More stories

  • in

    Impact of intensifying nitrogen limitation on ocean net primary production is fingerprinted by nitrogen isotopes

    Modelling approachWe used the PISCES-v2 biogeochemical model, attached to the Nucleus for European Modelling of the Ocean version 4.0 (NEMO-v4) general ocean circulation model29. PISCES-v2 includes five nutrients pools (nitrate, ammonium, phosphate, silicic acid and dissolved iron), dissolved oxygen, the full carbon system and accounts for two phytoplankton (nanophytoplankton and diatoms) and two zooplankton types (microzooplankton and mesozooplankton). Bioavailable nitrogen in our simulations is considered to be the combination of nitrate and ammonium. Its nitrogen cycle includes nitrogen fixation, nitrification, burial, denitrification in both the water column and sediments, and coupled nitrification–denitrification. Nitrogen isotopes were integrated within PISCES-v2 for the purposes of this study, using nine new tracers (Supplementary Note 1). Horizontal model resolution varied between ~0.5° at the equator and poles, and 2° in the subtropics, whereas vertical resolution varied between 10 and 500 m thickness over 31 levels.We conducted simulations under both preindustrial control and climate change scenarios. The preindustrial control scenario from 1801 to 2100 maintained preindustrial greenhouse gas concentrations and only included internal modes of variability. The climate change simulation from 1851 to 2100 included natural variability, prescribed changes in land use, as well as historical changes in concentrations of greenhouse gases and aerosols until 2005, after which future concentrations associated with RCP8.5 were imposed30. The biogeochemical model (PISCES-v2) was run offline from the physical model (NEMO-v4) using monthly transports and other physical conditions generated by the low resolution version of the IPSL-CM5A ESM57.Experiments were initialized from biogeochemical fields created from an extensive spin-up of 5000 years under repeat physical forcing, followed by a 300-year simulation under the preindustrial control scenario. The preindustrial control simulation used in analysis was therefore the final 300 years of a 5600-year spin-up involving two repeat simulations of the preindustrial control scenario. We utilized a global compilation of δ15NNO320 supplemented with recent data to assess the isotopic routines in the model and conducted a thorough model-data skill assessment at replicating observed patterns in space (Supplementary Note 2 and Supplementary Figs. 1–3).Anthropogenic nitrogen depositionThe effect of increasing aeolian deposition of nitrogen was assessed in our simulations. Preindustrial nitrogen deposition was prescribed as the preindustrial estimate at 1850, whereas the historical to future deposition was created by linear interpolation between preindustrial (1850) and modern/future fields (2000, 2030, 2050 and 2100). These fields were provided by Hauglustaine et al.8. However, the rapid rise between 1950 and 2000 was maintained, such that 60% of the increase between the preindustrial and modern fields occurred after 1950 (Supplementary Fig. 4).The historical rise in anthropogenic nitrogen deposition was assessed by including it in additional simulations under both preindustrial control and climate change scenarios. Four initial experiments were therefore conducted: preindustrial control; preindustrial control plus anthropogenic nitrogen deposition; climate change; and climate change plus anthropogenic nitrogen deposition.Global model experimentsWe undertook four initial simulations to quantify the impacts of anthropogenic climate change and nitrogen deposition: a preindustrial control simulation from 1801 to 2100; a full anthropogenic scenario from 1851 to 2100; a climate change-only scenario without the increase in anthropogenic nitrogen deposition from 1851 to 2100; and a nitrogen deposition scenario without anthropogenic climate change from 1851 to 2100. Anthropogenic effects to nitrogen cycling were quantified by comparing mean conditions over the final 20 years of the twenty-first century (2081–2100) with mean conditions over the final 20 years of the preindustrial control simulation, whereas effects on nitrogen isotopes were quantified by comparing mean conditions over the final 20 years of the twenty-first century (2081–2100) with mean conditions over the historical period (1986–2005) from the same simulation.To understand the direct and indirect effects of climate change, we undertook two additional idealized simulations. First, we imposed temperature changes on biogeochemical rates, while maintaining ocean circulation associated with the preindustrial control scenario, to assess the direct effects of warming on biogeochemical processes. Second, we imposed the preindustrial control temperature field on biogeochemical processes, while altering the circulation in line with the climate change scenario, to assess the indirect effects of climate change (i.e., how changing circulation alters substrate supply to biogeochemical reactions). Each experiment was run from 1851 to 2100 and without the anthropogenic increase in atmospheric nitrogen deposition, parallel with the full climate change simulation.Agreement between the climate change simulation without anthropogenic nitrogen deposition was quantified using a pixel-by-pixel correlation analysis using Spearman’s rank correlation based on the non-parametric nature of the two-dimensional fields used for comparison. Fields were euphotic zone nitrate, twilight zone δ15NNO3, euphotic zone δ15NPOM, and vertically integrated NPP, zooplankton grazing, nitrogen fixation, water column denitrification and sedimentary denitrification.Depth zonesWe assessed changes in biogeochemical variables related to nitrogen cycling in two depth zones defined by light. The euphotic zone was defined by depths between the surface and 0.1% of incident irradiance as recommended by Buesseler et al.42. The twilight zone was also defined using light, as advocated by Kaartvedt et al.58. Depths between 0.1% and 0.0001% of incident irradiance defined the twilight zone. These definitions typically returned euphotic zone thicknesses of 137 ± 23 m (mean ± SD), and twilight zone thicknesses of 233 ± 37 m. The boundary between these depth zones were deepest in oligotrophic tropical and subtropical waters, and were shallowest in equatorial and temperate waters (Supplementary Fig. 7).Time of emergenceToE calculations determined when anthropogenic, anomalous trends emerged from the noise of background variability. ToE was calculated at each grid cell within both the euphotic and twilight zones (depth-averaged) and using annually averaged fields of ocean tracers. We therefore ignored temporal trends and variability at seasonal and sub-seasonal scales. Raw time series were first detrended and normalized using the linear slope and mean of the preindustrial control experiment, such that the preindustrial control time series varied about zero, while anomalous trends in experiments with climate change and/or nitrogen deposition deviated from zero. These detrended and normalized time series were smoothed using a boxcar (flat) moving average with a window of 11 years to filter decadal variability (Supplementary Fig. 12). Differences with the preindustrial control experiment were then computed.To determine whether the differences with the preindustrial control experiment were anomalous, we calculated a measure of noise from the raw, inter-annual time series of the preindustrial control experiment (1801–2100). A signal emerged from the noise if it exceeded 2 SDs, a threshold that represents with 95% confidence that a value was anomalous and is therefore a conservative envelope to distinguish normality from anomaly16.Furthermore, we required that anomalous values must consistently exceed the noise of the preindustrial control experiment until the end of the simulation (2100) to be registered as having emerged. Temporary emergences were therefore rejected, making our ToE estimates more conservative. A graphical representation of this process is shown in Supplementary Fig. 12.Isolating biogeochemical 15NO3 fluxesWe analysed the biogeochemical fluxes of 15NO3 and NO3 into and out of each model grid cell within the twilight zone, to determine whether the trends in δ15NNO3 were related to biogeochemical or physical changes. Fluxes of 15NO3 and NO3 included a net source from nitrification (NO3nitr) and net sinks due to new production (NO3new) and denitrification (NO3den). Although nitrification did not directly alter the 15N : 14N ratio in our simulations, the release of 15NO3 and NO3 by nitrification conveyed an isotopic signature determined by prior fractionation processes that produce ammonium (NH4). These processes include remineralization of particulate and dissolved organic matter, excretion by zooplankton and nitrogen fixation. The isotopic signatures of these processes were thus included implicitly in NO3nitr. For each grid cell, we calculated the biogeochemical tendency to alter δ15NNO3 based on the ratio of inputs minus outputs:$${Delta} {delta }^{15}{{{{{{rm{N}}}}}}}_{{{{{{rm{NO3}}}}}}}=left(frac{{,{!}^{15}{{{{{rm{N}}}}}}{{{{{rm{O}}}}}}}_{3}^{{{{{{rm{nitr}}}}}}}-{,{!}^{15}{{{{{rm{N}}}}}}{{{{{rm{O}}}}}}}_{3}^{{{{{{rm{new}}}}}}}-{,{!}^{15}{{{{{rm{N}}}}}}{{{{{rm{O}}}}}}}_{3}^{{{{{{rm{den}}}}}}}}{{,{!}^{14}{{{{{rm{N}}}}}}{{{{{rm{O}}}}}}}_{3}^{{{{{{rm{nitr}}}}}}}-{,{!}^{14}{{{{{rm{N}}}}}}{{{{{rm{O}}}}}}}_{3}^{{{{{{rm{new}}}}}}}-{,{!}^{14}{{{{{rm{N}}}}}}{{{{{rm{O}}}}}}}_{3}^{{{{{{rm{den}}}}}}}}-1right)cdot 1000$$
    (1)
    This calculation excluded any upstream biological changes and circulation changes that might have altered δ15NNO3.0D water parcel modelWe simulated the nitrogen isotope dynamics in a recently upwelled water parcel during transit to the subtropics by building a 0D model. The model simulates state variables of dissolved inorganic nitrogen (DIN), particulate organic nitrogen (PON) and exported particulate nitrogen (ExpN), as well as their heavy isotopes (DI15N, PO15N and Exp15N) in units of mmol N m−3 over 100 days given initial conditions and constants listed in Supplementary Table 1.$$frac{Delta {{{{{rm{DIN}}}}}}}{Delta t}=-{{{{{mathrm{N}}}}}}_{{{{{{rm{uptake}}}}}}}+{{{{{mathrm{N}}}}}}_{{{{{{rm{recycled}}}}}}}$$
    (2)
    $$frac{Delta {{{{{rm{PON}}}}}}}{Delta t}={{{{{mathrm{N}}}}}}_{{{{{{rm{uptake}}}}}}}-{{{{{mathrm{N}}}}}}_{{{{{{rm{recycled}}}}}}}-{{{{{mathrm{N}}}}}}_{{{{{{rm{exported}}}}}}}$$
    (3)
    $$frac{Delta {{{{{rm{ExpN}}}}}}}{Delta t}={{{{{mathrm{N}}}}}}_{{{{{{rm{exported}}}}}}}$$
    (4)
    $$frac{Delta {{{{{rm{DI1}}}}}}{}^{15}{{{{{rm{N}}}}}}}{Delta t}=-{}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{uptake}}}}}}}+{}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{recycled}}}}}}}$$
    (5)
    $$frac{Delta {{{{{rm{PO}}}}}}{}^{15}{{{{{rm{N}}}}}}}{Delta t}={}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{uptake}}}}}}}-{}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{recycled}}}}}}}-{}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{exported}}}}}}}$$
    (6)
    $$frac{Delta {{{{mathrm{Exp}}}}}{}^{15}{{{{{rm{N}}}}}}}{Delta t}={}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{exported}}}}}}}$$
    (7)
    First, the model calculates maximum potential growth rate of phytoplankton (μmax) in units of day−1 (Eq. 8) using temperature and then finds nitrogen uptake (Nuptake, Eq. 10) using PON and limitation terms for nitrogen (Nlim, Eq. 9), light (Llim, Supplementary Table 1) and iron (Felim, Supplementary Table 1).$${mu }_{{{max }}}=0.6,{{{{{rm{da}}}}}}{y}^{-1}cdot {e}^{Tcdot {T}_{{{{{{rm{growth}}}}}}}}$$
    (8)
    $${{{{{mathrm{N}}}}}}_{{{{{mathrm{lim}}}}}}=frac{{{{{{rm{DIN}}}}}}}{{{{{{rm{DIN}}}}}}+{{{{{mathrm{K}}}}}}_{{{{{{rm{DIN}}}}}}}}$$
    (9)
    $${{{{{mathrm{N}}}}}}_{{{{{mathrm{uptake}}}}}}={mu }_{max }cdot {{{{{mathrm{L}}}}}}_{{{{{mathrm{lim}}}}}}cdot ,min ({{{{{mathrm{Fe}}}}}}_{{{{{mathrm{lim}}}}}},{{{{{mathrm{N}}}}}}_{{{{{mathrm{lim}}}}}})cdot {{{{{mathrm{PON}}}}}}$$
    (10)
    At a constant temperature of 18 °C, μmax is equal to ~1.9 day−1. Limitation terms for light and iron are set as constant and are used to prevent unrealistically high nitrogen uptake when nitrogen is high, such as occurs immediately following upwelling in the high-nutrient low-chlorophyll regions of the tropics. Fractionation by phytoplankton is calculated assuming an open system21, in this case where nitrogen can be lost through export of organic matter. To calculate the fractionation associated with uptake (15Nuptake, Eq. 11), we multiply the total nitrogen uptake (Nuptake, Eq. 10) by the heavy to light isotope ratio (({r}_{{{{{{rm{DIN}}}}}}}^{15}), Eq. 12) and the fractionation factor (εphy, Supplementary Table 1), which is converted from units of per mil (‰) to a fraction relative to one. This fractionation factor (εphy) is constant at 5‰ but is decreased towards 0‰ by the nitrogen limitation term (Nlim, Eq. 9), such that when nitrogen is limiting to growth, the fractionation during uptake decreases (last term on the right-hand side approaches 1).$${}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{uptake}}}}}}},=,{{{{{mathrm{N}}}}}}_{{{{{{rm{uptake}}}}}}}cdot {r}_{{{{{{rm{DIN}}}}}}}^{15}cdot left(1-frac{{{{{mathrm{N}}}}}_{{{{{mathrm{lim}}}}}}cdot {varepsilon }_{{{{{{rm{phy}}}}}}}}{1000}right)$$
    (11)
    $${r}_{{{{{{rm{DIN}}}}}}}^{15},=,frac{{{{mathrm{DI}}}}^{15}{{{{{{rm{N}}}}}}}}{{{{{{rm{DIN}}}}}}}$$
    (12)
    At each timestep, a fraction of the PON pool becomes detritus (Eq. 15) and this detritus is instantaneously recycled back to DIN or exported to ExpN and removed from the water parcel. The amount of detritus produced per timestep is calculated as the sum of linear respiration (Eq. 13) and quadratic mortality (Eq. 14) terms, where Presp (units of day−1), Kresp (units of mmol N m−3) and Pmort (units of (mmol N m−3)−1 day−1) are constants (Supplementary Table 1).$${{{{{rm{Respiration}}}}}},=,{{{{{mathrm{P}}}}}}_{{{{{{rm{resp}}}}}}}cdot {{{{{rm{PON}}}}}}cdot frac{{{{{{rm{PON}}}}}}}{{{{{{rm{PON}}}}}}+{{{{{mathrm{K}}}}}}_{{{{{{rm{resp}}}}}}}}$$
    (13)
    $${{{{{rm{Mortality}}}}}},=,{{{{{mathrm{P}}}}}}_{{{{{{rm{mort}}}}}}}cdot {{{{{rm{PON}}}}}}^{2}$$
    (14)
    $${{{{{rm{Detritus}}}}}},=,{{{{{rm{Respiration}}}}}},+,{{{{{rm{Mortality}}}}}}$$
    (15)
    Once we know the fraction of PON that becomes detritus at any given timestep, we must solve for the fraction of that detritus that becomes DIN through recycling (Eq. 17), and that which becomes ExpN through export (Eq. 18). The fraction of detritus that is recycled back into DIN is temperature dependent (Eq. 16), with higher temperatures increasing rates of recycling above a minimum fraction set by frecmin (Supplementary Table 1). The relationship with temperature is exponential, similar to phytoplankton maximum growth (μmax), but the degree of increase associated with warming is scaled down by a constant factor equal to Trec (Supplementary Table 1). The fraction that is exported to ExpN is the remainder (Eq. 18).$${f}_{{{{{{rm{recycled}}}}}}}={f}_{{{{{{rm{recmin}}}}}}}+{T}_{{{{{{rm{rec}}}}}}}cdot {e}^{Tcdot {T}_{{{{{{rm{growth}}}}}}}}$$
    (16)
    $${{{{{mathrm{N}}}}}}_{{{{{{rm{recycled}}}}}}}={{{{{rm{Detritus}}}}}}cdot {f}_{{{{{{rm{recycled}}}}}}}$$
    (17)
    $${{{{{mathrm{N}}}}}}_{{{{{{rm{exported}}}}}}}={{{{{rm{Detritus}}}}}}cdot (1-{f}_{{{{{{rm{recycled}}}}}}})$$
    (18)
    The major fluxes of Nuptake, Nrecycled and Nexported are now solved for. All that remains is to calculate the isotopic signatures of the recycling (Eq. 19) and export (Eq. 20) fluxes. These, similar to 15Nuptake (Eq. 11), are solved by multiplying against a standard ratio of heavy to light isotope (({r}_{{{{{{rm{PON}}}}}}}^{15}), Eq. 21).$${}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{recycled}}}}}}}={{{{{mathrm{N}}}}}}_{{{{{{rm{recycled}}}}}}}cdot {r}_{{{{{{rm{PON}}}}}}}^{15}$$
    (19)
    $${}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{exported}}}}}}}={{{{{mathrm{N}}}}}}_{{{{{{rm{exported}}}}}}}cdot {r}_{{{{{{rm{PON}}}}}}}^{15}$$
    (20)
    $${r}_{{{{{{rm{PON}}}}}}}^{15}=frac{{{{{{rm{PO}}}}}}{}^{15}{{{{{rm{N}}}}}}}{{{{{{rm{PON}}}}}}}$$
    (21)
    Finally, we calculate the δ15N values of the major pools in the model (DIN, PON and ExpN) as output (Eqs. 22–24). We assume in this model that the major pools of DIN, PON and ExpN represent the total amount of the light isotope (14N), whereas the DI15N, PO15N and Exp15N pools represent the relative enrichment in 15N compared to a standard ratio. For simplicity, we make the standard ratio equal to 1. Therefore, taking the ratio of the DI15N to DIN pools and subtracting one returns the isotopic signature. Multiplying this by 1000 converts this signature to per mil units (‰).$${delta }^{15}{{{{{{rm{N}}}}}}}_{{{{{{rm{DIN}}}}}}}=left(frac{{{{{{rm{DI}}}}}}{}^{15}{{{{{rm{N}}}}}}}{{{{{{rm{DIN}}}}}}}-1right)cdot 1000$$
    (22)
    $${}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{PON}}}}}}}=left(frac{{{{{{{rm{PO}}}}}}}^{15}N}{{{{{{rm{PON}}}}}}}-1right)cdot 1000$$
    (23)
    $${}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{ExpN}}}}}}}=left(frac{{{{{mathrm{Exp}}}}}{}^{15}{{{{{rm{N}}}}}}}{{{{{{rm{ExpN}}}}}}}-1right)cdot 1000$$
    (24) More

