Parental methyl-enhanced diet and in ovo corticosterone affect first generation Japanese quail (Coturnix japonica) development, behaviour and stress response
1.Hill, W. L. Importance of prenatal nutrition to the development of a precocial chick. Dev. Psychobiol. 26, 237–249. https://doi.org/10.1002/dev.420260502 (1993).CAS
Article
PubMed
Google Scholar
2.van Emous, R. A., Kwakkel, R. P., van Krimpen, M. M., van den Brand, H. & Hendriks, W. H. Effects of growth patterns and dietary protein levels during rearing of broiler breeders on fertility, hatchability, embryonic mortality, and offspring performance. Poult. Sci. 94, 681–691. https://doi.org/10.3382/ps/pev024 (2015).CAS
Article
PubMed
Google Scholar
3.Spratt, R. S. & Leeson, S. Broiler breeder performance in response to diet protein and energy. Poult. Sci. 66, 683–693. https://doi.org/10.3382/ps.0660683 (1987).CAS
Article
PubMed
Google Scholar
4.Walsh, T. J. & Brake, J. The effect of nutrient intake during rearing of broiler breeder females on subsequent fertility. Poult. Sci. 76, 297–305. https://doi.org/10.1093/ps/76.2.297 (1997).CAS
Article
PubMed
Google Scholar
5.Goodwin, K., Lamoreux, W. F. & Dickerson, G. E. Maternal effects in chickens: Performance of daughters from dams of differing ages. Poult. Sci. 43, 1435–1442. https://doi.org/10.3382/ps.0431435 (1964).Article
Google Scholar
6.Coakley, C. M., Staszewski, V., Herborn, K. A. & Cunningham, E. J. Factors affecting the levels of protection transferred from mother to offspring following immune challenge. Front Zool. 11, 46–46. https://doi.org/10.1186/1742-9994-11-46 (2014).CAS
Article
PubMed
PubMed Central
Google Scholar
7.Moore, L. D., Le, T. & Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 38, 23–38. https://doi.org/10.1038/npp.2012.112 (2013).CAS
Article
PubMed
Google Scholar
8.Berger, S. L., Kouzarides, T., Shiekhattar, R. & Shilatifard, A. An operational definition of epigenetics. Genes Dev. 23, 781–783. https://doi.org/10.1101/gad.1787609 (2009).CAS
Article
PubMed
PubMed Central
Google Scholar
9.Nelson, V. R. & Nadeau, J. H. Transgenerational genetic effects. Epigenomics 2, 797–806. https://doi.org/10.2217/epi.10.57 (2010).CAS
Article
PubMed
Google Scholar
10.Dupont, C., Armant, D. R. & Brenner, C. A. Epigenetics: Definition, mechanisms and clinical perspective. Sem. Reprod. Med. 27, 351–357. https://doi.org/10.1055/s-0029-1237423 (2009).CAS
Article
Google Scholar
11.Burdge, G. C., Hoile, S. P. & Lillycrop, K. A. Epigenetics: Are there implications for personalised nutrition?. Curr. Opin. Clin. Nutr. Metab. Care 15, 442–447. https://doi.org/10.1097/MCO.0b013e3283567dd2 (2012).CAS
Article
PubMed
Google Scholar
12.Anderson, O. S., Sant, K. E. & Dolinoy, D. C. Nutrition and epigenetics: An interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J. Nutr. Biochem. 23, 853–859. https://doi.org/10.1016/j.jnutbio.2012.03.003 (2012).CAS
Article
PubMed
PubMed Central
Google Scholar
13.Clare, C. E., Brassington, A. H., Kwong, W. Y. & Sinclair, K. D. One-carbon metabolism: Linking nutritional biochemistry to epigenetic programming of long-term development. Ann. Rev. Anim. Biosci. 7, 263–287. https://doi.org/10.1146/annurev-animal-020518-115206 (2019).CAS
Article
Google Scholar
14.Kadayifci, F. Z., Zheng, S. & Pan, Y.-X. Molecular mechanisms underlying the link between diet and DNA methylation. Int. J. Mol. Sci. 19, 4055. https://doi.org/10.3390/ijms19124055 (2018).Article
PubMed Central
Google Scholar
15.Waterland, R. A. & Jirtle, R. L. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition 20, 63–68. https://doi.org/10.1016/j.nut.2003.09.011 (2004).CAS
Article
PubMed
Google Scholar
16.Eklund, M., Bauer, E., Wamatu, J. & Mosenthin, R. Potential nutritional and physiological functions of betaine in livestock. Nutr. Res. Rev. 18, 31–48. https://doi.org/10.1079/nrr200493 (2005).CAS
Article
PubMed
Google Scholar
17.Ratriyanto, A., Indreswari, R., Dewanti, R. & Wahyuningsih, S. Egg quality of quails fed low methionine diet supplemented with betaine. IOP Conf. Ser. Earth Environ. Sci. 142, 012002. https://doi.org/10.1088/1755-1315/142/1/012002 (2018).Article
Google Scholar
18.Ratriyanto, A., Indreswari, R. & Nuhriawangsa, A. Effects of dietary protein level and betaine supplementation on nutrient digestibility and performance of Japanese quails. Braz. J. Poultry Sci. 19, 445–454 (2017).Article
Google Scholar
19.Fetterer, R. H., Augustine, P. C., Allen, P. C. & Barfield, R. C. The effect of dietary betaine on intestinal and plasma levels of betaine in uninfected and coccidia-infected broiler chicks. Parasitol. Res. 90, 343–348. https://doi.org/10.1007/s00436-003-0864-z (2003).CAS
