1.Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809. https://doi.org/10.1371/journal.pone.0185809 (2017).CAS
Article
PubMed
PubMed Central
Google Scholar
2.Cardoso, P. et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. https://doi.org/10.1016/j.biocon.2020.108426 (2020).Article
PubMed
PubMed Central
Google Scholar
3.van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420. https://doi.org/10.1126/science.aax9931 (2020).ADS
CAS
Article
PubMed
Google Scholar
4.Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253. https://doi.org/10.1038/387253a0 (1997).ADS
CAS
Article
Google Scholar
5.Hill, D. S. The Economic Importance of Insects (Springer, 2012). https://doi.org/10.1007/978-94-011-5348-5.Book
Google Scholar
6.Gallai, N., Salles, J.-M., Settele, J. & Vaissière, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821. https://doi.org/10.1016/j.ecolecon.2008.06.014 (2009).Article
Google Scholar
7.Neumann, P. et al. Ecosystem services, agriculture and neonicotinoids. EASAC Policy Rep. 26, 1–53 (2015).CAS
Google Scholar
8.Sánchez-Bayo, F. & Wyckhuys, K. A. Worldwide decline of the entomofauna: a review of its drivers. Biol. Cons. 232, 8–27. https://doi.org/10.1016/j.biocon.2019.01.020 (2019).Article
Google Scholar
9.Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674. https://doi.org/10.1038/s41586-019-1684-3 (2019).ADS
CAS
Article
PubMed
Google Scholar
10.Wagner, D. L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457–480. https://doi.org/10.1146/annurev-ento-011019-025151 (2019).CAS
Article
PubMed
Google Scholar
11.Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353. https://doi.org/10.1016/j.tree.2010.01.007 (2010).Article
PubMed
Google Scholar
12.Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957. https://doi.org/10.1126/science.1255957 (2015).CAS
Article
PubMed
Google Scholar
13.Chagnon, M. et al. Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ. Sci. Pollut. Res. 22, 119–134. https://doi.org/10.1007/s11356-014-3277-x (2015).CAS
Article
Google Scholar
14.Pisa, L. W. et al. Effects of neonicotinoids and fipronil on non-target invertebrates. Environ. Sci. Pollut. Res. 22, 68–102. https://doi.org/10.1007/s11356-014-3471-x (2015).CAS
Article
Google Scholar
15.Stanley, J. & Preetha, G. Pesticide Toxicity to Non-target Organisms (Springer, 2016). https://doi.org/10.1007/978-94-017-7752-0.Book
Google Scholar
16.Wood, T. J. & Goulson, D. The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013. Environ. Sci. Pollut. Res. 24, 17285–17325. https://doi.org/10.1007/s11356-017-9240-x (2017).CAS
Article
Google Scholar
17.Humann-Guilleminot, S. et al. A nation-wide survey of neonicotinoid insecticides in agricultural land with implications for agri-environment schemes. J. Appl. Ecol. 56, 1502–1514. https://doi.org/10.1111/1365-2664.13392 (2019).CAS
Article
Google Scholar
18.Goulson, D. Review: an overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 50, 977–987. https://doi.org/10.1111/1365-2664.12111 (2013).Article
Google Scholar
19.Hilton, M. J., Jarvis, T. D. & Ricketts, D. C. The degradation rate of thiamethoxam in European field studies. Pest Manag. Sci. 72, 388–397. https://doi.org/10.1002/ps.4024 (2016).CAS
Article
PubMed
Google Scholar
20.Lewis, K. A., Tzilivakis, J., Warner, D. J. & Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. Int. J. 22, 1050–1064. https://doi.org/10.1080/10807039.2015.1133242 (2016).CAS
Article
Google Scholar
21.Li, Y. et al. Adsorption-desorption and degradation of insecticides clothianidin and thiamethoxam in agricultural soils. Chemosphere 207, 708–714. https://doi.org/10.1016/j.chemosphere.2018.05.139 (2018).ADS
CAS
Article
PubMed
Google Scholar
22.Nauen, R., Ebbinghaus-Kintscher, U., Salgado, V. L. & Kaussmann, M. Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants. Pestic. Biochem. Physiol. 76, 55–69. https://doi.org/10.1016/S0048-3575(03)00065-8 (2003).CAS
Article
Google Scholar
23.Straub, L. et al. Neonicotinoid insecticides can serve as inadvertent insect contraceptives. Proc. R. Soc. B 283, 20160506. https://doi.org/10.1098/rspb.2016.0506 (2016).Article
PubMed
PubMed Central
Google Scholar
24.Blacquiere, T., Smagghe, G., Van Gestel, C. A. & Mommaerts, V. Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology 21, 973–992. https://doi.org/10.1007/s10646-012-0890-7 (2012).CAS
Article
PubMed
PubMed Central
Google Scholar
25Straub, L., Strobl, V. & Neumann, P. The need for an evolutionary approach to ecotoxicology. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-1194-6 (2020).Article
PubMed
Google Scholar
26.Wilson, E. O. The Insect Societies (Harvard University Press, 1971).