  • in

    Protected areas are not effective for the conservation of freshwater insects in Brazil

    1.Brooks, T. M. et al. Global biodiversity conservation priorities. Science (80-. ). 313, 58–61 (2006).2.Camacho-Sandoval, J. & Duque, H. Indicators for biodiversity assessment in Costa Rica. Agric. Ecosyst. Environ. 87, 141–150 (2001).Article 

    Google Scholar 
    3.Diniz-Filho, J. A. F. et al. Ensemble forecasting shifts in climatically suitable areas for Tropidacris cristata (Orthoptera: Acridoidea: Romaleidae). Insect Conserv. Divers. https://doi.org/10.1111/j.1752-4598.2010.00090.x (2010).Article 

    Google Scholar 
    4.Morse-Jones, S. et al. Stated preferences for tropical wildlife conservation amongst distant beneficiaries: Charisma, endemism, scope and substitution effects. Ecol. Econ. 78, (2012).5.Verissimo, D., MacMillan, D. C. & Smith, R. J. Toward a systematic approach for identifying conservation flagships. Conserv. Lett. vol. 4 (2011).6.Nóbrega, C. C. & De Marco, P. Unprotecting the rare species: a niche-based gap analysis for odonates in a core Cerrado area. Divers. Distrib. 17, 491–505 (2011).Article 

    Google Scholar 
    7.SNUC, (Sistema Nacional de Unidades de Conservação da Natureza). Lei no 9.985, de 18 de julho de 2000. Mma/Sbf (2000) doi:https://doi.org/10.1017/CBO9781107415324.004.8.Abell, R., Allan, J. D. & Lehner, B. Unlocking the potential of protected areas for freshwaters. Biol. Conserv. 134, 48–63 (2007).Article 

    Google Scholar 
    9.Monteiro, C. da S., Esposito, M. C. & Juen, L. Are the adult odonate species found in a protected area different from those present in the surrounding zone? A case study from eastern Amazonia. J. Insect Conserv. 20, 643–652 (2016).10.Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000).CAS 
    Article 

    Google Scholar 
    11.Whittaker, R. J. et al. Conservation biogeography: assessment and prospect. Divers. Distrib. 11, 3–23 (2005).Article 

    Google Scholar 
    12.Bini, L. M., Diniz-Filho, J. A. F., Rangel, T. F. L. V. B., Bastos, R. P. & Pinto, M. P. Challenging Wallacean and Linnean shortfalls: knowledge gradients and conservation planning in a biodiversity hotspot. Divers. Distrib. https://doi.org/10.1111/j.1366-9516.2006.00286.x (2006).Article 

    Google Scholar 
    13.Rodrigues, A. S. L. & Gaston, K. J. Maximising phylogenetic diversity in the selection of networks of conservation areas. Biol. Conserv. https://doi.org/10.1016/S0006-3207(01)00208-7 (2002).Article 

    Google Scholar 
    14.Silva, D. C., Vieira, T. B., da Silva, J. M. & de Cassia Faria, K. Biogeography and priority areas for the conservation of bats in the Brazilian Cerrado. Biodivers. Conserv. 27, 815–828 (2018).15.Salkeld, D. J., Padgett, K. A. & Jones, J. H. A meta-analysis suggesting that the relationship between biodiversity and risk of zoonotic pathogen transmission is idiosyncratic. Ecol. Lett. 16, 679–686 (2013).Article 

    Google Scholar 
    16.Juen, L. & de Marco, P. Dragonfly endemism in the Brazilian Amazon: competing hypotheses for biogeographical patterns. Biodivers. Conserv. https://doi.org/10.1007/s10531-012-0377-0 (2012).Article 

    Google Scholar 
    17.Mendes, S. L. et al. Protected Areas for the Northern Muriqui, Brachyteles hypoxanthus (Primates, Atelidae). Neotrop. Primates 13, (2005).18.Serra, B. D. V., De Marco Júnior, P., Nóbrega, C. C. & Campos, L. A. D. O. Modeling potential geographical distribution of the wild nests of Melipona capixaba Moure & Camargo, 1994 (Hymenoptera, apidae): conserving isolated populations in mountain habitats. Nat. a Conserv. 10, 199–206 (2012).19.Mendes, P. & De Marco, P. Bat species vulnerability in Cerrado: integrating climatic suitability with sensitivity to land-use changes. Environ. Conserv. 45, 67–74 (2018).Article 

    Google Scholar 
    20.Brasil, L. S. et al. A niche‐based gap analysis for the conservation of odonate species in the Brazilian Amazon. Aquat. Conserv. Mar. Freshw. Ecosyst. aqc.3599 (2021) doi:https://doi.org/10.1002/aqc.3599.21.da Silva, J. G., Vieira, T. B. & Mews, H. A. Fine-scale effect of environmental variation and distance from watercourses on pteridophyte assemblage structure in the western Amazon. Folia Geobot. https://doi.org/10.1007/s12224-021-09390-y (2021).Article 

    Google Scholar 
    22.Doughty, C. R. Freshwater biomonitoring and benthic macroinvertebrates, edited by D. M. Rosenberg and V. H. Resh, Chapman and Hall, New York, 1993. ix + 488pp. ISBN 0412 02251 6. Aquat. Conserv. Mar. Freshw. Ecosyst. 4, 92–92 (1994).23.Harper, D. M., Rosenberg, D. A. & Resh, V. H. Freshwater biomonitoring and benthic macroinvertebrates. J. Appl. Ecol. 31, 790 (1994).Article 

