1.Liu, M. et al. Evaluation of high-resolution satellite rainfall products using rain gauge data over complex terrain in southwest China. Theoret. Appl. Climatol. 119, 203–219. https://doi.org/10.1007/s00704-014-1092-4 (2014).ADS
Article
Google Scholar
2.Piao, S. et al. Leaf onset in the northern hemisphere triggered by daytime temperature. Nat. Commun. 6, 6911. https://doi.org/10.1038/ncomms7911 (2015).ADS
CAS
Article
PubMed
Google Scholar
3.Zheng, Z. et al. Continuous but diverse advancement of spring-summer phenology in response to climate warming across the Qinghai-Tibetan Plateau. Agric. For. Meteorol. 223, 194–202. https://doi.org/10.1016/j.agrformet.2016.04.012 (2016).ADS
Article
Google Scholar
4.Shen, M. et al. Can changes in autumn phenology facilitate earlier green-up date of northern vegetation?. Agric. For. Meteorol. https://doi.org/10.1016/j.agrformet.2020.108077 (2020).Article
Google Scholar
5.Zhang, G., Zhang, Y., Dong, J. & Xiao, X. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proc. Natl. Acad. Sci. U. S. A. 110, 4309–4314. https://doi.org/10.1073/pnas.1210423110 (2013).ADS
Article
PubMed
PubMed Central
Google Scholar
6.Zhu, Z. C. et al. Greening of the Earth and its drivers. Nat. Clim. Chang. 6, 791–795. https://doi.org/10.1038/nclimate3004 (2016).ADS
CAS
Article
Google Scholar
7.Sun, Q., Li, B., Zhou, G., Jiang, Y. & Yuan, Y. Delayed autumn leaf senescence date prolongs the growing season length of herbaceous plants on the Qinghai-Tibetan Plateau. Agric. For. Meteorol. 284, 1. https://doi.org/10.1016/j.agrformet.2019.107896 (2020).Article
Google Scholar
8.Gao, Q. et al. Climatic change controls productivity variation in global grasslands. Sci. Rep. 6, 26958. https://doi.org/10.1038/srep26958 (2016).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
9.Zhang, K. et al. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Sci. Rep. 5, 15956. https://doi.org/10.1038/srep15956 (2015).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
10.Li, Z., Chen, Y., Wang, Y. & Fang, G. Dynamic changes in terrestrial net primary production and their effects on evapotranspiration. Hydrol. Earth Syst. Sci. 20, 2169–2178. https://doi.org/10.5194/hess-20-2169-2016 (2016).ADS
Article
Google Scholar
11.Jeong, S.-J., Ho, C.-H., Gim, H.-J. & Brown, M. E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Global Change Biol. 17, 2385–2399. https://doi.org/10.1111/j.1365-2486.2011.02397.x (2011).ADS
Article
Google Scholar
12.Wang, Y., Gao, Q., Liu, T., Tian, Y. & Yu, M. The greenness of major shrublands in china increased from 2001 to 2013. Remote Sens. https://doi.org/10.3390/rs8020121 (2016).Article
Google Scholar
13.Xu, X. et al. Plant community structure regulates responses of prairie soil respiration to decadal experimental warming. Glob. Change Biol. 21, 3846–3853. https://doi.org/10.1111/gcb.12940 (2015).ADS
Article
Google Scholar
14.Gang, C. et al. Drought-induced dynamics of carbon and water use efficiency of global grasslands from 2000 to 2011. Ecol. Ind. 67, 788–797. https://doi.org/10.1016/j.ecolind.2016.03.049 (2016).CAS
Article
Google Scholar
15.Yao, J., Yang, Q., Mao, W., Zhao, Y. & Xu, X. Precipitation trend–Elevation relationship in arid regions of the China. Glob. Planet. Change 143, 1–9. https://doi.org/10.1016/j.gloplacha.2016.05.007 (2016).ADS
Article
Google Scholar
16.Yuan, X. et al. Vegetation changes and land surface feedbacks drive shifts in local temperatures over Central Asia. Sci. Rep. 7, 3287. https://doi.org/10.1038/s41598-017-03432-2 (2017).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