Article
PubMed
Google Scholar
20.Kettunen, H., Tiihonen, K., Peuranen, S., Saarinen, M. T. & Remus, J. C. Dietary betaine accumulates in the liver and intestinal tissue and stabilizes the intestinal epithelial structure in healthy and coccidia-infected broiler chicks. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 130, 759–769. https://doi.org/10.1016/s1095-6433(01)00410-x (2001).CAS
Article
Google Scholar
21.Ratriyanto, A., Mosenthin, R., Bauer, E. & Eklund, M. Metabolic, osmoregulatory and nutritional functions of betaine in monogastric animals. Asian-Australas J. Anim. Sci. 22, 1461–1476. https://doi.org/10.5713/ajas.2009.80659 (2009).CAS
Article
Google Scholar
22.Zhan, X. A., Li, J. X., Xu, Z. R. & Zhao, R. Q. Effects of methionine and betaine supplementation on growth performance, carcase composition and metabolism of lipids in male broilers. Braz. Poult. Sci. 47, 576–580. https://doi.org/10.1080/00071660600963438 (2006).CAS
Article
Google Scholar
23.Omer, N. A. et al. Dietary betaine improves egg-laying rate in hens through hypomethylation and glucocorticoid receptor–mediated activation of hepatic lipogenesis-related genes. Poult. Sci. 99, 3121–3132. https://doi.org/10.1016/j.psj.2020.01.017 (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
24.Maidin, M. B. M. et al. Dietary betaine reduces plasma homocysteine concentrations and improves bone strength in laying hens. Br. Poult. Sci. https://doi.org/10.1080/00071668.2021.1883550 (2021).Article
PubMed
Google Scholar
25.Chen, R. et al. Betaine improves the growth performance and muscle growth of partridge shank broiler chickens via altering myogenic gene expression and insulin-like growth factor-1 signaling pathway. Poult. Sci. 97, 4297–4305. https://doi.org/10.3382/ps/pey303 (2018).CAS
Article
PubMed
Google Scholar
26.Ratriyanto, A., Nuhriawangsa, A. M. P., Masykur, A., Prastowo, S. & Widyas, N. Egg production pattern of quails given diets containing different energy and protein contents. AIP Conf. Proc. 2014, 020011. https://doi.org/10.1063/1.5054415 (2018).Article
Google Scholar
27.Rao, S. V. R., Raju, M. V. L. N., Panda, A. K., Saharia, P. & Sunder, G. S. Effect of supplementing betaine on performance, carcass traits and immune responses in broiler chicken fed diets containing different concentrations of methionine. Asian-Australas J. Anim. Sci. 24, 662–669. https://doi.org/10.5713/ajas.2011.10286 (2011).CAS
Article
Google Scholar
28.Adkins-Regan, E., Banerjee, S. B., Correa, S. M. & Schweitzer, C. Maternal effects in quail and zebra finches: Behavior and hormones. Gen. Comp. Endocrinol. 190, 34–41. https://doi.org/10.1016/j.ygcen.2013.03.002 (2013).CAS
Article
PubMed
Google Scholar
29.Henriksen, R., Rettenbacher, S. & Groothuis, T. G. Prenatal stress in birds: Pathways, effects, function and perspectives. Neurosci. Biobehav. Rev. 35, 1484–1501. https://doi.org/10.1016/j.neubiorev.2011.04.010 (2011).Article
PubMed
Google Scholar
30.Peixoto, M. R. L. V., Karrow, N. A., Newman, A. & Widowski, T. M. Effects of maternal stress on measures of anxiety and fearfulness in different strains of laying hens. Front. Vet. Sci. https://doi.org/10.3389/fvets.2020.00128 (2020).Article
PubMed
PubMed Central
Google Scholar
31.Lay, D. C. Jr. & Wilson, M. E. Development of the chicken as a model for prenatal stress. J. Anim. Sci. 80, 1954–1961. https://doi.org/10.2527/2002.8071954x (2002).CAS
Article
PubMed
Google Scholar
32.Zhang, M. et al. Impacts of heat stress on meat quality and strategies for amelioration: A review. Int. J. Biometeorol. 64, 1613–1628. https://doi.org/10.1007/s00484-020-01929-6 (2020).ADS
Article
PubMed
Google Scholar
33.Boonstra, R. Coping with changing northern environments: The role of the stress axis in birds and mammals. Integr. Comp. Biol. 44, 95–108. https://doi.org/10.1093/icb/44.2.95 (2004).Article
PubMed
Google Scholar
34.Smulders, T. V. The avian hippocampal formation and the stress response. Brain Behav. Evol. 90, 81–91. https://doi.org/10.1159/000477654 (2017).Article
PubMed
Google Scholar
35.Wingfield, J.C. in Perspectives in Comparative Endocrinology (eds Davey, K.G., Peter, R.E. Tobe, S.S.) 520–528 (National Research Council of Canada, 1994).36.Wingfield, J. C. & Romero, L. M. Handbook of Physiology, Section 7: The Endocrine System. In Ch. Coping with the Environment: Neural and Endocrine Mechanisms Vol. 4 (eds McEwen, B. S. & Goodman, H. M.) 211–234 (Oxford University Press, 2001).