    Google Scholar 
    24.Cunha, E. J. & Juen, L. Impacts of oil palm plantations on changes in environmental heterogeneity and Heteroptera (Gerromorpha and Nepomorpha) diversity. J. Insect Conserv. 21, 111–119 (2017).Article 

    Google Scholar 
    25.Schuh, R. T. & Slater, J. A. True bugs of the World (Hemiptera: Heteroptera). Classification and Natural History. (Cornell University Press, 1995).26.Giehl, N. F. da S., Dias-Silva, K., Juen, L., Batista, J. D. & Cabette, H. S. R. Taxonomic and Numerical Resolutions of Nepomorpha (Insecta: Heteroptera) in Cerrado Streams. PLoS One 9, e103623 (2014).27.Dias-Silva, K., Cabette, H. S. R., Juen, L. & Jr, P. D. M. The influence of habitat integrity and physical-chemical water variables on the structure of aquatic and semi-aquatic Heteroptera. Zool. 27, 918–930 (2010).28.Panizzi, A. R. & Grazia, J. True Bugs (Heteroptera) of the Neotropics. True Bugs (Heteroptera) of the Neotropics vol. 2 (Springer Netherlands, 2015).29.Polhemus, J. T. & Polhemus, D. A. Global diversity of true bugs (Heteroptera; Insecta) in freshwater. Hydrobiologia https://doi.org/10.1007/s10750-007-9033-1 (2008).Article 

    Google Scholar 
    30.Nieser, N. & Melo, A. L. Os Heterópteros Aquáticos de Minas Gerais. (UFMG, Belo Horizonte, 1997).31.Cunha, E. J., de Assis Montag, L. F. & Juen, L. Oil palm crops effects on environmental integrity of Amazonian streams and Heteropteran (Hemiptera) species diversity. Ecol. Indic. 52, 422–429 (2015).32.Cordeiro, I. & Moreira, F. New distributional data on aquatic and semiaquatic bugs (Hemiptera: Heteroptera: Gerromorpha & Nepomorpha) from South America. Biodivers. Data J. 3, e4913 (2015).33.Rodrigues, A. S. L. & Brooks, T. M. Shortcuts for biodiversity conservation planning: the effectiveness of surrogates. Annu. Rev. Ecol. Evol. Syst. 38, 713–737 (2007).Article 

    Google Scholar 
    34.Andelman, S. J. & Fagan, W. F. Umbrellas and flagships: Efficient conservation surrogates or expensive mistakes?. Proc. Natl. Acad. Sci. 97, 5954–5959 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).Article 

    Google Scholar 
    36.Abellan, P., Sanchez-Fernandez, D., Velasco, J. & Millan, A. Conservation of freshwater biodiversity: a comparison of different area selection methods. Biodivers. Conserv. 14, 3457–3474 (2005).Article 

    Google Scholar 
    37.Fearnside, P. M. Conservation policy in brazilian amazonia: understanding the dilemmas. World Dev. 31, 757–779 (2003).Article 

    Google Scholar 
    38.dos Santos, A. J., Vieira, T. B. & Faria, K. de C. Effects of vegetation structure on the diversity of bats in remnants of Brazilian Cerrado savanna. Basic Appl. Ecol. 17, 720–730 (2016).39.Groves, C. R. et al. Planning for biodiversity conservation: putting conservation science into practice. Bioscience https://doi.org/10.1641/0006-3568(2002)052[0499:pfbcpc]2.0.co;2 (2002).Article 

    Google Scholar 
    40.Fearnside, P. M. & Ferraz, J. A conservation gap analysis of Brazil’s Amazonian vegetation. Conserv. Biol. 9, 1134–1147 (1995).Article 

    Google Scholar 
    41.Fearnside, P. M. Introduction: strategies for social and environmental conservation in conservation units. In The Amazon Várzea 233–238 (Springer Netherlands, 2011). doi:https://doi.org/10.1007/978-94-007-0146-5_16.42.Cardoso, P., Erwin, T. L., Borges, P. A. V. & New, T. R. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 144, 2647–2655 (2011).Article 

    Google Scholar 
    43.Marini, M. Â. & Garcia, F. I. Bird conservation in Brazil. Conserv. Biol. https://doi.org/10.1111/j.1523-1739.2005.00706.x (2005).Article 

    Google Scholar 
    44.Young, B. E. et al. Population declines and priorities for amphibian conservation in Latin America. Conserv. Biol. 15, 1213–1223 (2001).Article 

    Google Scholar 
    45.Dias-Silva, K., Moreira, F. F. F., Giehl, N. F. D. S., Nóbrega, C. C. & Cabette, H. S. R. Gerromorpha (Hemiptera: Heteroptera) of eastern Mato Grosso State, Brazil: checklist, new records, and species distribution modeling. Zootaxa https://doi.org/10.11646/zootaxa.3736.3.1 (2013).Article 
    PubMed 

    Google Scholar 
    46.Ferraz, K. M. P. M. de B., Ferraz, S. F. de B., Paula, R. C. de, Beisiegel, B. & Breitenmoser, C. Species Distribution Modeling for Conservation Purposes. Nat. Conserv. 10, 214–220 (2012).47.Marco-Júnior, P. & Siqueira, M. F. Como determinar a distribuição potencial de espécies sob uma abordagem conservacionista? Megadiversidade (2009).48.Hijmans, R. J. et al. DIVA-GIS, version 5.2. A geographic information system for the analysis of biodiversity data. Manual. . vol. 1 (International Potato Center, 2005).49.Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R. Numerical Ecology with R (Springer New York, 2011). doi:https://doi.org/10.1007/978-1-4419-7976-6.50.Serra, B. D. V., De Marco, P. J., Nóbrega, C. C. & Campos, L. A. D. O. Modeling potential geographical distribution of the wild nests of Melipona capixaba Moure & Camargo, 1994 ( Hymenoptera, Apidae ): Conserving Isolated Populations in Mountain Habitats. Nat. e Conserv. 10, 199–206 (2012).Article 

    Google Scholar 
    51.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).Article 

    Google Scholar 
    52.Swets, J. Measuring the accuracy of diagnostic systems. Science (80-. ). 240, 1285–1293 (1988).53.Girardello, M., Griggio, M., Whittingham, M. J. & Rushton, S. P. Identifying important areas for butterfly conservation in Italy. Anim. Conserv. https://doi.org/10.1111/j.1469-1795.2008.00216.x (2009).Article 

    Google Scholar 
    54.Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).Article 

    Google Scholar 
    55.Vieira, T. B., Mendes, P. & Oprea, M. Priority areas for bat conservation in the state of Espírito Santo, southeastern Brazil. Neotrop. Biol. Conserv. 7, 88–96 (2012).Article 

    Google Scholar 
    56.Delgado-Jaramillo, M., Aguiar, L. M. S., Machado, R. B. & Bernard, E. Assessing the distribution of a species-rich group in a continental-sized megadiverse country: Bats in Brazil. Divers. Distrib. 26, 632–643 (2020).Article 

    Google Scholar 
    57.Destro, G. F. G., de Fernandes, V., de Andrade, A. F. A., De Marco, P. & Terribile, L. C. Back home? Uncertainties for returning seized animals to the source-areas under climate change. Glob. Chang. Biol. 25, 3242–3253 (2019).ADS 
    Article 

    Google Scholar 
    58.Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop.). (2006) doi:https://doi.org/10.1111/j.2006.0906-7590.04596.x.59.Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2006).60.de Andrade, A. F. A., Velazco, S. J. E. & De Marco, P. Niche mismatches can impair our ability to predict potential invasions. Biol. Invasions 21, 3135–3150 (2019).Article 

    Google Scholar 
    61.Velazco, S. J. E., Villalobos, F., Galvão, F. & De Marco Júnior, P. A dark scenario for Cerrado plant species: Effects of future climate, land use and protected areas ineffectiveness. Divers. Distrib. 25, 660–673 (2019).62.Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. https://doi.org/10.1111/j.1466-8238.2009.00490.x (2010).Article 

    Google Scholar 
    63.Moilanen, A. et al. Prioritizing multiple-use landscapes for conservation : methods for large multi-species planning problems. Proc. R. Soc. 272, 1885–1891 (2005).
    Google Scholar 
    64.Moilanen, A. et al. Zonation spatial conservation planning framework and software v. 3.1, User manual. (2012).65.Moilanen, A. Landscape zonation, benefit functions and target-based planning: unifying reserve selection strategies. Biol. Conserv. 134, 571–579 (2007).Article 

    Google Scholar 
    66.Carvalho, A. R. de. Método de Monte Carlo e Aplicações. Repositório Inst. da Univ. Fed. Flum. 84 (2017).67.Feinleib, M. & Zar, J. H. Biostatistical analysis. J. Am. Stat. Assoc. https://doi.org/10.2307/2285423 (1975).Article 

    Google Scholar  More

  • in

    In vitro metabolic capacity of carbohydrate degradation by intestinal microbiota of adults and pre-frail elderly

    Study setupSix adults and six elderly, who were included in a previously conducted in vivo GOS intervention study [11], donated their faecal material for the current study (Fig. S1) at their first visit or at least 4 weeks after the intervention period. Each participant defecated into a stool collector (Excretas Medical BV, Enschede, the Netherlands). Directly after defecation, faecal material was divided into two portions. A small portion (~0.5 g) was frozen immediately. The remaining faeces was anoxically cryo-conserved and used as inoculum for the in vitro incubations. The viability of different microbial groups in the anoxically cryo-conserved faecal material was determined with propidium monoazide (PMA) dye. The in vitro incubations lasted for 24 h with samples collected in duplicate to compare microbiota composition, carbohydrate degradation and metabolite production between age groups (adults vs elderly). The degrading capacity for two typical bifidogenic carbohydrates, i.e., GOS and 2′-FL, was determined for the microbiota of all six adults and six elderly and compared to a non-carbohydrate control. To further extend these experiments, we also studied the degradation of other typical bifidogenic carbohydrates, i.e. FOS, inulin, and IMMP, using the faecal inocula of three adults and three elderly for which sufficient material was still available.ParticipantsThe six adults (20–30 yrs) and six elderly participants (70–85 yrs) of the intervention study [11] were randomly contacted and participated in the current study, who differed significantly in age, but not in sex, BMI, alcohol consumption, smoking, medication use or dietary fibre intake (Table 1). None of the participants took acid inhibitors (e.g., proton pump inhibitors), nor antibiotics 90 days prior to the study, nor did any of the participants have a chronic disorder or major surgery, as these factors potentially could have limited participation, completion of the study, or interfered with the study outcomes. Detailed description of the inclusion and exclusion criteria has been provided previously [11]. Subject codes as shown in the results were randomly assigned in the data analysis phase and cannot be traced back to individual subjects without the specific randomization key. The study was approved by the medical Ethics Committee of the Maastricht University Medical Center+ and registered in the US National Library of Medicine (http://www.clinicaltrials.gov) with the registration number NCT03077529 [11].Table 1 Characteristics of adults (n = 6) and elderly (n = 6) included in this study.Full size tableDietary intakeParticipants in the current study completed the dietary records on 3 consecutive days, after instructed to record their food, beverage and dietary supplement intake based on standard household units. Their nutrient intake was analyzed using the online dietary assessment tool of The Netherlands Nutrition Centre (www.voedingcentrum.nl).CarbohydratesFive different carbohydrates, i.e., GOS, 2′-FL, FOS, inulin and IMMP were used as sole carbon sources in this study. GOS and the human milk oligosaccharide 2′-FL (Fucα1-2Galβ1-4Glc) were kindly provided by Friesland Campina (Amersfoort, The Netherlands). In order to mimic the actual portion of GOS utilized by intestinal microbiota, purified GOS with  0.05) to explain the observed difference, using the prc function in the vegan package [30]. As for the metabolite data, redundancy analysis (RDA) in combination with Monte Carlo permutation was performed to assess to what extent explanatory variables, i.e., incubation time, subject- and carbohydrate-specificity, could explain the overall variation in metabolite data, using the rda function in the vegan package [30]. To assess the effect of age group (adult vs elderly) on the degradation of carbohydrates/concentration of metabolites during incubation, we analyzed the data using two-way mixed ANOVA, with one between-subjects factor (age group) and one within-subjects factor (incubation time), using the anova_test function in the rstatix package [31]. False discovery rate (FDR) correction according to the Benjamini–Hochberg procedure was applied for multiple testing when applicable. A corrected P value < 0.05 was considered to indicate significant difference. More

