More stories

  • in

    Advancing agricultural research using machine learning algorithms

    Two databases including yield, management, and weather data for maize (n = 17,013) and soybean (n = 24,848) involving US crop performance trials conducted in 28 states between 2016 to 2018 for maize and between 2014 to 2018 for soybean, were developed (Fig. 1). Crop yield and management data were obtained from publicly available variety performance trials which are typically performed yearly in several locations across each state (see methods for more information). Final databases were separated in training (80% of database) and testing (20% of database) datasets using stratified sampling by year, use of irrigation, and soil type. For each crop, an extreme gradient boosting (XGBoost, see methods for more information) algorithm to estimate yield based on soil type and weather conditions (E), seed traits (G) and management practices (M) was developed (see variables listed in Tables S1 and S2 for maize and soybean, respectively, and data science workflow in Fig. S1).Figure 1Locations where maize and soybean trials were performed during the examined period. The map was developed in ArcGIS Pro 2.8.0 (https://www.esri.com).Full size imageThe developed algorithms exhibited a high degree of accuracy when estimating yield in independent datasets (test dataset not used for model calibration) (Fig. 2). For maize, the root mean square error (RMSE) and mean absolute error (MAE) was a respective 4.7 and 3.6% of the dataset average yield (13,340 kg/ha). For soybean, the respective RMSE and MAE was 6.4 and 4.9% of the dataset average yield (4153 kg/ha). As is evident in the graphs (Fig. 2), estimated yields exhibited a high degree of correlation with actual yields for both algorithms in the independent datasets. For maize and soybean, 72.3 and 60% of cases in the test dataset deviated less than 5% from actual yields, respectively. Maximum deviation for maize and soybean reached 43 and 70%, respectively. Data points with deviations greater than 15% from actual yield were 1.5% in maize and 3.6% in soybean databases. These results suggest that the developed algorithms can accurately estimate maize and soybean yields utilizing database-generated information involving reported environmental, seed genetic, and crop management variables.Figure 2Actual versus algorithm-derived maize (left) and soybean (right) yield in test datasets. Black solid line indicates y = x, red short-dashed lines, black dashed lines, and red long-dashed lines indicate ± 5, 10, and 15% deviation from the y = x line. RMSE, root mean square error; MAE, mean absolute error; r2, coefficient of determination; n = number of observations. Each observation corresponds to a yield of an individual cropping system in a specific environment (location-year).Full size imageIn contrast to statistical models, ML algorithms can be complex, and the effect of single independent variables may not obvious. However, accumulated local effects (ALE) plots14 can aid the understanding and visualization of important and possibly correlated features in ML algorithms. For both crops, indicatively important variables included sowing date, seeding rate, nitrogen fertilizer (for maize), row spacing (for soybean) and June to September cumulative precipitation (Fig. 3). Across the entire region and for both crops, the algorithm-derived trends suggest that above average yields occur in late April to early May sowing dates, but sharply decrease thereafter. Similar responses have been observed in many regional studies across the US for both, maize15,16,17,18 and soybean19. Similarly, simulated yield curves due to increasing seeding rate are in close agreement with previous maize20,21 and soybean22 studies. The maize algorithm has captured the increasing yield due to increasing N fertilizer rate. The soybean algorithm suggests that narrower row spacing resulted in above average yield compared to wider spacing. Such response has been observed in many regions across the US23. Season cumulative precipitation between 400 and 700 mm resulted in above average yields for both crops.Figure 3Accumulated local effect plots for maize sowing date (A), seeding rate (B), Nitrogen fertilizer rate (C), and cumulative precipitation between June and September (mm) (D), and soybean sowing date (E), seeding rate (F), row spacing (G), and cumulative precipitation between June and September (mm) (H).Full size imageThe responses in the ALE plots (Fig. 3) suggest that these algorithms have captured the general expected average responses for important single features. Nevertheless, our databases include hundreds of locations with diverse environments across the US and site-specific crop responses which may vary due to components of the G × E × M interaction. We argue that, instead of examining a single or low-order management interactions, site-specific evaluation of complex high order interactions (a.k.a. cropping systems) can reveal yield differences that current research approaches cannot fully explore and quantify. For example, sowing date exerts a well-known impact on maize and soybean yield. For each crop separately, by creating a hypothetical cropping system (a single combination of all management and traits in Tables S1 and S2) in a randomly chosen field in south central Wisconsin (latitude = 43.34, longitude = -89.38), and by applying the developed algorithms, we can generate estimates of maize and soybean yield. For that specific field and cropping system (out of the vast number of management combinations a farmer can choose from), maize yield with May 1st sowing was 711 kg/ha greater (6% increase) than June sowing (Fig. 4A). By creating scenarios with 256 background cropping system choices (Table S3), the resultant algorithm-derived yield estimate difference for the same sowing date contrast (averaged across varying cropping systems) was smaller but still positive (3% increase), although the range of possible yield differences was wider (Fig. 4B). However, when comparing, instead of averaging, the estimated yield potential among the simulated cropping systems, a 2903 kg/ha yield difference (25% difference) was observed (Fig. 4C). Interestingly, when focusing on the early sown fields that were expected to exhibit the greatest yield, the same yield difference was observed (Fig. 4D). This result shows that sub-optimal background management can mitigate the beneficial effect of early sowing (Table S4).Figure 4Maize yield difference (in kg/ha and percentage) due to sowing date (May 1st vs. June 1st) for a single identical background cropping system (A), maize yield difference due to sowing date when averaged across 256 (3 years × 256 cropping systems = 768 year-specific yields) (B), maize yield variability in each of the 256 cropping systems (C), and maize yield variability in each of the 128 cropping systems with early sowing (D). Soybean yield difference due to sowing date (May 1st vs June 1st) for a single identical background cropping system (E), soybean yield difference due to sowing date when averaged across 128 (5 years × 128 cropping systems = 640 year-specific yields) (F), soybean yield in each of the 128 cropping systems (G) and soybean yield variability due in each of the 64 cropping systems with early sowing (H). Within each panel, the horizontal red and grey lines indicate the boxplot with maximum and minimum yield, respectively. In the left four panels, boxes delimit first and third quartiles; solid lines inside boxes indicate median and green triangles indicate means. Upper and lower whiskers extend to maximum and minimum yields. Each maize and soybean cropping system is a respective 8-way and a 7-way interaction of management practices in a randomly chosen field in Wisconsin, USA (Table S3 and S5, respectively).Full size imageIn the case of soybean, a May 1st sowing resulted in greater yield (588 kg/ha; a 14% increase) than a June 1st in the single background cropping system (Fig. 4E). The result was consistent when yield differences due to sowing date were averaged across 128 background cropping system choices (Table S5) (Fig. 4F). Similar to what was observed in maize, among all cropping systems, yield varied by 1704 kg/ha (44% difference) (Fig. 4G). When focusing only on the early sown fields, a 1181 kg/ha yield difference (27% yield increase) was observed (Fig. 4H). In agreement with maize, this result highlights the importance of accounting for sub-optimal background management which can mitigate the beneficial effect of early sowing (Table S6).We note here the ability of farmers to change management practices can be limited due to an equipment constraint (e.g., change planter unit row width) or simply impossible (e.g., change the previous year’s crop). Thus, recommended management practices that were evaluated in studies that used specific background management may not be applicable in some instances. The benefits of the foregoing approach, which involves extensive up-to-date agronomic datasets and high-level computational programing, can have important and immediate implications in future agricultural trials. Our approach allows for more precise examination of complex management interactions in specific environments (soil type and growing season weather) across the US (region covered in Fig. 1). The ability to extract single management practice information (even across cropping systems) is also possible by utilizing ALE plots, or by calculation of the frequency at which a given level/rate of a management practice appeared among the highest yielding cropping systems (Tables S4 and S6).Among all available 30-d weather variables, many were strongly correlated in both crop databases (Figs. S2 and S3 for maize and soybean, respectively). Models using all 30-d interval variables with r  More

  • in

    Landscape genetics and the genetic legacy of Upper Paleolithic and Mesolithic hunter-gatherers in the modern Caucasus

