Trait gradients inform predictions of seagrass meadows changes to future warming
1.Lovejoy, T. E. & Hannah, L. Biodiversity and Climate Change: Transforming the Biosphere (Yale University Press, 2005).
Google Scholar
2.Bellard, C., Berttelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).PubMed
PubMed Central
Article
Google Scholar
3.Hawkins, B. A. et al. Energy, water, and broad scale geographic patterns of species richness. Ecology 84, 3105–3117 (2003).Article
Google Scholar
4.Pearce, A. & Feng, M. Observation of warming on the western Australia continental shelf. Mar. Freshwater Res. 58, 914–920 (2007).Article
Google Scholar
5.Ridgway, K. R. Long-term trend and decadal variability of the southward penetration of the East Australian Current. Geophys. Res. Lett. 34, L13613 (2007).ADS
Google Scholar
6.Chen, L., Huang, J. G., Ma, Q. & Hanninen, H. Long-term changes in the impacts of global warming on leaf phenology of four temperature tree species. Glob. Change Biol. 25(3), 997–1004 (2018).ADS
Article
Google Scholar
7.Harley, C. D. G. et al. The impacts of climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).ADS
PubMed
Article
Google Scholar
8.Poloczanska, E. S. et al. Climate change and Australian marine life. Oceanogr. Mar. Biol. 45, 407–478 (2007).
Google Scholar
9.Maltby, K. M. et al. Projected impacts of warming seas on commercially fished species at a biogeographic boundary of the European continental shelf. J. Appl. Ecol. 57, 2222–2233 (2019).Article
Google Scholar
10.Melzner, F., Buchholz, B., Wolf, F., Panknin, U. & Wall, M. Ocean winter warming induced starvation of predator and prey. Proc. R. Soc. B 287, 20200970 (2020).PubMed
PubMed Central
Article
Google Scholar
11.He, H. et al. Turning up the heat: Warming influences plankton biomass and spring phenology in subtropical waters characterized by extensive fish omnivory. Oecologia 194, 251–265 (2020).ADS
PubMed
Article
Google Scholar
12.Pagès-Escolà, M. et al. Divergent responses to warming of two common co-occurring Mediterranean bryozoans. Sci. Rep. 8, 17455 (2018).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
13.Gómez-Gras, D. et al. Response diversity in Mediterranean coralligenous assemblages facing climate change: Insights from a multispecific thermotolerance experiment. Ecol. Evol. 9(7), 4168–4180 (2019).PubMed
PubMed Central
Article
Google Scholar
14.Huret, M., Bourriau, P., Doray, M., Gohin, F., Petitgas, P. Survey timing vs. ecosystem scheduling: Degree-days to underpin observed interannual variability in marine ecosystems. Progr. Oceanogr. 166, 30–40 (2018).15.Strelkov, P., Katolikova, M. & Väinolä, R. Temporal change of the Baltic sea-North Sea mussle hybrid zone over two decades. Mar. Biol. 164, 1–14 (2017).Article
Google Scholar
16.Chiba, S. et al. Temperature and zooplankton size structure: Climate control and basin-scale comparison in the North Pacific. Ecol. Evol. 5(4), 968–978 (2015).PubMed
PubMed Central
Article
Google Scholar
17.Wernberg, T. et al. Seaweed communities in retreat from ocean warming. Curr. Biol. 21, 1–5 (2011).Article
CAS
Google Scholar
18.Block, S. E., Olesen, E. & Krause-Jensen, D. Life history events of eelgrass Zostera marina L. populations across gradients of latitude and temperature. Mar. Ecol. Progr. Ser. 590, 79–93 (2018).ADS
Article
Google Scholar
19.Cure, K. et al. Spatiotemporal patterns of abundance and ecological requirements of a labrid’s juveniles reveal conditions for establishment success and range shift capacity. J. Exp. Mar. Biol. Ecol. 500, 34–45 (2018).Article
Google Scholar
20.Smale, D. A. et al. Environmental factors influencing primary productivity of the forest-forming kelp Laminaria hyperborea in the northeast Atlantic. Sci. Rep. 10, 12161 (2020).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
21.Ruiz, J. M. et al. Experimental evidence of warming-induced flowering in the Mediterranean seagrass Posidonia oceanica. Mar. Pollut. Bull. 134, 49–54 (2018).CAS
PubMed
Article
Google Scholar
