More stories

  • in

    SNP markers reveal relationships between fruit paternity, fruit quality and distance from a cross-pollen source in avocado orchards

    1.Ashman, T.-L. et al. Pollen limitation of plant reproduction: Ecological and evolutionary causes and consequences. Ecology 85, 2408–2421 (2004).Article 

    Google Scholar 
    2.Ricketts, T. H. et al. Landscape effects on crop pollination services: Are there general patterns?. Ecol. Lett. 11, 499–515 (2008).Article 

    Google Scholar 
    3.Rollin, O. & Garibaldi, L. A. Impacts of honeybee density on crop yield: A meta-analysis. J. Appl. Ecol. 56, 1152–1163. https://doi.org/10.1111/1365-2664.13355 (2019).Article 

    Google Scholar 
    4.Bennett, J. M. et al. Land use and pollinator dependency drives global patterns of pollen limitation in the Anthropocene. Nat. Commun. 11, 3999. https://doi.org/10.1038/s41467-020-17751-y (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Aizen, M. A. & Harder, L. D. Expanding the limits of the pollen-limitation concept: Effects of pollen quantity and quality. Ecology 88, 271–281 (2007).Article 

    Google Scholar 
    6.Igic, B. & Kohn, J. R. The distribution of plant mating systems: Study bias against obligately outcrossing species. Evolution 60, 1098–1103 (2006).Article 

    Google Scholar 
    7.Abrol, D. P. Pollination Biology: Biodiversity and Conservation and Agricultural Production. Applied Pollination: Present Scenario 55–83 (Springer, 2012).
    Google Scholar 
    8.Frankel, R. & Galun, E. Pollination Mechanisms, Reproduction and Plant Breeding Vol. 2 (Springer Verlag, 1977).Book 

    Google Scholar 
    9.Schneider, D., Goldway, M., Rotman, N., Adato, I. & Stern, R. A. Cross-pollination improves ‘Orri’ mandarin fruit yield. Sci. Hortic. 122, 380–384 (2009).Article 

    Google Scholar 
    10.Fattahi, R., Mohammadzedeh, M. & Khadivi-Khub, A. Influence of different pollen sources on nut and kernel characteristics of hazelnut. Sci. Hortic. 173, 15–19 (2014).Article 

    Google Scholar 
    11.Żurawicz, E., Studnicki, M., Kubik, J. & Pruski, K. A careful choice of compatible pollinizers significantly improves the size of fruits in red raspberry (Rubus idaeus L.). Sci. Hortic. 235, 253–257 (2018).Article 

    Google Scholar 
    12.Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611. https://doi.org/10.1126/science.1230200 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Willcox, B. K., Aizen, M. A., Cunningham, S. A., Mayfield, M. M. & Rader, R. Deconstructing pollinator community effectiveness. Curr. Opin. Insect. Sci. 21, 98–104. https://doi.org/10.1016/j.cois.2017.05.012 (2017).Article 
    PubMed 

    Google Scholar 
    14.Richards, T. E. et al. Relationships between nut size, kernel quality, nutritional composition and levels of outcrossing in three macadamia cultivars. Plants 9, 228 (2020).CAS 
    Article 

    Google Scholar 
    15.van Nocker, S. & Gardiner, S. E. Breeding better cultivars, faster: Applications of new technologies for the rapid deployment of superior horticultural tree crops. Hortic. Res. 1, 14022. https://doi.org/10.1038/hortres.2014.22 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Isaacs, R. & Kirk, A. K. Pollination services provided to small and large highbush blueberry fields by wild and managed bees. J. Appl. Ecol. 47, 841–849 (2010).Article 

    Google Scholar 
    17.Brittain, C., Kremen, C., Garber, A. & Klein, A.-M. Pollination and plant resources change the nutritional quality of almonds for human health. PLoS ONE 9, e90082. https://doi.org/10.1371/journal.pone.0090082 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Klatt, B. K. et al. Bee pollination improves crop quality, shelf life and commercial value. Proc. R. Soc. B 281, 20132440 (2014).Article 

    Google Scholar 
    19.Crane, J. et al. in The Avocado: Botany, Production and Uses (eds. Schaffer, B., Wolstenholme, B. N. & Whiley, A. W.) 200–233 (CABI, 2013).20.Duarte, P. F., Chaves, M. A., Borges, C. D. & Mendonça, C. R. B. Avocado: Characteristics, health benefits and uses. Ciênc. Rural 46, 747–754. https://doi.org/10.1590/0103-8478cr20141516 (2016).CAS 
    Article 

    Google Scholar 
    21.Dreher, M. L. & Davenport, A. J. Hass avocado composition and potential health effects. Crit. Rev. Food Sci. Nutr. 53, 738–750. https://doi.org/10.1080/10408398.2011.556759 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Araújo, R. G., Rodriguez-Jasso, R. M., Ruiz, H. A., Pintado, M. M. E. & Aguilar, C. N. Avocado by-products: Nutritional and functional properties. Trends Food Sci. Technol. 80, 51–60. https://doi.org/10.1016/j.tifs.2018.07.027 (2018).CAS 
    Article 

    Google Scholar 
    23.Lerman-Garber, I., Ichazo-Cerro, S., Zamora-González, J., Cardoso-Saldaña, G. & Posadas-Romero, C. Effect of a high-monounsaturated fat diet enriched with avocado in NIDDM patients. Diabetes Care 17, 311–315. https://doi.org/10.2337/diacare.17.4.311 (1994).CAS 
    Article 
    PubMed 

    Google Scholar 
    24.López, L. R. et al. Monounsaturated fatty acid (avocado) rich diet for mild hypercholesterolemia. Arch. Med. Res. 27, 519–523 (1996).
    Google Scholar 
    25.Kris-Etherton, P. M. et al. High-monounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations. Am. J. Clin. Nutr. 70, 1009–1015 (1999).CAS 
    Article 

    Google Scholar 
    26.Trueman, S. J., Richards, S., McConchie, C. A. & Turnbull, C. G. N. Relationships between kernel oil content, fruit removal force and abscission in macadamia. Aust. J. Exp. Agric. 40, 859–866 (2000).Article 

    Google Scholar 
    27.Stout, A. B. A Study in Cross-Pollination of Avocados in Southern California (New York Botanical Garden, 1923).
    Google Scholar 
    28.Blanke, M. M. & Lovatt, C. J. Anatomy and transpiration of the avocado inflorescence. Ann. Bot. 71, 543–547. https://doi.org/10.1006/anbo.1993.1070 (1993).Article 

    Google Scholar 
    29.Salazar-García, S., Garner, L. C. & Lovatt, C. J. in The Avocado: Botany, Production and Uses. Reproductive Biology (eds. Schaffer, B., Wolstenholme, B. N. & Whiley, A. W.) 118–167 (CABI, 2013).30.Garner, L. C. & Lovatt, C. J. The relationship between flower and fruit abscission and alternate bearing of ‘Hass’ avocado. J. Am. Soc. Hortic. Sci. 133, 3–10. https://doi.org/10.21273/jashs.133.1.3 (2008).Article 

    Google Scholar 
    31.Vithanage, V. The role of the European honeybee (Apis mellifera L.) in avocado pollination. J. Hortic. Sci. 65, 81–86. https://doi.org/10.1080/00221589.1990.11516033 (1990).Article 

    Google Scholar 
    32.Perez-Balam, J. et al. The contribution of honey bees, flies and wasps to avocado (Persea americana) pollination in southern Mexico. J. Pollinat. Ecol. 8, 42–47 (2012).Article 

    Google Scholar 
    33.Ying, Z., Davenport, T. L. R., Zhang, T., Schnell, R. J. & Tondo, C. L. Selection of highly informative microsatellite markers to identify pollen donors in “Hass” avocado orchards. Plant Mol. Biol. Rep. 27, 374–380 (2009).CAS 
    Article 

    Google Scholar 
    34.Alcaraz, M. & Hormaza, J. Influence of physical distance between cultivars on yield, outcrossing rate and selective fruit drop in avocado (Persea americana, Lauraceae). Ann. Appl. Biol. 158, 354–361 (2011).Article 

    Google Scholar 
    35.Borrone, J. W. et al. Outcrossing in Florida avocados as measured using microsatellite markers. J. Am. Soc. Hortic. Sci. 133, 255–261 (2008).Article 

    Google Scholar 
    36.Schnell, R. J. et al. Outcrossing between ‘Bacon’ pollinizers and adjacent ‘Hass’ avocado trees and the description of two new lethal mutants. HortScience 44, 1522. https://doi.org/10.21273/hortsci.44.6.1522 (2009).Article 

    Google Scholar 
    37.Degani, C., Goldring, A., Adato, I., El-Batsri, R. & Gazit, S. Pollen parent effect on outcrossing rate, yield, and fruit characteristics of `Fuerte’ avocado. HortScience 25, 471. https://doi.org/10.21273/hortsci.25.4.471 (1990).Article 

    Google Scholar 
    38.Sedgley, M. & Annells, C. M. Flowering and fruit-set response to temperature in the avocado cultivar ‘Hass’. Sci. Hortic. 14, 27–33. https://doi.org/10.1016/0304-4238(81)90075-3 (1981).Article 

    Google Scholar 
    39.Degani, C., El-Batsri, R. & Gazit, S. Outcrossing rate, yield, and selective fruit abscission in “Ettinger” and “Ardith” avocado plots. J. Am. Soc. Hortic. Sci. 122, 813–817 (1997).Article 

    Google Scholar 
    40.Ying, Z. et al. Re-evaluation of the roles of honeybees and wind on pollination in avocado. J. Hortic. Sci. Biotechnol. 84, 255–260. https://doi.org/10.1080/14620316.2009.11512513 (2009).Article 

    Google Scholar 
    41.Sapir, G. et al. Synergistic effects between bumblebees and honey bees in apple orchards increase cross pollination, seed number and fruit size. Sci. Hortic. 219, 107–117. https://doi.org/10.1016/j.scienta.2017.03.010 (2017).Article 

    Google Scholar 
    42.Stern, R., Eisikowitch, D. & Dag, A. Sequential introduction of honeybee colonies and doubling their density increases cross-pollination, fruit-set and yield in ‘Red Delicious’ apple. J. Hortic. Sci. Biotechnol. 76, 17–23. https://doi.org/10.1080/14620316.2001.11511320 (2001).Article 

    Google Scholar 
    43.Kämper, W., Trueman, S. J., Ogbourne, S. M. & Wallace, H. M. Pollination services in macadamia depend on across-orchard transport of cross pollen. J. Appl. Ecol. (under review).44.Robbertse, P. J., Coetzer, L. A., Johannsmeier, M. F., Köhne, J. S. & Morudu, T. M. Hass Yield and Fruit Size as Influenced by Pollination and Pollen Donor—A Joint Progress Report 63–67 (South African Avocado Growers’ Association Yearbook, 1996).
    Google Scholar 
    45.Araújo, E., Costa, M., Chaud-Netto, J. & Fowler, H. G. Body size and flight distance in stingless bees (Hymenoptera: Meliponini): Inference of flight range and possible ecological implications. Braz. J. Biol. 64, 563–568 (2004).Article 

    Google Scholar 
    46.Jalali-Khanabadi, B.-A., Mozaffari-Khosravi, H. & Parsaeyan, N. Effects of almond dietary supplementation on coronary heart disease lipid risk factors and serum lipid oxidation parameters in men with mild hyperlipidemia. J. Altern. Complement. Med. 16, 1279–1283 (2010).Article 

    Google Scholar 
    47.Kaiser, C. & Wolstenholme, B. N. Aspects of delayed harvest of ‘Hass’ avocado (Persea americana Mill.) fruit in a cool subtropical climate. I. Fruit lipid and fatty acid accumulation. J. Hortic. Sci. 69, 437–445. https://doi.org/10.1080/14620316.1994.11516473 (1994).CAS 
    Article 

    Google Scholar 
    48.Smil, V. Phosphorus in the environment: Natural flows and human interferences. Annu. Rev. Environ. Resour. 25, 53–88. https://doi.org/10.1146/annurev.energy.25.1.53 (2000).Article 

