More stories

  • in

    General decline in the diversity of the airborne microbiota under future climatic scenarios

    1.Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, 9214 (2017).Article 

    Google Scholar 
    2.Creamean, J. M. et al. Dust and biological aerosols from the Sahara and Asia influence precipitation in the western US. Science 339, 1572–1578 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Hervàs, A., Camarero, L., Reche, I. & Casamayor, E. O. Viability and potential for immigration of airborne bacteria from Africa that reach high mountain lakes in Europe. Environ. Microbiol. 11, 1612–1623 (2009).Article 

    Google Scholar 
    4.Barberán, A. et al. Continental-scale distributions of dust-associated bacteria and fungi. Proc. Natl. Acad. Sci. 112, 5756–5761 (2015).ADS 
    Article 

    Google Scholar 
    5.Brown, J. K. & Hovmøller, M. S. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297, 537–541 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Mazar, Y., Cytryn, E., Erel, Y. & Rudich, Y. Effect of dust storms on the atmospheric microbiome in the Eastern Mediterranean. Environ. Sci. Technol. 50, 4194–4202 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    7.Griffin, E. A. & Carson, W. P. The ecology and natural history of foliar bacteria with a focus on tropical forests and agroecosystems. Bot. Rev. 81, 105–149 (2015).Article 

    Google Scholar 
    8.Guerrieri, R. et al. Partitioning between atmospheric deposition and canopy microbial nitrification into throughfall nitrate fluxes in a Mediterranean forest. J. Ecol. 108, 626–640 (2020).CAS 
    Article 

    Google Scholar 
    9.Fröhlich-Nowoisky, J. et al. Bioaerosols in the earth system: Climate, health, and ecosystem interactions. Atmos. Res. 182, 346–376 (2016).Article 

    Google Scholar 
    10.Hutchins, D. A. et al. Climate change microbiology—Problems and perspectives. Nat. Rev. Microbiol. 17, 391–396 (2019).CAS 
    Article 

    Google Scholar 
    11.Singh, B. K., Bardgett, R. D., Smith, P. & Reay, D. S. Microorganisms and climate change: Terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 8, 779–790 (2010).CAS 
    Article 

    Google Scholar 
    12.Cavicchioli, R. et al. Scientists’ warning to humanity: Microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).CAS 
    Article 

    Google Scholar 
    13.Tipton, L. et al. Fungal aerobiota are not affected by time nor environment over a 13-y time series at the Mauna Loa Observatory. Proc. Natl. Acad. Sci. 116, 25728–25733 (2019).CAS 
    Article 

    Google Scholar 
    14.Cáliz, J., Triadó-Margarit, X., Camarero, L. & Casamayor, E. O. A long-term survey unveils strong seasonal patterns in the airborne microbiome coupled to general and regional atmospheric circulations. Proc. Natl. Acad. Sci. 115, 12229–12234 (2018).ADS 
    Article 

    Google Scholar 
    15.Brągoszewska, E. & Pastuszka, J. S. Influence of meteorological factors on the level and characteristics of culturable bacteria in the air in Gliwice, Upper Silesia (Poland). Aerobiologia 34, 241–255. https://doi.org/10.1007/s10453-018-9510-1 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Ruíz-Gil, T. et al. Airborne bacterial communities of outdoor environments and their associated influencing factors. Environ. Int. 145, 106156 (2020).Article 

    Google Scholar 
    17.Titos, G. et al. Retrieval of aerosol properties from ceilometer and photometer measurements: Long-term evaluation with in situ data and statistical analysis at Montsec (southern Pyrenees). Atmos. Meas. Tech. 12, 3255–3267 (2019).CAS 
    Article 

    Google Scholar 
    18.Camarero, L., Bacardit, M., de Diego, A. & Arana, G. Decadal trends in atmospheric deposition in a high elevation station: Effects of climate and pollution on the long-range flux of metals and trace elements over SW Europe. Atmos. Environ. 167, 542–552 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Triadó-Margarit, X., Caliz, J., Reche, I. & Casamayor, E. O. High similarity in bacterial bioaerosol compositions between the free troposphere and atmospheric depositions collected at high-elevation mountains. Atmos. Environ. 203, 79–86 (2019).ADS 
    Article 

    Google Scholar 
    20.Els, N. et al. Microbial composition in seasonal time series of free tropospheric air and precipitation reveals community separation. Aerobiologia 35, 671–701 (2019).Article 

    Google Scholar 
    21.Reche, I., D’Orta, G., Mladenov, N., Winget, D. M. & Suttle, C. A. Deposition rates of viruses and bacteria above the atmospheric boundary layer. ISME J. 12, 1154–1162 (2018).CAS 
    Article 

    Google Scholar 
    22.Triadó-Margarit, X., Cáliz, J. & Casamayor, E. O. A long-term atmospheric baseline for intercontinental exchange of airborne pathogens. Environment International., ENVINT-D-21-01147R1 (2021).23.Barberán, A., Henley, J., Fierer, N. & Casamayor, E. O. Structure, inter-annual recurrence, and global-scale connectivity of airborne microbial communities. Sci. Total Environ. 47, 187–195 (2014).ADS 
    Article 

    Google Scholar 
    24.Ontiveros, V. J., Capitán, J. A., Casamayor, E. O. & Alonso, D. The characteristic time of ecological communities. Ecology 102(2), e03247 (2021).Article 

    Google Scholar 
    25.Alonso, D., Pinyol-Gallemí, A., Alcoverro, T. & Arthur, R. Fish community reassembly after a coral mass mortality: Higher trophic groups are subject to increased rates of extinction. Ecol. Lett. 18, 451–461 (2015).Article 

    Google Scholar 
    26.Ontiveros, V. J., Capitán, J. A., Arthur, R., Casamayor, E. O. & Alonso, D. Colonization and extinction rates estimated from temporal dynamics of ecological communities: The island r package. Methods Ecol. Evol. 10, 1108–1117 (2019).Article 

    Google Scholar 
    27.OPCC-CTP. Le changement climatique dans les Pyrénées: impacts, vulnérabilités et adaptation. Bases de connaissances pour la future stratégie d’adaptation au changement climatique dans les Pyrénées. ISBN: 978-84-09-06268-3. https://www.opcc-ctp.org/sites/default/files/documentacion/opcc-informe-fr-print.pdf (2018).28.Chudobova, D. et al. Effects of stratospheric conditions on the viability, metabolism and proteome of prokaryotic cells. Atmosphere 6, 1290–1306 (2015).ADS 
    Article 

    Google Scholar 
    29.Elbert, W., Taylor, P., Andreae, M. & Pöschl, U. Contribution of fungi to primary biogenic aerosols in the atmosphere: Wet and dry discharged spores, carbohydrates, and inorganic ions. Atmos. Chem. Phys. 7, 4569–4588 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    30.Bowers, R. M., McCubbin, I. B., Hallar, A. G. & Fierer, N. Seasonal variability in airborne bacterial communities at a high-elevation site. Atmos. Environ. 50, 41–49 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Tonkin, J. D., Bogan, M. T., Bonada, N., Rios-Touma, B. & Lytle, D. A. Seasonality and predictability shape temporal species diversity. Ecology 98, 1201–1216 (2017).Article 

    Google Scholar 
    32.Delort, A. M. et al. Microbial Ecology of Extreme Environments 215–245 (Springer, 2017).Book 

    Google Scholar 
    33.Catalan, J. et al. High mountain lakes: extreme habitats and witnesses of environmental changes. Limnetica 25, 551–584 (2006).
    Google Scholar 
    34.Ruiz-González, C., Niño-García, J. P. & del Giorgio, P. A. Terrestrial origin of bacterial communities in complex boreal freshwater networks. Ecol. Lett. 18, 1198–1206 (2015).Article 

    Google Scholar 
    35.Maignien, L., DeForce, E. A., Chafee, M. E., Eren, A. M. & Simmons, S. L. Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana phyllosphere communities. MBio 5, e00682 (2014).Article 

    Google Scholar 
    36.Hellberg, R. S. & Chu, E. Effects of climate change on the persistence and dispersal of foodborne bacterial pathogens in the outdoor environment: A review. Crit. Rev. Microbiol. 42, 548–572 (2016).Article 

    Google Scholar 
    37.Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).Article 

    Google Scholar  More

  • in

    Humans in the upstream can exacerbate climate change impacts on water birds’ habitat in the downstream

    1.Bindoff, N. L. et al. Observations: Oceanic climate change and sea level. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.) 385–432 (Cambridge University Press, 2007).
    Google Scholar 
    2.IPCC. Climate Change 2001: Synthesis Report 397 (IPCC, 2001).
    Google Scholar 
    3.IPCC Climate change 2014: Synthesis report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pachauri, R. & Meyer, L.) (IPCC, 2014).
    Google Scholar 
    4.Ye, L. & Grimm, N. B. Modelling potential impacts of climate change on water and nitrate export from a mid-sized, semiarid watershed in the US Southwest. Clim. Change 120(1–2), 419–431 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    5.Zhao, A., Zhu, X., Liu, X., Pan, Y. & Zuo, D. Impacts of land use change and climate variability on green and blue water resources in the Weihe River Basin of northwest China. CATENA 137, 318–327 (2016).Article 

    Google Scholar 
    6.Langerwisch, F., Václavík, T., von Bloh, W., Vetter, T. & Thonicke, K. Combined effects of climate and land-use change on the provision of ecosystem services in rice agro-ecosystems. Environ. Res. Lett. 13(1), 015003 (2017).ADS 
    Article 
    CAS 

    Google Scholar 
    7.Gordon, L. J., Peterson, G. D. & Bennett, E. M. Agricultural modifications of hydrological flows create ecological surprises. Trends Ecol. Evol. 23(4), 211–219 (2008).PubMed 
    Article 

    Google Scholar 
    8.Barry, R. G. The cryosphere—Past, present, and future: A review of the frozen water resources of the world. Polar Geogr. 34(4), 219–227 (2011).Article 

    Google Scholar 
    9.El-Khoury, A. et al. Combined impacts of future climate and land use changes on discharge, nitrogen and phosphorus loads for a Canadian river basin. J. Environ. Manag. 151, 76–86 (2015).CAS 
    Article 

    Google Scholar 
    10.Van der Pol, T. D., Van Ierland, E. C., Gabbert, S., Weikard, H. P. & Hendrix, E. M. T. Impacts of rainfall variability and expected rainfall changes on cost-effective adaptation of water systems to climate change. J. Environ. Manag. 154, 40–47 (2015).Article 

    Google Scholar 
    11.Wu, Y., Liu, S., Sohl, T. L. & Young, C. J. Projecting the land cover change and its environmental impacts in the Cedar River Basin in the Midwestern United States. Environ. Res. Lett. 8(2), 024025 (2013).ADS 
    Article 

    Google Scholar 
    12.Zhou, F. et al. Hydrological response to urbanization at different spatio-temporal scales simulated by coupling of CLUE-S and the SWAT model in the Yangtze River Delta region. J. Hydrol. 485, 113–125 (2013).ADS 
    Article 

    Google Scholar 
    13.Malhi, Y. et al. Climate change, deforestation, and the fate of the Amazon. Science 319(5860), 169–172 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Munia, H. A., Guillaume, J. H., Mirumachi, N., Wada, Y. & Kummu, M. How downstream sub-basins depend on upstream inflows to avoid scarcity: Typology and global analysis of transboundary rivers. Hydrol. Earth Syst. Sci. 22(5), 2795–2809 (2018).ADS 
    Article 

    Google Scholar 
    15.Bonan, G. B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320(5882), 1444–1449 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    16.National Research Council. Informing an Effective Response to Climate Change (National Academies Press, 2011).
    Google Scholar 
    17.Uchida, Y. & Hayashi, T. Effects of hydrogeological and climate change on the subsurface thermal regime in the Sendai Plain. Phys. Earth Planet. Inter. 152(4), 292–304 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    18.Hua, F. et al. Opportunities for biodiversity gains under the world’s largest reforestation program. Nat Commun. 7(1), 1–11 (2016).ADS 

    Google Scholar 
    19.Penna, D., Borga, M., Aronica, G. T., Brigandì, G. & Tarolli, P. T. infuence of grid resolution on the prediction of natural and road related shallow landslides. Hydrol. Earth Syst. Sci. 18, 2127–2139 (2014).ADS 
    Article 

    Google Scholar 
    20.Fu, Q., Li, B., Hou, Y., Bi, X. & Zhang, X. Effects of land use and climate change on ecosystem services in Central Asia’s arid regions: A case study in Altay Prefecture, China. Sci. Total Environ. 607, 633–646 (2017).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    21.Giuliani, M., Li, Y., Castelletti, A. & Gandolfi, C. A coupled human-natural systems analysis of irrigated agriculture under changing climate. Water Resour. Res. 52(9), 6928–6947 (2016).ADS 
    Article 

    Google Scholar 
    22.Wilson, R. R. et al. Relative influences of climate change and human activity on the onshore distribution of polar bears. Biol. Conserv. 214, 288–294 (2017).Article 

    Google Scholar 
    23.Mukul, S. A. et al. Combined effects of climate change and sea-level rise project dramatic habitat loss of the globally endangered Bengal tiger in the Bangladesh Sundarbans. Sci. Total Environ. 663, 830–840 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Flynn, D. F. et al. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12(1), 22–33 (2009).PubMed 
    Article 

    Google Scholar 
    25.Bregman, T. P. et al. Using avian functional traits to assess the impact of land-cover change on ecosystem processes linked to resilience in tropical forests. Proc. R. Soc. B Biol. Sci. 283, 20161289 (2016).Article 

    Google Scholar 
    26.Peres, C. A. & Palacios, E. Basin-wide effects of game harvest on vertebrate population densities in Amazonian forests: Implications for animal-mediated seed dispersal. Biotropica 39, 304–315 (2007).Article 

    Google Scholar 
    27.Bender, I. M. et al. Projected impacts of climate change on functional diversity of frugivorous birds along a tropical elevational gradient. Sci. Rep. 9(1), 1–12 (2019).CAS 
    Article 

    Google Scholar 
    28.Al-Faraj, F. A. & Scholz, M. Impact of upstream anthropogenic river regulation on downstream water availability in transboundary river watersheds. Int. J. Water Resour. Dev. 515(31), 28–49 (2015).Article 

    Google Scholar 
    29.Drieschova, A., Giordano, M. & Fischhendler, I. Governance mechanisms to address flow variability in water treaties. Glob. Environ. Change 18, 285–295 (2008).Article 

    Google Scholar 
    30.Beck, L., Bernauer, T., Siegfried, T. & Böhmelt, T. Implications of hydro-political dependency for international water cooperation and conflict: Insights from new data. Polit. Geogr. 42, 23–33 (2014).Article 

    Google Scholar 
    31.Maleki, S. et al. Human and climate effects on the Hamoun wetlands. Weather Clim. Soc. 11, 609–622 (2019).ADS 
    Article 

    Google Scholar 
    32.Goes, B. J. M., Howarth, S. E., Wardlaw, R. B., Hancock, I. R. & Parajuli, U. N. Integrated water resources management in an insecure river basin: A case study of Helmand River Basin, Afghanistan. Int. J. Water Resour. Dev. 32(1), 3–25 (2016).Article 

    Google Scholar 
    33.Lua, D. & Weng, Q. Extraction of urban impervious surfaces from an IKONOS image. Int. J. Remote Sens. 30, 1297–1311 (2009).Article 

    Google Scholar 
    34.Dong, Z. Y. et al. Spatial decision analysis on wetlands restoration in the lower reaches of Songhua River (LRSR), Northeast China, based on remote sensing and GIS. Int. J. Environ. Res. 8(3), 849–860 (2014).
    Google Scholar 
    35.Ramsar. The List of Wetlands of International Importance 54 (Ramsar, 2016).
    Google Scholar 
    36.Lumbroso, D. The development of a flood forecasting system for the Sistan plain in Iran. In International Conference on Innovation Advances and Implementation of Flood Forecasting Technology, 17 to 19 October 2005 (2005).37.Scheraga, J. D., Ebi, K. L., Furlow, J. & Moreno, A. R. From science to policy: Developing responses to climate change. In Climate Change and Human Health: Risks and Responses Vol. 237 (eds McMichael, A. J. et al. et al.) 266 (World Health Organization/World Meteorological Organization/United Nations Environment Programme, 2003).
    Google Scholar 
    38.FAO. Analysis on Water Availability and Uses in Afghanistan River Basins. AFG/3402 FPT (2015).39.Langerwisch, F., Václavík, T., von Bloh, W., Vetter, T. & Thonicke, K. Combined effects of climate and land-use change on the provision of ecosystem services in rice agro-ecosystems. Int. J. Environ. Res. 13(1), 015003 (2017).
    Google Scholar 
    40.Scullion, J. J., Vogt, K. A., Sienkiewicz, A., Gmur, S. J. & Trujillo, C. Assessing the influence of land-cover change and conflicting land-use authorizations on ecosystem conversion on the forest frontier of Madre de Dios, Peru. Biol. Conserv. 171, 247–258 (2014).Article 

