The critical role of natural history museums in advancing eDNA for biodiversity studies: a case study with Amazonian fishes
1.Lundberg, J. G., Kottelat, M., Smith, G. R., Stiassny, M. L. J. & Gill, A. C. So many fishes, so little time: An overview of recent ichthyological discovery in continental waters. Ann. Mo. Bot. Gard. 87, 26–62 (2000).Article
Google Scholar
2.Relyea, R. A. The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecol. Appl. 15, 618–627 (2005).Article
Google Scholar
3.Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: Detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2, 150088 (2015).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
4.Clare, A. I. M. et al. Beyond biodiversity: Can environmental DNA (eDNA) cut it as a population genetics tool?. Genes 10, 192 (2019).Article
CAS
Google Scholar
5.Tsuji, S., Shibata, N., Sawada, H. & Ushio, M. Quantitative evaluation of intraspecific genetic diversity in a natural fish population using environmental DNA. Mol. Ecol. Resour. 20, 1323–1332 (2020).CAS
PubMed
Article
Google Scholar
6.Miya, M., Gotoh, R. O. & Sado, T. MiFish metabarcoding: A high-throughput approach for simultaneous detection of multiple fish species from environmental DNA and other samples. Fish. Sci. 86, 939–970 (2020).CAS
Article
Google Scholar
7.Dagosta F. C. P. & de Pinna, M. C. C. The fishes of the Amazon: Distribution and biogeographical patterns, with a comprehensive list of species. Bull. Am. Mus. Nat. Hist, 431, 1–163 (2019).8.Jézéquel, C., Tedesco, P. A. & Bigorne, R. A database of freshwater fish species of the Amazon Basin. Sci. Data 7, 96 (2020).PubMed
PubMed Central
Article
Google Scholar
9.Reis, R. E., Kullander, S. O. & Ferraris, C. J. Check List of the Freshwater Fishes of South and Central America. (Edipucrs, 2003).10.Tedesco, P. et al. A global database on freshwater fish species occurrence in drainage basins. Sci. Data 4, 170141 (2017).PubMed
PubMed Central
Article
Google Scholar
11.Brito, P. M., Meunier, F. J. & Leal, M. E. C. Origine et diversification de líchthyofaune Neotropical: Une revue. Cybium 31, 139–153 (2007).
Google Scholar
12.Lowe-McConnell, R. H. Ecological Studies in Tropical Fish Communities (Cambridge University Press, 1987).Book
Google Scholar
13.Bloom, D. D. & Lovejoy, N. R. On the origins of marine derived fishes in South America. J. Biogeogr. 44, 1927–1938 (2017).Article
Google Scholar
14.de Santana, C. D. et al. Unexpected species diversity in electric eels with a description of the strongest living bioelectricity generator. Nat. Commun. 10, 4000 (2019).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
15.Carvalho, L. N., Zuanon, J. & Sazima, I. Natural history of Amazon fishes. In Tropical Biology and Natural Resources Theme (ed. Del-Claro, K.), K. Del-Claro & R. J. Marquis (Session Eds. the Natural History Session), Encyclopedia of Life Support Systems (EOLSS) (Eolss Publishers, 2007).16.Cardoso, Y. P. et al. A continental-wide molecular approach unraveling mtDNA diversity and geographic distribution of the Neotropical genus Hoplias. PLoS ONE 13, e0202024 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
17.Hebert, P. D. N., Cywinska, A., Ball, S. L. & de Waard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. Ser. B Biol. Sci. 270, 313–321 (2003).CAS
Article
Google Scholar
18.Baldwin, C. C., Castillo, C. I., Weigt, L. A. & Victor, B. C. Seven new species within western Atlantic Starksia atlantica, S. lepicoelia, and S. sluiteri (Teleostei, Labrisomidae), with comments on congruence of DNA barcodes and species. ZooKeys 79, 21–27 (2011).Article
Google Scholar
19.Robertson, D. R. et al. Deep-water bony fishes collected by the B/O Miguel Oliver on the shelf edge of Pacific Central America: An annotated, illustrated and DNA-barcoded checklist. Zootaxa 4348, 1–125 (2017).PubMed