    Google Scholar 
    49.Bangerth, F. Calcium-related physiological disorders of plants. Annu. Rev. Phytopathol. 17, 97–122. https://doi.org/10.1146/annurev.py.17.090179.000525 (1979).CAS 
    Article 

    Google Scholar 
    50.Witney, G. W., Hofman, P. J. & Wolstenholme, B. N. Effect of cultivar, tree vigour and fruit position on calcium accumulation in avocado fruits. Sci. Hortic. 44, 269–278. https://doi.org/10.1016/0304-4238(90)90127-Z (1990).CAS 
    Article 

    Google Scholar 
    51.Matoh, T. & Kobayashi, M. Boron and calcium, essential inorganic constituents of pectic polysaccharides in higher plant cell walls. J. Plant Res. 111, 179–190 (1998).CAS 
    Article 

    Google Scholar 
    52.Hopkirk, G., White, A., Beever, D. J. & Forbes, S. K. Influence of postharvest temperatures and the rate of fruit ripening on internal postharvest rots and disorders of New Zealand ‘Hass’ avocado fruit. N. Z. J. Crop Hortic. Sci. 22, 305–311. https://doi.org/10.1080/01140671.1994.9513839 (1994).Article 

    Google Scholar 
    53.Meir, S. et al. Prolonged storage of `Hass’ avocado fruit using modified atmosphere packaging. Postharvest Biol. Technol. 12, 51–60. https://doi.org/10.1016/S0925-5214(97)00038-0 (1997).CAS 
    Article 

    Google Scholar 
    54.Flitsanov, U., Mizrach, A., Liberzon, A., Akerman, M. & Zauberman, G. Measurement of avocado softening at various temperatures using ultrasound. Postharvest Biol. Technol. 20, 279–286 (2000).Article 

    Google Scholar 
    55.Hofman, P. J., Bower, J. & Woolf, A. in The Avocado: Botany, Production and Uses. Harvesting, Packing, Postharvest Technology, Transport and Processing (eds. Schaffer, B., Wolstenholme, B. N. & Whiley, A. W.) 489–540 (CABI, 2013).56.McGeehan, S. L. & Naylor, D. V. Automated instrumental analysis of carbon and nitrogen in plant and soil samples. Commun. Soil Sci. Plant Anal. 19, 493–505. https://doi.org/10.1080/00103628809367953 (1988).CAS 
    Article 

    Google Scholar 
    57.Rayment, G. E. & Higginson, F. R. Australian Laboratory Handbook of Soil and Water Chemical Methods (Inkata, 1992).
    Google Scholar 
    58.Munter, R. C. & Grande, R. A. in Developments in Atomic Plasma Spectrochemical Analysis. Plant Tissue and Soil Extract Analysis by ICP-Atomic Emission Spectrometry (ed. Byrnes, R. M.) 653–672 (Heyden, 1981).59.Martinie, G. D. & Schilt, A. A. Wet oxidation efficiencies of perchloric acid mixtures for various organic substances and the identities of residual matter. Anal. Chem. 48, 70–74. https://doi.org/10.1021/ac60365a032 (1976).CAS 
    Article 

    Google Scholar 
    60.Bai, S. H. et al. Nutritional quality of almond, canarium, cashew and pistachio and their oil photooxidative stability. J. Food Sci. Technol. 56, 792–798. https://doi.org/10.1007/s13197-018-3539-6 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    61.Ivanova, N. V., Fazekas, A. J. & Hebert, P. D. N. Semi-automated, membrane-based protocol for DNA isolation from plants. Plant Mol. Biol. Rep. 26, 186–198 (2008).CAS 
    Article 

    Google Scholar 
    62.Kämper, W., Cooke, J., Trueman, S. J. & Ogbourne, S. M. Detection of single nucleotide polymorphisms (SNPs) in avocado cultivars, Persea americana (Lauraceae). Appl. Plant Sci. (submitted).63.Jordon-Thaden, I. E. et al. A basic ddRADseq two-enzyme protocol performs well with herbarium and silica-dried tissues across four genera. Appl. Plant Sci. 8, e11344–e11344. https://doi.org/10.1002/aps3.11344 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Sharon, D. et al. An integrated genetic linkage map of avocado. Theor. Appl. Genet. 95, 911–921 (1997).CAS 
    Article 

    Google Scholar 
    65.Borrone, J. W., Schnell, R. J., Violi, H. A. & Ploetz, R. C. Seventy microsatellite markers from Persea americana Miller (avocado) expressed sequence tags. Mol. Ecol. Resour. 7, 439–444 (2007).CAS 
    Article 

    Google Scholar 
    66.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2015).
    Google Scholar 
    67.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar  More

  • in

    The genome of Shorea leprosula (Dipterocarpaceae) highlights the ecological relevance of drought in aseasonal tropical rainforests

    Sequencing of Shorea leprosula genomeSample collectionLeaf samples of S. leprosula were obtained from a reproductively mature (diameter at breast height, 50 cm) diploid tree B1_19 (DNA ID 214) grown in the Dipterocarp Arboretum, Forest Research Institute Malaysia (FRIM).DNA extractionGenomic DNA was extracted from leaf samples using the 2% cetyltrimethylammonium bromide (CTAB) method90 and purified using a High Pure PCR Template Purification kit (Roche).Library preparation and sequencingPaired-end (170, 500, and 800 bp) and mate-pair (2 kb) genomic libraries were prepared using a TruSeq DNA Library Preparation kit (Illumina) and a Mate Pair Library Preparation kit (Illumina), respectively. Mate-pair libraries with larger insert sizes were constructed using a Nextera Mate Pair Library Preparation kit (Illumina). Ten micrograms of genomic DNA were tagmented in a 400 μl reaction and fractionated using SageELF, with the recovery of 11 fractions with 3–16+ kb. Each fraction was circularized and fragmented with a Covaris S2. Biotin-containing fragments were purified using Dynabeads M-280 streptavidin beads. Sequencing adapters (KAPA TruSeq Adapter kit) were attached using a KAPA Hyper Prep kit. The libraries were amplified for 10–13 cycles and purified with 0.8× AMpure XP. DNA libraries were then sequenced (~388× coverage) using Illumina HiSeq2000 (TruSeq libraries) and HiSeq2500 (Nextera libraries) at the Functional Genomics Center Zurich (FGCZ), University of Zurich, Switzerland (Supplementary Table 1).Genome assemblyAdapters and low-quality bases for all paired-end and mate-pair reads were removed using Trimmomatic91. The filtered paired-end reads of the 170 bp library were used to identify the genome size using k-mer distribution generated by Jellyfish92 that was implemented in the scripts by Joseph Ryan42. The raw R1 reads from paired-end 170 and 800 bp libraries (clipped at 95 bp, representing about 70 genome equivalents) were used to estimate the heterozygosity using KAT43 with a k-mer size of 23 nt. De novo genome assembly of all reads was performed using ALLPATHSLG assembler v5248840.Assembly verification and assessment of the assembled genomeAssembly validationTo validate the genome assembly, we mapped (i) the short reads used for the genome assembly, (ii) scanned the assembly for the presence of single-copy orthologs, and (iii) mapped transcriptome sequences obtained from seven organs.Assembly verification by mapping of short readsFor each library used for genome assembly, all trimmed reads were aligned to the assembled S. leprosula genome using Burrows–Wheeler Aligner (BWA) v0.7.1293. Then, mapping ratio was calculated for each BAM file using Samtools94 with “flagstat” command.Identification of highly conserved single-copy orthologsBUSCO v3.1.042 was run with the Embryophyta dataset and Arabidopsis as the species for AUGUSTUS prediction (see subsection below “Protein-coding gene prediction”).Assembly verification by mapping transcriptome sequencesFor mapping transcriptome sequences, samples of seven organs (leaf bud, flower bud, flower, inner bark, small seed, large seed, and calyx) were obtained from the S. leprosula individual used for the genome sequencing (Supplementary Table 2). Total RNA was extracted from each sample using RNeasy Plant Mini Kit (Qiagen) and it was treated with Turbo DNase I (Takara). Library preparation was carried out using a TruSeq RNA Library Preparation kit (Illumina). Paired-end sequencing was conducted for all the libraries using Illumina HiSeq2000 at the FGCZ, University of Zurich, Switzerland. Adapters and low-quality bases for all paired-end reads were removed using Trimmomatic. The trimmed sequences of each library were mapped onto the assembled genome using STAR aligner v2.4.2a95, and mapping ratio was obtained from the output file of STAR.Genome annotationRepeat sequence analysisBoth homology-based and de novo prediction analyses were used to identify the repeat content in the S. leprosula assembly. For the homology-based analysis, we used Repbase (version 20120418) to perform a TE search with RepeatMasker (4.0.5) and the WuBlast search engine. For the de novo prediction analysis, we used RepeatModeler to construct a TE library. Elements within the library were then classified by homology to Repbase sequences (see subsection below “Preparation of repeat sequences for evidence-based gene prediction”).Protein-coding gene predictionS. leprosula protein-coding genes were predicted by AUGUSTUS v3.245. For ab initio gene prediction, we used a pre-trained A. thaliana metaparameter implemented in AUGUSTUS. For the evidence-based gene prediction, we used the information of exon, intron and repeat sequences of S. leprosula as hints for the AUGUSTUS gene prediction. The details of the preparation of the hints were described in the following subsections.Preparation of repeat sequences for evidence-based gene predictionWe used RepeatModeler to construct a de novo library of repeated sequences in the S. leprosula assembly. Then, using RepeatMasker, we generated a file containing the information of the positions of repeat sequences in the S. leprosula genome based on the RepeatModeler library. Elements within the library were then classified by homology to Repbase sequences. Finally, the hint file for repeat sequences in GFF format was prepared using the two scripts, “10_makeGffRm.pl” and “12_makeTeHints.pl”, stored in https://gitlab.com/rbrisk/ahalassembly.Preparation of the exon and intron information for evidence-based gene predictionTo obtain the exon and intron hints, we used the mapping data of RNA-seq obtained from seven organs of the sequenced S. leprosula individual as described above. First, we merged all the mapping data stored in different BAM files into a single BAM file using SAMtools. Then, we prepared the intron hint file in GFF format using the, “bam2hints” script of AUGUSTUS. The exon hint file was also generated from the merged BAM file using the two AUGUSTUS scripts, “bam2wig” and “wig2hints.pl”. To conduct evidence-based gene prediction with AUGUSTUS, the three hint files (repeat sequences, intron and exon) described above were merged into a single file in GFF format.BUSCO analysisGenome annotation completeness were assessed with BUSCO v3.1.044 using the Embryophyta odb9 dataset composed of 1440 universal Embryophyta single-copy genes. We referred to these 1440 genes as core genes in the main text.Comparison with the proteome of Theobroma cacao
    T. cacao’s gene models18 were downloaded from Phytozome 11 (https://phytozome.jgi.doe.gov/pz/portal.html). Then, comparison was conducted with BLASTP96 using the T. cacao proteomes as the BLAST database (E-value cutoff: 1.0E-10). Only the best hit was stored for each gene. We considered these best hits of the T. cacao genes as orthologs of the S. leprosula genes. When the T. cacao orthologs were identified by the BLASTP search, the orthologs of A. thaliana were defined based on the T. cacao-A. thaliana orthologous information provided by Phytozome 11 (Supplementary Table 4). When the T. cacao orthologs were not identified, the orthologs of A. thaliana were searched by BLASTP (E-value cutoff: 1.0E-10) using the A. thaliana proteomes obtained from TAIR 10 (https://www.arabidopsis.org) as the BLAST database.Synteny analysisBased on the result of the above BLASTP searches, we assessed synteny between the S. leprosula scaffolds and the T. cacao chromosomes using MCScanX97. Genome information of T. cacao in GFF format was also obtained from Phytozome 11 as described above, which was used as an input file for MCScanX.Assessment of the genome assemblyPopulation data and other dipterocarp speciesTo assess whether the genome assembly could be used as a reference for the S. leprosula individuals from various populations, we checked mapping ratio, SNP positions, and admixture using the distribution-wide S. leprosula samples. Similarly, to assess whether the S. leprosula assembly could be used as a reference for aligning data from closely related species and determining their mapping ratios. For interspecific analysis, the following three Dipterocarpoideae species: S. platycarpa, D. aromatica, and N. heimii were used (Supplementary Table 7).Sample collection and DNA extractionLeaf samples of 19 S. leprosula individuals from different populations and three other dipterocarp species (S. platycarpa, D. aromatica, and N. heimii) were used as described in Supplementary Tables 6 and 7. Genomic DNA was extracted using the same method as described above.Library preparation and sequencingPaired-end genomic libraries (200 bp) were prepared using a TruSeq DNA Library Preparation kit (Illumina). DNA libraries were then sequenced (~16× coverage each) using Illumina HiSeq2000.Mapping and SNP callingAdapters and low-quality bases from resequencing reads were removed using Trimmomatic. All trimmed reads were then mapped and aligned to the S. leprosula assembly using BWA. Variants were called using GATK v3.598. Duplicated reads were marked using Picard 2.6.0. Within GATK, HaplotypeCaller was used to identify variants for each sample by generating an intermediate genomic variant call format (gVCF). Subsequently, gVCF files were merged using GenotypeGVCFs to produce a raw VCF file containing SNPs and INDELs. Low-quality variants were removed from the raw VCF file by applying the hard filters implemented in GATK. Variants with genotype quality (GQ)  More