    Sampling and genotypingWe collected hair and cheek swab samples from 77 men from geographically and linguistically distinct groups of the Caucasus: Kartvelian speakers from Georgia and Turkey, Northeast Caucasian speakers and Turkic speakers from the Russian Federation and Armenian speakers from Georgia’s southern province of Javakheti, descendants of the families displaced from Mush and Erzurum provinces of eastern Turkey in the early nineteenth century (Table 1, Fig. 1). To maximize the representativeness of the genetic signature of each population, the samples were collected from locals with no ancestors from outside of the respective ethnic/geographic population over the last three generations. DNA was extracted from follicles of 10–12 male chest hairs and cheek swab samples. Extraction was performed using Qiagen DNeasy Blood and Tissue kit, following the manufacturer’s recommendations (Qiagen, Valencia, CA, USA). The DNA samples were genotyped for 693,719 autosomal and 17,678 X-chromosomal SNPs by Family Tree DNA (FTDNA—Gene By Gene, Ltd, Houston, TX, www.familytreedna.com).Table 1 Modern study populations of the Caucasus. Latitude and longitude georeference population hubs.Full size tableFigure 1The distribution of the study populations: averaged centroids of ancient populations (uniquely colored points in the main map, see Table 2 for details) and hubs of the modern Caucasian populations (identified in the inset map, see Table 1 for details). Glacial human refugia extracted from Gavashelishvili and Tarkhnishvili5 are shaded in purple. The map is generated using QGIS Desktop 3.10.6-A Coruña (https://qgis.org).Full size imageOur dataset of modern Caucasian genotypes was supplemented with published 10 modern Mbuti (Supplementary Table S1) and 122 Upper Paleolithic-Mesolithic human genotypes, retrieved as a part of 1240 K dataset from David Reich’s Lab website, Harvard University (https://reich.hms.harvard.edu/downloadable-genotypes-present-day-and-ancient-dna-data-compiled-published-papers; see Supplementary Table S2 for details). The ancient genotypes were selected such that they either dated from the LGM or fell within the glacial refugia identified by Gavashelishvili and Tarkhnishvili5. We did so in order to maximize the genetic signature of potential refugial populations in our analysis. We divided the ancient genotypes into 2000-year-long intervals, and then grouped each of these intervals into geographic units (hereafter ancient populations, Table 2, Fig. 1). The modern and ancient genotypes were merged using PLINK 1.9 (PLINK 1.9: www.cog-genomics.org/plink/1.9/27.Table 2 Ancient study populations. The ancient genotypes are divided into 2000-year-long intervals, and then each of these intervals is grouped into geographic units (i.e. ancient populations). Age, latitude and longitude are averaged across each ancient population (see Supplementary Table S2 for details).Full size tableEthics statementThe research team members, through their contacts in the studied communities, inquired whether locals would voluntarily participate in genetic research that would help clarify the genetic makeup of the Caucasus. A verbal agreement was made with volunteer donors of DNA samples, according to which the results would be communicated, electronically or in hard copy, with participants individually. Participants were informed that, upon the completion of the lab work, the research would be published without mentioning the names of sample donors. Those who agreed provided us with the envelopes containing their chest hairs or cheek swab samples, with the birthplace of their ancestors (last three generations) written on the envelope or a piece of paper. In accordance with the preferences of the sample donors, the agreement was verbal and not written. The envelopes and papers are stored as evidence of voluntary provision of the samples and the related information. Analysis of data was done anonymously, using only location and ethnic information; only the first and third authors of the manuscript had access to names associated with the samples. Therefore, this study was based on noninvasive and nonintrusive sampling (volunteers provided hair and swab samples they collected themselves), and the information destined for open publication does not contain any personal information. The study methodology and the procedure of verbal consent was discussed in detail with and approved by the members of the Ilia State University Commission for Ethical Issues before the field survey started, and the commission decided that formal ethical approval was not needed for conducting this study. This is confirmed in a letter from the commission chairman, a copy of which has been provided to the journal editor as part of the submission process.Genetic affinity and geographyFirst, we measured genetic affinity between the modern Caucasian populations, and between the modern populations and the ancient populations of hunter-gatherers, and then tested whether the genetic affinity between these populations was determined by geographic features. Data were mapped using QGIS Desktop 3.10.6-A Coruña, whereas graphs were created using the “ggplot2” package28 in R version 3.5.229.To evaluate genetic affinities and structure of the modern populations, we used Wright’s fixation index (Fst), inbreeding coefficient, admixture analysis and the principal component analysis (PCA). For these procedures we filtered the raw SNP genotypes in PLINK 1.9, first removing all SNPs with the minor allele frequency  0.3, calculated in windows of 50 bp size and 10 bp steps (–maf 0.05 –indep-pairwise 50 10 0.3). Since all individuals in our dataset possess a single copy of the X-chromosome, we did not expect any differential ploidy bias, and SNPs on the X were treated similarly to those on the autosomes. Fst pairwise values were calculated using the smartpca program of EIGENSOFT30 with default parameters, inbreed: YES, and fstonly: YES. The relationship between the modern populations based on Fst values was visualized by constructing a neighbor-joining tree using the “ape” package31 in R version 3.5.2. The average and standard deviation of the inbreeding coefficient for each population was calculated using “fhat2” estimate of PLINK 1.9. The LD pruned genotypes were used in ADMIXTURE 1.3.032, performed in unsupervised mode in order to infer the population structure from the modern individuals. The number of clusters (k) was varied from 2 to 7 and the fivefold cross-validation error was calculated for each k33. We conducted principal components analysis in the smartpca program of EIGENSOFT30, using default parameters and the lsqproject: YES and numoutlieriter: 0 options. Eigenvectors of principal components were inferred with the modern populations from the Caucasus, while the ancient populations were then projected onto the PCA plots. We also assessed the relatedness between sampled individuals using kinship coefficients estimated by KING34.To quantify genetic affinities between the modern and ancient populations, we used the programs qp3Pop and qpDstat in the ADMIXTOOLS suite (https://github.com/DReichLab35 for f3- and f4-statistics, respectively. f3-statistics of the form f3(X,Y,Outgroup) measure the amount of shared genetic drift of populations X and Y after their divergence from an outgroup. We used an ancient population and a modern Caucasian population for X, Y and Mbuti as an outgroup. f4-statistics of the form f4(Outgroup,Test;X,Y) show if population Test is equally related to X and Y or shares an excess of alleles with either of the two. In the f4-statistic calculation we used Mbuti for Outgroup, a modern population of the Caucasus for Test, and X and Y for contemporaneous ancient populations. This meant that f4  0 indicated higher genetic affinity between the test population and Y.To quantify geographic features, we derived least-cost paths and measured least-cost distances (LCD) between the modern and ancient populations using the Least Cost Path Plugin for QGIS. The computation of LCD considers a friction grid that is a raster map where each cell indicates the relative difficulty (or cost) of moving through that cell. A least-cost path minimizes the sum of frictions of all cells along the path, and this sum is the least-cost distance (LCD). For impedance to human movement and expansion, we used 15 geographic features (Table 3). All gridded geographic features (i.e. raster layers) were resampled to a resolution of 1 km using the nearest-neighbor assignment technique. All possible subsets of the 15 geographic features, that did not cancel out each other, were used to calculate different variables of LCD. We assumed that most human movements occurred during climate warming events when the earth’s surface was not dramatically different from that of today, and hence used the current data of the geographic features.Table 3 Geographic features used in combinations to calculate least-cost distances (LCD) between ancient populations and modern Caucasians.Full size tableLinking genetic affinity and geographyGeneralized additive models (GAMs) were used to fit the outgroup f3-statistic to time and variously calculated LCD between the modern and ancient populations using the “mgcv” package36 in R version 3.5.2. Time between the modern and ancient populations was measured in BP (years before present, defined by convention as years before 1950 CE). We used GAMs because without any assumptions they are able to find nonlinear and non-monotonic relationships. GAMs were fitted using a Gamma family with a log link function. Penalized thin plate regression splines were used to represent all the smooth terms. The restricted maximum likelihood (REML) estimation method was implemented to estimate the smoothing parameter because it is the most robust of the available GAM methods36.Model and variable selection were performed by exploring LCD, time BP and the interaction term. The predictive power of the models was evaluated through a tenfold cross-validation. The cross-validation of many models was handled through R’s parallelization capabilities37,38. The best model was selected by the mean squared error of the cross-validation. Akaike’s Information Criterion (AIC) is generally used as a means for model selection. However, we preferred cross-validation for model selection because AIC a priori assumes that simpler models with the high goodness of fit are more likely to have the higher predictive power, while cross-validation without any a priori assumptions measures the predictive performance of a model by efficiently running model training and testing on the available data.We additionally validated the effect of different subsets of geographic features by assessing the relationship between statistically significant values of f4-statistic (i.e. |Z| > 3) and each subset. The relationship between f4-statistic of the form of f4(Outgroup,Test;X,Y) and geographic features was determined by measuring the agreement between the negative/positive signs of f4-statistic and the difference in LCD (LCD.D) for each pair of contemporaneous ancient populations X and Y. LCD.D was calculated as (LCD1–LCD2), where LCD1 was least-cost distance between the test population and X, and LCD2 was least-cost distance between the test population and Y. LCD.D  0 indicated less least-cost distance between Test and Y. So, the same sign of f4 and LCD.D values indicated agreement between geographic proximity and genetic affinity. We used Cohen’s kappa39 to measure the agreement.In order to test if geographic features (Table 3) accounted for present-day genetic differentiation in the Caucasus, we measured the relationship between Fst and LCD across the modern populations using the Mantel test in the “vegan” package40 in R version 3.5.2. In addition, we checked whether contribution from ancient samples was related to today’s genetic differentiation. To do so, we calculated median of f3-statistic of ancient populations of each geographic grouping (e.g. the following 6 populations made up one group: Balkans 39,950–41,950 BP, Balkans 37,950–39,950 BP, Balkans 31,950–33,950 BP, Balkans 9950–11,950 BP, Balkans 7950–9950 BP, Balkans 5950–7950 BP). Then we measured the manhattan distance of f3 median values of all combinations of the geographic groupings between the modern populations and compared the results to Fst and LCD using the Mantel test. More

  • in

    Fixation probabilities in network structured meta-populations

    Regular structures and isothermal theoremFor networks where each node represents a single individual, the isothermal theorem of evolutionary graph theory shows that the fixation probability is the same as the fixation probability of a well-mixed population if the temperature distribution is homogeneous across the whole population1. The temperature of a node defined as the sum over all the weights leads to that node. This theorem extends to structured meta-populations for any migration probability (lambda ): If the underlying structure of the meta-population that connects the patches is a regular network and the local population size is identical in each patch, the temperature of all individuals is identical, regardless of the value of the migration probability. Therefore, the fixation probability in a population with such a structure is the same as the fixation probability in a well-mixed population of the same total population size (N=sum _{j=1}^M N_j), given by ( phi _{mathrm{wm}}^N(r)).Small migration regimeIf the migration probability is small enough such that the time between two subsequent migration events (( sim frac{1}{lambda } )) is much longer than the absorption time within any patch, then at the time of each migration event we may suppose that the meta-population is in a homogeneous configuration22,28. In other words, the low migration regime is an approximation in which we neglect the probability that the meta-population is not in a homogeneous configuration at the time of migration events. We define a homogeneous configuration of the meta-population as a configuration in which in all patches either all individuals are mutants, or all are wild-types.Therefore, instead of having (2^N) states, where N is the population size, the system has only (2^M) states, where M is the number of patches. Thus, we can calculate the fixation probability exactly as in the case of a standard evolutionary graph model where each node represents a single individual but with a modified transition probabilities.In a network with homogeneous patches, in order to increase the number of homogeneous mutant-patches one individual mutant needs to migrate to one of its neighbouring homogeneous wild-type-patches and reaches fixation there. For example if node j is occupied by mutants and one of its neighbouring patches, node k, is occupied by wild-types, the probability that one mutant individual from patch j migrates to patch k and reaches fixation there is (frac{lambda }{mathrm{deg} (j)}phi _{mathrm{wm}}^{N_{k}}(r) ), where (mathrm{deg} (j) ) is the degree of node j to take into account that the mutant can move to different patches. This is analogous to the probability that one mutant in node j replaces one wild-type in node k ,(T^{jrightarrow k}), in the network of individuals.Similarly, if node j is occupied by wild-types and one of its neighbouring patches, node j, is occupied by mutants the probability that one wild-type individual from patch j migrates to patch k and reaches fixation there equals to (frac{lambda }{mathrm{deg} (j)}phi _{mathrm{wm}}^{N_{k}}(1/r) ) where (mathrm{deg} (j) ). Overall, we can move from network of individuals to the network of homogeneous patches by replacing the transition probabilities with the product of migration and fixation probabilities.Two-patch meta-populationThe simplest non-trivial case is the fixation probability in a two-patch meta-population with different local size for small migration probability (lambda ). If the migration probability (lambda ) is very small, a new mutant first needs to take over its own patch and only then the first migrant arrives in the second patch. To be more precise, the time between two migration events has to be much higher than the typical time that it takes for the migrant to take over the patch or go extinct again38. In this case, we can divide the dynamics into two phases: A first phase in which a mutant invades one patch and a second phase in which a homogeneous patch of mutants invades the whole meta-population. Assume a new mutation arises in patch 1. Only if this mutant reaches fixation in patch 1, it also has a chance to reach fixation in patch 2. When patch 1 consists of only mutants and patch 2 consists of only wild-types, there are two possibilities for the ultimate fate of the mutant:

    (i)

    Eventually, the offspring of one mutant selected from patch 1 for reproduction will migrate to patch 2 and reach fixation there. The wild-type goes extinct. This happens with probability ( frac{N_1 r}{N_1 r+N_2} phi _{mathrm{wm}}^{N_2}(r)).

