1.Thomson, M. R. A. Geological and palaeoenvironmental history of the Scotia Sea region as a basis for biological interpretation. Deep Sea Res. II 51, 1467–1487 (2004).Article
ADS
Google Scholar
2.Maldonado, A. et al. A model of oceanic development by ridge jumping: Opening of the Scotia Sea. Glob. Planet. Change 123, 152–173 (2014).Article
ADS
Google Scholar
3.Crame, J. A. Key stages in the evolution of the Antarctic marine fauna. J. Biogeogr. 45, 986–994 (2018).Article
Google Scholar
4.Scher, H. D. & Martin, E. E. Timing and climatic consequences of the opening of the Drake Passage. Science 312, 428–430 (2006).CAS
PubMed
Article
ADS
Google Scholar
5.Eagles, G., Livermore, R. & Morris, P. Small basins in the Scotia Sea: the Eocene Drake passage gateway. Earth Planet. Sci. Lett. 242, 343–353 (2006).CAS
Article
ADS
Google Scholar
6.De Conto, R. M. & Pollard, D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421, 245–249 (2003).Article
ADS
CAS
Google Scholar
7.Anderson, J. B. et al. Progressive Cenozoic cooling and the demise of Antarctica’s last refugium. Proc. Natl. Acad. Sci. USA. 108, 11356–11360 (2011).CAS
PubMed
PubMed Central
Article
ADS
Google Scholar
8.Arntz, W. E. Magellan-Antarctic: ecosystems that drifted apart. Summary review. Sci. Mar. 3(Suppl. 1), 503–511 (1999).Article
Google Scholar
9.Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and Aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).CAS
PubMed
Article
ADS
Google Scholar
10.Dalziel, I. W. D. et al. A potential barrier to deep Antarctic circumpolar flow until the Late Miocene?. Geology 41, 947–950 (2013).CAS
Article
ADS
Google Scholar
11.Anderson, J. B. et al. Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM. Quat. Sci. Rev. 100, 31–54 (2014).Article
ADS
Google Scholar
12.Klages, J. P. et al. Limited grounding-line advance onto the West Antarctic continental shelf in the easternmost Amundsen Sea Embayment during the last glacial period. PLoS ONE 12, e0181593 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
13.Thatje, S., Hillenbrand, C. D. & Larter, R. On the origin of Antarctic marine benthic community structure. Trends Ecol. Evol. 20, 534–540 (2005).PubMed
Article
Google Scholar
14.Fraser, C., Terauds, A., Smellie, J. L., Convey, P. & Chown, S. L. Geothermal activity helps life survive glacial cycles. Proc. Natl. Acad. Sci. USA. 111, 5634–5639 (2014).CAS
PubMed
PubMed Central
Article
ADS
Google Scholar
15.Lau, S. C. Y., Wilson, N. G., Silva, C. N. S. & Strugnell, J. M. Detecting glacial refugia in the Southern Ocean. Ecography 43, 1639–1656 (2020).Article
Google Scholar
16.Naish, T. et al. Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature 458, 322–328 (2009).CAS
PubMed
Article
ADS
Google Scholar
17.Clarke, A., Crame, J. A., Stromberg, J.-O. & Barker, P. F. The Southern Ocean benthic fauna and climate change: A historical perspective [and discussion]. Phil. Trans. R. Soc. B 338, 299–309 (1992).Article
ADS
Google Scholar
18.Clarke, A. & Crame, J. A. Evolutionary dynamics at high latitudes: speciation and extinction in polar marine faunas. Phil. Trans. R. Soc. B 365, 3655–3666 (2010).PubMed
PubMed Central
Article
Google Scholar
19.Barnes, D. K. A. & Conlan, K. E. Disturbance, colonization and development of Antarctic benthic communities. Philos. Trans. R. Soc. B 362, 11–38 (2007).Article
Google Scholar
20.Crame, J. A. An evolutionary perspective on marine faunal connections between southernmost South America and Antarctica. Sci. Mar. 63(Suppl 1), 1–14 (1999).Article
Google Scholar
21.Aronson, R. B. & Blake, D. B. Global climate change and the origin of modern benthic communities in Antarctica. Am. Zool. 41, 27–39 (2001).