  • in

    Effect of Geobacillus toebii GT-02 addition on composition transformations and microbial community during thermophilic fermentation of bean dregs

    Isolation and characterization of bean dreg-degrading strainsA 1362-bp amplification fragment of 16S rDNA was obtained by PCR (GenBank accession number MW406939). This sequence was compared with others in the GenBank database, aligning the 16S rDNA sequences with several Geobacillus sp. strains and constructed a phylogenetic tree (Fig. 2a). The phylogenetic tree clearly showed that strain GT-02 belongs to the G.toebii branch and was similar to G.toebii R-32652, G.toebii NBRC 107807, and G.toebii SK-1 with 99.78%, 99.63% and 99.05% similarities, respectively. According to the study described previously, G.toebii was a gram-positive, aerobic rod and motile bacterial26. G.toebii could produce acid from inositol and gas from nitrate. G.toebii could hydrolysis casein and utilize n-alkanes as carbon source27.Figure 2(a) Phylogenetic tree based on 16S rDNA gene sequences from related species of the genus Geobacillus constructed using the neighbour-joining method with 1000 bootstrap replicates. Branch length is indicated at each node. (b) The growth curve of strain GT-02 with temperature. (c) The growth curve of strain GT-02 with pH.Full size imageThe growth characteristics of strain GT-02, such as temperature and pH values, were investigated. The bacterial strain could grow within a range of 40–75 °C and pH 6.50–9.50, and the optimum temperature and pH were 65 °C and 7.50, respectively (Fig. 2b,c). Compared to other G.toebii strains, the maximum growth temperature and pH of strains R-32652 and SK-1 were 70 °C and 9.0026,28, respectively. These results showed that strain GT-02 was more resistant to high temperature and alkalinity. Fermentation temperature above 70 °C could effectively inactivate harmful microorganisms in organic solid waste12. Therefore, the fermentation temperature was set at 70 °C in this study.Changes in the composition of bean dregs during fermentationChanges in GI, TOC and TN of bean dregs during fermentationThe GI is traditionally used to evaluate the phytotoxicity and maturity of organic fertilizer12. As shown in Fig. 3a, both groups of experiments reached the standard of maturity (GI ≥ 85.00%). Therefore, the fermentation was terminated in five days. In the initial stage of fermentation, the GI of CK dropped to 51.85% on day 2, and the GI of T1 dropped to 41.98% on day 1. Phytotoxicity, which is usually caused by various heavy metals and low-molecular-weight substances, such as NH3 and organic acids, can reduce seed germination and inhibit root development29. During fermentation, bean dregs might produce NH3, organic acids and other substances, which could trigger a decrease in the GI. The GI of T1 showed a clear decrease, which was likely due to the production of toxic organic acids and might also explain the decrease in pH observed in T1 (Fig. 3d). Due to the degradation of organic acids, the GI of T1 increased to 95.06% on the third day and continued to increase to more than 100.00%, whereas in CK, the GI only reached 86.42% at the end of the fermentation. These results revealed that the maturity of T1 on day 3 was markedly higher than that of CK on day 5 and thus suggest that G.toebii can significantly enhance the fermentation efficiency by accelerating the maturation process and thus reducing the thermophilic fermentation period from 5 to 3 days.Figure 3Profiles of GI (a), TOC (b), TN (c), pH (d) and EC (e) during the fermentation process of CK and T1. The data represent the means ± standard deviations from three measurements.Full size imageTOC is usually used as an energy source by microorganisms30. The TOC loss in both CK and T1 increased during fermentation (Fig. 3b). The reduction of TOC was mainly caused by the production of carbon dioxide from bacterial respiration. The rate of TOC loss in T1 was higher than that in CK. At the end of the fermentation, the TOC loss of T1 was 11.78% higher than that in CK. Because of the addition of G.toebii, bacterial metabolism in T1 was more active, and organic degradation was faster.The TN loss in both CK and T1 also showed an upward trend (Fig. 3c). The loss of TN was mainly caused by the volatilization of ammonia nitrogen31. The rate of TN loss in T1 increased more than that of CK group. After fermentation (day 5), the TN loss in T1 was 6.83% higher than that of CK. The mineralization in T1 was more active and thus ammonia nitrogen was more, which was easy to cause volatilization. However, the bean dregs in CK were mature on the 5th day, while those in T1 were on the 3rd day. At this time, the TN loss of mature bean dregs in T1 was 5.66% lower than that in CK, which indicated that the bean dregs lost less nitrogen source when they reached the standard of maturity after the addition of G.toebii.Changes in pH and EC of bean dregs during fermentationThe variation in pH observed during fermentation is due to the interaction between inorganic nitrogen and organic acids produced by the decomposition of organic matter32. As shown in Fig. 3d, the pH of CK gradually increased to 8.72 at the end of the fermentation. The ammonification process and the release of free NH3 during organic matter (OM) degradation lead to increases in pH33. The pH of T1 decreased to 5.73 on day 1, which was due to the formation of more organic acids than CK, and then increased to 8.76 on day 2, which was due to acid consumption and ammonia formation. Figure 2c showed that GT-02 could hardly grow when the pH was lower than 6.00, but the heterogeneity of solid fermentation provided a possible living environment for the growth of GT-02. Subsequently, the pH of T1 slowly decreased to 8.10 due to ammonia volatilization or ammonia conversion. These study findings showed that the pH value of the fermentation process was significantly affected by the addition of GT-02. G.toebii can produce abundant high-temperature enzymes, such as amylase, protease, cellulase, xylanase, and mannanase17, which explains why the ammonification process was faster in T1 than in CK and thus the higher pH was found in T1.The EC, which is a measure of the total ion concentration, describes changes in the levels of organic and inorganic ions such as SO42−, Na+, NH4+, K+, Cl−, and NO3− during the fermentation process34. As shown in Fig. 3e, the EC of the two groups increased significantly during fermentation process (P  More

  • in

    Decrease in volume and density of foraminiferal shells with progressing ocean acidification

    1.Collins, M. et al. Long-term climate change: Projections, commitments and irreversibility. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2013).2.Kawahata, H. et al. Perspective of the response by marine calcifiers to global warming and ocean acidification –Behavior of corals and foraminifers in the high CO2 world in “hot house”. Prog. Earth Planet Sci. 6, 5 (2019).Article 

    Google Scholar 
    3.Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13, 1419–1434 (2010).Article 

    Google Scholar 
    4.Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Schiebel, R. Planktic foraminiferal sedimentation and the marine calcite budget. Glob. Biogeochem. Cycles 16, 1065 (2002).ADS 
    Article 
    CAS 

    Google Scholar 
    6.Keul, N., Langer, G., de Nooijer, L. J. & Bijma, J. Effect of ocean acidification on the benthic foraminifera Ammonia sp. is caused by a decrease in carbonate ion concentration. Biogeosciences 10, 6185–6198 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    7.Doo, S. S., Fujita, K., Byrne, M. & Uthicke, S. Fate of calcifying tropical symbiont-bearing large benthic Foraminifera: Living sands in a changing ocean. Biol. Bull. 226, 169–186 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Prazeres, M., Uthicke, S. & Pandolfi, J. M. Ocean acidification induces biochemical and morphological changes in the calcification process of large benthic foraminifera. Proc. R. Soc. B 282, 20142782 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    9.Iwasaki, S. et al. Sensitivity of planktic foraminiferal test bulk density to ocean acidification. Sci. Rep. 9, 9803 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Hohenegger, J., Kinoshita, S., Briguglio, A., Eder, W. & Wöger, J. Lunar cycles and rainy seasons drive growth and reproduction in nummulitid foraminifera, important producers of carbonate buildups. Sci. Rep. 9, 8286 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    11.Kinoshita, S. et al. Temperature effects on the shell growth of a larger benthic foraminifer (Sorites orbiculus): Results from culture experiments and micro X-ray computed tomography. Mar. Micropaleontol. 163, 101960 (2021).ADS 
    Article 

    Google Scholar 
    12.Fujita, K. & Fujimura, H. Organic and inorganic carbon production by algal symbiont-bearing foraminifera on northwest Pacific coral-reef flat. J. Foraminifer. Res. 38, 117–126 (2008).Article 

    Google Scholar 
    13.Raja, R., Saraswati, P. K., Rogers, K. & Iwao, K. Magnesium and strontium compositions of recent symbiont-bearing benthic foraminifera. Mar. Micropaleontol. 58, 31–44 (2005).ADS 
    Article 

    Google Scholar 
    14.Narayan, G. R. et al. Response of large benthic foraminifera to climate and local changes: Implications for future carbonate production. Sedimentology. 12858. https://doi.org/10.1111/sed.12858 (2021).
    15.Morse, J. W., Andersson, A. J. & Mackenzie, F. T. Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and “ocean acidification”: Role of high Mg-calcites. Geochim. Cosmochim. Acta 70, 5814–5830 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    16.Fujita, K., Nishi, H. & Saito, T. Population dynamics of Marginopora kudakajimaensis Gudmundsson (Foraminifera: Soritidae) in the Ryukyu Islands, the tropical northwest Pacific. Mar. Micropaleontol. 38, 267–284 (2000).ADS 
    Article 

    Google Scholar 
    17.Kuroyanagi, A., Kawahata, H., Suzuki, A., Fujita, K. & Irie, T. Impacts of ocean acidification on large benthic foraminifers: Results from laboratory experiments. Mar. Micropaleontol. 73, 190–195 (2009).ADS 
    Article 

    Google Scholar 
    18.Barker, S. & Elderfield, H. Foraminiferal calcification response to glacial–interglacial changes in atmospheric CO2. Science 297, 833–836 (2002).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Osborne, E. B. et al. Calcification of the planktonic foraminifera Globigerina bulloides and carbonate ion concentration: Results from the Santa Barbara Basin. Paleoceanography 31, 1083–1102 (2016).ADS 
    Article 

    Google Scholar 
    20.Mollica, N. R. et al. Ocean acidification affects coral growth by reducing skeletal density. Proc. Natl. Acad. Sci. 115, 1754–1759 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Schmidt, C., Kucera, M. & Uthicke, S. Combined effects of warming and ocean acidification on coral reef Foraminifera Marginopora vertebralis and Heterostegina depressa. Coral Reefs 33, 805–818 (2014).ADS 
    Article 

    Google Scholar 
    22.Sinutok, S., Hill, R., Kühl, M., Doblin, M. & Ralph, P. Ocean acidification and warming alter photosynthesis and calcification of the symbiont-bearing foraminifera Marginopora vertebralis. Mar. Biol. 161, 2143–2154 (2014).CAS 
    Article 