    (ii)

    Eventually, the offspring of one wild-type selected from patch 2 for reproduction will migrate to patch 1 and the mutant goes extinct. This occurs with probability ( frac{N_2}{N_1r+N_2} phi _{mathrm{wm}}^{N_1}(tfrac{1}{r})).

    Therefore, the probability that a single mutant arising in patch 1 reaches fixation in the entire population is $$begin{aligned} phi _{mathrm{wm}}^{N_1}(r) frac{frac{N_1 r}{N_1 r+N_2} phi _{mathrm{wm}}^{N_2}(r)}{frac{N_1 r}{N_1 r+N_2} phi _{mathrm{wm}}^{N_2}(r)+frac{N_2}{N_1r+N_2} phi _{mathrm{wm}}^{N_1}left( tfrac{1}{r}right) }=phi _{mathrm{wm}}^{N_1}(r) phi _{mathrm{wm}}^{N_2}(r) frac{1 }{ phi _{mathrm{wm}}^{N_2}(r) +frac{N_2}{N_1} frac{1}{r}phi _{mathrm{wm}}^{N_1} left( tfrac{1}{r}right) }. end{aligned}$$
    (3a)
    Similarly the probability that a mutant arising in patch 2 takes over the whole population equals$$begin{aligned} phi _{mathrm{wm}}^{N_2}(r) phi _{mathrm{wm}}^{N_1}(r) frac{1 }{phi _{mathrm{wm}}^{N_1}(r)+frac{N_1}{N_2} frac{1}{r} phi _{mathrm{wm}}^{N_2}left( tfrac{1}{r}right) }. end{aligned}$$
    (3b)
    If we assume that the mutant arises in a patch with a probability proportional to the patch size, the average fixation probability (phi _{bullet !!-!!bullet }) in a two patch population for small migration probability is the weighted sum of Eqs. (3a) and (3b),$$begin{aligned} phi _{bullet !!-!!bullet }&= phi _{mathrm{wm}}^{N_1}(r) phi _{mathrm{wm}}^{N_2}(r) nonumber \&quad times left( frac{frac{N_1}{N_1+N_2} }{ phi _{mathrm{wm}}^{N_2}(r) +frac{N_2}{N_1} frac{1}{r}phi _{mathrm{wm}}^{N_1}left( tfrac{1}{r}right) } +frac{frac{N_2}{N_1+N_2} }{ phi _{mathrm{wm}}^{N_1}(r) +frac{N_1}{N_2} frac{1}{r} phi _{mathrm{wm}}^{N_2}left( tfrac{1}{r}right) }right) . end{aligned}$$
    (4)
    In the case of neutrality, (r=1), we recover (phi _{bullet !!-!!bullet } = frac{1}{N_1+N_2})—the fixation probability in a population of the total size of the two patches. For identical patch sizes, ( N_1=N_2 ), Eq. (4) simplifies to$$begin{aligned} phi _{bullet !!-!!bullet } = left( phi _{mathrm{wm}}^{N_1}(r)right) ^2 frac{1}{phi _{mathrm{wm}}^{N_1}(r)+frac{1}{r} phi _{mathrm{wm}}^{N_1}left( tfrac{1}{r}right) } = phi _{mathrm{wm}}^{2 N_1}(r), end{aligned}$$
    (5)
    where the simplification to the fixation probability within a single population of size (2N_1) reflects the validity of the isothermal theorem.For (N_1 ne N_2), we approximate Eq. (4) for weak and strong selection. Let us first consider highly advantageous mutants, (r gg 1). In this case, we have (phi _{mathrm{wm}}^{N_1}(r) gg phi _{mathrm{wm}}^{N_1}(tfrac{1}{r})) and thus we can neglect the possibility that a wild-type takes over a mutant patch if patch sizes are sufficiently large. The probability (phi _{bullet !!-!!bullet } ) then becomes a weighted average reflecting patch sizes. For identical patch size (N_1=N_2 = N/2), it reduces to (phi _{bullet !!-!!bullet } approx phi _{mathrm{wm}}^{N_1}(r)=phi _{mathrm{wm}}^{N/2}(r)). In other words, taking over the first patch is sufficient to make fixation in the entire population certain. For patches of very different size, (N_1 gg N_2), we have (N approx N_1) and find (phi _{bullet !!-!! bullet } approx phi _{mathrm{wm}}^{N}(r), ) which implies that fixation is driven by the fixation process in the larger patch, regardless of where the mutant arises. Note that there is a difference between the case of identical patch size and very different patch size . The case of highly disadvantageous mutants, (r ll 1), can be handled in a very similar way.Next, we consider weak selection, (r approx 1). We can approximate the fixation probability as (phi _{mathrm{wm}}^{N}(r^{pm 1}) approx frac{1}{N} pm frac{N-1}{2N} (r-1)). With this, we find$$begin{aligned} phi _{bullet !!-!!bullet } approx frac{1}{N_1+N_2} +frac{1}{2} left( 1 – frac{1}{N_1+N_2} -frac{(N_1-N_2)^2}{(N_1^2+N_2^2)^2} N_1 N_2right) (r-1). end{aligned}$$
    (6)
    For identical patch size (N_1=N_2 = N/2), this reduces to$$begin{aligned} phi _{bullet !!-!!bullet } approx tfrac{1}{N} +tfrac{N-1}{2N} (r-1), end{aligned}$$
    (7)
    which is the known result for a single population of size (N=N_1+N_2). When patches have very different size, (N_1 gg N_2) such that (N approx N_1), we recover the same result. Thus, the difference between the fixation probability of a two-patch meta-population with identical patch size and the fixation probability of a two-patch meta-population with very different patch size that we found for highly advantageous mutants is no longer observed for weak selection.When migration probabilities become larger, our approximation is no longer valid and we need to rely on numerical approaches. Figure 2 illustrates the difference between the fixation probability of a two-patch structure meta-population and the equivalent well-mixed population of size (N_1+N_2 ) when migration is low using Eq. (4) and comparing with the numerical approach in Ref.39.While the fixation probability of the two-patch meta-population is very close to the fixation probability of the well-mixed population40, a close inspection reveals an interesting property: For low migration probabilities and (N_1 ne N_2), the two patch structure is a suppressor of selection in the original sense of Lieberman et al.1: For advantageous mutations, (r >1), it decreases the fixation probability, whereas for disadvantageous mutations, (r1) and negative for (r1 ) the minimum fixation probability occurs when the two patch sizes are identical, ( N_1=N_2=N/2 ). Similarly, for fitness values ( r More

  • in

    Continuous warming shift greening towards browning in the Southeast and Northwest High Mountain Asia

    1.Liu, M. et al. Evaluation of high-resolution satellite rainfall products using rain gauge data over complex terrain in southwest China. Theoret. Appl. Climatol. 119, 203–219. https://doi.org/10.1007/s00704-014-1092-4 (2014).ADS 
    Article 

    Google Scholar 
    2.Piao, S. et al. Leaf onset in the northern hemisphere triggered by daytime temperature. Nat. Commun. 6, 6911. https://doi.org/10.1038/ncomms7911 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Zheng, Z. et al. Continuous but diverse advancement of spring-summer phenology in response to climate warming across the Qinghai-Tibetan Plateau. Agric. For. Meteorol. 223, 194–202. https://doi.org/10.1016/j.agrformet.2016.04.012 (2016).ADS 
    Article 

    Google Scholar 
    4.Shen, M. et al. Can changes in autumn phenology facilitate earlier green-up date of northern vegetation?. Agric. For. Meteorol. https://doi.org/10.1016/j.agrformet.2020.108077 (2020).Article 

    Google Scholar 
    5.Zhang, G., Zhang, Y., Dong, J. & Xiao, X. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proc. Natl. Acad. Sci. U. S. A. 110, 4309–4314. https://doi.org/10.1073/pnas.1210423110 (2013).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Zhu, Z. C. et al. Greening of the Earth and its drivers. Nat. Clim. Chang. 6, 791–795. https://doi.org/10.1038/nclimate3004 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    7.Sun, Q., Li, B., Zhou, G., Jiang, Y. & Yuan, Y. Delayed autumn leaf senescence date prolongs the growing season length of herbaceous plants on the Qinghai-Tibetan Plateau. Agric. For. Meteorol. 284, 1. https://doi.org/10.1016/j.agrformet.2019.107896 (2020).Article 

    Google Scholar 
    8.Gao, Q. et al. Climatic change controls productivity variation in global grasslands. Sci. Rep. 6, 26958. https://doi.org/10.1038/srep26958 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Zhang, K. et al. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Sci. Rep. 5, 15956. https://doi.org/10.1038/srep15956 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Li, Z., Chen, Y., Wang, Y. & Fang, G. Dynamic changes in terrestrial net primary production and their effects on evapotranspiration. Hydrol. Earth Syst. Sci. 20, 2169–2178. https://doi.org/10.5194/hess-20-2169-2016 (2016).ADS 
    Article 

    Google Scholar 
    11.Jeong, S.-J., Ho, C.-H., Gim, H.-J. & Brown, M. E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Global Change Biol. 17, 2385–2399. https://doi.org/10.1111/j.1365-2486.2011.02397.x (2011).ADS 
    Article 

    Google Scholar 
    12.Wang, Y., Gao, Q., Liu, T., Tian, Y. & Yu, M. The greenness of major shrublands in china increased from 2001 to 2013. Remote Sens. https://doi.org/10.3390/rs8020121 (2016).Article 

    Google Scholar 
    13.Xu, X. et al. Plant community structure regulates responses of prairie soil respiration to decadal experimental warming. Glob. Change Biol. 21, 3846–3853. https://doi.org/10.1111/gcb.12940 (2015).ADS 
    Article 

    Google Scholar 
    14.Gang, C. et al. Drought-induced dynamics of carbon and water use efficiency of global grasslands from 2000 to 2011. Ecol. Ind. 67, 788–797. https://doi.org/10.1016/j.ecolind.2016.03.049 (2016).CAS 
    Article 

    Google Scholar 
    15.Yao, J., Yang, Q., Mao, W., Zhao, Y. & Xu, X. Precipitation trend–Elevation relationship in arid regions of the China. Glob. Planet. Change 143, 1–9. https://doi.org/10.1016/j.gloplacha.2016.05.007 (2016).ADS 
    Article 

