More stories

  • in

    Temporal activity patterns suggesting niche partitioning of sympatric carnivores in Borneo, Malaysia

    Study sitesWe conducted this study in three protected areas in Sabah, Malaysian Borneo: Danum Valley Conservation Area (DVCA), the Lower Kinabatangan Wildlife Sanctuary (LKWS), and Tabin Wildlife Reserve (TWR) (Fig. 4). The minimum and maximum daily temperatures and annual precipitation among the three study sites did not differ significantly (annual temperature: 22–33 ℃, annual precipitation 2400–3100 mm; Mitchell37; Matsuda et al.39; South East Asia Rainforest Research Partnership Unpublished data. https://www.searrp.org/) although there is no recent precise climate data of TWR.Figure 4Location of the three study sites in Borneo.Full size imageThe DVCA (4° 50′–5° 05′ N, 117° 30′–117° 48′ E) is a Class I Protection Forest Reserve established by the Sabah state government in 1996 and managed by the Sabah Foundation (Yayasan Sabah Group) covering 438 km2. Approximately 90% of the area is comprised of mature lowland evergreen dipterocarp forests34. The study area is an old-growth forest surrounding the Borneo Rainforest Lodge (5° 01′ N, 117° 44′ E), a tourist lodging facility.The LKWS (5° 10′–5° 50′ N, 117° 40′–118° 30′ E), is located along the Kinabatangan River, which is the longest river flowing to the east coast, reaching 560 km inland and with a catchment area of 16,800 km2. Designated as a wildlife sanctuary and gazetted in 2005, the LKWS consists of ten forest blocks totaling 270 km2, comprised of seasonal and tidal swamp forests, permanent freshwater swamps, mangrove forests, and lowland dipterocarp forests35,36. The southern area of the Menanggul River is extensively covered by secondary forest. However, the northern area has been deforested for oil palm (Elaeis guineensis) plantations, except for a protected zone along the river. The TWR (5° 05′–5° 22′ N, 118° 30′–118° 55′ E) is located approximately 50 km northeast of Lahad Datu, eastern Sabah, and covers approximately 1225 km2.The TWR is exclusively surrounded by large oil palm plantations. Most parts of the TWR were heavily logged in the 1970s and the 1980s, leaving mainly regenerating mixed dipterocarp tropical rainforests dominated by pioneer species such as Neolamarckia cadamba and Macaranga bancana37,38. The study area was near the Sabah Wildlife Department base camp located on the western boundary of the TWR (5° 11′ N, 118° 30′ E). The study area includes heavily logged secondary forests and a small patchy old forest (0.74 km2).Data collectionWe set up 15, 30, and 28 infrared-triggered sensor cameras (Bushnell, Trophy Cam TM) in the DVCA (July 2010–August 2011 and May 2014–December 2016), LKWS (July 2010–December 2014) and TWR (May 2010–June 2012), respectively. As a result, the cumulative number of camera operation days in DVCA, LKWS, and TWR were 14,134, 18,265, and 4980, for a total of 37,379 days. Although it was impossible to record the animals during certain months because of adverse weather conditions, such as heavy rain, flooding, battery failure, other malfunctions mainly caused by insects nesting inside the cameras, or logistical problems, the cameras remained continuously activated. Due to these reasons, camera operating days differed among the cameras in each site. In this study, we used photos of animals, and we did not handle animals directly. All cameras were placed at heights of 30–50 cm above the forest floor and were tied to tree trunks using fabric belts to reduce damage to the trees.Because the terrain and level of regulations to conduct this study differed by the study site, we employed different layouts of camera stations at each study site. In the DVCA, T. K. and three trained assistants placed 15 cameras along six forest trails totaling 9000 m, which were established and maintained by the tourist lodging facility. Because it was prohibited to establish new trails and to place cameras at sites where tourism activity would be disturbed in the study area; therefore, the trails that were longer than 1 km and relatively easily accessible were selected as camera locations to maintain consistency of trail characteristics. Cameras were placed on each trail at 50 m intervals, alternating right and left to avoid bias of photo-capture frequency caused by terrain differences. Each station was at least 25 m away from each other on the different trails (Fig. 5a). The operating days differed among the 15 cameras, i.e., mean = 942.2; SD = 152.0; range = 682–1229.Figure 5Maps of camera locations at each study site. (a) Trails and camera stations at DVCA; (b1) trails and camera stations and (b2) trail locations at LKWS; (c) a trail and camera stations at TWR.Full size imageIn the LKWS, I. M. and two trained assistants had planned to install 30 cameras, but a maximum of only 27 cameras were in operation during the study period in the LKWS, probably owing to malfunctions caused by high humidity and rain in the tropical rainforest. All cameras were placed on the trails in the riverine forest along the Menanggul River. As part of a project on the primates of the riverine forests along the Menanggul River and to assist their observation and tracking in the swampy habitat in the LKWS39, trails 200–500 m long and 1 m wide were established at 500 m intervals on both sides of the river. Of the 16 trails, we selected ten trails that were all 500 m long and placed three cameras at the points from the riverbank to the inland forest in each trail, that is, 10 m, 250 m and 500 m from the riverbank (Fig. 5b1); cameras were set up 50 m away from the trails (Fig. 5b2). Consequently, the number of operating days differed among 30 cameras, i.e., mean = 608.8; SD = 531.4; range = 28–1315.In the TWR, M. N. and A. M placed 28 and three cameras on camera stations created by overlaying a 750 × 500 m grid in May and August 2010, respectively. Cameras were placed at each grid point at 250 m intervals (Fig. 5c). The operating days differed significantly among the 28 cameras, that is, mean = 177.9; SD = 123.2; range = 26–539.Temporal activity analysisWe defined non-independent photo capture events as consecutive photos of the same or different individuals of the same species taken within a 30-min interval and removed these photos from the analysis. We plotted the activity patterns of each species using a von Mises kernel40,41 using the package activity42 in R version 4.0.243. We estimated the activity level of animals with more than ten independent photo-capture events as indicated in the previous studies26,44. For our analysis, we pooled the images from all study sites if the photo number of a species was less than 10 in any study locations. If that was not the case, we used the package activity42 to compare species activity levels across the three research sites using a Wald test with Bonferroni correction for multiple pairwise comparisons. When there were significant differences, we separately estimated activity levels by the study sites. When there were no significant differences among the sites, we pooled the photo numbers to estimate activity levels.We divided a day into three periods: nighttime (19:00–04:59 h local time (GMT + 8)); daytime (07:00–16:59 h); and twilight (05:00–06:59 h and 17:00–18:59 h). During the study period, twilight hours essentially corresponded to 1 h between sunset and sunrise, at 5:54–6:25 and 17:50–18:25 in DVCA, 5:51–6:23 and 17:47–18:25 in LKWS, and 5:50–6:21 and 17:46–18:22 in TWR (data from https://www.timeanddate.com). After converting the time data of each photo-capture event into radians, we fitted a circular kernel density distribution estimated by 10,000 bootstrap resampling to radian time data, and we estimated the percentage of active time in each period. We then categorized the activity patterns of photo-captured carnivore species into four categories: nocturnal (active at night); crepuscular (active during twilight periods); diurnal (active during daytime); and cathemeral (active in all periods). We defined the activity pattern of the species as showing a statistically higher proportion of photo-captures at nighttime, daytime, and twilight periods than at other periods, such as nocturnal, diurnal, and crepuscular, respectively. When photo-capture proportions showed no differences among the three periods, we defined the activity pattern as cathemeral. For species with substantial sample size (50  More

  • in

    Cenozoic climatic changes drive evolution and dispersal of coastal benthic foraminifera in the Southern Ocean

    1.Thomson, M. R. A. Geological and palaeoenvironmental history of the Scotia Sea region as a basis for biological interpretation. Deep Sea Res. II 51, 1467–1487 (2004).Article 
    ADS 

    Google Scholar 
    2.Maldonado, A. et al. A model of oceanic development by ridge jumping: Opening of the Scotia Sea. Glob. Planet. Change 123, 152–173 (2014).Article 
    ADS 

    Google Scholar 
    3.Crame, J. A. Key stages in the evolution of the Antarctic marine fauna. J. Biogeogr. 45, 986–994 (2018).Article 

    Google Scholar 
    4.Scher, H. D. & Martin, E. E. Timing and climatic consequences of the opening of the Drake Passage. Science 312, 428–430 (2006).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    5.Eagles, G., Livermore, R. & Morris, P. Small basins in the Scotia Sea: the Eocene Drake passage gateway. Earth Planet. Sci. Lett. 242, 343–353 (2006).CAS 
    Article 
    ADS 

    Google Scholar 
    6.De Conto, R. M. & Pollard, D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421, 245–249 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    7.Anderson, J. B. et al. Progressive Cenozoic cooling and the demise of Antarctica’s last refugium. Proc. Natl. Acad. Sci. USA. 108, 11356–11360 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    8.Arntz, W. E. Magellan-Antarctic: ecosystems that drifted apart. Summary review. Sci. Mar. 3(Suppl. 1), 503–511 (1999).Article 

    Google Scholar 
    9.Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and Aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    10.Dalziel, I. W. D. et al. A potential barrier to deep Antarctic circumpolar flow until the Late Miocene?. Geology 41, 947–950 (2013).CAS 
    Article 
    ADS 

    Google Scholar 
    11.Anderson, J. B. et al. Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM. Quat. Sci. Rev. 100, 31–54 (2014).Article 
    ADS 

    Google Scholar 
    12.Klages, J. P. et al. Limited grounding-line advance onto the West Antarctic continental shelf in the easternmost Amundsen Sea Embayment during the last glacial period. PLoS ONE 12, e0181593 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    13.Thatje, S., Hillenbrand, C. D. & Larter, R. On the origin of Antarctic marine benthic community structure. Trends Ecol. Evol. 20, 534–540 (2005).PubMed 
    Article 

    Google Scholar 
    14.Fraser, C., Terauds, A., Smellie, J. L., Convey, P. & Chown, S. L. Geothermal activity helps life survive glacial cycles. Proc. Natl. Acad. Sci. USA. 111, 5634–5639 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    15.Lau, S. C. Y., Wilson, N. G., Silva, C. N. S. & Strugnell, J. M. Detecting glacial refugia in the Southern Ocean. Ecography 43, 1639–1656 (2020).Article 

    Google Scholar 
    16.Naish, T. et al. Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature 458, 322–328 (2009).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    17.Clarke, A., Crame, J. A., Stromberg, J.-O. & Barker, P. F. The Southern Ocean benthic fauna and climate change: A historical perspective [and discussion]. Phil. Trans. R. Soc. B 338, 299–309 (1992).Article 
    ADS 

    Google Scholar 
    18.Clarke, A. & Crame, J. A. Evolutionary dynamics at high latitudes: speciation and extinction in polar marine faunas. Phil. Trans. R. Soc. B 365, 3655–3666 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Barnes, D. K. A. & Conlan, K. E. Disturbance, colonization and development of Antarctic benthic communities. Philos. Trans. R. Soc. B 362, 11–38 (2007).Article 

    Google Scholar 
    20.Crame, J. A. An evolutionary perspective on marine faunal connections between southernmost South America and Antarctica. Sci. Mar. 63(Suppl 1), 1–14 (1999).Article 

    Google Scholar 
    21.Aronson, R. B. & Blake, D. B. Global climate change and the origin of modern benthic communities in Antarctica. Am. Zool. 41, 27–39 (2001).
    Google Scholar 
    22.Clarke, A., Aronson, R. B., Crame, A., Gili, J. M. & Blake, D. B. Evolution and diversity of the benthic fauna of the Southern Ocean continental shelf. Antarct. Sci. 16, 559–568 (2004).Article 
    ADS 

    Google Scholar 
    23.Aronson, R. B. et al. Climate change and trophic response of the Antarctic Bottom Fauna. PLoS ONE 4, e4385 (2009).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    24.Brandt, A. et al. First insights into the biodiversity and biogeography of the Southern Ocean deep sea. Nature 447, 307–311 (2007).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    25.Orsi, A. H., Whitworth, T. W. & Nowlin, W. D. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. I(42), 641–673 (1995).Article 

    Google Scholar 
    26.Mikhalevich, V. I. The general aspects of the distribution of Antarctic foraminifera. Micropaleontology 50, 179–194 (2004).
    Google Scholar 
    27.Gooday, A. J., Rothe, N., Bowser, S. S. & Pawlowski, J. Benthic foraminifera. Biogeographic atlas of the Southern Ocean (ed. De Broyer, C. et al.) 74–82 (SCAR Publications, 2014).28.Heron-Allen, E. & Earland, A. Foraminifera. Part I. The ice-free area of the Falkland Islands and adjacent seas. Discov. Rep. 4, 291–460 (1932).
    Google Scholar 
    29.Earland, A. Foraminifera, Part II, South Georgia. Discov. Rep. 7, 27–138 (1933).
    Google Scholar 
    30.Herb, R. Distribution of recent benthonic foraminifer in the Drake Passage. AGU Antarct. Res. Ser. 17, 251–300 (1971).
    Google Scholar 
    31.Thompson, L. Distribution of living benthic foraminifera, Isla de los Estados, Tierra del Fuego, Argentina. J. Foraminiferal Res. 8, 241–257 (1978).Article 
    ADS 