17.Liu, Y., Kumar, M., Katul, G. G., Feng, X. & Konings, A. G. Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration. Nat. Clim. Chang. 10, 691–695. https://doi.org/10.1038/s41558-020-0781-5 (2020).ADS
CAS
Article
Google Scholar
18.Li, Y. et al. Evaluation and projection of snowfall changes in High Mountain Asia based on NASA’s NEX-GDDP high-resolution daily downscaled dataset. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/aba926 (2020).Article
Google Scholar
19.Yao, T. et al. Chained impacts on modern environment of interaction between Westerlies and Indian Monsoon on Tibetan Plateau. Bull. Chin. Acad. Sci. 32, 976–984. https://doi.org/10.16418/j.issn.1000-3045.2017.09.007 (2017).Article
Google Scholar
20.Pritchard, H. D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 569, 649–654. https://doi.org/10.1038/s41586-019-1240-1 (2019).ADS
CAS
Article
PubMed
Google Scholar
21.He, Z. et al. Assessing temperature sensitivity of subalpine shrub phenology in semi-arid mountain regions of China. Agric. For. Meteorol. 213, 42–52. https://doi.org/10.1016/j.agrformet.2015.06.013 (2015).ADS
Article
Google Scholar
22.Zhou, J. et al. Alpine vegetation phenology dynamic over 16years and its covariation with climate in a semi-arid region of China. Sci. Total Environ. 572, 119–128. https://doi.org/10.1016/j.scitotenv.2016.07.206 (2016).ADS
CAS
Article
PubMed
Google Scholar
23.Zhao, J. et al. Increased precipitation offsets the negative effect of warming on plant biomass and ecosystem respiration in a Tibetan alpine steppe. Agric. For. Meteorol. https://doi.org/10.1016/j.agrformet.2019.107761 (2019).Article
PubMed
Google Scholar
24.Deng, H., Pepin, N. C. & Chen, Y. Changes of snowfall under warming in the Tibetan Plateau. J. Geophys. Res. Atmos. 122, 7323–7341. https://doi.org/10.1002/2017jd026524 (2017).ADS
Article
Google Scholar
25.Yao, T. Tackling on environmental changes in Tibetan Plateau with focus on water, ecosystem and adaptation. Sci. Bull. 64, 1. https://doi.org/10.1016/j.scib.2019.03.033 (2019).Article
Google Scholar
26.Shen, M. et al. Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau. Glob. Change Biol. 22, 3057–3066. https://doi.org/10.1111/gcb.13301 (2016).ADS
Article
Google Scholar
27.Piao, S. et al. Plant phenology and global climate change: Current progresses and challenges. Glob. Change Biol. 25, 1922–1940. https://doi.org/10.1111/gcb.14619 (2019).ADS
Article
Google Scholar
28.Xu, M. & Xue, X. A research on summer vegetation characteristics & short-time responses to experimental warming of alpine meadow in the Qinghai-Tibetan Plateau. Acta Ecol. Sin. 33, 2071–2083. https://doi.org/10.5846/stxb201112201935 (2013).Article
Google Scholar
29.Huang, N., He, J. S., Chen, L. & Wang, L. No upward shift of alpine grassland distribution on the Qinghai-Tibetan Plateau despite rapid climate warming from 2000 to 2014. Sci. Total Environ. 625, 1361–1368. https://doi.org/10.1016/j.scitotenv.2018.01.034 (2018).ADS
CAS
Article
PubMed
Google Scholar
30.Piao, S. et al. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nat. Commun. 5, 5018. https://doi.org/10.1038/ncomms6018 (2014).ADS
CAS
Article
PubMed
Google Scholar
31.Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 1. https://doi.org/10.1038/s41559-019-0838-x (2019).CAS
Article
Google Scholar
