Next-generation ensemble projections reveal higher climate risks for marine ecosystems
1.IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) (IPCC, 2019).2.Doney, S. C. et al. Climate change impacts on marine ecosystems. Ann. Rev. Mar. Sci. 4, 11â37 (2012).ArticleÂ
Google ScholarÂ
3.Bindoff, N. L. et al. in Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) Ch. 5 (IPCC, 2019).4.Griffith, G. P., Fulton, E. A., Gorton, R. & Richardson, A. J. Predicting interactions among fishing, ocean warming, and ocean acidification in a marine system with whole-ecosystem models. Conserv. Biol. 26, 1145â1152 (2012).ArticleÂ
Google ScholarÂ
5.Fu, C. et al. Risky business: the combined effects of fishing and changes in primary productivity on fish communities. Ecol. Modell. 368, 265â276 (2018).ArticleÂ
Google ScholarÂ
6.Tittensor, D. P. et al. Integrating climate adaptation and biodiversity conservation in the global ocean. Sci. Adv. https://doi.org/10.1126/sciadv.aay9969 (2019).7.IPBES: Summary for Policymakers. In Global Assessment Report on Biodiversity and Ecosystem Services (eds DĂaz, S. et al.) (IPBES Secretariat, 2019).8.Boyce, D. G., Lotze, H. K., Tittensor, D. P., Carozza, D. A. & Worm, B. Future ocean biomass losses may widen socioeconomic equity gaps. Nat. Commun. 11, 2235 (2020).CASÂ
ArticleÂ
Google ScholarÂ
9.Payne, M. R. et al. Uncertainties in projecting climate-change impacts in marine ecosystems. ICES J. Mar. Sci. 73, 1272â1282 (2016).ArticleÂ
Google ScholarÂ
10.Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937â1958 (2016).ArticleÂ
Google ScholarÂ
11.Tittensor, D. P. et al. A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0. Geosci. Model Dev. 11, 1421â1442 (2018).ArticleÂ
Google ScholarÂ
12.Lotze, H. K. et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl Acad. Sci. USA 116, 12907â12912 (2019).CASÂ
ArticleÂ
Google ScholarÂ
13.Bryndum-Buchholz, A. et al. Twenty-first-century climate change impacts on marine animal biomass and ecosystem structure across ocean basins. Glob. Change Biol. 25, 459â472 (2019).ArticleÂ
Google ScholarÂ
14.Bryndum-Buchholz, A. et al. Differing marine animal biomass shifts under 21st century climate change between Canadaâs three oceans. Facets 5, 105â122 (2020).ArticleÂ
Google ScholarÂ
15.Bryndum-Buchholz, A. et al. Climate-change impacts and fisheries management challenges in the North Atlantic Ocean. Mar. Ecol. Prog. Ser. 648, 1â17 (2020).ArticleÂ
Google ScholarÂ
16.Ruane, A. C. et al. The vulnerability, impacts, adaptation and climate services advisory board (VIACS AB v1.0) contribution to CMIP6. Geosci. Model Dev. 9, 3493â3515 (2016).ArticleÂ
Google ScholarÂ
17.Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439â3470 (2020).CASÂ
ArticleÂ
Google ScholarÂ
18.SĂ©fĂ©rian, R. et al. Tracking improvement in simulated marine biogeochemistry between CMIP5 and CMIP6. Curr. Clim. Change Rep. 6, 95â119 (2020).ArticleÂ
Google ScholarÂ
19.Meehl, G. A. et al. Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Sci. Adv. 6, eaba1981 (2020).ArticleÂ
Google ScholarÂ
20.Tebaldi, C. et al. Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth Syst. Dyn. 12, 253â293 (2021).ArticleÂ
Google ScholarÂ
21.Heneghan, R. F. et al. Disentangling diverse responses to climate change among global marine ecosystem models. Prog. Oceanogr. 198, 102659 (2021).ArticleÂ
Google ScholarÂ
22.Zelinka, M. D. et al. Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett. 47, e2019GL085782 (2020).ArticleÂ
Google ScholarÂ