    Google Scholar 
    23.ter Kuile, B., Erez, J. & Padan, R. Mechanisms for the uptake of inorganic carbon by two species of symbiont-bearing foraminifera. Mar. Biol. 103, 241–251 (1989).Article 

    Google Scholar 
    24.Nijweide, P. J., Kawilarang-de Haas, E. W. & Wassenaar, A. M. Alkaline phosphatase and calcification, correlated or not?. Metab. Bone Dis. Relat. Res. 3, 61–66 (1981).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Guo, M. K. & Messer, H. H. A comparison of Ca2+-, Mg2+-ATPase and alkaline phosphatase activities of rat incisor pulp. Calc. Tissue Res. 26, 33–38 (1978).CAS 
    Article 

    Google Scholar 
    26.Vogel, N. & Uthicke, S. Calcification and photobiology in symbiont-bearing benthic foraminifera and responses to a high CO2 environment. J. Exp. Mar. Biol. Ecol. 424–425, 15–24 (2012).Article 
    CAS 

    Google Scholar 
    27.Schiebel, R. & Hemleben, C. Planktic Foraminifers in the Modern Ocean (Springer, 2017).Book 

    Google Scholar 
    28.Bassinot, F. C., Mélières, F., Gehlen, M., Levi, C. & Labeyrie, L. Crystallinity of foraminifera shells: A proxy to reconstruct past botto m water CO3= changes?. Geochem. Geophys. Geosyst. 5, Q08D10 (2004).Article 

    Google Scholar 
    29.Broecker, W. & Clark, E. Shell weights from the South Atlantic. Geochem. Geophys. Geosyst. 5, Q03003 (2004).ADS 
    Article 

    Google Scholar 
    30.Beer, C. J., Schiebel, R. & Wilson, P. A. Testing planktic foraminiferal shell weight as a surface water [CO32−] proxy using plankton net samples. Geology 38, 103–106 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Naik, S. S., Naidu, P. D., Govil, P. & Godad, S. Relationship between weights of planktonic foraminifer shell and surface water CO3= concentration during the Holocene and Last Glacial Period. Mar. Geol. 275, 278–282 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    32.Moy, A. D., Howard, W. R., Bray, S. G. & Trull, T. W. Reduced calcification in modern Southern Ocean planktonic foraminifera. Nat. Geosci. 2, 276–280 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    33.Gonzalez-Mora, B., Sierro, F. J. & Flores, J. A. Controls of shell calcification in planktonic foraminifers. Quat. Sci. Rev. 27, 956–961 (2008).ADS 
    Article 

    Google Scholar 
    34.Marr, J. P. et al. Ecological and temperature controls on Mg/Ca ratios of Globigerina bulloides from the southwest Pacific Ocean. Paleoceanography 26, PA2209 (2011).ADS 
    Article 

    Google Scholar 
    35.de Villiers, S. A 425 ka record of foraminiferal shell weight variability in the western Equatorial Pacific. Paleoceanography 18, 1080 (2003).ADS 

    Google Scholar 
    36.de Villiers, S. Occupation of an ecological niche as the fundamental control on the shell-weight of calcifying planktonic foraminifera. Mar. Biol. 144, 45–50 (2004).Article 

    Google Scholar 
    37.Reymond, C. E., Lloyd, A., Kline, D. I., Dove, S. G. & Pandolfi, J. M. Decline in growth of foraminifer Marginopora rossi under eutrophication and ocean acidification scenarios. Glob. Change Biol. 19, 291–302 (2013).ADS 
    Article 

    Google Scholar 
    38.Weinkauf, M. F. G., Moller, T., Koch, M. C. & Kucera, M. Calcification intensity in planktic foraminifera reflects ambient conditions irrespective of environmental stress. Biogeosciences 10, 6639–6655 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    39.Doo, S. S. et al. Amelioration of ocean acidification and warming effects through physiological buffering of a macroalgae. Ecol. Evol. 10, 8465–8475 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Hikami, M. et al. Contrasting calcification responses to ocean acidification between two reef foraminifers harboring different algal symbionts. Geophys. Res. Lett. 38, L19601 (2011).ADS 
    Article 
    CAS 

    Google Scholar 
    41.Sanyal, A. et al. Oceanic pH control on the boron isotopic composition of foraminifera: Evidence from culture experiments. Paleoceanography 11, 513–517 (1996).ADS 
    Article 

    Google Scholar 
    42.Anagnostou, E. et al. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature 533, 380–384 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Foster, G. L. & Rae, J. W. B. Reconstructing ocean pH with boron isotopes in foraminifera. Annu. Rev. Earth Planet. Sci. 44, 207–237 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    44.Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).ADS 
    Article 

    Google Scholar 
    45.Dove, S. G. et al. Future reef decalcification under a business-as-usual CO2 emission scenario. Proc. Nat. Acad. Sci. 110, 15342–15347 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Cornwall, C. E. et al. Global declines in coral reef calcium carbonate production under ocean acidification and warming. Proc. Nat. Acad. Sci. 118, 2015265118 (2021).Article 
    CAS 

    Google Scholar 
    47.Langer, M. R., Silk, M. T. & Lipps, J. H. Global ocean carbonate and carbon dioxide production: the role of reef foraminifera. J. Foraminifer. Res 27, 271–277 (1997).Article 

    Google Scholar 
    48.Pierrot, D., Lewis E. D. & Wallace, D.W. MS EXCEL Program Developed for CO2 System Calculations. ORNL/CDIAC-105a. (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, 2006). https://doi.org/10.3334/cdiac/otg.co2sys_xls_cdiac105a.49.Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    50.Bartlett, M. S. Properties of sufficiency and statistical test. Proc. R. Soc. A 160, 268–282 (1937).ADS 
    MATH 

    Google Scholar  More

  • in

    Reliably quantifying the evolving worldwide dynamic state of the COVID-19 outbreak from death records, clinical parametrization, and demographic data

    Infection-age structured dynamicsFor the description of the dynamics, we follow the customary infection-age structured approach (for details see for instance Refs.4,10,11,12). Explicitly, we consider the infection-age structured dynamics of the number of individuals ({u}_{I}left(t,tau right)) at time (t) who were infected at time (t-tau) given by$$begin{array}{c}frac{partial }{partial t}{u}_{I}left(t,tau right)+frac{partial }{partial tau }{u}_{I}left(t,tau right)=0end{array}$$
    (7)
    with boundary condition$$begin{array}{c}{u}_{I}left(t,0right)=jleft(tright).end{array}$$
    (8)
    Here, (tau) is the time elapsed after infection, referred to as infection age, and (jleft(tright)={int }_{0}^{infty }{k}_{I}(t,tau ){u}_{I}left(t,tau right)dtau) is the incidence, with ({k}_{I}(t,tau )) being the rate of secondary transmissions per single primary case.The solution is obtained through the method of characteristics32 as$$begin{array}{c}{u}_{I}left(t,tau right)=jleft(t-tau right)end{array}$$
    (9)
    for (tge tau) and ({u}_{I}left(t,tau right)=0) for (t1 for countries and for US locations.The daily death counts (Delta {n}_{W}left(tright)={n}_{W}left(tright)-{n}_{W}left(t-1right)) are considered to contain reporting artifacts if they are negative or if they are unrealistically large. This last condition is defined explicitly as larger than 4 times its previous 14-day average value plus 10 deaths, (Delta {n}_{W}left(tright) >10+4times frac{1}{14}left({n}_{W}left(tright)-{n}_{W}left(t-14right)right)), from a non-sparse reporting schedule with at least 2 consecutive non-zero values before and after the time (t), (Delta {n}_{W}left(tright)ne frac{1}{5}left({n}_{W}left(t+2right)-{n}_{W}left(t-3right)right)).Reporting artifacts identified at time (t) are considered to be the result of previous miscounting. The excess or lack of deaths are imputed proportionally to previous death counts. Explicitly, death counts are updated as$$begin{array}{c}{n}_{W}left(t-1-iright)leftarrow {n}_{W}left(t-1-iright)frac{{n}_{W}{left(t-1right)}_{estimated}}{{n}_{W}left(t-1right)}end{array}$$
    (32)
    with ({n}_{W}{left(t-1right)}_{estimated}={n}_{W}left(tright)-frac{1}{7}left({n}_{W}left(t-1right)-{n}_{W}left(t-8right)right)) for all (ige 0). In this way, (Delta {n}_{W}left(tright)) is assigned its previous seven-day average value.The expected daily deaths, (Delta {n}_{D}(t)), are obtained through a density estimation multiscale functional, ({f}_{de}), as (Delta {n}_{D}(t)={f}_{de}left(Delta {n}_{W}left(tright)right)), which leads to the estimation of the expected cumulative deaths at time (t) as ({n}_{D}left(tright)={n}_{W}left({t}_{0}right)+{sum }_{s={t}_{0}+1}^{t}Delta {n}_{D}(s)). Specifically,$$begin{array}{c}{f}_{de}left(Delta {n}_{W}left(tright)right)=left(1-{r}_{1}right)d{d}_{0}+{r}_{1}left(left(1-{r}_{2}right)d{d}_{1}+{r}_{2}d{d}_{2}right)end{array}$$
    (33)
    with$$begin{array}{c}{r}_{1} = {e}^{-0.3d{d}_{1}},end{array}$$
    (34)
    $$begin{array}{c}{r}_{2} = {e}^{-3d{d}_{2}},end{array}$$
    (35)
    $$begin{array}{c}d{d}_{0}={ma}_{14}left({ma}_{14}left(Delta {n}_{W}left(tright)right)right),end{array}$$
    (36)
    $$begin{array}{c}d{d}_{1}={rg}_{12}left({ma}_{14}left(Delta {n}_{W}left(tright)right)right),end{array}$$
    (37)
    $$begin{array}{c}d{d}_{2}={rg}_{48}left({ma}_{14}left(Delta {n}_{W}left(tright)right)right),end{array}$$
    (38)
    where ({ma}_{14}left(cdot right)) is a centered moving average with window size of 14 days and ({rg}_{sigma }left(cdot right)) is a centered rolling average through a Gaussian window with standard deviation (sigma). The specific value of the window size has been chosen to mitigate weekly reporting effects. The values of the standard deviations of the Gaussian windows have been selected to achieve a smooth representation of the expected death estimation for each country as shown in the bottom panels of Supplementary Fig. S1.Reporting delaysWe consider an average delay of two days between reporting a death and its occurrence. This value is obtained by comparing the daily death counts reported for Spain1 and their actual values33 from February 15 to March 31, 2020. The values of the root-mean-squared deviation between reported and actual deaths shifted by 0, 1, 2, 3, and 4 days are 77.9, 58.4, 38.5, 58.7, and 88.6 deaths respectively.Infection fatality rate ((IFR))The infection fatality rate is computed assuming homogeneous attack rate as$$begin{array}{c}IFR=frac{1}{{sum }_{a}{g}_{a}}{sum }_{a}{IFR}_{a}{g}_{a} ,end{array}$$
    (39)
    where ({mathrm{IFR}}_{a}) is the previously estimated (IFR) for the age group (a)5 and ({g}_{a}) is the population in the age group (a) as reported by the United Nations for countries18 and the US Census for states19.Clinical parametersWe obtained the values of the average ({tau }_{G}) and standard deviation ({sigma }_{G}) of the generation time from Ref.13, of the averages of the incubation ({tau }_{I}) and symptom onset-to-death ({tau }_{OD}) times from Refs.5,14, and of the average number of days (Delta {t}_{TP}) of positive testing by an infected individual from Refs.15,17. The average time at which an individual tested positive after infection ({tau }_{TP}) was computed as ({tau }_{TP}={tau }_{I}-2+Delta {t}_{TP}/2), where we have assumed that on average an individual started to test positive 2 days before symptom onset. The average seroconversion time after infection ({tau }_{SP}) was estimated as ({tau }_{I}) plus the 7 days of 50% seroconversion after symptom onset reported in Ref.16.Dynamical constraints implementation with discrete timeWe implemented the dynamical constraints to compute the infectious and infected population as outlined in the main text and as detailed in the previous section of this document, using days as time units. Time delays were rounded to days to assign daily values.The first derivative of the cumulative number of deaths is computed as$$begin{array}{c}frac{d{n}_{D}left(tright)}{dt}=Delta {n}_{D}left(tright),end{array}$$
    (40)
    with (Delta {n}_{D}left(tright)={n}_{D}left(tright)-{n}_{D}(t-1)).The growth rate was computed explicitly from the discrete time series as the centered 7-day difference$$begin{array}{c}{k}_{G}left(tright)=frac{1}{7}left({mathrm{ln}}left(Delta {n}_{D}left(t+4right)+Delta {n}_{D}left(t+3right)right)-{mathrm{ln}}left(Delta {n}_{D}left(t-3right)+Delta {n}_{D}left(t-4right)right)right).end{array}$$
    (41)
    The 7-day value was chosen to mitigate reporting artifacts.Confidence and credibility intervalsConfidence intervals associated with death counts were computed using bootstrapping with 10,000 realizations34. These confidence intervals were combined with the credibility intervals of the (IFR) in infectious and infected populations assuming independence and additivity on a logarithmic scale.Fold accuracyThe fold accuracy, ({F}_{A}), is explicitly computed as$$begin{array}{c}{mathrm{log}}{F}_{A}=frac{1}{N}{sum }_{i=1}^{N}left|{mathrm{log}}{x}_{i}^{obs}-{mathrm{log}}{x}_{i}^{est}right|,end{array}$$
    (42)
    where (left|cdot right|) is the absolute value function, ({x}_{i}^{obs}) is the ({i}^{th}) observation, ({x}_{i}^{est}) is its corresponding estimation, and (N) is the total number of observations.Inference and extrapolationBecause of the delay between infections and deaths, inference for the values of the growth rate and infectious populations ends on December 30, 2020 and for the values of the infected populations ends on December 26, 2020. Extrapolation to the current time (January 21, 2021) is carried out assuming the last growth rate computed.Reproduction numberThe quantities ({R}_{t}) and ({k}_{G}left(tright)) are related to each other through the Euler–Lotka equation, ({R}_{t}^{-1}={int }_{0}^{infty }{f}_{GT}left(tau right){e}^{-{k}_{G}left(tright)tau }dtau ,) which considers (jleft(t-tau right)simeq {e}^{-{k}_{G}left(tright)tau }jleft(tright)) in the renewal equation (jleft(tright)={int }_{0}^{infty }{k}_{I}left(t,tau right)jleft(t-tau right)dtau). Generation times can generally be described through a gamma distribution ({f}_{GT}left(tau right)=frac{{beta }^{alpha }}{Gamma left(alpha right)}{tau }^{alpha -1}{e}^{-beta tau }) with (alpha ={tau }_{G}^{2}/{sigma }_{G}^{2}) and (beta ={tau }_{G}/{sigma }_{G}^{2}), which leads to ({R}_{t}={left(1+{k}_{G}(t)/beta right)}^{alpha }) for ({k}_{G}(t) >-beta) and ({R}_{t}=0) for ({k}_{G}left(tright)le -beta). In the case of the exponentially distributed limit ((alpha simeq 1)) or small values of ({k}_{G}(t)/beta), it simplifies to ({R}_{t}=1+{k}_{G}left(tright){tau }_{G}) for ({k}_{G}left(tright) >-1/{tau }_{G}) and ({R}_{t}=0) for ({k}_{G}left(tright)le -1/{tau }_{G}). Global prevalence data were obtained from multiple data sources35,36,37,38,39,40,41,42, as described in Supplementary Table S1. More