32.Liu, H., Zhang, M., Lin, Z. & Xu, X. Spatial heterogeneity of the relationship between vegetation dynamics and climate change and their driving forces at multiple time scales in Southwest China. Agric. For. Meteorol. 256–257, 10–21. https://doi.org/10.1016/j.agrformet.2018.02.015 (2018).ADS
Article
Google Scholar
33.Chen, Z., Wang, W. & Fu, J. Vegetation response to precipitation anomalies under different climatic and biogeographical conditions in China. Sci. Rep. 10, 830. https://doi.org/10.1038/s41598-020-57910-1 (2020).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
34.Guo, H. et al. Space-time characterization of drought events and their impacts on vegetation in Central Asia. J. Hydrol. 564, 1165–1178. https://doi.org/10.1016/j.jhydrol.2018.07.081 (2018).ADS
Article
Google Scholar
35.Li, P., Hu, Z. & Liu, Y. Shift in the trend of browning in Southwestern Tibetan Plateau in the past two decades. Agric. For. Meteorol. https://doi.org/10.1016/j.agrformet.2020.107950 (2020).Article
Google Scholar
36.Liu, Z., Li, C., Zhou, P. & Chen, X. A probabilistic assessment of the likelihood of vegetation drought under varying climate conditions across China. Sci. Rep. 6, 35105. https://doi.org/10.1038/srep35105 (2016).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
37.Gao, Q.-Z., Li, Y., Xu, H.-M., Wan, Y.-F. & Jiangcun, W.-Z. Adaptation strategies of climate variability impacts on alpine grassland ecosystems in Tibetan Plateau. Mitig. Adapt. Strat. Glob. Change 19, 199–209. https://doi.org/10.1007/s11027-012-9434-y (2012).CAS
Article
Google Scholar
38.Guo, Y. & Wang, C. Trends in precipitation recycling over the Qinghai-Xizang Plateau in last decades. J. Hydrol. 517, 826–835. https://doi.org/10.1016/j.jhydrol.2014.06.006 (2014).ADS
Article
Google Scholar
39.Schlaepfer, D. R. et al. Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nat. Commun. 8, 14196. https://doi.org/10.1038/ncomms14196 (2017).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
40.Yao, J. et al. Climatic and associated atmospheric water cycle changes over the Xinjiang, China. J. Hydrol. 585, 1. https://doi.org/10.1016/j.jhydrol.2020.124823 (2020).Article
Google Scholar
41.Sun, A. et al. Quantified hydrological responses to permafrost degradation in the headwaters of the Yellow River (HWYR) in High Asia. Sci. Total Environ. 712, 135632. https://doi.org/10.1016/j.scitotenv.2019.135632 (2020).ADS
CAS
Article
PubMed
Google Scholar
42.Brun, F., Berthier, E., Wagnon, P., Kaab, A. & Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances, 2000–2016. Nat. Geosci. 10, 668–673. https://doi.org/10.1038/NGEO2999 (2017).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
43.Luo, D., Liu, L., Jin, H., Wang, X. & Chen, F. Characteristics of ground surface temperature at Chalaping in the Source Area of the Yellow River, northeastern Tibetan Plateau. Agric. For. Meteorol. https://doi.org/10.1016/j.agrformet.2019.107819 (2020).Article
Google Scholar
44.Che, M. et al. Spatial and temporal variations in the end date of the vegetation growing season throughout the Qinghai-Tibetan Plateau from 1982 to 2011. Agric. For. Meteorol. 189–190, 81–90. https://doi.org/10.1016/j.agrformet.2014.01.004 (2014).ADS
Article
Google Scholar
45.Ji, Z. et al. Investigation of mineral aerosols radiative effects over High Mountain Asia in 1990–2009 using a regional climate model. Atmos. Res. 178–179, 484–496. https://doi.org/10.1016/j.atmosres.2016.05.003 (2016).CAS
Article
Google Scholar
46.Wang, X. et al. Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006. Proc. Natl. Acad. Sci. U. S. A. 108, 1240–1245. https://doi.org/10.1073/pnas.1014425108 (2011).ADS