    Google Scholar 
    16.Yuan, X. et al. Vegetation changes and land surface feedbacks drive shifts in local temperatures over Central Asia. Sci. Rep. 7, 3287. https://doi.org/10.1038/s41598-017-03432-2 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Liu, Y., Kumar, M., Katul, G. G., Feng, X. & Konings, A. G. Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration. Nat. Clim. Chang. 10, 691–695. https://doi.org/10.1038/s41558-020-0781-5 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    18.Li, Y. et al. Evaluation and projection of snowfall changes in High Mountain Asia based on NASA’s NEX-GDDP high-resolution daily downscaled dataset. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/aba926 (2020).Article 

    Google Scholar 
    19.Yao, T. et al. Chained impacts on modern environment of interaction between Westerlies and Indian Monsoon on Tibetan Plateau. Bull. Chin. Acad. Sci. 32, 976–984. https://doi.org/10.16418/j.issn.1000-3045.2017.09.007 (2017).Article 

    Google Scholar 
    20.Pritchard, H. D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 569, 649–654. https://doi.org/10.1038/s41586-019-1240-1 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    21.He, Z. et al. Assessing temperature sensitivity of subalpine shrub phenology in semi-arid mountain regions of China. Agric. For. Meteorol. 213, 42–52. https://doi.org/10.1016/j.agrformet.2015.06.013 (2015).ADS 
    Article 

    Google Scholar 
    22.Zhou, J. et al. Alpine vegetation phenology dynamic over 16years and its covariation with climate in a semi-arid region of China. Sci. Total Environ. 572, 119–128. https://doi.org/10.1016/j.scitotenv.2016.07.206 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    23.Zhao, J. et al. Increased precipitation offsets the negative effect of warming on plant biomass and ecosystem respiration in a Tibetan alpine steppe. Agric. For. Meteorol. https://doi.org/10.1016/j.agrformet.2019.107761 (2019).Article 
    PubMed 

    Google Scholar 
    24.Deng, H., Pepin, N. C. & Chen, Y. Changes of snowfall under warming in the Tibetan Plateau. J. Geophys. Res. Atmos. 122, 7323–7341. https://doi.org/10.1002/2017jd026524 (2017).ADS 
    Article 

    Google Scholar 
    25.Yao, T. Tackling on environmental changes in Tibetan Plateau with focus on water, ecosystem and adaptation. Sci. Bull. 64, 1. https://doi.org/10.1016/j.scib.2019.03.033 (2019).Article 

    Google Scholar 
    26.Shen, M. et al. Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau. Glob. Change Biol. 22, 3057–3066. https://doi.org/10.1111/gcb.13301 (2016).ADS 
    Article 

    Google Scholar 
    27.Piao, S. et al. Plant phenology and global climate change: Current progresses and challenges. Glob. Change Biol. 25, 1922–1940. https://doi.org/10.1111/gcb.14619 (2019).ADS 
    Article 

    Google Scholar 
    28.Xu, M. & Xue, X. A research on summer vegetation characteristics & short-time responses to experimental warming of alpine meadow in the Qinghai-Tibetan Plateau. Acta Ecol. Sin. 33, 2071–2083. https://doi.org/10.5846/stxb201112201935 (2013).Article 

    Google Scholar 
    29.Huang, N., He, J. S., Chen, L. & Wang, L. No upward shift of alpine grassland distribution on the Qinghai-Tibetan Plateau despite rapid climate warming from 2000 to 2014. Sci. Total Environ. 625, 1361–1368. https://doi.org/10.1016/j.scitotenv.2018.01.034 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    30.Piao, S. et al. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nat. Commun. 5, 5018. https://doi.org/10.1038/ncomms6018 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    31.Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 1. https://doi.org/10.1038/s41559-019-0838-x (2019).CAS 
    Article 

    Google Scholar 
    32.Liu, H., Zhang, M., Lin, Z. & Xu, X. Spatial heterogeneity of the relationship between vegetation dynamics and climate change and their driving forces at multiple time scales in Southwest China. Agric. For. Meteorol. 256–257, 10–21. https://doi.org/10.1016/j.agrformet.2018.02.015 (2018).ADS 
    Article 

    Google Scholar 
    33.Chen, Z., Wang, W. & Fu, J. Vegetation response to precipitation anomalies under different climatic and biogeographical conditions in China. Sci. Rep. 10, 830. https://doi.org/10.1038/s41598-020-57910-1 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Guo, H. et al. Space-time characterization of drought events and their impacts on vegetation in Central Asia. J. Hydrol. 564, 1165–1178. https://doi.org/10.1016/j.jhydrol.2018.07.081 (2018).ADS 
    Article 

    Google Scholar 
    35.Li, P., Hu, Z. & Liu, Y. Shift in the trend of browning in Southwestern Tibetan Plateau in the past two decades. Agric. For. Meteorol. https://doi.org/10.1016/j.agrformet.2020.107950 (2020).Article 

    Google Scholar 
    36.Liu, Z., Li, C., Zhou, P. & Chen, X. A probabilistic assessment of the likelihood of vegetation drought under varying climate conditions across China. Sci. Rep. 6, 35105. https://doi.org/10.1038/srep35105 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Gao, Q.-Z., Li, Y., Xu, H.-M., Wan, Y.-F. & Jiangcun, W.-Z. Adaptation strategies of climate variability impacts on alpine grassland ecosystems in Tibetan Plateau. Mitig. Adapt. Strat. Glob. Change 19, 199–209. https://doi.org/10.1007/s11027-012-9434-y (2012).CAS 
    Article 

    Google Scholar 
    38.Guo, Y. & Wang, C. Trends in precipitation recycling over the Qinghai-Xizang Plateau in last decades. J. Hydrol. 517, 826–835. https://doi.org/10.1016/j.jhydrol.2014.06.006 (2014).ADS 
    Article 

    Google Scholar 
    39.Schlaepfer, D. R. et al. Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nat. Commun. 8, 14196. https://doi.org/10.1038/ncomms14196 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Yao, J. et al. Climatic and associated atmospheric water cycle changes over the Xinjiang, China. J. Hydrol. 585, 1. https://doi.org/10.1016/j.jhydrol.2020.124823 (2020).Article 

    Google Scholar 
    41.Sun, A. et al. Quantified hydrological responses to permafrost degradation in the headwaters of the Yellow River (HWYR) in High Asia. Sci. Total Environ. 712, 135632. https://doi.org/10.1016/j.scitotenv.2019.135632 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Brun, F., Berthier, E., Wagnon, P., Kaab, A. & Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances, 2000–2016. Nat. Geosci. 10, 668–673. https://doi.org/10.1038/NGEO2999 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Luo, D., Liu, L., Jin, H., Wang, X. & Chen, F. Characteristics of ground surface temperature at Chalaping in the Source Area of the Yellow River, northeastern Tibetan Plateau. Agric. For. Meteorol. https://doi.org/10.1016/j.agrformet.2019.107819 (2020).Article 

    Google Scholar 
    44.Che, M. et al. Spatial and temporal variations in the end date of the vegetation growing season throughout the Qinghai-Tibetan Plateau from 1982 to 2011. Agric. For. Meteorol. 189–190, 81–90. https://doi.org/10.1016/j.agrformet.2014.01.004 (2014).ADS 
    Article 

    Google Scholar 
    45.Ji, Z. et al. Investigation of mineral aerosols radiative effects over High Mountain Asia in 1990–2009 using a regional climate model. Atmos. Res. 178–179, 484–496. https://doi.org/10.1016/j.atmosres.2016.05.003 (2016).CAS 
    Article 

    Google Scholar 
    46.Wang, X. et al. Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006. Proc. Natl. Acad. Sci. U. S. A. 108, 1240–1245. https://doi.org/10.1073/pnas.1014425108 (2011).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Piao, S. et al. Responses and feedback of the Tibetan Plateau’s alpine ecosystem to climate change. Chin. Sci. Bull. 64, 2842–2855. https://doi.org/10.1360/TB-2019-0074 (2019).Article 

    Google Scholar 
    48.Zeng, Z. et al. Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nat. Clim. Change 7, 432–436. https://doi.org/10.1038/nclimate3299 (2017).ADS 
    Article 

    Google Scholar 
    49.Xu, H. J., Wang, X. P. & Yang, T. B. Trend shifts in satellite-derived vegetation growth in Central Eurasia, 1982–2013. Sci. Total Environ. 579, 1658–1674. https://doi.org/10.1016/j.scitotenv.2016.11.182 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Zhang, Y. et al. Satellite-observed global terrestrial vegetation production in response to water availability. Remote Sens. 13, 1. https://doi.org/10.3390/rs13071289 (2021).Article 

    Google Scholar 
    51.Curio, J. & Scherer, D. Seasonality and spatial variability of dynamic precipitation controls on the Tibetan Plateau. Earth Syst. Dyn. Discus. https://doi.org/10.5194/esd-2016-1,10.5194/esd-2016-1 (2016).Article 

    Google Scholar 
    52.Li, J., Sun, C. & Jin, F. F. NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability. Geophys. Res. Lett. 40, 5497–5502. https://doi.org/10.1002/2013gl057877 (2013).ADS 
    Article 

    Google Scholar 
    53.Turner, A. G. & Annamalai, H. Climate change and the South Asian summer monsoon. Nat. Clim. Chang. 2, 587–595. https://doi.org/10.1038/nclimate1495 (2012).ADS 
    Article 

    Google Scholar 
    54.Crimmins, T. M., Crimmins, M. A. & DavidBertelsen, C. Complex responses to climate drivers in onset of spring flowering across a semi-arid elevation gradient. J. Ecol. 98, 1042–1051. https://doi.org/10.1111/j.1365-2745.2010.01696.x (2010).Article 

    Google Scholar 
    55.Du, J. et al. Interacting effects of temperature and precipitation on climatic sensitivity of spring vegetation green-up in arid mountains of China. Agric. For. Meteorol. 269–270, 71–77. https://doi.org/10.1016/j.agrformet.2019.02.008 (2019).ADS 
    Article 

    Google Scholar 
    56.Huang, J. et al. Global semi-arid climate change over last 60 years. Clim. Dyn. 46, 1131–1150. https://doi.org/10.1007/s00382-015-2636-8 (2015).Article 

    Google Scholar 
    57.Sun, J., Qin, X. & Yang, J. The response of vegetation dynamics of the different alpine grassland types to temperature and precipitation on the Tibetan Plateau. Environ. Monit. Assess. 188, 20. https://doi.org/10.1007/s10661-015-5014-4 (2016).Article 
    PubMed 

    Google Scholar 
    58.Ganjurjav, H. et al. Differential response of alpine steppe and alpine meadow to climate warming in the central Qinghai-Tibetan Plateau. Agric. For. Meteorol. 223, 233–240. https://doi.org/10.1016/j.agrformet.2016.03.017 (2016).ADS 
    Article 