Google Scholar
27.Schläppi, D., Kettler, N., Straub, L., Glauser, G. & Neumann, P. Long-term effects of neonicotinoid insecticides on ants. Commun. Biol. 3, 335. https://doi.org/10.1038/s42003-020-1066-2 (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
28.Schläppi, D., Stroeymeyt, N. & Neumann, P. Unintentional effects of neonicotinoids on ants (Hymenoptera: Formicidae). Myrmecological News, in press.29Straub, L., Williams, G. R., Pettis, J., Fries, I. & Neumann, P. Superorganism resilience: eusociality and susceptibility of ecosystem service providing insects to stressors. Curr. Opin. Insect Sci. 12, 109–112. https://doi.org/10.1016/j.cois.2015.10.010 (2015).Article
Google Scholar
30.Cremer, S. Social immunity in insects. Curr. Biol. 29, R458–R463. https://doi.org/10.1016/j.cub.2019.03.035 (2019).CAS
Article
PubMed
Google Scholar
31.Straub, L. et al. From antagonism to synergism: extreme differences in stressor interactions in one species. Sci. Rep. 10, 1–8. https://doi.org/10.1038/s41598-020-61371-x (2020).CAS
Article
Google Scholar
32.Crall, J. D. et al. Neonicotinoid exposure disrupts bumblebee nest behavior, social networks, and thermoregulation. Science 362, 683–686. https://doi.org/10.1126/science.aat1598 (2018).ADS
CAS
Article
PubMed
Google Scholar
33Hölldobler, B. & Wilson, E. O. The Ants (Springer, 1990). https://doi.org/10.1046/j.1420-9101.1992.5010169.x.Book
Google Scholar
34.Del Toro, I., Ribbons, R. R. & Pelini, S. L. The little things that run the world revisited: a review of ant-mediated ecosystem services and disservices (Hymenoptera: Formicidae). Myrmecol. News 17, 133–146 (2012).