Article
PubMed
PubMed Central
Google Scholar
47.Piao, S. et al. Responses and feedback of the Tibetan Plateau’s alpine ecosystem to climate change. Chin. Sci. Bull. 64, 2842–2855. https://doi.org/10.1360/TB-2019-0074 (2019).Article
Google Scholar
48.Zeng, Z. et al. Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nat. Clim. Change 7, 432–436. https://doi.org/10.1038/nclimate3299 (2017).ADS
Article
Google Scholar
49.Xu, H. J., Wang, X. P. & Yang, T. B. Trend shifts in satellite-derived vegetation growth in Central Eurasia, 1982–2013. Sci. Total Environ. 579, 1658–1674. https://doi.org/10.1016/j.scitotenv.2016.11.182 (2017).ADS
CAS
Article
PubMed
Google Scholar
50.Zhang, Y. et al. Satellite-observed global terrestrial vegetation production in response to water availability. Remote Sens. 13, 1. https://doi.org/10.3390/rs13071289 (2021).Article
Google Scholar
51.Curio, J. & Scherer, D. Seasonality and spatial variability of dynamic precipitation controls on the Tibetan Plateau. Earth Syst. Dyn. Discus. https://doi.org/10.5194/esd-2016-1,10.5194/esd-2016-1 (2016).Article
Google Scholar
52.Li, J., Sun, C. & Jin, F. F. NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability. Geophys. Res. Lett. 40, 5497–5502. https://doi.org/10.1002/2013gl057877 (2013).ADS
Article
Google Scholar
53.Turner, A. G. & Annamalai, H. Climate change and the South Asian summer monsoon. Nat. Clim. Chang. 2, 587–595. https://doi.org/10.1038/nclimate1495 (2012).ADS
Article
Google Scholar
54.Crimmins, T. M., Crimmins, M. A. & DavidBertelsen, C. Complex responses to climate drivers in onset of spring flowering across a semi-arid elevation gradient. J. Ecol. 98, 1042–1051. https://doi.org/10.1111/j.1365-2745.2010.01696.x (2010).Article
Google Scholar
55.Du, J. et al. Interacting effects of temperature and precipitation on climatic sensitivity of spring vegetation green-up in arid mountains of China. Agric. For. Meteorol. 269–270, 71–77. https://doi.org/10.1016/j.agrformet.2019.02.008 (2019).ADS
Article
Google Scholar
56.Huang, J. et al. Global semi-arid climate change over last 60 years. Clim. Dyn. 46, 1131–1150. https://doi.org/10.1007/s00382-015-2636-8 (2015).Article
Google Scholar
57.Sun, J., Qin, X. & Yang, J. The response of vegetation dynamics of the different alpine grassland types to temperature and precipitation on the Tibetan Plateau. Environ. Monit. Assess. 188, 20. https://doi.org/10.1007/s10661-015-5014-4 (2016).Article
PubMed
Google Scholar
58.Ganjurjav, H. et al. Differential response of alpine steppe and alpine meadow to climate warming in the central Qinghai-Tibetan Plateau. Agric. For. Meteorol. 223, 233–240. https://doi.org/10.1016/j.agrformet.2016.03.017 (2016).ADS
Article
Google Scholar
59.Xu, M. et al. Year-round warming and autumnal clipping lead to downward transport of root biomass, carbon and total nitrogen in soil of an alpine meadow. Environ. Exp. Bot. 109, 54–62. https://doi.org/10.1016/j.envexpbot.2014.07.012 (2015).CAS
Article
Google Scholar
60.Xie, J. et al. Land surface phenology and greenness in Alpine grasslands driven by seasonal snow and meteorological factors. Sci. Total Environ. 725, 138380. https://doi.org/10.1016/j.scitotenv.2020.138380 (2020).ADS
CAS
Article
PubMed
Google Scholar
61.Zhang, Y. et al. Vegetation dynamics and its driving forces from climate change and human activities in the Three-River Source Region, China from 1982 to 2012. Sci. Total Environ. 563–564, 210–220. https://doi.org/10.1016/j.scitotenv.2016.03.223 (2016).ADS