    Google Scholar 
    32.Dejardin, R. et al. “Live” stained) benthic foraminiferal living depths, stable isotopes, and taxonomy offshore South Georgia, Southern Ocean: Implications for calcification depths. J. Micropalaeontol. 37, 25–71 (2018).Article 
    ADS 

    Google Scholar 
    33.Arellano, F., Quezada, L. & Olave, C. Familia Cassidulinidae (Protozoa: Foraminiferida) en canales y fiordos patagónicos chilenos. An. Inst. Patagon. 39, 47–65 (2011).Article 
    CAS 

    Google Scholar 
    34.Hald, M. & Korsun, S. Distribution of modern benthic foraminifera from fjords of Svalbard, European Artic. J. Foraminiferal Res. 27, 101–122 (1997).Article 

    Google Scholar 
    35.Majewski, W., Bart, P. J. & McGlannan, A. J. Foraminiferal assemblages from ice-proximal paleo-settings in the Whales Deep Basin, eastern Ross Sea, Antarctica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 493, 64–81 (2018).Article 

    Google Scholar 
    36.Majewski, W., Prothro, L. O., Simkins, L. M., Demianiuk, E. J. & Anderson, J. B. Foraminiferal patterns in deglacial sediment in the western Ross Sea, Antarctica: Life near grounding lines. Paleoceanogr. Paleoclimatol. 35, 003716 (2020).Article 

    Google Scholar 
    37.Majewski, W. & Anderson, J. B. Holocene foraminiferal assemblages from Firth of Tay, Antarctic Peninsula: Paleoclimate implications. Mar. Micropaleontol. 73, 135–147 (2009).Article 
    ADS 

    Google Scholar 
    38.Kilfeather, A. A. et al. Ice-stream retreat and ice-shelf history in Marguerite Trough, Antarctic Peninsula: Sedimentological and foraminiferal signatures. Geol. Soc. Am. Bull. 123, 997–1015 (2011).CAS 
    Article 
    ADS 

    Google Scholar 
    39.Hillenbrand, C. D. et al. West antarctic ice sheet retreat driven by Holocene warm water incursions. Nature 547, 43–48 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    40.Leckie, R. M. & Webb, P. N. Late Paleogene and early Neogene foraminifers of deep sea drilling project site 270, Ross Sea, Antarctica. Initial Reports of the Deep Sea Drilling Project. Leg 90 (ed. Kennett, J. P. et al.) 1093–1118 (US Government Printing Office, 1986).41.Coccioni, R. & Galeotti, S. Foraminiferal biostratigraphy and paleoecology of the CIROS-1 core from McMurdo Sound (Ross Sea, Antarctica). Terra Antartica 4, 103–117 (1997).
    Google Scholar 
    42.Webb, P.-N. & Strong, C. P. Recycled Pliocene foraminifera from the CRP-1 Quaternary succession. Terra Antartica 5, 473–478 (1998).
    Google Scholar 
    43.Patterson, M. O. & Ishman, S. E. Neogene benthic foraminiferal assemblages and paleoenvironmetal record for McMurdo Sound, Antarctica. Geosphere 8, 1331–1341 (2012).Article 

    Google Scholar 
    44.Gaździcki, A. & Webb, P. N. Foraminifera from the Pecten Conglomerate (Pliocene) of Cockburn Island, Antarctic Peninsula. Palaeontol. Pol. 55, 147–174 (1996).
    Google Scholar 
    45.Gaździcki, A. & Majewski, W. Foraminifera from the Eocene La Meseta Formation of Isla Marambio (Seymour Island), Antarctic Peninsula. Antarct. Sci. 24, 408–416 (2012).Article 
    ADS 

    Google Scholar 
    46.Caramés, A. & Concheyro, A. Late cenozoic foraminifera from diamictites of Cape Lamb, Vega Island, Antarctic Peninsula. Ameghiniana 50, 114–135 (2013).Article 

    Google Scholar 
    47.Majewski, W. & Gaździcki, A. Shallow water benthic foraminifera from the Polonez Cove Formation (lower Oligocene) of King George Island, West Antarctica. Mar. Micropaleontol. 111, 1–14 (2014).Article 
    ADS 

    Google Scholar 
    48.Quilty, P. G. Reworked Paleocene and Eocene Foraminifera, Mac. Robertson Shelf, East Antarctica paleoenvironmental implications. J. Foraminiferal Res. 31, 369–384 (2001).Article 

    Google Scholar 
    49.Quilty, P. G. Foraminifera from late Pliocene sediments of Heidemann Valley, Vestfold Hills, East Antarctica. J. Foraminiferal Res. 40, 193–205 (2010).Article 

    Google Scholar 
    50.Majewski, W., Tatur, A., Witkowski, J. & Gaździcki, A. Rich shallow-water benthic ecosystem in Late Miocene East Antarctica (Fisher Bench Fm, Prince Charles Mountains). Mar. Micropaleontol. 133, 40–49 (2017).Article 
    ADS 

    Google Scholar 
    51.Pawlowski, J., Holzmann, M. & Tyszka, J. New supraordinal classification of Foraminifera: Molecules meet morphology. Mar. Micropaleontol. 100, 1–10 (2013).Article 
    ADS 

    Google Scholar 
    52.Pawlowski, J. & Holzmann, M. A plea for DNA barcoding of foraminifera. Mar. Biodivers. 44, 213–221 (2014).Article 

    Google Scholar 
    53.Roberts, A. et al. A New integrated approach to taxonomy: The fusion of molecular and morphological systematics with type material in Benthic Foraminifera. PLoS ONE 11, e0158754 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    54.Holzmann, M. & Pawlowski, J. An updated classification of rotaliid foraminifera based on ribosomal DNA phylogeny. Mar. Micropaleontol. 132, 18–34 (2017).Article 
    ADS 

    Google Scholar 
    55.Majewski, W. & Pawlowski, J. Morphologic and molecular diversity of the foraminiferal genus Globocassidulina in Admiralty Bay, West Antarctica. Antarct. Sci. 22, 271–281 (2010).Article 
    ADS 

    Google Scholar 
    56.Majewski, W., Bowser, S. S. & Pawlowski, J. Widespread intra-specific genetic homogeneity of coastal Antarctic benthic foraminifera. Polar Biol. 38, 1–12 (2015).Article 

    Google Scholar 
    57.Majda, A. et al. Variable dispersal histories across the Drake Passage: The case of coastal benthic Foraminifera. Mar. Micropaleontol. 140, 81–94 (2018).Article 
    ADS 

    Google Scholar 
    58.Gschwend, F., Majda, A., Majewski, W. & Pawlowski, J. Psammophaga fuegia sp. nov., a new monothalamid foraminifer from the Beagle Channel, South America. Acta Protozool. 55, 101–110 (2016).CAS 

    Google Scholar 
    59.Pawlowski, J. Introduction to the molecular systematics of foraminifera. Micropaleontology 46(Suppl 1), 1–12 (2000).
    Google Scholar 
    60.Gouy, M., Guindon, S. & Gascuel, O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224 (2010).CAS 
    Article 

    Google Scholar 
    61.Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. ABGD, Automatic barcode gap discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Fujisawa, T. & Barraclough, T. G. Delimiting species using single-locus data and the generalized mixed yule coalescent (GMYC) Approach: A revised method and evaluation on simulated datasets. Syst. Biol. 62, 707–724 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Kapli, P. et al. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33, 1630–1638 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Ezard, T., Fujisawa, T. & Barraclough, T. G. SPLITS: SPecies’ LImits by Threshold Statistics. R package version 1.0-18/r45, http://R-Forge.R-project.org/projects/splits/ (2009).67.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna). http://www.R-project.org/ (2020).68.Stamatakis, A. RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).CAS 

    Google Scholar 
    70.Leigh, J. W. & Bryant, D. PopART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).Article 

    Google Scholar 
    71.Bandelt, H., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Fu, Y. X. New statistical tests of neutrality for DNA samples from a population. Genetics 143, 557–570 (1996).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    75.Heled, J. & Drummond, A. Bayesian inference of population size history from multiple loci. BMC Evol. Biol. 8, 289 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    76.Schweizer, M., Pawlowski, J., Kouwenhoven, T. J., Guiard, J. & van der Zwaan, G. J. Molecular phylogeny of Rotaliida (Foraminifera) based on complete small subunit rDNA sequences. Mar. Micropaleontol. 66, 233–246 (2008).Article 
    ADS 

    Google Scholar 
    77.Schweizer, M., Pawlowski, J., Kouwenhoven, T. & Van Der Zwaan, B. Molecular phylogeny of common Cibicidids and related rotaliida (Foraminifera) based on small subunit rDNA sequences. J. Foraminiferal Res. 39, 300–315 (2009).Article 

    Google Scholar 
    78.Schweizer, M. Evolution and molecular phylogeny of Cibicides and Uvigerina (Rotaliid, Foraminifera). Geol. Ultraiectina 261, 1–167 (2006).
    Google Scholar 
    79.Bouckaert, R. R. & Drummond, A. J. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 17, 42 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Loeblich, A. R. & Tappan, H. Foraminiferal Genera and their Classification (Van Nostrand Reinhold, 1987).
    Google Scholar 
    82.D’haenens, S., Bornemann, A., Stassen, P. & Speijer, R. Multiple early Eocene benthic foraminiferal assemblages and δ13C fluctuations at DSDP Site 401 (Bay of Biscay: NE Atlantic). Mar. Micropaleontol. 88–89, 15–35 (2012).Article 
    ADS 

    Google Scholar 
    83.Cushman, J. A. & Stone, B. Foraminifera from the Eocene, Chacra Formation, of Peru. Cont. Cushman Lab. Foram. Res. 25, 49–58 (1949).
    Google Scholar 
    84.Arreguin-Rodriguez, G. J., Thomas, E., Dhaenens, S., Speijer, R. P. & Alegret, L. Early eocene deep-sea benthic foraminiferal faunas: Recovery from the paleocene eocene thermal maximum extinction in a greenhouse world. PLoS ONE 13, e0193167 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    85.Proto Decima, F. & Ferasin, F. Nuove specie di foraminiferi nell’Eocene del Monte Ceva (Colli Euganei). Riv. Ital. Paleont. Strat. 60, 247–252 (1954).
    Google Scholar 
    86.Cushman, J. A. A rich foraminiferal fauna from the Cocoa Sand of Alabama. Cushman Lab. Foram. Res. Spec. Pub. 16, 1–40 (1946).
    Google Scholar 
    87.Heron-Allen, E. & Earland, A. Protozoa, Part 2. Foraminifera. Nat. Hist. Rep. Br. Antarct. Exp. 6, 25–268 (1922).
    Google Scholar 
    88.Shevenell, A. E., Kennett, J. P. & Lea, D. W. Middle Miocene ice sheet dynamics, deep-sea temperatures, and carbon cycling: A Southern Ocean perspective. Geochem. Geophys. Geosy. 9, Q02006 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    89.Lawver, L. A. & Gahagan, L. M. Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeogr. Palaeoclimatol. Palaeoecol. 198, 11–37 (2003).Article 

    Google Scholar 
    90.Lewis, A. R. et al. Mid-Miocene cooling and the extinction of tundra in continental Antarctica. Proc. Natl. Acad. Sci. USA 105, 10676–10680 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    91.Verducci, M. et al. The Middle Miocene climatic transition in the Southern Ocean: Evidence of paleoclimatic and hydrographic changes at Kerguelen plateau from planktonic foraminifers and stable isotopes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 280, 371–386 (2009).Article 

    Google Scholar 
    92.Majewski, W. & Bohaty, S. Surface−water cooling and salinity decrease during the Middle Miocene Climate Transition at Southern Ocean ODP Site 747 (Kerguelen Plateau). Mar. Micropaleontol. 74, 1–14 (2010).Article 
    ADS 

    Google Scholar 
    93.Cheng, C. H. C. & Detrich, H. W. Molecular ecophysiology of Antarctic notothenioid fishes. Philos. Trans. R. Soc. B 362, 2215–2232 (2007).CAS 
    Article 

    Google Scholar 
    94.Barco, A., Schiaparelli, S., Houart, R. & Oliverio, M. Cenozoic evolution of Muricidae (Mollusca, Neogastropoda) in the Southern Ocean, with the description of a new subfamily. Zool. Scr. 41, 596–616 (2012).Article 

    Google Scholar 
    95.González-Wevar, C. A., Nakano, T., Canete, J. I. & Poulin, E. Molecular phylogeny and historical biogeography of Nacella (Patellogastropoda: Nacellidae) in the Southern Ocean. Mol. Phylogen. Evol. 56, 115–124 (2010).Article 

    Google Scholar 
    96.González-Wevar, C. A. et al. Following the Antarctic Circumpolar Current: Patterns and processes in the biogeography of the limpet Nacella (Mollusca: Patellogastropoda) across the Southern Ocean. J. Biogeogr. 44, 861–874 (2017).Article 

    Google Scholar 
    97.González-Wevar, C. A. et al. Cryptic speciation in Southern Ocean Aequiyoldia eightsii (Jay, 1839): Mio-Pliocene trans-Drake separation and diversification. Prog. Oceanogr. 174, 44–54 (2019).Article 
    ADS 

    Google Scholar 
    98.Strugnell, J. M., Rogers, A. D., Prodohl, P. A., Collins, M. A. & Allcock, A. L. The thermohaline expressway: The Southern Ocean as a centre of origin for deep-sea octopuses. Cladistics 24, 853–860 (2008).Article 