Article
Google Scholar
20.Weigt, L. A. et al. Using DNA barcoding to assess Caribbean reef fish biodiversity: Expanding taxonomic and geographic coverage. PLoS ONE 7, e41059 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
21.Seberg, O. et al. Global genome biodiversity network: Saving a blueprint of the tree of life—a botanical perspective. Ann. Bot. 118, 393–399 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
22.Parenti, L. R. et al. Fishes collected during the 2017 MarineGEO assessment of Kāne‘ohe Bay, O‘ahu, Hawai‘i. J. Mar. Biol. Assoc. UK 100, 607–637 (2020).Article
Google Scholar
23.Droege, G. et al. The Global Genome Biodiversity Network (GGBN) Data Standard specification. Database https://doi.org/10.1093/database/baw125 (2016).Article
PubMed
PubMed Central
Google Scholar
24.Marques, V. et al. Blind assessment of vertebrate taxonomic diversity across spatial scales by clustering environmental DNA metabarcoding sequences. Ecography 43, 1779–1790 (2020).Article
Google Scholar
25.Leray, M., Knowlton, N., Shien-Lei, H., Nguyen, B. N. & Machida, R. J. GenBank is a reliable resource for 21st biodiversity research. Proc. Natl. Acad. Sci. U.S.A. 116, 22651–22656 (2019).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
26.Dillman, C. B. et al. Forensic investigations into a GenBank anomaly: Endangered taxa and the importance of voucher specimens in molecular studies. J. Appl. Ichthyol. 30, 1300–1309 (2014).CAS
Article
Google Scholar
27.Locatelli, N. S., McIntyre, P. B., Therkildsen, N. O. & Baetscher, D. S. GenBank’s reliability is uncertain for biodiversity researchers seeking species-level assignment for eDNA. Proc. Natl. Acad. Sci. U.S.A. 117, 32211–32212 (2020).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
28.Jerde, C. L., Wilson, E. A. & Dressler, T. L. Measuring global fish species richness with eDNA metabarcoding. Mol. Ecol. Resour. 19, 19–22 (2019).PubMed
Article
PubMed Central
Google Scholar
29.Nobile, A. B. et al. DNA metabarcoding of Neotropical ichthyoplankton: Enabling high accuracy with lower cost. Metabarcoding Metagenom. 3, 35060 (2019).Article
Google Scholar
30.Cilleros, K. et al. Unlocking biodiversity and conservation studies in high diversity environments using environmental DNA (eDNA): A text with Guianese freshwater fishes. Mol. Ecol. Resour. 19, 27–46 (2019).CAS
PubMed
Article
Google Scholar
31.Sales, N. G., Wangensteen, O. S., Carvalho, D. C. & Mariani, S. Influence of preservation methods, sample medium and sampling time on eDNA recovery in a neotropical river. Environ. DNA 1, 119–130 (2019).Article
Google Scholar
32.Jackman, J. M. C. et al. eDNA in a bottleneck: Obstacles to fish metabarcoding studies in megadiverse freshwater systems. Environ. DNA https://doi.org/10.1002/edna3.191 (2021).Article
Google Scholar
33.Valentini, A. et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 25, 929–942 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
34.McElroy, M. E. et al. Calibrating environmental DNA metabarcoding to conventional surveys for measuring fish species richness. Front. Ecol. Evol. 8, 276 (2020).Article
Google Scholar
35.Dudgeon, D. Freshwater Biodiversity: Status (Cambridge University Press, 2020).Book
Google Scholar
36.Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Austral Ecol. 18, 117–143 (1993).Article
Google Scholar
37.Milan, D. T., Mendes, I. S. & Carvalho, D. C. New 12S metabarcoding primers for enhanced Neotropical freshwater fish biodiversity assessment. Sci. Rep. 10, 17966 (2020).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
