More stories

  • in

    The case for the reintroduction of cheetahs to India

    Gopalaswamy, A. M. et al. Nat. Ecol. Evol. 6, 1794–1795 (2022).Article 
    PubMed 

    Google Scholar 
    Sandom, C., Donlan, C. J., Svenning, J. C. & Hansen, D. in Key Topics In Conservation Biology 2 (eds MacDonald, D. W. & Willis, K. J.) 430–451 (2013).Ripple, W. J. et al. Science 343, 1241484 (2014).Article 
    PubMed 

    Google Scholar 
    Jhala, Y. V., Ranjitsinh, M. K., Bipin, C. M. & Yadav, S. P. Action Plan For Introduction Of Cheetah In India (2021).Divyabhanusinh & Kazami J. Bombay Nat. Hist. Soc. 116, 22–43 (2019).
    Google Scholar 
    IUCN/SSG. Guidelines For Reintroductions And Other Conservation Translocations IUCN. Ecological Applications 20 (IUCN Species Survival Commission, 2013).Prost, S. et al. Mol. Ecol. 31, 4208–4223 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buk, K. G., van der Merwe, V. C., Marnewick, K. & Funston, P. J. Conservation Of Severely Fragmented Populations: Lessons From The Transformation Of Uncoordinated Reintroductions Of Cheetahs (Acinonyx jubatus) Into A Managed Metapopulation With Self-Sustained Growth. Biodiversity And Conservation 27 (Springer Netherlands, 2018).Scientific Authority of South Africa. Gov. Gaz. Repub. South Africa 677, 1–4 (2021).Walker, E. H., Verschueren, S., Schmidt-Küntzel, A. & Marker, L. Oryx 56, 495–504 (2022).Article 

    Google Scholar 
    Tordiffe, A. S. W. et al. Disease Risk Analysis For Introduction Of Cheetahs (Acinonyx jubatus) To India (2022).Brugière, D., Chardonnet, B. & Scholte, P. Trop. Conserv. Sci. 8, 513–527 (2015).Article 

    Google Scholar 
    Jhala, Y. V. et al. Front. Ecol. Evol. 7, https://doi.org/10.3389/fevo.2019.00312 (2019).Jhala, Y. et al. People Nat. 3, 281–293 (2021).Article 

    Google Scholar 
    Hayward, M. W., O’Brien, J. & Kerley, G. I. H. Biol. Conserv. 139, 219–229 (2007).Article 

    Google Scholar 
    Ogutu, J. O., Owen-Smith, N., Piepho, H. P. & Said, M. Y. J. Zool. 285, 99–109 (2011).Article 

    Google Scholar 
    Houser, A. M., Somers, M. J. & Boast, L. K. J. Zool. 278, 108–115 (2009).Article 

    Google Scholar  More

  • in

    Climate-driven convergent evolution in riparian ecosystems on sky islands

    Ware, I. M. et al. Climate-driven reduction of genetic variation in plant phenology alters soil communities and nutrient pools. Glob. Change Biol. 25, 1514–1528 (2019).Article 
    ADS 

    Google Scholar 
    Ware, I. M. et al. Climate-driven divergence in plant-microbiome interactions generates range-wide variation in bud break phenology. Commun. Biol. 4, 748 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bayliss, S. L. J., Mueller, L. O., Ware, I. M., Schweitzer, J. A. & Bailey, J. K. Plant genetic variation drives geographic differences in atmosphere–plant–ecosystem feedbacks. Plant Environ. Int. 1, 166–180 (2020).Article 

    Google Scholar 
    Van Nuland, M. E. et al. Intraspecific trait variation across elevation predicts a widespread tree species’ climate niche and range limits. Ecol. Evol. 10, 3856–3867 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davis, M. B. & Shaw, R. G. Range shifts and adaptive responses to quaternary climate change. Science 292, 673–679 (2001).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hendry, A. P. Eco-Evolutionary Dynamics (Princeton University Press, 2017).Book 

    Google Scholar 
    Anstett, D. N., Branch, H. A. & Angert, A. L. Regional differences in rapid evolution during severe drought. Evol. Lett. 5, 130–142 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grainger, T. N., Rudman, S. M., Schmidt, P. & Levine, J. M. Competitive history shapes rapid evolution in a seasonal climate. PNAS 118, e2015772118 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bokhorst, S., Bjerke, J. W., Street, L. E., Callaghan, T. V. & Phoenix, G. K. Impacts of multiple extreme winter warming events on sub-Arctic heathland: Phenology, reproduction, growth, and CO2 flux responses. Glob. Change Biol. 17, 2817–2830 (2011).Article 
    ADS 

    Google Scholar 
    Anderson, J. T., Perera, N., Chowdhury, B. & Mitchell-Olds, T. Microgeographic patterns of genetic divergence and adaptation across environmental gradients in Boechera stricta (Brassicaceae). Am. Nat. 186, S60–S73 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wooliver, R., Tittes, S. B. & Sheth, S. N. A resurrection study reveals limited evolution of thermal performance in response to recent climate change across the geographic range of the scarlet monkeyflower. Evolution 74, 1699–1710 (2020).Article 
    PubMed 

    Google Scholar 
    McCormack, J. E., Huang, H. & Knowles, L. L. Sky Islands. in Encyclopedia of Islands (eds. Gillespie, R. G. & Clague, D. A.) 839–843 (2009).Knowles, J. F., Scott, R. L., Minor, R. L. & Barron-Gafford, G. A. Ecosystem carbon and water cycling from a sky island montane forest. Agric. For. Meteorol. 281, 107835 (2020).Article 
    ADS 

    Google Scholar 
    Heald, W. Sky Islands (Van Nostrand, 1967).
    Google Scholar 
    DeBano, L. H. et al. Biodiversity and management of the Madrean Archipelago: The Sky Islands of southwestern United States and northwestern Mexico: 1994 September 19–23; Tucson, AZ. Gen Tech Rep RM-GTR-264. Fort Collins, CO: US Dep Agric For Serv, Rocky Mt For Range Exp Stn. 669 p. (1995).Pérez-Alquicira, J. et al. The role of historical factors and natural selection in the evolution of breeding systems of Oxalis alpina in the Sonoran desert ‘Sky Islands’. J. Evol. Biol. 23, 2163–2175 (2010).Article 
    PubMed 

    Google Scholar 
    Wiens, J. J. et al. Climate change, extinction, and Sky Island biogeography in a montane lizard. Mol. Ecol. 28, 2610–2624 (2019).Article 
    PubMed 

    Google Scholar 
    Pielou, E. C. After the Ice Age. The return of Life to Glaciated North America (The University of Chicago Press, 1991).Book 

    Google Scholar 
    Hosner, P. A., Nyári, Á. S. & Moyle, R. G. Water barriers and intra-island isolation contribute to diversification in the insular Aethopyga sunbirds (Aves: Nectariniidae). J. Biogeogr. 40, 1094–1106 (2013).Article 

    Google Scholar 
    Favé, M.-J. et al. Past climate change on Sky Islands drives novelty in a core developmental gene network and its phenotype. Bmc Evol. Biol. 15, 183 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yanahan, A. D. & Moore, W. Impacts of 21st-century climate change on montane habitat in the Madrean Sky Island Archipelago. Divers. Distrib. 25, 1625–1638 (2019).Article 

    Google Scholar 
    Oline, D. K., Mitton, J. B. & Grant, M. C. Population and subspecific genetic differentiation in the Foxtail Pine (Pinus balfouriana). Evolution 54, 1813–1819 (2000).CAS 
    PubMed 

    Google Scholar 
    Barrowclough, G. F., Groth, J. G., Mertz, L. A. & Gutiérrez, R. J. Genetic structure of Mexican spotted owl (Strix Occidentalis Lucida) populations in a fragmented landscape. Auk 123, 1090–1102 (2006).
    Google Scholar 
    Atwood, T. C. et al. Modeling connectivity of black bears in a desert sky island archipelago. Biol. Conserv. 144, 2851–2862 (2011).Article 

    Google Scholar 
    Halbritter, D. A., Storer, C. G., Kawahara, A. Y. & Daniels, J. C. Phylogeography and population genetics of pine butterflies: Sky islands increase genetic divergence. Ecol. Evol. 9, 13389–13401 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    DeChaine, E. G. & Martin, A. P. Marked genetic divergence among sky island populations of Sedum lanceolatum (Crassulaceae) in the Rocky Mountains. Am. J. Bot. 92, 477–486 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Baker, A. J. Islands in the sky: The impact of Pleistocene climate cycles on biodiversity. J. Biol. 7, 32 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robin, V. V., Sinha, A. & Ramakrishnan, U. Ancient geographical gaps and paleo-climate shape the phylogeography of an endemic bird in the sky islands of southern India. PLoS ONE 5, e13321 (2010).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Manthey, J. D. & Moyle, R. G. Isolation by environment in White-breasted Nuthatches (Sitta carolinensis) of the Madrean Archipelago sky islands: A landscape genomics approach. Mol. Ecol. 24, 3628–3638 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vásquez, D. L. A., Balslev, H., Hansen, M. M., Sklenář, P. & Romoleroux, K. Low genetic variation and high differentiation across sky island populations of Lupinus alopecuroides (Fabaceae) in the northern Andes. Alpine Bot. 126, 135–142 (2016).Article 

    Google Scholar 
    Mairal, M. et al. Geographic barriers and Pleistocene climate change shaped patterns of genetic variation in the Eastern Afromontane biodiversity hotspot. Sci. Rep. 7, 45749 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kidane, Y. O., Steinbauer, M. J. & Beierkuhnlein, C. Dead end for endemic plant species? A biodiversity hotspot under pressure. Glob. Ecol. Conserv. 19, e00670 (2019).Article 

    Google Scholar 
    Williamson, J. L. et al. Ecology, not distance, explains community composition in parasites of sky-island Audubon’s Warblers. Int. J. Parasitol. 49, 437–448 (2019).Article 
    PubMed 