CAS
Article
PubMed
Google Scholar
62.Liu, L. et al. Elevation-dependent decline in vegetation greening rate driven by increasing dryness based on three satellite NDVI datasets on the Tibetan Plateau. Ecol. Indic. https://doi.org/10.1016/j.ecolind.2019.105569 (2019).Article
Google Scholar
63.Piao, S. et al. Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agric. For. Meteorol. 151, 1599–1608. https://doi.org/10.1016/j.agrformet.2011.06.016 (2011).ADS
Article
Google Scholar
64.Zhang, X., Tarpley, D. & Sullivan, J. T. Diverse responses of vegetation phenology to a warming climate. Geophys. Res. Lett. https://doi.org/10.1029/2007gl031447 (2007).Article
Google Scholar
65.Gao, Y. et al. Vegetation net primary productivity and its response to climate change during 2001–2008 in the Tibetan Plateau. Sci. Total Environ. 444, 356–362. https://doi.org/10.1016/j.scitotenv.2012.12.014 (2013).ADS
CAS
Article
PubMed
Google Scholar
66.Shen, M. et al. Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agric. For. Meteorol. 151, 1711–1722. https://doi.org/10.1016/j.agrformet.2011.07.003 (2011).ADS
Article
Google Scholar
67.Chen, N. et al. The compensation effects of post-drought regrowth on earlier drought loss across the tibetan plateau grasslands. Agric. For. Meteorol. https://doi.org/10.1016/j.agrformet.2019.107822 (2020).Article
Google Scholar
68.Zhao, W. et al. Contributions of climatic factors to interannual variability of the vegetation index in Northern China Grasslands. J. Clim. 33, 175–183. https://doi.org/10.1175/jcli-d-18-0587.1 (2020).ADS
Article
Google Scholar
69.Liang, J. et al. Where will threatened migratory birds go under climate change? Implications for China’s national nature reserves. Sci. Total Environ. 645, 1040–1047. https://doi.org/10.1016/j.scitotenv.2018.07.196 (2018).ADS
CAS
Article
PubMed
Google Scholar
70.Qu, S. et al. What drives the vegetation restoration in Yangtze River basin, China: Climate change or anthropogenic factors?. Ecol. Ind. 90, 438–450. https://doi.org/10.1016/j.ecolind.2018.03.029 (2018).Article
Google Scholar
71.Yin, L. et al. What drives the vegetation dynamics in the Hengduan Mountain region, southwest China: Climate change or human activity?. Ecol. Ind. 112, 106013. https://doi.org/10.1016/j.ecolind.2019.106013 (2020).Article
Google Scholar
72.Zhou, X., Yamaguchi, Y. & Arjasakusuma, S. Distinguishing the vegetation dynamics induced by anthropogenic factors using vegetation optical depth and AVHRR NDVI: A cross-border study on the Mongolian Plateau. Sci. Total Environ. 616–617, 730–743. https://doi.org/10.1016/j.scitotenv.2017.10.253 (2018).ADS
CAS
Article
PubMed
Google Scholar
73.Li, Y. et al. The effects of fencing on carbon stocks in the degraded alpine grasslands of the Qinghai-Tibetan Plateau. J. Environ. Manag. 128, 393–399. https://doi.org/10.1016/j.jenvman.2013.05.058 (2013).CAS
Article
Google Scholar
74.Liu, X. et al. How does grazing exclusion influence plant productivity and community structure in alpine grasslands of the Qinghai-Tibetan Plateau?. Glob. Ecol. Conserv. https://doi.org/10.1016/j.gecco.2020.e01066 (2020).Article
PubMed
PubMed Central
Google Scholar
75.Li, W. et al. Effects of grazing regime on vegetation structure, productivity, soil quality, carbon and nitrogen storage of alpine meadow on the Qinghai-Tibetan Plateau. Ecol. Eng. 98, 123–133. https://doi.org/10.1016/j.ecoleng.2016.10.026 (2017).Article
Google Scholar
