 187, 72–81. https://doi.org/10.1016/j.aquatox.2017.03.021 (2017).CAS 
    Article 

    Google Scholar 
    34.Tang, C. H., Shi, S. H., Lin, C. Y., Li, H. H. & Wang, W. H. Using lipidomic methodology to characterize coral response to herbicide contamination and develop an early biomonitoring model. Sci. Total Environ. 648, 1275–1283. https://doi.org/10.1016/j.scitotenv.2018.08.296 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Imbs, A. B., Dang, L. P. T., Rybin, V. G., Nguyen, N. T. & Pham, L. Q. Distribution of very-long-chain fatty acids between molecular species of different phospholipid classes of two soft corals. Biochem. Anal. Biochem. 4, 205. https://doi.org/10.4172/2161-1009.1000205 (2015).CAS 
    Article 

    Google Scholar 
    36.Imbs, A. B. & Dang, L. T. P. The molecular species of phospholipids of the cold-water soft coral Gersemia rubiformis (Ehrenberg, 1834) (Alcyonacea, Nephtheidae). Russ. J. Mar. Biol. 43, 239–244. https://doi.org/10.1134/s1063074017030051 (2017).CAS 
    Article 

    Google Scholar 
    37.Sikorskaya, T. V. & Imbs, A. B. Study of total lipidome of the Sinularia siaesensis soft coral. Russ. J. Bioorg. Chem. 44, 712–723. https://doi.org/10.1134/S1068162019010151 (2018).CAS 
    Article 

    Google Scholar 
    38.Sikorskaya, T. V. Investigation of the total lipidoma from a zoantharia Palythoa sp. Chem. Nat. Comp. 56, 44–49. https://doi.org/10.1007/s10600-020-02940-4 (2020).CAS 
    Article 

    Google Scholar 
    39.Garrett, T. A., Hwang, J., Schmeitzel, J. L. & Schwarz, J. Lipidomics of Aiptasia pallida and Symbiodinium: A model system for investigating the molecular basis of coral symbiosis. Faseb J. 25, 9382. https://doi.org/10.1096/fasebj.25.1_supplement.938.2 (2011).Article 

    Google Scholar 
    40.Schmeitzel, J. L., Klein, J., Smith, M., Schwarz, J. & Garrett, T. A. Comparative lipidomic analysis of the symbiosis between Aiptasia pallida and Symbiodinium. FASEB J. 26, 7891. https://doi.org/10.1096/fasebj.26.1_supplement.789.1 (2012).Article 

    Google Scholar 
    41.Garrett, T. A., Schmeitzel, J. L., Klein, J. A., Hwang, J. J. & Schwarz, J. A. Comparative lipid profiling of the cnidarian Aiptasia pallida and its dinoflagellate symbiont. PLoS ONE 8, e57975. https://doi.org/10.1371/journal.pone.0057975 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Bosh, T. V. & Long, P. Q. A Comparison of the composition of wax ester molecular species of different coral groups (Subclasses Hexacorallia and Octocorallia). Russ. J. Mar. Biol. 43, 471–478. https://doi.org/10.1134/s1063074017060049 (2017).CAS 
    Article 

    Google Scholar 
    43.Sogin, E. Development and application of metabolomics for reef-building corals Ph.D. – Zoology thesis, University of Hawaii at Manoa (2015).44.Sikorskaya, T. V., Ermolenko, E. V. & Imbs, A. B. Effect of experimental thermal stress on lipidomes of the soft coral Sinularia sp. and its symbiotic dinoflagellates. J. Exp. Mar. Biol. Ecol. 524, 151295. https://doi.org/10.1016/j.jembe.2019.151295 (2020).Article 

    Google Scholar 
    45.Sikorskaya, T. V. & Imbs, A. B. Coral lipidomes and their changes during coral bleaching. Russ. J. Bioorg. Chem. 46, 643–656. https://doi.org/10.1134/s1068162020050234 (2020).CAS 
    Article 

    Google Scholar 
    46.Rosset, S. et al. Lipidome analysis of Symbiodiniaceae reveals possible mechanisms of heat stress tolerance in reef coral symbionts. Coral Reefs 38, 1241–1253. https://doi.org/10.1007/s00338-019-01865-x (2019).ADS 
    Article 

    Google Scholar 
    47.Imbs, A. B. & Chernyshev, A. V. Tracing of lipid markers of soft corals in a polar lipidome of the nudibranch mollusk Tritonia tetraquetra from the Sea of Okhotsk. Polar Biol. 42, 245–256. https://doi.org/10.1007/s00300-018-2418-y (2019).Article 

    Google Scholar 
    48.Imbs, A. B., Latyshev, N. A., Dautova, T. N. & Latypov, Y. Y. Distribution of lipids and fatty acids in corals by their taxonomic position and presence of zooxanthellae. Mar. Ecol. Prog. Ser. 409, 65–75. https://doi.org/10.3354/meps08622 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    49.McIntyre, T. M., Snyder, F. & Marathe, G. K. Ether-linked lipids and their bioactive species. In Biochemistry of Lipids, Lipoproteins and Membranes (eds Vance, D. E. & Vance, J. E.) 245–276 (Elsevier, 2008).Chapter 

    Google Scholar 
    50.Vance, J. E. Phospholipid synthesis and transport in mammalian cells. Traffic 16, 1–18. https://doi.org/10.1111/tra.12230 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    51.Sundahl, H., Buhl-Mortensen, P. & Buhl-Mortensen, L. Distribution and suitable habitat of the cold-water corals Lophelia pertusa, Paragorgia arborea, and Primnoa resedaeformis on the Norwegian continental shelf. Front. Mar. Sci. 7, 22. https://doi.org/10.3389/fmars.2020.00213 (2020).Article 

    Google Scholar 
    52.Vysotskii, M. V. & Svetashev, V. I. Identification, isolation and characterization of tetracosapolyenoic acids in lipids of marine coelenterates. Biochim. Biophys. Acta 1083, 161–165. https://doi.org/10.1016/0005-2760(91)90037-I (1991).CAS 
    Article 
    PubMed 

    Google Scholar 
    53.Imbs, A. B., Demidkova, D. A. & Dautova, T. N. Lipids and fatty acids of cold-water soft corals and hydrocorals: A comparison with tropical species and implications for coral nutrition. Mar. Biol. 163, 202. https://doi.org/10.1007/s00227-016-2974-z (2016).CAS 
    Article 

    Google Scholar 
    54.Magnusson, C. D. & Haraldsson, G. G. Ether lipids. Chem. Phys. Lipids 164, 315–340 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    55.Mann, J. & Skeaff, M. Triacylglycerols in Encyclopedia of Life Sciences, 1–9 (Nature Publishing Group, 2001).56.Imbs, A. B., Yakovleva, I. M., Latyshev, N. A. & Pham, L. Q. Biosynthesis of polyunsaturated fatty acids in zooxanthellae and polyps of corals. Russ. J. Mar. Biol. 36, 452–457. https://doi.org/10.1134/S1063074010060076 (2010).CAS 
    Article 

    Google Scholar 
    57.Treignier, C., Tolosa, I., Grover, R., Reynaud, S. & Ferrier-Pages, C. Carbon isotope composition of fatty acids and sterols in the scleractinian coral Turbinaria reniformis: Effect of light and feeding. Limnol. Oceanog. 54, 1933–1940 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    58.Kabeya, N. et al. Genes for de novo biosynthesis of omega-3 polyunsaturated fatty acids are widespread in animals. Science Advances 4, eaar6849, https://doi.org/10.1126/sciadv.aar6849 (2018).59.Rybin, V. G., Imbs, A. B., Demidkova, D. A. & Ermolenko, E. V. Identification of molecular species of monoalkyldiacylglycerol from the squid Berryteuthis magister using liquid chromatography–APCI high-resolution mass spectrometry. Chem. Phys. Lipids 202, 55–61 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Imbs, A. B., Dang, L. P. T., Rybin, V. G. & Svetashev, V. I. Fatty acid, lipid class, and phospholipid molecular species composition of the soft coral Xenia sp. (Nha Trang Bay, the South China Sea, Vietnam). Lipids 50, 575–589. https://doi.org/10.1007/s11745-015-4021-0 (2015).CAS 
    Article 

    Google Scholar 
    61.Folch, J., Lees, M. & Sloane Stanley, G. H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509 (1957).CAS 
    Article 
    PubMed 

    Google Scholar 
    62.Svetashev, V. I. Mild method for preparation of 4,4-dimethyloxazoline derivatives of polyunsaturated fatty acids for GC–MS. Lipids 46, 463–467. https://doi.org/10.1007/s11745-011-3550-4 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    63.Brügger, B. Lipidomics: Analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry in Annual Review of Biochemistry (ed. Kornberg, R. D.). Vol. 83, 79–98 (Annual Reviews, 2014).64.Wagner, S. & Richling, E. LC-ESI-MS determination of phospholipids and lysophospholipids. Chromatographia 72, 659–664. https://doi.org/10.1365/s10337-010-1698-3 (2010).CAS 
    Article 

    Google Scholar 
    65.Wang, R. et al. Identification of ceramide 2-aminoethylphosphonate molecular species from different aquatic products by NPLC/Q-Exactive-MS. Food Chem. 304, 10. https://doi.org/10.1016/j.foodchem.2019.125425 (2020).CAS 
    Article 

    Google Scholar 
    66.Hsu, F. F. & Turk, J. Electrospray ionization with low-energy collisionally activated dissociation tandem mass spectrometry of glycerophospholipids: Mechanisms of fragmentation and structural characterization. J. Chromatog. B 877, 2673–2695. https://doi.org/10.1016/j.jchromb.2009.02.033 (2009).CAS 
    Article 

    Google Scholar  More

  • in

    Intraspecific variation in thermal tolerance differs between tropical and temperate fishes

    1.Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).ADS 
    Article 

    Google Scholar 
    2.Stillman, J. H. Heat waves, the new normal: Summertime temperature extremes will impact animals, ecosystems, and human communities. Physiology 34, 86–100 (2019).CAS 
    Article 

    Google Scholar 
    3.Williams, C. M. et al. Biological impacts of thermal extremes: Mechanisms and costs of functional responses matter. Integr. Comp. Biol. 56, 73–84 (2016).Article 

    Google Scholar 
    4.Comte, L. & Olden, J. D. Climatic vulnerability of the world’s freshwater and marine fishes. Nat. Clim. Chang. 7, 718–722 (2017).ADS 
    Article 

    Google Scholar 
    5.Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H. O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B Biol. Sci. 278, 1823–1830 (2011).Article 

    Google Scholar 
    7.Rummer, J. L. et al. Life on the edge: Thermal optima for aerobic scope of equatorial reef fishes are close to current day temperatures. Glob. Chang. Biol. 20, 1055–1066 (2014).ADS 
    Article 

    Google Scholar 
    8.Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    9.Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Bennett, S., Duarte, C. M., Marbà, N. & Wernberg, T. Integrating within-species variation in thermal physiology into climate change ecology. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180550 (2019).Article 

    Google Scholar 
    11.Comte, L. & Olden, J. D. Evolutionary and environmental determinants of freshwater fish thermal tolerance and plasticity. Glob. Chang. Biol. 23, 728–736 (2017).ADS 
    Article 

    Google Scholar 
    12.Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).Article 

    Google Scholar 
    13.Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Chang. 5, 215–225 (2015).ADS 
    Article 

    Google Scholar 
    14.Moran, E. V., Hartig, F. & Bell, D. M. Intraspecific trait variation across scales: Implications for understanding global change responses. Glob. Change Biol. 22, 137–150 (2016).ADS 
    Article 

    Google Scholar 
    15.McKenzie, D. J. et al. Intraspecific variation in tolerance of warming in fishes. J. Fish Biol. 98, 1–20 (2020).