    Google Scholar 
    41.National Research Council. Informing an Effective Response to Climate Change 346 (National Academies Press, 2010).
    Google Scholar 
    42.United Nations Development Programme (UNDP). Restoration and Sustainable Use of the Shared Sistan Basin (2005).43.Maleki, S. et al. Habitat mapping as a tool for water birds’ conservation planning in an arid zone wetland: The case study Hamun wetland. Ecol. Eng. 95, 594–603 (2016).Article 

    Google Scholar 
    44.Alavi Panah, S. K. The Applications of Remote Sensing in the Earth Sciences (University of Tehran, 2003).
    Google Scholar 
    45.Shamohammadi, Z. & Maleki, S. The Life of Hamun 250 (Jahad Daneshgahi, 2011).
    Google Scholar 
    46.Bigdeli, B., Samadzadegan, F. & Reinartz, P. A multiple SVM system for classification of hyperspectral remote sensing data. J. Indian Soc. Remote 41, 763–776 (2013).Article 

    Google Scholar 
    47.Bousbih, S. et al. Potential of sentinel-1 radar data for the assessment of soil and cereal cover parameters. Sensors 17, 2617 (2017).ADS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    48.Gregory, R. D., Gibbons, D. W. & Donald, P. F. Bird census and survey techniques. In Bird Ecology and Conservation; A Handbook of Techniques (Sutherland, W. J. & Newton I. Et Green, R. E., eds.) 17–56 (Oxford University Press, 2004).49.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Mod. 190(3–4), 231–259 (2006).Article 

    Google Scholar 
    50.Young, N., Carter, L. & Evabgelista, P. A Maxent Model v3.3.3e Tutorial (arcgis v10) (Natural Resource Ecology Laboratory at Colorado State University and the National Institute of Invasive Species Science, 2011).
    Google Scholar  More

  • in

    Annual changes in the Biodiversity Intactness Index in tropical and subtropical forest biomes, 2001–2012

    1.Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    2.McRae, L., Deinet, S. & Freeman, R. The diversity-weighted living planet index: Controlling for taxonomic bias in a global biodiversity indicator. PloS One 12, e0169156 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    3.Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evolut. Systemat. 46, 523–549 (2015).Article 

    Google Scholar 
    4.Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol. Lett. 19, 992–1006 (2016).PubMed 
    Article 

    Google Scholar 
    5.Dobson, A. Monitoring global rates of biodiversity change: Challenges that arise in meeting the convention on biological diversity (CBD) 2010 goals. Philos. Trans. R. Soc. B Biol. Sci. 360, 229–241 (2005).Article 

    Google Scholar 
    6.Walpole, M. et al. Tracking progress toward the 2010 biodiversity target and beyond. Science 325, 1503–1504 (2009).PubMed 
    Article 

    Google Scholar 
    7.Butchart, S. H. et al. Global biodiversity: Indicators of recent declines. Science 1164–1168, (2010).8.Jones, J. P. et al. The why, what, and how of global biodiversity indicators beyond the 2010 target. Conserv. Biol. 25, 450–457 (2011).PubMed 
    Article 

    Google Scholar 
    9.Lawton, J. H. et al. Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature 391, 72–76 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    10.McKinney, M. L. Extinction vulnerability and selectivity: Combining ecological and paleontological views. Annu. Rev. Ecol. Systemat. 28, 495–516 (1997).Article 

    Google Scholar 
    11.Cardillo, M. et al. The predictability of extinction: Biological and external correlates of decline in mammals. Proc. R. Soc. Lond. B Biol. Sci. 275, 1441–1448 (2008).
    Google Scholar 
    12.Newbold, T. et al. A global model of the response of tropical and sub-tropical forest biodiversity to anthropogenic pressures. Proc. R. Soc. Lond. B Biol. Sci. 281, 20141371 (2014).
    Google Scholar 
    13.on Biodiversity, I. S.-P. P. & Ecosystem Services, I. The methodological assessment report on scenarios and models of biodiversity and ecosystem services. https://doi.org/10.5281/zenodo.3235429 (2016).14.Jetz, W. et al. Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evolut. 3, 539–551 (2019).Article 

    Google Scholar 
    15.LPI. Living planet index database. http://www.livingplanetindex.org (2016).16.Dornelas, M. et al. Biotime: A database of biodiversity time series for the anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science. 366, 339–345. https://doi.org/10.1126/science.aaw1620 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Gonzalez, A. et al. Estimating local biodiversity change: A critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).PubMed 
    Article 

    Google Scholar 
    19.Purvis, A. et al. Modelling and projecting the response of local terrestrial biodiversity worldwide to land use and related pressures: The predicts project. Adv. Ecol. Res. 58, 201–241 (2018).Article 

    Google Scholar 
    20.Leung, B., Greenberg, D. A. & Green, D. M. Trends in mean growth and stability in temperate vertebrate populations. Diversity Distribut. 23, 1372–1380 (2017).Article 

    Google Scholar 
    21.Scholes, R. & Biggs, R. A biodiversity intactness index. Nature 434, 45–49 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived?. Nature. 471, 51–57 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Ceballos, G. & Ehrlich, P. R. Mammal population losses and the extinction crisis. Science 296, 904–907 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Mace, G. M. et al. Approaches to defining a planetary boundary for biodiversity. Glob. Environ. Change 28, 289–297 (2014).Article 

    Google Scholar 
    28.Steffen, W. et al. Planetary boundaries: Guiding human development on a changing planet. Science 347, 1259855 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    29.Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).Article 

    Google Scholar 
    30.Mandl, N., Lehnert, M., Kessler, M. & Gradstein, S. R. A comparison of alpha and beta diversity patterns of ferns, bryophytes and macrolichens in tropical montane forests of southern ecuador. Biodiversity Conservat. 19, 2359–2369 (2010).Article 

    Google Scholar 
    31.Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation? Trends Ecol. Evolut. 31, 67–80 (2016).Article 

    Google Scholar 
    32.Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184 (2018).Article 

    Google Scholar 
    33.Cardinale, B. J., Gonzalez, A., Allington, G. R. & Loreau, M. Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biol. Conservat. 219, 175–183 (2018).Article 

    Google Scholar 
    34.Díaz, S. et al. Pervasive human-driven decline of life on earth points to the need for transformative change. Science. https://doi.org/10.1126/science.aax3100 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? a global assessment. Science 353, 288–291 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Hudson, L. N. et al. The database of the predicts (projecting responses of ecological diversity in changing terrestrial systems) project. Ecol. Evolut. 7, 145–188 (2017).Article 

    Google Scholar 
    37.Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827–832 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl. Acad. Sci. 110, E2602–E2610. https://doi.org/10.1073/pnas.1302251110 (2013).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Bowler, D. E. et al. Mapping human pressures on biodiversity across the planet uncovers anthropogenic threat complexes. People Nat. 2, 380–394. https://doi.org/10.1002/pan3.10071 (2020).Article 

    Google Scholar 
    40.Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Geist, H. J. & Lambin, E. F. Proximate causes and underlying driving forces of tropical deforestation: Tropical forests are disappearing as the result of many pressures, both local and regional, acting in various combinations in different geographical locations. BioScience 52, 143–150 (2002).Article 

    Google Scholar 
    42.Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    45.Pettorelli, N. et al. Framing the concept of satellite remote sensing essential biodiversity variables: Challenges and future directions. Remote Sens. Ecol. Conservat. 2, 122–131 (2016).Article 

    Google Scholar 
    46.Benítez-López, A., Santini, L. L., Schipper, A. M., Busana, M. & Huijbregts, M. A. J. Intact but empty forests? Patterns of hunting-induced mammal defaunation in the tropics. PLOS Biol. 17, 1–18. https://doi.org/10.1371/journal.pbio.3000247 (2019).CAS 
    Article 

    Google Scholar 
    47.Morales-Hidalgo, D., Oswalt, S. N. & Somanathan, E. Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the global forest resources assessment 2015. Forest Ecol. Manag. 352, 68–77 (2015).Article 

    Google Scholar 
    48.Sloan, S. & Sayer, J. A. Forest resources assessment of 2015 shows positive global trends but forest loss and degradation persist in poor tropical countries. Forest Ecol. Manag. 352, 134–145 (2015).Article 

    Google Scholar 
    49.Smith, R. J., Muir, R. D., Walpole, M. J., Balmford, A. & Leader-Williams, N. Governance and the loss of biodiversity. Nature 426, 67 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Xu, R. Measuring explained variation in linear mixed effects models. Stat. Med. 22, 3527–3541. https://doi.org/10.1002/sim.1572 (2003).Article 
    PubMed 

    Google Scholar 
    52.Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P. & Makowski, D. performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 6, 3139, 10.21105/joss.03139 (2021).ADS 

    Google Scholar 
    53.Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    54.Brook, B. W., Ellis, E. C., Perring, M. P., Mackay, A. W. & Blomqvist, L. Does the terrestrial biosphere have planetary tipping points?. Trends Ecol. Evolut. 28, 396–401 (2013).Article 

    Google Scholar 
    55.Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Montoya, J. M., Donohue, I. & Pimm, S. L. Planetary boundaries for biodiversity: Implausible science, pernicious policies. Trends Ecol. Evolut. 33, 71–73. https://doi.org/10.1016/j.tree.2017.10.004 (2018).Article 

    Google Scholar 
    57.Homer-Dixon, T. Environment, Scarcity, and Violence (Princeton University Press, 2010).Book 

    Google Scholar 
    58.Murphy, G. E. & Romanuk, T. N. A meta-analysis of declines in local species richness from human disturbances. Ecol. Evolut. 4, 91–103 (2014).Article 

    Google Scholar 
    59.Betts, M. G. et al. Extinction filters mediate the global effects of habitat fragmentation on animals. Science 366, 1236–1239. https://doi.org/10.1126/science.aax9387 (2019) https://science.sciencemag.org/content/366/6470/1236.full.pdf.ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    60.Laurance, W. F. et al. Averting biodiversity collapse in tropical forest protected areas. Nature 489, 290–294 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    61.Leung, B. et al. Clustered versus catastrophic global vertebrate declines. Nature 588, 267–271 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Sloan, S., Jenkins, C. N., Joppa, L. N., Gaveau, D. L. & Laurance, W. F. Remaining natural vegetation in the global biodiversity hotspots. Biol. Conservat. 177, 12–24 (2014).Article 

    Google Scholar 
    64.Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Potapov, P. et al. The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Phillips, H. R., Newbold, T. & Purvis, A. Land-use effects on local biodiversity in tropical forests vary between continents. Biodiversity Conservat. 26, 2251–2270 (2017).Article 

    Google Scholar 
    67.Newbold, T. et al. Global patterns of terrestrial assemblage turnover within and among land uses. Ecography 39, 1151–1163 (2016).Article 

    Google Scholar 
    68.Rouget, M., Cowling, R., Vlok, J., Thompson, M. & Balmford, A. Getting the biodiversity intactness index right: The importance of habitat degradation data. Glob. Change Biol. 12, 2032–2036 (2006).ADS 
    Article 

    Google Scholar 
    69.Koh, L. P. & Wilcove, D. S. Is oil palm agriculture really destroying tropical biodiversity?. Conserv. Lett. 1, 60–64 (2008).Article 

    Google Scholar 
    70.WWF. In Living planet report 2020 (eds. Almond, R. E. A., Grooten, M., & Petersen, T) (WWF, Gland, Switzerland) (2004).71.IPBES. Summary for policymakers of the methodological assessment of scenarios and models of biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem services (ed. Ferrier, S), Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany, 348 (2016).72.Brauman, K. A. et al. Chapter 2.3. Status and Trends—Nature’s Contributions to People (NCP). https://doi.org/10.5281/zenodo.3832036 (2020).73.Sanderson, E. W. et al. The human footprint and the last of the wild: the human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. BioScience 52, 891–904 (2002).Article 

    Google Scholar 
    74.Martin, P., Green, R. E. & Balmford, A. Is biodiversity as intact as we think it is?. PeerJ Preprints 7, e27575v1 (2019).
    Google Scholar 
    75.Newbold, T., Sanchez-Ortiz, K., De Palma, A., Hill, S. L. & Purvis, A. Reply to ‘the biodiversity intactness index may underestimate losses’. Nat. Ecol. Evolut. 3, 864–865 (2019).Article 

    Google Scholar 
    76.Faith, D. P., Ferrier, S. & Williams, K. J. Getting biodiversity intactness indices right: Ensuring that ‘biodiversity’ reflects ‘diversity’. Glob. Change Biol. 14, 207–217 (2008).ADS 
    Article 

    Google Scholar 
    77.Jetz, W., Wilcove, D. S. & Dobson, A. P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 5, e157 (2007).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    78.Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. R. Soc. B 285, 20180792 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Senior, R. A., Hill, J. K., González del Pliego, P., Goode, L. K. & Edwards, D. P. A pantropical analysis of the impacts of forest degradation and conversion on local temperature. Ecol. Evolut. 7, 7897–7908 (2017).Article 

    Google Scholar 
    80.De Chazal, J. & Rounsevell, M. D. Land-use and climate change within assessments of biodiversity change: a review. Glob. Environ. Change 19, 306–315 (2009).Article 

    Google Scholar 
    81.Schipper, A. M. et al. Projecting terrestrial biodiversity intactness with globio 4. Glob. Change Biol. 26, 760–771. https://doi.org/10.1111/gcb.14848 (2020).ADS 
    Article 

    Google Scholar 
    82.Wearn, O. R., Reuman, D. C. & Ewers, R. M. Extinction debt and windows of conservation opportunity in the Brazilian amazon. Science 337, 228–232 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    83.De Palma, A. et al. Challenges with inferring how land-use affects terrestrial biodiversity: Study design, time, space and synthesis. In Advances in Ecological Research, vol. 58, 163–199 (Elsevier, 2018).84.De Palma, A. et al. Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases. Sci. Rep. 6, 31153 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    85.Bicknell, J. E., Gaveau, D. L., Davies, Z. G. & Struebig, M. J. Saving logged tropical forests: Closing roads will bring immediate benefits. Front. Ecol. Environ. 13, 73–74 (2015).Article 

    Google Scholar 
    86.Laurance, W. F., Goosem, M. & Laurance, S. G. Impacts of roads and linear clearings on tropical forests. Trends Ecol. Evolut. 24, 659–669 (2009).Article 

    Google Scholar 
    87.Lloyd, C. T., Sorichetta, A. & Tatem, A. J. High resolution global gridded data for use in population studies. Sci. Data 4, 170001 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Watermeyer, K. E. et al. Using decision science to evaluate global biodiversity indices. Conserv. Biol. 35, 492–501 (2021).89.Olsen, E. et al. Ecosystem model skill assessment. Yes we can!. PLoS One 11, e0146467 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    90.Hoskins, A. J. et al. Downscaling land-use data to provide global 30 ’ ’estimates of five land-use classes. Ecol. Evolut. 6, 3040–3055 (2016).Article 

    Google Scholar 
    91.Fulton, E. A., Blanchard, J. L., Melbourne-Thomas, J., Plagányi, É. E. & Tulloch, V. J. Where the ecological gaps remain, a modelers’ perspective. Front. Ecol. Evolut. 7, 424 (2019).Article 

    Google Scholar 
    92.Watermeyer, K. E. et al. Using decision science to evaluate global biodiversity indices. Conservat. Biol. 35, 492–501 (2021).Article 

    Google Scholar 
    93.Bradshaw, C. J., Sodhi, N. S. & Brook, B. W. Tropical turmoil: A biodiversity tragedy in progress. Front. Ecol. Environ. 7, 79–87 (2009).Article 

    Google Scholar 
    94.De Palma, A., Sanchez-Ortiz, K. & Purvis, A. Calculating the Biodiversity Intactness Index: the PREDICTS implementation (2019). This is the first release of a repository from https://github.com/adrianadepalma/BII_tutorial You can also view the document here. https://adrianadepalma.github.io/BII_tutorial/bii_example.html. https://doi.org/10.5281/zenodo.3518067.95.Hudson, L. N. et al. The predicts database: A global database of how local terrestrial biodiversity responds to human impacts. Ecol. Evolut. 4, 4701–4735 (2014).Article 

    Google Scholar 
    96.Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).Article 