    Google Scholar 
    99.Feakins, S., Warny, S. & Lee, J. E. Hydrologic cycling over Antarctica during the middle Miocene warming. Nat. Geosci. 5, 557–560 (2012).CAS 
    Article 
    ADS 

    Google Scholar 
    100.Malumián, N. Foraminíferos bentónicos de la localidad tipo de la Formación La Despedida (Eoceno, Isla Grande de Tierra del Fuego) Part I: Textulariina y Miliolina. Ameghiniana 25, 341–356 (1989).
    Google Scholar 
    101.Scarpa, R. & Malumián, N. Foraminíferos del Oligoceno inferior de los Andes Fueguinos, Argentina: Su significado tectónico-ambiental. Ameghiniana 45, 361–376 (2008).
    Google Scholar 
    102.Galeotti, S., Cita, M. B. & Coccioni, R. Foraminiferal biostratigraphy and palaeoecology from two intervals of the CRP2/2A drilhole. Terra Antartica 7, 473–478 (2000).
    Google Scholar 
    103.Malumián, N. & El Olivero, E. B. Grupo Cabo Domingo, Tierra del Fuego: Bioestratigrafía, paleoambientes y acontecimientos del Eoceno-Mioceno marino. Rev. Asoc. Geol. Argent. 61, 139–160 (2006).
    Google Scholar 
    104.Li, B., Yoon, H. I. & Park, B. K. Foraminiferal assemblages and CaCO3 dissolution since the last deglaciation in the Maxwell Bay King George Island, Antarctica. Mar. Geol. 169, 239–257 (2000).CAS 
    Article 
    ADS 

    Google Scholar 
    105.Majewski, W. Benthic foraminiferal communities: Distribution and ecology in Admiralty Bay, King George Island, West Antarctica. Pol. Polar Res. 26, 159–214 (2005).
    Google Scholar 
    106.Corliss, B. Size variation in the deep-sea benthonic foraminifer Globocassidulina subglobosa (Brady) in the Southeast Indian Ocean. J. Foraminiferal Res. 9, 50–60 (1979).Article 

    Google Scholar 
    107.Wright, J. D. & Miller, K. G. Southern ocean influences on late eocene to miocene deepwater circulation. Antarct. Res. Ser. 60, 1–25 (1993).Article 

    Google Scholar 
    108.Colleoni, F. et al. Past continental shelf evolution increased Antarctic ice sheet sensitivity to climatic conditions. Sci. Rep. 8, 11323 (2018).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    109.Strugnell, J. M. et al. The Southern ocean: Source and sink?. Deep-Sea Res. II 58, 196–204 (2011).CAS 
    Article 
    ADS 

    Google Scholar 
    110.Verheye, M. L., Backeljau, T. & d’Udekem d’Acoz, C. Locked in the icehouse: Evolution of an endemic Epimeria (Amphipoda, Crustacea) species flock on the Antarctic shelf. Mol. Phylogenet. Evol. 114, 14–33 (2017).PubMed 
    Article 

    Google Scholar 
    111.Galeotti, S. & Coccioni, R. Foraminiferal analysis of the Miocenc CRP-l core (Ross Sea, Antarctica). Terra Antartica 5, 521–526 (1998).
    Google Scholar 
    112.Pillet, L., Fontaine, D. & Pawlowski, J. Intra-genomic ribosomal RNA polymorphism and morphological variation in Elphidium macellum suggests inter-specific hybridization in Foraminifera. PLoS ONE 7, e32373 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    113.Darling, J. Interspecific hybridization and mitochondrial introgression in invasive Carcinus shore crabs. PLoS ONE 6, e17828 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    114.Dietz, L. et al. Regional differentiation and extensive hybridization between mitochondrial clades of the Southern Ocean giant sea spider Colossendeis megalonyx. R. Soc. Open Sci. 2, 140424 (2015).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    115.Ruiz, M. B., Taverna, A., Servetto, N., Sahade, R. & Held, C. Hidden diversity in Antarctica: Molecular and morphological evidence of two different species within one of the most conspicuous ascidian species. Ecol. Evol. 10, 8127–8143 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    116.Fraser, C. I. et al. Antarctica’s ecological isolation will be broken by storm-driven dispersal and warming. Nat. Clim. Change 8, 704–708 (2018).Article 
    ADS 

    Google Scholar 
    117.Avila, C. et al. Invasive marine species discovered on non–native kelp rafts in the warmest Antarctic island. Sci. Rep. 10, 1639 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    118.Alve, E. & Goldstein, S. T. Propagule transport as a key method of dispersal in benthic Foraminifera (Protista). Limnol. Oceanogr. 48, 2163–2170 (2003).Article 
    ADS 

    Google Scholar 
    119.Alve, E. & Goldstein, S. T. Dispersal, survival and delayed growth of benthic foraminiferal propagules. J. Sea Res. 63, 36–51 (2010).Article 
    ADS 

    Google Scholar 
    120.Burke, K. D. et al. Pliocene and Eocene provide best analogs for near-future climates. Proc. Natl. Acad. Sci. USA. 115, 13288–13293 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    121.Carter, A., Curtis, M. & Schwanenthal, J. Cenozoic tectonic history of the South Georgia microcontinent and potential as a barrier to Pacific-Atlantic through flow. Geology 42, 299–302 (2014).CAS 
    Article 
    ADS 

    Google Scholar 
    122.Clarke, A., Barnes, D. K. A. & Hodgson, D. A. How isolated is Antarctica?. Trends Ecol. Evol. 20, 1–3 (2005).PubMed 
    Article 

    Google Scholar 
    123.Glorioso, P. D., Piola, A. R. & Leben, R. R. Mesoscale eddies in the Subantarctic Front: Southwest Atlantic. Sci. Mar. 69(Suppl 2), 7–15 (2012).
    Google Scholar 
    124.Bart, P. J. & Iwai, M. The overdeepening hyphothesis: how erosional modification of the marine-scape during the early Pliocene altered glacial dynamics on the Antarctic Peninsula’s Pacific margin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 335–336, 42–51 (2012).Article 

    Google Scholar 
    125.González-Wevar, C. A., Díaz, A., Gerard, K., Caňete, J. I. & Poulin, E. Divergence time estimations and contrasting patterns of genetic diversity between Antarctic and southern South America benthic invertebrates. Rev. Chil. Hist. Nat. 85, 445–456 (2012).Article 

    Google Scholar 
    126.Poulin, E., González-Wevar, C., Díaz, A., Gérard, K. & Hüne, M. Divergence between Antarctic and South American marine invertebrates: what molecular biology tells us about the Scotia Arc geodynamics and the intensification of the Antarctic Circumpolar Current. Glob. Planet. Change. 123, 392–399 (2014).Article 
    ADS 

    Google Scholar 
    127.McKay, R. et al. Pleistocene variability of Antarctic ice sheet extent in the Ross embayment. Quat. Sci. Rev. 34, 93–112 (2012).Article 
    ADS 

    Google Scholar 
    128.Pollard, D. & DeConto, R. M. Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458, 329–332 (2009).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    129.Allcock, A. L. & Strugnell, J. M. Southern Ocean diversity: New paradigms from molecular ecology. Trends Ecol. Evol. 278, 520–528 (2012).Article 

    Google Scholar 
    130.Wilson, N. G., Schrödl, M. & Halanych, K. M. Ocean barriers and glaciation: Evidence for explosive radiation of mitochondrial lineages in the Antarctic sea slug Doris kerguelenensis (Mollusca, Nudibranchia). Mol. Ecol. 18, 965–984 (2009).PubMed 
    Article 

    Google Scholar 
    131.Arango, C. P., Soler-Membrives, A. & Miller, K. J. Genetic differentiation in the circum-Antarctic sea spider Nymphon australe (Pycnogonida; Nymphonidae). Deep Sea Res. II 58, 212–219 (2011).CAS 
    Article 
    ADS 

    Google Scholar 
    132.Fraser, C. I., Nikula, R., Ruzzante, D. E. & Waters, J. M. Poleward bound: Biological impacts of Southern Hemisphere glaciation. Trends Ecol. Evol. 27, 462–471 (2012).PubMed 
    Article 

    Google Scholar 
    133.Darling, K. F., Kucera, M., Pudsey, C. J. & Wade, C. M. Molecular evidence links cryptic diversification in polar planktonic protists to quaternary climate dynamics. Proc. Natl. Acad. Sci. USA. 101, 7657–7662 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    134.Quilty, P. G. Neogene foraminifers and accessories, ODP Leg 188, Sites 1165, 1166, and 1167, Prydz Bay, Antarctica. Proc. Ocean Drill. Prog. Sci. Results 188, 1–41 (2003).
    Google Scholar 
    135.Díaz, A. et al. Genetic structure and demographic inference of the regular sea urchin Sterechinus neumayeri (Meissner, 1900) in the Southern Ocean: The role of the last glaciation. PLoS ONE 13, e0197611 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    136.Brey, T., Dahm, C., Gorny, M., Stiller, M. & Arntz, W. E. Do Antarctic benthic invertebrates show extended levels of eurybathy?. Ant. Sci. 8, 3–6 (1996).Article 

    Google Scholar 
    137.Dambach, J., Thatje, S., Rödder, D., Basher, Z. & Raupach, M. J. Effects of Late-Cenozoic glaciation on habitat availability in Antarctic benthic shrimps (Crustacea: Decapoda: Caridea). PLoS ONE 7, e4628 (2012).Article 
    CAS 

    Google Scholar 
    138.Soler-Membrives, A., Linse, K., Miller, K. J. & Arango, C. P. Genetic signature of Last Glacial Maximum regional refugia in a circum-Antarctic sea spider. R. Soc. Open Sci. 4, 170615 (2017).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    139.Holbourn, A., Henderson, A. & McLeod, N. Atlas of Benthic Foraminifera (Wiley-Blackwell, 2013).Book 

    Google Scholar 
    140.Gooday, A. J. & Jorissen, F. J. Benthic foraminiferal biogeography: Controls on global distribution patterns in deep-water settings. Ann. Rev. Mar. Sci. 4, 237–262 (2012).PubMed 
    Article 

    Google Scholar 
    141.Melis, R. & Salvi, G. Late Quaternary foraminiferal assemblages from western Ross Sea (Antarctica) in relation to the main glacial and marine lithofacies. Mar. Micropaleontol. 70, 39–53 (2009).Article 
    ADS 

    Google Scholar 
    142.Majewski, W., Wellner, J. S. & Anderson, J. B. Environmental connotations of benthic foraminiferal assemblages from coastal West Antarctica. Mar. Micropaleontol. 124, 1–15 (2016).Article 
    ADS 

    Google Scholar 
    143.Majewski, W., Stolarski, J. & Bart, P. J. Two rare pustulose/sponose morphotypes of benthic foraminifera from eastern Ross Sea. J. Foraminiferal Res. 49, 405–422 (2019).Article 

    Google Scholar 
    144.Davies, B. J. et al. The evolution of the Patagonian Ice Sheet from 35 ka to the present day (PATICE). Earth Sci. Rev. 204, 103152 (2020).Article 

    Google Scholar 
    145.González-Wevar, C. A. et al. Phylogeography in Galaxias maculatus (Jenyns, 1848) along two biogeographical provinces in the Chilean coast. PLoS ONE 10, e0131289 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    146.Ocaranza-Barrera, P., González Wevar, C. A., Guillemin, M.-L., Rosenfeld, S. & Mansilla, A. Molecular divergence between Iridaea cordata (Turner) Bory de Saint-Vincent from the Antarctic Peninsula and the Magellan Region. J. Appl. Phycol. 31, 939–949 (2019).CAS 
    Article 

    Google Scholar 
    147.Yasuhara, M., Tittensor, D. P., Hillebrand, H. & Worm, B. Combining marine macroecology and palaeoecology in understanding biodiversity: Microfossils as a model. Biol. Rev. 92, 199–215 (2017).PubMed 
    Article 

    Google Scholar 
    148.Yasuhara, M. et al. Time machine biology: Cross-timescale integration of ecology, evolution, and oceanography. Oceanography 33, 16–28 (2020).Article 

    Google Scholar 
    149.Meredith, M. P. & King, J. C. Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys. Res. Lett. 32, L19604 (2005).ADS 

    Google Scholar 
    150.Convey, P. & Peck, L. S. Antarctic environmental change and biological responses. Sci. Adv. 11, 0888 (2019).ADS 

    Google Scholar 
    151.Ingels, J. et al. Possible effects of global environmental changes on Antarctic benthis: A synthesis across five major taxa. Ecol. Evol. 2, 453–485 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    An evaluation of multi-species empirical tree mortality algorithms for dynamic vegetation modelling

    1.Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 1–55. https://doi.org/10.1890/Es15-00203.1 (2015).Article 

    Google Scholar 
    2.Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684. https://doi.org/10.1016/j.foreco.2009.09.001 (2010).Article 

    Google Scholar 
    3.Anderegg, W. R. L., Kane, J. M. & Anderegg, L. D. L. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat Clim Change 3, 30–36 (2013).ADS 
    Article 

    Google Scholar 
    4.Taccoen, A. et al. Background mortality drivers of European tree species: climate change matters. Proc R Soc B-Biol Sci 286, 1–10. https://doi.org/10.1098/rspb.2019.0386 (2019).Article 

    Google Scholar 
    5.Hartmann, H. et al. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol. 218, 15–28. https://doi.org/10.1111/nph.15048 (2018).Article 
    PubMed 