    Google Scholar 
    16.Mimura, M. et al. Understanding and monitoring the consequences of human impacts on intraspecific variation. Evol. Appl. 10, 121–139 (2017).Article 

    Google Scholar 
    17.Doyle, C. M., Leberg, P. L. & Klerks, P. L. Heritability of heat tolerance in a small livebearing fish, Heterandria formosa. Ecotoxicology 20, 535–542 (2011).CAS 
    Article 

    Google Scholar 
    18.Meffe, G. K., Weeks, S. C., Mulvey, M. & Kandl, K. L. Genetic differences in thermal tolerance of eastern mosquitofish (Gambusia holbrooki; Poeciliidae) from ambient and thermal ponds. Can. J. Fish. Aquat. Sci. 52, 2704–2711 (1995).Article 

    Google Scholar 
    19.Gradil, K. J., Garner, S. R., Wilson, C. C., Farrell, A. P. & Neff, B. D. Relationship between cardiac performance and environment across populations of Atlantic salmon (Salmo salar): A common garden experiment implicates local adaptation. Evol. Ecol. 30, 877–886 (2016).Article 

    Google Scholar 
    20.Fangue, N. A., Hofmeister, M. & Schulte, P. M. Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus. J. Exp. Biol. 209, 2859–2872 (2006).CAS 
    Article 

    Google Scholar 
    21.Chen, Z., Farrell, A. P., Matala, A. & Narum, S. R. Mechanisms of thermal adaptation and evolutionary potential of conspecific populations to changing environments. Mol. Ecol. 27, 659–674 (2018).Article 

    Google Scholar 
    22.Chen, Z., Farrell, A. P., Matala, A., Hoffman, N. & Narum, S. R. Physiological and genomic signatures of evolutionary thermal adaptation in redband trout from extreme climates. Evol. Appl. 11, 1686–1699 (2018).CAS 
    Article 

    Google Scholar 
    23.Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).Article 

    Google Scholar 
    24.Mori, A. S., Furukawa, T. & Sasaki, T. Response diversity determines the resilience of ecosystems to environmental change. Biol. Rev. 88, 349–364 (2013).Article 

    Google Scholar 
    25.Rodgers, G. G., Donelson, J. M., McCormick, M. I. & Munday, P. L. In hot water: Sustained ocean warming reduces survival of a low-latitude coral reef fish. Mar. Biol. 165, 1–10 (2018).Article 

    Google Scholar 
    26.Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Chang. 5, 61–66 (2015).ADS 
    Article 

    Google Scholar 
    27.Meffe, G. K., Weeks, S. C., Mulvey, M. & Kandl, K. L. Genetic differences in thermal tolerance of eastern mosquitofish (Gambusia holbrooki; Poeciliidae) from ambient and thermal ponds. Can. J. Fish. Aquat. Sci. 52(12), 2704–2711 (1995).Article 

    Google Scholar 
    28.Baer, C. F. & Travis, J. Direct and correlated responses to artificial selection on acute thermal stress tolerance in a livebearing fish. Evolution 54(1), 238–244 (2000).CAS 
    Article 

    Google Scholar 
    29.Klerks, P. L., Athrey, G. N. & Leberg, P. L. Response to selection for increased heat tolerance in a small fish species, with the response decreased by a population bottleneck. Front. Ecol. Evol. 7, 270 (2019).Article 

    Google Scholar 
    30.Morgan, R., Finnøen, M. H., Jensen, H., Pélabon, C. & Jutfelt, F. Low potential for evolutionary rescue from climate change in a tropical fish. Proc. R. Soc. B Biol. Sci. 117(52), 33365–33372 (2020).CAS 

    Google Scholar 
    31.Frölicher, T. L. Extreme climatic events in the ocean. In Predicting Future Oceans: Sustainability of Ocean and Human Systems Amidst Global Environmental Change (eds Cisneros-Montemayor A. M. et al.) 53–60 (2019).32.Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Chang. 3(1), 78–82 (2013).ADS 
    Article 

    Google Scholar 
    33.Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507(7493), 492–495 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Molinos, J. G. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Chang. 6(1), 83–88 (2016).ADS 
    Article 

    Google Scholar 
    35.Cox, D. K. Effects of three heating rates on the critical thermal maximum of bluegill. In Thermal Ecology (eds Gibbons, J. W. & Sharitz, R. R.) (National Technical Information Service, 1974).
    Google Scholar 
    36.Currie, S. & Schulte, P. M. Thermal stress. In The Physiology of Fishes 4th edn (eds Evans, D. H. et al.) 257–279 (CRC Press, 2014).
    Google Scholar 
    37.Grafen, A. The phlyogenetic regression. Philos. Trans. R. Soc. Lond. 326, 119–157 (1989).ADS 
    CAS 

    Google Scholar 
    38.Garland, T. Jr. & Ives, A. R. Using the past to predict the present: Confidence intervals for regression equations in phylogenetic comparative methods. Am. Nat. 155, 346–364 (2000).Article 

    Google Scholar 
    39.Orme, D. The caper package: comparative analysis of phylogenetics and evolution in R http://cran.r-project.org/web/packages/caper/index.html (2013).40.Hinchliff, C. E. et al. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc. Natl. Acad. Sci. 112(41), 12764–12769 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    41.Michonneau, F., Brown, J. W. & Winter, D. J. rotl: An R package to interact with the Open Tree of Life data. Methods Ecol. Evol. 7, 1476–1481 (2016).Article 

    Google Scholar 
    42.Freckleton, R. P. The seven deadly sins of comparative analysis. J. Evol. Biol. 22, 1367–1375 (2009).CAS 
    Article 

    Google Scholar  More

  • in

    Modeling characterization of the vertical and temporal variability of environmental DNA in the mesopelagic ocean