23.Kwiatkowski, L. et al. Emergent constraints on projections of declining primary production in the tropical oceans. Nat. Clim. Change 7, 355â358 (2017).CASÂ
ArticleÂ
Google ScholarÂ
24.CabrĂ©, A., Marinov, I. & Leung, S. Consistent global responses of marine ecosystems to future climate change across the IPCC AR5 Earth system models. Clim. Dyn. 45, 1253â1280 (2015).ArticleÂ
Google ScholarÂ
25.Laufkötter, C. et al. Drivers and uncertainties of future global marine primary production in marine ecosystem models. Biogeosciences 12, 6955â6984 (2015).ArticleÂ
Google ScholarÂ
26.Doney, S. C. Plankton in a warmer world. Nature 444, 695â696 (2006).CASÂ
ArticleÂ
Google ScholarÂ
27.Rykaczewski, R. R. & Dunne, J. P. Enhanced nutrient supply to the California Current Ecosystem with global warming and increased stratification in an Earth system model. Geophys. Res. Lett. 37, L21606 (2010).ArticleÂ
Google ScholarÂ
28.Laufkötter, C., John, J. G., Stock, C. A. & Dunne, J. P. Temperature and oxygen dependence of the remineralization of organic matter. Glob. Biogeochem. Cycles 31, 1038â1050 (2017).ArticleÂ
CASÂ
Google ScholarÂ
29.Coll, M. et al. Advancing global ecological modeling capabilities to simulate future trajectories of change in marine ecosystems. Front. Mar. Sci. 7, 741 (2020).ArticleÂ
Google ScholarÂ
30.Hawkins, E. & Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095â1107 (2009).ArticleÂ
Google ScholarÂ
31.Frölicher, T. L., Rodgers, K. B., Stock, C. A. & Cheung, W. W. L. Sources of uncertainties in 21st century projections of potential ocean ecosystem stressors. Glob. Biogeochem. Cycles 30, 1224â1243 (2016).ArticleÂ
CASÂ
Google ScholarÂ
32.Gaines, S. D. et al. Improved fisheries management could offset many negative effects of climate change. Sci. Adv. 4, eaao1378 (2018).ArticleÂ
Google ScholarÂ
33.The State of World Fisheries and Aquaculture 2020 (FAO, 2020).34.Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65â70 (2020).CASÂ
ArticleÂ
Google ScholarÂ
35.Stuart-Smith, R. D., Edgar, G. J. & Bates, A. E. Thermal limits to the geographic distributions of shallow-water marine species. Nat. Ecol. Evol. 1, 1846â1852 (2017).ArticleÂ
Google ScholarÂ
36.Carozza, D. A., Bianchi, D. & Galbraith, E. D. Metabolic impacts of climate change on marine ecosystems: implications for fish communities and fisheries. Glob. Ecol. Biogeogr. 28, 158â169 (2019).ArticleÂ
Google ScholarÂ
37.du Pontavice, H., Gascuel, D., Reygondeau, G., Stock, C. & Cheung, W. W. L. Climate-induced decrease in biomass flow in marine food webs may severely affect predators and ecosystem production. Glob. Change Biol. 27, 2608â2622 (2021).ArticleÂ
Google ScholarÂ
38.Piroddi, C. et al. Effects of nutrient management scenarios on marine food webs: a pan-European assessment in support of the marine strategy framework directive. Front. Mar. Sci. 8, 179 (2021).ArticleÂ
Google ScholarÂ
39.Maury, O. An overview of APECOSM, a spatialized mass balanced âApex Predators ECOSystem Modelâ to study physiologically structured tuna population dynamics in their ecosystem. Prog. Oceanogr. 84, 113â117 (2010).ArticleÂ
Google ScholarÂ
40.Maury, O. & Poggiale, J. C. From individuals to populations to communities: a dynamic energy budget model of marine ecosystem size-spectrum including life history diversity. J. Theor. Biol. 324, 52â71 (2013).ArticleÂ
Google ScholarÂ
41.Carozza, D. A., Bianchi, D. & Galbraith, E. D. The ecological module of BOATS-1.0: a bioenergetically-constrained model of marine upper trophic levels suitable for studies of fisheries and ocean biogeochemistry. Geosci. Model Dev. 9, 1545â1565 (2016).ArticleÂ