    Google Scholar 
    6.Trugman, A. T., Anderegg, L. D. L., Anderegg, W. R. L., Das, A. J. & Stephenson, N. L. Why is tree drought mortality so hard to predict? Trends Ecol. Evol., 1–13. https://doi.org/10.1016/j.tree.2021.02. (2021).7.McDowell, N. G. et al. Evaluating theories of drought-induced vegetation mortality using a multimodel-experiment framework. New Phytol. 200, 304–321. https://doi.org/10.1111/nph.12465 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Keane, R. E. et al. Tree mortality in gap models: application to climate change. Clim. Change 51, 509–540. https://doi.org/10.1023/A:1012539409854 (2001).Article 

    Google Scholar 
    9.Bircher, N., Cailleret, M. & Bugmann, H. The agony of choice: different empirical mortality models lead to sharply different future forest dynamics. Ecol. Appl. 25, 1303–1318. https://doi.org/10.1890/14-1462.1 (2015).Article 
    PubMed 

    Google Scholar 
    10.Bugmann, H. et al. Tree mortality submodels drive long term forest dynamics: an assessment across 15 models from the stand to the global scale. Ecosphere 10, 1–22. https://doi.org/10.1002/ecs2.2616 (2019).Article 

    Google Scholar 
    11.Friend, A. D. et al. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proc Natl Acad Sci USA 111, 3280–3285. https://doi.org/10.1073/pnas.1222477110 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Lines, E. R., Coomes, D. A. & Purves, D. W. Influences of forest structure, climate and species composition on tree mortality across the Eastern US. PLoS ONE 5, 1–12. https://doi.org/10.1371/journal.pone.0013212 (2010).CAS 
    Article 

    Google Scholar 
    13.Purves, D. & Pacala, S. Predictive models of forest dynamics. Science 320, 1452–1453. https://doi.org/10.1126/science.1155359 (2008).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Cailleret, M., Bircher, N., Hartig, F., Hülsmann, L. & Bugmann, H. Bayesian calibration of a growth-dependent tree mortality model to simulate the dynamics of European temperate forests. Ecol. Appl. 30, 1–17. https://doi.org/10.1002/eap.2021 (2020).Article 

    Google Scholar 
    15.Rowland, L., Martinez-Vilalta, J. & Mencuccini, M. Hard times for high expectations from hydraulics: predicting drought-induced forest mortality at landscape scales remains a challenge. New Phytol. 230, 1685–1687. https://doi.org/10.1111/nph.17317 (2021).Article 
    PubMed 

    Google Scholar 
    16.Cailleret, M. et al. A synthesis of radial growth patterns preceding tree mortality. Glob. Change Biol. 23, 1675–1690. https://doi.org/10.1111/gcb.13535 (2017).ADS 
    Article 

    Google Scholar 
    17.Bigler, C. & Bugmann, H. Growth-dependent tree mortality models based on tree rings. Can. J. For. Res. 33, 210–221. https://doi.org/10.1139/X02-180 (2003).Article 

    Google Scholar 
    18.Hülsmann, L., Bugmann, H., Cailleret, M. & Brang, P. How to kill a tree: empirical mortality models for 18 species and their performance in a dynamic forest model. Ecol. Appl. 28, 522–540. https://doi.org/10.1002/eap.1668 (2018).Article 
    PubMed 

    Google Scholar 
    19.Weiskittel, A. R., Hann, D. W., Kershaw, J. A. & Vanclay, J. K. in Forest Growth and Yield Modeling Ch. 8, 139–155 (Wiley, 2011).20.Holzwarth, F., Kahl, A., Bauhus, J. & Wirth, C. Many ways to die – partitioning tree mortality dynamics in a near-natural mixed deciduous forest. J. Ecol. 101, 220–230. https://doi.org/10.1111/1365-2745.12015 (2013).Article 

    Google Scholar 
    21.Dobbertin, M. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur. J. For. Res. 124, 319–333. https://doi.org/10.1007/s10342-005-0085-3 (2005).Article 

    Google Scholar 
    22.Thrippleton, T., Hülsmann, L., Cailleret, M. & Bugmann, H. Projecting forest dynamics across Europe: potentials and pitfalls of empirical mortality algorithms. Ecosystems 23, 188–203. https://doi.org/10.1007/s10021-019-00397-3 (2020).Article 

    Google Scholar 
    23.Adams, H. D. et al. Empirical and process-based approaches to climate-induced forest mortality models. Front Plant Sci 4, 1–5. https://doi.org/10.3389/fpls.2013.00438 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Archambeau, J. et al. Similar patterns of background mortality across Europe are mostly driven by drought in European beech and a combination of drought and competition in Scots pine. Agric. For. Meteorol. 280, 1–12. https://doi.org/10.1016/j.agrformet.2019.107772 (2020).Article 

    Google Scholar 
    25.Luo, Y. & Chen, H. Y. H. Competition, species interaction and ageing control tree mortality in boreal forests. J. Ecol. 99, 1470–1480. https://doi.org/10.1111/j.1365-2745.2011.01882.x (2011).Article 

    Google Scholar 
    26.Brzeziecki, B. & Kienast, F. Classifying the life-history strategies of trees on the basis of the grimian model. For. Ecol. Manage. 69, 167–187. https://doi.org/10.1016/0378-1127(94)90227-5 (1994).Article 

    Google Scholar 
    27.Valladares, F. & Niinemets, U. Shade tolerance, a key plant feature of complex nature and consequences. Annu. Rev. Ecol. Evol. Syst. 39, 237–257. https://doi.org/10.1146/annurev.ecolsys.39.110707.173506 (2008).Article 

    Google Scholar 
    28.Kobe, R. K. & Coates, K. D. Models of sapling mortality as a function of growth to characterize interspecific variation in shade tolerance of eight tree species of northwestern British Columbia. Can. J. For. Res. 27, 227–236. https://doi.org/10.1139/x96-182 (1997).Article 

    Google Scholar 
    29.Wyckoff, P. H. & Clark, J. S. The relationship between growth and mortality for seven co-occurring tree species in the southern Appalachian Mountains. J. Ecol. 90, 604–615. https://doi.org/10.1046/j.1365-2745.2002.00691.x (2002).Article 

    Google Scholar 
    30.Anderegg, L. D. L. & HilleRisLambers, J. Drought stress limits the geographic ranges of two tree species via different physiological mechanisms. Glob. Change Biol. 22, 1029–1045. https://doi.org/10.1111/gcb.13148 (2016).ADS 
    Article 

    Google Scholar 
    31.Clark, J. S. et al. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Glob. Change Biol. 22, 2329–2352. https://doi.org/10.1111/gcb.13160 (2016).ADS 
    Article 

    Google Scholar 
    32.Etzold, S. et al. One century of forest monitoring data in Switzerland reveals species- and site-specific trends of climate-induced tree mortality. Front Plant Sci 10, 1–19. https://doi.org/10.3389/fpls.2019.00307 (2019).Article 

    Google Scholar 
    33.Schuldt, B. et al. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 45, 86–103. https://doi.org/10.1016/j.baae.2020.04.003 (2020).Article 

    Google Scholar 
    34.Vanoni, M., Cailleret, M., Hülsmann, L., Bugmann, H. & Bigler, C. How do tree mortality models from combined tree-ring and inventory data affect projections of forest succession?. For. Ecol. Manage. 433, 606–617. https://doi.org/10.1016/j.foreco.2018.11.042 (2019).Article 

    Google Scholar 
    35.Huber, N., Bugmann, H. & Lafond, V. Capturing ecological processes in dynamic forest models: why there is no silver bullet to cope with complexity. Ecosphere 11, 1–34. https://doi.org/10.1002/ecs2.3109 (2020).Article 

    Google Scholar 
    36.Bugmann, H. A simplified forest model to study species composition along climate gradients. Ecology 77, 2055–2074. https://doi.org/10.2307/2265700 (1996).Article 

    Google Scholar 
    37.Hülsmann, L., Bugmann, H. & Brang, P. How to predict tree death from inventory data – lessons from a systematic assessment of European tree mortality models. Can. J. For. Res. 47, 890–900. https://doi.org/10.1139/cjfr-2016-0224 (2017).Article 

    Google Scholar 
    38.Eid, T. & Tuhus, E. Models for individual tree mortality in Norway. For. Ecol. Manag. 154, 69–84. https://doi.org/10.1016/S0378-1127(00)00634-4 (2001).Article 

    Google Scholar 
    39.Monserud, R. A. & Sterba, H. Modeling individual tree mortality for Austrian forest species. For. Ecol. Manag. 113, 109–123. https://doi.org/10.1016/S0378-1127(98)00419-8 (1999).Article 

    Google Scholar 
    40.Dursky, J. Modellierung der Absterbeprozesse in Rein- und Mischbeständen aus Fichte und Buche. Allg. Forst- u. Jagdztg. 168, 131–134 (1997).
    Google Scholar 
    41.Trasobares, A., Pukkala, T. & Muna, J. Growth and yield model for uneven-aged mixtures of Pinus sylvestris L. and Pinus nigra Arn. in Catalonia, north-east Spain. Ann. For. Sci. 61, 9–24, doi:https://doi.org/10.1051/forset:2003080 (2004).42.Crecente-Campo, F., Soares, P., Tome, M. & Dieguez-Aranda, U. Modelling annual individual-tree growth and mortality of Scots pine with data obtained at irregular measurement intervals and containing missing observations. For. Ecol. Manage. 260, 1965–1974. https://doi.org/10.1016/j.foreco.2010.08.044 (2010).Article 

    Google Scholar 
    43.Palahi, M., Pukkala, T., Miina, J. & Montero, G. Individual-tree growth and mortality models for Scots pine (Pinus sylvestris L.) in north-east Spain. Ann. For. Sci. 60, 1–10, https://doi.org/10.1051/forest:2002068 (2003).44.Bravo-Oviedo, A., Sterba, H., del Rio, M. & Bravo, F. Competition-induced mortality for Mediterranean Pinus pinaster Ait. and P-sylvestris L. For. Ecol. Manag. 222, 88–98, doi:https://doi.org/10.1016/j.foreco.2005.10.016 (2006).45.Fridman, J. & Ståhl, G. A three-step approach for modelling tree mortality in Swedish forests. Scand. J. For. Res. 16, 455–466. https://doi.org/10.1080/02827580152632856 (2001).Article 

    Google Scholar 
    46.Wunder, J. et al. Growth-mortality relationships as indicators of life-history strategies: a comparison of nine tree species in unmanaged European forests. Oikos 117, 815–828. https://doi.org/10.1111/j.0030-1299.2008.16371.x (2008).Article 

    Google Scholar 
    47.Das, A., Battles, J., Stephenson, N. L. & van Mantgem, P. J. The contribution of competition to tree mortality in old-growth coniferous forests. For. Ecol. Manage. 261, 1203–1213. https://doi.org/10.1016/j.foreco.2010.12.035 (2011).Article 

    Google Scholar 
    48.Bigler, C. & Bugmann, H. Predicting the time of tree death using dendrochronological data. Ecol. Appl. 14, 902–914. https://doi.org/10.1890/03-5011 (2004).Article 

    Google Scholar 
    49.Larocque, G. R., Archambault, L. & Delisle, C. Development of the gap model ZELIG-CFS to predict the dynamics of North American mixed forest types with complex structures. Ecol. Model. 222, 2570–2583. https://doi.org/10.1016/j.ecolmodel.2010.08.035 (2011).Article 

    Google Scholar 
    50.Timofeeva, G. et al. Long-term effects of drought on tree-ring growth and carbon isotope variability in Scots pine in a dry environment. Tree Physiol. 37, 1028–1041. https://doi.org/10.1093/treephys/tpx041 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    51.Neumann, M., Mues, V., Moreno, A., Hasenauer, H. & Seidl, R. Climate variability drives recent tree mortality in Europe. Glob. Change Biol. 23, 4788–4797. https://doi.org/10.1111/gcb.13724 (2017).ADS 
    Article 

    Google Scholar 
    52.Levesque, M. et al. Drought response of five conifer species under contrasting water availability suggests high vulnerability of Norway spruce and European larch. Glob. Change Biol. 19, 3184–3199. https://doi.org/10.1111/gcb.12268 (2013).ADS 
    Article 

    Google Scholar 
    53.Rigling, A. et al. Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. Glob. Change Biol. 19, 229–240. https://doi.org/10.1111/gcb.12038 (2013).ADS 
    Article 

    Google Scholar 
    54.Eyvindson, K., Repo, A. & Mönkkönen, M. Mitigating forest biodiversity and ecosystem service losses in the era of bio-based economy. Forest Policy Econ 92, 119–127. https://doi.org/10.1016/j.forpol.2018.04.009 (2018).Article 

    Google Scholar 
    55.Mina, M. et al. Future ecosystem services from European mountain forests under climate change. J. Appl. Ecol. 54, 389–401. https://doi.org/10.1111/1365-2664.12772 (2017).Article 

    Google Scholar 
    56.Thom, D., Rammer, W. & Seidl, R. The impact of future forest dynamics on climate: interactive effects of changing vegetation and disturbance regimes. Ecol. Monogr. 87, 665–684. https://doi.org/10.1002/ecm.1272 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Blattert, C., Lemm, R., Thees, O., Lexer, M. J. & Hanewinkel, M. Management of ecosystem services in mountain forests: review of indicators and value functions for model based multi-criteria decision analysis. Ecol Indic 79, 391–409. https://doi.org/10.1016/j.ecolind.2017.04.025 (2017).Article 