22.Rasconi, S., Winter, K. & Kainz, M. J. Temperature increase and fluctuation induce phytoplankton biodiversity loss—Evidence from a multi-seasonal mesocosm experiment. Ecol. Evol. 7, 2936–2946 (2017).PubMed
PubMed Central
Article
Google Scholar
23.Smale, D. A., Wernberg, T., Yunnie, A. L. E. & Vance, T. The rise of Laminaria ochroleuca in the Western English Channel (UK) and preliminary comparisons with its competitor and assemblage dominant Laminaria hyperborea. Mar. Ecol. 36, 1033–1044 (2015).ADS
Article
Google Scholar
24.Pansch, C. & Hibenthal, C. A new mesocosm system to study the effects of environmental variability on marine species and communities. Limnol. Oceanogr. Methods 17, 145–162 (2019).Article
Google Scholar
25.Doo, S. S. The challenges of detecting and attributing ocean acidification impacts on marine ecosystems. ICES J. Mar. Sci. 77, 2411–2422 (2020).Article
Google Scholar
26.Kim, J.-H. et al. Global warming offsets the ecophysiological stress of ocean acidification on temperate crustose coralline algae. Mar. Pollut. Bull. 157, 111324 (2020).CAS
PubMed
Article
Google Scholar
27.Bonaviri, C., Graham, M., Gianguzza, P. & Shears, N. T. Warmer temperatures reduce the influence of an important keystone predator. J. Anim. Ecol. 86, 490–500 (2017).PubMed
Article
Google Scholar
28.Carr, L. A., Gittman, R. K. & Bruno, J. F. Temperature influences herbivory and algal biomass in the Galápagos Islands. Front. Mar. Sci. 5, 279 (2018).Article
Google Scholar
29.De Frenne, P. et al. Latitudinal gradients as natural laboratories to infer species’ responses to temperature. J. Ecol. 101, 784–795 (2013).Article
Google Scholar
30.Behrenfeld, M. J. Climate-mediated dance of the plankton. Nat. Clim. Change 4(10), 880–887 (2014).ADS
Article
Google Scholar
31.Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444(7120), 752–755 (2006).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
32.Bricaud, A., Morel, A., Babin, M., Allali, K. & Hervè, C. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic waters: Analysis and implications for bio-optical models. J. Geophys. Res. 103, 31033–31044 (1998).ADS
Article
Google Scholar
33.Jaud, T., Dragon, A. C., Garcia, J. V. & Guinet, C. Relationship between chlorophyll a concentration, light attenuation and diving depth of the southern elephant seal Mirounga leonina. PLoS ONE 7(10), e47444 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
34.Dunstan, P. K. et al. Global patterns of change and variation in sea surface temperature and chlorophyll a. Sci. Rep. 8, 14624 (2018).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
35.Sanford, E. & Kelly, M. W. Local adaptation of marine invertebrates. Annu. Rev. Mar. Sci. 3, 509–535 (2011).ADS
Article
Google Scholar
36.Oliver, T. A. & Palumbi, S. R. Do fluctuating temperature environments elevate coral thermal tolerance?. Coral Reefs 30, 429–440 (2011).ADS
Article
Google Scholar
37.Baumann, H. & Conover, D. O. Adaptation to climate change: Contrasting patterns of thermal-reaction-norm evolution in Pacific versus Atlantic silversides. Proc. R. Soc. B 278(1716), 2265–2273 (2011).PubMed
PubMed Central
Article
Google Scholar
38.Castillo, K. D., Ries, J. B., Weiss, J. M. & Lima, F. P. Decline of forereef corals in response to recent warming linked to history of thermal exposure. Nat. Clim. Change 2(10), 756–760 (2012).Article
Google Scholar
39.Thomas, M. K., Kremer, C. T., Klausmeier, C. T. & Litchman, E. A global pattern of thermal adaptation in marine phytoplankton. Science 338, 6110 (2012).Article
CAS
Google Scholar
40.Chefaoui, R. M., Duarte, C. M. & Serrao, E. A. Dramatic loss of seagrass habitat under projected climate change in the Mediterranean Sea. Glob. Change Biol. 24(10), 4919–4928 (2018).ADS
Article
Google Scholar
41.Duarte, B. et al. Climate change impacts on seagrass meadows and macroalgal forests: an integrative perspective on acclimation and adaptation potential. Front. Mar. Sci. 5, 190 (2018).Article
Google Scholar
42.Hemminga, M. A. & Duarte, C. M. Seagrass Ecology (Cambridge University Press, 2000).Book
Google Scholar
43.Larkum, A. W. D., Orth, R. J. & Duarte, C. M. Seagrasses: Biology, Ecology and Conservation (Springer, 2006).