    Google Scholar 
    59.Xu, M. et al. Year-round warming and autumnal clipping lead to downward transport of root biomass, carbon and total nitrogen in soil of an alpine meadow. Environ. Exp. Bot. 109, 54–62. https://doi.org/10.1016/j.envexpbot.2014.07.012 (2015).CAS 
    Article 

    Google Scholar 
    60.Xie, J. et al. Land surface phenology and greenness in Alpine grasslands driven by seasonal snow and meteorological factors. Sci. Total Environ. 725, 138380. https://doi.org/10.1016/j.scitotenv.2020.138380 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    61.Zhang, Y. et al. Vegetation dynamics and its driving forces from climate change and human activities in the Three-River Source Region, China from 1982 to 2012. Sci. Total Environ. 563–564, 210–220. https://doi.org/10.1016/j.scitotenv.2016.03.223 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    62.Liu, L. et al. Elevation-dependent decline in vegetation greening rate driven by increasing dryness based on three satellite NDVI datasets on the Tibetan Plateau. Ecol. Indic. https://doi.org/10.1016/j.ecolind.2019.105569 (2019).Article 

    Google Scholar 
    63.Piao, S. et al. Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agric. For. Meteorol. 151, 1599–1608. https://doi.org/10.1016/j.agrformet.2011.06.016 (2011).ADS 
    Article 

    Google Scholar 
    64.Zhang, X., Tarpley, D. & Sullivan, J. T. Diverse responses of vegetation phenology to a warming climate. Geophys. Res. Lett. https://doi.org/10.1029/2007gl031447 (2007).Article 

    Google Scholar 
    65.Gao, Y. et al. Vegetation net primary productivity and its response to climate change during 2001–2008 in the Tibetan Plateau. Sci. Total Environ. 444, 356–362. https://doi.org/10.1016/j.scitotenv.2012.12.014 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    66.Shen, M. et al. Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agric. For. Meteorol. 151, 1711–1722. https://doi.org/10.1016/j.agrformet.2011.07.003 (2011).ADS 
    Article 

    Google Scholar 
    67.Chen, N. et al. The compensation effects of post-drought regrowth on earlier drought loss across the tibetan plateau grasslands. Agric. For. Meteorol. https://doi.org/10.1016/j.agrformet.2019.107822 (2020).Article 

    Google Scholar 
    68.Zhao, W. et al. Contributions of climatic factors to interannual variability of the vegetation index in Northern China Grasslands. J. Clim. 33, 175–183. https://doi.org/10.1175/jcli-d-18-0587.1 (2020).ADS 
    Article 

    Google Scholar 
    69.Liang, J. et al. Where will threatened migratory birds go under climate change? Implications for China’s national nature reserves. Sci. Total Environ. 645, 1040–1047. https://doi.org/10.1016/j.scitotenv.2018.07.196 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    70.Qu, S. et al. What drives the vegetation restoration in Yangtze River basin, China: Climate change or anthropogenic factors?. Ecol. Ind. 90, 438–450. https://doi.org/10.1016/j.ecolind.2018.03.029 (2018).Article 

    Google Scholar 
    71.Yin, L. et al. What drives the vegetation dynamics in the Hengduan Mountain region, southwest China: Climate change or human activity?. Ecol. Ind. 112, 106013. https://doi.org/10.1016/j.ecolind.2019.106013 (2020).Article 

    Google Scholar 
    72.Zhou, X., Yamaguchi, Y. & Arjasakusuma, S. Distinguishing the vegetation dynamics induced by anthropogenic factors using vegetation optical depth and AVHRR NDVI: A cross-border study on the Mongolian Plateau. Sci. Total Environ. 616–617, 730–743. https://doi.org/10.1016/j.scitotenv.2017.10.253 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    73.Li, Y. et al. The effects of fencing on carbon stocks in the degraded alpine grasslands of the Qinghai-Tibetan Plateau. J. Environ. Manag. 128, 393–399. https://doi.org/10.1016/j.jenvman.2013.05.058 (2013).CAS 
    Article 

    Google Scholar 
    74.Liu, X. et al. How does grazing exclusion influence plant productivity and community structure in alpine grasslands of the Qinghai-Tibetan Plateau?. Glob. Ecol. Conserv. https://doi.org/10.1016/j.gecco.2020.e01066 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Li, W. et al. Effects of grazing regime on vegetation structure, productivity, soil quality, carbon and nitrogen storage of alpine meadow on the Qinghai-Tibetan Plateau. Ecol. Eng. 98, 123–133. https://doi.org/10.1016/j.ecoleng.2016.10.026 (2017).Article 

    Google Scholar 
    76.Deng, L. et al. Effects of grazing exclusion on carbon sequestration in China’s grassland. Earth Sci. Rev. 173, 84–95. https://doi.org/10.1016/j.earscirev.2017.08.008 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    77.Yu, L. et al. Effects of grazing exclusion on soil carbon dynamics in alpine grasslands of the Tibetan Plateau. Geoderma 353, 133–143. https://doi.org/10.1016/j.geoderma.2019.06.036 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    78.Shao, Q. et al. Effects of an ecological conservation and restoration project in the Three-River Source Region, China. J. Geograph. Sci. 27, 183–204. https://doi.org/10.1007/s11442-017-1371-y (2016).Article 

    Google Scholar 
    79.Sun, Q. et al. A systematic review of research studies on the estimation of net primary productivity in the Three-River Headwater Region, China. J. Geograph. Sci. 27, 161–182. https://doi.org/10.1007/s11442-017-1370-z (2016).Article 

    Google Scholar 
    80.Shen, X. et al. Marshland loss warms local land surface temperature in China. Geophys. Res. Lett. https://doi.org/10.1029/2020GL087648 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Shen, X. et al. Aboveground biomass and its spatial distribution pattern of herbaceous marsh vegetation in China. Sci. China Earth Sci. 64, 1115–1125. https://doi.org/10.1007/s11430-020-9778-7 (2021).ADS 
    Article 

    Google Scholar 
    82.Wang, Y. et al. Spatiotemporal change of aboveground biomass and its response to climate change in marshes of the Tibetan Plateau. Int. J. Appl. Earth Observ. Geoinf. https://doi.org/10.1016/j.jag.2021.102385 (2021).Article 

    Google Scholar 
    83.Jeong, S.-J., Ho, C.-H. & Jeong, J.-H. Increase in vegetation greenness and decrease in springtime warming over east Asia. Geophys. Res. Lett. https://doi.org/10.1029/2008gl036583 (2009).Article 

    Google Scholar 
    84.Shen, M. et al. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc. Natl. Acad. Sci. U. S. A. 112, 9299–9304. https://doi.org/10.1073/pnas.1504418112 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    85.Shen, X. et al. Asymmetric effects of daytime and nighttime warming on spring phenology in the temperate grasslands of China. Agric. For. Meteorol. 259, 240–249. https://doi.org/10.1016/j.agrformet.2018.05.006 (2018).ADS 
    Article 

    Google Scholar 
    86.Shen, X. et al. Spatiotemporal variation in vegetation spring phenology and its response to climate change in freshwater marshes of Northeast China. Sci. Total Environ. 666, 1169–1177. https://doi.org/10.1016/j.scitotenv.2019.02.265 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    87.Niittynen, P. et al. Fine-scale tundra vegetation patterns are strongly related to winter thermal conditions. Nat. Clim. Chang. https://doi.org/10.1038/s41558-020-00916-4 (2020).Article 

    Google Scholar 
    88.Wu, D. et al. Evaluation of spatiotemporal variations of global fractional vegetation cover based on GIMMS NDVI data from 1982 to 2011. Remote Sens. 6, 4217–4239. https://doi.org/10.3390/rs6054217 (2014).ADS 
    Article 

    Google Scholar 
    89.Zhang, H. et al. Calculation of evapotranspiration in different climatic zones combining the long-term monitoring data with bootstrap method. Environ. Res. 191, 110200. https://doi.org/10.1016/j.envres.2020.110200 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    90.Kalisa, W. et al. Assessment of climate impact on vegetation dynamics over East Africa from 1982 to 2015. Sci. Rep. 9, 16865. https://doi.org/10.1038/s41598-019-53150-0 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    91.Chen, Y. Geographical data analysis with Matlab 202–220 (Chen, 2012). More

  • in

    Widespread woody plant use of water stored in bedrock

    1.Schwinning, S. The ecohydrology of roots in rocks. Ecohydrology 3, 238–245 (2010).
    Google Scholar 
    2.Rose, K., Graham, R. & Parker, D. Water source utilization by Pinus jeffreyi and Arctostaphylos patula on thin soils over bedrock. Oecologia 134, 46–54 (2003).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    3.Rempe, D. M. & Dietrich, W. E. Direct observations of rock moisture, a hidden component of the hydrologic cycle. Proc. Natl Acad. Sci. USA 115, 2664–2669 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    4.Schwinning, S. A critical question for the critical zone: how do plants use rock water? Plant Soil 454, 49–56 (2020).Article 
    CAS 

    Google Scholar 
    5.Fan, Y. et al. Hillslope hydrology in global change research and Earth system modeling. Wat. Resour. Res. 55, 1737–1772 (2019).Article 
    ADS 

    Google Scholar 
    6.Brantley, S. L. et al. Reviews and syntheses: on the roles trees play in building and plumbing the critical zone. Biogeosciences 14, 5115–5142 (2017).CAS 
    Article 
    ADS 

    Google Scholar 
    7.Chaney, N. W. et al. POLARIS soil properties: 30-m probabilistic maps of soil properties over the contiguous United States. Wat. Resour. Res. 55, 2916–2938 (2019).Article 
    ADS 

    Google Scholar 
    8.Uhlig, D., Schuessler, J. A., Bouchez, J., Dixon, J. L. & Blanckenburg, F. V. Quantifying nutrient uptake as driver of rock weathering in forest ecosystems by magnesium stable isotopes. Biogeosciences 14, 3111–3128 (2017).CAS 
    Article 
    ADS 

    Google Scholar 
    9.Wald, J. A., Graham, R. C. & Schoeneberger, P. J. Distribution and properties of soft weathered bedrock at 1 m depth in the contiguous United States. Earth Surf. Process. Landf. 38, 614–626 (2013).Article 
    ADS 

    Google Scholar 
    10.Nimmo, J. R., Creasey, K. M., Perkins, K. S. & Mirus, B. B. Preferential flow, diffuse flow, and perching in an interbedded fractured-rock unsaturated zone. Hydrogeol. J. 25, 421–444 (2017).CAS 
    Article 
    ADS 