    Google Scholar 
    58.Haeler, E. et al. Saproxylic species are linked to the amount and isolation of dead wood across spatial scales in a beech forest. Landscape Ecol. 36, 89–104. https://doi.org/10.1007/s10980-020-01115-4 (2021).Article 

    Google Scholar 
    59.Das, A. J., Stephenson, N. L. & Davis, K. P. Why do trees die? Characterizing the drivers of background tree mortality. Ecology 97, 2616–2627. https://doi.org/10.1002/ecy.1497 (2016).Article 
    PubMed 

    Google Scholar 
    60.Franklin, J. F., Shugart, H. H. & Harmon, M. E. Tree death as an ecological process. Bioscience 37, 550–556. https://doi.org/10.2307/1310665 (1987).Article 

    Google Scholar 
    61.Huber, N., Bugmann, H. & Lafond, V. Global sensitivity analysis of a dynamic vegetation model: model sensitivity depends on successional time, climate and competitive interactions. Ecol. Model. 368, 377–390. https://doi.org/10.1016/j.ecolmodel.2017.12.013 (2018).Article 

    Google Scholar 
    62.Portier, J. et al. “Latent reserves”: a hidden treasure in National Forest Inventories. J. Ecol. 109, 369–383. https://doi.org/10.1111/1365-2745.13487 (2021).Article 

    Google Scholar 
    63.Kunstler, G. et al. Demographic performance of European tree species at their hot and cold climatic edges. J. Ecol. 109, 1041–1054. https://doi.org/10.1111/1365-2745.13533 (2021).Article 

    Google Scholar 
    64.Gutierrez, A. G., Snell, R. S. & Bugmann, H. Using a dynamic forest model to predict tree species distributions. Glob. Ecol. Biogeogr. 25, 347–358. https://doi.org/10.1111/geb.12421 (2016).Article 

    Google Scholar 
    65.Botkin, D. B., Janak, J. F. & Wallis, J. R. Some ecological consequences of a computer model of forest growth. J. Ecol. 60, 849–872. https://doi.org/10.2307/2258570 (1972).Article 

    Google Scholar 
    66.Bugmann, H. A review of forest gap models. Clim. Change 51, 259–305. https://doi.org/10.1023/A:1012525626267 (2001).Article 

    Google Scholar 
    67.Watt, A. S. Pattern and process in the plant community. J. Ecol. 35, 1–22. https://doi.org/10.2307/2256497 (1947).Article 

    Google Scholar 
    68.Shugart, H. H. & Smith, T. M. A review of forest patch models and their application to global change research. Clim. Change 34, 131–153. https://doi.org/10.1007/BF00224626 (1996).ADS 
    Article 

    Google Scholar 
    69.Monserud, R. A. Simulation of forest tree mortality. Forest Science 22, 438–444. https://doi.org/10.1093/forestscience/22.4.438 (1976).Article 

    Google Scholar 
    70.IPCC. Climate Change 2014: Impacts, adaptation, and vulnerability, Pt A: global and sectoral aspects. Climate Change 2014: Impacts, Adaptation, and Vulnerability, Pt A: Global and Sectoral Aspects, 1-1131, doi:https://doi.org/10.1017/CBO9781107415379 (2014).71.Manusch, C., Bugmann, H., Heiri, C. & Wolf, A. Tree mortality in dynamic vegetation models: a key feature for accurately simulating forest properties. Ecol. Model. 243, 101–111. https://doi.org/10.1016/j.ecolmodel.2012.06.008 (2012).Article 

    Google Scholar 
    72.R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2020). More

  • in

    Spatiotemporal origin of soil water taken up by vegetation

    1.Graven, H. D. et al. Enhanced seasonal exchange of CO2 by Northern ecosystems since 1960. Science 341, 1085–1089 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    4.Schlesinger, W. H. & Jasechko, S. Agricultural and forest meteorology transpiration in the global water cycle. Agric. For. Meteorol. 189–190, 115–117 (2014).ADS 
    Article 

    Google Scholar 
    5.Dawson, T. E. & Pate, J. S. Seasonal water uptake and movement in root systems of Australian phraeatophytic plants of dimorphic root morphology: a stable isotope investigation. Oecologia 107, 13–20 (1996).ADS 
    Article 

    Google Scholar 
    6.Voltas, J., Devon, L., Maria Regina, C. & Juan Pedro, F. Intraspecific variation in the use of water sources by the circum-Mediterranean conifer Pinus halepensis. New Phytol. 208, 1031–1041 (2015).Article 

    Google Scholar 
    7.Grossiord, C. et al. Prolonged warming and drought modify belowground interactions for water among coexisting plants. Tree Physiol. 39, 55–63 (2018).Article 

    Google Scholar 
    8.Rempe, D. M. & Dietrich, W. E. Direct observations of rock moisture, a hidden component of the hydrologic cycle. Proc. Natl Acad. Sci. USA 115, 2664–2669 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    9.Querejeta, J. I., Estrada-Medina, H., Allen, M. F. & Jiménez-Osornio, J. J. Water source partitioning among trees growing on shallow karst soils in a seasonally dry tropical climate. Oecologia 152, 26–36 (2007).ADS 
    Article 

    Google Scholar 
    10.Evaristo, J. & McDonnell, J. J. Prevalence and magnitude of groundwater use by vegetation: a global stable isotope meta-analysis. Sci Rep. 7, 44110 (2017).ADS 
    Article 

    Google Scholar 
    11.Barbeta, A. & Peñuelas, J. Relative contribution of groundwater to plant transpiration estimated with stable isotopes. Sci Rep. 7, 10580 (2017).ADS 
    Article 

    Google Scholar 
    12.Jobbágy, E. G., Nosetto, M. D., Villagra, P. E. & Jackson, R. B. Water subsidies from mountains to deserts: their role in sustaining groundwater-fed oases in a sandy landscape. Ecol. Appl. 21, 678–694 (2011).Article 

    Google Scholar 
    13.Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Ellsworth, P. Z. & Sternberg, L. S. L. Seasonal water use by deciduous and evergreen woody species in a scrub community is based on water availability and root distribution. Ecohydrology 551, 538–551 (2015).Article 

    Google Scholar 
    15.Sohel, S. Spatial and Temporal Variation of Sources of Water Across Multiple Tropical Rainforest Trees. PhD thesis, Univ. Queensland (2019).16.Williams, D. G. & Ehleringer, J. R. Intra- and interspecific variation for summer precipitation use in pinyon-juniper woodlands. Ecol. Monogr. 70, 517–537 (2000).
    Google Scholar 
    17.Allen, S. T., Kirchner, J. W., Braun, S., Siegwolf, R., T. W. & Goldsmith, G. R. Seasonal origins of soil water used by trees. Hydrol. Earth Syst. Sci. 23, 1199–1210 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    18.David, T. S. et al. Water-use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought. Tree Physiol. 27, 793–803 (2007).CAS 
    Article 

    Google Scholar 
    19.Zencich, S. J., Froend, R. H., Turner, J. V. & Gailitis, V. Influence of groundwater depth on the seasonal sources of water accessed by Banksia tree species on a shallow, sandy coastal aquifer. Oecologia 131, 8–19 (2002).ADS 
    Article 

    Google Scholar 
    20.Naumburg, E., Mata-Gonzalez, R., Hunter, R. G. & Martin, D. W. Phreatophytic vegetation and groundwater fluctuations: a review of current research and application of ecosystem response modeling with an emphasis on Great Basin vegetation. Environ. Manage. 35, 726–740 (2005).Article 

    Google Scholar 
    21.Snyder, K. A. & Williams, D. G. Water sources used by riparian trees varies among stream types on the San Pedro River, Arizona. Agric. For. Meteorol. 105, 227–240 (2000).ADS 
    Article 

    Google Scholar 
    22.Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World map of the Köppen–Geiger climate classification updated. Meteorol. Zeitschrift 15, 259–263 (2006).ADS 
    Article 

    Google Scholar 
    23.Eleringer J. R. & Dawson T. Water uptake by plants: perspectives from stable isotope composition. Plant Cell Environ. 1073–1082 (1992).24.Dawson, T. E., Mambelli, S., Plamboeck, A. H., Templer, P. H. & Tu, K. P. Stable isotopes in plant ecology. Annu. Rev. Ecol. Syst. 33, 507–559 (2002).Article 

    Google Scholar 
    25.Rothfuss, Y. & Javaux, M. Reviews and syntheses: isotopic approaches to quantify root water uptake: a review and comparison of methods. Biogeosciences 14, 2199–2224 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    26.Orlowski, N. et al. Inter-laboratory comparison of cryogenic water extraction systems for stable isotope analysis of soil water. Hydrol. Earth Syst. Sci. 22, 3619–3637 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    27.Chen, Y. et al. Stem water cryogenic extraction biases estimation in deuterium isotope composition of plant source water. Proc. Natl Acad. Sci. USA 117, 33345–33350 (2021).ADS 
    Article 

    Google Scholar 
    28.Pastorello, G., Trotta, C., Canfora, E. & Al., E. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).Article 

    Google Scholar 
    29.Zhao, Y. & Wang, L. Plant water use strategy in response to spatial and temporal variation in precipitation patterns in China: a stable isotope analysis. Forests 9, 1–21 (2018).
    Google Scholar 
    30.Miguez-Macho, G. & Fan, Y. The role of groundwater in the Amazon water cycle: 2. Influence on seasonal soil moisture and evapotranspiration. J. Geophys. Res. Atmos. 117, (2012).31.Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    32.Ahlstrom, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).ADS 
    Article 

    Google Scholar  More

  • in

    Demography of a Eurasian lynx (Lynx lynx) population within a strictly protected area in Central Europe

    1.Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484–1241484 (2014).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    2.Treves, A. & Karanth, K. U. Human–carnivore conflict and perspectives on carnivore management worldwide. Conserv. Biol. 17, 1491–1499 (2003).Article 

    Google Scholar 
    3.Linnell, J. D. C. & Boitani, L. Building biological realism into wolf management policy: The development of the population approach in Europe. Hystrix Ital. J. Mammal. 23, 80–91 (2011).
    Google Scholar 
    4.Heurich, M. et al. Illegal hunting as a major driver of the source-sink dynamics of a reintroduced lynx population in Central Europe. Biol. Conserv. 224, 355–365 (2018).Article 

    Google Scholar 
    5.Breitenmoser-Würsten, C., Vandel, J.-M., Zimmermann, F. & Breitenmoser, U. Demography of lynx Lynx lynx in the Jura Mountains. Wildl. Biol. 13, 381–392 (2007).Article 

    Google Scholar 
    6.Clutton-Brock, T. & Sheldon, B. C. Individuals and populations: The role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends Ecol. Evol. 25, 562–573 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.O’Connell, A., Nichols, J. D. & Karanth, K. U. Camera Traps in Animal Ecology: Methods and Analyses. (Springer Tokyo, 2011).8.Noss, A. J. et al. A Camera trapping and radio telemetry study of lowland tapir (Tapirus terrestris) in Bolivian Dry Forests. Tapir Cons. 12, 9 (2003).
    Google Scholar 
    9.Karanth, K. U. & Nichols, J. D. Estimation of tiger densities in India using photographic captures and recaptures. Ecology 79, 11 (1998).Article 

    Google Scholar 
    10.Satter, C. B., Augustine, B. C., Harmsen, B. J., Foster, R. J. & Kelly, M. J. Sex‐specific population dynamics of ocelots in Belize using open population spatial capture–recapture. Ecosphere 10, e02792 (2019).Article 

    Google Scholar 
    11.Silver, S. C. et al. The use of camera traps for estimating jaguar Panthera onca abundance and density using capture/recapture analysis. Oryx 38, 148–154 (2004).Article 

    Google Scholar 
    12.Zimmermann, F., Breitenmoser-Würsten, C., Molinari-Jobin, A. & Breitenmoser, U. Optimizing the size of the area surveyed for monitoring a Eurasian lynx (Lynx lynx) population in the Swiss Alps by means of photographic capture–recapture. Integr. Zool. 8, 232–243 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Royle, J. A., Chandler, R. B., Sollmann, R. & Gardner, B. Spatial Capture–Recapture. (Elsevier, 2014).
    Google Scholar 
    14.Chandler, R. B. & Clark, J. D. Spatially explicit integrated population models. Methods Ecol. Evol. 5, 1351–1360 (2014).Article 

    Google Scholar 
    15.Kaczensky, P. et al. Status, management and distribution of large carnivores—Bear, lynx, wolf and wolverine in Europe (EuropeanCommission, 2013).16.Magg, N. et al. Habitat availability is not limiting the distribution of the Bohemian–Bavarian lynx Lynx lynx population. Oryx 50, 742–752 (2016).Article 

    Google Scholar 
    17.Müller, J. et al. Protected areas shape the spatial distribution of a European lynx population more than 20 years after reintroduction. Biol. Conserv. 177, 210–217 (2014).Article 

    Google Scholar 
    18.Bull, J. K. et al. The effect of reintroductions on the genetic variability in Eurasian lynx populations: The cases of Bohemian–Bavarian and Vosges–Palatinian populations. Conserv. Genet. 17, 1229–1234 (2016).Article 