Google Scholar
22.Clarke, A., Aronson, R. B., Crame, A., Gili, J. M. & Blake, D. B. Evolution and diversity of the benthic fauna of the Southern Ocean continental shelf. Antarct. Sci. 16, 559–568 (2004).Article
ADS
Google Scholar
23.Aronson, R. B. et al. Climate change and trophic response of the Antarctic Bottom Fauna. PLoS ONE 4, e4385 (2009).PubMed
PubMed Central
Article
ADS
CAS
Google Scholar
24.Brandt, A. et al. First insights into the biodiversity and biogeography of the Southern Ocean deep sea. Nature 447, 307–311 (2007).CAS
PubMed
Article
ADS
Google Scholar
25.Orsi, A. H., Whitworth, T. W. & Nowlin, W. D. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. I(42), 641–673 (1995).Article
Google Scholar
26.Mikhalevich, V. I. The general aspects of the distribution of Antarctic foraminifera. Micropaleontology 50, 179–194 (2004).
Google Scholar
27.Gooday, A. J., Rothe, N., Bowser, S. S. & Pawlowski, J. Benthic foraminifera. Biogeographic atlas of the Southern Ocean (ed. De Broyer, C. et al.) 74–82 (SCAR Publications, 2014).28.Heron-Allen, E. & Earland, A. Foraminifera. Part I. The ice-free area of the Falkland Islands and adjacent seas. Discov. Rep. 4, 291–460 (1932).
Google Scholar
29.Earland, A. Foraminifera, Part II, South Georgia. Discov. Rep. 7, 27–138 (1933).
Google Scholar
30.Herb, R. Distribution of recent benthonic foraminifer in the Drake Passage. AGU Antarct. Res. Ser. 17, 251–300 (1971).
Google Scholar
31.Thompson, L. Distribution of living benthic foraminifera, Isla de los Estados, Tierra del Fuego, Argentina. J. Foraminiferal Res. 8, 241–257 (1978).Article
ADS
Google Scholar
32.Dejardin, R. et al. “Live” stained) benthic foraminiferal living depths, stable isotopes, and taxonomy offshore South Georgia, Southern Ocean: Implications for calcification depths. J. Micropalaeontol. 37, 25–71 (2018).Article
ADS
Google Scholar
33.Arellano, F., Quezada, L. & Olave, C. Familia Cassidulinidae (Protozoa: Foraminiferida) en canales y fiordos patagónicos chilenos. An. Inst. Patagon. 39, 47–65 (2011).Article
CAS
Google Scholar
34.Hald, M. & Korsun, S. Distribution of modern benthic foraminifera from fjords of Svalbard, European Artic. J. Foraminiferal Res. 27, 101–122 (1997).Article
Google Scholar
35.Majewski, W., Bart, P. J. & McGlannan, A. J. Foraminiferal assemblages from ice-proximal paleo-settings in the Whales Deep Basin, eastern Ross Sea, Antarctica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 493, 64–81 (2018).Article
Google Scholar
36.Majewski, W., Prothro, L. O., Simkins, L. M., Demianiuk, E. J. & Anderson, J. B. Foraminiferal patterns in deglacial sediment in the western Ross Sea, Antarctica: Life near grounding lines. Paleoceanogr. Paleoclimatol. 35, 003716 (2020).Article
Google Scholar
37.Majewski, W. & Anderson, J. B. Holocene foraminiferal assemblages from Firth of Tay, Antarctic Peninsula: Paleoclimate implications. Mar. Micropaleontol. 73, 135–147 (2009).Article
ADS
Google Scholar
38.Kilfeather, A. A. et al. Ice-stream retreat and ice-shelf history in Marguerite Trough, Antarctic Peninsula: Sedimentological and foraminiferal signatures. Geol. Soc. Am. Bull. 123, 997–1015 (2011).CAS
Article
ADS
Google Scholar
39.Hillenbrand, C. D. et al. West antarctic ice sheet retreat driven by Holocene warm water incursions. Nature 547, 43–48 (2017).CAS
PubMed
PubMed Central
Article
ADS
Google Scholar
40.Leckie, R. M. & Webb, P. N. Late Paleogene and early Neogene foraminifers of deep sea drilling project site 270, Ross Sea, Antarctica. Initial Reports of the Deep Sea Drilling Project. Leg 90 (ed. Kennett, J. P. et al.) 1093–1118 (US Government Printing Office, 1986).41.Coccioni, R. & Galeotti, S. Foraminiferal biostratigraphy and paleoecology of the CIROS-1 core from McMurdo Sound (Ross Sea, Antarctica). Terra Antartica 4, 103–117 (1997).