    Google Scholar 
    11.Leshem, B. Resting roots of Pinus halepensis: structure, function, and reaction to water stress. Bot. Gaz. 131, 99–104 (1970).Article 

    Google Scholar 
    12.Hahm, W. J. et al. Low subsurface water storage capacity relative to annual rainfall decouples Mediterranean plant productivity and water use from rainfall variability. Geophys. Res. Lett. 46, 6544–6553 (2019).Article 
    ADS 

    Google Scholar 
    13.Hahm, W. J. et al. Lithologically controlled subsurface critical zone thickness and water storage capacity determine regional plant community composition. Wat. Resour. Res. 55, 3028–3055 (2019).Article 
    ADS 

    Google Scholar 
    14.Eggemeyer, K. D. & Schwinning, S. Biogeography of woody encroachment: why is mesquite excluded from shallow soils? Ecohydrology 2, 81–87 (2009).CAS 
    Article 

    Google Scholar 
    15.Madakumbura, G. D. et al. Recent California tree mortality portends future increase in drought-driven forest die-off. Environ. Res. Lett. 15, 124040 (2020).Article 
    ADS 

    Google Scholar 
    16.McDowell, N. G. et al. Mechanisms of a coniferous woodland persistence under drought and heat. Environ. Res. Lett. 14, 045014 (2019).CAS 
    Article 
    ADS 

    Google Scholar 
    17.McEvoy, D. J., Pierce, D. W., Kalansky, J. F., Cayan, D. R. & Abatzoglou, J. T. Projected changes in reference evapotranspiration in California and Nevada: implications for drought and wildland fire danger. Earths Future 8, e2020EF001736 (2020).Article 
    ADS 

    Google Scholar 
    18.Hauwert, N. M. & Sharp, J. M. Measuring autogenic recharge over a karst aquifer utilizing eddy covariance evapotranspiration. J. Water Resour. Prot. 6, 869–879 (2014).Article 

    Google Scholar 
    19.Spawn, S. A., Sullivan, C. C., Lark, T. J. & Gibbs, H. K. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data 7, 112 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Goulden, M. L. & Bales, R. C. California forest die-off linked to multi-year deep soil drying in 2012–2015 drought. Nat. Geosci. 12, 632–637 (2019).CAS 
    Article 

    Google Scholar 
    21.Hahm, W. J. et al. Oak transpiration drawn from the weathered bedrock vadose zone in the summer dry season. Wat. Resour. Res. 56, e2020WR027419 (2020).Article 
    ADS 

    Google Scholar 
    22.Cannon, W. A. The Root Habits of Desert Plants 131 (Carnegie Institute of Washington, 1911).23.Daily reservoir storage summary. California Department of Water Resources https://info.water.ca.gov/cgi-progs/reservoirs/RES (2020).24.USGS water use data for California. United States Geological Society https://waterdata.usgs.gov/ca/nwis/water_use/ (2020).25.David, T., Ferreira, M., Cohen, S., Pereira, J. & David, J. Constraints on transpiration from an evergreen oak tree in southern Portugal. Agric. For. Meteorol. 122, 193–205 (2004).Article 
    ADS 

    Google Scholar 
    26.Querejeta, J. I., Estrada-Medina, H., Allen, M. F. & Jimenez-Osornio, J. J. Water source partitioning among trees growing on shallow karst soils in a seasonally dry tropical climate. Oecologia 152, 26–36 (2007).PubMed 
    Article 
    ADS 

    Google Scholar 
    27.Carrière, S. D. et al. The role of deep vadose zone water in tree transpiration during drought periods in karst settings—insights from isotopic tracing and leaf water potential. Sci. Total Environ. 699, 134332 (2020).Article 
    CAS 

    Google Scholar 
    28.Rambal, S. Water balance and pattern of root water uptake by a Quercus coccifera L. evergreen scrub. Oecologia 62, 18–25 (1984).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    29.Montaldo, N. et al. Rock water as a key resource for patchy ecosystems on shallow soils: digging deep tree clumps subsidize surrounding surficial grass. Earths Future 9, e2020EF001870 (2021).Article 
    ADS 

    Google Scholar 
    30.Corona, R. & Montaldo, N. On the transpiration of wild olives under water-limited conditions in a heterogeneous ecosystem with shallow soil over fractured rock. J. Hydrol. Hydromech. 68, 338–350 (2020).Article 

    Google Scholar 
    31.Nardini, A. et al. Water ‘on the rocks’: a summer drink for thirsty trees? New Phytol. 229, 199–212 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Ruiz, L. et al. Water balance modelling in a tropical watershed under deciduous forest (Mule Hole, India): regolith matric storage buffers the groundwater recharge process. J. Hydrol. 380, 460–472 (2010).Article 
    ADS 

    Google Scholar 
    33.Ding, Y., Nie, Y., Chen, H., Wang, K. & Querejeta, J. I. Water uptake depth is coordinated with leaf water potential, water-use efficiency and drought vulnerability in karst vegetation. New Phytol. 229, 1339–1353 (2021).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Dawson, T. E., Hahm, W. J. & Crutchfield-Peters, K. Digging deeper: what the critical zone perspective adds to the study of plant ecophysiology. New Phytol. 226, 666–671 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Salve, R., Rempe, D. M. & Dietrich, W. E. Rain, rock moisture dynamics, and the rapid response of perched groundwater in weathered, fractured argillite underlying a steep hillslope. Wat. Resour. Res. 48, W11528 (2012).Article 
    ADS 

    Google Scholar 
    36.Harsch, M. A., Hulme, P. E., McGlone, M. S. & Duncan, R. P. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol. Lett. 12, 1040–1049 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Kapnick, S. & Hall, A. Causes of recent changes in western North American snowpack. Clim. Dyn. 38, 1885–1899 (2012).Article 

    Google Scholar 
    38.Tune, A. K., Druhan, J. L., Wang, J., Bennett, P. C. & Rempe, D. M. Carbon dioxide production in bedrock beneath soils substantially contributes to forest carbon cycling. J. Geophys. Res. Biogeosci. 125, e2020JG005795 (2020).CAS 
    Article 
    ADS 

    Google Scholar 
    39.Hasenmueller, E. A. et al. Weathering of rock to regolith: the activity of deep roots in bedrock fractures. Geoderma 300, 11–31 (2017).CAS 
    Article 
    ADS 

    Google Scholar 
    40.Yang, L. et al. A new generation of the United States National Land Cover Database: requirements, research priorities, design, and implementation strategies. ISPRS J. Photogramm. Remote Sens. 146, 108–123 (2018).41.Soil Survey Staff Gridded National Soil Survey Geographic (gNATSGO) Database for the Conterminous United States (USDA, 2019); https://nrcs.app.box.com/v/soils42.QGIS Development Team QGIS Geographic Information System (Open Source Geospatial Foundation, 2019); http://qgis.org43.O’Geen, A. T. et al. Southern Sierra Critical Zone Observatory and Kings River Experimental Watersheds: a synthesis of measurements, new insights, and future directions. Vadose Zone J. 17, 180081 (2018).Article 
    CAS 

    Google Scholar 
    44.Anderson, M. A., Graham, R. C., Alyanakian, G. J. & Martynn, D. Z. Late summer water status of soils and weathered bedrock in a giant sequoia grove. Soil Sci. 160, 415–422 (1995).CAS 
    Article 
    ADS 

    Google Scholar 
    45.Hubbert, K. R., Graham, R. C. & Anderson, M. A. Soil and weathered bedrock: components of a Jeffrey pine plantation substrate. Soil Sci. Soc. Am. J. 65, 1255–1262 (2001).CAS 
    Article 
    ADS 

    Google Scholar 
    46.Bornyasz, M., Graham, R. & Allen, M. Ectomycorrhizae in a soil-weathered granitic bedrock regolith: linking matrix resources to plants. Geoderma 126, 141–160 (2005).Article 
    ADS 

    Google Scholar 
    47.Sternberg, P., Anderson, M., Graham, R., Beyers, J. & Tice, K. Root distribution and seasonal water status in weathered granitic bedrock under chaparral. Geoderma 72, 89–98 (1996).Article 
    ADS 

    Google Scholar 
    48.Graham, R. C., Sternberg, P. D. & Tice, K. R. Morphology, porosity, and hydraulic conductivity of weathered granitic bedrock and overlying soils. Soil Sci. Soc. Am. J. 61, 516–522 (1997).CAS 
    Article 
    ADS 

    Google Scholar 
    49.McCole, A. A. & Stern, L. A. Seasonal water use patterns of Juniperus ashei on the Edwards Plateau, Texas, based on stable isotopes in water. J. Hydrol. 342, 238–248 (2007).Article 
    ADS 

    Google Scholar 
    50.Schwinning, S. The water relations of two evergreen tree species in a karst savanna. Oecologia 158, 373–383 (2008).PubMed 
    Article 
    ADS 

    Google Scholar 
    51.McCormick, E. L. et al. Dataset for “Evidence for widespread woody plant use of water stored in bedrock”. Hydroshare https://doi.org/10.4211/hs.a2f0d5fd10f14cd189a3465f72cba6f3 (2021).52.Jackson, R. B. et al. A global analysis of root distributions for terrestrial biomes. Oecologia 108, 389–411 (1996).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    53.Schenk, H. J. & Jackson, R. B. The global biogeography of roots. Ecol. Monogr. 72, 311–328 (2002).Article 

    Google Scholar 
    54.Schenk, H. J. & Jackson, R. B. Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J. Ecol. 90, 480–494 (2002).Article 

    Google Scholar 
    55.Fan, Y., Miguez-Macho, G., Jobbagy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    56.Daly, C. et al. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol. 28, 2031–2064 (2008).Article 

    Google Scholar 
    57.Daly, C., Smith, J. I. & Olson, K. V. Mapping atmospheric moisture climatologies across the conterminous United States. PLoS ONE 10, e0141140 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    58.Zhang, Y. et al. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017. Remote Sens. Environ. 222, 165–182 (2019).Article 
    ADS 

    Google Scholar 
    59.Gan, R. et al. Use of satellite leaf area index estimating evapotranspiration and gross assimilation for Australian ecosystems. Ecohydrology 11, e1974 (2018).Article 

    Google Scholar 
    60.Dralle, D. N., Hahm, W. J., Chadwick, K. D., McCormick, E. L. & Rempe, D. M. Technical note: accounting for snow in the estimation of root-zone water storage capacity from precipitation and evapotranspiration fluxes. Hydrol. Earth Syst. Sci. 25, 2861–2867 (2021).Article 
    ADS 

    Google Scholar 
    61.Wang-Erlandsson, L. et al. Global root zone storage capacity from satellite-based evaporation. Hydrol. Earth Syst. Sci. 20, 1459–1481 (2016).Article 
    ADS 