Google Scholar
35.Keller, L. & Genoud, M. Extraordinary lifespans in ants: a test of evolutionary theories of ageing. Nature 389, 958. https://doi.org/10.1038/40130 (1997).ADS
CAS
Article
Google Scholar
36Bird, G., Wilson, A. E., Williams, G. R. & Hardy, N. B. Parasites and pesticides act antagonistically on honey bee health. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13811 (2020).Article
Google Scholar
37.Siviter, H. et al. Agrochemicals interact synergistically to increase bee mortality. Nature 596, 389–392. https://doi.org/10.1038/s41586-021-03787-7 (2021).ADS
CAS
Article
PubMed
Google Scholar
38.Ranjeva, S. et al. Age-specific differences in the dynamics of protective immunity to influenza. Nat. Commun. 10, 1–11. https://doi.org/10.1038/s41467-019-09652-6 (2019).CAS
Article
Google Scholar
39.Dahlgren, L., Johnson, R. M., Siegfried, B. D. & Ellis, M. D. Comparative toxicity of acaricides to honey bee (Hymenoptera: Apidae) workers and queens. J. Econ. Entomol. 105, 1895–1902. https://doi.org/10.1603/EC12175 (2012).CAS
Article
PubMed
Google Scholar
40O’Neal, T. S., Anderson, T. D. & Wu-Smart, J. Y. Interactions between pesticides and pathogen susceptibility in honey bees. Curr. Opin. Insect Sci. 26, 57–62. https://doi.org/10.1016/j.cois.2018.01.006 (2018).Article
PubMed
Google Scholar
41.Feldhaar, H. & Otti, O. Pollutants and their interaction with diseases of social hymenoptera. Insects 11, 153. https://doi.org/10.3390/insects11030153 (2020).Article
PubMed Central
Google Scholar
42.Doublet, V., Labarussias, M., de Miranda, J. R., Moritz, R. F. & Paxton, R. J. Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environ. Microbiol. 17, 969–983. https://doi.org/10.1111/1462-2920.12426 (2015).CAS
Article
PubMed
Google Scholar
43.Sánchez-Bayo, F. et al. Are bee diseases linked to pesticides?—a brief review. Environ. Int. 89, 7–11. https://doi.org/10.1016/j.envint.2016.01.009 (2016).CAS
Article
PubMed
Google Scholar
44.Annoscia, D. et al. Neonicotinoid Clothianidin reduces honey bee immune response and contributes to Varroa mite proliferation. Nat. Commun. 11, 1–7. https://doi.org/10.1038/s41467-020-19715-8 (2020).CAS
Article
Google Scholar
45.Di Prisco, G. et al. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proc. Natl. Acad. Sci. 110, 18466–18471. https://doi.org/10.1073/pnas.1314923110 (2013).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
46.Coulon, M. et al. Influence of chronic exposure to thiamethoxam and chronic bee paralysis virus on winter honey bees. PLoS ONE 14, e0220703. https://doi.org/10.1371/journal.pone.0220703 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
47.Brandt, A. et al. Immunosuppression in honeybee queens by the neonicotinoids thiacloprid and clothianidin. Sci. Rep. 7, 4673. https://doi.org/10.1038/s41598-017-04734-1 (2017).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
48.Beaurepaire, A. et al. Diversity and global distribution of viruses of the western honey bee, Apis mellifera. Insects 11, 239. https://doi.org/10.3390/insects11040239 (2020).Article
PubMed Central
Google Scholar
49.Martin, S. J. et al. Global honey bee viral landscape altered by a parasitic mite. Science 336, 1304–1306. https://doi.org/10.1126/science.1220941 (2012).ADS
CAS
Article
PubMed
Google Scholar
50.Wilfert, L. et al. Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. Science 351, 594–597. https://doi.org/10.1126/science.aac9976 (2016).ADS
CAS
Article
PubMed
Google Scholar
51.Neumann, P., Yañez, O., Fries, I. & De Miranda, J. R. Varroa invasion and virus adaptation. Trends Parasitol. 28, 353–354. https://doi.org/10.1016/j.pt.2012.06.004 (2012).Article
PubMed
Google Scholar
52.Woolhouse, M. E., Haydon, D. T. & Antia, R. Emerging pathogens: the epidemiology and evolution of species jumps. Trends Ecol. Evol. 20, 238–244. https://doi.org/10.1016/j.tree.2005.02.009 (2005).Article
PubMed
PubMed Central
Google Scholar
53.McMahon, D. P. et al. A sting in the spit: widespread cross-infection of multiple RNA viruses across wild and managed bees. J. Anim. Ecol. 84, 615–624. https://doi.org/10.1111/1365-2656.12345 (2015).Article
PubMed
PubMed Central
Google Scholar
54.Levitt, A. L. et al. Cross-species transmission of honey bee viruses in associated arthropods. Virus Res. 176, 232–240. https://doi.org/10.1016/j.virusres.2013.06.013 (2013).CAS
Article
PubMed
Google Scholar
55.Tehel, A., Brown, M. J. & Paxton, R. J. Impact of managed honey bee viruses on wild bees. Curr. Opin. Virol. 19, 16–22. https://doi.org/10.1016/j.coviro.2016.06.006 (2016).Article
PubMed
Google Scholar
56Martin, S. J. & Brettell, L. E. Deformed wing virus in honeybees and other insects. Ann. Rev. Virol. https://doi.org/10.1146/annurev-virology-092818-015700 (2019).Article
Google Scholar
57.Schläppi, D., Lattrell, P., Yañez, O., Chejanovsky, N. & Neumann, P. Foodborne transmission of deformed wing virus to ants (Myrmica rubra). Insects 10, 394. https://doi.org/10.3390/insects10110394 (2019).Article
PubMed Central
Google Scholar
58.Schläppi, D., Chejanovsky, N., Yañez, O. & Neumann, P. Foodborne Transmission and clinical symptoms of honey bee viruses in ants Lasius spp. Viruses 12, 321. https://doi.org/10.3390/v12030321 (2020).Article
PubMed Central
Google Scholar
59.Seifert, B. Die Ameisen Mittel- und Nordeuropas (Lutra Verlags und Vertriebsgesellschaft, 2007).