    Google Scholar 
    Knowles, L. L. & Richards, C. L. Importance of genetic drift during Pleistocene divergence as revealed by analyses of genomic variation. Mol. Ecol. 14, 4023–4032 (2005).Article 
    PubMed 

    Google Scholar 
    Woolbright, S. A., Whitham, T. G., Gehring, C. A., Allan, G. J. & Bailey, J. K. Climate relicts and their associated communities as natural ecology and evolution laboratories. Trends Ecol. Evol. 29, 406–416 (2014).Article 
    PubMed 

    Google Scholar 
    Evans, L. M., Allan, G. J., Meneses, N., Max, T. L. & Whitham, T. G. Herbivore host-associated genetic differentiation depends on the scale of plant genetic variation examined. Evol. Ecol. 27, 65–81 (2013).Article 

    Google Scholar 
    Kooyers, N. J., Greenlee, A. B., Colicchio, J. M., Oh, M. & Blackman, B. K. Replicate altitudinal clines reveal that evolutionary flexibility underlies adaptation to drought stress in annual Mimulus guttatus. New Phytol. 206, 152–165 (2015).Article 
    PubMed 

    Google Scholar 
    Price, E. A. C. & Marshall, C. Clonal plants and environmental heterogeneity—An introduction to the proceedings. Plant Ecol. 141, 3–7 (1999).Article 

    Google Scholar 
    Matsuo, A. et al. Female and male fitness consequences of clonal growth in a dwarf bamboo population with a high degree of clonal intermingling. Ann. Bot. Lond. 114, 1035–1041 (2014).Article 
    CAS 

    Google Scholar 
    Barrett, S. C. H. Influences of clonality on plant sexual reproduction. PNAS 112, 8859–8866 (2015).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bittebiere, A.-K., Benot, M.-L. & Mony, C. Clonality as a key but overlooked driver of biotic interactions in plants. Persp. Plant Ecol. Evol. Syst. 43, 125510 (2020).Article 

    Google Scholar 
    King, D. & Roughgarden, J. Multiple switches between vegetative and reproductive growth in annual plants. Theor. Popul. Biol. 21, 194–204 (1982).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    LaDeau, S. L. & Clark, J. S. Rising CO2 levels and the fecundity of forest trees. Science 292, 95–98 (2001).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Qiu, T. et al. Is there tree senescence? The fecundity evidence. PNAS 118, e2106130118 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oddou-Muratorio, S. et al. Crown defoliation decreases reproduction and wood growth in a marginal European beech population. Ann. Bot. Lond. 128, 193–204 (2021).Article 

    Google Scholar 
    Knops, J. M. H., Koenig, W. D. & Carmen, W. J. Negative correlation does not imply a tradeoff between growth and reproduction in California oaks. PNAS 104, 16982–16985 (2007).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nakamura, I. et al. Phenotypic and genetic differences in a perennial herb across a natural gradient of CO2 concentration. Oecologia 165, 809–818 (2011).Article 
    ADS 
    PubMed 

    Google Scholar 
    Robinson, E. A., Ryan, G. D. & Newman, J. A. A meta-analytical review of the effects of elevated CO2 on plant–arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytol. 194, 321–336 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, X. Spatiotemporal Processes of Plant Phenology, Simulation and Prediction (Springer, 2017).Book 

    Google Scholar 
    Bradshaw, H. D. & Stettler, R. F. Molecular genetics of growth and development in Populus. IV. Mapping QTLs with large effects on growth, form, and phenology traits in a forest tree. Genetics 139, 963–973 (1995).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rae, A. M. et al. QTL for yield in bioenergy Populus: Identifying G×E interactions from growth at three contrasting sites. Tree Genet. Genom. 4, 97–112 (2008).Article 

    Google Scholar 
    Rae, A. M., Street, N. R., Robinson, K. M., Harris, N. & Taylor, G. Five QTL hotspots for yield in short rotation coppice bioenergy poplar: The poplar biomass loci. Bmc Plant Biol. 9, 23 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Allwright, M. R. et al. Biomass traits and candidate genes for bioenergy revealed through association genetics in coppiced European Populus nigra (L.). Biotechnol. Biofuels 9, 195 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Badmi, R. et al. A new calmodulin-binding protein expresses in the context of secondary cell wall biosynthesis and impacts biomass properties in Populus. Front. Plant Sci. 9, 1669 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dai, A. Drought under global warming: a review. Wiley Interdiscip. Rev. Clim. Change 2, 45–65 (2011).Article 

    Google Scholar 
    IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (2021).Hughes, L., Hughes, L. & Hughes, L. Biological consequences of global warming: Is the signal already apparent?. Trends Ecol. Evol. 15, 56–61 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).Article 

    Google Scholar 
    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Fuller, A. et al. Physiological mechanisms in coping with climate change. Physiol. Biochem. Zool. 83, 713–720 (2010).Article 
    PubMed 

    Google Scholar 
    Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: Lack of tree range expansion in response to climate change. Glob. Change Biol. 18, 1042–1052 (2012).Article 
    ADS 

    Google Scholar 
    Zavaleta, E. et al. Ecosystem responses to community disassembly. Ann. NY. Acad. Sci. 1162, 311–333 (2009).Article 
    ADS 
    PubMed 

    Google Scholar 
    Bertel, C. et al. Natural selection drives parallel divergence in the mountain plant Heliosperma pusillum s.l. Oikos 127, 1355–1367 (2018).Article 

    Google Scholar 
    Knotek, A. et al. Parallel alpine differentiation in Arabidopsis arenosa. Front. Plant Sci. 11, 561526 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tusiime, F. M. et al. Afro-alpine flagships revisited: Parallel adaptation, intermountain admixture and shallow genetic structuring in the giant senecios (Dendrosenecio). PLoS ONE 15, e0228979 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cooke, J. E. K. & Rood, S. B. Trees of the people: The growing science of poplars in Canada and worldwide. Botany 85, 1103–1110 (2007).
    Google Scholar 
    Evans, L. M. et al. Geographical barriers and climate influence demographic history in narrowleaf cottonwoods. Heredity 114, 387–396 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Braatne, J. H., Rood, S. B. & Heilman, P. E. Life history, ecology, and conservation of riparian cottonwoods in North America. 57–86 (1996).Schweitzer, J. A., Martinsen, G. D. & Whitham, T. G. Cottonwood hybrids gain fitness traits of both parents: A mechanism for their long-term persistence?. Am. J. Bot. 89, 981–990 (2002).Article 
    PubMed 

    Google Scholar 
    Moore, W. et al. Introduction to the Arizona Sky Island Arthropod Project (ASAP): Systematics, biogeography, ecology, and population genetics of arthropods of the Madrean Sky Islands. Proc. RMRS 2013, 144–168 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Van Nuland, M. E., Bailey, J. K. & Schweitzer, J. A. Divergent plant–soil feedbacks could alter future elevation ranges and ecosystem dynamics. Nat. Ecol. Evol. 1, 0150 (2017).Article 

    Google Scholar 
    Tuskan, G. A. et al. Characterization of microsatellites revealed by genomic sequencing of Populus trichocarpa. Can. J. For. Res. 34, 85–93 (2004).Article 
    CAS 

    Google Scholar 
    Tuskan, G. A. et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313, 1596–1604 (2006).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Peakall, R. & Ssmouse, P. E. genalex 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).Article 

    Google Scholar 
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 28, 2537–2539 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. Arxiv https://doi.org/10.48550/arxiv.1406.5823 (2014).Article 

    Google Scholar 
    Schielzeth, H. & Nakagawa, S. Nested by design: Model fitting and interpretation in a mixed model era. Methods Ecol. Evol. 4, 14–24 (2013).Article 

    Google Scholar 
    Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fox, J. et al. Package ‘car’: Companion to Applied Regression. R package version 3.0–10 (2020). More

  • in

    Metagenomic mapping of cyanobacteria and potential cyanotoxin producing taxa in large rivers of the United States

    Hallegraeff, G. M. Ocean climate change, phytoplankton community responses, and harmful algal blooms: A formidable predictive challenge 1. J. Phycol. 46, 220–235 (2010).Article 
    CAS 

    Google Scholar 
    Itakura, S. & Imai, I. Economic impacts of harmful algal blooms on fisheries and aquaculture in western Japan—An overview of interannual variability and interspecies comparison. PICES Sci. Rep. 47, 17 (2014).
    Google Scholar 
    Haigh, N. & Esenkulova, S. Economic losses to the British Columbia salmon aquaculture industry due to harmful algal blooms, 2009–2012. PICES Sci. Rep. 47, 2 (2014).
    Google Scholar 
    Sharma, N. K. et al. (eds) Cyanobacteria: An Economic Perspective 245–256 (Wiley, 2014).
    Google Scholar 
    O’Neil, J. M., Davis, T. W., Burford, M. A. & Gobler, C. J. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 14, 313–334. https://doi.org/10.1016/j.hal.2011.10.027 (2012).Article 
    CAS 

    Google Scholar 
    Paerl, H. W. & Huisman, J. Climate change: A catalyst for global expansion of harmful cyanobacterial blooms. Environ. Microbiol. Rep. 1, 27–37. https://doi.org/10.1111/j.1758-2229.2008.00004.x (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hallegraeff, G. M. et al. Perceived global increase in algal blooms is attributable to intensified monitoring and emerging bloom impacts. Commun. Earth Environ. 2, 117. https://doi.org/10.1038/s43247-021-00178-8 (2021).Article 
    ADS 

    Google Scholar 
    Hennon, G. M. M. & Dyhrman, S. T. Progress and promise of omics for predicting the impacts of climate change on harmful algal blooms. Harmful Algae 91, 101587. https://doi.org/10.1016/j.hal.2019.03.005 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kudela, R., Berdalet, E. & Urban, E. Harmful Algal Blooms: A Scientific Summary for Policy Makers (2015).Lezcano, M., Velázquez, D., Quesada, A. & El-Shehawy, R. Diversity and temporal shifts of the bacterial community associated with a toxic cyanobacterial bloom: An interplay between microcystin producers and degraders. Water Res. 125, 52–61. https://doi.org/10.1016/j.watres.2017.08.025 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Scherer, P. I. et al. Temporal dynamics of the microbial community composition with a focus on toxic cyanobacteria and toxin presence during harmful algal blooms in two South German Lakes. Front. Microbiol. 8, 02387. https://doi.org/10.3389/fmicb.2017.02387 (2017).Article 