Google Scholar
44.Fourqurean, J. W. et al. Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci. 5(7), 505–509 (2012).ADS
CAS
Article
Google Scholar
45.Fonseca, M. S. & Cahalan, J. A. A preliminary evaluation of wave attenuation by four species of seagrass. Estuar. Coast. Shelf Sci. 35, 565–576 (1992).ADS
Article
Google Scholar
46.Fonseca, M. S. & Koehl, M. A. R. Flow in Seagrass canopies: the influence of patch width. Estuar. Coast. Shelf Sci. 67, 1–9 (2006).ADS
Article
Google Scholar
47.Telesca, L. et al. Seagrass meadows (Posidonia oceanica) distribution and trajectories of change. Sci. Rep. 5, 12505 (2015).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
48.Marbà, N. & Duarte, C. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Glob. Change Biol. 16, 2366–2375 (2010).49.Beca-Carretero, P., Guiheneuf, F., Krause-Jensen, D. & Stengel, D. B. Seagrass fatty acid profiles as a sensitive indicator of climate settings across seasons and latitudes. Mar. Environ. Res. 161, 105075 (2020).CAS
PubMed
Article
Google Scholar
50.Marín-Guirao, L., Ruiz, J., Dattolo, E., Garcia-Munoz, R. & Procaccini, G. Physiological and molecular evidence of differential short-term heat tolerance in Mediterranean seagrasses. Sci. Rep. 6, 28615 (2016).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
51.Marín-Guirao, L., Entrambasaguas, L., Dattolo, E., Ruiz, J. M. & Procaccini, G. Mechanisms of resistance to intense warming events in an iconic seagrass species. Front. Plant Sci. 8, 1142 (2017).PubMed
PubMed Central
Article
Google Scholar
52.Tutar, O., Marín-Guirao, L., Ruiz, J. M. & Procaccini, G. Antioxidant response to heat stress in seagrasses. A gene expression study. Mar. Environ. Res. 132, 94–102 (2017).CAS
PubMed
Article
Google Scholar
53.Marín-Guirao, L., Entrambasaguas, L., Ruiz, J. M. & Procaccini, G. Heat-stress induced flowering can be a potential adaptive response to ocean warming for the iconic seagrass Posidonia oceanica. Mol. Ecol. 28, 2486–2501 (2019).PubMed
Article
Google Scholar
54.Peirano, A. et al. Phenology of the Mediterranean seagrass Posidonia oceanica (L.) Delile: Medium and long-term cycles and climate inferences. Aquat. Bot. 94(2), 77–92 (2011).Article
Google Scholar
55.Walker, L. R., Wardle, D. A., Bardgett, R. D. & Clarkson, B. D. The use of chronosequences in studies of ecological succession and soil development. J. Ecol. 98(4), 725–736 (2010).Article
Google Scholar
56.Shaltaut, M. & Omstedt, A. Recent sea surface temperature trends and future scenarios for the Mediterranean. Oceanologia 56(3), 441–443 (2014).
Google Scholar
57.Adloff, F. et al. Mediterranean sea response to climate change in an ensemble of twenty first century scenarios. Clim. Dyn. 45, 2775–2802 (2015).Article
Google Scholar
58.E.C. Marine Strategy Framework Directive 2008/56/EC of the European Parliament and of the Council, of 17 June 2008, establishing a framework for Community action in the field of marine environmental policy (Marine Strategy Framework Directive). OJEU 164, 19–40 (2008).59.Montefalcone, M. Ecosystem health assessment using the Mediterranean seagrass Posidonia oceanica: A review. Ecol. Indic. 9, 595–604 (2009).Article
Google Scholar
60.Steinacher, M. et al. Projected 21st century decrease in marine productivity: A multi-model analysis. Biogeosciences 7, 979–1005 (2010).ADS
CAS
Article
Google Scholar
61.Taucher, J. & Oschlies, A. Can we predict the direction of marine primary production change under global warming?. Geophys. Res. Lett. 38, LO2603 (2011).ADS
Article
CAS
Google Scholar
62.Dutkiewicz, S. et al. Ocean colour signature of climate change. Nat. Commun. 10, 578 (2019).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
63.Kim, G.-U., Seo, K.-H. & Chen, D. Climate change over the Mediterranean and current destruction of marine ecosystem. Sci. Rep. 9, 18813 (2019).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
64.Kimball, S., Angert, A. L., Huxman, T. E. & Venable, D. L. Contemporary climate change in the Sonoran Desert favors cold-adapted species. Glob. Change Biol. 16, 1555–1565 (2010).ADS
Article
Google Scholar
65.Graae, B. J. et al. On the use of weather data in ecological studies along altitudinal and latitudinal gradients. Oikos 121, 3–19 (2012).Article
Google Scholar
66.Pergent, G., Pergent-Martini, C. & Boudouresque, C. F. Utilisation de l’herbier a Posidonia oceanica comme indicateur biologique de la qualite du milieu littoral en Mediterranee: etat des connaissances. Mesogee 54, 3–27 (1995).
