Late Quaternary dynamics of Arctic biota from ancient environmental genomics
1.Binney, H. et al. Vegetation of Eurasia from the last glacial maximum to present: key biogeographic patterns. Quat. Sci. Rev. 157, 80–97 (2017).ADS
Article
Google Scholar
2.Clark, P. U. et al. The Last Glacial Maximum. Science 325, 710–714 (2009).ADS
CAS
PubMed
Article
Google Scholar
3.Bigelow, N. H. Climate change and Arctic ecosystems: 1. Vegetation changes north of 55°N between the last glacial maximum, mid-Holocene, and present. J. Geophys. Res. 108, https://doi.org/10.1029/2002jd002558 (2003).4.Graham, R. W. et al. Timing and causes of mid-Holocene mammoth extinction on St. Paul Island, Alaska. Proc. Natl Acad. Sci. USA 113, 9310–9314 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
5.Stuart, A. J. Late Quaternary megafaunal extinctions on the continents: a short review. Geol. J. 50, 338–363 (2015).Article
Google Scholar
6.Koch, P. L. & Barnosky, A. D. Late Quaternary extinctions: state of the debate. Ann. Rev. Ecol. Evol. Syst. 37, 215–250 (2006).Article
Google Scholar
7.Rabanus-Wallace, M. T. et al. Megafaunal isotopes reveal role of increased moisture on rangeland during late Pleistocene extinctions. Nat. Ecol. Evol. 1, 0125 (2017).Article
Google Scholar
8.Mann, D. H., Groves, P., Kunz, M. L., Reanier, R. E. & Gaglioti, B. V. Ice-age megafauna in Arctic Alaska: extinction, invasion, survival. Quat. Sci. Rev. 70, 91–108 (2013).ADS
Article
Google Scholar
9.Capo, E. et al. Lake sedimentary DNA research on past terrestrial and aquatic biodiversity: overview and recommendations. Quaternary 4, https://doi.org/10.3390/quat4010006 (2021).10.Edwards, M. E. et al. Metabarcoding of modern soil DNA gives a highly local vegetation signal in Svalbard tundra. Holocene 28, 2006–2016 (2018).ADS
Article
Google Scholar
11.Hughes, P. D., Gibbard, P. L. & Ehlers, J. Timing of glaciation during the last glacial cycle: evaluating the concept of a global ‘Last Glacial Maximum’ (LGM). Earth Sci. Rev. 125, 171–198 (2013).ADS
Article
Google Scholar
12.Willerslev, E. et al. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506, 47–51 (2014).ADS
CAS
PubMed
Article
Google Scholar
13.Rasmussen, S. O. et al. A new Greenland ice core chronology for the last glacial termination. J. Geophys. Res. 111, https://doi.org/10.1029/2005jd006079 (2006).14.Mangerud, J. The discovery of the Younger Dryas, and comments on the current meaning and usage of the term. Boreas 50, 1–5 (2020).Article
Google Scholar
15.Bauska, T. K. et al. Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation. Proc. Natl Acad. Sci. USA 113, 3465–3470 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
16.Wesser, S. D. & Armbruster, W. S. Species distribution controls across a forest‐steppe transition: a causal model and experimental test. Ecol. Monogr. 61, 323–342 (1991).Article
Google Scholar
17.Rijal, D. P. et al. Sedimentary ancient DNA shows terrestrial plant richness continuously increased over the Holocene in northern Fennoscandia. Sci. Adv. 7, eabf9557 (2021).18.Birks, H. H. Aquatic macrophyte vegetation development in Kråkenes Lake, western Norway, during the late-glacial and early-Holocene. J. Paleolimnol. 23, 7–19 (2000).ADS
Article
Google Scholar
19.Guthrie, R. D. Origin and causes of the mammoth steppe: a story of cloud cover, woolly mammal tooth pits, buckles, and inside-out Beringia. Quat. Sci. Rev. 20, 549–574 (2001).ADS
Article
Google Scholar
20.Mann, D. H., Peteet, D. M., Reanier, R. E. & Kunz, M. L. Responses of an Arctic landscape to Lateglacial and early Holocene climatic changes: the importance of moisture. Quat. Sci. Rev. 21, 997–1021 (2002).ADS