    Google Scholar 
    19.Walston, J. et al. Bringing the tiger back from the brink—The six percent solution. PLoS Biol. 8, e1000485 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    20.Schmidt, K., Jędrzejewski, W. & Okarma, H. Spatial organization and social relations in the Eurasian lynx population in Bialowieza Primeval Forest, Poland. Acta Theriol. (Warsz.) 42, 289–312 (1997).Article 

    Google Scholar 
    21.Bunnefeld, N., Linnell, J. D. C., Odden, J., van Duijn, M. A. J. & Andersen, R. Risk taking by Eurasian lynx (Lynx lynx) in a human-dominated landscape: Effects of sex and reproductive status. J. Zool. 270, 31–39 (2006).
    Google Scholar 
    22.Gaillard, J.-M., Nilsen, E. B., Odden, J., Andrén, H. & Linnell, J. D. C. One size fits all: Eurasian lynx females share a common optimal litter size. J. Anim. Ecol. 83, 107–115 (2014).PubMed 
    Article 

    Google Scholar 
    23.Nilsen, E. B., Linnell, J. D. C., Odden, J., Samelius, G. & Andrén, H. Patterns of variation in reproductive parameters in Eurasian lynx (Lynx lynx). Acta Theriol. (Warsz.) 57, 217–223 (2012).Article 

    Google Scholar 
    24.O’Brien, T. G., Kinnaird, M. F. & Wibisono, H. T. Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Anim. Conserv. 6, 131–139 (2003).Article 

    Google Scholar 
    25.Cailleret, M., Heurich, M. & Bugmann, H. Reduction in browsing intensity may not compensate climate change effects on tree species composition in the Bavarian Forest National Park. For. Ecol. Manag. 328, 179–192 (2014).Article 

    Google Scholar 
    26.Heurich, M. et al. Country, cover or protection: What shapes the distribution of red deer and roe deer in the Bohemian Forest Ecosystem?. PLoS ONE 10, e0120960 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    27.van Beeck Calkoen, S. T. S. et al. The blame game: Using eDNA to identify species-specific tree browsing by red deer (Cervus elaphus) and roe deer (Capreolus capreolus) in a temperate forest. For. Ecol. Manag. 451, 117483 (2019).Article 

    Google Scholar 
    28.Wölfl, M. et al. Distribution and status of lynx in the border region between Czech Republic, Germany and Austria. Acta Theriol. 46, 181–194 (2001).Article 

    Google Scholar 
    29.Mináriková, T. et al. Lynx monitoring report for Bohemian–Bavarian–Austrian lynx population for lynx year 2017 (INTERREG Central Europe, 2019).30.Weingarth, K. et al. First estimation of Eurasian lynx (Lynx lynx) abundance and density using digital cameras and capture–recapture techniques in a German national park. Anim. Biodivers. Conserv. 35, 197–207 (2012).Article 

    Google Scholar 
    31.Belotti, E. et al. Patterns of lynx predation at the interface between protected areas and multi-use landscapes in Central Europe. PLoS ONE 10, e0138139 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    32.Tobler, M. W. & Powell, G. V. N. Estimating jaguar densities with camera traps: Problems with current designs and recommendations for future studies. Biol. Conserv. 159, 109–118 (2013).Article 

    Google Scholar 
    33.Zimmermann, F., Breitenmoser-Würsten, C. & Breitenmoser, U. Natal dispersal of Eurasian lynx ( Lynx lynx ) in Switzerland. J. Zool. 267, 381 (2005).Article 

    Google Scholar 
    34.Andrén, H. et al. Survival rates and causes of mortality in Eurasian lynx (Lynx lynx) in multi-use landscapes. Biol. Conserv. 131, 23–32 (2006).Article 

    Google Scholar 
    35.Gimenez, O. et al. Spatial density estimates of Eurasian lynx (Lynx lynx) in the French Jura and Vosges Mountains. Ecol. Evol. 9, 11707–11715 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Pesenti, E. & Zimmermann, F. Density estimations of the Eurasian lynx (Lynx lynx) in the Swiss Alps. J. Mammal. 94, 73–81 (2013).Article 

    Google Scholar 
    37.Weingarth, K. et al. Hide and seek: Extended camera-trap session lengths and autumn provide best parameters for estimating lynx densities in mountainous areas. Biodivers. Conserv. 24, 2935–2952 (2015).Article 

    Google Scholar 
    38.Pollock, K. H. A capture–recapture design robust to unequal probability of capture. J. Wildl. Manag. 46, 752 (1982).Article 

    Google Scholar 
    39.Augustine, B. benaug/OpenPopSCR. (2019). https://github.com/benaug/OpenPopSCR.40.Ergon, T. & Gardner, B. Separating mortality and emigration: Modelling space use, dispersal and survival with robust-design spatial capture–recapture data. Methods Ecol. Evol. 5, 1327–1336 (2014).Article 

    Google Scholar 
    41.Schaub, M. & Royle, J. A. Estimating true instead of apparent survival using spatial Cormack–Jolly–Seber models. Methods Ecol. Evol. 5, 1316–1326 (2014).Article 

    Google Scholar 
    42.Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: Convergence diagnosis and output analysis for MCMC. R News 6, 7–11 (2005).
    Google Scholar 
    43.Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998).MathSciNet 

    Google Scholar 
    44.Efford, M. secr 4.1—Spatially explicit capture–recapture in R. (2019). https://cran.microsoft.com/snapshot/2019-12-24/web/packages/secr/vignettes/secr-overview.pdf.45.Burnham, K. P. & Overton, W. S. Robust estimation of population size when capture probabilities vary among animals. Ecology 60, 927–936 (1979).Article 

    Google Scholar 
    46.Burnham, K. P., Anderson, D. R. & Burnham, K. P. Model Selection and Multimodel Inference: A Practical Information–Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    47.O’Brien, T. G. Abundance, density and relative abundance: A conceptual framework. In Camera Traps in Animal Ecology (eds O’Connell, A. F. et al.) 71–96 (Springer Japan, 2011). https://doi.org/10.1007/978-4-431-99495-4_6.Chapter 

    Google Scholar 
    48.Rovero, F. & Zimmermann, F. Camera Trapping for Wildlife Research (Pelagic Publishing Ltd, 2016).
    Google Scholar 
    49.Augustine, B. C. et al. Sex-specific population dynamics and demography of capercaillie (Tetrao urogallus L.) in a patchy environment. Popul. Ecol. 62, 80–90 (2020).Article 

    Google Scholar 
    50.Duľa, M. et al. Multi-seasonal systematic camera-trapping reveals fluctuating densities and high turnover rates of Carpathian lynx on the western edge of its native range. Sci. Rep. 11, 9236 (2021).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    51.Avgan, B., Zimmermann, F., Güntert, M., Arıkan, F. & Breitenmoser, U. The first density estimation of an isolated Eurasian lynx population in southwest Asia. Wildl. Biol. 20, 217–221 (2014).Article 

    Google Scholar 
    52.Mengüllüoğlu, D., Ambarlı, H., Berger, A. & Hofer, H. Foraging ecology of Eurasian lynx populations in southwest Asia: Conservation implications for a diet specialist. Ecol. Evol. 8, 9451–9463 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Heurich, M. et al. Activity patterns of Eurasian lynx are modulated by light regime and individual traits over a wide latitudinal range. PLoS ONE 9, e114143 (2014).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    54.Jedrzejewski, W. et al. Population dynamics (1869–1994), demography, and home ranges of the lynx in Bialowieza Primeval Forest (Poland and Belarus). Ecography 19, 122–138 (1996).Article 

    Google Scholar 
    55.Gardner, B., Sollmann, R., Kumar, N. S., Jathanna, D. & Karanth, K. U. State space and movement specification in open population spatial capture–recapture models. Ecol. Evol. 8, 10336–10344 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.López-Bao, J. V. et al. Eurasian lynx fitness shows little variation across Scandinavian human-dominated landscapes. Sci. Rep. 9, 8903 (2019).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    57.Engleder, T. et al. First breeding record of a 1-year-old female Eurasian lynx. Eur. J. Wildl. Res. 65, 17 (2019).Article 

    Google Scholar 
    58.Heurich, M. et al. Selective predation of a stalking predator on ungulate prey. PLoS ONE 11, e0158449 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Andrén, H. & Liberg, O. Large impact of Eurasian lynx predation on roe deer population dynamics. PLoS ONE 10, e0120570 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    60.Elmhagen, B. & Rushton, S. P. Trophic control of mesopredators in terrestrial ecosystems: Top-down or bottom-up?. Ecol. Lett. 10, 197–206 (2007).PubMed 
    Article 

    Google Scholar 
    61.Wikenros, C. et al. Fear or food—Abundance of red fox in relation to occurrence of lynx and wolf. Sci. Rep. 7, 9059 (2017).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    62.Helldin, J. O., Liberg, O. & Glöersen, G. Lynx (Lynx lynx) killing red foxes (Vulpes vulpes) in boreal Sweden? Frequency and population effects. J. Zool. 270, 657–663 (2006).Article 

    Google Scholar 
    63.Sollmann, R., Mohamed, A., Samejima, H. & Wilting, A. Risky business or simple solution—Relative abundance indices from camera-trapping. Biol. Conserv. 159, 405–412 (2013).Article 

    Google Scholar 
    64.Linnell, J. D. C., Kaczensky, P., Wotschikowsky, U., Lescureux, N. & Boitani, L. Framing the relationship between people and nature in the context of European conservation: Relationship between people and nature. Conserv. Biol. 29, 978–985 (2015).PubMed 
    Article 

    Google Scholar  More

  • in

    A toxic ‘tide’ is creeping over bountiful Arctic waters

    .readcube-buybox { display: none !important;}

    Toxic algae are likely to begin blooming more frequently in Arctic waters as the climate and the ocean warm1.



    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:block;padding-right:20px;padding-left:20px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label{color:#069}
    /* style specs end */Subscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Rent or Buy articleGet time limited or full article access on ReadCube.from$8.99Rent or BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-021-02715-z

    References1.Anderson, D. M. et al. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2107387118 (2021).Article 

    Google Scholar 
    Download references

    Subjects

    Ecology

    Latest on:

    Ecology

    Spatiotemporal origin of soil water taken up by vegetation
    Article 06 OCT 21

    Fund natural-history museums, not de-extinction
    Correspondence 05 OCT 21

    Illegal mining in the Amazon hits record high amid Indigenous protests
    News 30 SEP 21

    Jobs

    Research Fellow/Postdoc

    TUM CREATE Ltd
    Singapore, Singapore

    Postdoctoral Scientist (Immunogenetics)

    The Pirbright Institute
    Pirbright, United Kingdom

    PhD Student (gn) Neuroimmunology

    University Hospital of Muenster (UKM), WWU
    Münster, Germany

    Summer Fleming Scholar Internship

    Oklahoma Medical Research Foundation (OMRF)
    Oklahoma City, United States More

  • in

    Phytoplankton biodiversity and the inverted paradox

    Inverted paradoxNeutral theory can reproduce properties of terrestrial biodiversity observed at local (e.g., an island) or metacommunity (i.e., a set of interacting communities linked by dispersal of species) scales, particularly ranked species abundance curves (i.e., histograms of species abundance ordered along the x-axis from most to least common) [14]. Central to neutral theory is the interplay between ‘stochastic exclusion’ and either immigration or speciation. Stochastic exclusion is the reduction in biodiversity caused by random deaths and abundance-dependent replacement and, if not countered by other processes, ultimately leads to only a single remaining species [14]. Immigration of species into a local community or speciation within the metacommunity offset stochastic exclusion and maintain biodiversity [14]. This relationship is illustrated in Fig. 1 by simulated time-series of phytoplankton diversity for three populations at steady-state with 10,000, 100,000, and 1,000,000 total individuals and an initial condition of 10,000 species each (Fig. 1) (Methods). Subjection of these populations to 50% random mortality per generation and replacement in proportion to the relative abundance of remaining species results in an eventual rate of decrease in diversity that is equivalent across population sizes (Fig. 1; dashed black lines), eventually yielding the expected final equilibrium of a single species. When a small rate of immigration is added to this simulation (here, 0.03% or 0.3% per generation), complete stochastic exclusion is replaced by steady-state diversities that vary in direct proportion to population size and immigration rate (Fig. 1; colored dashed and dotted lines). Similar considerations led Hubbell [14] to earlier propose in his “Unified Neutral Theory” a fundamental biodiversity number, θ, controlling both species richness and relative abundance:$$theta ,=, 2Jupsilon$$
    (1)
    where J is the total number of individuals in the community and υ the rate of immigration (local) or speciation (metacommunity).Fig. 1: Phytoplankton biodiversity following purely stochastic processes.Red, blue, and green = phytoplankton populations (J) of 10,000, 100,000, and 1,000,000 individuals, respectively (Methods). Colored solid lines = species richness in the absence of immigration (υ). Colored dashed and dotted lines = species richness for υ values of 0.03% and 0.3% per generation. Black dashed line = mean rate of decline for the primary phase of stochastic exclusion (slope of this line is the same for all three populations). Blue and green downturned triangles = threshold for the two larger populations where diversity begins to decline rapidly because a sufficient number of species have been reduced to an abundance where extinction within a generation becomes likely.Full size imageIn addition to illustrating the balance between stochastic exclusion and immigration into a local phytoplankton community, Fig. 1 shows that significant decreases in species richness only ensue after a subpopulation of species within a community has been sufficiently decimated in number that their remaining individuals might be lost through random mortality within a generation. In our simulations, this threshold is demarked by the downturn in species richness for the populations of 100,000 and 1,000,000 individuals (Fig. 1; blue and green triangles). The significance of stochastic exclusion is thus dependent on the relation between extant species number and size of the physically-homogenized community. With respect to the latter property, typical horizontal eddy diffusion values for the upper ocean are O(103 m2 s−1), implying that the length scale for mixing in 1 day is O(1000 m). Typical number concentrations for phytoplankton of different species in the ocean range from More