    To capture the first-order characteristics of the distribution of eDNA shed by mesopelagic species, we used a mechanistic model with one spatial dimension (the vertical dimension). It treats migrating organisms as a continuous point source of eDNA and simulates temporal evolution of the eDNA concentration vertical profiles in a one-dimensional ocean with climatological conditions. Horizontal variation of the distribution of eDNA shed by mesopelagic species is not considered in this study. The point source in the model represents a number of individuals within a single species. The simulation includes relevant eDNA transport processes using a vertical Price-Weller-Pinkel (PWP) dynamical module42. We use this model to first explore the sensitivity of eDNA concentration profiles to a variety of biological and physical parameters and to assess vertical and temporal variability of the eDNA concentration. Table 1 outlines the parameters, separated by type, and ranges of values for each parameter used in the sensitivity analysis (see “Sensitivity analysis” section below) and in a case study of how the model can be used to determine the percent of individuals that migrate (see “Application to ecological questions” section below). We then discuss how the mechanistic model can be used in conjunction with field sampling to test ecological hypotheses, highlighting how analysis of eDNA concentration profiles can provide information regarding where and when organisms are located in the water column. Finally, we comment on implications of this work and how the model can be used to both design and interpret observations.Table 1 Parameters separated by category.Full size tableModel overviewGoverning equationsTo maintain simplicity and also provide a more realistic scenario where both settling and neutrally buoyant eDNA particles28 are considered, we assume that the eDNA material at any given time in the system consist of eDNA particles of two size classes. Here, large eDNA particles are on the order of 10 s of µm to 1 mm and represent materials such as fecal pellets, chunks of tissue, or gametes that would be subject to both settling and physical breakdown over time. Small eDNA particles are on the order of 0.1 µm to 10 s of µm and would be any eDNA shed from an organism that has a density such that they are near-neutrally buoyant including extracellular eDNA or forms such as sperm, urine, blood, or single cells. This size class of small particles is so small that we can neglect their settling. In practice, these two size fractions of eDNA would be captured using the common method of filtering water through a < 1 µm pore size filter43. Both small and large particles in the model are subject to the same eDNA decay rate constant and large particles break down over time into small particles.The equation describing the change of eDNA concentration in the form of large particles is:$$begin{aligned} frac{partial {C_{LP}}}{partial {t}} = - w_vfrac{partial {C_{LP}}}{partial {z}} + frac{partial {}}{partial {z}}left( kappa _zfrac{partial {C_{LP}}}{partial {z}}right) - kC_{LP} - delta C_{LP} + w_sfrac{partial {C_{LP}}}{partial {z}} + hat{S_{LP}} end{aligned}$$ (1) where (C_{LP}) is the concentration of large eDNA particles, (w_v) is the vertical velocity [L/T] with a positive value pointing upward, (kappa _z) is the vertical diffusivity [L(^{2})/T], k is the first order decay rate constant [1/T], (delta) is the breakdown rate of particles [1/T], (w_s) is the settling rate of eDNA [L/T], and (hat{S_{LP}}) is the shedding rate of new large eDNA particles.Similarly, the equation describing the temporal evolution of the concentration of small particles of eDNA, (C_{SP}), is:$$begin{aligned} frac{partial {C_{SP}}}{partial {t}} = - w_vfrac{partial {C_{SP}}}{partial {z}} + frac{partial {}}{partial {z}}left( kappa _zfrac{partial {C_{SP}}}{partial {z}}right) - kC_{SP} + delta C_{LP} + hat{S_{SP}} end{aligned}$$ (2) where the parameters are the same as Eq. (1). Note that there is no settling term in Eq. (2) as small eDNA particles are assumed to be neutrally buoyant and that the (delta) term in Eq. (2) has the opposite sign as that in Eq. (1), reflecting eDNA volume conservation during the breaking-down of the large particles into small particles.Physical modelThe 1-D vertical model is implemented in MATLAB. The physical module is based on a previously published 1-D model of physical processes in the mixed layer42 and is modified to include the relevant organism and eDNA parameters. The model spans from the surface down to 1500 m deep with a vertical resolution of 0.5 m and has a time step of 10 s. Each simulation runs for a total of 90 days, representing one of the four seasons: summer (July, August, September - JAS), fall (October, November, December - OND), winter (January, February, March - JFM), and spring (April, May, June - AMJ). The model has a zero-gradient open boundary condition at the bottom. The model is forced on the surface by climatological, 8-hourly meteorological conditions from the NCEP/NCAR Reanalysis at a location in the Northeast Atlantic Ocean (37.047(^circ) N, -71.25(^circ) W). Inputs include air temperature, short wave radiation, long wave radiation, precipitation, air pressure, air humidity, and winds. The wind stress and heat fluxes are calculated using the bulk formulae44.The initial vertical distribution of the temperature and salinity in the model are seasonal climatological profiles obtained from the NCEI World Ocean Atlas 2018 at a site in the Northwest Atlantic slope sea (39.125(^circ) N, −70.875(^circ) W; north of the Gulf Stream). The model also simulates the influences of vertical mixing and advection on the temperature, salinity and eDNA particles. The mixing influence is incorporated by prescribing synthetic vertical profiles of vertical diffusivity that combines observed seasonal mean mixed layer depth45 and simulated seasonal mean vertical diffusivity profile from an operational model46, both at a site in the Northwest Atlantic slope sea (see Supplemental Text S1 and Supplemental Fig. S1). Vertical advection profiles are set to increase linearly from 0 ms(^{-1}) at the surface to the maximum value of ((10^{-4}) ms(^{-1})) at 200 m and then decrease linearly back to 0 ms(^{-1}) at 400 m (Supplemental Fig. S2). This prescribed advection profile does not change seasonally and represents enhanced vertical motions associated with sub-mesoscale processes in the upper water column (e.g.,47). Note that the result of this study is not sensitive to the prescribed vertical profiles of diffusivity or vertical velocity (see below).The physical parameters that will be adjusted in this study include: the initial temperature and salinity profiles, the mixed layer depth, the vertical diffusivity profile, and the vertical velocity profile (see Ocean parameters in Table 1).Organism movementThis study focuses on eDNA shed by vertically migrating organisms living in the mesopelagic ocean. For simplicity, we assume the organisms reside at the constant depth of 500 m during the day and the constant depth of 50 m during the night. These depths fall within the range of where migrating organisms are found at these times41,48. As the objective of this study is to develop a qualitative understanding of the vertical distribution of the eDNA concentration, the exact depth a particular mesopelagic species resides at in the daytime is not crucial. Organisms begin migrating to the surface two hours before sunset, and the upward migration ends one hour after sunset. The time of sunset and sunrise are determined seasonally using NOAA’s ESL solar calculator for the year 2019 at 42.35(^circ) N, −71.05(^circ) W. Both upward and downward migrations are assumed to be in constant speed, and the migration times do not change within each season (Fig. 2).Figure 2Representative organism migration curves for each season. Migration times change with sunrise and sunset for each season. This illustration assumes that 50% of individuals migrate. The shading shows the percentage of individuals with black indicating 100%, i.e., all organisms, and grey indicating 50%. These numbers vary among the simulations.Full size imageThe migration parameters that can be adjusted in the model include: daytime residing depth, nighttime residing depth, the start and end times of migrations (and thus duration), the percent of individuals that migrate, and the layer thickness (i.e., “width” of school). (See Organism parameters in Table 1). In this study, we focus on the start and end times of migrations (and thus duration) and the percent of individuals that migrate.eDNA parametersWe assume organisms are continuously shedding eDNA, and the shedding rate is fixed in time in each simulation. The eDNA then remains in the water column, where it is subject to transport and decay as described by Eqs. (1) and (2). Although several studies have characterized eDNA shedding rates of different marine organisms29,49,50, shedding rates are highly variable across studies and have high error associated with them, likely due to high temporal variability29. Here, we use a constant shedding rate of 1 mass unit per time step (10 seconds). Note that this study focuses on the relative vertical distribution of the eDNA concentration and its temporal variability, rather than its absolute value. The particle size distribution of eDNA (and the breakdown rate of large to small particles) and the settling rate of eDNA are largely unknown and expected to be time-varying28. Here we use a breakdown rate of fecal pellets to apply to large eDNA particles breaking down into small eDNA particles51. The most well characterized parameter of eDNA is decay rate, which several studies have characterized as a function of water temperature29,49. The upper and lower limits of the decay rate have also been well established29,31. Finally, there are currently no estimates of eDNA settling rates. We use values of marine snow settling rates52 to apply to large eDNA particles that are subject to settling in the model.The eDNA-related parameters that are adjusted in this mechanistic model include: settling rate of large particles; ratio of large particles to small particles that are shed by an organism; eDNA breakdown rate (large particles to small particles); the eDNA decay rate. (See eDNA parameters in Table 1). Note that shedding rates in the model do not change over the course of each simulation.Sensitivity analysisA series of 90-day simulations were carried out with altered values of the aforementioned parameters to examine the sensitivity of the eDNA vertical distribution to the parameters. Table 1 provides a list of the parameters that were adjusted in the sensitivity analysis. Note that the diffusivity profile (both the shape of the profile and the mixed layer depth), the temperature profile (which impacts the eDNA decay rate), and the daytime length (which impacted migration times) all change with the season. Other sensitivity parameters include vertical advection, settling rate of large particles, the ratio of large to small eDNA particles shed by organisms, and the percent of individuals that migrate. A total of 972 simulations were conducted with the following sets of parameters: 4 mixing profiles (one for each season), 3 vertical advection profiles (upwelling, downwelling, none), 3 settling rates of large eDNA particles, 3 decay rate constant scenarios (two constant values representing high and low values in the literature31, one temperature-dependent rate29 for each season, Supplemental Fig. S3), 3 scenarios for the percent of individuals that migrate, and 3 ratios of large to small eDNA particles shed by the organisms.In order to assess the impact of the parameters on the eDNA profiles, several metrics were defined. First, the water column was divided into three sections: surface layer (0–100 m), mid-depth (100–450 m), and deep water (450–550 m), based on our representative daytime and nighttime depths (500 m and 50 m) used for the simulations. For each simulation, the mean and maximum eDNA concentration in each depth bin was recorded. Also, the cumulative eDNA concentration in each depth bin was normalized to calculate the proportion of eDNA in each depth bin at any given time during the simulation. For each simulation, the mean and standard deviation of the proportion of eDNA in each depth bin were calculated over the course of the 90 day simulation.A first-order comparison of the vertical length scales of eDNA transport by different processes were conducted. Here, we use a time scale of eDNA decay, T(_{90}), i.e., the time it takes for 90% of the released eDNA to decay, to determine the vertical length scale of each process. In particular, we would like to estimate, the vertical distances eDNA is transported by advection, mixing, and settling before 90% of the released eDNA has decayed, L(_{mix}), L(_{advect}) and L(_{settling}), respectively. These quantities are defined mathematically as,$$begin{aligned} T_{90} = frac{-ln(0.1)}{k_{avg}} end{aligned}$$ (3) $$begin{aligned} L_{mix} = sqrt{kappa _v T_{90}} end{aligned}$$ (4) $$begin{aligned} L_{advect} = w_{vm} T_{90} end{aligned}$$ (5) $$begin{aligned} L_{settle} = w_s T_{90} end{aligned}$$ (6) where (k_{avg}) is the average decay rate constant [T(^{-1})] for the whole water column over the 90 day simulation, (kappa _v) is the maximum vertical diffusivity coefficient [L(^{2})T(^{-1})] , (w_{vm}) is the maximum vertical velocity [LT(^{-1})] , and (w_s) is the settling rate [LT(^{-1})]. Note that because k is temperature dependent, the value of the decay rate constant will change both vertically (e.g., deeper water will be colder and have a lower decay rate constant) and temporally (e.g., at a given depth, the water temperature will be warmer in the middle of the day and thus will have a higher decay rate constant).Application to ecological questionsAfter obtaining a first-order understanding of the eDNA concentration profile and the impact of the parameters on the eDNA distribution, we ran another set of model simulations to examine if vertical and temporal eDNA concentration variability can shed light on an ecological question regarding what percentage of individuals within the same species migrate on a daily basis. To do this, for each season, all parameters were held constant except for the percent of individuals that migrate, P(_{m}). In each season, the value of P(_{m}) varies from 0 to 100% with an increment of 10%. A total of 44 such simulations (4 seasons x 11 percent migrate scenarios) were carried out. We then compared mean and maximum eDNA concentrations in the surface layer (0–100 m) to those in the deep water (450 to 550 m), and examined the relationship between the surface-to-deep ratios and P(_{m}). More

  • in

    Impact of intensifying nitrogen limitation on ocean net primary production is fingerprinted by nitrogen isotopes