  • in

    Rebound in China’s coastal wetlands following conservation and restoration

    1.Ma, Z. J. et al. Rethinking China’s new great wall. Science 346, 912–914 (2014).CAS 
    Article 

    Google Scholar 
    2.Murray, N. J. et al. The global distribution and trajectory of tidal flats. Nature 565, 222–225 (2019).Article 
    CAS 

    Google Scholar 
    3.Wang, X. et al. Tracking annual changes of coastal tidal flats in China during 1986–2016 through analyses of Landsat images with Google Earth Engine. Remote Sens. Environ. 238, 110987 (2020).Article 

    Google Scholar 
    4.Blum, M. D. & Roberts, H. H. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nat. Geosci. 2, 488–491 (2009).CAS 
    Article 

    Google Scholar 
    5.Murray, N. J., Clemens, R. S., Phinn, S. R., Possingham, H. P. & Fuller, R. A. Tracking the rapid loss of tidal wetlands in the Yellow Sea. Front. Ecol. Environ. 12, 267–272 (2014).Article 

    Google Scholar 
    6.Gedan, K. B., Silliman, B. R. & Bertness, M. D. Centuries of human-driven change in salt marsh ecosystems. Ann. Rev. Mar. Sci. 1, 117–141 (2009).Article 

    Google Scholar 
    7.Syvitski, J. P. M., Vörösmarty, C. J., Kettner, A. J. & Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376–380 (2005).CAS 
    Article 

    Google Scholar 
    8.Cui, B., He, Q., Gu, B., Bai, J. & Liu, X. China’s coastal wetlands: understanding environmental changes and human impacts for management and conservation. Wetlands 36, 1–9 (2016).Article 

    Google Scholar 
    9.Gong, P. et al. Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 64, 370–373 (2019).Article 

    Google Scholar 
    10.Han, Q., Niu, Z., Wu, M. & Wang, J. Remote-sensing monitoring and analysis of China intertidal zone changes based on tidal correction. Sci. Bull. 64, 456–473 (2019).
    Google Scholar 
    11.Mao, D. et al. National wetland mapping in China: a new product resulting from object-based and hierarchical classification of Landsat 8 OLI images. ISPRS J. Photogramm. Remote Sens. 164, 11–25 (2020).Article 

    Google Scholar 
    12.Wang, X. et al. Mapping coastal wetlands of China using time series Landsat images in 2018 and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 163, 312–326 (2020).Article 

    Google Scholar 
    13.Mcowen, C. J. et al. A global map of saltmarshes. Biodivers. Data J. 5, e11764 (2017).Article 

    Google Scholar 
    14.Giri, C. et al. Status and distribution of mangrove forests of the world using Earth observation satellite data. Glob. Ecol. Biogeogr. 20, 154–159 (2011).Article 

    Google Scholar 
    15.Chen, Y. et al. Effects of reclamation and natural changes on coastal wetlands bordering China’s Yellow Sea from 1984 to 2015. Land Degrad. Dev. 30, 1533–1544 (2019).Article 

    Google Scholar 
    16.Hu, Y. et al. Mapping coastal salt marshes in China using time series of Sentinel-1 SAR. ISPRS J. Photogramm. Remote Sens. 173, 122–134 (2021).Article 

    Google Scholar 
    17.Zhang, X. et al. Quantifying expansion and removal of Spartina alterniflora on Chongming Island, China, using time series Landsat images during 1995–2018. Remote Sens. Environ. 247, 111916 (2020).18.Chen, B. Q. et al. A mangrove forest map of China in 2015: analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 131, 104–120 (2017).Article 

    Google Scholar 
    19.Hu, L., Li, W. & Xu, B. Monitoring mangrove forest change in China from 1990 to 2015 using Landsat-derived spectral-temporal variability metrics. Int. J. Appl. Earth Obs. Geoinf. 73, 88–98 (2018).Article 

    Google Scholar 
    20.Jia, M., Wang, Z., Zhang, Y., Mao, D. & Wang, C. Monitoring loss and recovery of mangrove forests during 42 years: the achievements of mangrove conservation in China. Int. J. Appl. Earth Obs. Geoinf. 73, 535–545 (2018).Article 

    Google Scholar 
    21.Jia, M. et al. Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine. Remote Sens. Environ. 255, 112285 (2021).Article 

    Google Scholar 
    22.Ma, T., Li, X., Bai, J. & Cui, B. Tracking three decades of land use and land cover transformation trajectories in China’s large river deltas. Land Degrad. Dev. 30, 799–810 (2019).Article 

    Google Scholar 
    23.Wang, K. Evolution of Yellow River delta coastline based on remote sensing from 1976 to 2014, China. Chin. Geogr. Sci. 29, 181–191 (2019).Article 

    Google Scholar 
    24.Zhao, Y. F. et al. Assessing natural and anthropogenic influences on water discharge and sediment load in the Yangtze River, China. Sci. Total Environ. 607, 920–932 (2017).Article 
    CAS 

    Google Scholar 
    25.Yim, J. et al. Analysis of forty years long changes in coastal land use and land cover of the Yellow Sea: the gains or losses in ecosystem services. Environ. Pollut. 241, 74–84 (2018).CAS 
    Article 

    Google Scholar 
    26.Wang, S. et al. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 9, 38–41 (2016).
    Google Scholar 
    27.Chen, Y. et al. Land claim and loss of tidal flats in the Yangtze Estuary. Sci. Rep. 6, 24018 (2016).CAS 
    Article 

    Google Scholar 
    28.Yang, M. et al. Spatio-temporal characterization of a reclamation settlement in the Shanghai coastal area with time series analyses of X-, C-, and L-band SAR datasets. Remote Sens. 10, 329 (2018).29.Han, X., Pan, J. & Devlin, A. T. Remote sensing study of wetlands in the Pearl River Delta during 1995–2015 with the support vector machine method. Front. Earth Sci. 12, 521–531 (2018).Article 

    Google Scholar 
    30.Liu, L., Xu, W., Yue, Q., Teng, X. & Hu, H. Problems and countermeasures of coastline protection and utilization in China. Ocean Coast. Manag. 153, 124–130 (2018).Article 

    Google Scholar 
    31.Yunxuan, Z. et al. Degradation of coastal wetland ecosystem in China: drivers, impacts, and strategies. Bull. Chin. Acad. Sci. 31, 1157–1166 (2016).
    Google Scholar 
    32.Jiang, T. T., Pan, J. F., Pu, X. M., Wang, B. & Pan, J. J. Current status of coastal wetlands in China: degradation, restoration, and future management. Estuar. Coast. Shelf Sci. 164, 265–275 (2015).Article 

    Google Scholar 
    33.Sun, Z. et al. China’s coastal wetlands: conservation history, implementation efforts, existing issues and strategies for future improvement. Environ. Int. 79, 25–41 (2015).Article 

    Google Scholar 
    34.Ren, C. et al. Rapid expansion of coastal aquaculture ponds in China from Landsat observations during 1984–2016. Int. J. Appl. Earth Obs. Geoinf. 82, 101902 (2019).35.Gu, J. et al. Losses of salt marsh in China: trends, threats and management. Estuar. Coast. Shelf Sci. 214, 98–109 (2018).Article 

    Google Scholar 
    36.Wang, W., Liu, H., Li, Y. & Su, J. Development and management of land reclamation in China. Ocean Coast. Manag. 102, 415–425 (2014).Article 

    Google Scholar 
    37.Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).Article 

    Google Scholar 
    38.Barbier, E. B. A global strategy for protecting vulnerable coastal populations. Science 345, 1250–1251 (2014).CAS 
    Article 

    Google Scholar 
    39.He, Q. et al. Economic development and coastal ecosystem change in China. Sci. Rep. 4, 5995 (2014).40.Zhou, C. et al. Preliminary analysis of C sequestration potential of blue carbon ecosystems on Chinese coastal zone. Sci. China Life Sci. 46, 475–486 (2016).
    Google Scholar 
    41.Zhang, Q. et al. Propagule types and environmental stresses matter in saltmarsh plant restoration. Ecol. Eng. 143, 105693 (2020).Article 

    Google Scholar 
    42.Cui, B., Yang, Q., Yang, Z. & Zhang, K. Evaluating the ecological performance of wetland restoration in the Yellow River Delta, China. Ecol. Eng. 35, 1090–1103 (2009).Article 

    Google Scholar 
    43.Pan, X. Research on Xi Jinping’s thought of ecological civilization and environment sustainable development. IOP Conf. Ser. Earth Environ. Sci. 153, 062067 (2018).44.Hansen, M. H., Li, H. & Svarverud, R. Ecological civilization: interpreting the Chinese past, projecting the global future. Glob. Environ. Change. 53, 195–203 (2018).Article 

    Google Scholar 
    45.Moreno-Mateos, D., Power, M. E., Comín, F. A. & Yockteng, R. Structural and functional loss in restored wetland ecosystems. PLoS Biol. 10, e1001247 (2012).CAS 
    Article 

    Google Scholar 
    46.He, Q. Conservation: ‘No net loss’ of wetland quantity and quality. Curr. Biol. 29, R1070–R1072 (2019).CAS 
    Article 

    Google Scholar 
    47.Gong, P., Li, X. & Zhang, W. 40-year (1978-2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Sci. Bull. 64, 756–763 (2019).Article 

    Google Scholar 
    48.Wang, X. et al. Gainers and losers of surface and terrestrial water resources in China during 1989–2016. Nat. Commun. 11, 3471 (2020).49.Zou, Z. H. et al. Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016. Proc. Natl Acad. Sci. USA 115, 3810–3815 (2018).CAS 
    Article 

    Google Scholar  More

  • in

    Contribution of historical herbarium small RNAs to the reconstruction of a cassava mosaic geminivirus evolutionary history

    1.Stukenbrock, E. H. & McDonald, B. A. The origins of plant pathogens in agro-ecosystems. Annu. Rev. Phytopathol. https://doi.org/10.1146/annurev.phyto.010708.154114 (2008).Article 
    PubMed 

    Google Scholar 
    2.Savary, S., Ficke, A., Aubertot, J. N. & Hollier, C. Crop losses due to diseases and their implications for global food production losses and food security. Food Secur. https://doi.org/10.1007/s12571-012-0200-5 (2012).Article 

    Google Scholar 
    3.Strange, R. N. & Scott, P. R. Plant disease: a threat to global food security. Annu. Rev. Phytopathol. https://doi.org/10.1146/annurev.phyto.43.113004.133839 (2005).Article 
    PubMed 

    Google Scholar 
    4.Anderson, P. K. et al. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2004.07.021 (2004).Article 
    PubMed 

    Google Scholar 
    5.Scholthof, K. B. G. et al. Top 10 plant viruses in molecular plant pathology. Mol. Plant Pathol. https://doi.org/10.1111/j.1364-3703.2011.00752.x (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Stukenbrock, E. H. & Bataillon, T. A population genomics perspective on the emergence and adaptation of new plant pathogens in agro-ecosystems. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1002893 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Gilligan, C. A. Sustainable agriculture and plant diseases: an epidemiological perspective. Philos. Trans. R. Soc. B: Biol. Sci. https://doi.org/10.1098/rstb.2007.2181 (2008).Article 

    Google Scholar 
    8.Li, L. M., Grassly, N. C. & Fraser, C. Genomic analysis of emerging pathogens: methods, application and future trends. Genome Biol.ogy https://doi.org/10.1186/s13059-014-0541-9 (2014).Article 

