1.Elphick, C. S. Why study birds in rice fields?. Waterbirds 33(sp1), 1â7. https://doi.org/10.1675/063.033.s101 (2010).MathSciNetÂ
ArticleÂ
Google ScholarÂ
2.Machado, I. F. & Maltchik, L. Can management practices in rice fields contribute to amphibian conservation in southern Brazilian wetlands?. Aquat. Conserv. Mar. Freshw. Ecosyst. 20(1), 39â46 (2010).
Google ScholarÂ
3.Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: Is habitat heterogeneity the key?. Trends Ecol. Evol. 18(4), 182â188. https://doi.org/10.1016/S0169-5347(03)00011-9 (2003).ArticleÂ
Google ScholarÂ
4.Shuford, W. D., Humphrey, J. M. & Nur, N. Breeding status of the Black tern in California. West. Birds 32, 189â217 (2001).
Google ScholarÂ
5.SĂĄnchez-GuzmĂĄn, J. M. et al. Identifying new buffer areas for conserving waterbirds in the Mediterranean basin: The importance of the rice fields in Extremadura, Spain. Biodivers. Conserv. 16(12), 3333â3344. https://doi.org/10.1007/s10531-006-9018-9 (2007).ArticleÂ
Google ScholarÂ
6.Lane, S. J. & Fujioka, M. The impact of changes in irrigation practices on the distribution of foraging egrets and herons (Ardeidae) in the rice fields of central Japan. Biol. Conserv. 83(2), 221â230. https://doi.org/10.1016/S0006-3207(97)00054-2 (1998).ArticleÂ
Google ScholarÂ
7.Bambaradeniya, C. N. B. et al. Biodiversity associated with an irrigated rice agro-ecosystem in Sri Lanka. Biodivers. Conserv. 13(9), 1715â1753. https://doi.org/10.1023/B:BIOC.0000029331.92656.de (2004).ArticleÂ
Google ScholarÂ
8.Donald, P. F. Biodiversity impacts of some agricultural commodity production systems. Conserv. Biol. 18(1), 17â38. https://doi.org/10.1111/j.1523-1739.2004.01803.x (2004).ArticleÂ
Google ScholarÂ
9.Steffen, W. et al. Sustainability. Planetary boundaries: Guiding human development on a changing planet. Science 347(6223), 1259855. https://doi.org/10.1126/science.1259855 (2015).CASÂ
ArticleÂ
PubMedÂ
Google ScholarÂ
10.Ramankutty, N. et al. Trends in global agricultural land use: Implications for environmental health and food security. Annu. Rev. Plant Biol. 69, 789â815. https://doi.org/10.1146/annurev-arplant-042817-040256,Pubmed:29489395 (2018).CASÂ
ArticleÂ
PubMedÂ
Google ScholarÂ
11.Le FĂ©on, V. et al. Intensification of agriculture, landscape composition and wild bee communities: A large scale study in four European countries. Agric. Ecosyst. Environ. 137(1â2), 143â150. https://doi.org/10.1016/j.agee.2010.01.015 (2010).ArticleÂ
Google ScholarÂ
12.Donal, P. F., Gree, R. E. & Heath, M. F. Agricultural intensification and the collapse of Europeâs farmland bird populations. Proc. Biol. Sci. 268(1462), 25â29. https://doi.org/10.1098/rspb.2000.1325,Pubmed:12123294 (2001).CASÂ
ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
13.Gregory, R. D. et al. Developing indicators for European birds. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1454), 269â288. https://doi.org/10.1098/rstb.2004.1602 (2005).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
14.Beketov, M. A., Kefford, B. J., SchĂ€fer, R. B. & Liess, M. Pesticides reduce regional biodiversity of stream invertebrates. Proc. Natl. Acad. Sci. U S A 110(27), 11039â11043. https://doi.org/10.1073/pnas.1305618110 (2013).ADSÂ
ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
15.Geiger, F. et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 11(2), 97â105. https://doi.org/10.1016/j.baae.2009.12.001 (2010).CASÂ
ArticleÂ
Google ScholarÂ
16.Van Dijk, T. C., Van Staalduinen, M. A. & Van der Sluijs, J. P. Macro-invertebrate decline in surface water polluted with Imidacloprid. PLoS ONE 8(5), e62374. https://doi.org/10.1371/journal.pone.0062374,Pubmed:23650513 (2013).ADSÂ
ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