Article
Google Scholar
21.Ritchie, M. in Competition and Coexistence (eds Sommer, U. & Worm, B.) 109–131 (Springer, 2002).22.Signor, P. W., Lipps, J. H., Silver, L. & Schultz, P. in Geological Implications of Impacts of Large Asteroids and Comets on the Earth vol. 190 (eds Silver, L. T. & Schultz, P. H.) 291–296 (1982).23.Haile, J. et al. Ancient DNA reveals late survival of mammoth and horse in interior Alaska. Proc. Natl Acad. Sci. USA 106, 22352–22357 (2009).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
24.Librado, P. et al. Tracking the origins of Yakutian horses and the genetic basis for their fast adaptation to subarctic environments. Proc. Natl Acad. Sci. USA 112, E6889–E6897 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
25.Nikolskiy, P. A., Sulerzhitsky, L. D. & Pitulko, V. V. Last straw versus Blitzkrieg overkill: climate-driven changes in the Arctic Siberian mammoth population and the Late Pleistocene extinction problem. Quat. Sci. Rev. 30, 2309–2328 (2011).ADS
Article
Google Scholar
26.Pavlov, P., Svendsen, J. I. & Indrelid, S. Human presence in the European Arctic nearly 40,000 years ago. Nature 413, 64–67 (2001).ADS
CAS
PubMed
Article
Google Scholar
27.Kuzmin, Y. V. & Keates, S. G. Siberia and neighboring regions in the Last Glacial Maximum: did people occupy northern Eurasia at that time? Archaeol. Anthropol. Sci. 10, 111–124 (2016).Article
Google Scholar
28.Stuart, A. J. & Lister, A. M. Extinction chronology of the woolly rhinoceros Coelodonta antiquitatis in the context of late Quaternary megafaunal extinctions in northern Eurasia. Quat. Sci. Rev. 51, 1–17 (2012).ADS
Article
Google Scholar
29.Chang, D. et al. The evolutionary and phylogeographic history of woolly mammoths: a comprehensive mitogenomic analysis. Sci. Rep. 7, 44585 (2017).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
30.Vartanyan, S. L., Arslanov, K. A., Karhu, J. A., Possnert, G. & Sulerzhitsky, L. D. Collection of radiocarbon dates on the mammoths (Mammuthus primigenius) and other genera of Wrangel Island, northeast Siberia, Russia. Quat. Res. 70, 51–59 (2017).Article
CAS
Google Scholar
31.Rogers, R. L. & Slatkin, M. Excess of genomic defects in a woolly mammoth on Wrangel island. PLoS Genet. 13, e1006601 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
32.Zimov, S. A., Zimov, N. S., Tikhonov, A. N. & Chapin, F. S. Mammoth steppe: a high-productivity phenomenon. Quat. Sci. Rev. 57, 26–45 (2012).ADS
Article
Google Scholar
33.Yurtsev, B. A. The Pleistocene “Tundra-Steppe” and the productivity paradox: the landscape approach. Quat. Sci. Rev. 20, 165–174 (2001).ADS
Article
Google Scholar
34.Rybczynski, N. et al. Mid-Pliocene warm-period deposits in the High Arctic yield insight into camel evolution. Nat. Commun. 4, 1550 (2013).ADS
PubMed
Article
CAS
PubMed Central
Google Scholar
35.Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).CAS
Article
Google Scholar
36.Pedersen, M. W. et al. Postglacial viability and colonization in North America’s ice-free corridor. Nature 537, 45–49 (2016).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
37.Slon, V. et al. Neandertal and Denisovan DNA from Pleistocene sediments. Science 356, 605–608 (2017).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
38.Lorenz, M. G. & Wackernagel, W. Adsorption of DNA to sand and variable degradation rates of adsorbed DNA. Appl. Environ. Microb. 53, 2948–2952 (1987).ADS
CAS
Article
Google Scholar
39.Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, pdb.prot5448 (2010).PubMed