Google Scholar
60.Payne, A. N., Shepherd, T. F. & Rangel, J. The detection of honey bee (Apis mellifera)-associated viruses in ants. Sci. Rep. 10, 2923. https://doi.org/10.1038/s41598-020-59712-x (2020).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
61.Kutter, H. & Stumper R. Hermann Appel, ein leidgeadelter Entomologe (1892–1966). in Proceedings of the VI Congress of the International Union for the Study of Social Insects (eds Ernst, E., Frauchiger, L., Hauschteck-Jungen, E., Jungen, H., Leuthold, R., Maurizio, A., Ruppli, E. & Tschumi, P.), 275–279 (Organizing Committee of the VI Congress IUSSI, Bern, 1969).62.Jeschke, P., Nauen, R., Schindler, M. & Elbert, A. Overview of the status and global strategy for neonicotinoids. J. Agric. Food Chem. 59, 2897–2908. https://doi.org/10.1021/jf101303g (2011).CAS
Article
PubMed
Google Scholar
63.Limay-Rios, V. et al. Neonicotinoid insecticide residues in soil dust and associated parent soil in fields with a history of seed treatment use on crops in southwestern Ontario. Environ. Toxicol. Chem. 35, 303–310. https://doi.org/10.1002/etc.3257 (2016).CAS
Article
PubMed
Google Scholar
64.Schaafsma, A., Limay-Rios, V., Xue, Y., Smith, J. & Baute, T. Field-scale examination of neonicotinoid insecticide persistence in soil as a result of seed treatment use in commercial maize (corn) fields in southwestern Ontario. Environ. Toxicol. Chem. 35, 295–302. https://doi.org/10.1002/etc.3231 (2016).CAS
Article
PubMed
Google Scholar
65.De Miranda, J. R., Cordoni, G. & Budge, G. The acute bee paralysis virus–Kashmir bee virus–Israeli acute paralysis virus complex. J. Invertebr. Pathol. 103, 30–47. https://doi.org/10.1016/j.jip.2009.06.014 (2010).CAS
Article
Google Scholar
66Decourtye, A. & Devillers, J. Ecotoxicity of neonicotinoid insecticides to bees. In Insect Nicotinic Acetylcholine Receptors (ed. Thany, S. H.) 85–95 (Springer, 2010).Chapter
Google Scholar
67.Diez, L., Lejeune, P. & Detrain, C. Keep the nest clean: survival advantages of corpse removal in ants. Biol. Let. 10, 20140306. https://doi.org/10.1098/rsbl.2014.0306 (2014).Article
Google Scholar
68.Wang, L., Zeng, L. & Chen, J. Impact of imidacloprid on new queens of imported fire ants, Solenopsis invicta (Hymenoptera: Formicidae). Sci. Rep. 5, 17938. https://doi.org/10.1038/srep17938 (2015).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
69.Moya-Laraño, J., Macías-Ordóñez, R., Blanckenhorn, W. U. & Fernández-Montraveta, C. Analysing body condition: mass, volume or density?. J. Anim. Ecol. 77, 1099–1108. https://doi.org/10.1111/j.1365-2656.2008.01433.x (2008).Article
PubMed
Google Scholar
70Knapp, M., Knappová, J. & Miller, T. Measurement of body condition in a common carabid beetle, Poecilus cupreus: a comparison of fresh weight, dry weight, and fat content. J. Insect Sci. https://doi.org/10.1673/031.013.0601 (2013).Article
PubMed
PubMed Central
Google Scholar
71.Retschnig, G. et al. Sex-specific differences in pathogen susceptibility in honey bees (Apis mellifera). PLoS ONE 9, e85261. https://doi.org/10.1371/journal.pone.0085261 (2014).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