38.Deagle, B. E., Jarman, S. N., Coissac, E., Pompanon, F. & Taberlet, P. DNA metabarcoding and the cytochrome c oxidase subunit I marker: Not a perfect match. Biol. Lett. 10, 20140562 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
39.Collins, R. A. et al. Non-specific amplification compromises environmental DNA metabarcoding with COI. Methods Ecol. Evol. 10, 1985–2001 (2019).Article
Google Scholar
40.Antich, A. et al. To denoise or to cluster, that is not the question: optimizing pipelines for COI metabarcoding and metaphylogeography. BMC Bioinf. 22, 177 (2021).CAS
Article
Google Scholar
41.Vieira, T. B. et al. A multiple hypothesis approach to explain species richness patterns in neotropical stream-dweller fish communities. PLoS ONE 13, e0204114 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
42.Zuanon, J., Bockmann, F. A. & Sazima, I. A remarkable sand-dwelling fish assemblage from central Amazonia, with comments on the evolution of psammophily in South American freshwater fishes. Neotrop. Ichthyol. 4, 107–118 (2006).Article
Google Scholar
43.Sazima, I., Carvalho, L. N., Mendonça, F. P. & Zuanon, J. Fallen leaves on the water-bed: Diurnal camouflage of three night-active fish species in an Amazonian streamlet. Neotrop. Ichthyol. 4, 119–122 (2006).Article
Google Scholar
44.Espírito-Santo, H. M. V. & Zuanon, J. Temporary pools provide stability to fish assemblages in Amazon headwater streams. Ecol. Freshw. Fish 26, 475–483 (2017).Article
Google Scholar
45.de Pinna, M. C. C., Zuanon, J., Rapp-Py-Daniel, L. R. & Petry, P. A new family of neotropical freshwater fishes from deep fossorial Amazonian habitat, with a reappraisal of morphological characiform phylogeny (Teleostei: Ostariophysi). Zool. J. Linn. Soc. 182, 76–106 (2018).Article
Google Scholar
46.López-Rojas, H., Lundberg, J. G. & Marsh, E. Design and operation of a small trawling apparatus for use with dugout canoes. N. Am. J. Fish. Manag. 4, 331–334 (1984).Article
Google Scholar
47.Marrero, C. & Taphorn, D. C. Notas sobre la historia natural y la distribution de los peces Gymnotiformes in la cuenca del Rio Apure y otros rios de la Orinoquia. Biollania 8, 123–142 (1991).
Google Scholar
48.Cox-Fernandes, C., Podos, J. & Lundberg, J. G. Amazonian ecology: Tributaries enhance the diversity of electric fishes. Science 305, 1960–1962 (2004).ADS
Article
CAS
Google Scholar
49.Peixoto, L. A. W., Dutra, G. M. & Wosiack, W. B. The electric. Glassknife fishes of the Eigenmannia trilineata group (Gymnotiformes: Sternopygidae): Monophyly and description of seven new species. Zool. J. Linn. Soc. 175, 384–414 (2015).Article
Google Scholar
50.de Santana, C. D. & Vari, R. P. Electric fishes of the genus Sternarchorhynchus (Teleostei, Ostariophysi, Gymnotiformes); phylogenetic and revisionary studies. Zool. J. Linn. Soc. 159, 223–371 (2010).Article
Google Scholar
51.Castro, R. M. C. Evolução da ictiofauna de riachos sul-americanos: Padrões gerais e possíveis processos causais. In Ecologia de peixes de riachos (eds Caramaschi, E. P., Mazzoni, R., & Peres-Neto, P. R.) Série Oecologia Brasiliensis volume VI, PPGE-UFRJ, Rio de Janeiro, 139–155 (1999).52.Mojica, J. I., Castellanos, C. & Lobón-Cerviá, J. High temporal species turnover enhances the complexity of fish assemblages in Amazonian Terra firme streams. Ecol. Freshw. Fish 18, 518–526 (2009).Article
Google Scholar
53.de Oliveira, R. R., Rocha, M. M., Anjos, M. B., Zuanon, J. & Rapp Py-Daniel, L. H. Fish fauna of small streams of the Catua-Ipixuna Extractive Reserve, State of Amazonas, Brazil. Check List 5, 154–172 (2009).Article
Google Scholar
54.Caramaschi E., Mazzoni, P. R., Bizerril, C. R. S. F. & Peres-Neto, P. R. Ecologia de Peixes de Riachos: Estado Atual e Perspectivas. Oecologia Brasiliensis, v. VI, Rio de Janeiro (1999).55.Anjos, M. B. & Zuanon, J. Sampling effort and fish species richness in small Terra firme forest streams of central Amazonia, Brazil. Neotrop. Ichthyol. 5, 45–52 (2007).Article