    Google Scholar 
    62.Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).Article 
    ADS 

    Google Scholar 
    63.Singh, C., Wang-Erlandsson, L., Fetzer, I., Rockstrom, J. & van der Ent, R. Rootzone storage capacity reveals drought coping strategies along rainforest savanna transitions. Environ. Res. Lett. 15, 124021 (2020).CAS 
    Article 
    ADS 

    Google Scholar 
    64.Hall, D., Riggs, G. & Salomonson, V. MODIS/Terra Snow Cover Daily L3 Global 500m Grid, Version 6 [Data set] (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2016).65.Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+ Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006 [Data set] (NASA EOSDIS Land Processes DAAC, 2015).66.Peel, M. C., Finlayson, B. L. & Mcmahon, T. A. Updated world map of the Koppen–Geiger climate classification. Hydrol. Earth Syst. Sci. Discuss. 4, 439–473 (2007).ADS 

    Google Scholar 
    67.Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).Article 

    Google Scholar 
    68.Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Niemeyer, R. J. et al. Spatiotemporal soil and saprolite moisture dynamics across a semi-arid woody plant gradient. J. Hydrol. 544, 21–35 (2017).Article 
    ADS 

    Google Scholar 
    70.Pedrazas, M. A. et al. The relationship between topography bedrock weathering and water storage across a sequence of ridges and valleys. J. Geophys. Res. Earth Surf. 126, e2020JF005848 (2021).ADS 

    Google Scholar 
    71.Arkley, R. J. Soil moisture use by mixed conifer forest in a summer-dry climate. Soil Sci. Soc. Am. J. 45, 423–427 (1981).Article 
    ADS 

    Google Scholar 
    72.Zwieniecki, M. A. & Newton, M. Water-holding characteristics of metasedimentary rock in selected forest ecosystems in southwestern Oregon. Soil Sci. Soc. Am. J. 60, 1578–1582 (1996).CAS 
    Article 
    ADS 

    Google Scholar 
    73.Hellmers, H., Horton, J. S., Juhren, G. & O’Keefe, J. Root systems of some chaparral plants in southern California. Ecology 36, 667–678 (1955).Article 

    Google Scholar 
    74.Cardella Dammeyer, H., Schwinning, S., Schwartz, B. F. & Moore, G. W. Effects of juniper removal and rainfall variation on tree transpiration in a semi-arid karst: evidence of complex water storage dynamics. Hydrol. Process. 30, 4568–4581 (2016).Article 
    ADS 

    Google Scholar 
    75.Twidwell, D. et al. Drought-induced woody plant mortality in an encroached semi-arid savanna depends on topoedaphic factors and land management. Appl. Veg. Sci. 17, 42–52 (2013).Article 

    Google Scholar 
    76.Davis, E. A. Root system of shrub live oak in relation to water yield by chaparral. Proceedings of the 1977 Meetings of the Arizona Section of the American Water Resources Association and the Hydrology Section of the Arizona Academy of Sciences. Hydrol. Water Resour. Ariz. Southwest 7, 241–248 (1977).
    Google Scholar 
    77.West, A. G., Hultine, K. R., Burtch, K. G., & Ehleringer, J. R. Seasonal variations in moisture use in a piñon–juniper woodland. Oecologia 153, 787–798 (2007).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    78.Seyfried, M. S. & Wilcox, B. P. Soil water storage and rooting depth: key factors controlling recharge on rangelands. Hydrol. Process. 20, 3261–3275 (2006).Article 
    ADS 

    Google Scholar 
    79.Dietrich, W. E. & Dunne, T. Sediment budget for a small catchment in mountainous terrain. Zeitschrift Für Geomorphologie 29, 191–206 (1978).
    Google Scholar 
    80.Litvak, M. E., Schwinning, S. & Heilman, J. L. in Ecosystem Function in Savannas (eds Hill, M. J. & Hanan, N. P.) 117–134 (2010). More

  • in

    Pollinators contribute to the maintenance of flowering plant diversity

    1.Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ. Press, 2001).2.Wills, C. et al. Nonrandom processes maintain diversity in tropical forests. Science 311, 527–531 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Evol. Syst. 31, 343–366 (2000).Article 

    Google Scholar 
    4.Ollerton, J. Pollinator diversity: distribution, ecological function, and conservation. Annu. Rev. Ecol. Evol. Syst. 48, 353–376 (2017).Article 

    Google Scholar 
    5.Vamosi, J. C. et al. Pollination decays in biodiversity hotspots. Proc. Natl Acad. Sci. USA 103, 956–961 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Bennett, J. M. et al. Land use and pollinator dependency drives global patterns of pollen limitation in the Anthropocene. Nat. Commun. 11, 3999 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).PubMed 
    Article 

    Google Scholar 
    8.Vamosi, J. C., Magallon, S., Mayrose, I., Otto, S. P. & Sauquet, H. Macroevolutionary patterns of flowering plant speciation and extinction. Annu. Rev. Plant Biol. 69, 685–706 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals? Oikos 120, 321–326 (2011).Article 

    Google Scholar 
    10.Rodger, J. G. et al. 2021 Widespread vulnerability of plant seed production to pollinator decline. Sci. Adv. (in the press).11.Pimm, S. L., Jones, H. L. & Diamond, J. On the risk of extinction. Am. Nat. 132, 757–785 (1988).Article 

    Google Scholar 
    12.Sargent, R. D. & Ackerly, D. D. Plant–pollinator interactions and the assembly of plant communities. Trends Ecol. Evol. 23, 123–130 (2008).PubMed 
    Article 

    Google Scholar 
    13.Benadi, G. & Pauw, A. Frequency dependence of pollinator visitation rates suggests that pollination niches can allow plant species coexistence. J. Ecol. 106, 1892–1901 (2018).Article 

    Google Scholar 
    14.Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18, 119–125 (2003).Article 

    Google Scholar 
    15.Benadi, G., Bluthgen, N., Hovestadt, T. & Poethke, H. J. Population dynamics of plant and pollinator communities: stability reconsidered. Am. Nat. 179, 157–168 (2012).PubMed 
    Article 

    Google Scholar 
    16.Moeller, D. A. Facilitative interactions among plants via shared pollinators. Ecology 85, 3289–3301 (2004).Article 

    Google Scholar 
    17.Bergamo, P. J., Susin Streher, N., Traveset, A., Wolowski, M. & Sazima, M. Pollination outcomes reveal negative density-dependence coupled with interspecific facilitation among plants. Ecol. Lett. 23, 129–139 (2020).PubMed 
    Article 

    Google Scholar 
    18.Barrett, S. C. H. The evolution of plant sexual diversity. Nat. Rev. Genet. 3, 274–284 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Ashman, T. L. & Arceo-Gómez, G. Toward a predictive understanding of the fitness costs of heterospecific pollen receipt and its importance in co-flowering communities. Am. J. Bot. 100, 1061–1070 (2013).PubMed 
    Article 

    Google Scholar 
    20.Moreira-Hernández, J. I. & Muchhala, N. Importance of pollinator-mediated interspecific pollen transfer for angiosperm evolution. Annu. Rev. Ecol. Evol. Syst. 50, 191–217 (2019).Article 

    Google Scholar 
    21.Ashman, T. L. et al. Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85, 2408–2421 (2004).Article 

    Google Scholar 
    22.Tur, C., Saez, A., Traveset, A. & Aizen, M. A. Evaluating the effects of pollinator-mediated interactions using pollen transfer networks: evidence of widespread facilitation in south Andean plant communities. Ecol. Lett. 19, 576–586 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Levin, D. A. & Anderson, W. W. Competition for pollinators between simultaneously flowering species. Am. Nat. 104, 455–467 (1970).Article 

    Google Scholar 
    24.Ashman, T. L., Alonso, C., Parra-Tabla, V. & Arceo-Gómez, G. Pollen on stigmas as proxies of pollinator competition and facilitation: complexities, caveats and future directions. Ann. Bot. 125, 1003–1012 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Lloyd, D. G. Some reproductive factors affecting the selection of self-fertilization in plants. Am. Nat. 113, 67–79 (1979).MathSciNet 
    Article 

    Google Scholar 
    26.Sargent, R. D. & Otto, S. P. The role of local species abundance in the evolution of pollinator attraction in flowering plants. Am. Nat. 167, 67–80 (2006).PubMed 
    Article 

    Google Scholar 
    27.Adler, P. B., Fajardo, A., Kleinhesselink, A. R. & Kraft, N. J. B. Trait-based tests of coexistence mechanisms. Ecol. Lett. 16, 1294–1306 (2013).PubMed 
    Article 

    Google Scholar 
    28.Armbruster, W. S. The specialization continuum in pollination systems: diversity of concepts and implications for ecology, evolution and conservation. Funct. Ecol. 31, 88–100 (2017).Article 

    Google Scholar 
    29.Minnaar, C., Anderson, B., de Jager, M. L. & Karron, J. D. Plant–pollinator interactions along the pathway to paternity. Ann. Bot. 123, 225–245 (2019).PubMed 
    Article 

    Google Scholar 
    30.Kantsa, A. et al. Disentangling the role of floral sensory stimuli in pollination networks. Nat. Commun. 9, 1041 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    31.Fang, Q. & Huang, S. Q. A directed network analysis of heterospecific pollen transfer in a biodiverse community. Ecology 94, 1176–1185 (2013).PubMed 
    Article 

    Google Scholar 
    32.Baldwin, B. G. Origins of plant diversity in the California floristic province. Annu. Rev. Ecol. Evol. Syst. 45, 347–369 (2014).Article 

    Google Scholar 
    33.Bascompte, J., Jordano, P., Melian, C. J. & Olesen, J. M. The nested assembly of plant–animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Thomson, J. D., Fung, H. F. & Ogilvie, J. E. Effects of spatial patterning of co-flowering plant species on pollination quantity and purity. Ann. Bot. 123, 303–310 (2019).PubMed 
    Article 

    Google Scholar 
    35.Rezende, E. L., Lavabre, J. E., Guimaraes, P. R., Jordano, P. & Bascompte, J. Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448, 925–928 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Song, C. L., Rohr, R. P. & Saavedra, S. Why are some plant–pollinator networks more nested than others? J. Anim. Ecol. 86, 1417–1424 (2017).PubMed 
    Article 

    Google Scholar 
    37.Hegland, S. J., Nielsen, A., Lazaro, A., Bjerknes, A. L. & Totland, O. How does climate warming affect plant–pollinator interactions? Ecol. Lett. 12, 184–195 (2009).PubMed 
    Article 

    Google Scholar 
    38.Ohlemuller, R. et al. The coincidence of climatic and species rarity: high risk to small-range species from climate change. Biol. Lett. 4, 568–572 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Arceo-Gómez, G., Kaczorowski, R. L. & Ashman, T.-L. A network approach to understanding patterns of coflowering in diverse communities. Int. J. Plant Sci. 179, 569–582 (2018).Article 