Google Scholar
42.Webb, P.-N. & Strong, C. P. Recycled Pliocene foraminifera from the CRP-1 Quaternary succession. Terra Antartica 5, 473–478 (1998).
Google Scholar
43.Patterson, M. O. & Ishman, S. E. Neogene benthic foraminiferal assemblages and paleoenvironmetal record for McMurdo Sound, Antarctica. Geosphere 8, 1331–1341 (2012).Article
Google Scholar
44.Gaździcki, A. & Webb, P. N. Foraminifera from the Pecten Conglomerate (Pliocene) of Cockburn Island, Antarctic Peninsula. Palaeontol. Pol. 55, 147–174 (1996).
Google Scholar
45.Gaździcki, A. & Majewski, W. Foraminifera from the Eocene La Meseta Formation of Isla Marambio (Seymour Island), Antarctic Peninsula. Antarct. Sci. 24, 408–416 (2012).Article
ADS
Google Scholar
46.Caramés, A. & Concheyro, A. Late cenozoic foraminifera from diamictites of Cape Lamb, Vega Island, Antarctic Peninsula. Ameghiniana 50, 114–135 (2013).Article
Google Scholar
47.Majewski, W. & Gaździcki, A. Shallow water benthic foraminifera from the Polonez Cove Formation (lower Oligocene) of King George Island, West Antarctica. Mar. Micropaleontol. 111, 1–14 (2014).Article
ADS
Google Scholar
48.Quilty, P. G. Reworked Paleocene and Eocene Foraminifera, Mac. Robertson Shelf, East Antarctica paleoenvironmental implications. J. Foraminiferal Res. 31, 369–384 (2001).Article
Google Scholar
49.Quilty, P. G. Foraminifera from late Pliocene sediments of Heidemann Valley, Vestfold Hills, East Antarctica. J. Foraminiferal Res. 40, 193–205 (2010).Article
Google Scholar
50.Majewski, W., Tatur, A., Witkowski, J. & Gaździcki, A. Rich shallow-water benthic ecosystem in Late Miocene East Antarctica (Fisher Bench Fm, Prince Charles Mountains). Mar. Micropaleontol. 133, 40–49 (2017).Article
ADS
Google Scholar
51.Pawlowski, J., Holzmann, M. & Tyszka, J. New supraordinal classification of Foraminifera: Molecules meet morphology. Mar. Micropaleontol. 100, 1–10 (2013).Article
ADS
Google Scholar
52.Pawlowski, J. & Holzmann, M. A plea for DNA barcoding of foraminifera. Mar. Biodivers. 44, 213–221 (2014).Article
Google Scholar
53.Roberts, A. et al. A New integrated approach to taxonomy: The fusion of molecular and morphological systematics with type material in Benthic Foraminifera. PLoS ONE 11, e0158754 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
54.Holzmann, M. & Pawlowski, J. An updated classification of rotaliid foraminifera based on ribosomal DNA phylogeny. Mar. Micropaleontol. 132, 18–34 (2017).Article
ADS
Google Scholar
55.Majewski, W. & Pawlowski, J. Morphologic and molecular diversity of the foraminiferal genus Globocassidulina in Admiralty Bay, West Antarctica. Antarct. Sci. 22, 271–281 (2010).Article
ADS
Google Scholar
56.Majewski, W., Bowser, S. S. & Pawlowski, J. Widespread intra-specific genetic homogeneity of coastal Antarctic benthic foraminifera. Polar Biol. 38, 1–12 (2015).Article
Google Scholar
57.Majda, A. et al. Variable dispersal histories across the Drake Passage: The case of coastal benthic Foraminifera. Mar. Micropaleontol. 140, 81–94 (2018).Article
ADS
Google Scholar
58.Gschwend, F., Majda, A., Majewski, W. & Pawlowski, J. Psammophaga fuegia sp. nov., a new monothalamid foraminifer from the Beagle Channel, South America. Acta Protozool. 55, 101–110 (2016).CAS
Google Scholar
59.Pawlowski, J. Introduction to the molecular systematics of foraminifera. Micropaleontology 46(Suppl 1), 1–12 (2000).