    Google Scholar 
    Woodhouse, J. N. et al. Microbial communities reflect temporal changes in cyanobacterial composition in a shallow ephemeral freshwater lake. ISME J. 10, 1337–1351. https://doi.org/10.1038/ismej.2015.218 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Beaver, J. R. et al. Land use patterns, ecoregion, and microcystin relationships in U.S. lakes and reservoirs: A preliminary evaluation. Harmful Algae 36, 57–62. https://doi.org/10.1016/j.hal.2014.03.005 (2014).Article 
    CAS 

    Google Scholar 
    Loftin, K. A. et al. Cyanotoxins in inland lakes of the United States: Occurrence and potential recreational health risks in the EPA National Lakes Assessment 2007. Harmful Algae 56, 77–90. https://doi.org/10.1016/j.hal.2016.04.001 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Casero, M. C., Velázquez, D., Medina-Cobo, M., Quesada, A. & Cirés, S. Unmasking the identity of toxigenic cyanobacteria driving a multi-toxin bloom by high-throughput sequencing of cyanotoxins genes and 16S rRNA metabarcoding. Sci. Total Environ. 665, 367–378. https://doi.org/10.1016/j.scitotenv.2019.02.083 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chaffin, J. D., Sigler, V. & Bridgeman, T. B. Connecting the blooms: Tracking and establishing the origin of the record-breaking Lake Erie Microcystis bloom of 2011 using DGGE. Aquat. Microb. Ecol. 73, 29–39 (2014).Article 

    Google Scholar 
    Stanley, E. H. & Jones, J. B. (eds) Stream Ecosystems in a Changing Environment 321–348 (Elsevier, 2016).Book 

    Google Scholar 
    Giblin, S. M. & Gerrish, G. A. Environmental factors controlling phytoplankton dynamics in a large floodplain river with emphasis on cyanobacteria. River Res. Appl. 36, 1137–1150. https://doi.org/10.1002/rra.3658 (2020).Article 

    Google Scholar 
    Graham, J. L., Ziegler, A. C., Loving, B. L. & Loftin, K. A. Fate and Transport of Cyanobacteria and Associated Toxins and Taste-and-Odor Compounds from Upstream Reservoir Releases in the Kansas River, Kansas, September and October 2011 65 (US Geological Survey, 2012).
    Google Scholar 
    Knowlton, M. F. & Jones, J. R. Seston, light, nutrients and chlorophyll in the lower Missouri River, 1994–1998. J. Freshw. Ecol. 15, 283–297. https://doi.org/10.1080/02705060.2000.9663747 (2000).Article 

    Google Scholar 
    Otten, T. G., Crosswell, J. R., Mackey, S. & Dreher, T. W. Application of molecular tools for microbial source tracking and public health risk assessment of a Microcystis bloom traversing 300 km of the Klamath River. Harmful Algae 46, 71–81 (2015).Article 

    Google Scholar 
    Preece, E. P., Hardy, F. J., Moore, B. C. & Bryan, M. A review of microcystin detections in Estuarine and Marine waters: Environmental implications and human health risk. Harmful Algae 61, 31–45. https://doi.org/10.1016/j.hal.2016.11.006 (2017).Article 
    CAS 

    Google Scholar 
    Reinl, K. L., Sterner, R. W., Lafrancois, B. M. & Brovold, S. Fluvial seeding of cyanobacterial blooms in oligotrophic Lake Superior. Harmful Algae 100, 101941. https://doi.org/10.1016/j.hal.2020.101941 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bridgeman, T. B. et al. From River to Lake: Phosphorus partitioning and algal community compositional changes in Western Lake Erie. J. Great Lakes Res. 38, 90–97 (2012).Article 
    CAS 

    Google Scholar 
    Brown, B. L. et al. Metagenomic analysis of planktonic microbial consortia from a non-tidal urban-impacted segment of James River. Stand Genomic Sci. 10, 65. https://doi.org/10.1186/s40793-015-0062-5 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hamner, S. et al. Metagenomic profiling of microbial pathogens in the Little Bighorn River, Montana. Int. J. Environ. Res. Public Health 16, 071097. https://doi.org/10.3390/ijerph16071097 (2019).Article 
    CAS 

    Google Scholar 
    Staley, C. et al. Application of Illumina next-generation sequencing to characterize the bacterial community of the Upper Mississippi River. J. Appl. Microbiol. 115, 1147–1158. https://doi.org/10.1111/jam.12323 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Winter, C., Hein, T., Kavka, G., Mach, R. L. & Farnleitner, A. H. Longitudinal changes in the bacterial community composition of the Danube River: A whole-river approach. Appl. Environ. Microbiol. 73, 421–431. https://doi.org/10.1128/aem.01849-06 (2007).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Jackson, C. R., Millar, J. J., Payne, J. T., Ochs, C. A. & Wommack, K. E. Free-living and particle-associated bacterioplankton in large rivers of the Mississippi River basin demonstrate biogeographic patterns. Appl. Environ. Microbiol. 80, 7186–7195. https://doi.org/10.1128/AEM.01844-14 (2014).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Payne, J. T., Jackson, C. R., Millar, J. J. & Ochs, C. A. Timescales of variation in diversity and production of bacterioplankton assemblages in the Lower Mississippi River. PLoS ONE 15, e0230945. https://doi.org/10.1371/journal.pone.0230945 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Payne, J. T., Millar, J. J., Jackson, C. R. & Ochs, C. A. Patterns of variation in diversity of the Mississippi river microbiome over 1,300 kilometers. PLoS ONE 12, e0174890. https://doi.org/10.1371/journal.pone.0174890 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Read, D. S. et al. Catchment-scale biogeography of riverine bacterioplankton. ISME J. 9, 516–526. https://doi.org/10.1038/ismej.2014.166 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Reddington, K. et al. Metagenomic analysis of planktonic riverine microbial consortia using nanopore sequencing reveals insight into river microbe taxonomy and function. GigaScience 9, 53. https://doi.org/10.1093/gigascience/giaa053 (2020).Article 
    CAS 

    Google Scholar 
    Staley, C. et al. Core functional traits of bacterial communities in the Upper Mississippi River show limited variation in response to land cover. Front. Microbiol. 5, 414 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Staley, C. et al. Species sorting and seasonal dynamics primarily shape bacterial communities in the Upper Mississippi River. Sci. Total Environ. 505, 435–445. https://doi.org/10.1016/j.scitotenv.2014.10.012 (2015).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Van Rossum, T. et al. Year-long metagenomic study of river microbiomes across land use and water quality. Front. Microbiol. 6, 1405 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Kim, K. H. et al. Application of metagenome analysis to characterize the molecular diversity and saxitoxin-producing potentials of a cyanobacterial community: A case study in the North Han River, Korea. Appl. Biol. Chem. 61, 153–161. https://doi.org/10.1007/s13765-017-0342-4 (2018).Article 
    CAS 

    Google Scholar 
    Graham, J. L. et al. Cyanotoxin occurrence in large rivers of the United States. Inland Waters 10, 109–117. https://doi.org/10.1080/20442041.2019.1700749 (2020).Article 
    CAS 

    Google Scholar 
    Zuellig, R. E., Graham, J. L., Stelzer, E. A., Loftin, K. A. & Rosen, B. H. Cyanobacteria, Cyanotoxin Synthetase Gene, and Cyanotoxin Occurrence Among Selected Large River Sites of the Conterminous United States, 2017–18 22 (US Geological Survey, 2021).
    Google Scholar 
    Kramer, B. J. et al. Nitrogen limitation, toxin synthesis potential, and toxicity of cyanobacterial populations in Lake Okeechobee and the St. Lucie River Estuary, Florida, during the 2016 state of emergency event. PLoS ONE 13, e0196278 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bouma-Gregson, K. et al. Impacts of microbial assemblage and environmental conditions on the distribution of anatoxin-a producing cyanobacteria within a river network. ISME J. 13, 1618–1634. https://doi.org/10.1038/s41396-019-0374-3 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tillett, D. et al. Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: An integrated peptide–polyketide synthetase system. Chem. Biol. 7, 753–764 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dittmann, E., Fewer, D. P. & Neilan, B. A. Cyanobacterial toxins: Biosynthetic routes and evolutionary roots. FEMS Microbiol. Rev. 37, 23–43. https://doi.org/10.1111/j.1574-6976.2012.12000.x (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jungblut, A. D. & Neilan, B. A. Molecular identification and evolution of the cyclic peptide hepatotoxins, microcystin and nodularin, synthetase genes in three orders of cyanobacteria. Arch. Microbiol. 185, 107–114. https://doi.org/10.1007/s00203-005-0073-5 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Meriluoto, J. et al. (eds) Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis 501–525 (Wiley, 2017).Book 

    Google Scholar 
    Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643. https://doi.org/10.1038/ismej.2017.119 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Graham, J. L., Dubrovsky, N. M., Loftin, K. A., Rosen, B. H. & Stelzer, E. A. Cyanotoxin, Chlorophyll-a, and Cyanobacterial Toxin Genetic Data for Samples Collected at Twelve Large River Sites Throughout the United States, June Through October 2019 (U.S. Geological Survey, 2022).
    Google Scholar 
    Dodds, W. K. & Smith, V. H. Nitrogen, phosphorus, and eutrophication in streams. Inland Waters 6, 155–164. https://doi.org/10.5268/IW-6.2.909 (2016).Article 
    CAS 

    Google Scholar 
    Debroas, D. et al. Overview of freshwater microbial eukaryotes diversity: A first analysis of publicly available metabarcoding data. FEMS Microbiol. Ecol. 93, 23. https://doi.org/10.1093/femsec/fix023 (2017).Article 
    CAS 