Article
PubMed Central
Google Scholar
40.Willerslev, E., Hansen, A. J. & Poinar, H. N. Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends Ecol. Evol. 19, 141–147 (2004).PubMed
Article
Google Scholar
41.Alsos, I. G. et al. The treasure vault can be opened: large-scale genome skimming works well using herbarium and silica gel dried material. Plants 9, https://doi.org/10.3390/plants9040432 (2020).42.Hill, M. O. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432 (1973).Article
Google Scholar
43.Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence-absence data. J. Anim. Ecol. 72, 367–382 (2003).Article
Google Scholar
44.Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).Article
Google Scholar
45.Grootes, P. M. & Stuiver, M. Oxygen 18/16 variability in Greenland snow and ice with 10−3- to 105-year time resolution. J. Geophys. Res. Oceans 102, 26455–26470 (1997).ADS
CAS
Article
Google Scholar
46.Andersen, K. K. et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147–151 (2004).ADS
CAS
PubMed
Article
Google Scholar
47.Stuiver, M. & Grootes, P. M. GISP2 oxygen isotope ratios. Quat. Res. 53, 277–284 (2017).Article
CAS
Google Scholar
48.Johnsen, S. J. et al. The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability. J. Geophys. Res. Oceans 102, 26397–26410 (1997).ADS
CAS
Article
Google Scholar
49.Fuhrer, K., Neftel, A., Anklin, M. & Maggi, V. Continuous measurements of hydrogen peroxide, formaldehyde, calcium and ammonium concentrations along the new grip ice core from summit, Central Greenland. Atmos. Environ. A 27, 1873–1880 (1993).ADS
Article
Google Scholar
50.Mayewski, P. A. et al. Major features and forcing of high-latitude northern hemisphere atmospheric circulation using a 110,000-year-long glaciochemical series. J. Geophys. Res. Oceans 102, 26345–26366 (1997).ADS
CAS
Article
Google Scholar
51.Alley, R. B. et al. Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362, 527–529 (1993).ADS
Article
Google Scholar
52.Holden, P. B. et al. PALEO-PGEM v1.0: a statistical emulator of Pliocene–Pleistocene climate. Geosci. Model Dev. 12, 5137–5155 (2019).ADS
CAS
Article
Google Scholar
53.Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed
PubMed Central
Article
Google Scholar
54.Martindale, A. et al. Canadian Archaeological Radiocarbon Database (CARD 2.1) (Laboratory of Archaeology at the University of British Columbia, and the Canadian Museum of History, accessed 6 February 2020).55.Vermeersch, P. M. Radiocarbon Palaeolithic Europe database: a regularly updated dataset of the radiometric data regarding the Palaeolithic of Europe, Siberia included. Data Brief 31, 105793 (2020).PubMed
PubMed Central
Article
Google Scholar
56.Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. B 71, 319–392 (2009).MathSciNet
MATH
Article
Google Scholar
57.Lindgren, F. & Rue, H. Bayesian spatial modelling with R-INLA. J. Stat. Softw. 63, 1–25 (2015).Article
Google Scholar
58.Martiniano, R., De Sanctis, B., Hallast, P. & Durbin, R. Placing ancient DNA sequences into reference phylogenies. Preprint at https://doi.org/10.1101/2020.12.19.423614 (2020).59.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).60.Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
61.Wang, Y. et al. Supporting Data for: Late Quaternary Dynamics of Arctic Biota from Ancient Environmental Metagenomics https://dataverse.no/privateurl.xhtml?token=86979109-5605-43b5-b3fb-f470d85b114c (2021).62.Theodoridis, S. et al. Climate and genetic diversity change in mammals during the Late Quaternary. Preprint at https://doi.org/10.1101/2021.03.05.433883 (2021). More