  • in

    A high diversity of mechanisms endows ALS-inhibiting herbicide resistance in the invasive common ragweed (Ambrosia artemisiifolia L.)

    1.Oerke, E.-C. Crop losses to pests. J. Agric. Sci. 144, 31–43 (2006).Article 

    Google Scholar 
    2.R4P Network. Trends and challenges in pesticide resistance detection. Trends Plant Sci. 21, 834–853 (2016).3.Heap, I. M. The international herbicide-resistant weed database. http://www.weedscience.org/Home.aspx (2021).4.Délye, C., Jasieniuk, M. & Le Corre, V. Deciphering the evolution of herbicide resistance in weeds. Trends Genet. 29, 649–658 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    5.Gaines, T. A. et al. Mechanisms of evolved herbicide resistance. J. Biol. Chem. 295, 10307–10330 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Murphy, B. P. & Tranel, P. J. Target-site mutations conferring herbicide resistance. Plants 8, 382 (2019).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    7.Beckie, H. J. & Tardif, F. J. Herbicide cross resistance in weeds. Crop Prot. 35, 15–28 (2012).CAS 
    Article 

    Google Scholar 
    8.Han, H. et al. Cytochrome P450 CYP81A10v7 in Lolium rigidum confers metabolic resistance to herbicides across at least five modes of action. Plant J. 105, 79–92 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Kreiner, J. M. et al. Multiple modes of convergent adaptation in the spread of glyphosate-resistant Amaranthus tuberculatus. Proc. Natl. Acad. Sci. 116, 21076–21084 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Milani, A. et al. Population structure and evolution of resistance to acetolactate synthase (ALS)-inhibitors in Amaranthus tuberculatus in Italy. Pest Manag. Sci. 77, 2971–2980 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Clements, D. R. et al. Adaptability of plants invading North American cropland. Agric. Ecosyst. Environ. 104, 379–398 (2004).Article 

    Google Scholar 
    12.Essl, F. et al. Biological flora of the British Isles: Ambrosia artemisiifolia. J. Ecol. 103, 1069–1098 (2015).Article 

    Google Scholar 
    13.Cowbrough, M. J., Brown, R. B. & Tardif, F. J. Impact of common ragweed (Ambrosia artemisiifolia) aggregation on economic thresholds in soybean. Weed Sci. 51, 947–954 (2003).CAS 
    Article 

    Google Scholar 
    14.Swinton, S. M., Buhler, D. D., Forcella, F., Gunsolus, J. L. & King, R. P. Estimation of crop yield loss due to interference by multiple weed species. Weed Sci. 42, 103–109 (1994).Article 

    Google Scholar 
    15.Bassett, I. J. & Crompton, C. W. The biology of Canadian weeds: Ambrosia artemisiifolia L. and A. psilostachya DC. Can. J. Plant Sci. 55, 463–476 (1975).16.Chauvel, B., Dessaint, F., Cardinal-Legrand, C. & Bretagnolle, F. The historical spread of Ambrosia artemisiifolia L. France from herbarium records. J. Biogeogr. 33, 665–673 (2006).Article 

    Google Scholar 
    17.Sala, C. A., Bulos, M., Altieri, E. & Ramos, M. L. Genetics and breeding of herbicide tolerance in sunflower. Helia 35, 57–69 (2012).Article 

    Google Scholar 
    18.Yu, Q. & Powles, S. B. Resistance to AHAS inhibitor herbicides: Current understanding. Pest Manag. Sci. 70, 1340–1350 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Tranel, P. J., Wright, T. R. & Heap, I. M. ALS mutations from resistant weeds. http://www.weedscience.com (2021).20.Patzoldt, W. L., Tranel, P. J., Alexander, A. L. & Schmitzer, P. R. A common ragweed population resistant to cloransulam-methyl. Weed Sci. 49, 485–490 (2001).CAS 
    Article 

    Google Scholar 
    21.Rousonelos, S. L., Lee, R. M., Moreira, M. S., VanGessel, M. J. & Tranel, P. J. Characterization of a common ragweed (Ambrosia artemisiifolia) population resistant to ALS- and PPO-inhibiting herbicides. Weed Sci. 60, 335–344 (2012).CAS 
    Article 

    Google Scholar 
    22.Zheng, D., Patzoldt, W. L. & Tranel, P. J. Association of the W574L ALS substitution with resistance to cloransulam and imazamox in common ragweed (Ambrosia artemisiifolia). Weed Sci. 53, 424–430 (2005).CAS 
    Article 

    Google Scholar 
    23.Van Wely, A. C. et al. Glyphosate and acetolactate synthase inhibitor resistant common ragweed (Ambrosia artemisiifolia L.) in southwestern Ontario. Can. J. Plant Sci. 95, 335–338 (2015)24.Marsan-Pelletier, F., Vanasse, A., Simard, M.-J. & Cuerrier, M.-E. Survey of imazethapyr-resistant common ragweed (Ambrosia artemisiifolia L.) in Quebec. Phytoprotection 99, 36–44 (2019).25.Owen, M. D. & Zelaya, I. A. Herbicide-resistant crops and weed resistance to herbicides. Pest Manag. Sci. 61, 301–311 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Duke, S. O. & Powles, S. B. Glyphosate: A once-in-a-century herbicide. Pest Manag. Sci. 64, 319–325 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Barnes, E. R., Knezevic, S. Z., Sikkema, P. H., Lindquist, J. L. & Jhala, A. J. Control of glyphosate-resistant common ragweed (Ambrosia artemisiifolia L.) in glufosinate-resistant soybean [Glycine max (L.) Merr]. Front. Plant Sci. 8, 1455 (2017).28.Tranel, P. J. & Wright, T. R. Resistance of weeds to ALS-inhibiting herbicides: What have we learned?. Weed Sci. 50, 700–712 (2002).CAS 
    Article 

    Google Scholar 
    29.Li, J., Li, M., Gao, X. & Fang, F. A novel amino acid substitution Trp574Arg in acetolactate synthase (ALS) confers broad resistance to ALS-inhibiting herbicides in crabgrass (Digitaria sanguinalis). Pest Manag. Sci. 73, 2538–2543 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Duggleby, R. G., Pang, S. S., Yu, H. & Guddat, L. W. Systematic characterization of mutations in yeast acetohydroxyacid synthase. Interpretation of herbicide-resistance data. Eur. J. Biochem. 270, 2895–2904 (2003).31.Jung, S.-M. et al. Amino acid residues conferring herbicide resistance in tobacco acetohydroxyacid synthase. Biochem. J. 383, 53–61 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Owen, M. J., Walsh, M. J., Llewellyn, R. S. & Powles, S. B. Widespread occurrence of multiple herbicide resistance in Western Australian annual ryegrass (Lolium rigidum) populations. Aust. J. Agric. Res. 58, 711–718 (2007).CAS 
    Article 

    Google Scholar 
    33.Owen, M. J., Martinez, N. J. & Powles, S. B. Multiple herbicide-resistant Lolium rigidum (annual ryegrass) now dominates across the Western Australian grain belt. Weed Res. 54, 314–324 (2014).CAS 
    Article 

    Google Scholar 
    34.Délye, C. Nucleotide variability at the acetyl coenzyme A carboxylase gene and the signature of herbicide selection in the grass weed Alopecurus myosuroides (Huds.). Mol. Biol. Evol. 21, 884–892 (2004).35.Délye, C., Clément, J. A. J., Pernin, F., Chauvel, B. & Le Corre, V. High gene flow promotes the genetic homogeneity of arable weed populations at the landscape level. Basic Appl. Ecol. 11, 504–512 (2010).Article 

    Google Scholar 
    36.Délye, C., Pernin, F. & Scarabel, L. Evolution and diversity of the mechanisms endowing resistance to herbicides inhibiting acetolactate-synthase (ALS) in corn poppy (Papaver rhoeas L.). Plant Sci. 180, 333–342 (2011).37.Sudheesh, M. An analysis of polygenic herbicide resistance evolution and its management based on a population genetics approach. Basic Appl. Ecol. 16, 104–111 (2015).Article 