    Google Scholar 
    Henson, M. W. et al. Nutrient dynamics and stream order influence microbial community patterns along a 2914 kilometer transect of the Mississippi River. Limnol. Oceanogr. 63, 1837–1855. https://doi.org/10.1002/lno.10811 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Ghai, R. et al. Metagenomics of the water column in the pristine upper course of the Amazon river. PLoS ONE 6, e23785. https://doi.org/10.1371/journal.pone.0023785 (2011).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liao, J. et al. Cyanobacteria in lakes on Yungui Plateau, China are assembled via niche processes driven by water physicochemical property, lake morphology and watershed land-use. Sci. Rep. 6, 36357. https://doi.org/10.1038/srep36357 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Monchamp, M.-E. et al. Homogenization of lake cyanobacterial communities over a century of climate change and eutrophication. Nat. Ecol. Evol. 2, 317–324. https://doi.org/10.1038/s41559-017-0407-0 (2018).Article 
    PubMed 

    Google Scholar 
    Pessi, I. S., Maalouf, P. D. C., LaughinghouseBaurain, H. D. D. & Wilmotte, A. On the use of high-throughput sequencing for the study of cyanobacterial diversity in Antarctic aquatic mats. J. Phycol. 52, 356–368. https://doi.org/10.1111/jpy.12399 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tanvir, R. U., Hu, Z., Zhang, Y. & Lu, J. Cyanobacterial community succession and associated cyanotoxin production in hypereutrophic and eutrophic freshwaters. Environ. Pollut. 290, 118056. https://doi.org/10.1016/j.envpol.2021.118056 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chételat, J., Pick, F. R. & Hamilton, P. B. Potamoplankton size structure and taxonomic composition: Influence of river size and nutrient concentrations. Limnol. Oceanogr. 51, 681–689 (2006).Article 
    ADS 

    Google Scholar 
    Heiskary, S. & Markus, H. Establishing relationships among nutrient concentrations, phytoplankton abundance, and biochemical oxygen demand in Minnesota, USA, rivers. Lake Reserv. Manag. 17, 251–262 (2001).Article 
    CAS 

    Google Scholar 
    Smith, V. H. Eutrophication of freshwater and coastal marine ecosystems a global problem. Environ. Sci. Pollut. Res. 10, 126–139 (2003).Article 
    CAS 

    Google Scholar 
    Verspagen, J. M. et al. Rising CO2 levels will intensify phytoplankton blooms in eutrophic and hypertrophic lakes. PLoS ONE 9, e104325 (2014).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zepernick, B. N. et al. Elevated pH conditions associated with Microcystis spp. blooms decrease viability of the cultured diatom Fragilaria crotonensis and natural diatoms in Lake Erie. Front. Microbiol. 12, 598736. https://doi.org/10.3389/fmicb.2021.598736 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Urban, L. et al. Freshwater monitoring by nanopore sequencing. Elife 10, 61504. https://doi.org/10.7554/eLife.61504 (2021).Article 

    Google Scholar 
    Lee, C. J. & Henderson, R. J. Tracking Water-Quality in U.S. Streams and Rivers: U.S. Geological Survey National Water Quality Network. https://nrtwq.usgs.gov/nwqn (2020).Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data (2010).Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257. https://doi.org/10.1186/s13059-019-1891-0 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lu, J. B. F., Thielen, P. & Salzberg, S. L. Bracken: Estimating species abundance in metagenomics data. PeerJ Comput. Sci. 3, 104. https://doi.org/10.7717/peerj-cs.104 (2017).Article 

    Google Scholar 
    Bagley, M. et al. High-throughput environmental DNA analysis informs a biological assessment of an urban stream. Ecol. Ind. 104, 378–389. https://doi.org/10.1016/j.ecolind.2019.04.088 (2019).Article 
    CAS 

    Google Scholar 
    Magoč, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963. https://doi.org/10.1093/bioinformatics/btr507 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. https://doi.org/10.1038/s41587-019-0209-9 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. https://doi.org/10.1038/nmeth.3869 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nübel, U., Garcia-Pichel, F. & Muyzer, G. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63, 3327–3332. https://doi.org/10.1128/aem.63.8.3327-3332.1997 (1997).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Neilan, B. A. et al. rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int. J. Syst. Bacteriol. 47, 693–697. https://doi.org/10.1099/00207713-47-3-693 (1997).Article 
    CAS 
    PubMed 

    Google Scholar 
    Team R Core. R: A Language and Environment for Statistical Computing (2013).McMurdie, P. J. & Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen, J. et al. Vegan: Community Ecology Package. R Package Version 2.5-2 (2018).Wickham, H. ggplot2-Elegant Graphics for Data Analysis (Springer, 2016).MATH 

    Google Scholar 
    U.S. Geological Survey. National Water Information System Database. https://doi.org/10.5066/F7P55KJN (2022). More

  • in

    Population genetic structure of a recent insect invasion: a gall midge, Asynapta groverae (Diptera: Cecidomyiidae) in South Korea since the first outbreak in 2008

    Hobbs, R. J. (ed.) Invasive Species in a Changing World (Island press, 2000).
    Google Scholar 
    Marbuah, G., Gren, I. M. & McKie, B. Economics of harmful invasive species: A review. Diversity 6, 500–523. https://doi.org/10.3390/d6030500 (2014).Article 

    Google Scholar 
    Doherty, T. S., Glen, A. S., Nimmo, D. G., Ritchie, E. G. & Dickman, C. R. Invasive predators and global biodiversity loss. PNAS 113, 11261–11265. https://doi.org/10.1073/pnas.1602480113 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    David, P. et al. Impacts of invasive species on food webs: A review of empirical data. Adv. Ecol. Res. 56, 1–60. https://doi.org/10.1016/bs.aecr.2016.10.001 (2017).Article 

    Google Scholar 
    Roy, H. E. et al. Developing a list of invasive alien species likely to threaten biodiversity and ecosystems in the European Union. Glob. Change Biol. 25, 1032–1048. https://doi.org/10.1111/gcb.14527 (2019).Article 
    ADS 

    Google Scholar 
    Walther, G. R. et al. Alien species in a warmer world: Risks and opportunities. Trends Ecol. Evol. 24, 686–693. https://doi.org/10.1016/j.tree.2009.06.008 (2009).Article 
    PubMed 

    Google Scholar 
    Peyton, J. et al. Horizon scanning for invasive alien species with the potential to threaten biodiversity and human health on a Mediterranean island. Biol. Invasions 21, 2107–2125. https://doi.org/10.1007/s10530-019-01961-7 (2019).Article 

    Google Scholar 
    Meyerson, L. A. & Mooney, H. A. Invasive alien species in an era of globalization. Front. Ecol. Environ. 5, 199–208. https://doi.org/10.1890/1540-9295(2007)5[199:IASIAE]2.0.CO;2 (2007).Article 

    Google Scholar 
    Hulme, P. E. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18. https://doi.org/10.1111/j.1365-2664.2008.01600.x (2009).Article 

    Google Scholar 
    Lodge, D. M. Biol Invasions: Lessons for ecology. Trends Ecol. Evol. 8, 133–137. https://doi.org/10.1016/0169-5347(93)90025-K (1993).Article 
    CAS 
    PubMed 

    Google Scholar 
    Keller, S. R. & Taylor, D. R. History, chance and adaptation during biological invasion: Separating stochastic phenotypic evolution from response to selection. Ecol. Lett. 11, 852–866. https://doi.org/10.1111/j.1461-0248.2008.01188.x (2008).Article 
    PubMed 

    Google Scholar 
    Ham, D., Kim, W. G., Lee, H., Choi, D. S. & Bae, Y. J. New Korean record of the mycophagous gall midge Asynapta groverae (Diptera: Cecidomyiidae) with its outbreak situation and ecological notes. Newsl. Entomol. Soc. Korea. 11, 25–30 (2018) (in Korean).
    Google Scholar 
    Grover, P. Studies on gall-midges from India XXXIV. On the study of Indian Porricondylini. Cecidologia Indica 6, 1–38 (1971).
    Google Scholar 
    Jiang, Y. X. & Bu, W. J. A newly recorded gall midge genus (Diptera, Cecidomyiidae) with a species, Asynapta groverae Jiang et Bu, nom. Nov. from China. Acta. Zootax. Sinica. 29, 786–789 (2004).
    Google Scholar 
    Bae, Y. J. Research report on the outbreak of the cecidomyiids (Diptera: Cecidomyiidae) from the Well-county apartment area in Songdo, Incheon. Incheon Metropolitan Development Corporation, Incheon 171 (2009) (in Korean).Ham, D. & Bae, Y. J. Description of immature stages of Asynapta groverae (Diptera: Cecidomyiidae). Bull. Entomol. Res. 34, 103–107 (2018).
    Google Scholar 
    Gagné, R. J. & Jaschhof, M. A Catalog of the Cecidomyiidae (Diptera) of the World. 5th Edition, Digital, 121–124 (2021).Jones, M., Mautner, A., Luenco, S., Bismarck, A. & John, S. Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Mater. Des. 187, 108397. https://doi.org/10.1016/j.matdes.2019.108397 (2020).Article 
    CAS 

    Google Scholar 
    Ross, K. G. & Shoemaker, D. D. Estimation of the number of founders of an invasive pest insect population: The fire ant Solenopsis invicta in the USA. Proc. R. Soc. B-Biol. Sci. 275, 2231–2240. https://doi.org/10.1098/rspb.2008.0412 (2008).Article 

    Google Scholar 
    Brandt, M., Van Wlgenburg, E. & Tsutsui, N. D. Global-scale analyses of chemical ecology and population genetics in the invasive Argentine ant. Mol. Ecol. 18, 997–1005. https://doi.org/10.1111/j.1365-294X.2008.04056.x (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Amouroux, P., Normand, F., Nibouche, S. & Delatte, H. Invasive mango blossom gall midge, Procontarinia mangiferae (Felt) (Diptera: Cecidomyiidae) in Reunion Island: Ecological plasticity, permanent and structured populations. Biol. Invasions 15, 1677–1693. https://doi.org/10.1007/s10530-012-0400-0 (2013).Article 