72.Suchail, S., Guez, D. & Belzunces, L. P. Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera. Environ. Toxicol. Chem. Int. J. 20, 2482–2486. https://doi.org/10.1002/etc.5620201113 (2001).CAS
Article
Google Scholar
73.Helms, K. R. & Vinson, S. B. Plant resources and colony growth in an invasive ant: the importance of honeydew-producing hemiptera in carbohydrate transfer across trophic levels. Environ. Entomol. 37, 487–493. https://doi.org/10.1093/ee/37.2.487 (2008).Article
PubMed
Google Scholar
74.Dornhaus, A. & Franks, N. R. Colony size affects collective decision-making in the ant Temnothorax albipennis. Insectes Soc. 53, 420–427. https://doi.org/10.1007/s00040-006-0887-4 (2006).Article
Google Scholar
75.Ruel, C., Cerda, X. & Boulay, R. Behaviour-mediated group size effect constrains reproductive decisions in a social insect. Anim. Behav. 84, 853–860. https://doi.org/10.1016/j.anbehav.2012.07.006 (2012).Article
Google Scholar
76.Sommer, K. & Hölldobler, B. Colony founding by queen association and determinants of reduction in queen number in the ant Lasius niger. Anim. Behav. 50, 287–294. https://doi.org/10.1006/anbe.1995.0244 (1995).Article
Google Scholar
77Boomsma, J., Van der Lee, G. & Van der Have, T. On the production ecology of Lasius niger (Hymenoptera: Formicidae) in successive coastal dune valleys. J. Anim. Ecol. https://doi.org/10.2307/4017 (1982).Article
Google Scholar
78.Zioni, N., Soroker, V. & Chejanovsky, N. Replication of varroa destructor virus 1 (VDV-1) and a varroa destructor virus 1–deformed wing virus recombinant (VDV-1–DWV) in the head of the honey bee. Virology 417, 106–112. https://doi.org/10.1016/j.virol.2011.05.009 (2011).CAS
Article
PubMed
Google Scholar
79.Wood, T. et al. Managed honey bees as a radar for wild bee decline?. Apidologie 51, 1100–1116. https://doi.org/10.1007/s13592-020-00788-9 (2020).Article
Google Scholar
80.Stroeymeyt, N. et al. Social network plasticity decreases disease transmission in a eusocial insect. Science 362, 941–945. https://doi.org/10.1126/science.aat4793 (2018).ADS
CAS
Article
PubMed
Google Scholar
81.Folt, C., Chen, C., Moore, M. & Burnaford, J. Synergism and antagonism among multiple stressors. Limnol. Oceanogr. 44, 864–877. https://doi.org/10.4319/lo.1999.44.3_part_2.0864 (1999).ADS
Article
Google Scholar
82.Gennings, C. et al. A unifying concept for assessing toxicological interactions: changes in slope. Toxicol. Sci. 88, 287–297. https://doi.org/10.1093/toxsci/kfi275 (2005).CAS
Article
PubMed
Google Scholar
83.Jonker, M. J., Svendsen, C., Bedaux, J. J., Bongers, M. & Kammenga, J. E. Significance testing of synergistic/antagonistic, dose level-dependent, or dose ratio-dependent effects in mixture dose-response analysis. Environ. Toxicol. Chem. Int. J. 24, 2701–2713. https://doi.org/10.1897/04-431R.1 (2005).CAS
Article
Google Scholar
84.Brühl, C. A. & Zaller, J. G. Biodiversity decline as a consequence of an inadequate environmental risk assessment of pesticides. Front. Environ. Sci. 7, 177. https://doi.org/10.3389/fenvs.2019.00177 (2019).Article
Google Scholar
85.Ortega-Calvo, J.-J. et al. From bioavailability science to regulation of organic chemicals. Environ. Sci. Technol. 49, 10255–10264. https://doi.org/10.1021/acs.est.5b02412 (2015).ADS