    Modelling approachWe used the PISCES-v2 biogeochemical model, attached to the Nucleus for European Modelling of the Ocean version 4.0 (NEMO-v4) general ocean circulation model29. PISCES-v2 includes five nutrients pools (nitrate, ammonium, phosphate, silicic acid and dissolved iron), dissolved oxygen, the full carbon system and accounts for two phytoplankton (nanophytoplankton and diatoms) and two zooplankton types (microzooplankton and mesozooplankton). Bioavailable nitrogen in our simulations is considered to be the combination of nitrate and ammonium. Its nitrogen cycle includes nitrogen fixation, nitrification, burial, denitrification in both the water column and sediments, and coupled nitrification–denitrification. Nitrogen isotopes were integrated within PISCES-v2 for the purposes of this study, using nine new tracers (Supplementary Note 1). Horizontal model resolution varied between ~0.5° at the equator and poles, and 2° in the subtropics, whereas vertical resolution varied between 10 and 500 m thickness over 31 levels.We conducted simulations under both preindustrial control and climate change scenarios. The preindustrial control scenario from 1801 to 2100 maintained preindustrial greenhouse gas concentrations and only included internal modes of variability. The climate change simulation from 1851 to 2100 included natural variability, prescribed changes in land use, as well as historical changes in concentrations of greenhouse gases and aerosols until 2005, after which future concentrations associated with RCP8.5 were imposed30. The biogeochemical model (PISCES-v2) was run offline from the physical model (NEMO-v4) using monthly transports and other physical conditions generated by the low resolution version of the IPSL-CM5A ESM57.Experiments were initialized from biogeochemical fields created from an extensive spin-up of 5000 years under repeat physical forcing, followed by a 300-year simulation under the preindustrial control scenario. The preindustrial control simulation used in analysis was therefore the final 300 years of a 5600-year spin-up involving two repeat simulations of the preindustrial control scenario. We utilized a global compilation of δ15NNO320 supplemented with recent data to assess the isotopic routines in the model and conducted a thorough model-data skill assessment at replicating observed patterns in space (Supplementary Note 2 and Supplementary Figs. 1–3).Anthropogenic nitrogen depositionThe effect of increasing aeolian deposition of nitrogen was assessed in our simulations. Preindustrial nitrogen deposition was prescribed as the preindustrial estimate at 1850, whereas the historical to future deposition was created by linear interpolation between preindustrial (1850) and modern/future fields (2000, 2030, 2050 and 2100). These fields were provided by Hauglustaine et al.8. However, the rapid rise between 1950 and 2000 was maintained, such that 60% of the increase between the preindustrial and modern fields occurred after 1950 (Supplementary Fig. 4).The historical rise in anthropogenic nitrogen deposition was assessed by including it in additional simulations under both preindustrial control and climate change scenarios. Four initial experiments were therefore conducted: preindustrial control; preindustrial control plus anthropogenic nitrogen deposition; climate change; and climate change plus anthropogenic nitrogen deposition.Global model experimentsWe undertook four initial simulations to quantify the impacts of anthropogenic climate change and nitrogen deposition: a preindustrial control simulation from 1801 to 2100; a full anthropogenic scenario from 1851 to 2100; a climate change-only scenario without the increase in anthropogenic nitrogen deposition from 1851 to 2100; and a nitrogen deposition scenario without anthropogenic climate change from 1851 to 2100. Anthropogenic effects to nitrogen cycling were quantified by comparing mean conditions over the final 20 years of the twenty-first century (2081–2100) with mean conditions over the final 20 years of the preindustrial control simulation, whereas effects on nitrogen isotopes were quantified by comparing mean conditions over the final 20 years of the twenty-first century (2081–2100) with mean conditions over the historical period (1986–2005) from the same simulation.To understand the direct and indirect effects of climate change, we undertook two additional idealized simulations. First, we imposed temperature changes on biogeochemical rates, while maintaining ocean circulation associated with the preindustrial control scenario, to assess the direct effects of warming on biogeochemical processes. Second, we imposed the preindustrial control temperature field on biogeochemical processes, while altering the circulation in line with the climate change scenario, to assess the indirect effects of climate change (i.e., how changing circulation alters substrate supply to biogeochemical reactions). Each experiment was run from 1851 to 2100 and without the anthropogenic increase in atmospheric nitrogen deposition, parallel with the full climate change simulation.Agreement between the climate change simulation without anthropogenic nitrogen deposition was quantified using a pixel-by-pixel correlation analysis using Spearman’s rank correlation based on the non-parametric nature of the two-dimensional fields used for comparison. Fields were euphotic zone nitrate, twilight zone δ15NNO3, euphotic zone δ15NPOM, and vertically integrated NPP, zooplankton grazing, nitrogen fixation, water column denitrification and sedimentary denitrification.Depth zonesWe assessed changes in biogeochemical variables related to nitrogen cycling in two depth zones defined by light. The euphotic zone was defined by depths between the surface and 0.1% of incident irradiance as recommended by Buesseler et al.42. The twilight zone was also defined using light, as advocated by Kaartvedt et al.58. Depths between 0.1% and 0.0001% of incident irradiance defined the twilight zone. These definitions typically returned euphotic zone thicknesses of 137 ± 23 m (mean ± SD), and twilight zone thicknesses of 233 ± 37 m. The boundary between these depth zones were deepest in oligotrophic tropical and subtropical waters, and were shallowest in equatorial and temperate waters (Supplementary Fig. 7).Time of emergenceToE calculations determined when anthropogenic, anomalous trends emerged from the noise of background variability. ToE was calculated at each grid cell within both the euphotic and twilight zones (depth-averaged) and using annually averaged fields of ocean tracers. We therefore ignored temporal trends and variability at seasonal and sub-seasonal scales. Raw time series were first detrended and normalized using the linear slope and mean of the preindustrial control experiment, such that the preindustrial control time series varied about zero, while anomalous trends in experiments with climate change and/or nitrogen deposition deviated from zero. These detrended and normalized time series were smoothed using a boxcar (flat) moving average with a window of 11 years to filter decadal variability (Supplementary Fig. 12). Differences with the preindustrial control experiment were then computed.To determine whether the differences with the preindustrial control experiment were anomalous, we calculated a measure of noise from the raw, inter-annual time series of the preindustrial control experiment (1801–2100). A signal emerged from the noise if it exceeded 2 SDs, a threshold that represents with 95% confidence that a value was anomalous and is therefore a conservative envelope to distinguish normality from anomaly16.Furthermore, we required that anomalous values must consistently exceed the noise of the preindustrial control experiment until the end of the simulation (2100) to be registered as having emerged. Temporary emergences were therefore rejected, making our ToE estimates more conservative. A graphical representation of this process is shown in Supplementary Fig. 12.Isolating biogeochemical 15NO3 fluxesWe analysed the biogeochemical fluxes of 15NO3 and NO3 into and out of each model grid cell within the twilight zone, to determine whether the trends in δ15NNO3 were related to biogeochemical or physical changes. Fluxes of 15NO3 and NO3 included a net source from nitrification (NO3nitr) and net sinks due to new production (NO3new) and denitrification (NO3den). Although nitrification did not directly alter the 15N : 14N ratio in our simulations, the release of 15NO3 and NO3 by nitrification conveyed an isotopic signature determined by prior fractionation processes that produce ammonium (NH4). These processes include remineralization of particulate and dissolved organic matter, excretion by zooplankton and nitrogen fixation. The isotopic signatures of these processes were thus included implicitly in NO3nitr. For each grid cell, we calculated the biogeochemical tendency to alter δ15NNO3 based on the ratio of inputs minus outputs:$${Delta} {delta }^{15}{{{{{{rm{N}}}}}}}_{{{{{{rm{NO3}}}}}}}=left(frac{{,{!}^{15}{{{{{rm{N}}}}}}{{{{{rm{O}}}}}}}_{3}^{{{{{{rm{nitr}}}}}}}-{,{!}^{15}{{{{{rm{N}}}}}}{{{{{rm{O}}}}}}}_{3}^{{{{{{rm{new}}}}}}}-{,{!}^{15}{{{{{rm{N}}}}}}{{{{{rm{O}}}}}}}_{3}^{{{{{{rm{den}}}}}}}}{{,{!}^{14}{{{{{rm{N}}}}}}{{{{{rm{O}}}}}}}_{3}^{{{{{{rm{nitr}}}}}}}-{,{!}^{14}{{{{{rm{N}}}}}}{{{{{rm{O}}}}}}}_{3}^{{{{{{rm{new}}}}}}}-{,{!}^{14}{{{{{rm{N}}}}}}{{{{{rm{O}}}}}}}_{3}^{{{{{{rm{den}}}}}}}}-1right)cdot 1000$$
    (1)
    This calculation excluded any upstream biological changes and circulation changes that might have altered δ15NNO3.0D water parcel modelWe simulated the nitrogen isotope dynamics in a recently upwelled water parcel during transit to the subtropics by building a 0D model. The model simulates state variables of dissolved inorganic nitrogen (DIN), particulate organic nitrogen (PON) and exported particulate nitrogen (ExpN), as well as their heavy isotopes (DI15N, PO15N and Exp15N) in units of mmol N m−3 over 100 days given initial conditions and constants listed in Supplementary Table 1.$$frac{Delta {{{{{rm{DIN}}}}}}}{Delta t}=-{{{{{mathrm{N}}}}}}_{{{{{{rm{uptake}}}}}}}+{{{{{mathrm{N}}}}}}_{{{{{{rm{recycled}}}}}}}$$
    (2)
    $$frac{Delta {{{{{rm{PON}}}}}}}{Delta t}={{{{{mathrm{N}}}}}}_{{{{{{rm{uptake}}}}}}}-{{{{{mathrm{N}}}}}}_{{{{{{rm{recycled}}}}}}}-{{{{{mathrm{N}}}}}}_{{{{{{rm{exported}}}}}}}$$
    (3)
    $$frac{Delta {{{{{rm{ExpN}}}}}}}{Delta t}={{{{{mathrm{N}}}}}}_{{{{{{rm{exported}}}}}}}$$
    (4)
    $$frac{Delta {{{{{rm{DI1}}}}}}{}^{15}{{{{{rm{N}}}}}}}{Delta t}=-{}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{uptake}}}}}}}+{}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{recycled}}}}}}}$$
    (5)
    $$frac{Delta {{{{{rm{PO}}}}}}{}^{15}{{{{{rm{N}}}}}}}{Delta t}={}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{uptake}}}}}}}-{}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{recycled}}}}}}}-{}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{exported}}}}}}}$$
    (6)
    $$frac{Delta {{{{mathrm{Exp}}}}}{}^{15}{{{{{rm{N}}}}}}}{Delta t}={}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{exported}}}}}}}$$
    (7)
    First, the model calculates maximum potential growth rate of phytoplankton (μmax) in units of day−1 (Eq. 8) using temperature and then finds nitrogen uptake (Nuptake, Eq. 10) using PON and limitation terms for nitrogen (Nlim, Eq. 9), light (Llim, Supplementary Table 1) and iron (Felim, Supplementary Table 1).$${mu }_{{{max }}}=0.6,{{{{{rm{da}}}}}}{y}^{-1}cdot {e}^{Tcdot {T}_{{{{{{rm{growth}}}}}}}}$$
    (8)
    $${{{{{mathrm{N}}}}}}_{{{{{mathrm{lim}}}}}}=frac{{{{{{rm{DIN}}}}}}}{{{{{{rm{DIN}}}}}}+{{{{{mathrm{K}}}}}}_{{{{{{rm{DIN}}}}}}}}$$
    (9)
    $${{{{{mathrm{N}}}}}}_{{{{{mathrm{uptake}}}}}}={mu }_{max }cdot {{{{{mathrm{L}}}}}}_{{{{{mathrm{lim}}}}}}cdot ,min ({{{{{mathrm{Fe}}}}}}_{{{{{mathrm{lim}}}}}},{{{{{mathrm{N}}}}}}_{{{{{mathrm{lim}}}}}})cdot {{{{{mathrm{PON}}}}}}$$
    (10)
    At a constant temperature of 18 °C, μmax is equal to ~1.9 day−1. Limitation terms for light and iron are set as constant and are used to prevent unrealistically high nitrogen uptake when nitrogen is high, such as occurs immediately following upwelling in the high-nutrient low-chlorophyll regions of the tropics. Fractionation by phytoplankton is calculated assuming an open system21, in this case where nitrogen can be lost through export of organic matter. To calculate the fractionation associated with uptake (15Nuptake, Eq. 11), we multiply the total nitrogen uptake (Nuptake, Eq. 10) by the heavy to light isotope ratio (({r}_{{{{{{rm{DIN}}}}}}}^{15}), Eq. 12) and the fractionation factor (εphy, Supplementary Table 1), which is converted from units of per mil (‰) to a fraction relative to one. This fractionation factor (εphy) is constant at 5‰ but is decreased towards 0‰ by the nitrogen limitation term (Nlim, Eq. 9), such that when nitrogen is limiting to growth, the fractionation during uptake decreases (last term on the right-hand side approaches 1).$${}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{uptake}}}}}}},=,{{{{{mathrm{N}}}}}}_{{{{{{rm{uptake}}}}}}}cdot {r}_{{{{{{rm{DIN}}}}}}}^{15}cdot left(1-frac{{{{{mathrm{N}}}}}_{{{{{mathrm{lim}}}}}}cdot {varepsilon }_{{{{{{rm{phy}}}}}}}}{1000}right)$$
    (11)
    $${r}_{{{{{{rm{DIN}}}}}}}^{15},=,frac{{{{mathrm{DI}}}}^{15}{{{{{{rm{N}}}}}}}}{{{{{{rm{DIN}}}}}}}$$
    (12)
    At each timestep, a fraction of the PON pool becomes detritus (Eq. 15) and this detritus is instantaneously recycled back to DIN or exported to ExpN and removed from the water parcel. The amount of detritus produced per timestep is calculated as the sum of linear respiration (Eq. 13) and quadratic mortality (Eq. 14) terms, where Presp (units of day−1), Kresp (units of mmol N m−3) and Pmort (units of (mmol N m−3)−1 day−1) are constants (Supplementary Table 1).$${{{{{rm{Respiration}}}}}},=,{{{{{mathrm{P}}}}}}_{{{{{{rm{resp}}}}}}}cdot {{{{{rm{PON}}}}}}cdot frac{{{{{{rm{PON}}}}}}}{{{{{{rm{PON}}}}}}+{{{{{mathrm{K}}}}}}_{{{{{{rm{resp}}}}}}}}$$
    (13)
    $${{{{{rm{Mortality}}}}}},=,{{{{{mathrm{P}}}}}}_{{{{{{rm{mort}}}}}}}cdot {{{{{rm{PON}}}}}}^{2}$$
    (14)
    $${{{{{rm{Detritus}}}}}},=,{{{{{rm{Respiration}}}}}},+,{{{{{rm{Mortality}}}}}}$$
    (15)
    Once we know the fraction of PON that becomes detritus at any given timestep, we must solve for the fraction of that detritus that becomes DIN through recycling (Eq. 17), and that which becomes ExpN through export (Eq. 18). The fraction of detritus that is recycled back into DIN is temperature dependent (Eq. 16), with higher temperatures increasing rates of recycling above a minimum fraction set by frecmin (Supplementary Table 1). The relationship with temperature is exponential, similar to phytoplankton maximum growth (μmax), but the degree of increase associated with warming is scaled down by a constant factor equal to Trec (Supplementary Table 1). The fraction that is exported to ExpN is the remainder (Eq. 18).$${f}_{{{{{{rm{recycled}}}}}}}={f}_{{{{{{rm{recmin}}}}}}}+{T}_{{{{{{rm{rec}}}}}}}cdot {e}^{Tcdot {T}_{{{{{{rm{growth}}}}}}}}$$
    (16)
    $${{{{{mathrm{N}}}}}}_{{{{{{rm{recycled}}}}}}}={{{{{rm{Detritus}}}}}}cdot {f}_{{{{{{rm{recycled}}}}}}}$$
    (17)
    $${{{{{mathrm{N}}}}}}_{{{{{{rm{exported}}}}}}}={{{{{rm{Detritus}}}}}}cdot (1-{f}_{{{{{{rm{recycled}}}}}}})$$
    (18)
    The major fluxes of Nuptake, Nrecycled and Nexported are now solved for. All that remains is to calculate the isotopic signatures of the recycling (Eq. 19) and export (Eq. 20) fluxes. These, similar to 15Nuptake (Eq. 11), are solved by multiplying against a standard ratio of heavy to light isotope (({r}_{{{{{{rm{PON}}}}}}}^{15}), Eq. 21).$${}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{recycled}}}}}}}={{{{{mathrm{N}}}}}}_{{{{{{rm{recycled}}}}}}}cdot {r}_{{{{{{rm{PON}}}}}}}^{15}$$
    (19)
    $${}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{exported}}}}}}}={{{{{mathrm{N}}}}}}_{{{{{{rm{exported}}}}}}}cdot {r}_{{{{{{rm{PON}}}}}}}^{15}$$
    (20)
    $${r}_{{{{{{rm{PON}}}}}}}^{15}=frac{{{{{{rm{PO}}}}}}{}^{15}{{{{{rm{N}}}}}}}{{{{{{rm{PON}}}}}}}$$
    (21)
    Finally, we calculate the δ15N values of the major pools in the model (DIN, PON and ExpN) as output (Eqs. 22–24). We assume in this model that the major pools of DIN, PON and ExpN represent the total amount of the light isotope (14N), whereas the DI15N, PO15N and Exp15N pools represent the relative enrichment in 15N compared to a standard ratio. For simplicity, we make the standard ratio equal to 1. Therefore, taking the ratio of the DI15N to DIN pools and subtracting one returns the isotopic signature. Multiplying this by 1000 converts this signature to per mil units (‰).$${delta }^{15}{{{{{{rm{N}}}}}}}_{{{{{{rm{DIN}}}}}}}=left(frac{{{{{{rm{DI}}}}}}{}^{15}{{{{{rm{N}}}}}}}{{{{{{rm{DIN}}}}}}}-1right)cdot 1000$$
    (22)
    $${}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{PON}}}}}}}=left(frac{{{{{{{rm{PO}}}}}}}^{15}N}{{{{{{rm{PON}}}}}}}-1right)cdot 1000$$
    (23)
    $${}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{ExpN}}}}}}}=left(frac{{{{{mathrm{Exp}}}}}{}^{15}{{{{{rm{N}}}}}}}{{{{{{rm{ExpN}}}}}}}-1right)cdot 1000$$
    (24) More