    Google Scholar 
    9.Lemey, P., Rambaut, A., Drummond, A. J. & Suchard, M. A. Bayesian phylogeography finds its roots. PLoS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1000520 (2009).MathSciNet 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Lefeuvre, P. et al. The spread of tomato yellow leaf curl virus from the middle east to the world. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1001164 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Monjane, A. L. et al. Reconstructing the history of maize streak virus strain A dispersal tor reveal diversification hot spots and its origin in southern Africa. J. Virol. https://doi.org/10.1128/jvi.00640-11 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Trovao, N. S. et al. Host ecology determines the dispersal patterns of a plant virus. Virus Evol. https://doi.org/10.1093/ve/vev016 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Rakotomalala, M. et al. Comparing patterns and scales of plant virus phylogeography: rice yellow mottle virus in Madagascar and in continental Africa. Virus Evol. https://doi.org/10.1093/ve/vez023 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Gibbs, A. J., Fargette, D., García-Arenal, F. & Gibbs, M. J. Time – The emerging dimension of plant virus studies. J General Virol. https://doi.org/10.1099/vir.0.015925-0 (2010).Article 

    Google Scholar 
    15.Simmonds, P., Aiewsakun, P. & Katzourakis, A. Prisoners of war: host adaptation and its constraints on virus evolution. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-018-0120-2 (2019).Article 
    PubMed 

    Google Scholar 
    16.Jones, R. A. C., Boonham, N., Adams, I. P. & Fox, A. Historical virus isolate collections: an invaluable resource connecting plant virology’s pre-sequencing and post-sequencing eras. Plant Pathol. 70, 235–248 (2021).Article 

    Google Scholar 
    17.Smith, O. et al. A complete ancient RNA genome: Identification, reconstruction and evolutionary history of archaeological Barley Stripe Mosaic Virus. Sci. Rep. https://doi.org/10.1038/srep04003 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Malmstrom, C. M., Shu, R., Linton, E. W., Newton, L. A. & Cook, M. A. Barley yellow dwarf viruses (BYDVs) preserved in herbarium specimens illuminate historical disease ecology of invasive and native grasses. J. Ecol. https://doi.org/10.1111/j.1365-2745.2007.01307.x (2007).Article 

    Google Scholar 
    19.Peyambari, M., Warner, S., Stoler, N., Rainer, D. & Roossinck, M. J. A 1000-Year-old RNA virus. J. Virol. 93, e01188-18 (2019).CAS 
    Article 

    Google Scholar 
    20.Adams, I. P. et al. Next-generation sequencing and metagenomic analysis: a universal diagnostic tool in plant virology. Mol. Plant Pathol. https://doi.org/10.1111/j.1364-3703.2009.00545.x (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Vayssier-Taussat, M. et al. Shifting the paradigm from pathogens to pathobiome new concepts in the light of meta-omics. Front. Cell. Infect. Microbiol. https://doi.org/10.3389/fcimb.2014.00029 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Massart, S., Olmos, A., Jijakli, H. & Candresse, T. Current impact and future directions of high throughput sequencing in plant virus diagnostics. Virus Res. https://doi.org/10.1016/j.virusres.2014.03.029 (2014).Article 
    PubMed 

    Google Scholar 
    23.Roossinck, M. J., Martin, D. P. & Roumagnac, P. Plant virus metagenomics: advances in virus discovery. Phytopathology https://doi.org/10.1094/PHYTO-12-14-0356-RVW (2015).Article 
    PubMed 

    Google Scholar 
    24.Kreuze, J. F. et al. Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology https://doi.org/10.1016/j.virol.2009.03.024 (2009).Article 
    PubMed 

    Google Scholar 
    25.Pooggin, M. M. Small RNA-omics for plant virus identification, virome reconstruction, and antiviral defense characterization. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.02779 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Hartung, J. S. et al. History and diversity of Citrus Leprosis virus recorded in herbarium specimens. Phytopathology https://doi.org/10.1094/PHYTO-03-15-0064-R (2015).Article 
    PubMed 

    Google Scholar 
    27.Golyaev, V., Candresse, T., Rabenstein, F. & Pooggin, M. M. Plant virome reconstruction and antiviral RNAi characterization by deep sequencing of small RNAs from dried leaves. Sci. Rep. https://doi.org/10.1038/s41598-019-55547-3 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Patil, B. L. & Fauquet, C. M. Cassava mosaic geminiviruses: actual knowledge and perspectives. Mol. Plant Pathol. https://doi.org/10.1111/j.1364-3703.2009.00559.x (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Legg, J. P., Owor, B., Sseruwagi, P. & Ndunguru, J. Cassava mosaic virus disease in east and central Africa: epidemiology and management of a regional pandemic. Adv. Virus Res. https://doi.org/10.1016/S0065-3527(06)67010-3 (2006).Article 
    PubMed 

    Google Scholar 
    30.Wang, H. L. et al. First report of Sri Lankan cassava mosaic virus infecting cassava in Cambodia. Plant Dis. https://doi.org/10.1094/PDIS-10-15-1228-PDN (2016).Article 
    PubMed 

    Google Scholar 
    31.Minato, N. et al. Surveillance for sri lankan cassava mosaic virus (SLCMV) in Cambodia and Vietnam one year after its initial detection in a single plantation in 2015. PLoS One https://doi.org/10.1371/journal.pone.0212780 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Mugerwa, H., Wang, H. L., Sseruwagi, P., Seal, S. & Colvin, J. Whole-genome single nucleotide polymorphism and mating compatibility studies reveal the presence of distinct species in sub-Saharan Africa Bemisia tabaci whiteflies. Insect Sci. https://doi.org/10.1111/1744-7917.12881 (2020).Article 
    PubMed 

    Google Scholar 
    33.Ntawuruhunga, P. et al. Incidence and severity of cassava mosaic disease in the Republic of Congo. African Crop Sci. J. https://doi.org/10.4314/acsj.v15i1.54405 (2010).Article 

    Google Scholar 
    34.Zinga, I. et al. Epidemiological assessment of cassava mosaic disease in Central African Republic reveals the importance of mixed viral infection and poor health of plant cuttings. Crop Prot. https://doi.org/10.1016/j.cropro.2012.10.010 (2013).Article 

    Google Scholar 
    35.Jeske, H. Geminiviruses. Curr. Topics Microbiol. Immunol. https://doi.org/10.1007/978-3-540-70972-5_11 (2009).Article 

    Google Scholar 
    36.Vanitharani, R., Chellappan, P. & Fauquet, C. M. Geminiviruses and RNA silencing. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2005.01.005 (2005).Article 
    PubMed 

    Google Scholar 
    37.Aregger, M. et al. Primary and secondary siRNAs in geminivirus-induced gene silencing. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1002941 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Olsen, K. M. & Schaal, B. A. Evidence on the origin of cassava: Phylogeography of Manihot esculenta. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.96.10.5586 (1999).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Fauquet, C. African cassava mosaic virus: etiology, epidemiology, and control. Plant Dis. https://doi.org/10.1094/pd-74-0404 (1990).Article 

    Google Scholar 
    40.Legg, J. P. & Fauquet, C. M. Cassava mosaic geminiviruses in Africa. Plant Mol. Biol. https://doi.org/10.1007/s11103-004-1651-7 (2004).Article 
    PubMed 

    Google Scholar 
    41.De Bruyn, A. et al. Divergent evolutionary and epidemiological dynamics of cassava mosaic geminiviruses in Madagascar. BMC Evol. Biol. https://doi.org/10.1186/s12862-016-0749-2 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Weiß, C. L. et al. Temporal patterns of damage and decay kinetics of dna retrieved from plant herbarium specimens. R. Soc. Open Sci. https://doi.org/10.1098/rsos.160239 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Chellappan, P., Vanitharani, R., Ogbe, F. & Fauquet, C. M. Effect of temperature on geminivirus-induced RNA silencing in plants. Plant Physiol. https://doi.org/10.1104/pp.105.066563 (2005).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Smith, O. & Gilbert, M. T. P. Ancient RNA. in (2018). doi:https://doi.org/10.1007/13836_2018_17.45.Filloux, D. et al. The genomes of many yam species contain transcriptionally active endogenous geminiviral sequences that may be functionally expressed. Virus Evol. https://doi.org/10.1093/ve/vev002 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Sharma, V. et al. Large-scale survey reveals pervasiveness and potential function of endogenous geminiviral sequences in plants. Virus Evol. https://doi.org/10.1093/ve/veaa071 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Bredeson, J. V. et al. Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nat. Biotechnol. https://doi.org/10.1038/nbt.3535 (2016).Article 
    PubMed 

    Google Scholar 
    48.Serfraz, S. et al. Insertion of Badnaviral DNA in the Late Blight Resistance Gene (R1a) of Brinjal Eggplant (Solanum melongena). Front. Plant Sci. https://doi.org/10.3389/fpls.2021.683681 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Lefeuvre, P. et al. Evolutionary time-scale of the begomoviruses: evidence from integrated sequences in the Nicotiana genome. PLoS One https://doi.org/10.1371/journal.pone.0019193 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Martin, D. P., Murrell, B., Golden, M., Khoosal, A. & Muhire, B. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. https://doi.org/10.1093/ve/vev003 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Murray, G. G. R. et al. The effect of genetic structure on molecular dating and tests for temporal signal. Methods Ecol. Evol. 7, 80–89 (2016).Article 

    Google Scholar 
    52.Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. https://doi.org/10.1186/1471-2148-7-214 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Yoshida, K. et al. Mining herbaria for plant pathogen genomes: back to the future. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1004028 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Dufrénoy, J. & Hédin, L. . La. Mosaïque des feuilles du Manioc au Cameroun. J. d’agriculture Tradit. Bot. appliquée 94, 361–365 (1929).
    Google Scholar 
    55.Duffy, S. & Holmes, E. C. Validation of high rates of nucleotide substitution in geminiviruses: phylogenetic evidence from East African cassava mosaic viruses. J. Gen. Virol. 90, 1539–1547 (2009).CAS 
    Article 

    Google Scholar 
    56.Worobey, M. et al. Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960. Nature https://doi.org/10.1038/nature07390 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Mühlemann, B. et al. Ancient hepatitis B viruses from the Bronze Age to the Medieval period. Nature https://doi.org/10.1038/s41586-018-0097-z (2018).Article 
    PubMed 

    Google Scholar 
    58.Toppinen, M. et al. Bones hold the key to DNA virus history and epidemiology. Sci. Rep. https://doi.org/10.1038/srep17226 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Gilbert, M. T. P., Bandelt, H. J., Hofreiter, M. & Barnes, I. Assessing ancient DNA studies. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2005.07.005 (2005).Article 
    PubMed 

    Google Scholar 
    60.Inoue-Nagata, A. K., Albuquerque, L. C., Rocha, W. B. & Nagata, T. A simple method for cloning the complete begomovirus genome using the bacteriophage φ29 DNA polymerase. J. Virol. Methods https://doi.org/10.1016/j.jviromet.2003.11.015 (2004).Article 
    PubMed 

    Google Scholar 
    61.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics https://doi.org/10.1093/bioinformatics/btu170 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Zheng, Y. et al. VirusDetect: An automated pipeline for efficient virus discovery using deep sequencing of small RNAs. Virology https://doi.org/10.1016/j.virol.2016.10.017 (2017).Article 
    PubMed 

    Google Scholar 
    63.Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics https://doi.org/10.1093/bioinformatics/btp324 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. https://doi.org/10.1186/gb-2009-10-3-r25 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. MapDamage2.0: Fast approximate Bayesian estimates of ancient DNA damage parameters. in Bioinformatics (2013). doi:https://doi.org/10.1093/bioinformatics/btt193.66.Broad Institute. Picard Tools – By Broad Institute. Github (2009).67.Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics https://doi.org/10.1093/bioinformatics/btq033 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. https://doi.org/10.1101/gr.092759.109 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Depristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. https://doi.org/10.1038/ng.806 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. https://doi.org/10.1089/cmb.2012.0021 (2012).MathSciNet 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. https://doi.org/10.1093/molbev/mst010 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    Article 

    Google Scholar 
    73.Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. JModelTest 2: More models, new heuristics and parallel computing. Nat. Methods https://doi.org/10.1038/nmeth.2109 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Jombart, T. & Dray, S. Adephylo: Exploratory analyses for the phylogenetic comparative method. Bioinformatics (2010).75.Duchêne, S., Duchêne, D., Holmes, E. C. & Ho, S. Y. W. The performance of the date-randomization test in phylogenetic analyses of time-structured virus data. Mol. Biol. Evol. 32, 1895–1906 (2015).Article 