17.Katayama, N., Baba, Y. G., Kusumoto, Y. & Tanaka, K. A review of post-war changes in rice farming and biodiversity in Japan. Agric. Syst. 132, 73â84. https://doi.org/10.1016/j.agsy.2014.09.001 (2015).ArticleÂ
Google ScholarÂ
18.Maeda, T. Patterns of bird abundance and habitat use in rice fields of the Kanto Plain, central Japan. Ecol. Res. 16(3), 569â585. https://doi.org/10.1046/j.1440-1703.2001.00418.x (2001).ArticleÂ
Google ScholarÂ
19.Nam, H. K., Choi, S. H., Choi, Y. S. & Yoo, J. C. Patterns of waterbirds abundance and habitat use in rice fields. Korean J. Environ. Agric. 31(4), 359â367. https://doi.org/10.5338/KJEA.2012.31.4.359 (2012).ArticleÂ
Google ScholarÂ
20.Choi, S. H., Nam, H. K. & Yoo, J. C. Characteristics of population dynamics and habitat use of shorebirds in rice fields during spring migration. Korean J. Environ. Agric. 33(4), 334â343. https://doi.org/10.5338/KJEA.2014.33.4.334 (2014).ArticleÂ
Google ScholarÂ
21.Elphick, C. S., Taft, O. & Lourenço, P. M. Management of rice fields for birds during the non-growing season. Waterbirds 33(sp1), 181â192. https://doi.org/10.1675/063.033.s114 (2010).ArticleÂ
Google ScholarÂ
22.Ibåñez, C., CurcĂł, A., Riera, X., Ripoll, I. & SĂĄnchez, C. Influence on birds of rice field management practices during the growing season: A review and an experiment. Waterbirds 33(sp1), 167â180. https://doi.org/10.1675/063.033.s113 (2010).ArticleÂ
Google ScholarÂ
23.Sato, N. & Maruyama, N. Foraging site preference of intermediate egrets Egretta intermedia during the breeding season in the eastern part of the Kanto Plain, Japan. J. Yamashina Inst. Ornithol. 28(1), 19-34_1. https://doi.org/10.3312/jyio1952.28.19 (1996).ArticleÂ
Google ScholarÂ
24.Nam, H. K., Choi, Y. S., Choi, S. H. & Yoo, J. C. Distribution of waterbirds in rice fields and their use of foraging habitats. Waterbirds 38(2), 173â183. https://doi.org/10.1675/063.038.0206 (2015).ArticleÂ
Google ScholarÂ
25.Azuma, A. & Takeuchi, K. Relationships between population density of frogs and environmental conditions in Yatsu-habitat. J. Jpn. Inst. Landsc. Archit. 62(5), 573â576 (1999).ArticleÂ
Google ScholarÂ
26.MulliĂ©, W. C. et al. The impact of Furadan 3g (carbofuran) applications on aquatic macroinvertebrates in irrigated rice in Senegal. Arch. Environ. Contam. Toxicol. 20(2), 177â182. https://doi.org/10.1007/BF01055902 (1991).ArticleÂ
Google ScholarÂ
27.Tourenq, C., Sadoul, N., Beck, N., MeslĂ©ard, F. & Martin, J. L. Effects of cropping practices on the use of rice fields by waterbirds in the Camargue, France. Agric. Ecosyst. Environ. 95(2â3), 543â549. https://doi.org/10.1016/S0167-8809(02)00203-7 (2003).ArticleÂ
Google ScholarÂ
28.MeslĂ©ard, F., Garnero, S., Beck, N. & Rosecchi, E. Uselessness and indirect negative effects of an insecticide on rice field invertebrates. C. R. Biol. 328(10â11), 955â962. https://doi.org/10.1016/j.crvi.2005.09.003,Pubmed:16286085 (2005).ArticleÂ
PubMedÂ
Google ScholarÂ
29.Osten, J. R. V., Soares, A. M. & Guilhermino, L. Black-bellied whistling duck (Dendrocygna autumnalis) brain cholinesterase characterization and diagnosis of anticholinesterase pesticide exposure in wild populations from Mexico. Environ. Toxicol. Chem. 24(2), 313â317. https://doi.org/10.1897/03-646.1,Pubmed:15719990 (2005).ArticleÂ
PubMedÂ
Google ScholarÂ
30.Katayama, N. et al. Organic farming and associated management practices benefit multiple wildlife taxa: A large-scale field study in rice paddy landscapes. J. Appl. Ecol. 56, 1970â1981. https://doi.org/10.1111/1365-2664.13446 (2019).ArticleÂ
Google ScholarÂ
31.Parsons, K. C., Mineau, P. & Renfrew, R. B. Effects of pesticide use in rice fields on birds. Waterbirds 33(sp1), 193â218. https://doi.org/10.1675/063.033.s115 (2010).ArticleÂ