Google Scholar
60.Gouy, M., Guindon, S. & Gascuel, O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224 (2010).CAS
Article
Google Scholar
61.Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. ABGD, Automatic barcode gap discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877 (2012).CAS
PubMed
Article
Google Scholar
62.Fujisawa, T. & Barraclough, T. G. Delimiting species using single-locus data and the generalized mixed yule coalescent (GMYC) Approach: A revised method and evaluation on simulated datasets. Syst. Biol. 62, 707–724 (2013).PubMed
PubMed Central
Article
Google Scholar
63.Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
64.Kapli, P. et al. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33, 1630–1638 (2017).CAS
PubMed
PubMed Central
Google Scholar
65.Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
66.Ezard, T., Fujisawa, T. & Barraclough, T. G. SPLITS: SPecies’ LImits by Threshold Statistics. R package version 1.0-18/r45, http://R-Forge.R-project.org/projects/splits/ (2009).67.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna). http://www.R-project.org/ (2020).68.Stamatakis, A. RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
69.Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).CAS
Google Scholar
70.Leigh, J. W. & Bryant, D. PopART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).Article
Google Scholar
71.Bandelt, H., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).CAS
PubMed
Article
Google Scholar
72.Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).CAS
PubMed
PubMed Central
Article
Google Scholar
73.Fu, Y. X. New statistical tests of neutrality for DNA samples from a population. Genetics 143, 557–570 (1996).CAS
PubMed
PubMed Central
Article
Google Scholar
74.Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).CAS
PubMed
Article
Google Scholar
75.Heled, J. & Drummond, A. Bayesian inference of population size history from multiple loci. BMC Evol. Biol. 8, 289 (2008).PubMed
PubMed Central
Article
CAS
Google Scholar
76.Schweizer, M., Pawlowski, J., Kouwenhoven, T. J., Guiard, J. & van der Zwaan, G. J. Molecular phylogeny of Rotaliida (Foraminifera) based on complete small subunit rDNA sequences. Mar. Micropaleontol. 66, 233–246 (2008).Article
ADS
Google Scholar
77.Schweizer, M., Pawlowski, J., Kouwenhoven, T. & Van Der Zwaan, B. Molecular phylogeny of common Cibicidids and related rotaliida (Foraminifera) based on small subunit rDNA sequences. J. Foraminiferal Res. 39, 300–315 (2009).Article
Google Scholar
78.Schweizer, M. Evolution and molecular phylogeny of Cibicides and Uvigerina (Rotaliid, Foraminifera). Geol. Ultraiectina 261, 1–167 (2006).
Google Scholar
79.Bouckaert, R. R. & Drummond, A. J. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 17, 42 (2017).PubMed
PubMed Central
Article
Google Scholar
80.Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
81.Loeblich, A. R. & Tappan, H. Foraminiferal Genera and their Classification (Van Nostrand Reinhold, 1987).
Google Scholar
82.D’haenens, S., Bornemann, A., Stassen, P. & Speijer, R. Multiple early Eocene benthic foraminiferal assemblages and δ13C fluctuations at DSDP Site 401 (Bay of Biscay: NE Atlantic). Mar. Micropaleontol. 88–89, 15–35 (2012).Article
ADS
Google Scholar
83.Cushman, J. A. & Stone, B. Foraminifera from the Eocene, Chacra Formation, of Peru. Cont. Cushman Lab. Foram. Res. 25, 49–58 (1949).
Google Scholar
84.Arreguin-Rodriguez, G. J., Thomas, E., Dhaenens, S., Speijer, R. P. & Alegret, L. Early eocene deep-sea benthic foraminiferal faunas: Recovery from the paleocene eocene thermal maximum extinction in a greenhouse world. PLoS ONE 13, e0193167 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
85.Proto Decima, F. & Ferasin, F. Nuove specie di foraminiferi nell’Eocene del Monte Ceva (Colli Euganei). Riv. Ital. Paleont. Strat. 60, 247–252 (1954).