  • in

    Protected areas are not effective for the conservation of freshwater insects in Brazil

    1.Brooks, T. M. et al. Global biodiversity conservation priorities. Science (80-. ). 313, 58–61 (2006).2.Camacho-Sandoval, J. & Duque, H. Indicators for biodiversity assessment in Costa Rica. Agric. Ecosyst. Environ. 87, 141–150 (2001).Article 

    Google Scholar 
    3.Diniz-Filho, J. A. F. et al. Ensemble forecasting shifts in climatically suitable areas for Tropidacris cristata (Orthoptera: Acridoidea: Romaleidae). Insect Conserv. Divers. https://doi.org/10.1111/j.1752-4598.2010.00090.x (2010).Article 

    Google Scholar 
    4.Morse-Jones, S. et al. Stated preferences for tropical wildlife conservation amongst distant beneficiaries: Charisma, endemism, scope and substitution effects. Ecol. Econ. 78, (2012).5.Verissimo, D., MacMillan, D. C. & Smith, R. J. Toward a systematic approach for identifying conservation flagships. Conserv. Lett. vol. 4 (2011).6.Nóbrega, C. C. & De Marco, P. Unprotecting the rare species: a niche-based gap analysis for odonates in a core Cerrado area. Divers. Distrib. 17, 491–505 (2011).Article 

    Google Scholar 
    7.SNUC, (Sistema Nacional de Unidades de Conservação da Natureza). Lei no 9.985, de 18 de julho de 2000. Mma/Sbf (2000) doi:https://doi.org/10.1017/CBO9781107415324.004.8.Abell, R., Allan, J. D. & Lehner, B. Unlocking the potential of protected areas for freshwaters. Biol. Conserv. 134, 48–63 (2007).Article 

    Google Scholar 
    9.Monteiro, C. da S., Esposito, M. C. & Juen, L. Are the adult odonate species found in a protected area different from those present in the surrounding zone? A case study from eastern Amazonia. J. Insect Conserv. 20, 643–652 (2016).10.Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000).CAS 
    Article 

    Google Scholar 
    11.Whittaker, R. J. et al. Conservation biogeography: assessment and prospect. Divers. Distrib. 11, 3–23 (2005).Article 

    Google Scholar 
    12.Bini, L. M., Diniz-Filho, J. A. F., Rangel, T. F. L. V. B., Bastos, R. P. & Pinto, M. P. Challenging Wallacean and Linnean shortfalls: knowledge gradients and conservation planning in a biodiversity hotspot. Divers. Distrib. https://doi.org/10.1111/j.1366-9516.2006.00286.x (2006).Article 

    Google Scholar 
    13.Rodrigues, A. S. L. & Gaston, K. J. Maximising phylogenetic diversity in the selection of networks of conservation areas. Biol. Conserv. https://doi.org/10.1016/S0006-3207(01)00208-7 (2002).Article 

    Google Scholar 
    14.Silva, D. C., Vieira, T. B., da Silva, J. M. & de Cassia Faria, K. Biogeography and priority areas for the conservation of bats in the Brazilian Cerrado. Biodivers. Conserv. 27, 815–828 (2018).15.Salkeld, D. J., Padgett, K. A. & Jones, J. H. A meta-analysis suggesting that the relationship between biodiversity and risk of zoonotic pathogen transmission is idiosyncratic. Ecol. Lett. 16, 679–686 (2013).Article 

    Google Scholar 
    16.Juen, L. & de Marco, P. Dragonfly endemism in the Brazilian Amazon: competing hypotheses for biogeographical patterns. Biodivers. Conserv. https://doi.org/10.1007/s10531-012-0377-0 (2012).Article 

    Google Scholar 
    17.Mendes, S. L. et al. Protected Areas for the Northern Muriqui, Brachyteles hypoxanthus (Primates, Atelidae). Neotrop. Primates 13, (2005).18.Serra, B. D. V., De Marco Júnior, P., Nóbrega, C. C. & Campos, L. A. D. O. Modeling potential geographical distribution of the wild nests of Melipona capixaba Moure & Camargo, 1994 (Hymenoptera, apidae): conserving isolated populations in mountain habitats. Nat. a Conserv. 10, 199–206 (2012).19.Mendes, P. & De Marco, P. Bat species vulnerability in Cerrado: integrating climatic suitability with sensitivity to land-use changes. Environ. Conserv. 45, 67–74 (2018).Article 

    Google Scholar 
    20.Brasil, L. S. et al. A niche‐based gap analysis for the conservation of odonate species in the Brazilian Amazon. Aquat. Conserv. Mar. Freshw. Ecosyst. aqc.3599 (2021) doi:https://doi.org/10.1002/aqc.3599.21.da Silva, J. G., Vieira, T. B. & Mews, H. A. Fine-scale effect of environmental variation and distance from watercourses on pteridophyte assemblage structure in the western Amazon. Folia Geobot. https://doi.org/10.1007/s12224-021-09390-y (2021).Article 

    Google Scholar 
    22.Doughty, C. R. Freshwater biomonitoring and benthic macroinvertebrates, edited by D. M. Rosenberg and V. H. Resh, Chapman and Hall, New York, 1993. ix + 488pp. ISBN 0412 02251 6. Aquat. Conserv. Mar. Freshw. Ecosyst. 4, 92–92 (1994).23.Harper, D. M., Rosenberg, D. A. & Resh, V. H. Freshwater biomonitoring and benthic macroinvertebrates. J. Appl. Ecol. 31, 790 (1994).Article 

    Google Scholar 
    24.Cunha, E. J. & Juen, L. Impacts of oil palm plantations on changes in environmental heterogeneity and Heteroptera (Gerromorpha and Nepomorpha) diversity. J. Insect Conserv. 21, 111–119 (2017).Article 

    Google Scholar 
    25.Schuh, R. T. & Slater, J. A. True bugs of the World (Hemiptera: Heteroptera). Classification and Natural History. (Cornell University Press, 1995).26.Giehl, N. F. da S., Dias-Silva, K., Juen, L., Batista, J. D. & Cabette, H. S. R. Taxonomic and Numerical Resolutions of Nepomorpha (Insecta: Heteroptera) in Cerrado Streams. PLoS One 9, e103623 (2014).27.Dias-Silva, K., Cabette, H. S. R., Juen, L. & Jr, P. D. M. The influence of habitat integrity and physical-chemical water variables on the structure of aquatic and semi-aquatic Heteroptera. Zool. 27, 918–930 (2010).28.Panizzi, A. R. & Grazia, J. True Bugs (Heteroptera) of the Neotropics. True Bugs (Heteroptera) of the Neotropics vol. 2 (Springer Netherlands, 2015).29.Polhemus, J. T. & Polhemus, D. A. Global diversity of true bugs (Heteroptera; Insecta) in freshwater. Hydrobiologia https://doi.org/10.1007/s10750-007-9033-1 (2008).Article 

    Google Scholar 
    30.Nieser, N. & Melo, A. L. Os Heterópteros Aquáticos de Minas Gerais. (UFMG, Belo Horizonte, 1997).31.Cunha, E. J., de Assis Montag, L. F. & Juen, L. Oil palm crops effects on environmental integrity of Amazonian streams and Heteropteran (Hemiptera) species diversity. Ecol. Indic. 52, 422–429 (2015).32.Cordeiro, I. & Moreira, F. New distributional data on aquatic and semiaquatic bugs (Hemiptera: Heteroptera: Gerromorpha & Nepomorpha) from South America. Biodivers. Data J. 3, e4913 (2015).33.Rodrigues, A. S. L. & Brooks, T. M. Shortcuts for biodiversity conservation planning: the effectiveness of surrogates. Annu. Rev. Ecol. Evol. Syst. 38, 713–737 (2007).Article 

    Google Scholar 
    34.Andelman, S. J. & Fagan, W. F. Umbrellas and flagships: Efficient conservation surrogates or expensive mistakes?. Proc. Natl. Acad. Sci. 97, 5954–5959 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).Article 

    Google Scholar 
    36.Abellan, P., Sanchez-Fernandez, D., Velasco, J. & Millan, A. Conservation of freshwater biodiversity: a comparison of different area selection methods. Biodivers. Conserv. 14, 3457–3474 (2005).Article 

    Google Scholar 
    37.Fearnside, P. M. Conservation policy in brazilian amazonia: understanding the dilemmas. World Dev. 31, 757–779 (2003).Article 