Google Scholar
37.Love, O. P. & Williams, T. D. Plasticity in the adrenocortical response of a free-living vertebrate: The role of pre- and post-natal developmental stress. Horm. Behav. 54, 496–505. https://doi.org/10.1016/j.yhbeh.2008.01.006 (2008).CAS
Article
PubMed
Google Scholar
38.Dingemanse, N. J., Both, C., Drent, P. J. & Tinbergen, J. M. Fitness consequences of avian personalities in a fluctuating environment. Proc. Biol. Sci. 271, 847–852. https://doi.org/10.1098/rspb.2004.2680 (2004).Article
PubMed
PubMed Central
Google Scholar
39.Martins, T. L., Roberts, M. L., Giblin, I., Huxham, R. & Evans, M. R. Speed of exploration and risk-taking behavior are linked to corticosterone titres in zebra finches. Horm. Behav. 52, 445–453. https://doi.org/10.1016/j.yhbeh.2007.06.007 (2007).CAS
Article
PubMed
Google Scholar
40.Blas, J., Bortolotti, G. R., Tella, J. L., Baos, R. & Marchant, T. A. Stress response during development predicts fitness in a wild, long lived vertebrate. Proc. Natl. Acad. Sci. U.S.A. 104, 8880–8884. https://doi.org/10.1073/pnas.0700232104 (2007).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
41.Breuner, C. W., Greenberg, A. L. & Wingfield, J. C. Noninvasive corticosterone treatment rapidly increases activity in Gambel’s white-crowned sparrows (Zonotrichia leucophrys gambelii). Gen. Comp. Endocrinol. 111, 386–394. https://doi.org/10.1006/gcen.1998.7128 (1998).CAS
Article
PubMed
Google Scholar
42.Zimmer, C., Boogert, N. J. & Spencer, K. A. Developmental programming: Cumulative effects of increased pre-hatching corticosterone levels and post-hatching unpredictable food availability on physiology and behaviour in adulthood. Horm. Behav. 64, 494–500. https://doi.org/10.1016/j.yhbeh.2013.07.002 (2013).CAS
Article
PubMed
PubMed Central
Google Scholar
43.Morris, K. M. et al. The quail genome: Insights into social behaviour, seasonal biology and infectious disease response. BMC Biol. 18, 14. https://doi.org/10.1186/s12915-020-0743-4 (2020).Article
PubMed
PubMed Central
Google Scholar
44.Phillips, C., Angel, R. & Ashwell, C. in XVth European Poultry Conference 548 (Dubrovnik, 2018).45.Daghir, N. J., Marion, W. W. & Balloun, S. L. Influence of dietary fat and choline on serum and egg yolk cholesterol in the laying chicken1. Poult. Sci. 39, 1459–1466. https://doi.org/10.3382/ps.0391459 (1960).CAS
Article
Google Scholar
46.Griffith, M., Olinde, A. J., Schexnailder, R., Davenport, R. F. & McKnight, W. F. Effect of choline, methionine and vitamin B12 on liver fat, egg production and egg weight in hens. Poult. Sci. 48, 2160–2172. https://doi.org/10.3382/ps.0482160 (1969).CAS
Article
Google Scholar
47.Xiao, X., Wang, Y., Liu, W., Ju, T. & Zhan, X. Effects of different methionine sources on production and reproduction performance, egg quality and serum biochemical indices of broiler breeders. Asian Australas. J. Anim. Sci. 30, 828–833. https://doi.org/10.5713/ajas.16.0404 (2017).CAS
Article
PubMed
Google Scholar
48.Min, Y. N. et al. Effects of methionine hydroxyl analog chelated zinc on laying performance, eggshell quality, eggshell mineral deposition, and activities of Zn-containing enzymes in aged laying hens. Poult. Sci. 97, 3587–3593. https://doi.org/10.3382/ps/pey203 (2018).CAS
Article
PubMed
Google Scholar
49.Woolveridge, I. & Peddie, M. J. The inhibition of androstenedione production in mature thecal cells from the ovary of the domestic hen (Gallus domesticus): Evidence for the involvement of progestins. Steroids 62, 214–220. https://doi.org/10.1016/s0039-128x(96)00209-7 (1997).CAS