Google Scholar
86.Cushman, J. A. A rich foraminiferal fauna from the Cocoa Sand of Alabama. Cushman Lab. Foram. Res. Spec. Pub. 16, 1–40 (1946).
Google Scholar
87.Heron-Allen, E. & Earland, A. Protozoa, Part 2. Foraminifera. Nat. Hist. Rep. Br. Antarct. Exp. 6, 25–268 (1922).
Google Scholar
88.Shevenell, A. E., Kennett, J. P. & Lea, D. W. Middle Miocene ice sheet dynamics, deep-sea temperatures, and carbon cycling: A Southern Ocean perspective. Geochem. Geophys. Geosy. 9, Q02006 (2008).Article
ADS
CAS
Google Scholar
89.Lawver, L. A. & Gahagan, L. M. Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeogr. Palaeoclimatol. Palaeoecol. 198, 11–37 (2003).Article
Google Scholar
90.Lewis, A. R. et al. Mid-Miocene cooling and the extinction of tundra in continental Antarctica. Proc. Natl. Acad. Sci. USA 105, 10676–10680 (2008).CAS
PubMed
PubMed Central
Article
ADS
Google Scholar
91.Verducci, M. et al. The Middle Miocene climatic transition in the Southern Ocean: Evidence of paleoclimatic and hydrographic changes at Kerguelen plateau from planktonic foraminifers and stable isotopes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 280, 371–386 (2009).Article
Google Scholar
92.Majewski, W. & Bohaty, S. Surface−water cooling and salinity decrease during the Middle Miocene Climate Transition at Southern Ocean ODP Site 747 (Kerguelen Plateau). Mar. Micropaleontol. 74, 1–14 (2010).Article
ADS
Google Scholar
93.Cheng, C. H. C. & Detrich, H. W. Molecular ecophysiology of Antarctic notothenioid fishes. Philos. Trans. R. Soc. B 362, 2215–2232 (2007).CAS
Article
Google Scholar
94.Barco, A., Schiaparelli, S., Houart, R. & Oliverio, M. Cenozoic evolution of Muricidae (Mollusca, Neogastropoda) in the Southern Ocean, with the description of a new subfamily. Zool. Scr. 41, 596–616 (2012).Article
Google Scholar
95.González-Wevar, C. A., Nakano, T., Canete, J. I. & Poulin, E. Molecular phylogeny and historical biogeography of Nacella (Patellogastropoda: Nacellidae) in the Southern Ocean. Mol. Phylogen. Evol. 56, 115–124 (2010).Article
Google Scholar
96.González-Wevar, C. A. et al. Following the Antarctic Circumpolar Current: Patterns and processes in the biogeography of the limpet Nacella (Mollusca: Patellogastropoda) across the Southern Ocean. J. Biogeogr. 44, 861–874 (2017).Article
Google Scholar
97.González-Wevar, C. A. et al. Cryptic speciation in Southern Ocean Aequiyoldia eightsii (Jay, 1839): Mio-Pliocene trans-Drake separation and diversification. Prog. Oceanogr. 174, 44–54 (2019).Article
ADS
Google Scholar
98.Strugnell, J. M., Rogers, A. D., Prodohl, P. A., Collins, M. A. & Allcock, A. L. The thermohaline expressway: The Southern Ocean as a centre of origin for deep-sea octopuses. Cladistics 24, 853–860 (2008).Article
Google Scholar
99.Feakins, S., Warny, S. & Lee, J. E. Hydrologic cycling over Antarctica during the middle Miocene warming. Nat. Geosci. 5, 557–560 (2012).CAS
Article
ADS
Google Scholar
100.Malumián, N. Foraminíferos bentónicos de la localidad tipo de la Formación La Despedida (Eoceno, Isla Grande de Tierra del Fuego) Part I: Textulariina y Miliolina. Ameghiniana 25, 341–356 (1989).