    Google Scholar 
    76.Rieux, A. & Khatchikian, C. E. Tipdatingbeast: an r package to assist the implementation of phylogenetic tip-dating tests using beast. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.12603 (2017).Article 
    PubMed 

    Google Scholar 
    77.Raftery, A. E. Approximate Bayes factors and accounting for model uncertainty in generalised linear models. Biometrika https://doi.org/10.1093/biomet/83.2.251 (1996).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    78.Ho, S. Y. W. & Shapiro, B. Skyline-plot methods for estimating demographic history from nucleotide sequences. Mol. Ecol. Resour. https://doi.org/10.1111/j.1755-0998.2011.02988.x (2011).Article 
    PubMed 

    Google Scholar 
    79.Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. (2018) doi:https://doi.org/10.1093/sysbio/syy032. More

  • in

    Xylan utilisation promotes adaptation of Bifidobacterium pseudocatenulatum to the human gastrointestinal tract

    Genome sequencingWe sequenced the genomes of 35 strains of B. pseudocatenulatum (Supplementary Table S1). These strains were isolated at the Yakult Central Institute and the species were identified based on the 16S rRNA gene sequence analysis. These strains have been isolated in the course of various studies over the past few decades, including many studies on infants and adults. B. pseudocatenulatum cultures were anaerobically incubated in modified Gifu anaerobic medium (Nissui Pharmaceutical, Tokyo, Japan) supplemented with lactose and glucose (both 0.5% wt/vol) at 37 °C for 16 h. These culture conditions were applied throughout the study unless stated otherwise. The detailed procedures for genomic DNA extraction, library preparation for MiSeq (Illumina, San Diego, CA, USA), MinION (Oxford Nanopore Technologies, Oxford, UK) and PacBio RS2 (Pacific Biosciences, Menlo Park, CA, USA), and sequencing are described in the Supplementary Methods.Genome assembly, gene prediction and pangenome analysisWe used Unicycler [26] with default parameters for both short-read and hybrid assembly, and Prokka [27] with default parameters for annotating the reconstructed genomes and those downloaded from the RefSeq database. The annotated genomes were then processed with Roary [28] with a default gene identity cut-off parameter of 95% for species level pangenome analysis. A representative sequence from each gene cluster was translated into a protein sequence, and CAZymes were identified using the dbCAN2 server [29]. Proteins were considered CAZymes if they were identified using HMMER, DIAMOND and Hotpep with default parameters. We then built a CAZyme gene distribution matrix (Supplementary Table S2) based on the gene presence-absence table determined using Roary.Carbohydrate utilisation assaysStrains of B. pseudocatenulatum were cultured until they reached the exponential phase, centrifuged, and then, the resulting pellets were suspended to an OD600 of 0.2 in modified peptone yeast extract (PY) medium (100 mM PIPES, pH 6.7, 2 g/L peptone, 2 g/L BBL trypticase peptone, 2 g/L bacto-yeast extract, 8 mg/L CaCl2, 19.2 mg/L MgSO4 ∙ 7H2O, 80 mg/L NaCl, 4.9 mg/L hemin, 0.5 g/L L-cysteine hydrochloride and 100 ng/L vitamin K1). These suspension cultures were inoculated (1% vol/vol) into modified PY medium supplemented with 0.5% (wt/vol) XOS (Xylo-Oligo95P, B Food Science, Aichi, Japan) (PY-XOS), wheat arabinoxylan (Megazyme, Bray, Ireland) (PY-AX) or beechwood xylan (Sigma-Aldrich, Darmstadt, Germany) (PY-XY) and covered with sterile mineral oil (50 μL) to prevent evaporation. Growth was monitored anaerobically by measuring the OD600 using a PowerWave 340 plate reader (BioTek, Winooski, VT, USA) every 30 min in an anaerobic chamber for 48 h. The organic acids produced in PY-XY were analysed using high-pressure liquid chromatography as described [8].Cloning, expression and purification of recombinant BpXyn10AThe GH10 domain of the BpXyn10A gene was amplified by PCR using the primers xynA-GH-F (5’-CATCATCATCATCATGCGGAAGGCGACGCCGTA-3’) and xynA-GH-R (5’-AGCAGAGATTACCTAATCCTTGAATGCGTTCATGC-3’), with the genomic DNA of YIT 11027 as a template. A linearised vector was synthesised by PCR using primers pColdII-F (5’-GTAATCTCTGCTTAAAAGCACAGAATCTA-3’) and pColdII-R (5’-ATGATGATGATGATGATGCACTTTGT-3’), and the pColdII vector (Takara Bio, Otsu, Japan) as a template. These fragments were ligated using In-Fusion HD Cloning Kits (Takara Bio, Otsu, Japan), resulting in pColdII-xynA. Escherichia coli BL21 was transformed with pColdII-xynA and cultured to express recombinant BpXyn10A as described by the manufacturer. Bacterial cells were harvested by centrifugation and lysed with B-PER Bacterial Cell Lysis Reagent (Thermo Fisher Scientific, Waltham, MA, USA) containing lysozyme at 100 µg/mL and 10 U/mL of DNase I. Recombinant BpXyn10A was further purified using Ni-NTA Spin Column (Qiagen, Hilden, Germany) and analysed by SDS-PAGE.Endo-xylanase activity assayB. pseudocatenulatum YIT 11027, YIT 11952 and YIT 4072T cells were grown anaerobically in PY-AX or PY-XOS medium for 16 h. Cultures (1.5 mL) were centrifuged (8000× g for 2 min at room temperature); then, supernatants were sterilised by passage through a 0.22-μm filter. Pelleted cells were washed with modified PY medium and resuspended in 1.5 mL of the same medium. The endo-xylanase activity of the supernatant and the cell fractions were assayed using Xylanase Assay kits (XylX6 method) (Megazyme, Bray, Ireland) as described by the manufacturer. According to the manufacturer, this kit is designed to specifically detect only endo-xylanase activity, and not xylosidase or exo-xylanase enzyme activity.Purified BpXyn10A-added cultureB. pseudocatenulatum YIT 4072T and Ba. ovatus YIT 6161T cells were cultured anaerobically until they reached the exponential phase. Thereafter, cultures (200 μL) were centrifuged (8000× g for 2 min at room temperature), then pelleted cells were resuspended in modified PY medium (500 μL), and inoculated (1% vol/vol) into PY-AX medium supplemented with 0, 10, 100 and 1000 ng/mL purified recombinant BpXyn10A. Growth was monitored anaerobically by measuring the OD600 using the PowerWave 340 plate reader.RNA-seq analysisB. pseudocatenulatum YIT 11952 was cultured in modified PY medium supplemented with 0.5% (wt/vol) lactose, xylose, XOS, beechwood xylan or arabinoxylan and harvested at mid- to late-log phase. The detailed procedures for total RNA extraction, rRNA removal and sequencing using MiSeq are described in the Supplementary Methods. We obtained a total of 23 million paired-end reads. Low-quality bases (average quality More

  • in

    Approaching mercury distribution in burial environment using PLS-R modelling

    1.Evers, D. The effects of methylmercury on wildlife: A comprehensive review and approach for interpretation. In Encyclopedia of the Anthropocene (eds Dellasala, D. A. & Goldstein, M. I.) 181–194 (Elsevier, 2018). https://doi.org/10.1016/B978-0-12-809665-9.09985-7.Chapter 

    Google Scholar 
    2.Morel, F. M. M., Kraepiel, A. M. L. & Amyot, M. The chemical cycle and bioaccumulation of mercury. Ann. Rev. Ecol. Syst. 29, 543–566 (1998).Article 

    Google Scholar 
    3.Pushie, M. J., Pickering, I. J., Korbas, M., Hackett, M. J. & George, G. N. Elemental and chemically specific X-ray fluorescence imaging of biological systems. Chem. Rev. 114, 8499–8541 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.WHO. Exposure to Mercury: a Major Public Health Concern. (2007).5.Berlin, M., Zalups, R. K. & Fowler, B. A. Chapter 46—Mercury. In Handbook on the Toxicology of Metals (Fourth Edition) (eds Nordberg, G. F. et al.) 1013–1075 (Academic Press, Cambridge, 2015). https://doi.org/10.1016/B978-0-444-59453-2.00046-9.Chapter 

    Google Scholar 
    6.Clarkson, T. W. The Toxicology of mercury. Crit. Rev. Clin. Lab. Sci. 34, 369–403 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Abass, K. et al. Quantitative estimation of mercury intake by toxicokinetic modelling based on total mercury levels in humans. Environ. Int. 114, 1–11 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Liu, G., Cai, Y., O’Driscoll, N., Feng, X. & Jiang, G. Overview of mercury in the environment. In Environmental Chemistry and Toxicology of Mercury (eds Liu, G. et al.) 1–12 (Wiley, 2011). https://doi.org/10.1002/9781118146644.ch1.Chapter 

    Google Scholar 
    9.García, F., Ortega, A., Domingo, J. L. & Corbella, J. Accumulation of metals in autopsy tissues of subjects living in Tarragona county, Spain. J. Environ. Sci. Health Part A 36, 1767–1786 (2001).Article 

    Google Scholar 
    10.Clarkson, T. W. & Magos, L. The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 36, 609–662 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Holmes, P., James, K. A. F. & Levy, L. S. Is low-level environmental mercury exposure of concern to human health?. Sci. Total Environ. 408, 171–182 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Pasetto, R., Martin-Olmedo, P., Martuzzi, M. & Iavarone, I. Exploring available options in characterising the health impact of industrially contaminated sites. Ann. Ist Super Sanita 52, 476–482 (2016).PubMed 

    Google Scholar 
    13.Álvarez-Fernández, N., Martínez Cortizas, A. & López-Costas, O. Atmospheric mercury pollution deciphered through archaeological bones. J. Archaeol. Sci. 119, 105159 (2020).Article 
    CAS 

    Google Scholar 
    14.Cooke, C. A., Martínez-Cortizas, A., Bindler, R. & Sexauer Gustin, M. Environmental archives of atmospheric Hg deposition—A review. Sci. Total Environ. 709, 134800 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Leblanc, M., Morales, J. A., Borrego, J. & Elbaz-Poulichet, F. 4,500-year-old mining pollution in southwestern Spain: Long-term implications for modern mining pollution. Econ. Geol. 95, 655–662 (2000).CAS 

    Google Scholar 
    16.Cooke, C. A., Balcom, P. H., Biester, H. & Wolfe, A. P. Over three millennia of mercury pollution in the Peruvian Andes. PNAS 106, 8830–8834 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Hunt Ortiz, M. A., Consuegra, S., Díaz del Río, P., Hurtado Pérez, V. & Montero Ruiz, I. Neolithic and Chalcolithic –VI to III millennia BC– use of cinnabar (HgS) in the Iberian Peninsula: analytical identification and lead isotope data for an early mineral exploitation of the Almadén (Ciudad Real, Spain) mining district. (2011).18.Martı́nez-Cortizas, A., Pontevedra-Pombal, X., Garcı́a-Rodeja, E., Nóvoa-Muñoz, J. C. & Shotyk, W. Mercury in a Spanish peat bog: Archive of climate change and atmospheric metal deposition. Science 284, 939–942 (1999).19.Martínez Cortizas, A., Peiteado Varela, E., Bindler, R., Biester, H. & Cheburkin, A. Reconstructing historical Pb and Hg pollution in NW Spain using multiple cores from the Chao de Lamoso bog (Xistral Mountains). Geochimica et Cosmochimica Acta 82, 68–78 (2012).20.López-Costas, O. et al. Human bones tell the story of atmospheric mercury and lead exposure at the edge of Roman World. Sci. Total Environ. 710, 136319 (2020).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    21.Hedges, R. E. M. Bone diagenesis: an overview of processes. Archaeometry 44, 319–328 (2002).CAS 
    Article 