    Google Scholar 
    38.dos Santos, A. J., Vieira, T. B. & Faria, K. de C. Effects of vegetation structure on the diversity of bats in remnants of Brazilian Cerrado savanna. Basic Appl. Ecol. 17, 720–730 (2016).39.Groves, C. R. et al. Planning for biodiversity conservation: putting conservation science into practice. Bioscience https://doi.org/10.1641/0006-3568(2002)052[0499:pfbcpc]2.0.co;2 (2002).Article 

    Google Scholar 
    40.Fearnside, P. M. & Ferraz, J. A conservation gap analysis of Brazil’s Amazonian vegetation. Conserv. Biol. 9, 1134–1147 (1995).Article 

    Google Scholar 
    41.Fearnside, P. M. Introduction: strategies for social and environmental conservation in conservation units. In The Amazon Várzea 233–238 (Springer Netherlands, 2011). doi:https://doi.org/10.1007/978-94-007-0146-5_16.42.Cardoso, P., Erwin, T. L., Borges, P. A. V. & New, T. R. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 144, 2647–2655 (2011).Article 

    Google Scholar 
    43.Marini, M. Â. & Garcia, F. I. Bird conservation in Brazil. Conserv. Biol. https://doi.org/10.1111/j.1523-1739.2005.00706.x (2005).Article 

    Google Scholar 
    44.Young, B. E. et al. Population declines and priorities for amphibian conservation in Latin America. Conserv. Biol. 15, 1213–1223 (2001).Article 

    Google Scholar 
    45.Dias-Silva, K., Moreira, F. F. F., Giehl, N. F. D. S., Nóbrega, C. C. & Cabette, H. S. R. Gerromorpha (Hemiptera: Heteroptera) of eastern Mato Grosso State, Brazil: checklist, new records, and species distribution modeling. Zootaxa https://doi.org/10.11646/zootaxa.3736.3.1 (2013).Article 
    PubMed 

    Google Scholar 
    46.Ferraz, K. M. P. M. de B., Ferraz, S. F. de B., Paula, R. C. de, Beisiegel, B. & Breitenmoser, C. Species Distribution Modeling for Conservation Purposes. Nat. Conserv. 10, 214–220 (2012).47.Marco-Júnior, P. & Siqueira, M. F. Como determinar a distribuição potencial de espécies sob uma abordagem conservacionista? Megadiversidade (2009).48.Hijmans, R. J. et al. DIVA-GIS, version 5.2. A geographic information system for the analysis of biodiversity data. Manual. . vol. 1 (International Potato Center, 2005).49.Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R. Numerical Ecology with R (Springer New York, 2011). doi:https://doi.org/10.1007/978-1-4419-7976-6.50.Serra, B. D. V., De Marco, P. J., Nóbrega, C. C. & Campos, L. A. D. O. Modeling potential geographical distribution of the wild nests of Melipona capixaba Moure & Camargo, 1994 ( Hymenoptera, Apidae ): Conserving Isolated Populations in Mountain Habitats. Nat. e Conserv. 10, 199–206 (2012).Article 

    Google Scholar 
    51.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).Article 

    Google Scholar 
    52.Swets, J. Measuring the accuracy of diagnostic systems. Science (80-. ). 240, 1285–1293 (1988).53.Girardello, M., Griggio, M., Whittingham, M. J. & Rushton, S. P. Identifying important areas for butterfly conservation in Italy. Anim. Conserv. https://doi.org/10.1111/j.1469-1795.2008.00216.x (2009).Article 

    Google Scholar 
    54.Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).Article 

    Google Scholar 
    55.Vieira, T. B., Mendes, P. & Oprea, M. Priority areas for bat conservation in the state of Espírito Santo, southeastern Brazil. Neotrop. Biol. Conserv. 7, 88–96 (2012).Article 

    Google Scholar 
    56.Delgado-Jaramillo, M., Aguiar, L. M. S., Machado, R. B. & Bernard, E. Assessing the distribution of a species-rich group in a continental-sized megadiverse country: Bats in Brazil. Divers. Distrib. 26, 632–643 (2020).Article 

    Google Scholar 
    57.Destro, G. F. G., de Fernandes, V., de Andrade, A. F. A., De Marco, P. & Terribile, L. C. Back home? Uncertainties for returning seized animals to the source-areas under climate change. Glob. Chang. Biol. 25, 3242–3253 (2019).ADS 
    Article 

    Google Scholar 
    58.Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop.). (2006) doi:https://doi.org/10.1111/j.2006.0906-7590.04596.x.59.Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2006).60.de Andrade, A. F. A., Velazco, S. J. E. & De Marco, P. Niche mismatches can impair our ability to predict potential invasions. Biol. Invasions 21, 3135–3150 (2019).Article 

    Google Scholar 
    61.Velazco, S. J. E., Villalobos, F., Galvão, F. & De Marco Júnior, P. A dark scenario for Cerrado plant species: Effects of future climate, land use and protected areas ineffectiveness. Divers. Distrib. 25, 660–673 (2019).62.Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. https://doi.org/10.1111/j.1466-8238.2009.00490.x (2010).Article 

    Google Scholar 
    63.Moilanen, A. et al. Prioritizing multiple-use landscapes for conservation : methods for large multi-species planning problems. Proc. R. Soc. 272, 1885–1891 (2005).
    Google Scholar 
    64.Moilanen, A. et al. Zonation spatial conservation planning framework and software v. 3.1, User manual. (2012).65.Moilanen, A. Landscape zonation, benefit functions and target-based planning: unifying reserve selection strategies. Biol. Conserv. 134, 571–579 (2007).Article 

    Google Scholar 
    66.Carvalho, A. R. de. Método de Monte Carlo e Aplicações. Repositório Inst. da Univ. Fed. Flum. 84 (2017).67.Feinleib, M. & Zar, J. H. Biostatistical analysis. J. Am. Stat. Assoc. https://doi.org/10.2307/2285423 (1975).Article 

    Google Scholar  More

  • in

    In vitro metabolic capacity of carbohydrate degradation by intestinal microbiota of adults and pre-frail elderly

    Study setupSix adults and six elderly, who were included in a previously conducted in vivo GOS intervention study [11], donated their faecal material for the current study (Fig. S1) at their first visit or at least 4 weeks after the intervention period. Each participant defecated into a stool collector (Excretas Medical BV, Enschede, the Netherlands). Directly after defecation, faecal material was divided into two portions. A small portion (~0.5 g) was frozen immediately. The remaining faeces was anoxically cryo-conserved and used as inoculum for the in vitro incubations. The viability of different microbial groups in the anoxically cryo-conserved faecal material was determined with propidium monoazide (PMA) dye. The in vitro incubations lasted for 24 h with samples collected in duplicate to compare microbiota composition, carbohydrate degradation and metabolite production between age groups (adults vs elderly). The degrading capacity for two typical bifidogenic carbohydrates, i.e., GOS and 2′-FL, was determined for the microbiota of all six adults and six elderly and compared to a non-carbohydrate control. To further extend these experiments, we also studied the degradation of other typical bifidogenic carbohydrates, i.e. FOS, inulin, and IMMP, using the faecal inocula of three adults and three elderly for which sufficient material was still available.ParticipantsThe six adults (20–30 yrs) and six elderly participants (70–85 yrs) of the intervention study [11] were randomly contacted and participated in the current study, who differed significantly in age, but not in sex, BMI, alcohol consumption, smoking, medication use or dietary fibre intake (Table 1). None of the participants took acid inhibitors (e.g., proton pump inhibitors), nor antibiotics 90 days prior to the study, nor did any of the participants have a chronic disorder or major surgery, as these factors potentially could have limited participation, completion of the study, or interfered with the study outcomes. Detailed description of the inclusion and exclusion criteria has been provided previously [11]. Subject codes as shown in the results were randomly assigned in the data analysis phase and cannot be traced back to individual subjects without the specific randomization key. The study was approved by the medical Ethics Committee of the Maastricht University Medical Center+ and registered in the US National Library of Medicine (http://www.clinicaltrials.gov) with the registration number NCT03077529 [11].Table 1 Characteristics of adults (n = 6) and elderly (n = 6) included in this study.Full size tableDietary intakeParticipants in the current study completed the dietary records on 3 consecutive days, after instructed to record their food, beverage and dietary supplement intake based on standard household units. Their nutrient intake was analyzed using the online dietary assessment tool of The Netherlands Nutrition Centre (www.voedingcentrum.nl).CarbohydratesFive different carbohydrates, i.e., GOS, 2′-FL, FOS, inulin and IMMP were used as sole carbon sources in this study. GOS and the human milk oligosaccharide 2′-FL (Fucα1-2Galβ1-4Glc) were kindly provided by Friesland Campina (Amersfoort, The Netherlands). In order to mimic the actual portion of GOS utilized by intestinal microbiota, purified GOS with  0.05) to explain the observed difference, using the prc function in the vegan package [30]. As for the metabolite data, redundancy analysis (RDA) in combination with Monte Carlo permutation was performed to assess to what extent explanatory variables, i.e., incubation time, subject- and carbohydrate-specificity, could explain the overall variation in metabolite data, using the rda function in the vegan package [30]. To assess the effect of age group (adult vs elderly) on the degradation of carbohydrates/concentration of metabolites during incubation, we analyzed the data using two-way mixed ANOVA, with one between-subjects factor (age group) and one within-subjects factor (incubation time), using the anova_test function in the rstatix package [31]. False discovery rate (FDR) correction according to the Benjamini–Hochberg procedure was applied for multiple testing when applicable. A corrected P value < 0.05 was considered to indicate significant difference. More

  • in

    Rebound in China’s coastal wetlands following conservation and restoration

    1.Ma, Z. J. et al. Rethinking China’s new great wall. Science 346, 912–914 (2014).CAS 
    Article 

    Google Scholar 
    2.Murray, N. J. et al. The global distribution and trajectory of tidal flats. Nature 565, 222–225 (2019).Article 
    CAS 

    Google Scholar 
    3.Wang, X. et al. Tracking annual changes of coastal tidal flats in China during 1986–2016 through analyses of Landsat images with Google Earth Engine. Remote Sens. Environ. 238, 110987 (2020).Article 

    Google Scholar 
    4.Blum, M. D. & Roberts, H. H. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nat. Geosci. 2, 488–491 (2009).CAS 
    Article 

    Google Scholar 
    5.Murray, N. J., Clemens, R. S., Phinn, S. R., Possingham, H. P. & Fuller, R. A. Tracking the rapid loss of tidal wetlands in the Yellow Sea. Front. Ecol. Environ. 12, 267–272 (2014).Article 

    Google Scholar 
    6.Gedan, K. B., Silliman, B. R. & Bertness, M. D. Centuries of human-driven change in salt marsh ecosystems. Ann. Rev. Mar. Sci. 1, 117–141 (2009).Article 

    Google Scholar 
    7.Syvitski, J. P. M., Vörösmarty, C. J., Kettner, A. J. & Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376–380 (2005).CAS 
    Article 

    Google Scholar 
    8.Cui, B., He, Q., Gu, B., Bai, J. & Liu, X. China’s coastal wetlands: understanding environmental changes and human impacts for management and conservation. Wetlands 36, 1–9 (2016).Article 

    Google Scholar 
    9.Gong, P. et al. Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 64, 370–373 (2019).Article 