    Google Scholar 
    Horst, C. P. & Lau, J. A. Genetic variation in invasive species response to direct and indirect species interactions. Biol. Invasions 17, 651–659. https://doi.org/10.1007/s10530-014-0756-4 (2015).Article 

    Google Scholar 
    Nei, M., Maruyama, T. & Chakraborty, R. The bottleneck effect and genetic variability in populations. Evolution 29, 1–10. https://doi.org/10.2307/2407137 (1975).Article 
    PubMed 

    Google Scholar 
    Tsutsui, N. D. & Suarez, A. V. The colony structure and population biology of invasive ants. Conserv. Biol. 17, 48–58. https://doi.org/10.1046/j.1523-1739.2003.02018.x (2003).Article 

    Google Scholar 
    Freeland, J. Molecular markers in ecology. In (eds Freeland, J., Pertersen, S. & Kirk, H.) Oxford 31–62 (2011).Tsutsui, N. D., Suarez, A. V., Holway, D. A. & Case, T. J. Reduced genetic variation and the success of an invasive species. PNAS 97, 5948–5953. https://doi.org/10.1073/pnas.100110397 (2000).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davis, M. A. Invasion Biology (Oxford University Press, 2009).
    Google Scholar 
    Yao, Y. X. et al. Genetic variation may have promoted the successful colonization of the invasive gall midge, Obolodiplosis robiniae, in China. Front. Genet. 11, 387. https://doi.org/10.3389/fgene.2020.00387 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Johnson, R. N. & Starks, P. T. A surprising level of genetic diversity in an invasive wasp: Polistes dominulus in the northeastern United States. Ann. Entomol. Soc. Am. 97, 732–737. https://doi.org/10.1603/0013-8746(2004)097[0732:ASLOGD]2.0.CO;2 (2004).Article 

    Google Scholar 
    Roderick, G. K. Geographic structure of insect populations: Gene flow, phylogeography, and their uses. Annu. Rev. Entomol. 41, 325–352. https://doi.org/10.1146/annurev.en.41.010196.001545 (1996).Article 
    CAS 
    PubMed 

    Google Scholar 
    Puillandre, N. et al. Genetic bottleneck in invasive species: The potato tuber moth adds to the list. Biol. Invasions 10, 319–333. https://doi.org/10.1007/s10530-007-9132-y (2008).Article 

    Google Scholar 
    Zhan, A., Macisaac, H. J. & Cristescu, M. E. Invasion genetics of the Ciona intestinalis species complex: From regional endemism to global homogeneity. Mol. Ecol. 19, 4678–4694. https://doi.org/10.1111/j.1365-294X.2010.04837.x (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mallez, S. et al. Worldwide invasion routes of the pinewood nematode: What can we infer from population genetics analyses?. Biol. Invasions 17(4), 1199–1213. https://doi.org/10.1007/s10530-014-0788-9 (2015).Article 

    Google Scholar 
    Tsutsui, N. D. & Case, T. J. Population genetics and colony structure of the Argentine ant (Linepithema humile) in its native and introduced ranges. Evolution 55, 976–985. https://doi.org/10.1111/j.0014-3820.2001.tb00614.x (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kim, H., Hoelmer, K. A. & Lee, S. Population genetics of the soybean aphid in North America and East Asia: Test for introduction between native and introduced populations. Biol. Invasions 19, 597–614. https://doi.org/10.1007/s10530-016-1299-7 (2017).Article 

    Google Scholar 
    Chen, M. H. & Dorn, S. Microsatellites reveal genetic differentiation among populations in an insect species with high genetic variability in dispersal, the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Bull. Entomol. Res. 100, 75–85 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zygouridis, N. E., Augustinos, A. A., Zalom, F. G. & Mathiopoulos, K. D. Analysis of olive fly invasion in California based on microsatellite markers. Heredity 102, 402–412. https://doi.org/10.1038/hdy.2008.125 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lesieur, V. et al. The rapid spread of Leptoglossus occidentalis in Europe: A bridgehead invasion. J. Pest Sci. 92, 189–200. https://doi.org/10.1007/s10340-018-0993-x (2019).Article 

    Google Scholar 
    Mutitu, E. K. et al. Reconstructing early routes of invasion of the bronze bug Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae): Cities as bridgeheads for global pest invasions. Biol. Invasions 22, 2325–2338. https://doi.org/10.1007/s10530-020-02258-w (2020).Article 

    Google Scholar 
    Peccoud, J. et al. Host range expansion of an introduced insect pest through multiple colonizations of specialized clones. Mol. Ecol. 17(21), 4608–4618. https://doi.org/10.1111/j.1365-294X.2008.03949.x (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Eyer, P. A., Moran, M. N., Blumenfeld, A. J. & Vargo, E. L. Development of a set of microsatellite markers to investigate sexually antagonistic selection in the invasive ant Nylanderia fulva. Insects 12, 643. https://doi.org/10.3390/insects12070643 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schauer, B., Bong, J., Popp, C., Obermaier, E. & Feldhaar, H. Dispersal limitation of saproxylic insects in a managed forest? A population genetics approach. Basic Appl. Ecol. 32, 26–38. https://doi.org/10.1016/j.baae.2018.01.005 (2018).Article 

    Google Scholar 
    Bereczki, J., Póliska, S., Váradi, A. & Tóth, J. P. Incipient sympatric speciation via host race formation in Phengaris arion (Lepidoptera: Lycaenidae). Org. Divers. Evol. 20, 63–76. https://doi.org/10.1007/s13127-019-00418-y (2020).Article 

    Google Scholar 
    Selkoe, K. A. & Toonen, R. J. Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9, 615–629. https://doi.org/10.1111/j.1461-0248.2006.00889.x (2006).Article 
    PubMed 

    Google Scholar 
    Miah, G. et al. A review of microsatellite markers and their applications in rice breeding programs to improve blast disease resistance. Int. J. Mol. Sci. 14, 22499–22528. https://doi.org/10.3390/ijms141122499 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lloyd, C. J., Norton, A. P., Hufbauer, R. A., Bogdanowicz, S. M. & Nissen, S. J. Microsatellite isolation from the gall midge Spurgia capitigena (Diptera: Cecidomyiidae), a biological control agent of leafy spurge. Mol. Ecol. Notes 4, 605–607. https://doi.org/10.1111/j.1471-8286.2004.00751.x (2004).Article 
    CAS 

    Google Scholar 
    Bentur, J. S. et al. Isolation and characterization of microsatellite loci in the Asian rice gall midge (Orseolia oryzae) (Diptera: Cecidomyiidae). Int. J. Mol. Sci. 12, 755–772. https://doi.org/10.3390/ijms12010755 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hinomoto, N., Higaki, T., Abe, J., Yamane, M. & Yano, E. Development and characterization of 21 polymorphic microsatellite loci in the aphidophagous gall midge, Aphidoletes aphidimyza (Diptera: Cecidomyiidae). Appl. Entomol. Zool. 47, 165–171. https://doi.org/10.1007/s13355-012-0104-z (2012).Article 
    CAS 

    Google Scholar 
    Mezghani-Khemakhem, M. et al. Development of new polymorphic microsatellite loci for the barley stem gall midge, Mayetiola hordei (Diptera: Cecidomyiidae) from an Enriched Library. Int. J. Mol. Sci. 13, 14446–14450. https://doi.org/10.3390/ijms131114446 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kim, H. et al. Development and characterization of 12 microsatellite loci from the blueberry gall midge Dasineura oxycoccana (Diptera: Cecidomyiidae). Appl. Entomol. Zool. 50, 415–418. https://doi.org/10.1007/s13355-015-0335-x (2015).Article 

    Google Scholar 
    Benzécri, J. P. Construction d’une classification ascendante hiérarchique par la recherche en chaîne des voisins réciproques. Cahiers de l’analyse des données. 7, 209–218 (1982).MATH 

    Google Scholar 
    Simberloff, D. Invasive species. In Conservation Biology for all (eds Sodhi, N. S. & Ehrlich, P. R.) 131–152 (Oxford University Press, 2010).Chapter 

    Google Scholar 
    Keum, E. et al. Morphological, genetic and symptomatic identification of an invasive jujube pest in Korea, Dasineura jujubifolia Jiao & Bu (Diptera: Cecidomyiidae). J. Asia Pac. Entomol. 101935, 2002. https://doi.org/10.1016/j.aspen.2022.101935 (2022).Article 

    Google Scholar 
    Jaschhof, M. & Jaschhof, C. New and rarely found species of asynaptine Porricondylinae (Diptera: Cecidomyiidae) in northern Europe. Zootaxa https://doi.org/10.12651/JSR.2019.8.2.238 (2019).Article 
    PubMed 

    Google Scholar 
    Yuxia, J. & Wenjun, B. A newly recorded gall midge genus (Diptera, cecidomyiidae) with a species, Asynapta groverae Jiang et bu. nom. Nov. from China. Dong wu fen lei xue bao = Acta Zootaxonomica Sinica 29, 786–789 (2004).
    Google Scholar 
    Mamaev, M. & Krivosheina, N. P. The Larvae of the Gall Miges (CRC Press, 1992).
    Google Scholar 
    Dorchin, N., Harris, K. M. & Stireman, J. O. III. Phylogeny of the gall midges (Diptera, Cecidomyiidae, Cecidomyiinae): Systematics, evolution of feeding modes and diversification rates. Mol. Phylogenet. Evol. 140, 106602. https://doi.org/10.1016/j.ympev.2019.106602 (2019).Article 
    PubMed 

    Google Scholar 
    Gilpin, M. E. Minimal viable populations: Processes of species extinction. Conserv. Biol. Sci. Scarcity Divers. (1986).Frankham, R., Ballou, J. D. & Briscoe, D. A. Introduction to Conservation Genetics (Cambridge University Press, 2002).Book 