    Google Scholar 
    97.Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    98.for International Earth Science Information Network (CIESIN) Columbia University, C. Gridded Population of the World, Version 4 (GPWv4): Population Density Adjusted to Match 2015 Revision of UN WPP Country Totals (NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, NY, 2016). (Accessed 10 November 2017).99.for International Earth Science Information Network (CIESIN) Columbia University, C. & of Georgia, I. T. O. S. I. U. Global Roads Open Access Data Set, Version 1 (gROADSv1) (NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, NY, 2013). (Accessed 19 January 2017).100.Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    101.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    102.Crawley, M. J. The R Book (Wiley, Chichester, England, 2007).MATH 
    Book 

    Google Scholar 
    103.Chao, A., Chazdon, R. L., Colwell, R. K. & Shen, T.-J. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett. 8, 148–159 (2005).Article 

    Google Scholar 
    104.Fox, J. & Weisberg, S. An R companion to applied regression (Sage Publications, 2011).
    Google Scholar 
    105.Gower, J. C. A general coefficient of similarity and some of its properties. Biometrics. 857–871, (1971).106.van der Loo, M. gower: Gower’s distance (R Foundation for Statistical Computing, 2017). R package version 0.1.2. https://www.R-project.org107.Lichstein, J. W. Multiple regression on distance matrices: A multivariate spatial analysis tool. Plant Ecol. 188, 117–131 (2007).Article 

    Google Scholar 
    108.Team, R.C. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2017).
    Google Scholar 
    109.Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R (Springer New York, 2009).MATH 
    Book 

    Google Scholar 
    110.Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117–161 (2011).ADS 
    Article 

    Google Scholar 
    111.Friedl, M. A. et al. Modis collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).ADS 
    Article 

    Google Scholar 
    112.Goldewijk, K. K. Three centuries of global population growth: A spatial referenced population (density) database for 1700–2000. Populat. Environ. 26, 343–367 (2005).Article 

    Google Scholar 
    113.Meijer, J. R., Huijbregts, M. A., Schotten, K. C. & Schipper, A. M. Global patterns of current and future road infrastructure. Environ. Res. Lett. 13, 064006 (2018).ADS 
    Article 

    Google Scholar 
    114.van Asselen, S. & Verburg, P. H. Land cover change or land-use intensification: Simulating land system change with a global-scale land change model. Glob. Change Biol. 19, 3648–3667. https://doi.org/10.1111/gcb.12331 (2013).ADS 
    Article 

    Google Scholar 
    115.Brooks, T. M. et al. Analysing biodiversity and conservation knowledge products to support regional environmental assessments. Sci. Data 3, 160007 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    116.World bank national accounts data, and oecd national accounts data files (2017). https://data.worldbank.org/indicator/NY.GDP.PCAP.CD117.Pinheiro, J. et al. Package ‘nlme’. Linear and Nonlinear Mixed Effects Models, version 3–1 (2017). https://CRAN.R-project.org/package=nlme118.Bivand, R., Hauke, J. & Kossowski, T. Computing the jacobian in gaussian spatial autoregressive models: An illustrated comparison of available methods. Geogr. Anal. 45, 150–179 (2013).Article 

    Google Scholar 
    119.Bivand, R. & Piras, G. Comparing implementations of estimation methods for spatial econometrics. J. Stat. Softw. 63, 1–36 (2015).
    Google Scholar 
    120.Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models (2017). R package version 0.1.5. https://CRAN.R-project.org/package=DHARMa More

  • in

    Relationship of insect biomass and richness with land use along a climate gradient

    Our approach provides data on species richness across independent gradients of land-use intensity and climate. Furthermore, by combining Malaise traps and DNA-metabarcoding, our work is not limited to single factors such as biomass measurements or assessment of single taxa to reveal drivers of insect communities. We found the lowest species richness in arable fields embedded in agricultural landscapes, and the lowest biomass in settlements embedded in urban landscapes. The effects of land-use type were independent of those of local temperatures and climate. Biomass and richness measures differed according to land-use intensity. Our study recorded a difference in insect biomass of 42% from semi-natural to urban environments, but no difference from semi-natural to agricultural environments. This appears to be in contrast with the results documented in a similar analysis6, which showed a temporal decline in insect biomass of >75% in small, protected areas surrounded by an agricultural landscape. Interestingly, in Hallmann et al.6, the few plots in semi-natural landscapes also showed a similar temporal decline as those in agricultural landscapes (Supplementary Fig. 3b). On the other hand, the variation in total BIN richness matched the magnitude of the temporal decline (~35%) determined over a decade in grasslands and forests by Seibold et al.13The hump-shaped seasonal pattern of biomass and associated daily biomass values were in accordance with the time series of Hallmann et al.6, thus demonstrating the comparability of our space-for-time approach with approaches based on time series (Supplementary Fig. 3). However, the contrasting phenological patterns of biomass and total BIN richness after controlling for temperature are evidence that both facets of biodiversity might respond differently, with biomass more strongly driven by pure season, e.g. via plant phenology or day-length, and BIN richness more dependent on local temperature. Divergent responses of biomass variation and species richness have already been described in temporal studies of insects in freshwater systems27 and nocturnal moths in the United Kingdom19,28,29, but not in studies of terrestrial arthropods, including those recorded in comprehensive datasets of hyper-diverse orders such as Diptera and the Hymenoptera.The positive relationships between local temperature and biomass variation and BIN richness were consistent with earlier results6,20 and can be explained (1) by the higher activity of species at higher temperatures, which increases the likelihood of trapping30 and (2) by the fact that insects are ectothermic organisms, i.e., their metabolism is enhanced by increasing temperatures, which in turn can lead to higher reproduction and survival rates and thus to larger populations31. Our additional analyses on the negative effects occurring at the highest temperatures did not provide any such indications for our three measures. Moreover, insects, and in particular many endangered insect species in Central Europe, are thermophilic32, which would explain the observed response of total BIN richness, and especially the very steep response of the richness of red-listed species, to local temperature.Despite the positive or neutral effect of macroclimate and the consistently positive effect of local temperature on insect biomass and BIN richness, global warming can cause shifts in insect communities that threaten biodiversity in specific biomes or elevations7,8,33, by a mismatch between host plant and insect phenology34,35 or by the trait-specific responses of species to climate variations, as shown for butterflies in California33. Nevertheless, the responses of insect populations and insect diversity to climate change are poorly understood, such that clear patterns, with distinct winners and losers, can still not be discerned33. In addition, insect responses to climate change are geographically variable and likely to be disproportionally higher at higher latitudes and elevations or in hot tropical or Mediterranean areas33. However, it is precisely the large topographic variation of mountains that may offer climate pockets that act as refugia, thus allowing insects to survive during periods of extreme climatic conditions or climate variation33,36. Our study supports this possibility, by showing that the responses of total insect richness, the richness of red-listed species, and biomass to higher local temperatures in a cultivated landscape in Central Europe (mean annual temperature of ~5 to 10 °C and annual precipitation between 550 and 2000 mm) are consistently positive. A further rise in temperature, as expected in the near future, poses a high risk of pushing more insect species in our study area to their thermal limits and even to extinction37.The clear biomass patterns which we show indicate a continuous change of biomass from forests to arable fields and further to settlements, of total BIN richness from forests to arable fields, and of red-listed species richness from forests to meadows and arable fields. This underlines the importance of forests as a backbone of insect diversity in cultivated landscapes, and particularly of forest gaps, which are rich in species within forests13,38. Our study is the first to our knowledge to directly compare forests (and forest gaps) with agricultural and urban habitats. Comparable studies using standardized insect sampling across a broad range of land-use types are rare, but data on the biomass of moths obtained by light trapping in different habitats over many decades19 are consistent with our findings and indicate a general pattern that is independent of the sampling method. At the landscape scale, we found biomass was highest in agricultural landscapes and lowest in urban landscapes, whereas red-listed richness was highest in semi-natural landscapes, followed by urban landscapes and lowest in agricultural landscapes. Although we could not confirm the negative effects of agricultural landscapes on biomass, as described by Hallmann et al.6, our results are in line with those of Seibold et al.13, who reported negative effects of surrounding arable fields on the temporal trends in grasslands in terms of species richness but not insect biomass.The contrasting pure seasonal patterns of biomass variation and BIN richness, as well as their different responses to land use, may have methodological or biological causes. A possible methodological reason for the low partial effects of season on BIN richness during summer but high partial effects on total biomass is that high insect biomass occurs particularly during periods of high temperatures, which would have increased evaporation of the ethanol used for preservation, accelerating the degradation of DNA. Similar effects were shown for samples stored over long periods39 of time. However, in our study, the collection bottles contained sufficient amounts of ethanol such that a methodological effect due to ethanol evaporation was unlikely. Moreover, high temperatures and not the pure seasonal effect better explained the higher BIN richness in this study. A second methodological reason for the lower BIN richness is that small species are often “overlooked” in biomass-rich samples40,41,42. To avoid this problem, we divided each sample into two fractions (small and large species) and sequenced them separately. With the exclusion of these methodological reasons, the most likely explanation for our findings is a biological one related to the composition of the samples. An increase in large species in certain habitats or at a certain time of year could influence biomass but not necessarily the total number of species. However, our additional models of total biomass using the BIN richness of the most important taxonomic orders as predictors provided an important clue. Across all habitats, biomass variation was best explained by the increase in BIN richness of three species groups, Orthoptera, Lepidoptera, and Diptera. Of the diverse taxa Coleoptera, Hymenoptera, and Diptera, only the BIN richness of the latter positively affected total biomass, and it was principally the richness of the two groups with many large species (Orthoptera and Lepidoptera) driving the pure seasonal effect. This can be explained by the fact that Lepidoptera abundance peaks in July43, thus coinciding with the higher abundances of most species of hemimetabolous Orthoptera during the summer44, and therefore accounting for the purely seasonal peak of insect biomass in summer.The contrasting responses of biomass variation and BIN richness point to differences in the respective mechanisms. Insect biomass is positively related to productivity and is thus highest in agricultural landscapes and in forests habitats embedded in agricultural landscapes managed to maximize plant productivity and continuous plant biomass45,46. Insect biomass is lowest in urban environments, where productivity is limited due to a high percentage of sealed areas without vegetation. However, insect biomass along gradients of urbanization has been poorly investigated47 such that large differences in the negative effects of urbanization on the abundances of different taxonomic groups cannot be ruled out48. Moreover, urban areas include additional potential stressors, such as light pollution, that might also negatively affect insect biomass49. In contrast to biomass, the richness of all taxa and of threatened species was relatively high in urban habitats. This was especially the case for urban habitats embedded in semi-natural landscapes, although a similar species richness may occur through the interplay of semi-natural habitats with green spaces characterized by a highly variable design and management50 as well as with the natural but also anthropogenically enhanced plant diversity of urban areas47,51,52.The lowest BIN richness generally observed in our study, in arable fields embedded in agricultural landscapes, is consistent with the results of a recent meta-analysis of insect time series9. In that study, the temporal declines in insect populations of terrestrial invertebrates were largest in regions with generally high agricultural land-use intensity, such as Central Europe and the American Midwest. Our direct comparison of different land-use types independent of gradients of macro- and microclimate suggests that the strong declines in insect richness reported for several taxa5 are indeed driven by intensive agriculture and the associated homogenization of the landscape53, not by urban environments. To assess the significance of our two main results on biomass and species richness, however, it is necessary to consider the proportions of the land-use types in question. In our study, agricultural land comprised 48% of the area whereas settlements accounted for ~12%. Since habitat amount is a fundamental parameter for insect populations, it must also be taken into account in a country-wide strategy11.Our finding of a lack of significant interactions between the highly significant local temperature and land use contrasts in part with the previously reported strong effects resulting from the interaction between land use and climate along the elevational gradient of the Kilimanjaro. That finding implied that land-use effects are mediated by climate, especially at high elevations17. Interaction effects between land use and climate may thus occur mainly within more extreme climates54 rather than within the temperate climate exemplified by our study region. By considering macroclimate and the directly measured local temperature and humidity as well as land use, we were able to show that pure land-use effects, when evaluated as habitat effects controlled for local temperature and humidity, strongly influence insect populations. However, despite the increasing awareness among scientists and urban planners that land use at local and landscape scales impacts not only insects but also local climate, the implications have mostly been ignored in international climate negotiations55. Trees, with the reduced local temperatures offered by their canopy layer56 and their hosting of a high species richness of insects, as shown in our study, are thus of particular importance as refuges for insect diversity in temperate zones.By covering the full range of land-use intensities along the climate gradient of a typical cultivated region and measuring both insect biomass and total insect richness, our study’s methodology provided mechanistic insights into the changes of insect populations in areas where a meta-analysis identified the most severe population declines9. Nevertheless, additional studies should focus on biomes other than the cultivated landscapes of the temperate zone, such as cold boreal, dry Mediterranean, or hot tropical areas. Here, the different characteristics of the biome may result in land-use intensification being of less importance than climate change. In addition, the use of metabarcoding to identify all insects within a sample broadens the range for similar space-for-time studies. In contrast to well replicated, standardized time-series data that may require decades to generate the information needed to guide conservation actions, space-for-time approaches covering full gradients of land use and climate are a viable option to identify the drivers of insect decline and thus provide timely information for decision-makers; however, replications from several years should be included to take into account the effects of extreme events.The weak effect of climate variables on insect biomass but the consistently positive effect of local temperature on biomass variation and BIN richness suggests that, at least within the climate range of our temperate study region, the recent warming that has led to higher local temperatures should promote insect biomass and species richness. However, further warming, extreme heat, and drought events may negatively affect biodiversity, although non-linear responses can be expected in other climates or across longer gradients. Moreover, the strong dependency of local temperature on land use indicates that changes in land use impact local climate conditions, such as by accelerating temperature increases in agricultural and urban regions. The contrasting responses of biomass variation and BIN richness to local and landscape-scale land use point to differential effects of shifts in land use on insect populations, with ongoing urbanization leading to a decline in biomass, and conversion to agriculture to a decline in species richness. Based on our results, we recommend that actions aimed at preventing further insect decline should focus on (1) increasing insect biomass, for example by improving “green” habitats in urban environments57 and reducing the extent of vegetation-free sealed surfaces and (2) stopping the ongoing loss of species, by adapting agri-environmental schemes and promoting habitats dominated by trees, even in urban environments. More

  • in

    Analysis of long-term strategies of riparian countries in transboundary river basins

    Assume n countries ((nge 2)) are located in a transboundary river basin and they are the players of an evolutionary game in which the countries’ strategies concerning water sharing in the basin evolve over time. Each country can choose between a cooperative strategy or a non-cooperative strategy. The game’s interactions and players’ payoffs vary with the number n and the location of the countries within the river basin, specifically, in relation to whether they are upstream-located or downstream-located countries within the river basin. The probability of country i choosing a cooperative strategy is herein denoted by ({x}_{1}^{(i)}), (i=1, 2, dots , n), and there are ({2}^{n}) payoff sets for all the combinations of the countries’ strategies. This paper assesses the interactions between three countries sharing a transboundary river basin.Problem descriptionLet 1, 2, and 3 denote three countries sharing a transboundary river basin. Country 1 is upstream and countries 2 and 3 are located downstream. Country 1 can use maximum amount of the water of the river and choose not to share it with the downstream countries. This strategy, however, may trigger conflict with the two other countries of political, social, economic, security, and environmental natures. Instead, Country 1 can release excess water to be shared by Countries 2 and 3. Countries 2 and 3 are inclined to cooperate with Country 1 unless other benefits emerge by being non-cooperative with Country 1.There are two types of benefits and one type of cost in the payoff matrix of the assumed problem that are economic in nature. The first is a water benefit earned by a country from receiving the water from the transboundary river. The set of benefits related to water use includes economic benefits earned from agricultural, urban, and industrial development benefits. It should be noted that the water benefit for Country 1 means the economic benefit of consuming more water than its water right from the river. So, water benefits of Country 2 and 3 are the economic benefit of consuming excess water of upstream which is released by Country 1.The second is a potential benefit earned from the cooperative strategy of a country. Cooperation benefits stem from sustainability conditions like social interests, environmental benefits and political conjunctures such as international alliances and harmony from amicable interactions with neighboring countries. The parameters F and E (water benefit and potential benefit, respectively) encompass a number of benefit parameters; nevertheless, parameters were simplified to two benefit parameters to simplify the complexity of the water-sharing problem. Costs forced on other countries from non-cooperation by a country involves commercial, security, political, diplomatic, military, and environmental costs. Figure 1 displays the locations of three countries and their shifting interactions in a transboundary river basin.Figure 1Schematic of the transboundary river and riparian countries with their shifting interactions.Full size imageBasic assumptionsThe evolutionary game model of interactions between riparian countries in the transboundary river basin rests on the following assumptions:
    Assumption 1

    There are three countries (i.e., players) in the game of transboundary water sharing, each seeking to maximize its payoff from the game.