Google ScholarÂ
42.Carozza, D. A. et al. Formulation, general features and global calibration of a bioenergetically-constrained fishery model. PLoS ONE 12, e0169763 (2017).ArticleÂ
CASÂ
Google ScholarÂ
43.Cheung, W. W. L. et al. Building confidence in projections of the responses of living marine resources to climate change. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsv250 (2016).ArticleÂ
Google ScholarÂ
44.Cheung, W. W. L., Dunne, J., Sarmiento, J. L. & Pauly, D. Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES J. Mar. Sci. 68, 1008â1018 (2011).ArticleÂ
Google ScholarÂ
45.Blanchard, J. L. et al. Potential consequences of climate change for primary production and fish production in large marine ecosystems. Phil. Trans. R. Soc. B 367, 2979â2989 (2012).ArticleÂ
Google ScholarÂ
46.Christensen, V. et al. The global ocean is an ecosystem: simulating marine life and fisheries. Glob. Ecol. Biogeogr. 24, 507â517 (2015).ArticleÂ
Google ScholarÂ
47.Gascuel, D., GuĂ©nette, S. & Pauly, D. The trophic-level-based ecosystem modelling approach: theoretical overview and practical uses. ICES J. Mar. Sci. 68, 1403â1416 (2011).ArticleÂ
Google ScholarÂ
48.Petrik, C. M., Stock, C. A., Andersen, K. H., van Denderen, P. D. & Watson, J. R. Bottom-up drivers of global patterns of demersal, forage, and pelagic fishes. Prog. Oceanogr. 176, 102124 (2019).ArticleÂ
Google ScholarÂ
49.Jennings, S. & Collingridge, K. Predicting consumer biomass, size-structure, production, catch potential, responses to fishing and associated uncertainties in the worldâs marine ecosystems. PLoS ONE 10, e0133794 (2015).ArticleÂ
CASÂ
Google ScholarÂ
50.Heneghan, R. F. et al. A functional size-spectrum model of the global marine ecosystem that resolves zooplankton composition. Ecol. Modell. 435, 109265 (2020).CASÂ
ArticleÂ
Google ScholarÂ
51.Dunne, J. P. et al. GFDLâs ESM2 global coupled climateâcarbon Earth system models. Part I: physical formulation and baseline simulation characteristics. J. Clim. 25, 6646â6665 (2012).ArticleÂ
Google ScholarÂ
52.Dunne, J. P. et al. Carbon Earth system models. Part II: carbon system formulation and baseline simulation characteristics. J. Clim. 26, 2247â2267 (2013).ArticleÂ
Google ScholarÂ
53.Dufresne, J.-L. et al. Climate change projections using the IPSL-CM5 Earth system model: from CMIP3 to CMIP5. Clim. Dyn. 40, 2123â2165 (2013).ArticleÂ
Google ScholarÂ
54.Dunne, J. P. et al. The GFDL Earth System Model Version 4.1 (GFDL-ESM 4.1): overall coupled model description and simulation characteristics. J. Adv. Model. Earth Syst. 12, e2019MS002015 (2020).
Google ScholarÂ
55.Krasting, J. P. et al. NOAA-GFDL GFDL-ESM4 Model Output Prepared for MIP6 CMIP Historical Version 20190726 (Earth System Grid Federation, 2018); https://doi.org/10.22033/ESGF/CMIP6.859756.John, J. G. et al. NOAA-GFDL GFDL-ESM4 Model Output Prepared for CMIP6 ScenarioMIP ssp585 Version 20180701 (Earth System Grid Federation, 2018); https://doi.org/10.22033/ESGF/CMIP6.870657.Boucher, O. et al. Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Model. Earth Syst. 12, e2019MS002010 (2020).ArticleÂ
Google ScholarÂ
58.Boucher, O. et al. IPSL IPSL-CM6A-LR Model Output Prepared for CMIP6 CMIP Version 20180727 (Earth System Grid Federation, 2018); https://doi.org/10.22033/ESGF/CMIP6.153459.Boucher, O. et al. IPSL IPSL-CM6A-LR Model Output Prepared for CMIP6 CMIP Historical Version 20180103 (Earth System Grid Federation, 2018); https://doi.org/10.22033/ESGF/CMIP6.5195 More