Google Scholar
56.Mojica, J. I., Lobón-Cerviá, J. & Castellanos, C. Quantifying fish species richness and abundance in Amazonian streams: Assessment of a multiple gear method suitable for Terra firme stream fish assemblages. Fish. Manag. Ecol. 21, 220–233 (2014).Article
Google Scholar
57.Barros, D. F. et al. The fish fauna of streams in the Madeira-Purus interfluvial region, Brazilian Amazon. Check List 7, 768–773 (2011).Article
Google Scholar
58.Escobar-Camacho, D., Barriga, R. & Ron, S. R. Discovering hidden diversity of characins (Teleostei: Characiformes) in Ecuador’s Yasuní National Park. PLoS ONE 10, e0135569 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
59.Ramirez, J. L. et al. Revealing hidden diversity of the underestimated neotropical ichthyofauna: DNA barcoding in the recently described genus Megaleporinus (Characiformes: Anostomidae). Front. Genet. 8, 149 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
60.Crampton, W. G. R., de Santana, C. D., Waddell, J. C. & Lovejoy, N. R. The Neotropical electric fish genus Brachyhypopomus (Ostariophysi: Gymnotiformes: Hypopomidae): taxonomy and biology, with descriptions of 15 new species. Neotrop. Ichthyol. 14, 639–790 (2016).Article
Google Scholar
61.Abel, R. Conservation biology for the biodiversity crisis: A freshwater follow-up. Conserv. Biol. 5, 1435–1437 (2002).Article
Google Scholar
62.Dudgeon, D. Prospects for sustaining freshwater biodiversity in the 21st century: Linking ecosystem structure and function. Curr. Opin. Environ. Sustain. 5, 422–430 (2010).Article
Google Scholar
63.Jenkins, M. Prospects for biodiversity. Science 302, 1175–1177 (2003).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
64.Bunn, S. E. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).ADS
PubMed
Article
CAS
PubMed Central
Google Scholar
65.Albert, J. S. et al. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 50, 85–94 (2020).PubMed
Article
PubMed Central
Google Scholar
66.Gilbert, M. T. P. et al. The isolation of nucleic acids from fixed, paraffin-embedded tissues–which methods are useful when?. PLoS ONE 2, e537 (2007).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
67.Campos, P. F. & Gilbert, T. M. DNA extraction from formalin-fixed material. In Ancient DNA 81–85 (Humana Press, 2012).68.Hykin, S. M., Bi, K. & McGuire, J. A. Fixing formalin: A method to recover genomic-scale DNA sequence data from formalin-fixed museum specimens using high-throughput sequencing. PLoS ONE 10, e0141579 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
69.Hagedorn, M. M. et al. Cryopreservation of fish spermatogonial cells: The future of natural history collections. Sci. Rep. 8, 6149 (2018).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
70.Albert, J. & Reis, R. E. Historical Biogeography of Neotropical Freshwater Fishes (University of California Press, 2011).Book
Google Scholar
71.Sabaj Pérez, M. H. Where the Xingu bends and will soon break. Am. Sci. 103, 395–403 (2015).Article
Google Scholar
72.Amigo, I. When will the Amazon hit a tipping point?. Nature 578, 505–507 (2020).ADS
CAS
PubMed
Article
Google Scholar
73.Murienne, J. et al. Aquatic DNA for monitoring French Guiana biodiversity. Biodivers. Data J. 7, 37518 (2019).Article
Google Scholar
74.McDevitt, A. D. et al. Environmental DNA metabarcoding as an effective and rapid tool for fish monitoring in canals. J. Fish Biol. 95, 679–682 (2019).CAS
PubMed
Article
Google Scholar
75.Fernandes, G. W. et al. Dismantling Brazil’s science threatens global biodiversity heritage. Perspect. Ecol. Conserv. 15, 239–243 (2017).