    Google Scholar 
    38.Bullock, J. M. Assessing and controlling the spread and the effects of common ragweed in Europe. Report, Contractor: Natural environment research Council UK (2012).39.Yu, Q., Nelson, J. K., Zheng, M. Q., Jackson, J. & Powles, S. B. Molecular characterisation of resistance to ALS-inhibiting herbicides in Hordeum leporinum biotypes. Pest Manag. Sci. 63, 918–927 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Simard, M.-J., Laforest, M., Soufiane, B., Benoit, D. L. & Tardif, F. Linuron resistant common ragweed (Ambrosia artemisiifolia) populations in Quebec carrot fields: presence and distribution of target-site and non-target site resistant biotypes. Can. J. Plant Sci. 98, 345–352 (2017).
    Google Scholar 
    41.Ganie, Z., Jugulam, M., Varanasi, V. & Jhala, A. J. Investigating mechanism of glyphosate resistance in a common ragweed (Ambrosia artemisiifolia L.) biotype from Nebraska. Can. J. Plant Sci. (2017). https://doi.org/10.1139/CJPS-2017-0036.42.Duhoux, A., Carrère, S., Duhoux, A. & Délye, C. Transcriptional markers enable identification of rye-grass (Lolium sp.) plants with non-target-site-based resistance to herbicides inhibiting acetolactate-synthase. Plant Sci. 257, 22–36 (2017).43.Gardin, J. A. C., Gouzy, J., Carrère, S. & Délye, C. ALOMYbase, a resource to investigate non-target-site-based resistance to herbicides inhibiting acetolactate-synthase (ALS) in the major grass weed Alopecurus myosuroides (black-grass). BMC Genomics 16, 590 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Torra, J. et al. Target-site and non-target-site resistance mechanisms confer multiple and cross- resistance to ALS and ACCase inhibiting herbicides in Lolium rigidum from Spain. Front. Plant Sci. 12, 625138 (2021).45.Manley, B. S., Hatzios, K. K. & Wilson, H. P. Absorption, translocation, and metabolism of chlorimuron and nicosulfuron in imidazolinone-resistant and susceptible smooth pigweed (Amaranthus hybridus). Weed Technol. 13, 759–764 (1999).CAS 
    Article 

    Google Scholar 
    46.Jeffers, G. M., O’Donovan, J. T. & Hall, L. M. Wild mustard (Brassica kaber) resistance to ethametsulfuron but not to other herbicides. Weed Technol. 10, 847–850 (1996).CAS 
    Article 

    Google Scholar 
    47.Veldhuis, L. J., Hall, L. M., O’Donovan, J. T., Dyer, W. & Hall, J. C. Metabolism-based resistance of a wild mustard (Sinapis arvensis L.) biotype to ethametsulfuron-methyl. J. Agric. Food Chem. 48, 2986–2990 (2000).48.Scarabel, L., Pernin, F. & Délye, C. Occurrence, genetic control and evolution of non-target-site based resistance to herbicides inhibiting acetolactate synthase (ALS) in the dicot weed Papaver rhoeas. Plant Sci. 238, 158–169 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Nakka, S., Thompson, C. R., Peterson, D. E. & Jugulam, M. Target site-based and non-target site based resistance to ALS Inhibitors in Palmer Amaranth (Amaranthus palmeri). Weed Sci. 65, 681–689 (2017).Article 

    Google Scholar 
    50.Meyer, L. et al. New gSSR and EST-SSR markers reveal high genetic diversity in the invasive plant Ambrosia artemisiifolia L. and can be transferred to other invasive Ambrosia species. PLOS ONE 12, e0176197 (2017).51.Van Boheemen, L. A. et al. Multiple introductions, admixture and bridgehead invasion characterize the introduction history of Ambrosia artemisiifolia in Europe and Australia. Mol. Ecol. 26, 5421–5434 (2017).PubMed 
    Article 

    Google Scholar 
    52.Délye, C. et al. Harnessing the power of next-generation sequencing technologies to the purpose of high-throughput pesticide resistance diagnosis. Pest Manag. Sci. 76, 543–552 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    53.Délye, C., Matéjicek, A. & Gasquez, J. PCR-based detection of resistance to acetyl-CoA carboxylase-inhibiting herbicides in black-grass (Alopecurus myosuroides Huds) and ryegrass (Lolium rigidum Gaud). Pest Manag. Sci. 58, 474–478 (2002).PubMed 
    Article 
    CAS 

    Google Scholar 
    54.Duggleby, R. G., McCourt, J. A. & Guddat, L. W. Structure and mechanism of inhibition of plant acetohydroxyacid synthase. Plant Physiol. Biochem. 46, 309–324 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Leigh, J. W. & Bryant, D. POPART: full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).Article 

    Google Scholar 
    56.Neff, M. M., Neff, J. D., Chory, J. & Pepper, A. E. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: Experimental applications in Arabidopsis thaliana genetics. Plant J. 14, 387–392 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Délye, C. & Boucansaud, K. A molecular assay for the proactive detection of target site-based resistance to herbicides inhibiting acetolactate synthase in Alopecurus myosuroides. Weed Res. 48, 97–101 (2008).Article 

    Google Scholar 
    58.Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2ddCT method. Methods 25, 402–408 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Bustin, S. A. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622 (2009).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Rapid transmission of respiratory infections within but not between mountain gorilla groups

    1.Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science https://doi.org/10.1126/science.aax3100 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Daszak, P., Cunningham, A. A. & Hyatt, A. D. Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop. https://doi.org/10.1016/S0001-706X(00)00179-0 (2001).Article 
    PubMed 

    Google Scholar 
    3.Brearley, G. et al. Wildlife disease prevalence in human-modified landscapes. Biol. Rev. https://doi.org/10.1111/brv.12009 (2013).Article 
    PubMed 

    Google Scholar 
    4.Magouras, I. et al. Emerging zoonotic diseases: Should we rethink the animal–human interface?. Front. Vet. Sci. https://doi.org/10.3389/fvets.2020.582743 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.American Veterinary Medical Association. One Health: A New Professional Imperative. One Health Initiative Task Force: Final Report. (2008).6.VandeWoude, S. et al. Parallel pandemics illustrate the need for One Health solutions. EcoEvoRxiv (2021).7.Köndgen, S. et al. Pandemic human viruses cause decline of endangered great apes. Curr. Biol. 18, 260–264 (2008).Article 

    Google Scholar 
    8.Sharp, P. M., Plenderleith, L. J. & Hahn, B. H. Ape origins of human malaria. Annu. Rev. Microbiol. https://doi.org/10.1146/annurev-micro-020518-115628 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Liu, W. et al. Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature https://doi.org/10.1038/nature09442 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Keele, B. F. Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science (80-). 313, 523–526 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    11.Calvignac-Spencer, S., Leendertz, S. A. J., Gillespie, T. R. & Leendertz, F. H. Wild great apes as sentinels and sources of infectious disease. Clin. Microbiol. Infect. https://doi.org/10.1111/j.1469-0691.2012.03816.x (2012).Article 
    PubMed 

    Google Scholar 
    12.Ryan, S. J. & Walsh, P. D. Consequences of non-intervention for infectious disease in African great apes. PLoS One 6, e29030 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    13.Bermejo, M. et al. Ebola outbreak killed 5000 gorillas. Science 314, 1564 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Walsh, P. D. et al. Catastrophic ape decline in western equatorial Africa. Nature 422, 611–614 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    15.Thompson, M. E. et al. Risk factors for respiratory illness in a community of wild chimpanzees (Pan troglodytes schweinfurthii). R. Soc. Open Sci. https://doi.org/10.1098/rsos.180840 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Williams, J. M. et al. Causes of death in the Kasekela chimpanzees of Gombe National Park, Tanzania. Am. J. Primatol. https://doi.org/10.1002/ajp.20573 (2008).Article 
    PubMed 

    Google Scholar 
    17.Negrey, J. D. et al. Simultaneous outbreaks of respiratory disease in wild chimpanzees caused by distinct viruses of human origin. Emerg. Microbes Infect. https://doi.org/10.1080/22221751.2018.1563456 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Scully, E. J. et al. Lethal respiratory disease associated with human rhinovirus C in wild Chimpanzees, Uganda, 2013. Emerg. Infect. Dis. https://doi.org/10.3201/eid2402.170778 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Smith, K. F., Acevedo-Whitehouse, K. & Pedersen, A. B. The role of infectious diseases in biological conservation. Anim. Conserv. https://doi.org/10.1111/j.1469-1795.2008.00228.x (2009).Article 

    Google Scholar 
    20.Capps, B. & Lederman, Z. One health, vaccines and ebola: The opportunities for shared benefits. J. Agric. Environ. Ethics 28, 1011–1032 (2015).Article 

    Google Scholar 
    21.Leendertz, S. A. J. et al. Ebola in great apes—current knowledge, possibilities for vaccination, and implications for conservation and human health. Mamm. Rev. https://doi.org/10.1111/mam.12082 (2017).Article 

    Google Scholar 
    22.Bull, C. M., Godfrey, S. S. & Gordon, D. M. Social networks and the spread of Salmonella in a sleepy lizard population. Mol. Ecol. 21, 4386–4392 (2012).CAS 
    Article 

    Google Scholar 
    23.Vanderwaal, K. L., Atwill, E. R., Isbell, L. A. & McCowan, B. Linking social and pathogen transmission networks using microbial genetics in giraffe (Giraffa camelopardalis). J. Anim. Ecol. https://doi.org/10.1111/1365-2656.12137 (2014).Article 
    PubMed 

    Google Scholar 
    24.Silk, M. J. et al. Using social network measures in wildlife disease ecology, epidemiology, and management. Bioscience 67, 245–257 (2017).Article 

    Google Scholar 
    25.Craft, M. E. Infectious disease transmission and contact networks in wildlife and livestock. Philos. Trans. R Soc. Lond. Ser. B Biol. Sci. 370, 1–12 (2015).Article 

    Google Scholar 
    26.Craft, M. E. & Caillaud, D. Network models: An underutilized tool in wildlife epidemiology?. Interdiscip. Perspect. Infect. Dis. 2011, 676949 (2011).Article 

    Google Scholar 
    27.Rushmore, J. et al. Social network analysis of wild chimpanzees provides insights for predicting infectious disease risk. J. Anim. Ecol. 82, 976–986 (2013).Article 

    Google Scholar 
    28.Sandel, A. A. et al. Social network predicts exposure to respiratory infection in a wild chimpanzee group. EcoHealth https://doi.org/10.1007/s10393-020-01507-7 (2021).Article 
    PubMed Central 

    Google Scholar 
    29.Rushmore, J. et al. Network-based vaccination improves prospects for disease control in wild chimpanzees. J. R. Soc. Interface https://doi.org/10.1098/rsif.2014.0349 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Sah, P., Leu, S. T., Cross, P. C., Hudson, P. J. & Bansal, S. Unraveling the disease consequences and mechanisms of modular structure in animal social networks. Proc. Natl. Acad. Sci. 114, 4165–4170 (2017).CAS 
    Article 

    Google Scholar 
    31.Robbins, M. M. et al. Extreme conservation leads to recovery of the virunga mountain gorillas. PLoS One https://doi.org/10.1371/journal.pone.0019788 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Granjon, A. C. et al. Estimating abundance and growth rates in a wild mountain gorilla population. Anim. Conserv. https://doi.org/10.1111/acv.12559 (2020).Article 

    Google Scholar 
    33.Weber, A., Kalema-Zikusoka, G. & Stevens, N. J. Lack of rule-adherence during mountain gorilla tourism encounters in Bwindi Impenetrable National Park, Uganda, places gorillas at risk from human disease. Front. Public Health. https://doi.org/10.3389/fpubh.2020.00001 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Woodford, M. H., Butynski, T. M. & Karesh, W. B. Habituating the great apes: The disease risks. Oryx 36, 153–160 (2002).Article 

    Google Scholar 
    35.Spelman, L. H. et al. Respiratory disease in mountain gorillas (gorilla beringei beringei) in rwanda, 1990–2010: Outbreaks, clinical course, and medical management. J. Zoo Wildl. Med. https://doi.org/10.1638/2013-0014R.1 (2013).Article 
    PubMed 