  • in

    Looking into the flora of Dutch Brazil: botanical identifications of seventeenth century plant illustrations in the Libri Picturati

    Botanical content of the Libri Picturati Brazilian collectionOur identifications of all plant illustrations are listed with their vernacular names, page numbers, and associated information on growth form, geographical origin, conservation and domestication status in Supplementary Dataset S1. From the entire collection of Brazilian plant illustrations in the Libri Picturati, we identified 198 taxa that are organized in the Theatrum, LP and MC as indicated in Supplementary Table S1. Between folios 729 and 731 of the Theatrum, an illustration of a tea plant (Camellia sinensis (L.) Kuntze) is glued, which was sent by Cleyer from Batavia (currently Jakarta, Indonesia), the headquarters of the Dutch East Indian Company. As it was inserted later in the Theatrum and not depicted in Brazil, we did not include it in our analysis. A few plants remained unidentified due to a lack of morphological characters, the limited quality of the drawing and/or the lack of references to written sources by Marcgrave or Piso7,8.Among the LP botanical watercolors, we identified 34 vascular plant species (38 images) with the Passifloraceae as the most represented family (five species, six images), followed by the Fabaceae (five species, five images). Among the MC plant drawings, we identified 26 vascular plant species (34 images) and the most represented families were the Cucurbitaceae (three species, seven images) and the Myrtaceae (three species, three images). Among the illustrated content of the Theatrum, we identified 162 vascular plant species (175 images) and one basidiomycete fungus (Copelandia cyanescens (Sacc.) Singer, Bolbitiaceae). Fungi were commonly placed within the plant kingdom until the mid-twentieth century. The most represented families among the illustrated content are the Fabaceae (22 species, 22 images), followed by the Solanaceae (10 species, 11 images), Lamiaceae (six species, six images) and Myrtaceae (six species, eight images). The Fabaceae is the most diverse plant family in the world41, while the Myrtaceae is one of the most rich-species woody plant family in the Atlantic Forest in Brazil42.Mentzel’s unfinished task: the intended botanical content of the Theatrum
    The Theatrum also includes 206 empty folios, interleaved between 160 folios with plant illustrations (see example in Fig. 1). On most folios, vernacular names and references to the pages of the HNB and IURNM are written on the top center, often relating to one taxon, but sometimes referring to two taxa (Fig. 1). This occurs specially at the end of the collection, as if the maker had ended up with little space and somehow had to squeeze them in. Among these unillustrated folios, the vernacular plant names and references to Marcgrave and Piso’s sources allowed us to identify 196 vascular plant species (218 records) including five ferns from the families Drypteriaceae (one species), Polypodiaceae (one species) and Pteridaceae (three species); one alga (Sargassum tenuissimum (Endlicher & Diesling) Grunow, Phaeophyceae) and a marine sponge (Clathria cf. nicoleae Vieira de Barros, Santos & Pinheiro, Microcioniadae) (Supplementary Dataset S1). Considering that the study of spongiology (Porifera) did not develop until the mid-nineteenth century, these animal colonies must have been considered an aquatic plant because of the tree-like shape and the fact of living attached to the seabed. The most represented family that would correspond to the empty folios was the Fabaceae (29 unillustrated species, 33 records), followed by the Arecaceae (nine species, ten records), Solanaceae (nine species, nine records), and Asteraceae (seven species, seven records). Estimates of the intended botanical content (i.e., empty folios with references together with the illustrated folios) are shown in Table 1.Figure 1Similar vernacular names for related taxa and distinct taxa associated to the same vernacular name in the Theatrum Rerum Naturalium.Full size imageTable 1 Estimations of the botanical content of the Theatrum Rerum Naturalium, including empty and illustrated folios.Full size tableOn p. 139 of the Theatrum, the vernacular name Ambaibuna is written on an empty page without reference to Marcgrave’s or Piso’s books. The page with Ambaibuna is located between Ambaiba (p. 137), which corresponds to the illustration of Cecropia pachystachya Trécul, and a blank page with only the vernacular name Ambaitinga (p. 141), which corresponds to C. hololeuca Miq.7: 92,24 (Fig. 1). The Brazilian Cecropia species are known in Tupi-related languages as Ambauba, Ambauva or Umbaúba (https://dataplamt.org.br/), which are phonetically and morphologically similar to Ambaibuna. For those reasons, we initially assumed that Ambaibuna referred to a Cecropia species, but the same name Ambaibuna is later repeated together with the name Iito (p. 227) next to an illustration that represents a completely different tree species: Guarea guidonia (L.) Sleumer (Fig. 1). Furthermore, the name Ambaibuna is also written above the illustration of a grapevine, Vitis vinifera L. (p. 257), also unrelated to Cecropia (Fig. 1).Whether Ambaibuna was a generic name to designate several non-related species or represents a mistake by the author who wrote the names on the illustrations remains unknown. On the other hand, neither Marcgrave nor Piso mentioned Ambaibuna in their descriptions of the Brazilian flora. Aside from Marcgrave and Piso’s books7,8, it is yet to be determined which source(s) Mentzel relied on when arranging the botanical content of the Theatrum. It is nonetheless clear that he must have been confused by the similarity of some of the Tupi-related plant names. Unfortunately, Marcgrave was no longer present to help him match the illustrations, names and descriptions, because he died about 16 years before Mentzel started organizing the Brazilian plant illustrations.Origin of the exotic species in the Libri Picturati
    The Libri Picturati collection depicts in its majority native Brazilian plants. Most of the species represented in the Theatrum are native from Brazil, but the proportion of native species is much lower in the MC and lowest in the LP, in which almost half of the illustrations represent introduced species (Fig. 2).Figure 2Proportion of native and introduced species in the Brazilian collection of the Libri Picturati: Theatrum Rerum Naturalium (Theatrum), Libri Principis (LP) and Miscellanea Cleyeri (MC).Full size imageThere are 35 species of exotic origin in the complete Brazilian collection of the Libri Picturati (Supplementary Table S2). These introduced species now occur in (sub-) tropical areas around the world. Most of the exotic plants originally came from other parts of the Americas, especially Mexico, the Caribbean and the Andes region (14 species); followed by those that originated in the African continent (10 species) and tropical Asia (nine species) (Supplementary Table S2). Most of the exotic American plants that were introduced to Brazil were domesticated and traded by indigenous groups long before the European colonization, such as papaya (Carica papaya L.), cotton (Gossypium barbadense L.), sweet potato (Ipomoea batatas (L.) Lam.), beans (Phaseolus vulgaris L.), guava (Psidium guajava L.) and maize (Zea mays L.)37. Most of the species of Asiatic origin were already naturalized or cultivated in Africa and introduced to Brazil by means of the Trans-Atlantic slave trade before the Dutch arrived, such as yams (Dioscorea alata L.), plantains (Musa × paradisiaca L.) and weeds like Abrus precatorius L. and Plumbago zeylanica L.43,44. Others were introduced from Europe by merchants and settlers, such as the Portuguese Jesuits, who incorporated them as remedies into their boticas (Jesuit pharmacies in the colonies). For example, the various Citrus and pomegranate fruits were not only planted as fruits but also used to expel roundworms and to combat cold fevers, respectively45: 88. Before their arrival to Brazil, the Portuguese and Dutch must have been familiar with some African plants, such as Aloe vera (L.) Burm.f., Ricinus communis L. and Tamarindus indica L. These useful plants were already known in Europe through Arabic and Greek medical texts, which knowledge was boosted by their translations into Latin during the High Renaissance45,46. Punica granatum L. was introduced into the Iberian Peninsula via ancient merchant routes in the Mediterranean47 and brough to Brazil by the Portuguese45. Grapes (Vitis vinifera L.) were already cultivated by the Portuguese in Pernambuco around 154248. Along the Atlantic coast, lemons, pomegranates and grape vines adapted to the new environmental conditions and thrived in the vicinities of Johan Maurits’ residence, as evidenced by the illustrations in the Theatrum and textual accounts6,7,40.The presence of these globally commodified plants is common today in Brazil as in many regions worldwide. Other species seem to have lost their popularity over time. The so-called Ethiopian, Guinean or Negro pepper, Xylopia aethiopica (Dunal) A.Rich., was present around the 1640s in northeast Brazil, as evidenced in the Libri Picturati by a painting with a fruiting branch with leaves named Piperis aethiopici spés (Fig. 3a). The first iconography of this aromatic tree in Europe is found in Matthioli’s commentaries on Dioscorides under the name of Piper aethiopicum49: 575 and its fruits were previously cited by the Persian polymath Avicenna (980–1037)30. In Europe, this African pepper was commonly used until southeast Asian spices gained popularity in the sixteenth century50. In the plantation societies of tropical America, X. aethiopica constituted a food crop for enslaved Africans in the early colonial period43: 135. Today, its fruits are used in aphrodisiac tonics51 and special dishes prepared for African deities (Orishas) in Cuba43: 90, but it is unclear whether the species grows in Brazil. Its current distribution range encompasses West, Central and Southern Africa (https://gbif.org/occurrence/map?taxon_key=3157151). The dry fruits are used in tropical Africa as a condiment, in rituals and as medicine to treat cough, bronchitis, rheumatism, malaria, amenorrhea and uterine fibroids52,53,54. There is an herbarium record in Brazil made by photographer and anthropologist Pierre Verger. The label on the specimen mentions ‘Brazil’ and ‘Plantas de Candomblé’ and it indicates that the voucher was deposited at the Herbarium Alexandre Real Costa (ALCB, according to Index Herbariorum: http://sweetgum.nybg.org/science/ih/, accessed 23 August 2021) in Bahia (Verger s/n, ALCB012478, available at ALCB, via Species Link: https://specieslink.net/search/, accessed 23 August 2021) Verger presumably collected this specimen in Bahia in 1967 while he was researching on ritual and medicinal plants used in Candomblé (http://inct.florabrasil.net/alcb-resgate/, accessed 2 June 2021)55. However, it seems to be a mixed collection, as the leaves are oppositely arranged and with long petioles, which is uncommon to Annonaceae30. In Brazil, the fruits of the Brazilian relative Xylopia aromatica (Lam.) Mart. have probably served as a good substitute for X. aethiopica, as they have a similar peppery taste and stomachic properties56: 3, and are more easily gathered from the cerrado savannahs or the Amazon rainforest. Voeks57 documented X. aethiopica seed powder as used in Candomblé rituals by Yoruba practitioners in Bahia. Nevertheless, there is no clear information whether X. aethiopica is cultivated in the Neotropics or imported; thus, the origin of the fruits, seeds or its powder in Brazil remains uncertain.Figure 3 (a) The African spice-producing tree Xylopia aethiopica depicted in the Theatrum Rerum Naturalium (p. 321); (b) The first record of the sunflower (Helianthus annuus) in Brazil (Theatrum: 555).Full size imageThe first reference to the sunflower (Helianthus annuus L.) in Brazil dates to the twentieth century, when it was introduced by European immigrants due to its economic value as an oil-producing crop58. Sunflowers are of North American and/or Mexican origin 59,60, and were introduced to Europe in the sixteenth century by the Spanish, as part of the Columbian exchange61. Merchants observed how native Americans benefited from this plant and exported the sunflower to Europe, where it was primarily valued as ornamental and later as a food crop, propelled by genetic improvement by the Russians in the 1800s59. Before the sunflower became a popular and well-stablished crop in the twentieth century, this plant was already encountered in northeast Brazil, as evidenced by the illustration in the Theatrum (Fig. 3b). Portuguese sailors may have played a role in its introduction to Brazilian territories or it could have been intentionally brought by merchants or Jesuits, although the latter paid more attention to medicinal plants45,62. We may also consider the Dutch as active agents in its introduction to their colonies in the northeast. A relevant female agent in the dissemination of the sunflower in the Netherlands was Christine Bertolf (1525–1590), who was acquainted with the Spanish court and keen of the rare plants that thrived in the Royal Botanical Garden in Madrid63. She spread textual and visual information about the sunflower, and possibly also its seeds, among her network of naturalists and collectors, including the Flemish botanists Dodoens and Clusius63. After Dodoens64: 295 depicted the first European sunflower in his herbal in 1568, images and descriptions of this species began to circulate in manuscripts of other naturalists and physicians in Europe (e.g., Matthioli65: preface, Fragoso66: title page, Monardes67: 109 and Clusius68: 14–15). Thus, by the seventeenth century, Dutch scholars and collectors of exotic naturalia were familiar with sunflowers, which possibly promoted its cultivation at Johan Maurits’ gardens with ornamental purposes.Interestingly, the sunflower is referenced as Camará-guaçú, an indigenous term from the macrolinguistic Tupi family. Camará, Kamará or Cambará is a generic name given to several unrelated species, such as Lantana camara L. (Verbenaceae) and Ageratum conyzoides L. (Asteraceae) (http://www.dataplamt.org.br/, accessed 2 June 2021), both found in the Theatrum (p. 341 and 343 respectively). According to Tibiriçá69, in Tupi caa means plant and mbaraá means illness, and according to Cherini70 Cambará means “leaf of rough bark”. Hence, Camara also refers to medicinal