    Google Scholar 
    22.Yamada, M. et al. Accumulation of mercury in excavated bones of two natives in Japan. Sci. Total Environ. 162, 253–256 (1995).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Emslie, S. D. et al. Chronic mercury exposure in Late Neolithic/Chalcolithic populations in Portugal from the cultural use of cinnabar. Sci. Rep. 5, 14679 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Alexandrovskaya, E. & Alexandrovskiy, A. Radiocarbon data and anthropochemistry of ancient Moscow. Geochronometria 24, 87–95 (2005).
    Google Scholar 
    25.Ávila, A., Mansilla, J., Bosch, P. & Pijoan, C. Cinnabar in mesoamerica: poisoning or mortuary ritual?. J. Archaeol. Sci. 49, 48–56 (2014).Article 
    CAS 

    Google Scholar 
    26.Bocca, B. et al. Metals in bones of the middle-aged inhabitants of Sardinia island (Italy) to assess nutrition and environmental exposure. Environ. Sci. Pollut. Res. 25, 8404–8414 (2018).CAS 
    Article 

    Google Scholar 
    27.Cervini-Silva, J., Muñoz, M. de L., Palacios, E., Ufer, K. & Kaufhold, S. Natural incorporation of mercury in bone. J. Trace Elements Med. Biol. 67, 126797 (2021).28.Cervini-Silva, J., Muñoz, M. de L., Palacios, E., Jimenez-Lopez, J. C. & Romano-Pacheco, A. Ageing and preservation of HgS-enriched ancient human remains deposited in confinement. J. Archaeol. Sci.: Rep. 18, 562–567 (2018).29.Cervini-Silva, J. et al. Cinnabar-preserved bone structures from primary osteogenesis and fungal signatures in ancient human remains. Geomicrobiol. J. 30, 566–577 (2013).CAS 
    Article 

    Google Scholar 
    30.Emslie, S. D. et al. Mercury in archaeological human bone: biogenic or diagenetic?. J. Archaeol. Sci. 108, 104969 (2019).CAS 
    Article 

    Google Scholar 
    31.Kepa, M. et al. Analysis of mercury levels in historical bone material from syphilitic subjects–pilot studies (short report). Anthropol. Anz. 69, 367–377 (2012).PubMed 
    Article 

    Google Scholar 
    32.Ochoa-Lugo, M. et al. The effect of depositional conditions on mineral transformation, chemical composition, and preservation of organic material in archaeological Hg-enriched bone remains. J. Archaeol. Sci.: Rep. 15, 213–218 (2017).
    Google Scholar 
    33.Panova, T. D., Dmitriev, AYu., Borzakov, S. B. & Hramco, C. Analysis of arsenic and mercury content in human remains of the 16th and 17th centuries from Moscow Kremlin necropolises by neutron activation analysis at the IREN facility and the IBR-2 reactor FLNP JINR. Phys. Part. Nuclei Lett. 15, 127–134 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Rasmussen, K. L. et al. Investigations of the relics and altar materials relating to the apostles St James and St Philip at the Basilica dei Santi XII Apostoli in Rome. Herit. Sci. 9, 14 (2021).CAS 
    Article 

    Google Scholar 
    35.Rasmussen, K. L. et al. Comparison of trace element chemistry in human bones interred in two private chapels attached to Franciscan friaries in Italy and Denmark: An investigation of social stratification in two medieval and post-medieval societies. Heritage Sci. 8, 65 (2020).CAS 
    Article 

    Google Scholar 
    36.Rasmussen, K. L. et al. On the distribution of trace element concentrations in multiple bone elements in 10 Danish medieval and post-medieval individuals. Am. J. Phys. Anthropol. 162, 90–102 (2017).Article 

    Google Scholar 
    37.Rasmussen, K. L., Skytte, L., Jensen, A. J. & Boldsen, J. L. Comparison of mercury and lead levels in the bones of rural and urban populations in Southern Denmark and Northern Germany during the Middle Ages. J. Archaeol. Sci.: Rep. 3, 358–370 (2015).
    Google Scholar 
    38.Rasmussen, K. L. et al. Was he murdered or was he not?—Part I: Analyses of mercury in the remains of Tycho Brahe. Archaeometry 55, 1187–1195 (2013).CAS 
    Article 

    Google Scholar 
    39.Rasmussen, K. L. et al. The distribution of mercury and other trace elements in the bones of two human individuals from medieval Denmark—The chemical life history hypothesis. Herit. Sci. 1, 10 (2013).Article 
    CAS 

    Google Scholar 
    40.Torino, M. et al. Convento di San Francesco a Folloni: The function of a Medieval Franciscan Friary seen through the burials. Herit. Sci. 3, 27 (2015).Article 
    CAS 

    Google Scholar 
    41.Walser, J. W., Kristjánsdóttir, S., Gowland, R. & Desnica, N. Volcanoes, medicine, and monasticism: Investigating mercury exposure in medieval Iceland. Int. J. Osteoarchaeol. 29, 48–61 (2019).Article 

    Google Scholar 
    42.Rasmussen, K. L. et al. Mercury levels in Danish Medieval human bones. J. Archaeol. Sci. 35, 2295–2306 (2008).Article 

    Google Scholar 
    43.Armesto, A. G. et al. Total mercury distribution among soil aggregate size fractions in a temperate forest podzol. Span. J. Soil Sci. 8(1), 57–73 (2018).
    Google Scholar 
    44.do Valle, C. M., Santana, G. P., Augusti, R., Egreja Filho, F. B. & Windmöller, C. C. Speciation and quantification of mercury in Oxisol, Ultisol, and Spodosol from Amazon (Manaus, Brazil). Chemosphere 58, 779–792 (2005).45.Fiorentino, J. C., Enzweiler, J. & Angélica, R. S. Geochemistry of mercury along a soil profile compared to other elements and to the parental rock: Evidence of external input. Water Air Soil Pollut. 221, 63–75 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    46.Roulet, M. et al. The geochemistry of mercury in central Amazonian soils developed on the Alter-do-Chão formation of the lower Tapajós River Valley, Pará state, Brazil1The present investigation is part of an ongoing study, the CARUSO project (IDRC-UFPa-UQAM), initiated to determine the sources, fate, and health effects of MeHg in the Lower Tapajós area.1. Sci. Total Environ. 223, 1–24 (1998).47.Qin, F. et al. Evaluation of trace elements and identification of pollution sources in particle size fractions of soil from iron ore areas along the Chao River. J. Geochem. Expl. 138, 33–49 (2014).CAS 
    Article 

    Google Scholar 
    48.Acosta, J. A., Martínez-Martínez, S., Faz, A. & Arocena, J. Accumulations of major and trace elements in particle size fractions of soils on eight different parent materials. Geoderma 161, 30–42 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    49.Janaway, R. C., Percival, S. L. & Wilson, A. S. Decomposition of Human Remains. In Microbiology and Aging: Clinical Manifestations (ed. Percival, S. L.) 313–334 (Humana Press, London, 2009). https://doi.org/10.1007/978-1-59745-327-1_14.Chapter 

    Google Scholar 
    50.Obrist, D., Johnson, D. W. & Lindberg, S. E. Mercury concentrations and pools in four Sierra Nevada forest sites, and relationships to organic carbon and nitrogen. Biogeosciences 6, 765–777 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    51.Schuster, E. The behavior of mercury in the soil with special emphasis on complexation and adsorption processes—A review of the literature. Water Air Soil Pollut. 56, 667–680 (1991).ADS 
    CAS 
    Article 

    Google Scholar 
    52.Taboada, T., Cortizas, A. M., García, C. & García-Rodeja, E. Particle-size fractionation of titanium and zirconium during weathering and pedogenesis of granitic rocks in NW Spain. Geoderma 131, 218–236 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    53.Babuśka-Roczniak, M. et al. Occurrence of mercury in the knee joint tissues. Pol. Ann. Med. 28, 39–44 (2021).
    Google Scholar 
    54.Domingo, J. L., García, F., Nadal, M. & Schuhmacher, M. Autopsy tissues as biological monitors of human exposure to environmental pollutants. A case study: Concentrations of metals and PCDD/Fs in subjects living near a hazardous waste incinerator. Environ. Res. 154, 269–274 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    55.López-Costas, O., Lantes-Suárez, Ó. & Martínez Cortizas, A. Chemical compositional changes in archaeological human bones due to diagenesis: Type of bone vs soil environment. J. Archaeol. Sci. 67, 43–51 (2016).56.Taboada, T., Martínez Cortizas, A., García, C. & García-Rodeja, E. Uranium and thorium in weathering and pedogenetic profiles developed on granitic rocks from NW Spain. Sci. Total Environ. 356, 192–206 (2006).57.Windmöller, C. C., Durão, W. A., de Oliveira, A. & do Valle, C. M. The redox processes in Hg-contaminated soils from Descoberto (Minas Gerais, Brazil): Implications for the mercury cycle. Ecotoxicol. Environ. Saf. 112, 201–211 (2015).58.Blanco Freijeiro, A., Fusté Ara, M. & García Alén, A. La necrópolis galaico-romana de La Lanzada (Noalla, Pontevedra) II. Cuadernos de estudios gallegos 22, 5–23 (1967).59.Blanco Freijeiro, A., Fusté Ara, M. & García Alén, A. La necrópolis galaico-romana de La Lanzada (Noalla, Pontevedra). Cuadernos de estudios gallegos 16, 141–158 (1961).60.Kaal, J., López-Costas, O. & Martínez Cortizas, A. Diagenetic effects on pyrolysis fingerprints of extracted collagen in archaeological human bones from NW Spain, as determined by pyrolysis-GC-MS. J. Archaeol. Sci. 65, 1–10 (2016).61.López Costas, O. Antropología de los restos óseos humanos de Galicia: estudio de la población romana y medieval gallega. (Universidad de Granada, 2012).62.López-Costas, O. Taphonomy and burial context of the Roman/post-Roman funerary areas (2nd to 6th centuries AD) of A Lanzada, NW Spain. Estudos do Quaternário/Quaternary Studies 55–67 (2015) https://doi.org/10.30893/eq.v0i12.111.63.López-Costas, O. & Müldner, G. Fringes of the empire: Diet and cultural change at the Roman to post-Roman transition in NW Iberia. Am. J. Phys. Anthropol. 161, 141–154 (2016).PubMed 
    Article 

    Google Scholar 
    64.García López, Z., López Costas, O. & Martínez Cortizas, A. Análisis de sedimentos asociados a restos humanos de la Necrópolis de A Lanzada y Adro Vello (Pontevedra). (2019).65.Rodríguez Martínez, R. M. Informe valorativo da intervención arqueolóxica para a recuperación patrimonial do xacemento de A Lanzada (Sanxenxo, Pontevedra). Fase II. (2017).66.Brickley, M. & McKinley, J. I. Determination of sex from archaeological skeletal material and assessment of parturition. in Guidelines to the Standards for Recording Human Remains. 23–25 (BABAO, Dept. of Archaeology, University of Southampton. Institute of Field Archaeologist, University of Reading, 2004).67.López Costas, O. et al. Informe final: Estudio de esqueletos humanos y de secuencias edafo-sedimentárias del yacimiento de A Lanzada. En: Rodríguez Martínez, R.M., 2017. Informe valorativo da intervención arqueolóxica para a recuperación patrimonial do xacemento de A Lanzada (Sanxenxo, Pontevedra). Fase II. (2017).68.Cheburkin, A. K. & Shotyk, W. Determination of trace elements in aqueous solutions using the EMMA miniprobe XRF analyzer. X-Ray Spectrom. 28, 379–383 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    69.Cheburkin, A. K. & Shotyk, W. High-sensitivity XRF analyzer (OLIVIA) using a multi-crystal pyrographite assembly to reduce the continuous background. X-Ray Spectrom. 28, 145–148 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    70.Wold, S., Sjöström, M. & Eriksson, L. PLS-regression: a basic tool of chemometrics. Chemometrics Intell. Lab. Syst. 58, 109–130 (2001).CAS 
    Article 