    Assumption 2

    Country 1 has two possible strategies. One is for Country 1 to release a specified amount of water to the downstream countries (this would be Country 1’s cooperative strategy). The cooperative strategy by Country 1 would produce benefits F2 and F3 to Countries 2 and 3, respectively. By being cooperative Country 1 would attain a benefit E1 called the potential benefit from cooperative responses from the downstream countries. The other strategy is for Country 1 to deny water to the downstream countries (this would be Country 1’s non-cooperative strategy), in which case Country 1 would earn the water benefit F1 from using water that would otherwise be released, but would forego the potential benefit E1. Moreover, by pursuing a non-cooperative strategy Country 1 would inflict a cost C1m to the downstream countries.

    Assumption 3

    There are two possible strategies for Country 2. One is for Country 2 to accept the behavior of Country 1 (this would be Country 2’s cooperative strategy), which would cause earning a potential benefit E2 to Country 2. Recall that if Country 2 acquiesces to Country 1’s cooperative behavior it would receive a benefit F2. Or, Country 2 may disagree with Country 1 (this would be Country 2’s non-cooperative strategy), in which case, Country 2 would lose benefit E2, and it would inflict a cost C2m to the other countries.

    Assumption 4

    Similar to Country 2, Country 3 has two possible strategies. One is for Country 3 to agree Country 1’s behavior (this would be Country 3’s cooperative strategy) attaining a potential benefit E3. Recall that if Country 3 agrees with Country 1’s cooperative behavior it would gain a benefit F3. Another strategy for Country 3 is to oppose Country 1 (this would be Country 3’s non-cooperative strategy) missing the benefit E3 and forcing a cost C3m to the other countries.
    Table 1 defines the benefits and costs that enter in the transboundary water-sharing game described in this work. The payoff to country (i=mathrm{1,2},3) depends on its own strategy and on the strategies of the other countries, and each country may choose to be cooperative or non-cooperative. The strategies of country (i) are denoted by 1 (cooperation) and 2 (non-cooperation). The probabilities of country (i)’s strategies are denoted by ({x}_{1}^{(i)}) and by ({x}_{2}^{(i)}), in which the former represents cooperation and the latter represents non-cooperation. Clearly, ({x}_{1}^{(i)})+ ({x}_{2}^{(i)}) = 1. The payoff to country (i=1, 2, 3) when the strategies of Countries 1, 2, 3 are (j, k,l), respectively, where (j, k,l) may take the value 1 (cooperation) or 2 (non-cooperation) is denoted by ({U}_{jkl}^{left(iright)}). Thus, for instance, the payoff to country (i=2) is represented by ({U}_{212}^{(2)}) when Countries 1 and 3 are non-cooperative and Country 2’s strategy is cooperative. Evidently, there are 23 payoffs to each country given there are three countries involved and each can be cooperative or non-cooperative. Table 2 shows the symbols for the payoffs that accrue to each country under the probable strategies.Table 1 Benefits and costs.Full size tableTable 2 Payoff matrix under cooperation or non-cooperation.Full size tableFormulation of the transboundary water-sharing strategies as an evolutionary gameThe expected payoff to country (i) is expressed by the following equation:$${U}^{(i)}=sumlimits_{j = 1}^2 {sumlimits_{k = 1}^2 {sumlimits_{l = 1}^2} } {x}_{j}^{(1)}{x}_{k}^{(2)}{x}_{l}^{(3)} {U}_{jkl}^{(i)} quad i=1, 2, 3$$
    (1)
    The following describe the expected payoffs of Country 1 when it acts cooperatively (({U}_{1}^{(1)})) or non-cooperatively (({U}_{2}^{(1)})):$${U}_{1}^{(1)}={x}_{1}^{(2)}{x}_{1}^{(3)}{U}_{111}^{left(1right)}+{x}_{1}^{(2)}{x}_{2}^{(3)}{U}_{112}^{left(1right)}+{x}_{2}^{(2)}{x}_{1}^{(3)}{U}_{121}^{(1)}+{x}_{2}^{(2)}{x}_{2}^{(3)}{U}_{122}^{(1)}$$
    (2)
    $${U}_{2}^{(1)}={x}_{1}^{(2)}{x}_{1}^{(3)}{U}_{211}^{left(1right)}+{x}_{1}^{(2)}{x}_{2}^{(3)}{U}_{212}^{left(1right)}+{x}_{2}^{(2)}{x}_{1}^{(3)}{U}_{221}^{left(1right)}+{x}_{2}^{(2)}{x}_{2}^{(3)}{U}_{222}^{left(1right)}$$
    (3)
    Therefore, the expected payoff of Country 1 is ({U}^{(1)}) which is equal to:$${U}^{(1)}={x}_{1}^{(1)}{U}_{1}^{(1)}+{x}_{2}^{(1)}{U}_{2}^{(1)}= sumlimits_{j = 1}^2 {sumlimits_{k = 1}^2 {sumlimits_{l = 1}^2 } }{x}_{j}^{(1)}{x}_{k}^{(2)}{x}_{l}^{(3)} {U}_{jkl}^{(1)}$$
    (4)
    The expected payoffs of Countries 2 and 3 can be similarly obtained as done for Country 1. The cooperative and non-cooperative expected payoffs of all countries can be expressed in terms of the payoffs listed in Table 1. The results are found in Appendix A.Replication dynamics equationsThe replication dynamics equations describe the time change of the probabilities of a player’s strategies. The replication dynamics equation of Countries (i) is denoted by ({G}^{(i)}left({x}_{1}^{(i)}right)) which is as follow22:$${G}^{(i)}left({x}_{1}^{(i)}right)=frac{d{x}_{1}^{(i)}}{dt}={x}_{1}^{(i)}left({U}_{1}^{(i)}-{U}^{(i)}right)$$
    (5)
    The replication dynamics equations of Countries 1, 2 and 3 are presented in Appendix B according to the benefits and costs showed in Table 1.Stability analysis of a country’s strategiesUnder the assumption of bounded rationality each country does not know which strategies may lead to the optimal solution in the game. Therefore, the countries’ strategies change over time until a stable (i.e., time-independent) solution named evolutionary stable strategy (ESS) is attained. The evolutionary stable theorem for replication dynamics equation states that a stable probability of cooperation ({x}_{1}^{(i)}) for country (i) occurs if the following conditions hold25: (1) ({G}^{(i)}left({x}_{1}^{(i)}right)=0), and (2) (d{G}^{(i)}left({x}_{1}^{(i)}right)/d{x}_{1}^{(i)} More

  • in

    Extending the natural adaptive capacity of coral holobionts

    1.Fisher, R. et al. Species richness on coral reefs and the pursuit of convergent global estimates. Curr. Biol. 25, 500–505 (2015).Article 

    Google Scholar 
    2.Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).Article 

    Google Scholar 
    3.Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).Article 

    Google Scholar 
    4.Wilkinson, C. Status of Coral Reefs of the World: 2008 (Global Coral Reef Monitoring Network, 2008).5.Spalding, M. et al. Mapping the global value and distribution of coral reef tourism. Mar. Policy 82, 104–113 (2017).Article 

    Google Scholar 
    6.Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 50, 839–866 (1999). This paper projects loss and degradation of coral reefs on a global scale before it became common knowledge.
    Google Scholar 
    7.Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).Article 

    Google Scholar 
    8.Porter, J. W. & Meier, O. W. Quantification of loss and change in Floridian reef coral populations. Am. Zool. 32, 625–640 (1992).Article 

    Google Scholar 
    9.Ruzicka, R. R. et al. Temporal changes in benthic assemblages on Florida Keys reefs 11 years after the 1997/1998 El Niño. Mar. Ecol. Prog. Ser. 489, 125–141 (2013).Article 

    Google Scholar 
    10.Somerfield, P. J. et al. Changes in coral reef communities among the Florida Keys, 1996–2003. Coral Reefs 27, 951–965 (2008).Article 

    Google Scholar 
    11.Lapointe, B. E., Brewton, R. A., Herren, L. W., Porter, J. W. & Hu, C. Nitrogen enrichment, altered stoichiometry, and coral reef decline at Looe Key, Florida Keys, USA: a 3-decade study. Mar. Biol. 166, 108 (2019).Article 

    Google Scholar 
    12.Suggett, D. J. & Smith, D. J. Coral bleaching patterns are the outcome of complex biological and environmental networking. Global Change Biol. https://doi.org/10.1111/gcb.14871 (2019).Article 

    Google Scholar 
    13.Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).Article 

    Google Scholar 
    14.Lesser, M. P. in Coral Reefs: An Ecosystem in Transition (eds Dubinsky, Z. & Stambler, N.) 405–419 (Springer, 2011).15.Rädecker, N. et al. Heat stress destabilizes symbiotic nutrient cycling in corals. Proc. Natl Acad. Sci. USA 118, e2022653118 (2021). This paper demonstrates that algal symbionts cease photosynthate transfer to coral hosts under heat stress long before visual signs of bleaching (symbiont loss) become evident.Article 

    Google Scholar 
    16.Allen, M. R. et al. in Sustainable Development, and Efforts to Eradicate Poverty (eds Masson-Delmotte, V. et al.) 41–91 (IPCC, 2018).17.Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).Article 

    Google Scholar 
    18.Hughes, D. J. et al. Coral reef survival under accelerating ocean deoxygenation. Nat. Clim. Chang. 10, 296–307 (2020).Article 

    Google Scholar 
    19.Durack, P.J., Wijffels, S.E. & Matear, R.J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336, 455-458 (2012).Article 

    Google Scholar 
    20.Morris, L. A., Voolstra, C. R., Quigley, K. M., Bourne, D. G. & Bay, L. K. Nutrient availability and metabolism affect the stability of coral–Symbiodiniaceae symbioses. Trends Microbiol. 27, 678–689 (2019).Article 

    Google Scholar 
    21.Muller, E. M., Sartor, C., Alcaraz, N. I. & van Woesik, R. Spatial Epidemiology of the Stony-Coral-Tissue-Loss Disease in Florida. Front. Mar. Sci. 7, 163 (2020).Article 

    Google Scholar 
    22.Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003).Article 

    Google Scholar 
    23.Nyström, M., Folke, C. & Moberg, F. Coral reef disturbance and resilience in a human-dominated environment. Trends Ecol. Evol. 15, 413–417 (2000).Article 

    Google Scholar 
    24.Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Chang. 3, 160–164 (2012).Article 

    Google Scholar 
    25.D’Angelo, C. & Wiedenmann, J. Impacts of nutrient enrichment on coral reefs: new perspectives and implications for coastal management and reef survival. Curr. Opin. Environ. Sust. 7, 82–93 (2014).Article 

    Google Scholar 
    26.Thurber, R. L. V. et al. Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Glob. Change Biol. 20, 544–554 (2014).Article 

    Google Scholar 
    27.Donovan, M. K. et al. Local conditions magnify coral loss after marine heatwaves. Science 372, 977–980 (2021).Article 

    Google Scholar 
    28.Climate change widespread, rapid, and intensifying. IPCC (9 August 2021); https://www.ipcc.ch/2021/08/09/ar6-wg1-20210809-pr.29.Radchuk, V. et al. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10, 3109 (2019).Article 

    Google Scholar 
    30.Kleypas, J. et al. Designing a blueprint for coral reef survival. Biol. Conserv. 257, 109107 (2021).Article 

    Google Scholar 
    31.Gattuso, J.-P. et al. Ocean solutions to address climate change and Its effects on marine ecosystems. Front. Mar. Sci. 5, 337 (2018).Article 

    Google Scholar 
    32.Knowlton, N. et al. Rebuilding Coral Reefs: A Decadal Grand Challenge (International Coral Reef Society and Future Earth Coasts, 2021) https://doi.org/10.53642/NRKY9386.33.Hoegh-Guldberg, O., Kennedy, E. V., Beyer, H. L., McClennen, C. & Possingham, H. P. Securing a long-term future for coral reefs. Trends Ecol. Evol. 33, 936–944 (2018).Article 

    Google Scholar 
    34.Zoccola, D. et al. The World Coral Conservatory (WCC): a Noah’s ark for corals to support survival of reef ecosystems. PLoS Biol. 18, e3000823 (2020).Article 

    Google Scholar 
    35.Kleinhaus, K. et al. Science, diplomacy, and the Red Sea’s unique coral reef: it’s time for action. Front. Mar. Sci. 7, 90 (2020).Article 

    Google Scholar 
    36.van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl Acad. Sci. USA 112, 2307–2313 (2015).Article 

    Google Scholar 
    37.Baums, I. B. et al. Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic. Ecol. Appl. 29, e01978 (2019).Article 

    Google Scholar 
    38.Peixoto, R. S., Sweet, M. & Bourne, D. G. Customized medicine for corals. Front. Mar. Sci. 6, 686 (2019).Article 

    Google Scholar 
    39.Rinkevich, B. The active reef restoration toolbox is a vehicle for coral resilience and adaptation in a changing world. J. Mar. Sci. Eng. 7, 201 (2019).Article 

    Google Scholar 
    40.Boström-Einarsson, L. et al. Coral restoration — a systematic review of current methods, successes, failures and future directions. PLoS ONE 15, e0226631 (2020).Article 

    Google Scholar 
    41.Voolstra, C. R. et al. Standardized short-term acute heat stress assays resolve historical differences in coral thermotolerance across microhabitat reef sites. Glob. Chang. Biol. 26, 4328–4343 (2020). This paper highlights the potential of mobile acute heat stress assays to resolve fine-scale differences in coral thermotolerance, suitable for large-scale identification of resilient genotypes/reefs for conservation and restoration approaches.Article 

    Google Scholar 
    42.Parkinson, J. E. et al. Molecular tools for coral reef restoration: beyond biomarker discovery. Conserv. Lett. 13, e12687 (2020).Article 

    Google Scholar 
    43.Voolstra, C. R. et al. Contrasting heat stress response patterns of coral holobionts across the Red Sea suggest distinct mechanisms of thermal tolerance. Mol. Ecol. https://doi.org/10.1111/mec.16064 (2021).Article 

    Google Scholar 
    44.Morikawa, M. K. & Palumbi, S. R. Using naturally occurring climate resilient corals to construct bleaching-resistant nurseries. Proc. Natl Acad. Sci. USA 116, 10586–10591 (2019).Article 

    Google Scholar 
    45.Sweet, M. & Brown, B. in Oceanography and Marine Biology — An Annual Review (eds Hughes R.N. et al.) 271–314 (CRC, 2016).46.Voolstra, C. R. & Ziegler, M. Adapting with microbial help: microbiome flexibility facilitates rapid responses to environmental change. Bioessays 42, e2000004 (2020). This paper proposes microbiome flexibility as a mechanism to aid adaptation to environmental change and posits that capacity for dynamic restructuring of the microbiome is host specific.Article 

    Google Scholar 
    47.Jaspers, C. et al. Resolving structure and function of metaorganisms through a holistic framework combining reductionist and integrative approaches. Zoology 133, 81–87 (2019).Article 

    Google Scholar 
    48.Torda, G. et al. Rapid adaptive responses to climate change in corals. Nat. Clim. Chang. 7, 627–636 (2017).Article 

    Google Scholar 
    49.Ziegler, M., Seneca, F. O., Yum, L. K., Palumbi, S. R. & Voolstra, C. R. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat. Commun. 8, 14213 (2017). This paper provides the first putative link between bacterial community composition and coral heat tolerance.Article 

    Google Scholar 
    50.Morgans, C. A., Hung, J. Y., Bourne, D. G. & Quigley, K. M. Symbiodiniaceae probiotics for use in bleaching recovery. Restor. Ecol. 28, 282–288 (2020).Article 

    Google Scholar 
    51.Liew, Y. J. et al. Intergenerational epigenetic inheritance in reef-building corals. Nat. Clim. Chang. 10, 254–259 (2020).Article 

    Google Scholar 
    52.Craggs, J. et al. Inducing broadcast coral spawning ex situ: closed system mesocosm design and husbandry protocol. Ecol. Evol. 7, 11066–11078 (2017).Article 

    Google Scholar 
    53.Camp, E. F., Schoepf, V. & Suggett, D. J. How can “super corals” facilitate global coral reef survival under rapid environmental and climatic change? Glob. Chang. Biol. 24, 2755–2757 (2018).Article 

    Google Scholar 
    54.Peixoto, R. S. et al. Coral probiotics: premise, promise, prospects. Annu. Rev. Anim. Biosci. 9, 265–288 (2021). This paper reviews coral probiotics and critical assessment of applicability.Article 