76.Deng, L. et al. Effects of grazing exclusion on carbon sequestration in China’s grassland. Earth Sci. Rev. 173, 84–95. https://doi.org/10.1016/j.earscirev.2017.08.008 (2017).ADS
CAS
Article
Google Scholar
77.Yu, L. et al. Effects of grazing exclusion on soil carbon dynamics in alpine grasslands of the Tibetan Plateau. Geoderma 353, 133–143. https://doi.org/10.1016/j.geoderma.2019.06.036 (2019).ADS
CAS
Article
Google Scholar
78.Shao, Q. et al. Effects of an ecological conservation and restoration project in the Three-River Source Region, China. J. Geograph. Sci. 27, 183–204. https://doi.org/10.1007/s11442-017-1371-y (2016).Article
Google Scholar
79.Sun, Q. et al. A systematic review of research studies on the estimation of net primary productivity in the Three-River Headwater Region, China. J. Geograph. Sci. 27, 161–182. https://doi.org/10.1007/s11442-017-1370-z (2016).Article
Google Scholar
80.Shen, X. et al. Marshland loss warms local land surface temperature in China. Geophys. Res. Lett. https://doi.org/10.1029/2020GL087648 (2020).Article
PubMed
PubMed Central
Google Scholar
81.Shen, X. et al. Aboveground biomass and its spatial distribution pattern of herbaceous marsh vegetation in China. Sci. China Earth Sci. 64, 1115–1125. https://doi.org/10.1007/s11430-020-9778-7 (2021).ADS
Article
Google Scholar
82.Wang, Y. et al. Spatiotemporal change of aboveground biomass and its response to climate change in marshes of the Tibetan Plateau. Int. J. Appl. Earth Observ. Geoinf. https://doi.org/10.1016/j.jag.2021.102385 (2021).Article
Google Scholar
83.Jeong, S.-J., Ho, C.-H. & Jeong, J.-H. Increase in vegetation greenness and decrease in springtime warming over east Asia. Geophys. Res. Lett. https://doi.org/10.1029/2008gl036583 (2009).Article
Google Scholar
84.Shen, M. et al. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc. Natl. Acad. Sci. U. S. A. 112, 9299–9304. https://doi.org/10.1073/pnas.1504418112 (2015).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
85.Shen, X. et al. Asymmetric effects of daytime and nighttime warming on spring phenology in the temperate grasslands of China. Agric. For. Meteorol. 259, 240–249. https://doi.org/10.1016/j.agrformet.2018.05.006 (2018).ADS
Article
Google Scholar
86.Shen, X. et al. Spatiotemporal variation in vegetation spring phenology and its response to climate change in freshwater marshes of Northeast China. Sci. Total Environ. 666, 1169–1177. https://doi.org/10.1016/j.scitotenv.2019.02.265 (2019).ADS
CAS
Article
PubMed
Google Scholar
87.Niittynen, P. et al. Fine-scale tundra vegetation patterns are strongly related to winter thermal conditions. Nat. Clim. Chang. https://doi.org/10.1038/s41558-020-00916-4 (2020).Article
Google Scholar
88.Wu, D. et al. Evaluation of spatiotemporal variations of global fractional vegetation cover based on GIMMS NDVI data from 1982 to 2011. Remote Sens. 6, 4217–4239. https://doi.org/10.3390/rs6054217 (2014).ADS
Article
Google Scholar
89.Zhang, H. et al. Calculation of evapotranspiration in different climatic zones combining the long-term monitoring data with bootstrap method. Environ. Res. 191, 110200. https://doi.org/10.1016/j.envres.2020.110200 (2020).CAS
Article
PubMed
Google Scholar
90.Kalisa, W. et al. Assessment of climate impact on vegetation dynamics over East Africa from 1982 to 2015. Sci. Rep. 9, 16865. https://doi.org/10.1038/s41598-019-53150-0 (2019).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
91.Chen, Y. Geographical data analysis with Matlab 202–220 (Chen, 2012). More