    Google Scholar 
    71.Martín-Fernández, J. A., Hron, K., Templ, M., Filzmoser, P. & Palarea-Albaladejo, J. Model-based replacement of rounded zeros in compositional data: Classical and robust approaches. Comput. Stat. Data Anal. 56, 2688–2704 (2012).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    72.Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G. & Barceló-Vidal, C. Isometric logratio transformations for compositional data analysis. Mathe. Geol. 35, 279–300 (2003).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    73.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).74.Filzmoser, P., Hron, K. & Templ, M. Applied Compositional Data Analysis. With Worked Examples (Springer, 2018).MATH 
    Book 

    Google Scholar 
    75.Garrett, R. G. rgr: Applied Geochemistry EDA. (2018).76.Bertrand, F. & Maumy-Bertrand, M. Partial Least Squares Regression for Generalized Linear Models. (2019).77.Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. (2020).78.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar 
    79.Punta A Lanzada, O Grove (Galicia, Spain) 42°25′44.61″N 8°52′29.31″W elev 16 m eye alt 585m. Google Earth. Jully 18, 2020. March 20, 2021. https://bit.ly/3FwpZrE.80.A Lanzada site (Galicia, Spain) 42°25′44.64″N 8°52″29.42″W elev 16m eye alt 549m. Google Earth. Jully 18, 2020. October 12, 2021. https://bit.ly/3BBqxKy. More

  • in

    The effects of low pH on the taste and amino acid composition of tiger shrimp

    1.Pachauri, R. K. et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I. II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014).2.International Geosphere Biosphere Programme (IGBP). Ocean acidification summary for policymakers (2013).3.Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).ADS 
    Article 

    Google Scholar 
    4.Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 1–7. https://doi.org/10.1038/s41559-017-0084 (2017).CAS 
    Article 

    Google Scholar 
    5.Dupont, S., Hall, E., Calosi, P. & Lundve, B. First evidence of altered sensory quality in a shellfish exposed to decreased pH relevant to ocean acidification. J. Shellfish Res. 33, 857–861 (2014).Article 

    Google Scholar 
    6.Lemasson, A. J. et al. Sensory qualities of oysters unaltered by a short exposure to combined elevated pCO2 and temperature. Front. Mar. Sci. 4, 352. https://doi.org/10.3389/fmars.2017.00352 (2017).Article 

    Google Scholar 
    7.San Martin, V. A. et al. Linking social preferences and ocean acidification impacts in mussel aquaculture. Sci. Rep. 9, 1–9 (2019).ADS 

    Google Scholar 
    8.Shahidi, F. & Cadwallader, K. R. Flavor and lipid chemistry of seafoods: an overview (1997).9.Nelson, G. et al. An amino acid taste receptor. Nature 416, 199–202 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Guillen, J. et al. Global seafood consumption footprint. Ambio 48(2), 111–122 (2019).Article 

    Google Scholar 
    11.FAO. The state of world fisheries and aquaculture. Contributing to food security and nutrition for all. FAO, Rome (2016).12.FAO. The state of world fisheries and aquaculture—sustainability in action (2020).13.Gerland, P. et al. World population stabilization unlikely this century. Science 346(6206), 234–237 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Minh, N. P., Nhi, T. T. Y., Hiep, P. T. H., Nhan, D. T. & Anh, S. T. Quality characteristics of dried salted black tiger shrimp (Penaeus monodon) affected by different pre-treatment and drying variables. J. Pharm. Sci. Res. 11, 1377–1381 (2019).CAS 

    Google Scholar 
    15.FAO. The state of food and agriculture (1980).16.Solms, J. Taste of amino acids, peptides, and proteins. J. Agric. Food Chem. 17(4), 686–688 (1969).CAS 
    Article 

    Google Scholar 
    17.Jiro, K., Akira, S. & Akimitsu, K. The contribution of peptides and amino acids to the taste of foodstuffs. J. Agric. Food Chem. 17(4), 689–695 (1969).Article 

    Google Scholar 
    18.Schiffman, S. S., Sennewald, K. & Gagnon, J. Comparison of taste qualities and thresholds of D-and L-amino acids. Physiol. Behav. 27(1), 51–59 (1981).CAS 
    Article 

    Google Scholar 
    19.Kawai, M., Sekine-Hayakawa, Y., Okiyama, A. & Ninomiya, Y. Gustatory sensation of L- and D-amino acids in humans. Amino Acids 43, 2349–2358 (2012).CAS 
    Article 

    Google Scholar 
    20.Dissanayake, A., Clough, R., Spicer, J. I. & Jones, M. B. Effects of hypercapnia on acid–base balance and osmo-/iono-regulation in prawns (Decapoda: Palaemonidae). Aquat. Biol. 11, 27–36 (2010).Article 

    Google Scholar 
    21.Ries, J., Choen, A. L. & McCorkle, D. C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37, 1131–1134 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    22.Liu, Y. W., Sutton, J. N., Ries, J. B. & Eagle, R. A. Regulation of calcification site pH is a polyphyletic but not always governing response to ocean acidification. Sci. Adv. 6, eaax1314 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    23.Corteel, M. et al. Moult cycle of laboratory-raised Penaeus (Litopenaeus) vannamei and P. monodon. Aquac. Int. 20, 13–18 (2011).Article 

    Google Scholar 
    24.Taylor, J. R., Gilleard, J. M., Allen, M. C. & Deheyn, D. D. Effects of CO2-induced pH reduction on the exoskeleton structure and biophotonic properties of the shrimp Lysmata californica. Sci. Rep. 5, 10608 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    25.McLean, E. L., Katenka, N. V. & Seibel, B. A. Decreased growth and increased shell disease in early benthic phase Homarus americanus in response to elevated CO2. Mar. Ecol. Prog. Ser. 596, 113–126 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    26.Chen, S. M. & Chen, J. C. Effect of low pH on the acid-base balance, osmolality and ion concentrations of giant freshwater prawn Macrobrachium rosenbergii. J. Fish. Soc. Taiwan 30, 227–239 (2003).
    Google Scholar 
    27.Kurihara, H., Matsui, M., Furukawa, H., Hayashi, M. & Ishimatsu, A. Long-term effects of predicted future seawater CO2 conditions on the survival and growth of the marine shrimp Palaemon pacificus. J. Exp. Mar. Biol. Ecol. 367, 41–46 (2008).CAS 
    Article 

    Google Scholar 
    28.Findlay, H. S., Kendall, M. A., Spicer, J. I. & Widdicombe, S. Future high CO2 in the intertidal may compromise adult barnacle Semibalanus balanoides survival and embryonic development rate. Mar. Ecol. Prog. Ser. 389, 193–202 (2009).ADS 
    Article 

    Google Scholar 
    29.Cameron, J. N. & Iwama, G. K. Compensation of progressive hypercapnia in channel catfish and blue crabs. J. Exp. Biol. 133, 183–197 (1987).Article 

    Google Scholar 
    30.Pane, E. F. & Barry, J. P. Extracellular acid-base regulation during short-term hypercapnia is effective in a shallow-water crab, but ineffective in a deep-sea crab. Mar. Ecol. Prog. Ser. 334, 1–9 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Lowder, K. B., Allen, M. C., Day, J. M. D., Deheyn, D. D. & Taylor, J. R. A. Assessment of ocean acidification and warming on the growth, calcification, and biophotonics of a California grass shrimp. ICES J. Mar. Sci. 74, 1150–1158 (2017).Article 

    Google Scholar 
    32.Pörtner, H. O., Langenbunh, M. & Reipschläger, A. Biological impact of elevated ocean CO2 concentrations: Lessons from animal physiology and earth history. J. Oceanogr. 60, 705–718 (2004).Article 

    Google Scholar 
    33.Dissanayake, A. & Ishimatsu, A. Synergistic effects of elevated CO2 and temperature on the metabolic scope and activity in a shallow-water coastal decapod (Metapenaeus joyneri; Crustacea: Penaeide). ICES J. Mar. Sci. 68, 1147–1154 (2011).Article 

    Google Scholar 
    34.Pan, L. Q., Zhang, L. J. & Liu, H. Y. Effects of salinity and pH on ion-transport enzyme activities, survival and growth of Litopenaeus vannamei postlarvae. Aquaculture 273, 711–720 (2007).CAS 
    Article 

    Google Scholar 
    35.Rathburn, C. K. et al. Transcriptomic responses of juvenile Pacific whiteleg shrimp, Litopenaeus vannamei, to hypoxia and hypercapnic hypoxia. Physiol. Genomics 45, 794–807 (2013).CAS 
    Article 

    Google Scholar 
    36.Yu, Q. R. et al. Growth and health responses to a long-term pH stress in Pacific white shrimp Litopenaeus vannamei. Aquacul. Rep. 16, 100280 (2020).Article 

    Google Scholar 
    37.Chen, J. C., Chen, C. T. & Cheng, S. Y. Nitrogen excretion and changes of hemocyanin, protein and free amino acid levels in the hemolymph of Penaeus monodon exposed to different concentrations of ambient ammonia-N at different salinity levels. Mar. Ecol. Prog. Ser. 110, 85–94 (1994).ADS 
    CAS 
    Article 

    Google Scholar 
    38.Dayal, J. S., Ambasankar, K., Rajendran, R., Rajaram, V. & Muralidhar, M. Effect of abiotic salinity stress on haemolymph metabolic profiles in cultured tiger shrimp Penaeus monodon. Int. J. Bio-resour. Stress Manag. 4, 339–343 (2013).
    Google Scholar 
    39.Ardo, Y. Flavour formation by amino acid catabolism. Biotechnol. Adv. 24, 238–242 (2006).CAS 
    Article 

    Google Scholar 
    40.Engström-Öst, J. et al. Eco-physiological responses of copepods and pteropods to ocean warming and acidification. Sci. Rep. 9, 4748 (2019).ADS 
    Article 

    Google Scholar 
    41.Liao, H. et al. Impact of ocean acidification on the energy metabolism and antioxidant responses of the Yesso scallop (Patinopecten yessoensis). Front. Physiol. 27, 1967 (2019).Article 

    Google Scholar 
    42.Richard, L. et al. The effect of choline and cystine on the utilisation of methionine for protein accretion, remethylation and trans-sulfuration in juvenile shrimp Penaeus monodon. Br. J. Nutr. 28, 825–835 (2011).Article 

    Google Scholar 
    43.Peng, B., Huang, R. & Zhou, X. oxidation resistance of the sulfur amino acids: methionine and cysteine. Biomed. Res. Int. 2017, 9584932 (2017).
    Google Scholar 
    44.DeVries, M. S. et al. Stress physiology and weapon integrity of intertidal mantis shrimp under future ocean conditions. Sci. Rep. 6, 38637 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    45.Dupont, S. & Thorndyke, M. C. Impact of CO2-driven ocean acidification on invertebrates early life-history—What we know, what we need to know and what we can do. Biogeosci. Discuss. 6, 3109–3131 (2009).ADS 
    Article 

    Google Scholar 
    46.Weerathunga, V. V. et al. Impacts of pH on the fitness and immune system of pacific white shrimp. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.748837 (2021).Article 

    Google Scholar 
    47.Fuller, P. L. et al. Invasion of Asian tiger shrimp, Penaeus monodon Fabricius, 1798, in the western north Atlantic and Gulf of Mexico. Aquat. Invasions 9, 59–70 (2014).Article 

    Google Scholar 
    48.Lewis, E. & Wallace, D. Program developed for CO2 system calculations (Environmental System Science Data Infrastructure for a Virtual Ecosystem, 1998).49.Dickson, A. G. & Millero, F. J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res. Part A Oceanogr. Res. Pap. 34, 1733–1743 (1987).ADS 
    CAS 
    Article 

    Google Scholar 
    50.AOAC. Method 991.42 & 993.19. Official methods of analysis (16th ed.). Washington, DC: Association of Official Analytical Chemists (1995).51.Motoh, H. Biology and ecology of Penaeus monodon. Iloilo City, Philippines. Aquaculture Department, Southeast Asian Fisheries Development Center (1985).52.Mayor, D. J., Matthews, C., Cook, K., Zuur, A. F. & Hay, S. CO2-induced acidification affects hatching success in Calanus finmarchicus. Mar. Ecol. Prog. Ser. 350, 91–97 (2007). More