    Google Scholar 
    55.Doering, T. et al. Towards enhancing coral heat tolerance: a “microbiome transplantation” treatment using inoculations of homogenized coral tissues. Microbiome 9, 102 (2021).Article 

    Google Scholar 
    56.Howells, E. J. et al. Enhancing the heat tolerance of reef-building corals to future warming. Sci. Adv. 7 (2021).57.Devlin-Durante, M. K., Miller, M. W., Caribbean Acropora Research Group, Precht, W. F. & Baums, I. B. How old are you? Genet age estimates in a clonal animal. Mol. Ecol. 25, 5628–5646 (2016).Article 

    Google Scholar 
    58.Irwin, A. et al. Age and intraspecific diversity of resilient Acropora communities in Belize. Coral Reefs 36, 1111–1120 (2017).Article 

    Google Scholar 
    59.Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014). This paper demonstrates that acclimation and adaptation contribute to coral thermal tolerance and climate resistance at about equal contribution.Article 

    Google Scholar 
    60.Barott, K. L. et al. Coral bleaching response is unaltered following acclimatization to reefs with distinct environmental conditions. Proc. Natl Acad. Sci. USA 118, e2025435118 (2021).Article 

    Google Scholar 
    61.Thomas, L., López, E. H., Morikawa, M. K. & Palumbi, S. R. Transcriptomic resilience, symbiont shuffling, and vulnerability to recurrent bleaching in reef-building corals. Mol. Ecol. 28, 3371–3382 (2019).Article 

    Google Scholar 
    62.Bellantuono, A. J., Granados-Cifuentes, C., Miller, D. J., Hoegh-Guldberg, O. & Rodriguez-Lanetty, M. Coral thermal tolerance: tuning gene expression to resist thermal stress. PLoS ONE 7, e50685 (2012).Article 

    Google Scholar 
    63.Barshis, D. J. et al. Genomic basis for coral resilience to climate change. Proc. Natl Acad. Sci. USA 110, 1387–1392 (2013).Article 

    Google Scholar 
    64.Savary, R. et al. Fast and pervasive transcriptomic resilience and acclimation of extremely heat-tolerant coral holobionts from the northern Red Sea. Proc. Natl Acad. Sci. USA 118, e2023298118 (2021).Article 

    Google Scholar 
    65.Liew, Y. J. et al. Epigenome-associated phenotypic acclimatization to ocean acidification in a reef-building coral. Sci. Adv. 4, eaar8028 (2018).Article 

    Google Scholar 
    66.Durante, M. K., Baums, I. B., Williams, D. E., Vohsen, S. & Kemp, D. W. What drives phenotypic divergence among coral clonemates of Acropora palmata? Mol. Ecol. 28, 3208–3224 (2019).Article 

    Google Scholar 
    67.Rodríguez-Casariego, J. A. et al. Genome-Wide DNA Methylation Analysis Reveals a Conserved Epigenetic Response to Seasonal Environmental Variation in the Staghorn Coral Acropora cervicornis. Front. Mar. Sci. 7, 822 https://doi.org/10.3389/fmars.2020.560424 (2020).68.Putnam, H. M. & Gates, R. D. Preconditioning in the reef-building coral Pocillopora damicornis and the potential for trans-generational acclimatization in coral larvae under future climate change conditions. J. Exp. Biol. 218, 2365–2372 (2015).Article 

    Google Scholar 
    69.Putnam, H. M., Davidson, J. M. & Gates, R. D. Ocean acidification influences host DNA methylation and phenotypic plasticity in environmentally susceptible corals. Evol. Appl. 9, 1165–1178 (2016).Article 

    Google Scholar 
    70.Putnam, H. M., Ritson-Williams, R., Cruz, J. A., Davidson, J. M. & Gates, R. D. Environmentally-induced parental or developmental conditioning influences coral offspring ecological performance. Sci. Rep. 10, 13664 (2020).Article 

    Google Scholar 
    71.Drury, C. et al. Genomic variation among populations of threatened coral: Acropora cervicornis. BMC Genomics 17, 286 (2016).Article 

    Google Scholar 
    72.Bay, R. A., Rose, N. H., Logan, C. A. & Palumbi, S. R. Genomic models predict successful coral adaptation if future ocean warming rates are reduced. Sci. Adv. 3, e1701413 (2017).Article 

    Google Scholar 
    73.Prada, C. et al. Empty niches after extinctions increase population sizes of modern corals. Curr. Biol. 26, 3190–3194 (2016).Article 

    Google Scholar 
    74.Robitzch, V., Banguera-Hinestroza, E., Sawall, Y., Al-Sofyani, A. and Voolstra, C.R., 2015. Absence of genetic differentiation in the coral Pocillopora verrucosa along environmental gradients of the Saudi Arabian Red Sea. Front. Mar. Sci. 2, 5 (2015).Article 

    Google Scholar 
    75.Van Oppen, M. J. H., Souter, P., Howells, E. J., Heyward, A. & Berkelmans, R. Novel genetic diversity through somatic mutations: fuel for adaptation of reef corals? Diversity 3, 405–423 (2011).Article 

    Google Scholar 
    76.Vasquez Kuntz, K. L. et al. Juvenile corals inherit mutations acquired during the parent’s lifespan. Preprint at bioRxiv https://doi.org/10.1101/2020.10.19.345538 (2020).Article 

    Google Scholar 
    77.Matz, M. V., Treml, E. A., Aglyamova, G. V. & Bay, L. K. Potential and limits for rapid genetic adaptation to warming in a Great Barrier Reef coral. PLoS Genet. 14, e1007220 (2018).Article 

    Google Scholar 
    78.Guest, J. R. et al. Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PLoS ONE 7, e33353 (2012).Article 

    Google Scholar 
    79.Coles, S. L. et al. Evidence of acclimatization or adaptation in Hawaiian corals to higher ocean temperatures. PeerJ 6, e5347 (2018).Article 

    Google Scholar 
    80.Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1264 (2019).Article 

    Google Scholar 
    81.Camp, E. F. et al. The future of coral reefs subject to rapid climate change: lessons from natural extreme environments. Front. Mar. Sci. 5, 4 (2018).Article 

    Google Scholar 
    82.Oliver, T. A. & Palumbi, S. R. Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs 30, 429–440 (2011).Article 

    Google Scholar 
    83.Morgan, K. M., Perry, C. T., Smithers, S. G., Johnson, J. A. & Daniell, J. J. Evidence of extensive reef development and high coral cover in nearshore environments: implications for understanding coral adaptation in turbid settings. Sci. Rep. 6, 29616 (2016).Article 

    Google Scholar 
    84.Middlebrook, R., Hoegh-Guldberg, O. & Leggat, W. The effect of thermal history on the susceptibility of reef-building corals to thermal stress. J. Exp. Biol. 211, 1050–1056 (2008).Article 

    Google Scholar 
    85.Brown, B. E., Dunne, R. P., Edwards, A. J., Sweet, M. J. & Phongsuwan, N. Decadal environmental ‘memory’ in a reef coral? Mar. Biol. 162, 479–483 (2015).Article 

    Google Scholar 
    86.Dixon, G., Liao, Y., Bay, L. K. & Matz, M. V. Role of gene body methylation in acclimatization and adaptation in a basal metazoan. Proc. Natl Acad. Sci. USA 115, 13342–13346 (2018).Article 

    Google Scholar 
    87.Humanes, A. et al. An experimental framework for selectively breeding corals for assisted evolution. Front. Mar. Sci. 8, 626 (2021).Article 

    Google Scholar 
    88.Dixon, G. B. et al. Genomic determinants of coral heat tolerance across latitudes. Science 348, 1460–1462 (2015). This paper demonstrates applicability of assisted evolution via selective breeding.Article 

    Google Scholar 
    89.van Oppen, M. J. H. et al. Shifting paradigms in restoration of the world’s coral reefs. Glob. Chang. Biol. 23, 3437–3448 (2017).Article 

    Google Scholar 
    90.Fukami, H. et al. Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals. Nature 427, 832–835 (2004).Article 

    Google Scholar 
    91.Voolstra, C. R. et al. Consensus guidelines for advancing coral holobiont genome and specimen voucher deposition. Front. Mar. Sci. 8, 1029 (2021).Article 

    Google Scholar 
    92.Seneca, F. O. & Palumbi, S. R. The role of transcriptome resilience in resistance of corals to bleaching. Mol. Ecol. 24, 1467–1484 (2015).Article 

    Google Scholar 
    93.Evensen, N. R., Fine, M., Perna, G., Voolstra, C. R. & Barshis, D. J. Remarkably high and consistent tolerance of a Red Sea coral to acute and chronic thermal stress exposures. Limnol. Oceanogr. https://doi.org/10.1002/lno.11715 (2021).Article 

    Google Scholar 
    94.Cleves, P. A., Strader, M. E., Bay, L. K., Pringle, J. R. & Matz, M. V. CRISPR/Cas9-mediated genome editing in a reef-building coral. Proc. Natl Acad. Sci. USA 115, 5235–5240 (2018).Article 

    Google Scholar 
    95.Cleves, P. A. et al. Reduced thermal tolerance in a coral carrying CRISPR-induced mutations in the gene for a heat-shock transcription factor. Proc. Natl Acad. Sci. USA 117, 28899–28905 (2020).Article 

    Google Scholar 
    96.Fuller, Z. L. et al. Population genetics of the coral Acropora millepora: toward genomic prediction of bleaching. Science 369, eaba4674 (2020).Article 

    Google Scholar 
    97.Yetsko, K. et al. Genetic differences in thermal tolerance among colonies of threatened coral Acropora cervicornis: potential for adaptation to increasing temperature. Mar. Ecol. Prog. Ser. 646, 45–68 (2020).Article 

    Google Scholar 
    98.Kenkel, C. D., Almanza, A. T. & Matz, M. V. Fine-scale environmental specialization of reef-building corals might be limiting reef recovery in the Florida Keys. Ecology 96, 3197–3212 (2015).Article 

    Google Scholar 
    99.D’Angelo, C. et al. Local adaptation constrains the distribution potential of heat-tolerant Symbiodinium from the Persian/Arabian Gulf. ISME J. 9, 2551–2560 (2015).Article 

    Google Scholar 
    100.Safaie, A. et al. High frequency temperature variability reduces the risk of coral bleaching. Nat. Commun. 9, 1671 (2018).Article 

    Google Scholar 
    101.Quigley, K. M., Bay, L. K. & van Oppen, M. J. H. Genome-wide SNP analysis reveals an increase in adaptive genetic variation through selective breeding of coral. Mol. Ecol. 29, 2176–2188 (2020).Article 

    Google Scholar 
    102.Craggs, J., Guest, J., Bulling, M. & Sweet, M. Ex situ co culturing of the sea urchin, Mespilia globulus and the coral Acropora millepora enhances early post-settlement survivorship. Sci. Rep. 9, 12984 (2019).Article 

    Google Scholar 
    103.Quigley, K. M. et al. Variability in fitness trade-offs amongst coral juveniles with mixed genetic backgrounds held in the wild. Front. Mar. Sci. 8, 161 (2021).Article 

    Google Scholar 
    104.LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580.e6 (2018). This paper provides a revised coral symbiont taxonomy and shows that Symbiodiniaceae diversification coincides with the radiation of reef-building corals.Article 

    Google Scholar 
    105.Muscatine, L. The role of symbiotic algae in carbon and energy flux in reef corals. Coral Reefs 25, 75–87 (1990).
    Google Scholar 
    106.Trench, R. K. Microalgal–invertebrate symbiosis, a review. Endocytobiosis Cell Res. 9, 135–175 (1993).
    Google Scholar 
    107.Pogoreutz, C. et al. in Cellular Dialogues in the Holobiont (eds Bosch, T. C. G. & Hadfield, M. G.) 91–118 (CRC, 2020). https://doi.org/10.1201/9780429277375-7.108.Hume, B. C. C. et al. SymPortal: a novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Mol. Ecol. Resour. 19, 1063–1080 (2019).Article 

    Google Scholar 
    109.Decelle, J. et al. Worldwide occurrence and activity of the reef-building coral symbiont Symbiodinium in the open ocean. Curr. Biol. 28, 3625–3633.e3 (2018).Article 

    Google Scholar 
    110.Aranda, M. et al. Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Sci. Rep. 6, 39734 (2016).Article 

    Google Scholar 
    111.González-Pech, R. A., Bhattacharya, D., Ragan, M. A. & Chan, C. X. Genome evolution of coral reef symbionts as intracellular residents. Trends Ecol. Evol. 34, 799–806 (2019).Article 

    Google Scholar 
    112.Hume, B. C. C., Mejia-Restrepo, A., Voolstra, C. R. & Berumen, M. L. Fine-scale delineation of Symbiodiniaceae genotypes on a previously bleached central Red Sea reef system demonstrates a prevalence of coral host-specific associations. Coral Reefs 39, 583–601 (2020).Article 

    Google Scholar 
    113.Howells, E. J. et al. Corals in the hottest reefs in the world exhibit symbiont fidelity not flexibility. Mol. Ecol. 29, 899–911 (2020).Article 

    Google Scholar 
    114.Turnham, K. E., Wham, D. C., Sampayo, E. & LaJeunesse, T. C. Mutualistic microalgae co-diversify with reef corals that acquire symbionts during egg development. ISME J. https://doi.org/10.1038/s41396-021-01007-8 (2021).Article 

    Google Scholar 
    115.Grottoli, A. G. et al. The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob. Chang. Biol. 20, 3823–3833 (2014).Article 

    Google Scholar 
    116.LaJeunesse, T. C., Smith, R. T., Finney, J. & Oxenford, H. Outbreak and persistence of opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral ‘bleaching’ event. Proc. R. Soc. B Biol. Sci. 276, 4139–4148 (2009).Article 

    Google Scholar 
    117.Grégoire, V., Schmacka, F., Coffroth, M. A. & Karsten, U. Photophysiological and thermal tolerance of various genotypes of the coral endosymbiont Symbiodinium sp. (Dinophyceae). J. Appl. Phycol. 29, 1893–1905 (2017).Article 

    Google Scholar 
    118.Quigley, K. M., Baker, A. C., Coffroth, M. A., Willis, B. L. & van Oppen, M. J. H. in Coral Bleaching: Patterns, Processes, Causes and Consequences (eds van Oppen, M. J. H. & Lough, J. M.) 111–151 (Springer International, 2018).119.Ziegler, M., Arif, C. & Voolstra, C. R. in Coral Reefs of the Red Sea (eds Voolstra, C. R. & Berumen, M. L.) 69–89 (Springer International, 2019).120.Suggett, D. J., Warner, M. E. & Leggat, W. Symbiotic dinoflagellate functional diversity mediates coral survival under ecological crisis. Trends Ecol. Evol. 32, 735–745 (2017).Article 

    Google Scholar 
    121.Hume, B. C. C. et al. Ancestral genetic diversity associated with the rapid spread of stress-tolerant coral symbionts in response to Holocene climate change. Proc. Natl Acad. Sci. USA 113, 4416–4421 (2016).Article 

    Google Scholar 
    122.Ochsenkühn, M. A., Röthig, T., D’Angelo, C., Wiedenmann, J. & Voolstra, C. R. The role of floridoside in osmoadaptation of coral-associated algal endosymbionts to high-salinity conditions. Sci. Adv. 3, e1602047 (2017).Article 

    Google Scholar 
    123.Baumgarten, S. et al. Integrating microRNA and mRNA expression profiling in Symbiodinium microadriaticum, a dinoflagellate symbiont of reef-building corals. BMC Genomics 14, 704 (2013).Article 

    Google Scholar 
    124.Klein, S. G. et al. Symbiodinium mitigate the combined effects of hypoxia and acidification on a noncalcifying cnidarian. Glob. Chang. Biol. 23, 3690–3703 (2017).Article 

    Google Scholar 
    125.Liew, Y. J., Li, Y., Baumgarten, S., Voolstra, C. R. & Aranda, M. Condition-specific RNA editing in the coral symbiont Symbiodinium microadriaticum. PLoS Genet. 13, e1006619 (2017).Article 

    Google Scholar 
    126.Warner, M. E. & Suggett, D. J. in The Cnidaria, Past, Present and Future: The World of Medusa and Her Sisters (eds Goffredo, S. & Dubinsky, Z.) 489–509 (Springer International, 2016).127.Levin, R. A. et al. Sex, scavengers, and chaperones: transcriptome secrets of divergent symbiodinium thermal tolerances. Mol. Biol. Evol. 33, 3032 (2016).Article 

    Google Scholar 
    128.Nand, A. et al. Genetic and spatial organization of the unusual chromosomes of the dinoflagellate Symbiodinium microadriaticum. Nat. Genet. 53, 618–629 (2021).Article 