    Google Scholar 
    Hedrick, P. W. Genetic polymorphism in heterogeneous environments: The age of genomics. Annu. Rev. Ecol. Syst. 37, 67–93. https://doi.org/10.1146/annurev.ecolsys.37.091305.110132 (2006).Article 

    Google Scholar 
    Kolbe, J. J. et al. Genetic variation increases during biological invasion by a Cuban lizard. Nature 431, 177–181. https://doi.org/10.1038/nature02807 (2004).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Frankham, R. Resolving the genetic paradox in invasive species. Heredity 94, 385–385. https://doi.org/10.1038/sj.hdy.6800634 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sakai, A. K. et al. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32, 305–332. https://doi.org/10.1146/annurev.ecolsys.32.081501.114037 (2001).Article 

    Google Scholar 
    Wagner, N. P. Parthenogenesis in the larva of insects. Sci. Mem. Kasan Univ. 1, 25–111 (1862) (in Russian).
    Google Scholar 
    Meinert, F. Miastor metraloas: yderlige oplysning om den af Prof. Nic. Wagner nyligt beskneune insektlarva, som formerer sig ved spinedannelse. Naturhistorisk Tidsskrqt R3(3), 37–43 (1864).
    Google Scholar 
    Wyatt, I. J. Pupal paedogenesis in the Cecidomyiidae (Diptera). II. Proceedings of the Royal Entomological Society of London. J. Entomol. Ser. A-Gen. 38, 136–144. https://doi.org/10.1111/j.1365-3032.1963.tb00768.x (1963).Article 

    Google Scholar 
    Wyatt, I. J. Immature stages of Lestremiinae (Diptera: Cecidomyiidae) infesting cultivated mushrooms. Trans. R. Entomol. Soc. Lond. 116, 15–27. https://doi.org/10.1111/j.1365-2311.1964.tb00823.x (1964).Article 

    Google Scholar 
    Panelius, I. J. A revision of the European gall midges of the subfamily Porricondylinae (Diptera: Itonididae). Acta Zool. Fenn. 13, 1–157 (1965).
    Google Scholar 
    Schüpbach, P. M. & Camenzind, R. Germ cell lineage and follicle formation in paedogenetic development of Mycophila speyeri Barnes (Diptera: Cecidomyiidae). Int. J. Insect Morphol. Embryol. 12, 211–223. https://doi.org/10.1016/0020-7322(83)90018-1 (1983).Article 

    Google Scholar 
    Sikora, T., Jaschhof, M., Mantič, M., Kaspřák, D. & Ševčík, J. Considerable congruence, enlightening conflict: molecular analysis largely supports morphology-based hypotheses on Cecidomyiidae (Diptera) phylogeny. Zool. J. Linn. Soc. 185, 98–110. https://doi.org/10.1093/zoolinnean/zly029 (2019).Article 

    Google Scholar 
    Gould, S. J. Ontogeny and Phylogeny (Harvard University Press, 1985).
    Google Scholar 
    Went, D. F. Paedogenesis in the dipteran insect Heteropeza pygmaea: An interpretation. Int. J. Invertebr. Reprod. 1, 21–30. https://doi.org/10.1080/01651269.1979.10553296 (1979).Article 

    Google Scholar 
    Hodin, J. & Riddiford, L. M. Parallel alterations in the timing of ovarian ecdysone receptor and ultraspiracle expression characterize the independent evolution of larval reproduction in two species of gall midges (Diptera: Cecidomyiidae). Dev. Genes Evol. 210, 358–372. https://doi.org/10.1007/s004270000079 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Olfert, O., Elliott, R. H. & Hartley, S. In Ecological Impacts of Non-native Invertebrates and Fungi on Terrestrial Ecosystems (eds Langor, D. W. & Sweeney, J.) 127–133 (Springer, 2008). https://doi.org/10.1007/978-1-4020-9680-8_9.Chapter 

    Google Scholar 
    Miao, J. et al. Long-distance wind-borne dispersal of Sitodiplosis mosellana Géhin (Diptera: Cecidomyiidae) in Northern China. J. Insect Behav. 26, 120–129. https://doi.org/10.1007/s10905-012-9346-4 (2013).Article 

    Google Scholar 
    Hao, Y. N. et al. Flight performance of the orange wheat blossom midge (Diptera: Cecidomyiidae). J. Econ. Entomol. 106, 2043–2047. https://doi.org/10.1603/EC13218 (2013).Article 
    PubMed 

    Google Scholar 
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS 
    PubMed 

    Google Scholar 
    Luo, R. et al. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. GigaScience 1, 2047-217X-1–18. https://doi.org/10.1186/2047-217X-1-18 (2012).Article 

    Google Scholar 
    Jiang, H., Lei, R., Ding, S. W. & Zhu, S. Skewer: A fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinform. 15, 1–12. https://doi.org/10.1186/1471-2105-15-182 (2014).Article 
    CAS 

    Google Scholar 
    Beier, S., Thiel, T., Münch, T., Scholz, U. & Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 33, 2583–2585. https://doi.org/10.1093/bioinformatics/btx198 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. In Bioinformatics Methods and Protocols. Methods in Molecular Biology™ Vol. 132 (eds Misener, S. & Krawetz, S. A.) (Humana Press, 2000). https://doi.org/10.1385/1-59259-192-2:365.Chapter 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).Article 
    PubMed 

    Google Scholar 
    Petit, R. J., Mousadik, A. E. & Pons, O. Identifying populations for conservation on the basis of genetic markers. Conserv. Biol. 12, 844–855. https://doi.org/10.1111/j.1523-1739.1998.96489.x (1998).Article 

    Google Scholar 
    Teacher, A. G. F. & Griffiths, D. J. HapStar: Automated haplotype network layout and visualization. Mol. Ecol. Resour. 11, 151–153. https://doi.org/10.1111/j.1755-0998.2010.02890.x (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rousset, F. Genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x (2008).Article 
    PubMed 

    Google Scholar 
    Goudet, J. FSTAT, a program to estimate and test gene diversity and fixation indices (version 2.9.3). http://www2.unil.ch/popgen/softwares/fstat.htm (2001).Van Oosterhout, C. V., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICROCHECKER v. 2.2.3. (2006).Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N. & Bonhomme, F. GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Montpellier, France: Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II (2004). More

  • in

    Unravelling microalgal-bacterial interactions in aquatic ecosystems through 16S rRNA gene-based co-occurrence networks

    Croft, M. T., Lawrence, A. D., Raux-Deery, E., Warren, M. J. & Smith, A. G. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature https://doi.org/10.1038/nature04056 (2005).Article 
    PubMed 

    Google Scholar 
    Kazamia, E. et al. Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation. Environ. Microbiol. https://doi.org/10.1111/j.1462-2920.2012.02733.x (2012).Article 
    PubMed 

    Google Scholar 
    Bunbury, F. et al. Exploring the onset of B12-based mutualisms using a recently evolved Chlamydomonas auxotroph and B12-producing bacteria. Environ. Microbiol. 24, 3134–3147 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Butler, A. Acquisition and utilization of transition metal ions by marine organisms. Science https://doi.org/10.1126/science.281.5374.207 (1998).Article 
    PubMed 

    Google Scholar 
    Amin, S. A. et al. Photolysis of iron-siderophore chelates promotes bacterial-algal mutualism. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.0905512106 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Amin, S. A. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature https://doi.org/10.1038/nature14488 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mayali, X. & Azam, F. Algicidal bacteria in the sea and their impact on algal blooms. J. Eukaryot. Microbiol. https://doi.org/10.1111/j.1550-7408.2004.tb00538.x (2004).Article 
    PubMed 

    Google Scholar 
    Bagwell, C. E. et al. Discovery of bioactive metabolites in biofuel microalgae that offer protection against predatory bacteria. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.00516 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoeger, A. L., Jehmlich, N., Kipping, L., Griehl, C. & Noll, M. Associated bacterial microbiome responds opportunistic once algal host Scenedesmus vacuolatus is attacked by endoparasite Amoeboaphelidium protococcarum. Sci. Rep. https://doi.org/10.1038/s41598-022-17114-1 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mars Brisbin, M., Mitarai, S., Saito, M. A. & Alexander, H. Microbiomes of bloom-forming Phaeocystis algae are stable and consistently recruited, with both symbiotic and opportunistic modes. ISME J. https://doi.org/10.1038/s41396-022-01263-2 (2022).Article 
    PubMed 

    Google Scholar 
    Milici, M. et al. Co-occurrence analysis of microbial taxa in the Atlantic ocean reveals high connectivity in the free-living bacterioplankton. Front. Microbiol. 7, 1–20 (2016).Article 

    Google Scholar 
    Barberán, A., Bates, S. T., Casamayor, E. O. & Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 6, 343–351 (2012).Article 
    PubMed 

    Google Scholar 
    Tucker, A. E. & Brown, S. P. Sampling a gradient of red snow algae bloom density reveals novel connections between microbial communities and environmental features. Sci. Rep. 12, 1–15 (2022).Article 

    Google Scholar 
    Faust, K. & Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chun, S. J. et al. Network analysis reveals succession of microcystis genotypes accompanying distinctive microbial modules with recurrent patterns. Water Res. https://doi.org/10.1016/j.watres.2019.115326 (2020).Article 
    PubMed 

    Google Scholar 
    Huang, S. Back to the biology in systems biology: What can we learn from biomolecular networks?. Briefings Funct. Genom. Proteom. https://doi.org/10.1093/bfgp/2.4.279 (2004).Article 

    Google Scholar 
    Ma’ayan, A. Introduction to network analysis in systems biology. Sci. Signal. https://doi.org/10.1126/scisignal.2001965 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williams, R. J., Howe, A. & Hofmockel, K. S. Demonstrating microbial co-occurrence pattern analyses within and between ecosystems. Front. Microbiol. 5, 1–10 (2014).Article 

    Google Scholar 
    Fuhrman, J. A., Cram, J. A. & Needham, D. M. Marine microbial community dynamics and their ecological interpretation. Nat. Rev. Microbiol. https://doi.org/10.1038/nrmicro3417 (2015).Article 
    PubMed 