CAS
Article
PubMed
Google Scholar
86.Dauber, J. & Wolters, V. Edge effects on ant community structure and species richness in an agricultural landscape. Biodivers. Conserv. 13, 901–915. https://doi.org/10.1023/B:BIOC.0000014460.65462.2b (2004).Article
Google Scholar
87.EFSA PPR Panel (EFSA Panel on Plant Protection Products and their Residues). Scientific Opinion addressing the state of the science on risk assessment of plant protection products for non‐target arthropods. EFSA Journal 13, 3996 (2015). https://doi.org/10.2903/j.efsa.2015.399688.EFSA PPR Panel (EFSA Panel on Plant Protection Products and their Residues). Scientific Opinion addressing the state of the science on risk assessment of plant protection products for in-soil organisms. EFSA Journal 15, 4690. https://doi.org/10.2903/j.efsa.2017.4690 (2017).89.Organization for Economic Cooperation and Development (OECD). OECD Guidelines for the Testing of Chemicals, section 2—Effects on Biotic Systems. (OECD Publishing, 2019).90.Storck, V., Karpouzas, D. G. & Martin-Laurent, F. Towards a better pesticide policy for the European Union. Sci. Total Environ. 575, 1027–1033. https://doi.org/10.1016/j.scitotenv.2016.09.167 (2017).ADS
CAS
Article
PubMed
Google Scholar
91.De Miranda, J. R. et al. Standard methods for virus research in Apis mellifera. J. Apic. Res. 52, 1–56. https://doi.org/10.3896/IBRA.1.52.4.22 (2013).ADS
CAS
Article
Google Scholar
92.Evans, J. D. et al. Standard methods for molecular research in Apis mellifera. J. Apic. Res. 52, 1–54. https://doi.org/10.3896/IBRA.1.52.4.11 (2013).CAS
Article
Google Scholar
93.Lowenthal, M. S., Quittman, E. & Phinney, K. W. Absolute quantification of RNA or DNA using acid hydrolysis and mass spectrometry. Anal. Chem. 91, 14569–14576. https://doi.org/10.1021/acs.analchem.9b03625 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
94.Locke, B., Forsgren, E., Fries, I. & De Miranda, J. R. Acaricide treatment affects viral dynamics in Varroa destructor-infested honey bee colonies via both host physiology and mite control. Appl. Environ. Microbiol. 78, 227–235. https://doi.org/10.1128/AEM.06094-11 (2012).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
95.R Development Core Team. R: A language and environment for statistical computing. R Version 3.6.3. R Foundation for Statistical Computing (Vienna, 2020). http://cran.r-project.org.96.Therneau, T. A Package for Survival Analysis in S. version 2.38 (2015). http://cran.rproject.org/package=survival97.Kutner, M. H., Nachtsheim, C. J., Neter, J. & Li, W. Applied Linear Statistical Models Vol. 5 (McGraw-Hill Irwin, 2005).
Google Scholar
98.Wobbrock, J. O., Findlater, L., Gergle, D. & Higgins, J. J. The aligned rank transform for nonparametric factorial analyses using only anova procedures. in Proceedings of the SIGCHI conference on human factors in computing systems (eds. Tan, D., Fitzpatrick, G., Gutwin, C., Begole, B. & Kellogg, W. A.), 143–146, doi:https://doi.org/10.1145/1978942.1978963 (Association for Computing Machinery, New York, United States, 2011)99.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article
Google Scholar More