Google Scholar
101.Scarpa, R. & Malumián, N. Foraminíferos del Oligoceno inferior de los Andes Fueguinos, Argentina: Su significado tectónico-ambiental. Ameghiniana 45, 361–376 (2008).
Google Scholar
102.Galeotti, S., Cita, M. B. & Coccioni, R. Foraminiferal biostratigraphy and palaeoecology from two intervals of the CRP2/2A drilhole. Terra Antartica 7, 473–478 (2000).
Google Scholar
103.Malumián, N. & El Olivero, E. B. Grupo Cabo Domingo, Tierra del Fuego: Bioestratigrafía, paleoambientes y acontecimientos del Eoceno-Mioceno marino. Rev. Asoc. Geol. Argent. 61, 139–160 (2006).
Google Scholar
104.Li, B., Yoon, H. I. & Park, B. K. Foraminiferal assemblages and CaCO3 dissolution since the last deglaciation in the Maxwell Bay King George Island, Antarctica. Mar. Geol. 169, 239–257 (2000).CAS
Article
ADS
Google Scholar
105.Majewski, W. Benthic foraminiferal communities: Distribution and ecology in Admiralty Bay, King George Island, West Antarctica. Pol. Polar Res. 26, 159–214 (2005).
Google Scholar
106.Corliss, B. Size variation in the deep-sea benthonic foraminifer Globocassidulina subglobosa (Brady) in the Southeast Indian Ocean. J. Foraminiferal Res. 9, 50–60 (1979).Article
Google Scholar
107.Wright, J. D. & Miller, K. G. Southern ocean influences on late eocene to miocene deepwater circulation. Antarct. Res. Ser. 60, 1–25 (1993).Article
Google Scholar
108.Colleoni, F. et al. Past continental shelf evolution increased Antarctic ice sheet sensitivity to climatic conditions. Sci. Rep. 8, 11323 (2018).PubMed
PubMed Central
Article
ADS
CAS
Google Scholar
109.Strugnell, J. M. et al. The Southern ocean: Source and sink?. Deep-Sea Res. II 58, 196–204 (2011).CAS
Article
ADS
Google Scholar
110.Verheye, M. L., Backeljau, T. & d’Udekem d’Acoz, C. Locked in the icehouse: Evolution of an endemic Epimeria (Amphipoda, Crustacea) species flock on the Antarctic shelf. Mol. Phylogenet. Evol. 114, 14–33 (2017).PubMed
Article
Google Scholar
111.Galeotti, S. & Coccioni, R. Foraminiferal analysis of the Miocenc CRP-l core (Ross Sea, Antarctica). Terra Antartica 5, 521–526 (1998).
Google Scholar
112.Pillet, L., Fontaine, D. & Pawlowski, J. Intra-genomic ribosomal RNA polymorphism and morphological variation in Elphidium macellum suggests inter-specific hybridization in Foraminifera. PLoS ONE 7, e32373 (2012).CAS
PubMed
PubMed Central
Article
ADS
Google Scholar
113.Darling, J. Interspecific hybridization and mitochondrial introgression in invasive Carcinus shore crabs. PLoS ONE 6, e17828 (2011).CAS
PubMed
PubMed Central
Article
ADS
Google Scholar
114.Dietz, L. et al. Regional differentiation and extensive hybridization between mitochondrial clades of the Southern Ocean giant sea spider Colossendeis megalonyx. R. Soc. Open Sci. 2, 140424 (2015).PubMed
PubMed Central
Article
ADS
CAS
Google Scholar
115.Ruiz, M. B., Taverna, A., Servetto, N., Sahade, R. & Held, C. Hidden diversity in Antarctica: Molecular and morphological evidence of two different species within one of the most conspicuous ascidian species. Ecol. Evol. 10, 8127–8143 (2020).PubMed
PubMed Central
Article
Google Scholar
116.Fraser, C. I. et al. Antarctica’s ecological isolation will be broken by storm-driven dispersal and warming. Nat. Clim. Change 8, 704–708 (2018).Article
ADS
Google Scholar
117.Avila, C. et al. Invasive marine species discovered on non–native kelp rafts in the warmest Antarctic island. Sci. Rep. 10, 1639 (2020).CAS
PubMed
PubMed Central
Article
ADS
Google Scholar
