Species richness and β-diversity patterns of macrolichens along elevation gradients across the Himalayan Arc
1.Lomolino, M. V. Elevation gradients of species-density: Historical and prospective views. Glob. Ecol. Biogeogr. 10, 3–13 (2001).Article
Google Scholar
2.Bruun, H. H. et al. Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. J. Veg. Sci. 17, 37–46 (2006).Article
Google Scholar
3.Rubio-Salcedo, M., Psomas, A., Prieto, M., Zimmermann, N. E. & Martínez, I. Case study of the implications of climate change for lichen diversity and distributions. Biodivers. Conserv. 26, 1121–1141 (2017).Article
Google Scholar
4.Zhou, Y. et al. The species richness pattern of vascular plants along a tropical elevational gradient and the test of elevational Rapoport’s rule depend on different life-forms and phytogeographic affinities. Ecol. Evol. 9, 4495–4503 (2019).PubMed
PubMed Central
Article
Google Scholar
5.Ohdo, T. & Takahashi, K. Plant species richness and community assembly along gradients of elevation and soil nitrogen availability. AoB Plants 12, plaa014 (2020).6.Rahbek, C. The role of spatial scale and the perception of large-scale species-richness patterns. Ecol. Lett. 8, 224–239 (2005).Article
Google Scholar
7.Colwell, R. K. & Lees, D. C. The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol. Evol. 15, 70–76 (2000).CAS
PubMed
Article
PubMed Central
Google Scholar
8.Vetaas, O. R. & Grytnes, J. A. Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Glob. Ecol. Biogeogr. 11, 291–301 (2002).Article
Google Scholar
9.Grytnes, J. A. Ecological interpretations of the mid-domain effect. Ecol. Lett. 6, 883–888 (2003).Article
Google Scholar
10.Colwell, R. K., Rahbek, C. & Gotelli, N. J. The mid-domain effect and species richness patterns: what have we learned so far?. Am. Nat. 163, E1–E23 (2004).PubMed
Article
PubMed Central
Google Scholar
11.Sabatini, F. M., Jiménez-Alfaro, B., Burrascano, S., Lora, A. & Chytrý, M. Beta-diversity of central European forests decreases along an elevational gradient due to the variation in local community assembly processes. Ecography 41, 1038–1048 (2018).Article
Google Scholar
12.Qian, H., Ricklefs, R. E. & White, P. S. Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecol. Lett. 8, 15–22 (2005).Article
Google Scholar
13.Legendre, P. Interpreting the replacement and richness difference components of beta diversity. Glob. Ecol. Biogeogr. 23, 1324–1334 (2014).Article
Google Scholar
14.Ulrich, W., Almeida-Neto, M. & Gotelli, N. J. A consumer’s guide to nestedness analysis. Oikos 118, 3–17 (2009).Article
Google Scholar
15.Soininen, J., Heino, J. & Wang, J. A meta-analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Glob. Ecol. Biogeogr. 27, 96–109 (2018).Article
Google Scholar
16.Jacquemyn, H., Honnay, O. & Pailler, T. Range size variation, nestedness and species turnover of orchid species along an altitudinal gradient on Réunion Island: implications for conservation. Biol. Cons. 136, 388–397 (2007).Article
Google Scholar
17.Bishop, T. R., Robertson, M. P., van Rensburg, B. J. & Parr, C. L. Contrasting species and functional beta diversity in montane ant assemblages. J. Biogeogr. 42, 1776–1786 (2015).PubMed
PubMed Central
Article
Google Scholar
18.Paknia, O. & Sh, H. R. Geographical patterns of species richness and beta diversity of Larentiinae moths (Lepidoptera: Geometridae) in two temperate biodiversity hotspots. J. Insect Conserv. 19, 729–739 (2015).Article
Google Scholar
19.Nunes, C. A., Braga, R. F., Figueira, J. E. C., Neves, F. d. S. & Fernandes, G. W. Dung beetles along a tropical altitudinal gradient: Environmental filtering on taxonomic and functional diversity. PLoS ONE 11, e0157442 (2016).20.Zhou, G. et al. Effects of livestock grazing on grassland carbon storage and release override impacts associated with global climate change. Glob. Change Biol. 25, 1119–1132 (2019).ADS
Article
Google Scholar
21.Sun, Y., Bossdorf, O., Grados, R. D., Liao, Z. & Müller-Schärer, H. Rapid genomic and phenotypic change in response to climate warming in a widespread plant invader. Glob. Change Biol. 26, 6511–6522 (2020).ADS
Article
Google Scholar
22.Chander, H. & Sapna, D. Sanjna. Species diversity of lichens in Balh Valley of Himachal Pradesh, North Western Himalaya. J. Biol. Chem. Chronicles 5, 32–40 (2019).23.Negi, H. R. On the patterns of abundance and diversity of macrolichens of Chopta-Tunganath in the Garhwal Himalaya. J. Biosci. 25, 367–378 (2000).CAS
PubMed
Article
PubMed Central
Google Scholar
24.Pinokiyo, A., Singh, K. P. & Singh, J. S. Diversity and distribution of lichens in relation to altitude within a protected biodiversity hot spot, north-east India. Lichenologist 40, 47–62 (2008).Article
Google Scholar
25.Kumar, J. et al. Elevational controls of lichen communities in Zanskar valley, Ladakh, a Trans Himalayan cold desert. Trop. Plant Res. 1, 48–54 (2014).