    Google Scholar 
    36.Nutter, F. B., Whittier, C., Cranfield, M. R. & Lowenstine, L. J. Examining causes of death for mountain gorillas (Gorilla beringei beringei and G.b. undecided) from 1968–2004: An aid to conservation programs. In Proceedings of the Wildlife Disease Association International Conference. June 26-July 1, 2005, Cairns, Australia 200–201 (2005).37.Palacios, G. et al. Human metapneumovirus infection in wild mountain gorillas, Rwanda. Emerg. Infect. Dis. https://doi.org/10.3201/eid1704.100883 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Mazet, J. A. K. et al. Human respiratory syncytial virus detected in Mountain Gorilla respiratory outbreaks. EcoHealth https://doi.org/10.1007/s10393-020-01506-8 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Szentiks, C. A., Köndgen, S., Silinski, S., Speck, S. & Leendertz, F. H. Lethal pneumonia in a captive juvenile chimpanzee (Pan troglodytes) due to human-transmitted human respiratory syncytial virus (HRSV) and infection with Streptococcus pneumoniae. J. Med. Primatol. https://doi.org/10.1111/j.1600-0684.2009.00346.x (2009).Article 
    PubMed 

    Google Scholar 
    40.Grützmacher, K. S. et al. Codetection of respiratory syncytial virus in habituated wild western lowland gorillas and humans during a respiratory disease outbreak. EcoHealth https://doi.org/10.1007/s10393-016-1144-6 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Gryseels, S. et al. Risk of human-to-wildlife transmission of SARS-CoV-2. Mamm. Rev. https://doi.org/10.1111/mam.12225 (2021).Article 

    Google Scholar 
    42.Melin, A. D., Janiak, M. C., Marrone, F., Arora, P. S. & Higham, J. P. Comparative ACE2 variation and primate COVID-19 risk. Commun. Biol. https://doi.org/10.1038/s42003-020-01370-w (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Damas, J. et al. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.2010146117 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Caillaud, D. et al. Violent encounters between social units hinder the growth of a high-density mountain gorilla population. Sci. Adv. https://doi.org/10.1126/SCIADV.ABA0724 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Caillaud, D. et al. Gorilla susceptibility to Ebola virus: The cost of sociality. Curr. Biol. 16, 489–491 (2006).Article 

    Google Scholar 
    46.Reagan, K. J., McGeady, M. L. & Crowell, R. L. Persistence of human rhinovirus infectivity under diverse environmental conditions. Appl. Environ. Microbiol. https://doi.org/10.1128/aem.41.3.618-620.1981 (1981).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Danon, L. et al. Networks and the epidemiology of infectious disease. Interdiscip. Perspect. Infect. Dis. 2011, 1–28 (2011).Article 

    Google Scholar 
    48.Salazar, M. F. M., Waldner, C., Stookey, J. & Bollinger, T. K. Infectious disease and grouping patterns in mule deer. PLoS One https://doi.org/10.1371/journal.pone.0150830 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Weber, N. et al. Badger social networks correlate with tuberculosis infection. Curr. Biol. https://doi.org/10.1016/j.cub.2013.09.011 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.VanderWaal, K. L., Enns, E. A., Picasso, C., Packer, C. & Craft, M. E. Evaluating empirical contact networks as potential transmission pathways for infectious diseases. J. R. Soc. Interface https://doi.org/10.1098/rsif.2016.0166 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Lambert, L. & Culley, F. J. Innate immunity to respiratory infection in early life. Front. Immunol. https://doi.org/10.3389/fimmu.2017.01570 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Jackson, G. G. et al. Susceptibility and immunity to common upper respiratory viral infections—the common cold. Ann. Intern. Med. https://doi.org/10.7326/0003-4819-53-4-719 (1960).Article 
    PubMed 

    Google Scholar 
    53.Kurvers, R. H. J. M., Krause, J., Croft, D. P., Wilson, A. D. M. & Wolf, M. The evolutionary and ecological consequences of animal social networks: Emerging issues. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2014.04.002 (2014).Article 
    PubMed 

    Google Scholar 
    54.Casimir, M. J. An analysis of gorilla nesting sites of the Mt. Kahuzi Region (Zaire). Folia Primatol. 32, 290–308 (1979).Article 

    Google Scholar 
    55.van Hamme, G., Svensson, M. S., Morcatty, T. Q., Nekaris, K.A.-I. & Nijman, V. Keep your distance: Using social media to evaluate the risk of disease transmission in gorilla ecotourism. People Nat. https://doi.org/10.1002/pan3.10187 (2021).Article 

    Google Scholar 
    56.Leendertz, F. H. & Kalema-Zikusoka, G. Vaccinate in biodiversity hotspots to protect people and wildlife from each other. Nature https://doi.org/10.1038/d41586-021-00690-z (2021).Article 
    PubMed 

    Google Scholar 
    57.Porter, A. et al. Behavioral responses around conspecific corpses in adult eastern gorillas (Gorilla beringei spp.). PeerJ https://doi.org/10.7717/peerj.6655 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Albers, P. C. H. & De Vries, H. Elo-rating as a tool in the sequential estimation of dominance strengths. Anim. Behav. https://doi.org/10.1006/anbe.2000.1571 (2001).Article 

    Google Scholar 
    59.Neumann, C. et al. Assessing dominance hierarchies: Validation and advantages of progressive evaluation with Elo-rating. Anim. Behav. https://doi.org/10.1016/j.anbehav.2011.07.016 (2011).Article 

    Google Scholar 
    60.Neumann, C. & Lars, K. EloRating: Animal dominance hierarchies by Elo rating. R Package Version 0.43. https://rdrr.io/cran/EloRating/ (2014).61.Wright, E. et al. Male body size, dominance rank and strategic use of aggression in a group-living mammal. Anim. Behav. https://doi.org/10.1016/j.anbehav.2019.03.011 (2019).Article 

    Google Scholar 
    62.Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex Syst. 1695(5), 1–9 (2006).
    Google Scholar 
    63.Wood, S. & Scheipl, F. gamm4: Generalized additive mixed models using ‘mgcv’ and ‘lme4′. R Package Version 0.2-6. https://CRAN.R-project.org/package=gamm4 (2020).64.Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. https://doi.org/10.1111/j.1467-9868.2010.00749.x (2011).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    65.Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    66.VanderWaal, K. L. k-test. GitHub Repository. https://github.com/kvanderwaal/k-test (2017).67.Calenge, C. The package ‘adehabitat’ for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Modell. https://doi.org/10.1016/j.ecolmodel.2006.03.017 (2006).Article 

    Google Scholar  More

  • in

    Wild meat consumption in tropical forests spares a significant carbon footprint from the livestock production sector

    1.Nasi, R., Taber, A. & van Vliet, N. Empty forests, empty stomachs? Wild meat and livelihoods in the Congo and Amazon Basins. Int. For. Rev. 13, 355–368. https://doi.org/10.1505/146554811798293872 (2011).Article 

    Google Scholar 
    2.van Vliet, N. “Bushmear crisis” and “Cultural imperialism” in wildlife management? Taking value orientations into account for a more sustainable and culturally acceptable wildmeat sector. Front. Ecol. Evol. 6, 112. https://doi.org/10.3389/fevo.2018.00112 (2018).ADS 
    Article 

    Google Scholar 
    3.Nunes, A. V., Peres, C. A., Constantino, P. A. L., Santos, B. A. & Fischer, E. Irreplaceable socioeconomic value of wild meat extraction to local food security in rural Amazonia. Biol. Conserv. 236, 171–179. https://doi.org/10.1016/j.biocon.2019.05.010 (2019).Article 

    Google Scholar 
    4.Peres, C. A., Emilio, T., Schietti, J., Desmoulière, S. J. & Levi, T. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. PNAS 113, 892–897. https://doi.org/10.1073/pnas.1516525113 (2016).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    5.Brodie, J. F. Carbon costs and bushmeat benefits of hunting in tropical forests. Ecol. Econ. 152, 22–26. https://doi.org/10.1016/j.ecolecon.2018.05.028 (2018).Article 

    Google Scholar 
    6.Wright, I. J. et al. Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Ann. Bot. 99, 1003–1015. https://doi.org/10.1093/aob/mcl066 (2007).Article 
    PubMed 

    Google Scholar 
    7.Bunker, D. E. et al. Species loss and aboveground carbon storage in a tropical forest. Science 310, 1029–1031. https://doi.org/10.1126/science.1117682 (2005).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    8.Harrison, R. D. et al. Consequences of defaunation for a tropica tree community. Ecol. Lett. 16, 687–694. https://doi.org/10.1111/ele.12102 (2013).Article 
    PubMed 

    Google Scholar 
    9.Bello, C. et al. Defaunation affects carbon storage in tropical forests. Sci. Adv. 1, e1501105. https://doi.org/10.1126/sciadv.1501105 (2015).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    10.Sarti, F. M. et al. Beyond protein intake: Bushmeat as source of micronutrients in the Amazon. Ecol. Soc. 20, 22 (2015).Article 

    Google Scholar 
    11.Goelden, C. D. et al. Benefits of wildlife consumption to child nutrition in a biodiversity hotspot. PNAS 108, 19653–19656. https://doi.org/10.1073/pnas.1112586108 (2011).ADS 
    Article 

    Google Scholar 
    12.Fa, J. E. et al. Disentangling the relative effects of bushmeat availability on human nutrition in central Africa. Sci. Rep. 5, 8168. https://doi.org/10.1038/srep08168 (2015).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    13.Peres, C. A. Conservation in sustainable-use tropical forest reserves. Conserv. Biol. 25(1124–1129), 2011. https://doi.org/10.1111/j.1523-1739.2011.01770.x (2011).Article 

    Google Scholar 
    14.Ohl-Schacherer, J. et al. The sustainability of subsistence hunting by Matsigenka native communities in Manu National Park, Peru. Conserv. Biol. 21, 1174–1185. https://doi.org/10.1111/j.1523-1739.2007.00759.x (2007).Article 
    PubMed 

    Google Scholar 
    15.Constantino, P. A. L. et al. Indigenous collaborative research for wildlife management in Amazonia: The case of the Kaxinawá, Acre, Brazil. Biol. Conserv. 141, 2718–2729. https://doi.org/10.1016/j.biocon.2008.08.008 (2008).Article 

    Google Scholar 
    16.Weinbaum, K. Z., Brashares, J. S., Golden, C. D. & Getz, W. M. Searching for sustainability: Are assessments of wildlife harvests behind the times?. Ecol. Lett. 16, 99–111. https://doi.org/10.1111/ele.12008 (2013).Article 
    PubMed 

    Google Scholar 
    17.Novaro, A. J., Redford, K. H. & Bodmer, R. E. Effect of hunting in source-sink systems in the Neotropics. Conserv. Biol. 14, 713–721. https://doi.org/10.1046/j.1523-1739.2000.98452.x (2000).Article 

    Google Scholar 
    18.Constantino, P. A. C., Benchimol, M. & Antunes, A. P. Designing indigenous lands in Amazonia: Securing indigenous rights and wildlife conservation through hunting management. Land Use Policy 77, 652–660. https://doi.org/10.1016/j.landusepol.2018.06.016 (2018).Article 

    Google Scholar 
    19.Kaimowitz, D. & Angelsen, A. Will livestock intensification help save Latin America’s tropical forests?. J. Sustain. For. 27, 6–24. https://doi.org/10.1080/10549810802225168 (2008).Article 

    Google Scholar 
    20.Curtis, P. G., Slat, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111. https://doi.org/10.1126/science.aau3445 (2018).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    21.De Sy, V. et al. Land use patterns and related carbon losses following deforestation in South America. Environ. Res. Lett. 10, 124004. https://doi.org/10.1088/1748-9326/10/12/124004 (2015).ADS 
    Article 

    Google Scholar 
    22.Hosonuma, N. et al. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 7, 044009. https://doi.org/10.1088/1748-9326/7/4/044009 (2012).ADS 
    Article 

    Google Scholar 
    23.Herrero, M. et al. Livestock and the environment—What have we learned in the past decade?. Annu. Rev. Environ. Resour. 40, 177–202. https://doi.org/10.1146/annurev-environ-031113-093503 (2015).Article 