    Google Scholar 
    40.Koski, M. H. et al. Plant–flower visitor networks in a serpentine metacommunity: assessing traits associated with keystone plant species. Arthropod Plant Interact. 9, 9–21 (2015).Article 

    Google Scholar 
    41.Arceo-Gómez, G. et al. Patterns of among- and within-species variation in heterospecific pollen receipt: the importance of ecological generalization. Am. J. Bot. 103, 396–407 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    42.Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).Article 

    Google Scholar 
    43.R Core Team. R: A Language and Environment for Statistical Computing, https://www.R-project.org/ (R Foundation for Statistical Computing, 2019).44.Arceo-Gómez, G., Alonso, C., Ashman, T.-L. & Parra-Tabla, V. Variation in sampling effort affects the observed richness of plant–plant interactions via heterospecific pollen transfer: implications for interpretation of pollen transfer networks. Am. J. Bot. 105, 1601–1608 (2018).PubMed 
    Article 

    Google Scholar 
    45.Hayes, R. A., Cullen N., Kaczorowski R. L., O’Neill E. M. & Ashman T-L. A community-wide description and key of pollen from co-flowering plants of the serpentine seeps of Mclaughlin Reserve. Madrono (in the press).46.Dafni, A. Pollination Ecology: a Practical Approach (Oxford Univ. Press, 1992).47.McMurdie, P. J. & Holmes, S. Waste NOT, want not: why rarefying microbiome data is inadmissible. PLoS Comp. Biol. 10, e1003531 (2014).ADS 
    Article 
    CAS 

    Google Scholar 
    48.Qian, H. & Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233–239 (2016).Article 

    Google Scholar 
    49.Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Hinchliff, C. E. et al. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc. Natl Acad. Sci. USA 112, 12764–12769 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Michonneau, F., Brown, J. W. & Winter, D. J. rotl: an R package to interact with the Open Tree of Life data. Methods Ecol. Evol. 7, 1476–1481 (2016).Article 

    Google Scholar 
    53.Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    54.Le, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).Article 

    Google Scholar 
    55.Dormann, C. F., Gruber, B. & Fruend, J. Introducing the bipartite package: analysing ecological networks. R News 8, 8–11 (2008).
    Google Scholar 
    56.Feinsinger, P., Spears, E. E. & Poole, R. W. A simple measure of niche breadth. Ecology 62, 27–32 (1981).Article 

    Google Scholar 
    57.Horn, H. S. Measurement of “overlap” in comparative ecological studies. Am. Nat. 100, 419–424 (1966).Article 

    Google Scholar 
    58.Almeida-Neto, M., Guimaraes, P., Guimaraes, P. R., Loyola, R. D. & Ulrich, W. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117, 1227–1239 (2008).Article 

    Google Scholar 
    59.Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal 1695, 1–9 (2006).
    Google Scholar 
    60.Patefield, W. Algorithm AS 159: an efficient method of generating random R × C tables with given row and column totals. Appl. Stat. 30, 91–97 (1981).MATH 
    Article 

    Google Scholar 
    61.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5–5, https://CRAN.R-project.org/package=vegan (2019).62.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).63.Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. Presented at the Third international AAAI Conference on Weblogs and Social Media (2009).64.Arceo-Gómez, G., Kaczorowski, R. L., Patel, C. & Ashman, T. L. Interactive effects between donor and recipient species mediate fitness costs of heterospecific pollen receipt in a co-flowering community. Oecologia 189, 1041–1047 (2019).ADS 
    PubMed 
    Article 

    Google Scholar 
    65.Keck, F., Rimet, F., Bouchez, A. & Franc, A. phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecol. Evol. 6, 2774–2780 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Orme, D. et al. caper: comparative analyses of phylogenetics and evolution in R. R package version 1.0.1, https://CRAN.R-project.org/package=caper (2018).67.Barrett, S. C. H. The evolution of plant sexual diversity. Nat. Rev. Genet. 3, 274–284 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    68.Fort, H., Vazquez, D. P. & Lan, B. L. Abundance and generalisation in mutualistic networks: solving the chicken-and-egg dilemma. Ecol. Lett. 19, 4–11 (2016).PubMed 
    Article 

    Google Scholar 
    69.Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: linear and nonlinear mixed effects models. R package version 3.1-143, https://CRAN.R-project.org/package=nlme (2019).70.Lefcheck, J. S. & Freckleton, R. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2015).Article 

    Google Scholar 
    71.Fox, J. & Weisberg, S. An R companion to Applied Regression, 3rd edition (Sage, 2019).72.Blüthgen, N., Menzel, F. & Blüthgen, N. Measuring specialization in species interaction networks. BMC Ecol. 6, 9 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Shipley, B. The AIC model selection method applied to path analytic models compared using a d-separation test. Ecology 94, 560–564 (2013).PubMed 
    Article 

    Google Scholar 
    74.van der Bijl, W. phylopath: easy phylogenetic path analysis in R. PeerJ 6, e4718 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Pollination advantage of rare plants unveiled

    NEWS AND VIEWS
    08 September 2021

    Pollination advantage of rare plants unveiled

    An analysis of plant–pollinator interactions reveals that the presence of abundant plant species favours the pollination of rare species. Such asymmetric facilitation might promote the coexistence of species in diverse plant communities.

    Marcelo A. Aizen

     ORCID: http://orcid.org/0000-0001-9079-9749

    0

    Marcelo A. Aizen

    Marcelo A. Aizen is at the Research Institute for Biodiversity and the Environment (INIBIOMA), National University of Comahue – CONICET, 8400 San Carlos de Bariloche, Río Negro, Argentina, and at the Institute for Advanced Study, Berlin, Germany.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Species diversification results from the balance between the formation of new species (speciation) and the loss of existing ones (extinction). The tremendous proliferation of different life forms on Earth can be attributed to both high rates of speciation and low rates of extinction. Flowering plants — a group called angiosperms — are one of the most diverse groups of non-mobile organism. There are approximately 352,000 plant species, nearly 90% of which depend, to various extents, on insects and other animals for pollination and seed production1. These animal pollinators have been key to the unstoppable diversification of the angiosperms, starting at least 120 million years ago, with pollinators promoting speciation by acting as potent selection agents for a plethora of flower traits2,3. Pollinators also aid species persistence by enabling pollen transfer between relatively distant individuals in sparse plant populations4. Writing in Nature, Wei et al.5 report that, for plant species that flower at the same time, pollinators mediate interactions that might facilitate species coexistence in diverse plant communities.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:block;padding-right:20px;padding-left:20px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:10px}.Button-505204839 .readcube-label{color:#069}
    /* style specs end */Subscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-021-02375-z

    References1.Ollerton, J., Winfree, R. & Tarrant, S. Oikos 120, 321–326 (2011).Article 

    Google Scholar 
    2.Hernández-Hernández, T. & Wiens, J. J. Am. Nat. 195, 948–963 (2020).PubMed 
    Article 

    Google Scholar 
    3.van der Niet, T. & Johnson, S. D. Trends Ecol. Evol. 27, 353–361 (2012).PubMed 
    Article 

    Google Scholar 
    4.Bawa, K. S. Trends Ecol. Evol. 10, 311–312 (1995).PubMed 
    Article 

    Google Scholar 
    5.Wei, N. et al. Nature https://doi.org/10.1038/s41586-021-03890-9 (2021).Article 

    Google Scholar 
    6.Hegland, S. J., Grytnes, J.-A. & Totland, Ø. Ecol. Res. 24, 929–936 (2009).Article 

    Google Scholar 
    7.Sargent, R. D. & Ackerly, D. D. Trends Ecol. Evol. 23, 123–130 (2008).PubMed 
    Article 

    Google Scholar 
    8.Ghazoul, J. J. Ecol. 94, 295–304 (2006).Article 

    Google Scholar 
    9.Tur, C., Sáez, A., Traveset, A. & Aizen, M. A. Ecol. Lett. 19, 576–586 (2016).PubMed 
    Article 

    Google Scholar 
    10.Bergamo, P. J., Streher, N. S., Traveset, A., Wolowski, M. & Sazima, M. Ecol. Lett. 23, 129–139 (2020).PubMed 
    Article 

    Google Scholar 
    11.Morales, C. L. & Traveset, A. Crit. Rev. Plant Sci. 27, 221–238 (2008).Article 

    Google Scholar 
    12.Silvertown, J., Franco, M., Pisanty, I. & Mendoza, A. J. Ecol. 81, 465–476 (1993).Article 

    Google Scholar 
    13.IPBES. The Assessment Report on Pollinators, Pollination and Food Production of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2016).
    Google Scholar 
    14.Knight, T. M. et al. Annu. Rev. Ecol. Syst. 36, 467–497 (2005).Article 

    Google Scholar 
    Download references

    Competing Interests
    The author declares no competing interests.

    Related Articles

    Read the paper: Pollinators contribute to the maintenance of flowering plant diversity

    A cocktail of pesticides, parasites and hunger leaves bees down and out

    Differences can hold populations together

    See all News & Views

    Subjects

    Ecology

    Evolution

    Conservation biology

    Latest on:

    Ecology

    Pollinators contribute to the maintenance of flowering plant diversity
    Article 08 SEP 21

    Widespread woody plant use of water stored in bedrock
    Article 08 SEP 21

    Policy, drought and fires combine to affect biodiversity in the Amazon basin
    News & Views 01 SEP 21

    Evolution

    Multiple hominin dispersals into Southwest Asia over the past 400,000 years
    Article 01 SEP 21

    Structure of Geobacter pili reveals secretory rather than nanowire behaviour
    Article 01 SEP 21

    A plundered pterosaur reveals the extinct flyer’s extreme headgear
    Research Highlight 25 AUG 21

    Jobs

    Postdoctoral Training Fellow – Genome Function Laboratory

    Francis Crick Institute
    London, United Kingdom

    Doctoral Position (gn) to study the effects of medicinal plant extracts on bacterium-host interaction in uropathogenic Escherichia coli

    University Hospital of Muenster (UKM), WWU
    Münster, Germany

    Research Scientist (f/m/d) – Bioinformatics

    Evotec AG
    Munich, Germany

    wiss. Mitarbeiter/in / Postdoc

    Technische Universität Dresden (TU Dresden)
    Dresden, Germany

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    Capturing coastal wetland root dynamics with underground time-lapse

    Coastal wetlands, including mangrove forests and saltmarshes, are among the most carbon-dense ecosystems worldwide. In their undisturbed state, coastal wetlands act as important carbon sinks. A large portion of the carbon captured by coastal wetlands is allocated to fine roots and stored in the soil as organic carbon. Fine roots ( More