    Google Scholar 
    129.Buerger, P. et al. Heat-evolved microalgal symbionts increase coral bleaching tolerance. Sci. Adv. 6, eaba2498 (2020).Article 

    Google Scholar 
    130.Thornhill, D. J., Howells, E. J., Wham, D. C., Steury, T. D. & Santos, S. R. Population genetics of reef coral endosymbionts (Symbiodinium, Dinophyceae). Mol. Ecol. 26, 2640–2659 (2017).Article 

    Google Scholar 
    131.LaJeunesse, T. C. et al. Long-standing environmental conditions, geographic isolation and host–symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium. J. Biogeogr. 37, 785–800 (2010).Article 

    Google Scholar 
    132.Parkinson, J. E. et al. Gene expression variation resolves species and individual strains among coral-associated dinoflagellates within the genus Symbiodinium. Genome Biol. Evol. 8, 665–680 (2016).Article 

    Google Scholar 
    133.Baker, A. C. Flexibility and specificity in coral–algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu. Rev. Ecol. Evol. Syst. 34, 661–689 (2003).Article 

    Google Scholar 
    134.Boulotte, N. M. et al. Exploring the Symbiodinium rare biosphere provides evidence for symbiont switching in reef-building corals. ISME J. 10, 2693–2701 (2016).Article 

    Google Scholar 
    135.Ziegler, M., Eguíluz, V. M., Duarte, C. M. & Voolstra, C. R. Rare symbionts may contribute to the resilience of coral–algal assemblages. ISME J. 12, 161–172 (2018).Article 

    Google Scholar 
    136.Mies, M., Sumida, P. Y. G., Rädecker, N. & Voolstra, C. R. Marine Invertebrate Larvae Associated with Symbiodinium: A Mutualism from the Start? Front. Ecol. Evol. 5, 56 https://www.frontiersin.org/article/10.3389/fevo.2017.00056 (2017).137.Cumbo, V. R., Baird, A. H. & van Oppen, M. J. H. The promiscuous larvae: flexibility in the establishment of symbiosis in corals. Coral Reefs 32, 111–120 (2013).Article 

    Google Scholar 
    138.Quigley, K. M., Willis, B. L. & Bay, L. K. Heritability of the Symbiodinium community in vertically- and horizontally-transmitting broadcast spawning corals. Sci. Rep. 7, 8219 (2017).Article 

    Google Scholar 
    139.National Academies of Sciences, Engineering, and Medicine. A Research Review of Interventions to Increase the Persistence and Resilience of Coral Reefs (National Academies Press, 2019). This book reviews restoration interventions, detailing latest emerging technologies and approaches.140.Quigley, K. M., Randall, C. J., van Oppen, M. J. H. & Bay, L. K. Assessing the role of historical temperature regime and algal symbionts on the heat tolerance of coral juveniles. Biol. Open 9, bio047316 (2020).Article 

    Google Scholar 
    141.McIlroy, S. E. et al. The effects of Symbiodinium (Pyrrhophyta) identity on growth, survivorship, and thermal tolerance of newly settled coral recruits. J. Phycol. 52, 1114–1124 (2016).Article 

    Google Scholar 
    142.Thornhill, D. J., Daniel, M. W., LaJeunesse, T. C., Schmidt, G. W. & Fitt, W. K. Natural infections of aposymbiotic Cassiopea xamachana scyphistomae from environmental pools of Symbiodinium. J. Exp. Mar. Bio. Ecol. 338, 50–56 (2006).Article 

    Google Scholar 
    143.Coffroth, M. A., Lewis, C. F., Santos, S. R. & Weaver, J. L. Environmental populations of symbiotic dinoflagellates in the genus Symbiodinium can initiate symbioses with reef cnidarians. Curr. Biol. 16, R985–R987 (2006).Article 

    Google Scholar 
    144.Fujise, L. et al. Unlocking the phylogenetic diversity, primary habitats, and abundances of free-living Symbiodiniaceae on a coral reef. Mol. Ecol. 30, 343–360 (2021).Article 

    Google Scholar 
    145.Levin, R. A. et al. Engineering strategies to decode and enhance the genomes of coral symbionts. Front. Microbiol. 8, 1220 (2017).Article 

    Google Scholar 
    146.Chen, J. E., Barbrook, A. C., Cui, G., Howe, C. J. & Aranda, M. The genetic intractability of Symbiodinium microadriaticum to standard algal transformation methods. PLoS ONE 14, e0211936 (2019).Article 

    Google Scholar 
    147.Sheykhali, S. et al. Robustness to extinction and plasticity derived from mutualistic bipartite ecological networks. Sci. Rep. 10, 9783 (2020).Article 

    Google Scholar 
    148.Quigley, K. M., Bay, L. K. & Willis, B. L. Leveraging new knowledge of Symbiodinium community regulation in corals for conservation and reef restoration. Mar. Ecol. Prog. Ser. 600, 245–253 (2018).Article 

    Google Scholar 
    149.LaJeunesse, T. C. et al. Host–symbiont recombination versus natural selection in the response of coral–dinoflagellate symbioses to environmental disturbance. Proc. R. Soc. B: Biol. Sci. 277, 2925–2934 (2010).Article 

    Google Scholar 
    150.Poland, D. M. & Coffroth, M. A. Trans-generational specificity within a cnidarian–algal symbiosis. Coral Reefs 36, 119–129 (2017).Article 

    Google Scholar 
    151.Sampayo, E. M. et al. Coral symbioses under prolonged environmental change: living near tolerance range limits. Sci. Rep. 6, 36271 (2016).Article 

    Google Scholar 
    152.Abrego, D., van Oppen, M. J. H. & Willis, B. L. Onset of algal endosymbiont specificity varies among closely related species of Acropora corals during early ontogeny. Mol. Ecol. 18, 3532–3543 (2009).Article 

    Google Scholar 
    153.Pettay, D. T., Wham, D. C., Smith, R. T., Iglesias-Prieto, R. & LaJeunesse, T. C. Microbial invasion of the Caribbean by an Indo-Pacific coral zooxanthella. Proc. Natl Acad. Sci. USA 112, 7513–7518 (2015).Article 

    Google Scholar 
    154.Qin, Z. et al. Diversity of Symbiodiniaceae in 15 coral species from the Southern South China Sea: potential relationship with coral thermal adaptability. Front. Microbiol. 10, 2343 (2019).Article 

    Google Scholar 
    155.Claar, D. C. et al. Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves. Nat. Commun. 11, 6097 (2020).Article 

    Google Scholar 
    156.Lim, E.-P. et al. Continuation of tropical Pacific Ocean temperature trend may weaken extreme El Niño and its linkage to the Southern Annular Mode. Sci. Rep. 9, 17044 (2019).Article 

    Google Scholar 
    157.Pollock, F. J. et al. Coral larvae for restoration and research: a large-scale method for rearing Acropora millepora larvae, inducing settlement, and establishing symbiosis. PeerJ 5, e3732 (2017).Article 

    Google Scholar 
    158.McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl Acad. Sci. USA 110, 3229–3236 (2013).Article 

    Google Scholar 
    159.Bosch, T. C. G. & McFall-Ngai, M. J. Metaorganisms as the new frontier. Zoology 114, 185–190 (2011).Article 

    Google Scholar 
    160.Robbins, S. J. et al. A genomic view of the reef-building coral Porites lutea and its microbial symbionts. Nat. Microbiol. 4, 2090–2100 (2019).Article 

    Google Scholar 
    161.Bang, C. et al. Metaorganisms in extreme environments: do microbes play a role in organismal adaptation? Zoology 127, 1–19 (2018).Article 

    Google Scholar 
    162.Williams, A. D., Brown, B. E., Putchim, L. & Sweet, M. J. Age-related shifts in bacterial diversity in a reef coral. PLoS ONE 10, e0144902 (2015).Article 

    Google Scholar 
    163.Roder, C., Bayer, T., Aranda, M., Kruse, M. & Voolstra, C. R. Microbiome structure of the fungid coral Ctenactis echinata aligns with environmental differences. Mol. Ecol. 24, 3501–3511 (2015).Article 

    Google Scholar 
    164.Sweet, M. J., Brown, B. E., Dunne, R. P., Singleton, I. & Bulling, M. Evidence for rapid, tide-related shifts in the microbiome of the coral Coelastrea aspera. Coral Reefs 36, 815–828 (2017).Article 

    Google Scholar 
    165.Ziegler, M. et al. Coral bacterial community structure responds to environmental change in a host-specific manner. Nat. Commun. 10, 3092 (2019).Article 

    Google Scholar 
    166.Reshef, L., Koren, O., Loya, Y., Zilber-Rosenberg, I. & Rosenberg, E. The coral probiotic hypothesis. Environ. Microbiol. 8, 2068–2073 (2006).Article 

    Google Scholar 
    167.Pogoreutz, C. et al. Dominance of Endozoicomonas bacteria throughout coral bleaching and mortality suggests structural inflexibility of the Pocillopora verrucosa microbiome. Ecol. Evol. 8, 2240–2252 (2018).Article 

    Google Scholar 
    168.Neave, M. J. et al. Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales. ISME J. 11, 186–200 (2017).Article 

    Google Scholar 
    169.Neave, M. J., Apprill, A., Ferrier-Pagès, C. & Voolstra, C. R. Diversity and function of prevalent symbiotic marine bacteria in the genus. Endozoicomonas. Appl. Microbiol. Biotechnol. 100, 8315–8324 (2016).Article 

    Google Scholar 
    170.Nissimov, J., Rosenberg, E. & Munn, C. B. Antimicrobial properties of resident coral mucus bacteria of Oculina patagonica. FEMS Microbiol. Lett. 292, 210–215 (2009).Article 

    Google Scholar 
    171.Sharp, K. H., Sneed, J. M., Ritchie, K. B., Mcdaniel, L. & Paul, V. J. Induction of larval settlement in the reef coral Porites astreoides by a cultivated marine roseobacter strain. Biol. Bull. 228, 98–107 (2015).Article 

    Google Scholar 
    172.Rosado, P. M. et al. Marine probiotics: increasing coral resistance to bleaching through microbiome manipulation. ISME J. 13, 921–936 (2019).Article 

    Google Scholar 
    173.Sunagawa, S. et al. Bacterial diversity and white plague disease-associated community changes in the Caribbean coral Montastraea faveolata. ISME J. 3, 512–521 (2009).Article 

    Google Scholar 
    174.Ushijima, B., Smith, A., Aeby, G. S. & Callahan, S. M. Vibrio owensii induces the tissue loss disease Montipora white syndrome in the Hawaiian reef coral Montipora capitata. PLoS ONE 7, e46717 (2012).Article 

    Google Scholar 
    175.Mouchka, M. E., Hewson, I. & Harvell, C. D. Coral-associated bacterial assemblages: current knowledge and the potential for climate-driven impacts. Integr. Comp. Biol. 50, 662–674 (2010).Article 

    Google Scholar 
    176.Glasl, B., Herndl, G. J. & Frade, P. R. The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance. ISME J. 10, 2280–2292 (2016).Article 

    Google Scholar 
    177.Peixoto, R. S. et al. Beneficial Microorganisms for Corals (BMC): proposed mechanisms for coral health and resilience. Front. Microbiol. 8, 341 (2017).Article 

    Google Scholar 
    178.Mueller, E. A., Wisnoski, N. I., Peralta, A. L. & Lennon, J. T. Microbial rescue effects: how microbiomes can save hosts from extinction. Funct. Ecol. 34, 2055–2064 (2020).Article 

    Google Scholar 
    179.Leite, D. C. A. et al. Coral bacterial-core abundance and network complexity as proxies for anthropogenic pollution. Front. Microbiol. 9, 833 (2018).Article 

    Google Scholar 
    180.Fragoso Ados Santos, H. et al. Impact of oil spills on coral reefs can be reduced by bioremediation using probiotic microbiota. Sci. Rep. 5, 18268 (2015).Article 

    Google Scholar 
    181.Silva, D. P. et al. Multi-domain probiotic consortium as an alternative to chemical remediation of oil spills at coral reefs and adjacent sites. Microbiome 9, 118 (2021).Article 

    Google Scholar 
    182.Welsh, R. M. et al. Alien vs. predator: bacterial challenge alters coral microbiomes unless controlled by Halobacteriovorax predators. PeerJ 5, e3315 (2017).Article 

    Google Scholar 
    183.Santoro, E. P. et al. Coral microbiome manipulation elicits metabolic and genetic restructuring to mitigate heat stress and evade mortality. Sci. Adv. 7, eabg3088 (2021).Article 

    Google Scholar 
    184.Assis, J. M. et al. Delivering Beneficial Microorganisms for Corals: rotifers as carriers of probiotic bacteria. Front. Microbiol. 11, 608506 (2020).Article 

    Google Scholar 
    185.Damjanovic, K., Blackall, L. L., Webster, N. S. & van Oppen, M. J. H. The contribution of microbial biotechnology to mitigating coral reef degradation. Microb. Biotechnol. 10, 1236–1243 (2017).Article 

    Google Scholar 
    186.van Oppen, M. J. H. & Blackall, L. L. Coral microbiome dynamics, functions and design in a changing world. Nat. Rev. Microbiol. 17, 557–567 (2019).Article 

    Google Scholar 
    187.Sweet, M. et al. Insights into the cultured bacterial fraction of corals. mSystems 6, e0124920 (2021).Article 

    Google Scholar 
    188.Brussaard, C. P. D., Baudoux, A.-C. & Rodríguez-Valera, F. in The Marine Microbiome: An Untapped Source of Biodiversity and Biotechnological Potential (eds Stal, L. J. & Cretoiu, M. S.) 155–183 (Springer International, 2016).189.Levin, R. A., Voolstra, C. R., Weynberg, K. D. & van Oppen, M. J. H. Evidence for a role of viruses in the thermal sensitivity of coral photosymbionts. ISME J. 11, 808–812 (2017).Article 

    Google Scholar 
    190.Messyasz, A. et al. Coral bleaching phenotypes associated with differential abundances of nucleocytoplasmic large DNA viruses. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.555474 (2020).Article 

    Google Scholar 
    191.Thurber, R. L. V. et al. Metagenomic analysis indicates that stressors induce production of herpes-like viruses in the coral Porites compressa. Proc. Natl Acad. Sci. USA 105, 18413–18418 (2008).Article 

    Google Scholar 
    192.Sweet, M. & Bythell, J. The role of viruses in coral health and disease. J. Invertebr. Pathol. 147, 136–144 (2017).Article 

    Google Scholar 
    193.Thurber, R. V., Payet, J. P., Thurber, A. R. & Correa, A. M. S. Virus–host interactions and their roles in coral reef health and disease. Nat. Rev. Microbiol. 15, 205–216 (2017). This paper reviews the role of viruses in coral holobiont biology.Article 

    Google Scholar 
    194.Frazão, N., Sousa, A., Lässig, M. & Gordo, I. Horizontal gene transfer overrides mutation in Escherichia coli colonizing the mammalian gut. Proc. Natl Acad. Sci. USA 116, 17906–17915 (2019).Article 

    Google Scholar 
    195.Lepage, P. et al. Dysbiosis in inflammatory bowel disease: a role for bacteriophages? Gut 57, 424–425 (2008).Article 

    Google Scholar 
    196.Barr, J. J. et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc. Natl Acad. Sci. USA 110, 10771–10776 (2013).Article 

    Google Scholar 
    197.Silveira, C. B. & Rohwer, F. L. Piggyback-the-winner in host-associated microbial communities. NPJ Biofilms Microbiomes 2, 16010 (2016).Article 

    Google Scholar 
    198.Roach, T. N. F. et al. A multiomic analysis of in situ coral–turf algal interactions. Proc. Natl Acad. Sci. USA 117, 13588–13595 (2020).Article 

    Google Scholar 
    199.Cárdenas, A. et al. Coral-associated viral assemblages from the central Red Sea align with host species and contribute to holobiont genetic diversity. Front. Microbiol. 11, 572534 (2020).Article 

    Google Scholar 
    200.Bondy-Denomy, J. & Davidson, A. R. When a virus is not a parasite: the beneficial effects of prophages on bacterial fitness. J. Microbiol. 52, 235–242 (2014).Article 

    Google Scholar 
    201.Weynberg, K. D., Voolstra, C. R., Neave, M. J., Buerger, P. & van Oppen, M. J. H. From cholera to corals: viruses as drivers of virulence in a major coral bacterial pathogen. Sci. Rep. 5, 17889 (2015).Article 

    Google Scholar 
    202.Silveira, C. B. et al. Genomic and ecological attributes of marine bacteriophages encoding bacterial virulence genes. BMC Genomics 21, 126 (2020).Article 