118.Alve, E. & Goldstein, S. T. Propagule transport as a key method of dispersal in benthic Foraminifera (Protista). Limnol. Oceanogr. 48, 2163–2170 (2003).Article
ADS
Google Scholar
119.Alve, E. & Goldstein, S. T. Dispersal, survival and delayed growth of benthic foraminiferal propagules. J. Sea Res. 63, 36–51 (2010).Article
ADS
Google Scholar
120.Burke, K. D. et al. Pliocene and Eocene provide best analogs for near-future climates. Proc. Natl. Acad. Sci. USA. 115, 13288–13293 (2018).CAS
PubMed
PubMed Central
Article
ADS
Google Scholar
121.Carter, A., Curtis, M. & Schwanenthal, J. Cenozoic tectonic history of the South Georgia microcontinent and potential as a barrier to Pacific-Atlantic through flow. Geology 42, 299–302 (2014).CAS
Article
ADS
Google Scholar
122.Clarke, A., Barnes, D. K. A. & Hodgson, D. A. How isolated is Antarctica?. Trends Ecol. Evol. 20, 1–3 (2005).PubMed
Article
Google Scholar
123.Glorioso, P. D., Piola, A. R. & Leben, R. R. Mesoscale eddies in the Subantarctic Front: Southwest Atlantic. Sci. Mar. 69(Suppl 2), 7–15 (2012).
Google Scholar
124.Bart, P. J. & Iwai, M. The overdeepening hyphothesis: how erosional modification of the marine-scape during the early Pliocene altered glacial dynamics on the Antarctic Peninsula’s Pacific margin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 335–336, 42–51 (2012).Article
Google Scholar
125.González-Wevar, C. A., Díaz, A., Gerard, K., Caňete, J. I. & Poulin, E. Divergence time estimations and contrasting patterns of genetic diversity between Antarctic and southern South America benthic invertebrates. Rev. Chil. Hist. Nat. 85, 445–456 (2012).Article
Google Scholar
126.Poulin, E., González-Wevar, C., Díaz, A., Gérard, K. & Hüne, M. Divergence between Antarctic and South American marine invertebrates: what molecular biology tells us about the Scotia Arc geodynamics and the intensification of the Antarctic Circumpolar Current. Glob. Planet. Change. 123, 392–399 (2014).Article
ADS
Google Scholar
127.McKay, R. et al. Pleistocene variability of Antarctic ice sheet extent in the Ross embayment. Quat. Sci. Rev. 34, 93–112 (2012).Article
ADS
Google Scholar
128.Pollard, D. & DeConto, R. M. Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458, 329–332 (2009).CAS
PubMed
Article
ADS
Google Scholar
129.Allcock, A. L. & Strugnell, J. M. Southern Ocean diversity: New paradigms from molecular ecology. Trends Ecol. Evol. 278, 520–528 (2012).Article
Google Scholar
130.Wilson, N. G., Schrödl, M. & Halanych, K. M. Ocean barriers and glaciation: Evidence for explosive radiation of mitochondrial lineages in the Antarctic sea slug Doris kerguelenensis (Mollusca, Nudibranchia). Mol. Ecol. 18, 965–984 (2009).PubMed
Article
Google Scholar
131.Arango, C. P., Soler-Membrives, A. & Miller, K. J. Genetic differentiation in the circum-Antarctic sea spider Nymphon australe (Pycnogonida; Nymphonidae). Deep Sea Res. II 58, 212–219 (2011).CAS
Article
ADS
Google Scholar
132.Fraser, C. I., Nikula, R., Ruzzante, D. E. & Waters, J. M. Poleward bound: Biological impacts of Southern Hemisphere glaciation. Trends Ecol. Evol. 27, 462–471 (2012).PubMed
Article
Google Scholar
133.Darling, K. F., Kucera, M., Pudsey, C. J. & Wade, C. M. Molecular evidence links cryptic diversification in polar planktonic protists to quaternary climate dynamics. Proc. Natl. Acad. Sci. USA. 101, 7657–7662 (2004).CAS
PubMed
PubMed Central
Article
ADS
Google Scholar
134.Quilty, P. G. Neogene foraminifers and accessories, ODP Leg 188, Sites 1165, 1166, and 1167, Prydz Bay, Antarctica. Proc. Ocean Drill. Prog. Sci. Results 188, 1–41 (2003).