Google Scholar
26.Rashmi, S. & Rajkumar, H. Diversity of Lichens along Elevational Gradients in Forest Ranges of Chamarajanagar District, Karnataka State. Int. J. Sci. Res. Biol. Sci. 6, 1 (2019).27.Shukla, V., Upreti, D. K. & Bajpai, R. Lichens to Biomonitor the Environment. (Springer, 2014).28.Man-Rong, H. & Wei, G. Altitudinal gradients of lichen species richness in Tibet, China. PDR 34, 2–8 (2012).
Google Scholar
29.Wolf, J. H. Diversity patterns and biomass of epiphytic bryophytes and lichens along an altitudinal gradient in the northern Andes. Ann. Missouri Bot. Gard. 928–960 (1993).30.Pirintsos, S., Diamantopoulos, J. & Stamou, G. Analysis of the distribution of epiphytic lichens within homogeneous Fagus sylvatica stands along an altitudinal gradient (Mount Olympos, Greece). Vegetatio 116, 33–40 (1995).
Google Scholar
31.Grytnes, J. A., Heegaard, E. & Ihlen, P. G. Species richness of vascular plants, bryophytes, and lichens along an altitudinal gradient in western Norway. Acta Oecol. 29, 241–246 (2006).ADS
Article
Google Scholar
32.Vittoz, P. et al. Subalpine-nival gradient of species richness for vascular plants, bryophytes and lichens in the Swiss Inner Alps. Bot. Helv. 120, 139–149 (2010).Article
Google Scholar
33.Bässler, C. et al. Contrasting patterns of lichen functional diversity and species richness across an elevation gradient. Ecography 39, 689–698 (2016).Article
Google Scholar
34.Rai, H., Khare, R., Upreti, D. K. & Nayaka, S. Terricolous Lichens in India 1–16 (Springer, 2014).35.Awasthi, D. D. Key to the Microlichens of India, Nepal and Sri Lanka. (J. Cramer, 1991).36.Sipman, H. J. Survey of Lepraria species with lobed thallus margins in the tropics. Herzogia 17, 23–35 (2004).
Google Scholar
37.Awasthi, D. D. A Compendium of the Macrolichens from India, Nepal and Sri Lank. (Bishen Singh Mahendra Pal Sin, 2007).38.Singh, K. P. & Sinha, G. P. Indian Lichens: An Annotated Checklis. (Botanical Survey of Ind, 2010).39.Sinha, G., Nayaka, S. & Joseph, S. Additions to the checklist of Indian lichens after 2010. Cryptogam Biodivers. Assess. Spec. 197, 206 (2018).
Google Scholar
40.Hsieh, T., Ma, K. & Chao, A. A Quick Introduction to iNEXT via Examples. http://chao.stat.nthu.edu.tw/wordpress (2016).41.Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R. & O’Hara, R.B. et al. Vegan: Community Ecology Package. R package version 2.5-7. http://CRAN.R-project.org/package=vegan (2015).42.Baselga, A. & Orme, C. D. L. betapart: An R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).Article
Google Scholar
43.Fontana, V. et al. Species richness and beta diversity patterns of multiple taxa along an elevational gradient in pastured grasslands in the European Alps. Sci. Rep. 10, 1–11 (2020).Article
CAS
Google Scholar
44.Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
Google Scholar
45.Rathore, L., Attri, S. & Jaswal, A. State level climate change trends in India. India Meteorol. Dept. 25, 02 (2013).
Google Scholar
46.Goni, R., Raina, A. K., Magotra, R. & Sharma, N. Lichen flora of Jammu and Kashmir State, India: An updated checklist. Trop. Plant Res. 2, 64–71 (2015).