    Google Scholar 
    10.Han, Q., Niu, Z., Wu, M. & Wang, J. Remote-sensing monitoring and analysis of China intertidal zone changes based on tidal correction. Sci. Bull. 64, 456–473 (2019).
    Google Scholar 
    11.Mao, D. et al. National wetland mapping in China: a new product resulting from object-based and hierarchical classification of Landsat 8 OLI images. ISPRS J. Photogramm. Remote Sens. 164, 11–25 (2020).Article 

    Google Scholar 
    12.Wang, X. et al. Mapping coastal wetlands of China using time series Landsat images in 2018 and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 163, 312–326 (2020).Article 

    Google Scholar 
    13.Mcowen, C. J. et al. A global map of saltmarshes. Biodivers. Data J. 5, e11764 (2017).Article 

    Google Scholar 
    14.Giri, C. et al. Status and distribution of mangrove forests of the world using Earth observation satellite data. Glob. Ecol. Biogeogr. 20, 154–159 (2011).Article 

    Google Scholar 
    15.Chen, Y. et al. Effects of reclamation and natural changes on coastal wetlands bordering China’s Yellow Sea from 1984 to 2015. Land Degrad. Dev. 30, 1533–1544 (2019).Article 

    Google Scholar 
    16.Hu, Y. et al. Mapping coastal salt marshes in China using time series of Sentinel-1 SAR. ISPRS J. Photogramm. Remote Sens. 173, 122–134 (2021).Article 

    Google Scholar 
    17.Zhang, X. et al. Quantifying expansion and removal of Spartina alterniflora on Chongming Island, China, using time series Landsat images during 1995–2018. Remote Sens. Environ. 247, 111916 (2020).18.Chen, B. Q. et al. A mangrove forest map of China in 2015: analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 131, 104–120 (2017).Article 

    Google Scholar 
    19.Hu, L., Li, W. & Xu, B. Monitoring mangrove forest change in China from 1990 to 2015 using Landsat-derived spectral-temporal variability metrics. Int. J. Appl. Earth Obs. Geoinf. 73, 88–98 (2018).Article 

    Google Scholar 
    20.Jia, M., Wang, Z., Zhang, Y., Mao, D. & Wang, C. Monitoring loss and recovery of mangrove forests during 42 years: the achievements of mangrove conservation in China. Int. J. Appl. Earth Obs. Geoinf. 73, 535–545 (2018).Article 

    Google Scholar 
    21.Jia, M. et al. Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine. Remote Sens. Environ. 255, 112285 (2021).Article 

    Google Scholar 
    22.Ma, T., Li, X., Bai, J. & Cui, B. Tracking three decades of land use and land cover transformation trajectories in China’s large river deltas. Land Degrad. Dev. 30, 799–810 (2019).Article 

    Google Scholar 
    23.Wang, K. Evolution of Yellow River delta coastline based on remote sensing from 1976 to 2014, China. Chin. Geogr. Sci. 29, 181–191 (2019).Article 

    Google Scholar 
    24.Zhao, Y. F. et al. Assessing natural and anthropogenic influences on water discharge and sediment load in the Yangtze River, China. Sci. Total Environ. 607, 920–932 (2017).Article 
    CAS 

    Google Scholar 
    25.Yim, J. et al. Analysis of forty years long changes in coastal land use and land cover of the Yellow Sea: the gains or losses in ecosystem services. Environ. Pollut. 241, 74–84 (2018).CAS 
    Article 

    Google Scholar 
    26.Wang, S. et al. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 9, 38–41 (2016).
    Google Scholar 
    27.Chen, Y. et al. Land claim and loss of tidal flats in the Yangtze Estuary. Sci. Rep. 6, 24018 (2016).CAS 
    Article 

    Google Scholar 
    28.Yang, M. et al. Spatio-temporal characterization of a reclamation settlement in the Shanghai coastal area with time series analyses of X-, C-, and L-band SAR datasets. Remote Sens. 10, 329 (2018).29.Han, X., Pan, J. & Devlin, A. T. Remote sensing study of wetlands in the Pearl River Delta during 1995–2015 with the support vector machine method. Front. Earth Sci. 12, 521–531 (2018).Article 

    Google Scholar 
    30.Liu, L., Xu, W., Yue, Q., Teng, X. & Hu, H. Problems and countermeasures of coastline protection and utilization in China. Ocean Coast. Manag. 153, 124–130 (2018).Article 

    Google Scholar 
    31.Yunxuan, Z. et al. Degradation of coastal wetland ecosystem in China: drivers, impacts, and strategies. Bull. Chin. Acad. Sci. 31, 1157–1166 (2016).
    Google Scholar 
    32.Jiang, T. T., Pan, J. F., Pu, X. M., Wang, B. & Pan, J. J. Current status of coastal wetlands in China: degradation, restoration, and future management. Estuar. Coast. Shelf Sci. 164, 265–275 (2015).Article 

    Google Scholar 
    33.Sun, Z. et al. China’s coastal wetlands: conservation history, implementation efforts, existing issues and strategies for future improvement. Environ. Int. 79, 25–41 (2015).Article 

    Google Scholar 
    34.Ren, C. et al. Rapid expansion of coastal aquaculture ponds in China from Landsat observations during 1984–2016. Int. J. Appl. Earth Obs. Geoinf. 82, 101902 (2019).35.Gu, J. et al. Losses of salt marsh in China: trends, threats and management. Estuar. Coast. Shelf Sci. 214, 98–109 (2018).Article 

    Google Scholar 
    36.Wang, W., Liu, H., Li, Y. & Su, J. Development and management of land reclamation in China. Ocean Coast. Manag. 102, 415–425 (2014).Article 

    Google Scholar 
    37.Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).Article 

    Google Scholar 
    38.Barbier, E. B. A global strategy for protecting vulnerable coastal populations. Science 345, 1250–1251 (2014).CAS 
    Article 

    Google Scholar 
    39.He, Q. et al. Economic development and coastal ecosystem change in China. Sci. Rep. 4, 5995 (2014).40.Zhou, C. et al. Preliminary analysis of C sequestration potential of blue carbon ecosystems on Chinese coastal zone. Sci. China Life Sci. 46, 475–486 (2016).
    Google Scholar 
    41.Zhang, Q. et al. Propagule types and environmental stresses matter in saltmarsh plant restoration. Ecol. Eng. 143, 105693 (2020).Article 

    Google Scholar 
    42.Cui, B., Yang, Q., Yang, Z. & Zhang, K. Evaluating the ecological performance of wetland restoration in the Yellow River Delta, China. Ecol. Eng. 35, 1090–1103 (2009).Article 

    Google Scholar 
    43.Pan, X. Research on Xi Jinping’s thought of ecological civilization and environment sustainable development. IOP Conf. Ser. Earth Environ. Sci. 153, 062067 (2018).44.Hansen, M. H., Li, H. & Svarverud, R. Ecological civilization: interpreting the Chinese past, projecting the global future. Glob. Environ. Change. 53, 195–203 (2018).Article 

    Google Scholar 
    45.Moreno-Mateos, D., Power, M. E., Comín, F. A. & Yockteng, R. Structural and functional loss in restored wetland ecosystems. PLoS Biol. 10, e1001247 (2012).CAS 
    Article 

    Google Scholar 
    46.He, Q. Conservation: ‘No net loss’ of wetland quantity and quality. Curr. Biol. 29, R1070–R1072 (2019).CAS 
    Article 

    Google Scholar 
    47.Gong, P., Li, X. & Zhang, W. 40-year (1978-2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Sci. Bull. 64, 756–763 (2019).Article 

    Google Scholar 
    48.Wang, X. et al. Gainers and losers of surface and terrestrial water resources in China during 1989–2016. Nat. Commun. 11, 3471 (2020).49.Zou, Z. H. et al. Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016. Proc. Natl Acad. Sci. USA 115, 3810–3815 (2018).CAS 
    Article 

    Google Scholar  More

  • in

    Contribution of historical herbarium small RNAs to the reconstruction of a cassava mosaic geminivirus evolutionary history

    1.Stukenbrock, E. H. & McDonald, B. A. The origins of plant pathogens in agro-ecosystems. Annu. Rev. Phytopathol. https://doi.org/10.1146/annurev.phyto.010708.154114 (2008).Article 
    PubMed 

    Google Scholar 
    2.Savary, S., Ficke, A., Aubertot, J. N. & Hollier, C. Crop losses due to diseases and their implications for global food production losses and food security. Food Secur. https://doi.org/10.1007/s12571-012-0200-5 (2012).Article 

    Google Scholar 
    3.Strange, R. N. & Scott, P. R. Plant disease: a threat to global food security. Annu. Rev. Phytopathol. https://doi.org/10.1146/annurev.phyto.43.113004.133839 (2005).Article 
    PubMed 

    Google Scholar 
    4.Anderson, P. K. et al. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2004.07.021 (2004).Article 
    PubMed 

    Google Scholar 
    5.Scholthof, K. B. G. et al. Top 10 plant viruses in molecular plant pathology. Mol. Plant Pathol. https://doi.org/10.1111/j.1364-3703.2011.00752.x (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Stukenbrock, E. H. & Bataillon, T. A population genomics perspective on the emergence and adaptation of new plant pathogens in agro-ecosystems. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1002893 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Gilligan, C. A. Sustainable agriculture and plant diseases: an epidemiological perspective. Philos. Trans. R. Soc. B: Biol. Sci. https://doi.org/10.1098/rstb.2007.2181 (2008).Article 

    Google Scholar 
    8.Li, L. M., Grassly, N. C. & Fraser, C. Genomic analysis of emerging pathogens: methods, application and future trends. Genome Biol.ogy https://doi.org/10.1186/s13059-014-0541-9 (2014).Article 

    Google Scholar 
    9.Lemey, P., Rambaut, A., Drummond, A. J. & Suchard, M. A. Bayesian phylogeography finds its roots. PLoS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1000520 (2009).MathSciNet 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Lefeuvre, P. et al. The spread of tomato yellow leaf curl virus from the middle east to the world. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1001164 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Monjane, A. L. et al. Reconstructing the history of maize streak virus strain A dispersal tor reveal diversification hot spots and its origin in southern Africa. J. Virol. https://doi.org/10.1128/jvi.00640-11 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Trovao, N. S. et al. Host ecology determines the dispersal patterns of a plant virus. Virus Evol. https://doi.org/10.1093/ve/vev016 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Rakotomalala, M. et al. Comparing patterns and scales of plant virus phylogeography: rice yellow mottle virus in Madagascar and in continental Africa. Virus Evol. https://doi.org/10.1093/ve/vez023 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Gibbs, A. J., Fargette, D., García-Arenal, F. & Gibbs, M. J. Time – The emerging dimension of plant virus studies. J General Virol. https://doi.org/10.1099/vir.0.015925-0 (2010).Article 

    Google Scholar 
    15.Simmonds, P., Aiewsakun, P. & Katzourakis, A. Prisoners of war: host adaptation and its constraints on virus evolution. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-018-0120-2 (2019).Article 
    PubMed 

    Google Scholar 
    16.Jones, R. A. C., Boonham, N., Adams, I. P. & Fox, A. Historical virus isolate collections: an invaluable resource connecting plant virology’s pre-sequencing and post-sequencing eras. Plant Pathol. 70, 235–248 (2021).Article 

    Google Scholar 
    17.Smith, O. et al. A complete ancient RNA genome: Identification, reconstruction and evolutionary history of archaeological Barley Stripe Mosaic Virus. Sci. Rep. https://doi.org/10.1038/srep04003 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Malmstrom, C. M., Shu, R., Linton, E. W., Newton, L. A. & Cook, M. A. Barley yellow dwarf viruses (BYDVs) preserved in herbarium specimens illuminate historical disease ecology of invasive and native grasses. J. Ecol. https://doi.org/10.1111/j.1365-2745.2007.01307.x (2007).Article 