Article
PubMed
Google Scholar
50.Herrick, E. H. Some influences of stilbestrol, estrone, and testosterone propionate on the genital tract of young female fowls*. Poult. Sci. 23, 65–66. https://doi.org/10.3382/ps.0230065 (1944).CAS
Article
Google Scholar
51.Berg, C., Holm, L., Brandt, I. & Brunström, B. Anatomical and histological changes in the oviducts of Japanese quail, Coturnix japonica, after embryonic exposure to ethynyloestradiol. Reproduction 121, 155–165. https://doi.org/10.1530/rep.0.1210155 (2001).CAS
Article
PubMed
Google Scholar
52.Ratriyanto, A., Nuhriawangsa, A.M.P., Masykur, A., Prastowo, S. & Widyas, N. Egg production pattern of quails given diets containing different energy and protein contents. 2011, 020011. https://doi.org/10.1063/1.5054415 (2018).53.Taves, M. D., Gomez-Sanchez, C. E. & Soma, K. K. Extra-adrenal glucocorticoids and mineralocorticoids: Evidence for local synthesis, regulation, and function. Am. J. Physiol.-Endocrinol. Metab. 301, E11–E24. https://doi.org/10.1152/ajpendo.00100.2011 (2011).CAS
Article
PubMed
PubMed Central
Google Scholar
54.Dunnington, E. A. & Siegel, P. B. Age and body weight at sexual maturity in female white leghorn chickens. Poult. Sci. 63, 828–830 (1984).CAS
Article
Google Scholar
55.Saunderson, C. L. & Mackinlay, J. Changes in body-weight, composition and hepatic enzyme activities in response to dietary methionine, betaine and choline levels in growing chicks. Br. J. Nutr. 63, 339–349. https://doi.org/10.1079/BJN19900120 (1990).CAS
Article
PubMed
Google Scholar
56.Zaefarian, F., Abdollahi, M. R., Cowieson, A. & Ravindran, V. Avian liver: The forgotten organ. Animals 9, 63. https://doi.org/10.3390/ani9020063 (2019).Article
PubMed Central
Google Scholar
57.Daisley, J. N., Bromundt, V., Möstl, E. & Kotrschal, K. Enhanced yolk testosterone influences behavioral phenotype independent of sex in Japanese quail chicks Coturnix japonica. Horm. Behav. 47, 185–194. https://doi.org/10.1016/j.yhbeh.2004.09.006 (2005).CAS
Article
Google Scholar
58.Koolhaas, J. M. et al. Coping styles in animals: Current status in behavior and stress-physiology. Neurosci. Biobehav. Rev. 23, 925–935. https://doi.org/10.1016/s0149-7634(99)00026-3 (1999).CAS
Article
PubMed
Google Scholar
59.Schwabl, H. Environment modifies the testosterone levels of a female bird and its eggs. J. Exp. Zool. 276, 157–163. https://doi.org/10.1002/(sici)1097-010x(19961001)276:2%3c157::aid-jez9%3e3.0.co;2-n (1996).CAS
Article
PubMed
Google Scholar
60.Marasco, V., Herzyk, P., Robinson, J. & Spencer, K. A. Pre- and post-natal stress programming: Developmental exposure to glucocorticoids causes long-term brain-region specific changes to transcriptome in the precocial Japanese quail. J. Neuroendocrinol. 28, 1. https://doi.org/10.1111/jne.12387 (2016).CAS
Article
Google Scholar
61.Satterlee, D. G. & Marin, R. H. Stressor-induced changes in open-field behavior of Japanese quail selected for contrasting adrenocortical responsiveness to immobili-zation. Poult. Sci. 85, 404–409 (2006).CAS
Article
Google Scholar
62.Denham, S. G. et al. Development and validation of a method for the determination of steroid profiles in chickens using LC-MS/MS (University of Edinburgh, 2019).
Google Scholar
63.Gilmour, A. R., Gogel, B. J., Cullis, B. R. & Thompson, R. ASReml User Guide Release 3.0 (VSNi, 2009).
Google Scholar More