plants with rough leaves in general. Guaçú means big and miri small71, which matches with the larger inflorescence of H. annuus in contrast to the African weed Sida rhombifolia L. (Malvaceae), documented as Camara-miri in the HNB and “used by black people as a broom to sweep the houses of their masters”7: 110. According to the Tupi-based nomenclature associated to H. annuus in the Theatrum, Tupi indigenous groups were already familiar with the sunflower in Brazil around the 1640 s.Life forms and domestication status of the Libri Picturati plantsMost of the species in the Theatrum are tropical trees, followed by shrubs, herbs, and lianas (Fig. 4). Several are rainforest trees, such as Andira fraxinifolia Benth., Garcinia brasiliensis Mart. and Syagrus coronata (Mart.) Becc. The same trend was observed for the illustrations in the MC, with trees as the most often represented life forms, followed by shrubs, lianas and herbs. Typically, the LP contains much less trees, but more small herbs, shrubs and vines that were probably found in and around Mauritsstad (i.e., the former capital of Dutch Brazil, currently a part of the Brazilian city of Recife), such as Commelina erecta L. and Turnera subulata Sm., which commonly grow in disturbed landscapes.Figure 4Proportion of life forms of the species depicted in the Brazilian collection of the Libri Picturati: Theatrum Rerum Naturalium (Theatrum), Libri Principis (LP) and Miscellanea Cleyeri (MC).Full size imageAlthough the majority of the species depicted in the Theatrum and the MC are wild forest trees, some species are found both in the wild and cultivated, such as Psidium guineense Sw., which was part of the pre-Columbian anthropogenic forests or ‘indigenous landscape’ in Brazil37,38,72. Some trees were planted in or around Recife. Hancornia speciosa Gomes, known by its Tupi-based name Mangabiba or Mangaiba [Mangabeira]7: 121, was cultivated in Mauritsstad6: 242,40. The fruit of H. speciosa (Mangaba) was harvested in great amounts as it was a highly appreciated food7: 122. Seeds were collected to plant the tree, and Marcgrave gave details about the specific locations of varieties in different northeastern locations (Salvador, Sergipe and Olinda). H. speciosa was already selected and managed by indigenous groups before colonization37, yet wild populations of this tree are still found in the Brazilian rainforest and savannah (http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB15558, accessed 4 June 2021).Domesticated plants are represented in higher proportions within the LP and the MC (Fig. 5), accounting mostly for introduced fruit species (Supplementary Dataset S1), such as Citrus spp., Musa x paradisiaca and Cocos nucifera L., which were cultivated in Maurits’ gardens in Recife40. The influence of the European colonization of Brazil is also visible by the presence of weeds from Asia and Africa among the illustrations in the Theatrum and the LP, such as Abrus precatorius L., Argemone mexicana L., Boerhavia coccinea Mill. and Plumbago zeylanica L. Some of these plants were introduced from Africa via the slave ships, while others may have dispersed naturally44. Guilandina bonduc L., an African scrambling shrub depicted as Inimboi in the Theatrum, was described by Piso7: 95 as “growing in abundance in sandy and dry forests of the coasts”. We categorized G. bonduc as a wild plant: its round seeds could have been brought by oceanic currents from West African shores and germinated in the coastal vegetation of Pernambuco and other South American areas73. However, G. bonduc may also have reached Brazil during the Trans-Atlantic slave trade, as the hard, grey seeds are used in the African game Oware and also used in bead ornaments74.Figure 5Domestication status of the species in the Brazilian collection of the Libri Picturati: Theatrum Rerum Naturalium (Theatrum), Libri Principis (LP) and Miscellanea Cleyeri (MC).Full size imagePlant parts represented in the Libri Picturati
    The way plants are depicted in the Libri Picturati provides us with information about the level of botanical skills of the artists, and how closely they worked together with the naturalists in the Dutch colony. Some plants are represented by only loose parts or depicted sterile, while others show us different organs and reproductive stages, which greatly facilitated their taxonomic identification (Table 2).Table 2 Plant parts represented in the botanical illustrations of the Libri Picturati: Theatrum Rerum Naturalium (Theatrum), Libri Principis (LP) and Miscellanea Cleyeri (MC).Full size tableMost illustrations depict fertile plant species with flowers and fruits, often cut in half to show the seeds, which reveals a high level of botanical knowledge. Fertile plants are more common in the Theatrum, in a few occasions also showing their tubers, such as Spondias tuberosa Arruda, known as Umbi [Iva Umbu], of which the prominent tuber in the bottom front captures the attention of the observer (Fig. 6a). Likely associated to a scientific purpose, drawing some plant parts out of proportion corresponds to a pictorial style also observed in other iconographies. This is also the case in the Icones Plantarum Malabaricarum, which depicts plants from Ceylon (modern Sri Lanka) in the eighteenth century and often accentuates useful fruits, flowers or roots75.Figure 6 (a) Spondias tuberosa with the tuber painted in front of the branch with leaves, tiny white flowers and a detail of the immature (green) and mature (yellow) fruit in the back (Theatrum Rerum Naturalium: 261); (b) Infertile individual of Hippeastrum psittacinum (Theatrum: 389); c Ficus gomelleira leaf, probably picked from the ground (Theatrum: 157); (d) Flowering vine of Centrosema brasilianum (Libri Principis: 1); (e) Amphilophium crucigerum dry open fruit without seeds (Theatrum: 387).Full size imagePiso7: 78 indicated that roots [tubers] of S. tuberosa deserved special attention, because of the way they developed underground and their use as a refreshment [water reservoir] for feverish patients and exhausted travelers, as he experimented himself. He and Marcgrave7: 108 also described how its fruits were valued as food. This example not only provides textual and visual evidence of the field trips to the interior by these naturalists and their first-hand experiments, but also adds insights into the connectedness between artistic and scientific practices in seventeenth century Dutch Brazil. Currently S. tuberosa, known as Umbu or Umbuzeiro (https://dataplamt.org.br/), is an important economic and subsistence food resource for rural communities in semiarid regions of northeast Brazil76,77. Its specialized root system (xylopodia) bears tubers that store liquids, sugars and other nutrients and allow the survival of the tree during the dry seasons of the caatinga and central Brazilian savanna, where this species is endemic78. The water or sweet juice of these xylopodia is still used as an emergency thirst quencher in extreme arid areas of the Brazilian sertão79; also see https://www.youtube.com/watch?v=NyGNlrljAww, accessed 25 August 2012].In the Theatrum, a small proportion of plants are illustrated in their sterile stage, such as Hippeastrum psittacinum (Ker Gawl.) Herb. (Fig. 6b) or Ficus gomelleira Kunth & C.D.Bouché (Fig. 6c). Marcgrave7: 32 did not see the impressive flower of H. psittacinum as it is lacking in his observations25: 59. The Theatrum painting must have been made in the wet season in the interior of Pernambuco, when Marcgrave and the painter(s) encountered the lily with only leaves, before these fall off and make place for the mesmerizing flower25. Ficus gomelleira, depicted by a single oblong leaf with its characteristic pinnate venation (p. 157), is a large tree, up to 40 m tall (https://portal.cybertaxonomy.org/flora-guianas/node/3041, accessed 4 June 2021). It can be challenging to collect a branch, so the painter(s) or local assistants possibly picked a leaf from the ground (Fig. 6c).The LP contains mainly flowering plants (e.g., Ruellia cf. elegans Poir.), tendrillate vines (e.g., Centrosema brasilianum (L.) Benth. (Fig. 6d)) and cultivated crops, such as peanuts (Arachis hypogaea L.), pumpkins (Cucurbita pepo L.) or guava (Psidium guajava L.) (Supplementary Dataset S1). Compared to the MC and the LP, a smaller proportion of the illustrations display only flowers or fruits in the Theatrum. Yet, these deserve special attention as the reasons for only painting the reproductive organs in the three collections may differ. While in the MC and LP flowers or fruits represent species that are domesticated or more likely to be found in urban areas, such as Capsicum baccatum L. or Hancornia speciosa, the Theatrum contains more loose parts of native plants found in the rainforest. Amphilophium crucigerum (L.) L.G.Lohmann is a liana referenced by the Tupi-related name Iaruparicuraba (Theatrum: 387) and today known in Brazil as pente-de-macaco (https://dataplamt.org.br/) due to its large dehiscent fruit (c.17 cm long) that opens in two valves covered with soft spines, hence its name “monkey’s comb” (Fig. 6e). Its winged seeds are not present in the drawing, possibly one empty valve was gathered from the ground, and the seeds were already dispersed by the wind.In the MC, we also find some drawings of infertile structures, but these mostly belonged to species that were depicted on several folios. When assembling those folios, we observed the whole plant represented in its fertile stage: the watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai) is depicted with its leaves and fruit on folio 63 (verso) and its leaves on folio 64 (recto). In the case of Furcraea foetida (L.) Haw., whoever bounded the drawings in the MC collection did not realize that folios 63 (recto), 64 (verso) and double folio 68 formed together one entire plant (See Supplementary Fig. S1).On other occasions, the painters focused on painting the plant parts that were valuable to humans. Several rainforest trees were highly valued for its edible fruits or seeds, such as Hymenaea courbaril L.7: 101 or Lecythis pisonis L., of which the “seeds (also called chestnuts) were eaten raw or roasted”7: 128 and “were considered aphrodisiacs”7: 65. The fruit of Macoubea guianensis Aubl. was “appreciated for its sweetness by the indigenous peoples to eat during their travels, while Europeans used it to treat chest affections”8: 242. The fruit of Swartzia pickelii Killip ex Ducke was “not eaten unless it was cooked, from which the inhabitants made a wholesome delicacy for the stomach called Manipoy”8: 165. The same applies to the tomato-like fruits of the African eggplant Solanum aethiopicum L., which were “eaten cooked, after seasoning with oil and pepper; it has lemon taste”7: 24. While these plants are represented in the Theatrum only by their fruits (Supplementary Dataset S1), the tree branches or the whole plant are depicted in the written sources. The illustrations in the books were most likely made by Marcgrave, who aimed to describe and depict as many plant parts as possible, although compromising in aesthetic aspect. The painters, on the other hand, focused on the edible parts without sacrificing their aesthetics. In any case, the illustrations from the Theatrum and the woodcuts and descriptions in the HNB and IURNM often complemented each other and thus facilitated our identifications.Current conservation status of the Brazilian species in the Libri Picturati
    In the past centuries, the Atlantic Forest and savannah regions of northeast Brazil have been severely affected by habitat loss and degradation due to the expansion of urbanization, intensive agriculture, farming and logging80,81. Several plant species that were abundant enough to be noted by European artists around 1640 are not common anymore today. According to the IUCN Red List, eight species in the Libri Picturati, seven in the Theatrum and one in the LP are currently experiencing population decline or are at risk of facing extinction (Supplementary Table S3). Several endemic plants from the northeast Atlantic rainforest and caatinga biomes appear in the illustrations. Four species in the Libri Picturati are currently CITES-listed and restricted to trade: the cacti Brasiliopuntia brasiliensis (Willd.) A.Berger, Cereus fernambucensis Lem., Epiphyllum phyllanthus (L.) Haw. and Melocactus violaceus subsp. margaritaceus N.P.Taylor The latter is an endemic cactus of the coastal sand dunes’ ecoregion in the Atlantic rainforest known as restinga, which is severely threatened by agricultural expansion and urbanization82.Some endemic species are classified as Least Concern by the IUCN or the CNC Flora (12 species), while others (13 species) have not been evaluated yet (Supplementary Dataset S1). The MC does not contain threatened species, but includes two endemic trees: Attalea compta Mart. and Eugenia cf. brasiliensis Lam., which are only found in the biodiversity hotspots of the Atlantic rainforest and the cerrado, both greatly affected by habitat loss23. The mangrove vegetation along the Brazilian coast has been severely affected by urbanization, pollution by industrial and domestic waste and climate change83,84, threatening the populations of the mangrove trees Avicennia schaueriana Stapf & Leechm. ex Moldenke and Laguncularia racemosa (L.) C.F.Gaertn. The occurrence of anthropogenic impacts and the lack of available data call for the implementation of more in-depth and continuous studies on the conservation status of these vulnerable populations.Linking the plant illustrations to the published works and Marcgrave’s herbariumA total of 357 different plant species is described in the HNB and IURNM (Supplementary Dataset S2). Because the Theatrum constitutes a larger number of illustrations, we found more taxa from the books and the herbarium represented in this source (102 out of 163, 63%). However, the largest overlap was found between the MC and the HNB / IURNM: 21 out of 26 taxa (81%) were also described in the books. A smaller overlap exists between the LP and the HNB / IURNM (18 out of 34, 53%). We counted 143 taxa at species level in Marcgrave’s herbarium (Supplementary Dataset S3) and we observed some of these preserved species in all three pictorial works, with the largest percentage of taxa in common with the MC (seven out of 26, 27%), probably because of its smaller number of images. Strikingly, a third of the species illustrated in the whole Brazilian collection of the Libri Picturati could not be ascribed to the species described by Marcgrave or Piso (61 out of 180, 34%). More