    Google Scholar 
    Chafee, M. et al. Recurrent patterns of microdiversity in a temperate coastal marine environment. ISME J. 12, 237–252 (2018).Article 
    PubMed 

    Google Scholar 
    Zamkovaya, T., Foster, J. S., de Crécy-Lagard, V. & Conesa, A. A network approach to elucidate and prioritize microbial dark matter in microbial communities. ISME J. 15, 228–244 (2021).Article 
    PubMed 

    Google Scholar 
    Lima-Mendez, G. et al. Determinants of community structure in the global plankton interactome. Science https://doi.org/10.1126/science.1262073 (2015).Article 
    PubMed 

    Google Scholar 
    Bennke, C. M. et al. The distribution of phytoplankton in the Baltic Sea assessed by a prokaryotic 16S rRNA gene primer system. J. Plankton Res. 40, 244–254 (2018).Article 
    CAS 

    Google Scholar 
    Berry, D. & Widder, S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front. Microbiol. https://doi.org/10.3389/fmicb.2014.00219 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Needham, D. M. & Fuhrman, J. A. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat. Microbiol. https://doi.org/10.1038/nmicrobiol.2016.5 (2016).Article 
    PubMed 

    Google Scholar 
    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature https://doi.org/10.1038/nature24621 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gonzalez, A. et al. Qiita: Rapid, web-enabled microbiome meta-analysis. Nat. Methods https://doi.org/10.1038/s41592-018-0141-9 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.1000080107 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. https://doi.org/10.1038/ismej.2012.8 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. https://doi.org/10.1038/s41587-019-0209-9 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. https://doi.org/10.14806/ej.17.1.200 (2011).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods https://doi.org/10.1038/nmeth.3869 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome https://doi.org/10.1186/s40168-018-0470-z (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Decelle, J. et al. PhytoREF: A reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol. Ecol. Resour. 15, 1435–1445 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Major oceanic 16S/18S databases in qiime2 format. https://github.com/ndu-invitae/Oceanic_database/tree/master/PhytoRef.Hemprich-Bennett, D. R., Oliveira, H. F. M., Le Comber, S. C., Rossiter, S. J. & Clare, E. L. Assessing the impact of taxon resolution on network structure. Ecology https://doi.org/10.1002/ecy.3256 (2021).Article 
    PubMed 

    Google Scholar 
    Watts, S. C., Ritchie, S. C., Inouye, M. & Holt, K. E. FastSpar: Rapid and scalable correlation estimation for compositional data. Bioinformatics https://doi.org/10.1093/bioinformatics/bty734 (2019).Article 
    PubMed 

    Google Scholar 
    Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1002687 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Csardi, G., & Nepusz, T. The igraph software package for complex network research. InterJournal, Complex Systems. igraph Softw. Packag. (2006).Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. https://doi.org/10.1101/gr.1239303 (2003).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Assenov, Y., Ramírez, F., Schelhorn, S. E. S. E., Lengauer, T. & Albrecht, M. Computing topological parameters of biological networks. Bioinformatics https://doi.org/10.1093/bioinformatics/btm554 (2008).Article 
    PubMed 

    Google Scholar 
    Barabási, A. L. Scale-free networks: A decade and beyond. Science https://doi.org/10.1126/science.1173299 (2009).Article 
    MathSciNet 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    Morris, J. H. et al. ClusterMaker: A multi-algorithm clustering plugin for cytoscape. BMC Bioinform. https://doi.org/10.1186/1471-2105-12-436 (2011).Article 

    Google Scholar 
    Van Dongen, S. & Abreu-Goodger, C. Using MCL to extract clusters from networks. Methods Mol. Biol. https://doi.org/10.1007/978-1-61779-361-5_15 (2012).Article 
    PubMed 

    Google Scholar 
    Raivo, K. Pheatmap: Pretty heatmaps. R Pacakage Version (2012).Albert, R., Jeong, H. & Barabási, A. L. Diameter of the world-wide web. Nature https://doi.org/10.1038/43601 (1999).Article 

    Google Scholar 
    Eisenberg, E. & Levanon, E. Y. Preferential attachment in the protein network evolution. Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.91.138701 (2003).Article 
    PubMed 

    Google Scholar 
    Ma, B. et al. Earth microbial co-occurrence network reveals interconnection pattern across microbiomes. Microbiome 8, 82 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, H. et al. Combined use of network inference tools identifies ecologically meaningful bacterial associations in a paddy soil. Soil Biol. Biochem. 105, 227–235 (2017).Article 
    CAS 

    Google Scholar 
    Goecke, F., Thiel, V., Wiese, J., Labes, A. & Imhoff, J. F. Algae as an important environment for bacteria—Phylogenetic relationships among new bacterial species isolated from algae. Phycologia https://doi.org/10.2216/12-24.1 (2013).Article 

    Google Scholar 
    Krohn-Molt, I. et al. Metagenome survey of a multispecies and alga-associated biofilm revealed key elements of bacterial-algal interactions in photobioreactors. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01641-13 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Woebken, D. et al. Fosmids of novel marine Planctomycetes from the Namibian and Oregon coast upwelling systems and their cross-comparison with planctomycete genomes. ISME J. https://doi.org/10.1038/ismej.2007.63 (2007).Article 
    PubMed 

    Google Scholar 
    Faria, M. et al. Planctomycetes attached to algal surfaces: Insight into their genomes. Genomics https://doi.org/10.1016/j.ygeno.2017.10.007 (2018).Article 
    PubMed 

    Google Scholar 
    Barbeyron, T., L’Haridon, S., Corre, E., Kloareg, B. & Potin, P. Zobellia galactanovorans gen. nov., sp. nov., a marine species of Flavobacteriaceae isolated from a red alga, and classification of [Cytophaga] uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Zobellia uliginosa gen. nov., comb. Nov.. Int. J. Syst. Evol. Microbiol. https://doi.org/10.1099/00207713-51-3-985 (2001).Article 
    PubMed 

    Google Scholar 
    Nedashkovskaya, O. I. et al. Mesonia algae gen. nov., sp. nov., a novel marine bacterium of the family Flavobacteriaceae isolated from the green alga Acrosiphonia sonderi (Kütz) Kornm. Int. J. Syst. Evol. Microbiol. https://doi.org/10.1099/ijs.0.02626-0 (2003).Article 
    PubMed 

    Google Scholar 
    Kim, B. H., Ramanan, R., Cho, D. H., Oh, H. M. & Kim, H. S. Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomass Bioenerg. https://doi.org/10.1016/j.biombioe.2014.07.015 (2014).Article 

    Google Scholar 
    Rivas, M. O., Vargas, P. & Riquelme, C. E. Interactions of Botryococcus braunii cultures with bacterial biofilms. Microb. Ecol. https://doi.org/10.1007/s00248-010-9686-6 (2010).Article 
    PubMed 

    Google Scholar 
    Cole, J. J. Interactions between bacteria and algae in aquatic ecosystems. Annu. Rev. Ecol. Syst. https://doi.org/10.1146/annurev.es.13.110182.001451 (1982).Article 

    Google Scholar 
    Fulbright, S. P. et al. Bacterial community changes in an industrial algae production system. Algal Res. https://doi.org/10.1016/j.algal.2017.09.010 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhou, J. et al. Microbial community structure and associations during a marine dinoflagellate bloom. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01201 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Simon, M., Glöckner, F. O. & Amann, R. Different community structure and temperature optima of heterotrophic picoplankton in various regions of the Southern Ocean. Aquat. Microb. Ecol. https://doi.org/10.3354/ame018275 (1999).Article 

    Google Scholar 
    Brussaard, C. P. D., Mari, X., Van Bleijswijk, J. D. L. & Veldhuis, M. J. W. A mesocosm study of Phaeocystis globosa (Prymnesiophyceae) population dynamics: II. Significance for the microbial community. Harmful Algae https://doi.org/10.1016/j.hal.2004.12.012 (2005).Article 

    Google Scholar 
    Janse, I., Zwart, G., Van der Maarel, M. J. E. C. & Gottschal, J. C. Composition of the bacterial community degrading Phaeocystis mucopolysaccharides in enrichment cultures. Aquat. Microb. Ecol. https://doi.org/10.3354/ame022119 (2000).Article 

    Google Scholar 
    Grossart, H. P., Levold, F., Allgaier, M., Simon, M. & Brinkhoff, T. Marine diatom species harbour distinct bacterial communities. Environ. Microbiol. https://doi.org/10.1111/j.1462-2920.2005.00759.x (2005).Article 
    PubMed 

    Google Scholar 
    Sapp, M. et al. Species-specific bacterial communities in the phycosphere of microalgae?. Microb. Ecol. https://doi.org/10.1007/s00248-006-9162-5 (2007).Article 
    PubMed 

    Google Scholar 
    Sapp, M., Wichels, A. & Gerdts, G. Impacts of cultivation of marine diatoms on the associated bacterial community. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.02274-06 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Milici, M. et al. Bacterioplankton biogeography of the Atlantic ocean: A case study of the distance-decay relationship. Front. Microbiol. 7, 1–15 (2016).Article 

    Google Scholar 
    Martin, K. et al. The biogeographic differentiation of algal microbiomes in the upper ocean from pole to pole. Nat. Commun. https://doi.org/10.1038/s41467-021-25646-9 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martinez-Garcia, M. et al. Capturing single cell genomes of active polysaccharide degraders: An unexpected contribution of verrucomicrobia. PLoS ONE https://doi.org/10.1371/journal.pone.0035314 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dell’Anno, F. et al. Highly contaminated marine sediments can host rare bacterial taxa potentially useful for bioremediation. Front. Microbiol. https://doi.org/10.3389/fmicb.2021.584850 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Newton, R. J. et al. Genome characteristics of a generalist marine bacterial lineage. ISME J. https://doi.org/10.1038/ismej.2009.150 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sañudo-Wilhelmy, S. A., Gómez-Consarnau, L., Suffridge, C. & Webb, E. A. The role of B vitamins in marine biogeochemistry. Ann. Rev. Mar. Sci. https://doi.org/10.1146/annurev-marine-120710-100912 (2014).Article 
    PubMed 