    Google Scholar 
    24.Hong, C. et al. Global and regional drivers of land-use emissions in 1961–2017. Nature 589, 554–561. https://doi.org/10.6084/m9.figshare.12248735 (2021).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    25.Steinfeld, H. et al. Livestock’s Long Shadow (FAO, 2006).
    Google Scholar 
    26.United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019: Highlights (ST/ESA/SER.A/423) (2019).27.IPCC Climate Change 2014: Synthesis Report (eds. Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).28.Wolf, C., Ripple, W. J., Levi, T. & Peres, C. A. Eating plants and planting forests for the climate. Glob. Chang. Biol. 25, 3995–3995. https://doi.org/10.1111/gcb.14835 (2019).ADS 
    Article 
    PubMed 

    Google Scholar 
    29.Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993. https://doi.org/10.1126/science.1201609 (2011).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    30.Potapov, P. et al. The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821. https://doi.org/10.1126/sciadv.1600821 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Maxwell, S. L. et al. Degradation and forgone removals increase the carbon imáct of intact forest loss by 626%. Sci. Adv. 5, eaax2546. https://doi.org/10.1126/sciadv.aax2546 (2019).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    32.Walker, W. S. et al. The role of forest conversion, degradation, and disturbance in the carbon dynamics of Amazon indigenous territories and protected areas. PNAS 117, 3015–3025. https://doi.org/10.1073/pnas.1913321117 (2020).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    33.Angelsen, A. et al. Environmental income and rural livelihoods: A global-comparative analysis. World Dev. 64, 12–28. https://doi.org/10.1016/j.worlddev.2014.03.006 (2010).Article 

    Google Scholar 
    34.UNFCCC. Adoption of the Paris Agreement-Draft Decision-/CP.21 (United Nations Framework Convention on Climate Change, 2015).
    Google Scholar 
    35.Hinsley, A., Entwistle, A. & Pio, D. V. Does the long-term success of REDD+ also depend on biodiversity?. Oryx 49, 216–221. https://doi.org/10.1017/S0030605314000507 (2015).Article 

    Google Scholar 
    36.Krause, T. & Nielsen, M. R. Not seeing the forest for the trees: The oversight of defaunation in REDD+ and global forest governance. Forests 10, 344. https://doi.org/10.3390/f10040344 (2019).Article 

    Google Scholar 
    37.Nardoto, G. B. et al. Frozen chicken for wild fish: Nutritional transition in the Brazilian Amazon region determined by carbon and nitrogen stable isotope ratios in fingernails. Am. J. Hum. Biol. 23, 642–650. https://doi.org/10.1002/ajhb.21192 (2011).Article 
    PubMed 

    Google Scholar 
    38.Farrel, D. The Role of Poultry in Human Nutrition. Poultry Development Review (FAO, 2013).
    Google Scholar 
    39.Poulsen, J. R., Clark, C. J. & Mavah, G. Wildlife management in a logging concession in Northern Congo: Can livelihoods be maintained through sustainable hunting? In Bushmeat and Livelihoods (eds Davies, G. & Brown, D.) 140–157 (Blackwell Publishing, 2007).
    Google Scholar 
    40.Nunes, A. V., Guariento, R. D., Santos, B. A. & Fischer, E. Wild meat sharing among non-indigenous people in the Southwestern Amazon. Behv. Ecol. Sociobiol. 73, 26. https://doi.org/10.1007/s00265-018-2628-x (2019).Article 

    Google Scholar 
    41.WHO/FAO/UNU Protein and Amino Acid Requirements in Human Nutrition; Report of a joint WHO/FAO/UNU Expert Consultation, WHO Tech Rep Ser no. 935 (WHO, 2007).42.FAO. FAOSTAT Agri-Environmental Indicators, Emissions Intensities. http://www.fao.org/faostat/en/#data/EI (2019).43.Opio, C. et al. Greenhouse Gas Emissions from Ruminant Supply Chains—A Global Life Cycle Assessment (Food and Agriculture Organization of the United Nations (FAO), 2013).
    Google Scholar 
    44.Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992. https://doi.org/10.1126/science.aaq0216 (2018).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    45.ICAO. International Civil Aviation Organization. https://www.icao.int/environmental-protection/Carbonoffset/Pages/default.aspx (2016).46.Searchinger, T. D. et al. Assessing the efficiency of changes in land use for mitigating climate change. Nature 564, 249–253. https://doi.org/10.1038/s41586-018-0757-z (2018).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    47.Ministério do Meio Ambiente (MMA). Programa áreas protegidas da Amazônia ARPA-Fase II (2010).48.Arensberg, W. W. Critical Ecosystem Partnership Fund Mid-Term Review (Critical Ecosystem Partnership Fund, 2003).49.Sistema Integrado de Planejamento e Orçamento (SIOP). Cadastro de Ações. Apoio à conservação Ambiental e à Erradicação da Extrema Pobreza Bolsa Verde (Secretaria de Orçamento Federal, Ministério do Planejamento, Orçamento e Gestão, 2014).50.World Bank. State and Trends of Carbon Pricing (World Bank, 2020). https://doi.org/10.1596/978-1-4648-1586-7.51.NASA (National Aeronautics and Space Administration). NASA Administrator Statement on Moon to Mars Initiative, fy 2021 Budget. https://www.nasa.gov/press-release/nasa-administrator-statement-on-moon-to-mars-initiative-fy-2021-budget.52.Peres, C. A. Synergistic effects of subsistence hunting and habitat fragmentation on Amazonian forest vertebrates. Conserv. Biol. 15, 1490–1505. https://doi.org/10.1046/j.1523-1739.2001.01089.x (2001).Article 

    Google Scholar 
    53.Griscom, B. W. et al. Natural climate solutions. PNAS 114, 11645–11650. https://doi.org/10.1073/pnas.1710465114 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    54.Reid, H., Faulkner, L. & Weiser, A. in IIED Climate Change Working Paper (eds. Fisher, S. & Reid, H.) 3–67 (2013).55.Munang, R., Andrews, J., Alverson, K. & Mebratu, D. Harnessing ecosystem-based adaptation to address the social dimensions of climate change. Environ.: Sci. Policy Sustain. Dev. 56, 18–24. https://doi.org/10.1080/00139157.2014.861676 (2013).Article 

    Google Scholar 
    56.Woroniecki, S. Enabling environments? Examining social co-benefits of ecosystem-based adaptation to climate change in Sri Lanka. Sustainability 11, 772. https://doi.org/10.3390/su11030772 (2019).Article 

    Google Scholar 
    57.Seddon, N. et al. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 375, 20190120. https://doi.org/10.1098/rstb.2019.0120 (2020).Article 

    Google Scholar 
    58.Wilkie, D. S., Wieland, M. & Poulsen, J. R. Unsustainable vs. sustainable hunting for food in Gabon: Modeling short- and long- term gains and losses. Front. Ecol. Evol. 7, 357. https://doi.org/10.3389/fevo.2019.00357 (2019).Article 

    Google Scholar 
    59.Booth, H. et al. Assessing the impact of regulations on the use and trade of wildlife: An operational framework, with a case study on manta rays. Glob. Ecol. Conserv. 22, e00953 (2020).Article 

    Google Scholar 
    60.Dickman, A. et al. Trophy hunting bans imperil biodiversity. Science 365(6456), 874. https://doi.org/10.1126/science.aaz0735 (2019).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    61.Marrocoli, S. et al. Using wildlife indicators to facilitate wildlife monitoring in hunter-self monitoring schemes. Ecol. Indic. 105, 254–263. https://doi.org/10.1016/j.ecolind.2019.05.050 (2019).Article 

    Google Scholar 
    62.van Vliet, N. et al. Frameworks regulating hunting for meat in tropical countries leave the sectos in the limbo. Front. Ecol. Evol. 7, 1–7. https://doi.org/10.3389/fevo.2019.00280 (2019).Article 

    Google Scholar 
    63.Ronchail, J. et al. Interannual rainfall variability in the Amazon basin and sea-surface temperatures in the equatorial Pacific and the tropical Atlantic oceans. Int. J. Climatol. 22, 1663–1686. https://doi.org/10.1002/joc.815 (2002).Article 

    Google Scholar 
    64.CSC. Climate Change Scenarios for the Congo Basin (Climate Service Centre Report No. 11, 2013).65.Akkermans, T., Thiery, W. & Lipzig, N. P. M. V. The regional climate impact of a realistic future deforestation scenario in the Congo Basin. J. Clim. 27, 2714–2734. https://doi.org/10.1175/JCLI-D-D13-00361.1 (2014).ADS 
    Article 

    Google Scholar 
    66.Siebert, A. Hydroclimate extrems in Africa: Variability, observations and modeled projectios. Geography 8, 351–367. https://doi.org/10.1111/gec3.12136 (2014).Article 

    Google Scholar 
    67.Feldpausch, T. R. et al. Tree height integrated into pantropical forest biomass estimates. Biogeosciences 9, 3381–3403. https://doi.org/10.5194/bg-9-3381-2012 (2012).ADS 
    Article 

    Google Scholar 
    68.Hansen, M. C. et al. High- resolution global maps of 21st-century forest cover change. Science 342, 850–853. https://doi.org/10.1126/science.1244693 (2013).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    69.Mayaux, P. et al. Tropical forest cover change in the 1990s and options for future monitoring. Philos. Trans. R. Soc. B 360, 373–384. https://doi.org/10.1098/rstb.2004.1590 (2005).Article 

    Google Scholar 
    70.Zelazowski, P., Malhi, Y., Huntingford, C., Sitch, S. & Fisher, J. B. Changes in the potential distribution of humid tropical forests on a warmer planet. Philos. Trans. Soc. A 369, 137–160. https://doi.org/10.1098/rsta.2010.0238 (2011).ADS 
    Article 

    Google Scholar 
    71.Nkem, J., Idinoba, M., Brockhaus, M., Kalame, F. & Tas, A. Adaptation to Climate Change in Africa: Synergies with Biodiversity and Forest (CIFOR, 2008).
    Google Scholar 
    72.Ganzhorn, J. U., Lowry, P. P., Schatz, G. E. & Sommer, S. The biodiversity of Madagascar: One of the world’s hottest hotspots on its way out. Oryx 35, 346–348. https://doi.org/10.1046/j.1365-3008.2001.00201.x (2001).Article 

    Google Scholar 
    73.Kingdon, J. East African Mammals Vol. IIIA (Academic Press, 1977).
    Google Scholar 
    74.Dunning, J. B. CRC Handbook of Avian Body Masses 2nd edn. (CRC, 2008).
    Google Scholar 
    75.Rushton, J. et al. How important is bushmeat consumption in South America: Now and in the future?. Odi Wildl. Policy Brief. 11, 1–4 (2005).
    Google Scholar 
    76.Redford, K. H. & Robinson, J. G. The game of choice: Patterns of Indian and colonist hunting in the Neotropics. Am. Anthropol. 89, 650–667. https://doi.org/10.1525/aa.1987.89.3.02a00070 (1987).Article 

    Google Scholar 
    77.Ojasti, J. Wildlife Utilization in Latin America: Current Situation and Prospects for Sustainable Management (FAO, 1996).
    Google Scholar 
    78.Wilson, E. D., Fisher, K. H. & Garcia, P. A. Principles of Nutrition (Wiley, 1979).
    Google Scholar 
    79.Human energy requirements. Report of a Joint FAO/WHO/UNU Expert Consultation (2014).80.Soriano-Santos, J. in Handbook of Poultry Science and Technology (ed. Guerrero-Lagarreta, I.) 467–489 (2009).81.Eggleston, H. S. et al. (eds) 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme (IPCC, 2006).
    Google Scholar 
    82.Carbon Pricing Leadership Coalition (CPLC). Report of the High-Level Commission on Carbon Prices (World Bank Group, 2017).
    Google Scholar 
    83.Annual Report. Ending Poverty, Investing in Opportunity (World Bank Group, 2019).
    Google Scholar 
    84.Avitabile, M. V. et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Chang. Biol. 22, 1406–1420. https://doi.org/10.1111/gcb.13139 (2016).ADS 
    Article 
    PubMed 

    Google Scholar  More