    Google Scholar 
    203.Soffer, N., Brandt, M. E., Correa, A. M. S., Smith, T. B. & Thurber, R. V. Potential role of viruses in white plague coral disease. ISME J. 8, 271–283 (2014).Article 

    Google Scholar 
    204.Weynberg, K. D. et al. Prevalent and persistent viral infection in cultures of the coral algal endosymbiont Symbiodinium. Coral Reefs 36, 773–784 (2017).Article 

    Google Scholar 
    205.Brüwer, J. D., Agrawal, S., Liew, Y. J., Aranda, M. & Voolstra, C. R. Association of coral algal symbionts with a diverse viral community responsive to heat shock. BMC Microbiol. 17, 174 (2017).Article 

    Google Scholar 
    206.Jacquemot, L. et al. Therapeutic potential of a new jumbo phage that infects Vibrio coralliilyticus, a widespread coral pathogen. Front. Microbiol. 9, 2501 (2018).Article 

    Google Scholar 
    207.Efrony, R., Loya, Y., Bacharach, E. & Rosenberg, E. Phage therapy of coral disease. Coral Reefs 26, 7–13 (2007).Article 

    Google Scholar 
    208.Cohen, Y., Joseph Pollock, F., Rosenberg, E. & Bourne, D. G. Phage therapy treatment of the coral pathogen Vibrio coralliilyticus. Microbiologyopen 2, 64–74 (2013).Article 

    Google Scholar 
    209.Efrony, R., Atad, I. & Rosenberg, E. Phage therapy of coral white plague disease: properties of phage BA3. Curr. Microbiol. 58, 139–145 (2009).Article 

    Google Scholar 
    210.Atad, I., Zvuloni, A., Loya, Y. & Rosenberg, E. Phage therapy of the white plague-like disease of Favia favus in the Red Sea. Coral Reefs 31, 665–670 (2012).Article 

    Google Scholar 
    211.Sweet, M. J. & Bulling, M. T. On the importance of the microbiome and pathobiome in coral health and disease. Front. Mar. Sci. 4, 9 (2017).Article 

    Google Scholar 
    212.Pollock, F. J., Morris, P. J., Willis, B. L. & Bourne, D. G. The urgent need for robust coral disease diagnostics. PLoS Pathog. 7, e1002183 (2011).Article 

    Google Scholar 
    213.Lesser, M. P., Bythell, J. C., Gates, R. D., Johnstone, R. W. & Hoegh-Guldberg, O. Are infectious diseases really killing corals? Alternative interpretations of the experimental and ecological data. J. Exp. Mar. Bio. Ecol. 346, 36–44 (2007).Article 

    Google Scholar 
    214.Roder, C., Arif, C., Daniels, C., Weil, E. & Voolstra, C. R. Bacterial profiling of white plague disease across corals and oceans indicates a conserved and distinct disease microbiome. Mol. Ecol. 23, 965–974 (2014).Article 

    Google Scholar 
    215.Soffer, N., Zaneveld, J. & Vega Thurber, R. Phage–bacteria network analysis and its implication for the understanding of coral disease. Environ. Microbiol. 17, 1203–1218 (2015).Article 

    Google Scholar 
    216.Ubeda, C. et al. Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Mol. Microbiol. 56, 836–844 (2005).Article 

    Google Scholar 
    217.Cárdenas, A. et al. Excess labile carbon promotes the expression of virulence factors in coral reef bacterioplankton. ISME J. 12, 59–76 (2018).Article 

    Google Scholar 
    218.Anthony, K. et al. New interventions are needed to save coral reefs. Nat. Ecol. Evol. 1, 1420–1422 (2017).Article 

    Google Scholar 
    219.Allard, S. M. et al. Introducing the mangrove microbiome initiative: identifying microbial research priorities and approaches to better understand, protect, and rehabilitate mangrove ecosystems. mSystems https://doi.org/10.1128/mSystems.00658-20 (2020).Article 

    Google Scholar 
    220.Zickfeld, K. et al. Long-term climate change commitment and reversibility: An EMIC intercomparison. J. Clim. 26, 5782–5809 (2013).Article 

    Google Scholar 
    221.Humanes, A. et al. A framework for selectively breeding corals for assisted evolution. Preprint at bioRxiv https://doi.org/10.1101/2021.02.23.432469 (2021).Article 

    Google Scholar 
    222.National Academies of Sciences, Engineering, and Medicine. A Decision Framework for Interventions to Increase the Persistence and Resilience of Coral Reefs (National Academies Press, 2019).223.Page, C. A., Muller, E. M. & Vaughan, D. E. Microfragmenting for the successful restoration of slow growing massive corals. Ecol. Eng. 123, 86–94 (2018).Article 

    Google Scholar 
    224.Schopmeyer, S. A. et al. Regional restoration benchmarks for Acropora cervicornis. Coral Reefs 36, 1047–1057 (2017).Article 

    Google Scholar 
    225.Suggett, D. J., Edmondson, J., Howlett, L. & Camp, E. F. Coralclip®: a low-cost solution for rapid and targeted out-planting of coral at scale. Restor. Ecol. 28, 289–296 (2020).Article 

    Google Scholar 
    226.Woesik, R. et al. Differential survival of nursery-reared Acropora cervicornis outplants along the Florida reef tract. Restor. Ecol. 29, e13302 (2021).Article 

    Google Scholar 
    227.Ware, M. et al. Survivorship and growth in staghorn coral (Acropora cervicornis) outplanting projects in the Florida Keys National Marine Sanctuary. PLoS ONE 15, e0231817 (2020).Article 

    Google Scholar 
    228.Ladd, M. C., Shantz, A. A., Bartels, E. & Burkepile, D. E. Thermal stress reveals a genotype-specific tradeoff between growth and tissue loss in restored Acropora cervicornis. Mar. Ecol. Prog. Ser. 572, 129–139 (2017).Article 

    Google Scholar 
    229.Goergen, E. A. & Gilliam, D. S. Outplanting technique, host genotype, and site affect the initial success of outplanted Acropora cervicornis. PeerJ 6, e4433 (2018).Article 

    Google Scholar 
    230.Chamberland, V. F. et al. New seeding approach reduces costs and time to outplant sexually propagated corals for reef restoration. Sci. Rep. 7, 18076 (2017).Article 

    Google Scholar 
    231.Craggs, J., Guest, J., Davis, M. & Sweet, M. Completing the life cycle of a broadcast spawning coral in a closed mesocosm. Invertebr. Reprod. Dev. 64, 244–247 (2020).Article 

    Google Scholar 
    232.Hock, K. et al. Connectivity and systemic resilience of the Great Barrier Reef. PLoS Biol. 15, e2003355 (2017).Article 

    Google Scholar 
    233.Quigley, K. M., Bay, L. K. & van Oppen, M. J. H. The active spread of adaptive variation for reef resilience. Ecol. Evol. 9, 11122–11135 (2019).Article 

    Google Scholar 
    234.Sangsawang, L. et al. 13C and 15N assimilation and organic matter translocation by the endolithic community in the massive coral Porites lutea. R. Soc. Open Sci. 4, 171201 (2017).Article 

    Google Scholar 
    235.Pernice, M. et al. Down to the bone: the role of overlooked endolithic microbiomes in reef coral health. ISME J. 14, 325–334 (2020).Article 

    Google Scholar 
    236.Kwong, W. K., Del Campo, J., Mathur, V., Vermeij, M. J. A. & Keeling, P. J. A widespread coral-infecting apicomplexan with chlorophyll biosynthesis genes. Nature 568, 103–107 (2019).Article 

    Google Scholar 
    237.Fine, M., Gildor, H. & Genin, A. A coral reef refuge in the Red Sea. Glob. Chang. Biol. 19, 3640–3647 (2013).Article 

    Google Scholar 
    238.Osman, E. O. et al. Thermal refugia against coral bleaching throughout the northern Red Sea. Glob. Chang. Biol. 24, e474–e484 (2018).Article 

    Google Scholar 
    239.Camp, E. F. et al. Corals exhibit distinct patterns of microbial reorganisation to thrive in an extreme inshore environment. Coral Reefs 39, 701–716 (2020).Article 

    Google Scholar 
    240.Grottoli, A. G. et al. Increasing comparability among coral bleaching experiments. Ecol. Appl. 31, e02262 (2021).Article 

    Google Scholar 
    241.Putnam, H. M., Barott, K. L., Ainsworth, T. D. & Gates, R. D. The vulnerability and resilience of reef-building corals. Curr. Biol. 27, R528–R540 (2017).Article 

    Google Scholar 
    242.Hagedorn, M. & Spindler, R. The reality, use and potential for cryopreservation of coral reefs. Adv. Exp. Med. Biol. 753, 317–329 (2014).Article 

    Google Scholar 
    243.Hagedorn, M. et al. Successful demonstration of assisted gene flow in the threatened coral Acropora palmata across genetically-isolated caribbean populations using cryopreserved sperm. Cold Spring Harb. Lab. https://doi.org/10.1101/492447 (2018).Article 

    Google Scholar 
    244.Hagedorn, M., Spindler, R. & Daly, J. Cryopreservation as a tool for reef restoration: 2019. Adv. Exp. Med. Biol. 1200, 489–505 (2019).Article 

    Google Scholar 
    245.Daly, J. et al. Successful cryopreservation of coral larvae using vitrification and laser warming. Sci. Rep. 8, 15714 (2018).Article 

    Google Scholar 
    246.Chakravarti, L. J., Beltran, V. H. & van Oppen, M. J. H. Rapid thermal adaptation in photosymbionts of reef-building corals. Glob. Chang. Biol. 23, 4675–4688 (2017).Article 

    Google Scholar 
    247.Quigley, K. M., Alvarez Roa, C., Torda, G., Bourne, D. G. & Willis, B. L. Co-dynamics of Symbiodiniaceae and bacterial populations during the first year of symbiosis with Acropora tenuis juveniles. Microbiologyopen 9, e959 (2020).Article 

    Google Scholar 
    248.Teplitski, M. & Ritchie, K. How feasible is the biological control of coral diseases? Trends Ecol. Evol. 24, 378–385 (2009).Article 

    Google Scholar  More

  • in

    Kleptoplast distribution, photosynthetic efficiency and sequestration mechanisms in intertidal benthic foraminifera

    1.Schiebel R. Planktic foraminiferal sedimentation and the marine calcite budget. Glob Biogeochem Cycl. 2002;16:1–21.Article 
    CAS 

    Google Scholar 
    2.Lampitt RS, Salter I, John D. Radiolaria: major exporters of organic carbon to the deep ocean. Glob Biogeochem Cycl. 2009;23:GB1010.Article 
    CAS 

    Google Scholar 
    3.Risgaard-Petersen N, Langezaal AM, Ingvardsen S, Schmid MC, Jetten MSM, Op den Camp HJM, et al. Evidence for complete denitrification in a benthic foraminifer. Nature. 2006;443:93–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Piña-Ochoa E, Hogslund S, Geslin E, Cedhagen T, Revsbech NP, Nielsen LP, et al. Widespread occurrence of nitrate storage and denitrification among foraminifera and gromiida. Proc Natl Acad Sci USA. 2010;107:1148–53.PubMed 
    Article 

    Google Scholar 
    5.Jauffrais T, LeKieffre C, Schweizer M, Geslin E, Metzger E, Bernhard JM, et al. Kleptoplastidic benthic foraminifera from aphotic habitats: insights into assimilation of inorganic C, N and S studied with sub-cellular resolution. Environ Microbiol. 2019;21:125–41.CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Delaca TE, Karl DM, Lipps JH. Direct use of dissolved organic-carbon by agglutinated benthic foraminifera. Nature. 1981;289:287–9.CAS 
    Article 

    Google Scholar 
    7.Moodley L, Boschker HTS, Middelburg JJ, Pel R, Herman PMJ, de Deckere E, et al. Ecological significance of benthic foraminifera: C-13 labelling experiments. Mar Ecol Prog Ser. 2000;202:289–95.Article 

    Google Scholar 
    8.LeKieffre C, Jauffrais T, Geslin E, Jesus B, Bernhard JM, Giovani ME, et al. Inorganic carbon and nitrogen assimilation in cellular compartments of a benthic kleptoplastic foraminifer. Sci Rep. 2018;8:1–12.CAS 
    Article 

    Google Scholar 
    9.Tsuchiya M, Chikaraishi Y, Nomaki H, Sasaki Y, Tame A, Uematsu K, et al. Compound-specific isotope analysis of benthic foraminifer amino acids suggests microhabitat variability in rocky-shore environments. Ecol Evol. 2018;8:8380–95.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Glock N, Roy AS, Romero D, Wein T, Weissenbach J, Revsbech NP, et al. Metabolic preference of nitrate over oxygen as an electron acceptor in foraminifera from the Peruvian oxygen minimum zone. Proc Natl Acad Sci USA. 2019;116:2860–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Woehle C, Roy AS, Glock N, Wein T, Weissenbach J, Rosenstiel P, et al. A novel eukaryotic denitrification pathway in foraminifera. Curr Biol. 2018;28:1–8.Article 
    CAS 

    Google Scholar 
    12.Gooday A. Meiofaunal foraminiferans from the bathyal porcupine seabight (northeast Atlantic): size structure, standing stock, taxonomic composition, species diversity and vertical distribution in the sediment. Deep-Sea Res Part A Oceanogr Res Pap. 1986;33:1345–73.Article 

    Google Scholar 
    13.Pascal P-Y, Dupuy C, Richard P, Mallet C, Telet EAC, Niquilb N. Seasonal variation in consumption of benthic bacteria by meio- and macrofauna in an intertidal mudflat. Limnol Oceanogr. 2009;54:1048–59.CAS 
    Article 

    Google Scholar 
    14.Jauffrais T, LeKieffre C, Schweizer M, Jesus B, Metzger E, Geslin E. Response of a kleptoplastidic foraminifer to heterotrophic starvation: photosynthesis and lipid droplet biogenesis. FEMS Microbiol Ecol. 2019;95:fiz046.CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Grzymski J, Schofield OM, Falkowski PG, Bernhard JM. The function of plastids in the deep-sea benthic foraminifer, Nonionella stella. Limnol Oceanogr. 2002;47:1569–80.CAS 
    Article 

    Google Scholar 
    16.Pillet L, de Vargas C, Pawlowski J. Molecular identification of sequestered diatom chloroplasts and kleptoplastidy in foraminifera. Protist. 2011;162:394–404.CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Cesbron F, Geslin E, Le Kieffre C, Jauffrais T, Nardelli MP, Langlet D, et al. Sequestered chloroplasts in the benthic foraminifer Haynesina germanica: cellular organization, oxygen fluxes and potential ecological implications. J Foraminifer Res. 2017;47:268–78.Article 

    Google Scholar 
    18.Jauffrais T, Jesus B, Metzger E, Mouget JL, Jorissen F, Geslin E. Effect of light on photosynthetic efficiency of sequestered chloroplasts in intertidal benthic foraminifera (Haynesina germanica and Ammonia tepida). Biogeosciences. 2016;13:2715–26.Article 

    Google Scholar 
    19.Lopez E. Algal chloroplasts in the protoplasm of three species of benthic foraminifera: taxonomic affinity, viability and persistence. Mar Biol. 1979;53:201–11.CAS 
    Article 

    Google Scholar 
    20.Clark KB, Jensen KR, Stirts HM. Survey for functional kleptoplasty among West Atlantic Ascoglossa (=Sacoglossa) (Mollusca: Opisthobranchia). Veliger. 1990;33:339–45.
    Google Scholar 
    21.Rumpho ME, Dastoor F, Manhart J, Lee J. The kleptoplast. In: Wise RR, Hoober JK, editors. The structure and function of plastids. 23. New York: Advances in Photosynthesis and Respiration; 2006. p. 451–73.Chapter 

    Google Scholar 
    22.Jesus B, Ventura P, Calado G. Behaviour and a functional xanthophyll cycle enhance photo-regulation mechanisms in the solar-powered sea slug Elysia timida (Risso, 1818). J Exp Mar Biol Ecol. 2010;395:98–105.CAS 
    Article 

    Google Scholar 
    23.Hansen PJ, Fenchel T. The bloom-forming ciliate Mesodinium rubrum harbours a single permanent endosymbiont. Mar Biol Res. 2006;2:169–77.Article 

    Google Scholar 
    24.Hansen PJ, Ojamäe K, Berge T, Trampe EC, Nielsen LT, Lips I, et al. Photoregulation in a kleptochloroplastidic dinoflagellate Dinophysis acuta. Front Microbiol. 2016;7:1–11.
    Google Scholar 
    25.Decelle J, Colin S, Foster RA. Photosymbiosis in Marine Planktonic Protists. In: Ohtsuka S, Suzaki T, Horiguchi T, Suzuki N, Not F, editors. Marine Protists. Tokyo: Springer; 2015. p. 465–500.Chapter 