Google Scholar
135.Díaz, A. et al. Genetic structure and demographic inference of the regular sea urchin Sterechinus neumayeri (Meissner, 1900) in the Southern Ocean: The role of the last glaciation. PLoS ONE 13, e0197611 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
136.Brey, T., Dahm, C., Gorny, M., Stiller, M. & Arntz, W. E. Do Antarctic benthic invertebrates show extended levels of eurybathy?. Ant. Sci. 8, 3–6 (1996).Article
Google Scholar
137.Dambach, J., Thatje, S., Rödder, D., Basher, Z. & Raupach, M. J. Effects of Late-Cenozoic glaciation on habitat availability in Antarctic benthic shrimps (Crustacea: Decapoda: Caridea). PLoS ONE 7, e4628 (2012).Article
CAS
Google Scholar
138.Soler-Membrives, A., Linse, K., Miller, K. J. & Arango, C. P. Genetic signature of Last Glacial Maximum regional refugia in a circum-Antarctic sea spider. R. Soc. Open Sci. 4, 170615 (2017).PubMed
PubMed Central
Article
ADS
Google Scholar
139.Holbourn, A., Henderson, A. & McLeod, N. Atlas of Benthic Foraminifera (Wiley-Blackwell, 2013).Book
Google Scholar
140.Gooday, A. J. & Jorissen, F. J. Benthic foraminiferal biogeography: Controls on global distribution patterns in deep-water settings. Ann. Rev. Mar. Sci. 4, 237–262 (2012).PubMed
Article
Google Scholar
141.Melis, R. & Salvi, G. Late Quaternary foraminiferal assemblages from western Ross Sea (Antarctica) in relation to the main glacial and marine lithofacies. Mar. Micropaleontol. 70, 39–53 (2009).Article
ADS
Google Scholar
142.Majewski, W., Wellner, J. S. & Anderson, J. B. Environmental connotations of benthic foraminiferal assemblages from coastal West Antarctica. Mar. Micropaleontol. 124, 1–15 (2016).Article
ADS
Google Scholar
143.Majewski, W., Stolarski, J. & Bart, P. J. Two rare pustulose/sponose morphotypes of benthic foraminifera from eastern Ross Sea. J. Foraminiferal Res. 49, 405–422 (2019).Article
Google Scholar
144.Davies, B. J. et al. The evolution of the Patagonian Ice Sheet from 35 ka to the present day (PATICE). Earth Sci. Rev. 204, 103152 (2020).Article
Google Scholar
145.González-Wevar, C. A. et al. Phylogeography in Galaxias maculatus (Jenyns, 1848) along two biogeographical provinces in the Chilean coast. PLoS ONE 10, e0131289 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
146.Ocaranza-Barrera, P., González Wevar, C. A., Guillemin, M.-L., Rosenfeld, S. & Mansilla, A. Molecular divergence between Iridaea cordata (Turner) Bory de Saint-Vincent from the Antarctic Peninsula and the Magellan Region. J. Appl. Phycol. 31, 939–949 (2019).CAS
Article
Google Scholar
147.Yasuhara, M., Tittensor, D. P., Hillebrand, H. & Worm, B. Combining marine macroecology and palaeoecology in understanding biodiversity: Microfossils as a model. Biol. Rev. 92, 199–215 (2017).PubMed
Article
Google Scholar
148.Yasuhara, M. et al. Time machine biology: Cross-timescale integration of ecology, evolution, and oceanography. Oceanography 33, 16–28 (2020).Article
Google Scholar
149.Meredith, M. P. & King, J. C. Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys. Res. Lett. 32, L19604 (2005).ADS
Google Scholar
150.Convey, P. & Peck, L. S. Antarctic environmental change and biological responses. Sci. Adv. 11, 0888 (2019).ADS
Google Scholar
151.Ingels, J. et al. Possible effects of global environmental changes on Antarctic benthis: A synthesis across five major taxa. Ecol. Evol. 2, 453–485 (2012).PubMed
PubMed Central
Article
Google Scholar More