Google Scholar
67.Pergent-Martini, C. & Pergent, G. Spatio-temporal dynamics of Posidonia oceanica beds near a sewage outfall (Mediterranean, France). in Seagrass Biology: Proceeding of an International Workshop, Rottnest Island, Australia, 25–29 January 1996. Faculty of Sciences, the University of Western Australia Publications: Nedlands, Australia, pp. 299–306 (Kuo, J., Phillips, R. C., Walker, D. I., Kirkman, H. eds.) (1996).68.Scardi, M., Chessa, L. A., Fresi, E., Pais, A. & Serra, S. Optimizing interpolation of shoot density data from a Posidonia oceanica seagrass bed. Mar. Ecol. 27, 339–349 (2006).ADS
Article
Google Scholar
69.Kun-Seop, L., Sang, R. P. & Young, K. K. Effects of irradiance, temperature and nutrients on growth dynamics of seagrasses: A review. J. Exp. Mar. Biol. Ecol. 350(1), 144–175 (2007).
Google Scholar
70.Molenaar, H., Barthélémy, D., de Reffye, P., Meinesz, A. & Mialet, I. Modelling architecture and growth patterns of Posidonia oceanica. Aquat. Bot. 66, 85–99 (2000).Article
Google Scholar
71.Olesen, B., Enrìquez, S., Duarte, C. M. & Sand-Jensen, K. Depth-acclimation of photosynthesis, morphology and demography of Posidonia oceanica and Cymodocea nodosa in the Spanish Mediterranean Sea. Mar. Ecol. Progr. Ser. 236, 89–97 (2002).ADS
Article
Google Scholar
72.Ralph, P. J., Durako, M. J., Enriquez, S., Collier, C. J. & Doblin, M. A. Impact of light limitation on seagrasses. J. Exp. Mar. Biol. Ecol. 350, 176–193 (2007).Article
Google Scholar
73.Ekstam, B. Ramet size equalization in a clonal plant, Phragmites australis. Oecologia 104, 440–446 (1995).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
74.Van Kleunen, M., Fischer, M. & Schmid, B. Effects of intraspecific competition on size variation and reproductive allocation in a clonal plant. Oikos 94, 515–524 (2001).Article
Google Scholar
75.Campagne, C. S., Salles, J. M., Boissery, P. & Deter, J. The seagrass Posidonia oceanica: Ecosystem services identification and economic evaluation of goods and benefits. Mar. Pollut. Bull. 97, 391–400 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
76.Nordlund, L. M., Koch, E. W., Barbier, E. B. & Creed, J. C. Seagrass ecosystem services and their variability across genera and geographical regions. PLoS ONE 1(10), e0163091 (2016).Article
CAS
Google Scholar
77.Repolho, T. et al. Seagrass ecophysiological performance under ocean warming and acidification. Sci. Rep. 7, 41443 (2017).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
78.Adams, M. P. et al. Predicting seagrass decline due to cumulative stressors. Environ. Model. Softw. 130, 104717 (2020).Article
Google Scholar
79.Pazzaglia, J., Reusch, T. B. H., Terlizzi, A., Marín-Guirao, L. & Procaccini, G. Phenotypic plasticity under rapid global changes: The intrinsic force for future seagrasses survival. Evol. Appl. 00, 1–21 (2021).
Google Scholar
80.Olita, A., Ribotti, A., Fazioli, L., Perilli, A. & Sorgente, R. Surface circulation and upwelling in the Sardinia Sea: A numerical study. Cont. Shelf Res. 71, 95–108 (2013).ADS
Article
Google Scholar
81.Pinardi, N. et al. Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: A retrospective analysis. Prog. Oceanogr. 132, 318–332 (2015).ADS
Article
Google Scholar
82.Smale, D. A. & Wernberg, T. Satellite-derived SST data as a proxy for water temperature in nearshore benthic ecology. Mar. Ecol. Progr. Ser. 387, 27–37 (2009).ADS
Article
Google Scholar
83.Giraud, G. Contribution à la description et à la phénologie quantitative des herbiers de Posidonia oceanica (L.) Delile. Thèse de Doctorat de Spécialité en Océanologie, Université d’Aix-Marseille, Marseille (1977).84.Pergent, G. Lepidochronological analyses of the seagrass Posidonia oceanica (L.) Delile: a standardized approach. Aquat. Bot. 37, 39–54 (1990).85.Pagès, J. F. et al. Indirect interactions in seagrasses: Fish herbivores increase predation risk to sea urchins by modifying plant traits. Funct. Ecol. 26, 1015–1023 (2012).Article
Google Scholar
86.Zuur, A. F., Leno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article
Google Scholar
87.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2018).88.Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn. (Springer, 2002).MATH
Book
Google Scholar More