    Google Scholar 
    26.Stoecker DK, Johnson MD, deVargas C, Not F. Acquired phototrophy in aquatic protists. Aquat Micro Ecol. 2009;57:279–310.Article 

    Google Scholar 
    27.Rumpho ME, Summer EJ, Manhart JR. Solar-powered sea slugs. Mollusc/algal chloroplast symbiosis. Plant Physiol. 2000;123:29–38.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Park MG, Park JS, Kim M, Yih W. Plastids dynamics during survival of Dinophysis caudate without its ciliate prey. J Phycol. 2008;44:1154–63.CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Alexander SP, Banner FT. The functional relationship between skeleton and cytoplasm in Haynesina germanica (Ehrenberg). J Foraminifer Res. 1984;14:159–70.Article 

    Google Scholar 
    30.Bernhard JM, Alve E. Survival, ATP pool, and ultrastructural characterization of benthic foraminifera from Drammens fjord (Norway): Response to anoxia. Mar Micropaleontol. 1996;28:5–17.Article 

    Google Scholar 
    31.Bernhard JM, Bowser SS. Benthic foraminifera of dysoxic sediments: chloroplast sequestration and functional morphology. Earth Sci Rev. 1999;46:149–65.CAS 
    Article 

    Google Scholar 
    32.Bernhard JM, Buck KR, Farmer MA, Bowser SS. The Santa Barbara Basin is a symbiosis oasis. Nature. 2000;403:77–80.CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Correia MJ, Lee JJ. Chloroplast retention by Elphidium excavatum (Terquem). Is it a selective process? Symbiosis. 2000;29:343–55.
    Google Scholar 
    34.Lee JJ, Lanners E, Ter Kuile B. The retention of chloroplasts by the foraminifera Elphidium crispum. Symbiosis. 1988;5:45–60.CAS 

    Google Scholar 
    35.Cedhagen T. Retention of chloroplasts and bathymetric distribution in the sublittoral foraminiferan Nonionellina labradorica. Ophelia. 1991;33:17–30.Article 

    Google Scholar 
    36.Correia MJ, Lee JJ. Fine structure of the plastids retained by the foraminifer Elphidium excavatum (Terquem). Symbiosis. 2002;32:15–26.
    Google Scholar 
    37.Correia MJ, Lee JJ. How long do the plastids retained by Elphidium excavatum (Terquem) last in their host? Symbiosis. 2002;32:27–37.
    Google Scholar 
    38.Goldstein ST, Bernhard JM, Richardson EA. Chloroplast sequestration in the foraminifer Haynesina germanica: application of high pressure freezing and freeze substitution. Microsc Microanal. 2004;10:1458–9.Article 

    Google Scholar 
    39.Jauffrais T, LeKieffre C, Koho KA, Tsuchiya M, Schweizer M, Bernhard JM, et al. Ultrastructure and distribution of kleptoplasts in benthic foraminifera from shallow-water (photic) habitats. Mar Micropaleontol. 2018;138:46–62.Article 

    Google Scholar 
    40.Tsuchiya M, Toyofuku T, Uematsu K, Brüchert V, Collen J, Yamamoto H, et al. Cytologic and genetic characteristics of endobiotic bacteria and kleptoplasts of Virgulinella fragilis (Foraminifera). J Euk Microbiol. 2015;62:454–69.PubMed 
    Article 

    Google Scholar 
    41.Tsuchiya M, Miyawaki S, Oguri K, Toyofuku T, Tame A, Uematsu K, et al. Acquisition, Maintenance, and Ecological Roles of Kleptoplasts in Planoglabratella opercularis (Foraminifera, Rhizaria). Front Mar Sci. 2020;7:585.Article 

    Google Scholar 
    42.Jauffrais T, Jesus B, Méléder V, Geslin E. Functional xanthophyll cycle and pigment content of a kleptoplastic benthic foraminifer: Haynesina germanica. PLOS ONE. 2017;12:e0172678.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    43.Austin HA, Austin WE, Paterson DM. Extracellular cracking and content removal of the benthic diatom Pleurosigma angulatum (Quekett) by the benthic foraminifera Haynesina germanica (Ehrenberg). Mar Micropaleontol. 2005;57:68–73.Article 

    Google Scholar 
    44.Green BJ, Li WY, Manhart JR, Fox TC, Summer EJ, Kennedy RA, et al. Mollusc-algal chloroplast endosymbiosis. Photosynthesis, thylakoid protein maintenance, and chloroplast gene expression continue for many months in the absence of the algal nucleus. Plant Physiol. 2000;124:331–42.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Nagai S, Nitshitani G, Tomaru Y, Sakiyama S, Kamiyama T. Predation by the toxic dinoflagellate Dinophysis fortii on the ciliate Myrionecta rubra and observation of sequestration of ciliate chloroplasts. J Phycol. 2008;44:909–22.PubMed 
    Article 

    Google Scholar 
    46.Shi LX, Theg SM. The chloroplast protein import system: From algae to trees. Biochim Biophys Acta. 2013;1833:314–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    47.de Vries J, Habicht J, Woehle C, Huang C, Christa G, Waegele H, et al. Is ftsH the key to plastid longevity in sacoglossan slugs? Genome Biol Evol. 2013;5:2540–8.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Cruz S, Cartaxana P, Newcomer R, Dionísio G, Calado R, Serôdio J, et al. Photoprotection in sequestered plastids of sea slugs and respective algal sources. Sci Rep. 2015;5:1–8.
    Google Scholar 
    49.Cartaxana P, Morelli L, Jesus B, Calado G, Calado R, Cruz S. The photon menace: kleptoplast protection in the photosynthetic sea slug Elysia timida. J Exp Biol. 2019;222:jeb202580.PubMed 
    Article 

    Google Scholar 
    50.Petrou K, Ralph P, Nielsen D. A novel mechanism for host-mediated photoprotection in endosymbiotic foraminifera. ISME J. 2017;11:453–62.CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Darling KF, Schweizer M, Knudsen KL, Evans KM, Bird C, Roberts A, et al. The genetic diversity, phylogeography and morphology of Elphidiidae (Foraminifera) in the Northeast Atlantic. Mar Micropaleontol. 2016;129:1–23.Article 

    Google Scholar 
    52.Kühl M, Polerecky L. Functional and structural imaging of aquatic phototrophic microbial communities and symbioses. Aquat Microb Ecol. 2008;53:99–118.53.Rouse JW, Haas RH, Schell JA, Deering DW. Monitoring vegetation systems in the great plains with ERTS. Proc Third ERTS Symp. 1973;1:309–17.
    Google Scholar 
    54.Barillé L, Mouget JL, Méléder V, Rosa P, Jesus B. Spectral response of benthic diatoms with different sediment backgrounds. Remote Sens Environ. 2011;115:1034–42.Article 

    Google Scholar 
    55.Kazemipour F, Launeau P, Méléder V. Microphytobenthos biomass mapping using the optical model of diatom biofilms: application to hyperspectral images of Bourgneuf Bay. Remote Sens Environ. 2012;127:1–13.Article 

    Google Scholar 
    56.Meleder V, Barille L, Launeau P, Carrere V, Rince Y. Spectrometric constraint in analysis of benthic diatom biomass using monospecific cultures. Remote Sens Environ. 2003;88:386–400.Article 

    Google Scholar 
    57.Serôdio J, Pereira S, Furtado J, Silva R, Coelho H, Calado R. In vivo quantification of kleptoplastic chlorophyll a content in the “solar-powered” sea slug Elysia viridis using optical methods: spectral reflectance analysis and PAM fluorometry. Photochem Photobiol Sci. 2010;9:68–77.PubMed 
    Article 

    Google Scholar 
    58.Jesus B, Mouget J-L, Perkins RG. Detection of diatom xanthophyll cycle using spectral reflectance. J Phycol. 2008;44:1349–59.CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Jesus B, Rosa P, Mouget JL, Méléder V, Launeau P, Barillé L. Spectral-radiometric analysis of taxonomically mixed microphytobenthic biofilms. Remote Sens Environ. 2014;140:196–205.Article 

    Google Scholar 
    60.Louchard EM, Reid RP, Stephens CF, Davis CO, Leathers RA, Downes TV, et al. Derivative analysis of absorption features in hyperspectral remote sensing data of carbonate sediments. Opt Express. 2002;10:1573–84.CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Perkins RG, Williamson CJ, Brodie J, Barillé L, Launeau P, Lavaud J, et al. Microspatial variability in community structure and photophysiology of calcified macroalgal microbiomes revealed by coupling of hyperspectral and high-resolution fluorescence imaging. Sci Rep. 2016;6:1–14.Article 
    CAS 

    Google Scholar 
    62.Trampe E, Kolbowski J, Schreiber U, Kühl M. Rapid assessment of different oxygenic phototrophs and single-cell photosynthesis with multicolour variable chlorophyll fluorescence imaging. Mar Biol. 2011;158:1667–75.CAS 
    Article 

    Google Scholar 
    63.Ralph PJ, Schreiber U, Gademann R, Kühl M, Larkum AWD. Coral photobiology studied with a new imaging pulse imaging pulse amplitude modulated fluorometer. J Phycol. 2005;41:335–42.Article 

    Google Scholar 
    64.Platt T, Gallegos CL, Harrison WG. Photoinhibition of photosynthesis in natural assemblages of marine phytoplancton. J Mar Res. 1980;38:687–701.
    Google Scholar 
    65.Kühl M, Glud RN, Borum J, Roberts R, Rysgaard S. Photosynthetic performance of surface associated algae below sea ice as measured with a pulse amplitude modulated (PAM) fluorometer and O2 microsensors. Mar Ecol Progr Ser S. 2001;223:1–14.Article 

    Google Scholar 
    66.Harrison WG, Platt T. Photosynthesis-irradiance relationships in polar and temperate phytoplankton populations. Polar Biol. 1986;5:153–64.Article 

    Google Scholar 
    67.Elzhov TV, Mullen KM, Spiess A-N, Bolker B minpack.lm: R Interface to the Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found in MINPACK, Plus Support for Bounds. 2016 R package version 1.2-1. https://CRAN.R-project.org/package=minpack.lm.68.LeKieffre C, Spangenberg JE, Mabilleau G, Escrig S, Meibom A, Geslin E. Surviving anoxia in marine sediments: the metabolic response of ubiquitous benthic foraminifera (Ammonia tepida). PLOS ONE. 2017;12:e0177604.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    69.Bernhard JM. Distinguishing live from dead foraminifera: Methods review and proper applications. Micropaleontol. 2000;46:38–46.
    Google Scholar 
    70.Nomaki H, Bernhard JM, Ishida A, Tsuchiya M, Uematsu K, Tame A, et al. Intracellular isotope localization in Ammonia sp. (Foraminifera) of oxygen-depleted environments: results of nitrate and sulfate labeling experiments. Front Microbiol. 2016;7:1–12.Article 

    Google Scholar 
    71.Eaton JW, Moss B. Estimation of numbers and pigment content in epipelic algal populations. Limnol Oceanogr. 1966;11:584–95.Article 

    Google Scholar 
    72.Schneider CA, Rasband WS, Eliceiri K. NIH Image to ImageJ: 25 years of image analysis. Nat Meth. 2012;9:671–5.CAS 
    Article 

    Google Scholar 
    73.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing 2017, Vienna, Austria. URL https://www.R-project.org/.74.Schneider LK, Anestis K, Mansour J, Anschütz AA, Gypens N, Hansen PJ, et al. A dataset on trophic modes of aquatic protists. Biodivers Data J. 2020;8:e56648.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Banner FT, Culver SJ. Quaternary Haynesina n. gen. and paleogene Protelphidium Haynes; their morphology, affinities and distribution. J Foraminifer Res. 1978;8:177–207.Article 

    Google Scholar 
    76.Hansen HJ, Lykke-Andersen AL. Wall structure and classification of fossil and recent elphidiid and nonionid Foraminifera. Foss Strat. 1976;10:1–37.
    Google Scholar 
    77.Hottinger L, Reiss Z, Langer M. Spiral canals of some Elphidiidae. Micropaleontol. 2001;47:5–34.
    Google Scholar 
    78.Lee J. On a piece of chalk – Update. J Euk Microbiol. 1993;40:395–410.CAS 
    Article 

    Google Scholar 
    79.Passarelli C, Meziane T, Thiney N, Boeuf D, Jesus B, et al. Seasonal variations of the composition of microbial biofilms in sandy tidal flats: Focus of fatty acids, pigments and exopolymers. Estuar Coast Shelf Sci. 2015;153:29–37.CAS 
    Article 

    Google Scholar 
    80.Jauffrais T, Drouet S, Turpin V, Méléder V, Jesus B, Cognie B, et al. Growth and biochemical composition of a microphytobenthic diatom (Entomoneis paludosa) exposed to shorebird (Calidris alpina) droppings. J Exp Mar Biol Ecol. 2015;469:83–92.CAS 
    Article 

    Google Scholar 
    81.Jauffrais T, Jesus B, Méléder V, Turpin V, Russo ADAPG, Raimbault P, et al. Physiological and photophysiological responses of the benthic diatom Entomoneis paludosa (Bacillariophyceae) to dissolved inorganic and organic nitrogen in culture. Mar Biol. 2016;163:1–14.CAS 
    Article 

    Google Scholar 
    82.Meleder V, Laviale M, Jesus B, Mouget JL, Lavaud J, Kazemipour F, et al. In vivo estimation of pigment composition and optical absorption cross-section by spectroradiometry in four aquatic photosynthetic micro-organisms. J Photochem Photobio B-Biol. 2013;129:115–24.CAS 
    Article 

    Google Scholar 
    83.Knight R, Mantoura RFC. Chlorophyll and carotenoid pigments in foraminifera and their symbiotic algae: analysis by high performance liquid chromatography. Mar Ecol Prog Ser. 1985;23:241–9.CAS 
    Article 

    Google Scholar 
    84.Ralph PJ, Gademann R. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat Bot. 2005;82:222–37.CAS 
    Article 

    Google Scholar 
    85.Olaizola M, Yamamoto HY. Short term response of the diadinoxanthin cycle and fluorescence yield to high irradiance in Chaetoceros muelleri (Bacillariophyceae). J Phycol. 1994;30:606–12.CAS 
    Article 

    Google Scholar 
    86.Lavaud J, Rousseau B, Etienne A-L. General features of photoprotection by energy dissipation in planktonic diatoms (Bacillariophyceae). J Phycol. 2004;40:130–7.Article 

    Google Scholar 
    87.Ventura P, Calado G, Jesus B. Photosynthetic efficiency and kleptoplast pigment diversity in the sea slug Thuridilla hopei (Vérany, 1853). J Exp Mar Biol Ecol. 2013;441:105–9.CAS 
    Article 

    Google Scholar 
    88.Martin R, Walther P, Tomaschko KH. Variable retention of kleptoplast membranes in cells of sacoglossan sea slugs: plastids with extended, shortened and non-retained durations. Zoomorphology. 2015;134:523–9.Article 

    Google Scholar 
    89.Bird C, Schweizer M, Roberts A, Austin WEN, Knudsen KL, Evans KM, et al. The genetic diversity, morphology, biogeography, and taxonomic designations of Ammonia (Foraminifera) in the Northeast Atlantic. Mar Micropaleontol. 2020;155:101726.Article 

    Google Scholar  More

  • in

    Evaporation-induced hydrodynamics promote conjugation-mediated plasmid transfer in microbial populations

    Conjugative plasmids confer important traits to microbial communities, with both deleterious and beneficial effects on human health, the environment, and biotechnology [1,2,3]. The spread of virulence and resistance to antimicrobial agents [1, 2] and the facilitation of specific pollutant biotransformations exemplify the importance of conjugative plasmids [3, 4]. Understanding the mechanisms governing the transfer and spread of conjugative plasmids is therefore critically important. Although substantial research efforts have been made toward understanding the molecular mechanisms and biological determinants of plasmid conjugation [5], the underlying driving forces from physical and ecological aspects remain unclear.Many microbial communities exist in environments that are periodically or continuously exposed to unsaturated water conditions. For example, the communities residing in the vadose zone of soils are periodically exposed to saturated conditions after rainfall events and irrigation, and thereafter to unsaturated conditions upon soil draining. The microbial communities inhabiting the outer surfaces of various hosts such as skin, teeth, leaves, or roots also experience frequent hydration dynamics. The air-water interfaces of such soil particles or host surfaces are subject to water evaporation when the ambient relative humidity (RH) is More