Google Scholar
47.Sinha, G. & Ram, T. Lichen diversity in Sikkim. In Biodiversity of Sikkim: Exploring and Conserving a Global Hotspot. 13–28. (Department of Information and Public Relations, Government of Sikkim, 2011).48.Mishra, G. K. & Upreti, D. K. Diversity and distribution of macro-lichen in Kumaun Himalaya, Uttarakhand. Int. J. Adv. Res. 4, 912–925 (2016).
Google Scholar
49.Rai, H., Upreti, D. & Gupta, R. K. Diversity and distribution of terricolous lichens as indicator of habitat heterogeneity and grazing induced trampling in a temperate-alpine shrub and meadow. Biodivers. Conserv. 21, 97–113 (2012).Article
Google Scholar
50.Thell, A. et al. A review of the lichen family Parmeliaceae–history, phylogeny and current taxonomy. Nord. J. Bot. 30, 641–664 (2012).Article
Google Scholar
51.Cannon, P. F. & Kirk, P. M. Fungal Families of the World. (Cabi, 2007).52.Baniya, C. B., Solhøy, T., Gauslaa, Y. & Palmer, M. W. The elevation gradient of lichen species richness in Nepal. Lichenologist 42, 83–96 (2010).53.Rai, H., Khare, R., Baniya, C. B., Upreti, D. K. & Gupta, R. K. Elevational gradients of terricolous lichen species richness in the Western Himalaya. Biodivers. Conserv. 24, 1155–1174 (2015).Article
Google Scholar
54.Grytnes, J. A. & Vetaas, O. R. Species richness and altitude: a comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. Am. Nat. 159, 294–304 (2002).PubMed
Article
PubMed Central
Google Scholar
55.Kluge, J. et al. Elevational seed plants richness patterns in Bhutan, Eastern Himalaya. J. Biogeogr. 44, 1711–1722 (2017).Article
Google Scholar
56.Bhattarai, K. R., Vetaas, O. R. & Grytnes, J. A. Fern species richness along a central Himalayan elevational gradient, Nepal. J. Biogeogr. 31, 389–400 (2004).Article
Google Scholar
57.Grau, O., Grytnes, J. A. & Birks, H. A comparison of altitudinal species richness patterns of bryophytes with other plant groups in Nepal, Central Himalaya. J. Biogeogr. 34, 1907–1915 (2007).Article
Google Scholar
58.McCain, C. M. & Grytnes, J. A. Elevational gradients in species richness. eLS (2010).59.Gauslaa, Y. et al. Size-dependent growth of two old-growth associated macrolichen species. New Phytol. 181, 683–692 (2009).PubMed
Article
PubMed Central
Google Scholar
60.Nautiyal, M., Nautiyal, B. & Prakash, V. Effect of grazing and climatic changes on alpine vegetation of Tungnath, Garhwal Himalaya, India. Environmentalist 24, 125–134 (2004).Article
Google Scholar
61.McCain, C. M. The mid-domain effect applied to elevational gradients: Species richness of small mammals in Costa Rica. J. Biogeogr. 31, 19–31 (2004).Article
Google Scholar
62.Baniya, C. B. Species Richness Patterns in Space and Time in the Himalayan Area. https://hdl.handle.net/1956/3861 (2010).63.Baniya, C. B., Solhøy, T., Gauslaa, Y. & Palmer, M. W. Richness and composition of vascular plants and cryptogams along a high elevational gradient on Buddha Mountain, Central Tibet. Folia Geobot. 47, 135–151 (2012).Article
Google Scholar
64.da Silva, P. G., Lobo, J. M., Hensen, M. C., Vaz-de-Mello, F. Z. & Hernández, M. I. Turnover and nestedness in subtropical dung beetle assemblages along an elevational gradient. Divers. Distrib. 24, 1277–1290 (2018).Article
Google Scholar
65.Si, X., Baselga, A. & Ding, P. Revealing beta-diversity patterns of breeding bird and lizard communities on inundated land-bridge islands by separating the turnover and nestedness components. PLoS ONE 10, e0127692 (2015).66.Nanda, S. A., Reshi, Z. A., Ul-haq, M., Lone, A. & Mir, S. A. Taxonomic and functional plant diversity patterns along an elevational gradient through treeline ecotone in Kashmir. Trop. Ecol. 59, 211–224 (2018).
Google Scholar
67.Boet, O., Arnan, X. & Retana, J. The role of environmental vs. biotic filtering in the structure of European ant communities: A matter of trait type and spatial scale. PLoS ONE 15, e0228625 (2020). More