    Google Scholar 
    19.Peyambari, M., Warner, S., Stoler, N., Rainer, D. & Roossinck, M. J. A 1000-Year-old RNA virus. J. Virol. 93, e01188-18 (2019).CAS 
    Article 

    Google Scholar 
    20.Adams, I. P. et al. Next-generation sequencing and metagenomic analysis: a universal diagnostic tool in plant virology. Mol. Plant Pathol. https://doi.org/10.1111/j.1364-3703.2009.00545.x (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Vayssier-Taussat, M. et al. Shifting the paradigm from pathogens to pathobiome new concepts in the light of meta-omics. Front. Cell. Infect. Microbiol. https://doi.org/10.3389/fcimb.2014.00029 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Massart, S., Olmos, A., Jijakli, H. & Candresse, T. Current impact and future directions of high throughput sequencing in plant virus diagnostics. Virus Res. https://doi.org/10.1016/j.virusres.2014.03.029 (2014).Article 
    PubMed 

    Google Scholar 
    23.Roossinck, M. J., Martin, D. P. & Roumagnac, P. Plant virus metagenomics: advances in virus discovery. Phytopathology https://doi.org/10.1094/PHYTO-12-14-0356-RVW (2015).Article 
    PubMed 

    Google Scholar 
    24.Kreuze, J. F. et al. Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology https://doi.org/10.1016/j.virol.2009.03.024 (2009).Article 
    PubMed 

    Google Scholar 
    25.Pooggin, M. M. Small RNA-omics for plant virus identification, virome reconstruction, and antiviral defense characterization. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.02779 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Hartung, J. S. et al. History and diversity of Citrus Leprosis virus recorded in herbarium specimens. Phytopathology https://doi.org/10.1094/PHYTO-03-15-0064-R (2015).Article 
    PubMed 

    Google Scholar 
    27.Golyaev, V., Candresse, T., Rabenstein, F. & Pooggin, M. M. Plant virome reconstruction and antiviral RNAi characterization by deep sequencing of small RNAs from dried leaves. Sci. Rep. https://doi.org/10.1038/s41598-019-55547-3 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Patil, B. L. & Fauquet, C. M. Cassava mosaic geminiviruses: actual knowledge and perspectives. Mol. Plant Pathol. https://doi.org/10.1111/j.1364-3703.2009.00559.x (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Legg, J. P., Owor, B., Sseruwagi, P. & Ndunguru, J. Cassava mosaic virus disease in east and central Africa: epidemiology and management of a regional pandemic. Adv. Virus Res. https://doi.org/10.1016/S0065-3527(06)67010-3 (2006).Article 
    PubMed 

    Google Scholar 
    30.Wang, H. L. et al. First report of Sri Lankan cassava mosaic virus infecting cassava in Cambodia. Plant Dis. https://doi.org/10.1094/PDIS-10-15-1228-PDN (2016).Article 
    PubMed 

    Google Scholar 
    31.Minato, N. et al. Surveillance for sri lankan cassava mosaic virus (SLCMV) in Cambodia and Vietnam one year after its initial detection in a single plantation in 2015. PLoS One https://doi.org/10.1371/journal.pone.0212780 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Mugerwa, H., Wang, H. L., Sseruwagi, P., Seal, S. & Colvin, J. Whole-genome single nucleotide polymorphism and mating compatibility studies reveal the presence of distinct species in sub-Saharan Africa Bemisia tabaci whiteflies. Insect Sci. https://doi.org/10.1111/1744-7917.12881 (2020).Article 
    PubMed 

    Google Scholar 
    33.Ntawuruhunga, P. et al. Incidence and severity of cassava mosaic disease in the Republic of Congo. African Crop Sci. J. https://doi.org/10.4314/acsj.v15i1.54405 (2010).Article 

    Google Scholar 
    34.Zinga, I. et al. Epidemiological assessment of cassava mosaic disease in Central African Republic reveals the importance of mixed viral infection and poor health of plant cuttings. Crop Prot. https://doi.org/10.1016/j.cropro.2012.10.010 (2013).Article 

    Google Scholar 
    35.Jeske, H. Geminiviruses. Curr. Topics Microbiol. Immunol. https://doi.org/10.1007/978-3-540-70972-5_11 (2009).Article 

    Google Scholar 
    36.Vanitharani, R., Chellappan, P. & Fauquet, C. M. Geminiviruses and RNA silencing. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2005.01.005 (2005).Article 
    PubMed 

    Google Scholar 
    37.Aregger, M. et al. Primary and secondary siRNAs in geminivirus-induced gene silencing. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1002941 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Olsen, K. M. & Schaal, B. A. Evidence on the origin of cassava: Phylogeography of Manihot esculenta. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.96.10.5586 (1999).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Fauquet, C. African cassava mosaic virus: etiology, epidemiology, and control. Plant Dis. https://doi.org/10.1094/pd-74-0404 (1990).Article 

    Google Scholar 
    40.Legg, J. P. & Fauquet, C. M. Cassava mosaic geminiviruses in Africa. Plant Mol. Biol. https://doi.org/10.1007/s11103-004-1651-7 (2004).Article 
    PubMed 

    Google Scholar 
    41.De Bruyn, A. et al. Divergent evolutionary and epidemiological dynamics of cassava mosaic geminiviruses in Madagascar. BMC Evol. Biol. https://doi.org/10.1186/s12862-016-0749-2 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Weiß, C. L. et al. Temporal patterns of damage and decay kinetics of dna retrieved from plant herbarium specimens. R. Soc. Open Sci. https://doi.org/10.1098/rsos.160239 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Chellappan, P., Vanitharani, R., Ogbe, F. & Fauquet, C. M. Effect of temperature on geminivirus-induced RNA silencing in plants. Plant Physiol. https://doi.org/10.1104/pp.105.066563 (2005).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Smith, O. & Gilbert, M. T. P. Ancient RNA. in (2018). doi:https://doi.org/10.1007/13836_2018_17.45.Filloux, D. et al. The genomes of many yam species contain transcriptionally active endogenous geminiviral sequences that may be functionally expressed. Virus Evol. https://doi.org/10.1093/ve/vev002 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Sharma, V. et al. Large-scale survey reveals pervasiveness and potential function of endogenous geminiviral sequences in plants. Virus Evol. https://doi.org/10.1093/ve/veaa071 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Bredeson, J. V. et al. Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nat. Biotechnol. https://doi.org/10.1038/nbt.3535 (2016).Article 
    PubMed 

    Google Scholar 
    48.Serfraz, S. et al. Insertion of Badnaviral DNA in the Late Blight Resistance Gene (R1a) of Brinjal Eggplant (Solanum melongena). Front. Plant Sci. https://doi.org/10.3389/fpls.2021.683681 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Lefeuvre, P. et al. Evolutionary time-scale of the begomoviruses: evidence from integrated sequences in the Nicotiana genome. PLoS One https://doi.org/10.1371/journal.pone.0019193 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Martin, D. P., Murrell, B., Golden, M., Khoosal, A. & Muhire, B. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. https://doi.org/10.1093/ve/vev003 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Murray, G. G. R. et al. The effect of genetic structure on molecular dating and tests for temporal signal. Methods Ecol. Evol. 7, 80–89 (2016).Article 

    Google Scholar 
    52.Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. https://doi.org/10.1186/1471-2148-7-214 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Yoshida, K. et al. Mining herbaria for plant pathogen genomes: back to the future. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1004028 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Dufrénoy, J. & Hédin, L. . La. Mosaïque des feuilles du Manioc au Cameroun. J. d’agriculture Tradit. Bot. appliquée 94, 361–365 (1929).
    Google Scholar 
    55.Duffy, S. & Holmes, E. C. Validation of high rates of nucleotide substitution in geminiviruses: phylogenetic evidence from East African cassava mosaic viruses. J. Gen. Virol. 90, 1539–1547 (2009).CAS 
    Article 

    Google Scholar 
    56.Worobey, M. et al. Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960. Nature https://doi.org/10.1038/nature07390 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Mühlemann, B. et al. Ancient hepatitis B viruses from the Bronze Age to the Medieval period. Nature https://doi.org/10.1038/s41586-018-0097-z (2018).Article 
    PubMed 

    Google Scholar 
    58.Toppinen, M. et al. Bones hold the key to DNA virus history and epidemiology. Sci. Rep. https://doi.org/10.1038/srep17226 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Gilbert, M. T. P., Bandelt, H. J., Hofreiter, M. & Barnes, I. Assessing ancient DNA studies. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2005.07.005 (2005).Article 
    PubMed 

    Google Scholar 
    60.Inoue-Nagata, A. K., Albuquerque, L. C., Rocha, W. B. & Nagata, T. A simple method for cloning the complete begomovirus genome using the bacteriophage φ29 DNA polymerase. J. Virol. Methods https://doi.org/10.1016/j.jviromet.2003.11.015 (2004).Article 
    PubMed 

    Google Scholar 
    61.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics https://doi.org/10.1093/bioinformatics/btu170 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Zheng, Y. et al. VirusDetect: An automated pipeline for efficient virus discovery using deep sequencing of small RNAs. Virology https://doi.org/10.1016/j.virol.2016.10.017 (2017).Article 
    PubMed 

    Google Scholar 
    63.Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics https://doi.org/10.1093/bioinformatics/btp324 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. https://doi.org/10.1186/gb-2009-10-3-r25 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. MapDamage2.0: Fast approximate Bayesian estimates of ancient DNA damage parameters. in Bioinformatics (2013). doi:https://doi.org/10.1093/bioinformatics/btt193.66.Broad Institute. Picard Tools – By Broad Institute. Github (2009).67.Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics https://doi.org/10.1093/bioinformatics/btq033 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. https://doi.org/10.1101/gr.092759.109 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Depristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. https://doi.org/10.1038/ng.806 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. https://doi.org/10.1089/cmb.2012.0021 (2012).MathSciNet 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. https://doi.org/10.1093/molbev/mst010 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    Article 

    Google Scholar 
    73.Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. JModelTest 2: More models, new heuristics and parallel computing. Nat. Methods https://doi.org/10.1038/nmeth.2109 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Jombart, T. & Dray, S. Adephylo: Exploratory analyses for the phylogenetic comparative method. Bioinformatics (2010).75.Duchêne, S., Duchêne, D., Holmes, E. C. & Ho, S. Y. W. The performance of the date-randomization test in phylogenetic analyses of time-structured virus data. Mol. Biol. Evol. 32, 1895–1906 (2015).Article 

    Google Scholar 
    76.Rieux, A. & Khatchikian, C. E. Tipdatingbeast: an r package to assist the implementation of phylogenetic tip-dating tests using beast. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.12603 (2017).Article 
    PubMed 

    Google Scholar 
    77.Raftery, A. E. Approximate Bayes factors and accounting for model uncertainty in generalised linear models. Biometrika https://doi.org/10.1093/biomet/83.2.251 (1996).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    78.Ho, S. Y. W. & Shapiro, B. Skyline-plot methods for estimating demographic history from nucleotide sequences. Mol. Ecol. Resour. https://doi.org/10.1111/j.1755-0998.2011.02988.x (2011).Article 
    PubMed 

    Google Scholar 
    79.Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. (2018) doi:https://doi.org/10.1093/sysbio/syy032. More