Google ScholarÂ
32.Choi, G., Nam, H. K., Son, S. J., Seock, M. & Yoo, J. C. The impact of agricultural activities on habitat use by the Wood sandpiper and Common greenshank in rice fields. Ornithol. Sci. 20(1), 27â37 (2021).ArticleÂ
Google ScholarÂ
33.Choi, G., Nam, H. K., Son, S. J., Do, M. S. & Yoo, J. C. Effects of Pesticide Use on the Distributions of Grey Herons (Ardea cinerea) and Great Egrets (Ardea alba) in Rice Fields of the Republic of Korea. Zool. Sci. 38, 162â169. https://doi.org/10.2108/zs200079 (2021).ArticleÂ
Google ScholarÂ
34.Lourenço, P. M. & Piersma, T. Stopover ecology of Black-tailed Godwits Limosa limosa in Portuguese rice fields: A guide on where to feed in winter. Bird Study 55(2), 194â202. https://doi.org/10.1080/00063650809461522 (2008).ArticleÂ
Google ScholarÂ
35.Fujioka, M., Lee, S. D., Kurechi, M. & Yoshida, H. Bird use of rice fields in Korea and Japan. Waterbirds 33(sp1), 8â29. https://doi.org/10.1675/063.033.s102 (2010).ArticleÂ
Google ScholarÂ
36.Stafford, J. D., Kaminski, R. M. & Reinecke, K. J. Avian foods, foraging and habitat conservation in world rice fields. Waterbirds 33(sp1), 133â150. https://doi.org/10.1675/063.033.s110 (2010).ArticleÂ
Google ScholarÂ
37.Harwood, J. D., Sunderland, K. D. & Symondson, W. O. C. Living where the food is: web location by linyphiid spiders in relation to prey availability in winter wheat. J. Appl. Ecol. 38(1), 88â99. https://doi.org/10.1046/j.1365-2664.2001.00572.x (2001).ArticleÂ
Google ScholarÂ
38.Morris, A. J., Bradbury, R. B. & Wilson, J. D. Determinants of patch selection by yellowhammers Emberiza citrinella foraging in cereal crops. Aspects Appl. Biol. 67, 43â50 (2002).
Google ScholarÂ
39.Han, M. S. et al. Characteristics of benthic invertebrates in organic and conventional paddy field. Korean J. Environ. Agric. 32(1), 17â23. https://doi.org/10.5338/KJEA.2013.32.1.17 (2013).ADSÂ
ArticleÂ
Google ScholarÂ
40.Dalzochio, M. S., Baldin, R., Stenert, C. & Maltchik, L. Can organic and conventional agricultural systems affect wetland macroinvertebrate taxa in rice fields?. Basic Appl. Ecol. 17(3), 220â229. https://doi.org/10.1016/j.baae.2015.10.009 (2016).ArticleÂ
Google ScholarÂ
41.Lourenço, P. M. & Piersma, T. Waterbird densities in south European rice fields as a function of rice management. Ibis 151(1), 196â199. https://doi.org/10.1111/j.1474-919X.2008.00881.x (2009).ArticleÂ
Google ScholarÂ
42.Dias, R. A., Blanco, D. E., Goijman, A. P. & Zaccagnini, M. E. Density, habitat use, and opportunities for conservation of shorebirds in rice fields in southeastern South America. Condor Ornithol. Appl. 116(3), 384â393. https://doi.org/10.1650/CONDOR-13-160.1 (2014).ArticleÂ
Google ScholarÂ
43.Kim, Y. H., Kang, S. M., Khan, A. L., Lee, J. H. & Lee, I. J. Aspect of weed occurrence by methods of weed control in rice field. Korean J. Weed Sci. 31(1), 89â95. https://doi.org/10.5660/KJWS.2011.31.1.089 (2011).ArticleÂ
Google ScholarÂ
44.Shin, H. S. et al. Monthly change of the length-weight relationship of the loach (Misgurnus anguillicaudatus) population in paddy fields by farming practices. Korean J. Environ. Biol. 36(1), 1â10. https://doi.org/10.11626/KJEB.2018.36.1.001 (2018).ADSÂ
ArticleÂ
Google ScholarÂ
45.Elphick, C. S. & Oring, L. W. Winter management of Californian rice fields for waterbirds. J. Appl. Ecol. 35(1), 95â108. https://doi.org/10.1046/j.1365-2664.1998.00274.x (1998).ArticleÂ
Google ScholarÂ
46.Pernollet, C. A., Cavallo, F., Simpson, D., Gauthier-Clerc, M. & Guillemain, M. Seed density and waterfowl use of rice fields in Camargue, France. J. Wild. Manag. 81(1), 96â111. https://doi.org/10.1002/jwmg.21167 (2017).ArticleÂ
Google ScholarÂ