Google Scholar
76.Alves, R. J. V. et al. Brazilian legislation on genetic heritage harms Biodiversity Convention goals and threatens basic biology research and education. An. Acad. Bras. Ciênc. 90, 1279–1284 (2018).PubMed
Article
Google Scholar
77.Overbeck, G. E. et al. Global biodiversity threatened by science budget cuts in Brazil. Bioscience 68, 11–12 (2018).PubMed
Article
Google Scholar
78.Miya, M. et al. Use of a filter cartridge for filtration of water samples and extraction of environmental DNA. J. Vis. Exp. 117, 54741 (2016).
Google Scholar
79.Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS
Article
Google Scholar
80.Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).PubMed
PubMed Central
Article
Google Scholar
81.Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
82.Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
83.Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
84.Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
85.Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).Article
Google Scholar
86.Miller, M. A. et al. A RESTful API for access to phylogenetic tools via the CIPRES science gateway. Evol. Bioinf. 11, 43–48 (2015).CAS
Article
Google Scholar
87.Ciccarelli, F. D. et al. Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283–1287 (2006).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
88.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). https://www.Rproject.org/.89.Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH
Book
Google Scholar
90.Oksanen, J., Kindt, R. & O’Hara, B. Package VEGAN. Community Ecology Package, Version 2 (2013).91.Fox, J. & Weisberg, S. An R Companion to Applied Regression 3rd edn. (Sage, 2019).
Google Scholar
92.Adler D., Nenadic, O. & Zucchini, W. rgl: 3D visualization device system (OpenGL). R package version 0.93.945. http://CRAN.R-project.org/package=rgl (2013).93.Gu, Z. Circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
94.Schiettekatte, N. M. D., Brandl, S. J. & Casey, J. M. Fishualize: Color Palettes Based On Fish Species. CRAN version 0.2.0 (2019).95.Chao, A. Estimating population size for sparse data in capture-recapture experiments. Biometrics 45, 427 (1989).MathSciNet
MATH
Article
Google Scholar
96.Hsieh T. C., Ma, K. H. & Chao, A. iNEXT: Interpolation and Extrapolation for Species Diversity. R package version 2.0.20 (2020).97.Chao, A., Chazdon, R. L., Colwell, R. K. & Shen, T.-J. A new statistical approach for assessing compositional similarity based on incidence and abundance data. Ecol. Lett. 8, 148–215 (2005).Article
Google Scholar
98.Olds, B. P. et al. Estimating species richness using environmental DNA. Ecol. Evol. 6, 4214–4226 (2016).PubMed
PubMed Central
Article
Google Scholar
99.Chao A., Ma, K. H., Hsieh, T. C. & Chiu, C. H. SpadeR (Species-richness Prediction and Diversity Estimation in R): An R package in CRAN. Program and User’s Guide also published at http://chao.stat.nthu.edu.tw/wordpress/software_download/ (2016). More