47.Firth, A. G. et al. Low external input sustainable agriculture: Winter flooding in rice fields increases bird use, fecal matter and soil health, reducing fertilizer requirements. Agric. Ecosyst. Environ. 300, 106962. https://doi.org/10.1016/j.agee.2020.106962 (2020).CASÂ
ArticleÂ
Google ScholarÂ
48.Manley, S. W., Kaminski, R. M., Reinecke, K. J. & Gerard, P. D. Waterbird foods in winter-managed ricefields in Mississippi. J. Wildl. Manag. 68(1), 74â83. https://doi.org/10.2193/0022-541X(2004)068[0074:WFIWRI]2.0.CO;2 (2004).ArticleÂ
Google ScholarÂ
49.Fraixedas, S., Burgas, D., Robson, D., Camps, J. & Barriocanal, C. Benefits of the European Agri-environment schemes for wintering lapwings: A case study from rice fields in the Mediterranean region. Waterbirds 43(1), 86â93. https://doi.org/10.1675/063.043.0109 (2020).ArticleÂ
Google ScholarÂ
50.Tourenq, C. et al. Spatial relationships between tree-nesting heron colonies and rice fields in the Camargue, France. Auk 121(1), 192â202. https://doi.org/10.1093/auk/121.1.192 (2004).ArticleÂ
Google ScholarÂ
51.Rural Research Institute. Management Effect of Environmentally-Friendly Agriculture Pilot Site: A Case Study on Project Office of Daeho Environment (Korea Rural Community Corporation, 2008).
Google ScholarÂ
52.Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 43(1), 59â69. https://doi.org/10.1007/BF00337288 (1982).MathSciNetÂ
ArticleÂ
MATHÂ
Google ScholarÂ
53.Chon, T. S. Self-organizing maps applied to ecological sciences. Ecol. Inform. 6, 50â61. https://doi.org/10.1016/j.ecoinf.2010.11.002 (2011).ArticleÂ
Google ScholarÂ
54.Park, Y. S., CĂ©rĂ©ghino, R., Compin, A. & Lek, S. Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters. Ecol. Modell. 160(3), 265â280. https://doi.org/10.1016/S0304-3800(02)00258-2 (2003).ArticleÂ
Google ScholarÂ
55.Akande, A., Costa, A. C., Mateu, J. & Henriques, R. Geospatial analysis of extreme weather events in Nigeria (1985â2015) using self-organizing maps. Adv. Meteorol. https://doi.org/10.1155/2017/8576150 (2017).ArticleÂ
Google ScholarÂ
56.Park, Y. S., Chung, Y. J. & Moon, Y. S. Hazard ratings of pine forests to a pine wilt disease at two spatial scales (individual trees and stands) using self-organizing map and random forest. Ecol. Model. 13, 40â46. https://doi.org/10.1016/j.ecoinf.2012.10.008 (2013).ArticleÂ
Google ScholarÂ
57.Chon, T. S., Park, Y. S., Moon, K. H. & Cha, E. Y. Patternizing communities by using an artificial neural network. Ecol. Model. 90, 69â78. https://doi.org/10.1016/0304-3800(95)00148-4 (1996).ArticleÂ
Google ScholarÂ
58.Vesanto, J., Himberg, J., Alhoniemi, E. & Parhankangas, J. SOM Toolbox for MATLAB 5. Technical Report a57. SOM Toolbox Team, Helsinki University of Technology, Finland, 1â60. (2000). http://www.cis.hut.fi/projects/somtoolbox.59.Moran, P. A. P. Notes on continuous stochastic phenomena. Biometrika 37(1â2), 17â23. https://doi.org/10.1093/biomet/37.1-2.17 (1950).MathSciNetÂ
CASÂ
ArticleÂ
PubMedÂ
MATHÂ
Google ScholarÂ
60.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
Google ScholarÂ
61.Wehrens, R. & Kruisselbrink, J. Flexible self-organizing maps in Kohonen 3.0. J. Stat. Soft. 87(7), 1â18. https://doi.org/10.18637/jss.v087.i07 (2018).ArticleÂ
Google ScholarÂ
62.Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.4â4, https://CRAN.R-project.org/package=vegan (2017).63.Bates, D., Maechler, M. & Bolker, B. lme4: Linear Mixed-Effects Models Using S4 Classes. R package version 0.999375-42, http://cran.r-project.org/package=lme4 (2014).64.Rousset, F. & Ferdy, J.-B. Testing environmental and genetic effects in the presence of spatial autocorrelation. Ecography 37, 781â790. https://doi.org/10.1111/ecog.00566 (2014).ArticleÂ
Google Scholar More