    Google Scholar 
    Durham, B. P. et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.1413137112 (2015).Article 
    PubMed 

    Google Scholar 
    Proulx, S. R., Promislow, D. E. L. & Phillips, P. C. Network thinking in ecology and evolution. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2005.04.004 (2005).Article 
    PubMed 

    Google Scholar 
    Coelho, F. J. R. C. et al. Integrated analysis of bacterial and microeukaryotic communities from differentially active mud volcanoes in the Gulf of Cadiz. Sci. Rep. 6, 1–10 (2016).Article 

    Google Scholar 
    Queiroz, L. L. et al. Bacterial diversity in deep-sea sediments under influence of asphalt seep at the São Paulo Plateau. Antonie van Leeuwenhoek. Int. J. Gen. Mol. Microbiol. 8, 9. https://doi.org/10.1007/s10482-020-01384-8 (2020).Article 
    CAS 

    Google Scholar 
    de Voogd, N. J., Cleary, D. F. R., Polónia, A. R. M. & Gomes, N. C. M. Bacterial community composition and predicted functional ecology of sponges, sediment and seawater from the thousand islands reef complex, West Java, Indonesia. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiv019 (2015).Article 
    PubMed 

    Google Scholar 
    Vigneron, A. et al. Multiple strategies for light-harvesting, photoprotection, and carbon flow in high latitude microbial mats. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.02881 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pushpakumara, B. L. D. U., Tandon, K., Willis, A. & Verbruggen, H. The bacterial microbiome of the coral skeleton algal symbiont Ostreobium shows preferential associations and signatures of phylosymbiosis. bioRxiv https://doi.org/10.1101/2022.12.13.520198 (2022).Article 

    Google Scholar 
    Lage, O. M. & Bondoso, J. Planctomycetes diversity associated with macroalgae. FEMS Microbiol. Ecol. https://doi.org/10.1111/j.1574-6941.2011.01168.x (2011).Article 
    PubMed 

    Google Scholar 
    Longford, S. R. et al. Comparisons of diversity of bacterial communities associated with three sessile marine eukaryotes. Aquat. Microb. Ecol. https://doi.org/10.3354/ame048217 (2007).Article 

    Google Scholar 
    Bengtsson, M. M. & Øvreås, L. Planctomycetes dominate biofilms on surfaces of the kelp Laminaria hyperborea. BMC Microbiol. https://doi.org/10.1186/1471-2180-10-261 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ludington, W. B. et al. Assessing biosynthetic potential of agricultural groundwater through metagenomic sequencing: A diverse anammox community dominates nitrate-rich groundwater. PLoS ONE https://doi.org/10.1371/journal.pone.0174930 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vidal-Melgosa, S. et al. Diatom fucan polysaccharide precipitates carbon during algal blooms. Nat. Commun. 12, 1–13 (2021).Article 

    Google Scholar 
    Walker, A. M., Leigh, M. B. & Mincks, S. L. Patterns in benthic microbial community structure across environmental gradients in the beaufort sea shelf and slope. Front. Microbiol. https://doi.org/10.3389/fmicb.2021.581124 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morris, R. M., Longnecker, K. & Giovannoni, S. J. Pirellula and OM43 are among the dominant lineages identified in an Oregon coast diatom bloom. Environ. Microbiol. https://doi.org/10.1111/j.1462-2920.2006.01029.x (2006).Article 
    PubMed 

    Google Scholar 
    Sichert, A. et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat. Microbiol. https://doi.org/10.1038/s41564-020-0720-2 (2020).Article 
    PubMed 

    Google Scholar 
    Bohórquez, J. et al. Different types of diatom-derived extracellular polymeric substances drive changes in heterotrophic bacterial communities from intertidal sediments. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.00245 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Landa, M. et al. Phylogenetic and structural response of heterotrophic bacteria to dissolved organic matter of different chemical composition in a continuous culture study. Environ. Microbiol. https://doi.org/10.1111/1462-2920.12242 (2014).Article 
    PubMed 

    Google Scholar 
    Orsi, W. D. et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME J. https://doi.org/10.1038/ismej.2016.20 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Combating the unseen enemy of yam

    Bjornlund, V., Bjornlund, H. & Van Rooyen, A. F. Int. J. Water Resour. Dev. 36 (Suppl. 1), S20–S53 (2020).World Population Prospects: the 2017 Revision (United Nations Department of Economic and Social Affairs Population Division, 2017).Affokpon, A. et al. In 69th International Symposium on Crop Protection (2017).Adesiyan, S. O. & Odihirin, R. A. Nematologica 24, 132–134a (1978).Article 

    Google Scholar 
    Gao, Q. K. Chinese Vegetables 5, 24–25 (1992).
    Google Scholar 
    Pirzada, T. et al. Nat. Food https://doi.org/10.1038/s43016-023-00695-z (2023).Article 

    Google Scholar 
    Hague, N. G. M. Nematodes, The Unseen Enemy: A Guide to Nematode Damage (Du Pont, 1980).Zasada, I. A. et al. Annu. Rev. Phytopathol. 48, 311–328 (2010).Article 
    CAS 

    Google Scholar 
    Ochola, J. et al. Nat. Sustain. 5, 425–433 (2022).Article 

    Google Scholar 
    Pirzada, T. et al. ACS Sustain. Chem. Eng. 8, 6590–6600 (2020).Article 
    CAS 

    Google Scholar 
    Cao, J. et al. Cellulose 23, 673–687 (2016).Article 
    CAS 

    Google Scholar  More

  • in

    Optimization of green and environmentally-benign synthesis of isoamyl acetate in the presence of ball-milled seashells by response surface methodology

    McElroy, C. R., Constantinou, A., Jones, L. C., Summerton, L. & Clark, J. H. Towards a holistic approach to metrics for the 21st century pharmaceutical industry. Green Chem. 17, 3111–3121. https://doi.org/10.1039/C5GC00340G (2015).Article 
    CAS 

    Google Scholar 
    Zimmerman, J. B., Anastas, P. T., Erythropel, H. C. & Leitner, W. Designing for a green chemistry future. Science 367, 397–400. https://doi.org/10.1126/science.aay3060 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sheldon, R. A. Metrics of green chemistry and sustainability: Past, present, and future. ACS Sustain. Chem. Eng. 6, 32–48. https://doi.org/10.1021/acssuschemeng.7b03505 (2018).Article 
    CAS 

    Google Scholar 
    Anastas, P. T. & Williamson, T. C. in Green Chemistry, Vol. 626 ACS Symposium Series Ch. 1, 1–17 (American Chemical Society, 1996). https://doi.org/10.1021/bk-1996-0626.ch001.Clark, H. J. Green chemistry: Challenges and opportunities. Green Chem. 1, 1–8. https://doi.org/10.1039/A807961G (1999).Article 
    CAS 

    Google Scholar 
    Dekamin, M. G. & Eslami, M. Highly efficient organocatalytic synthesis of diverse and densely functionalized 2-amino-3-cyano-4 H-pyrans under mechanochemical ball milling. Green Chem. 16, 4914–4921 (2014).Article 
    CAS 

    Google Scholar 
    Eze, A. A. et al. Wet ball milling of niobium by using ethanol, determination of the crystallite size and microstructures. Sci. Rep. 11, 1–8 (2021).Article 

    Google Scholar 
    Gorrasi, G. & Sorrentino, A. Mechanical milling as a technology to produce structural and functional bio-nanocomposites. Green Chem. 17, 2610–2625 (2015).Article 
    CAS 

    Google Scholar 
    Li, L. H., Glushenkov, A. M., Hait, S. K., Hodgson, P. & Chen, Y. High-efficient production of boron nitride nanosheets via an optimized ball milling process for lubrication in oil. Sci. Rep. 4, 1–6 (2014).
    Google Scholar 
    Mac Naughton, G. E., Rolfe, S. A. & Siraj-Blatchford, I. E. Doing Early Childhood Research: International Perspectives on Theory and Practice (Open University Press, 2001).Evangelisti, L. et al. The borderline between reactivity and pre-reactivity of binary mixtures of gaseous carboxylic acids and alcohols. Angew. Chem. 129, 3930–3933 (2017).Article 
    ADS 

    Google Scholar 
    Gaspa, S., Porcheddu, A. & De Luca, L. Metal-free oxidative cross esterification of alcohols via acyl chloride formation. Adv. Synth. Catal. 358, 154–158 (2016).Article 
    CAS 

    Google Scholar 
    Fiorio, J. L., Braga, A. H., Guedes, C. L. S. B. & Rossi, L. M. Reusable heterogeneous tungstophosphoric acid-derived catalyst for green esterification of carboxylic acids. ACS Sustain. Chem. Eng. 7, 15874–15883 (2019).Article 
    CAS 

    Google Scholar 
    Karimi, B., Mirzaei, H. M. & Mobaraki, A. Periodic mesoporous organosilica functionalized sulfonic acids as highly efficient and recyclable catalysts in biodiesel production. Catal. Sci. Technol. 2, 828–834 (2012).Article 
    CAS 

    Google Scholar 
    Tran, T. T. V. et al. Selective production of green solvent (isoamyl acetate) from fusel oil using a sulfonic acid-functionalized KIT-6 catalyst. Mol. Catal. 484, 110724 (2020).Article 
    CAS 

    Google Scholar 
    Afshar, S. et al. Optimization of catalytic activity of sulfated titania for efficient synthesis of isoamyl acetate by response surface methodology. Mon. Chem. Chem. Mon. 146, 1949–1957 (2015).Article 
    CAS 

    Google Scholar 
    Chng, L. L., Yang, J. & Ying, J. Y. Efficient synthesis of amides and esters from alcohols under aerobic ambient conditions catalyzed by a Au/mesoporous Al2O3 nanocatalyst. Chemsuschem 8, 1916–1925 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lozano, P., Bernal, J. M. & Navarro, A. A clean enzymatic process for producing flavour esters by direct esterification in switchable ionic liquid/solid phases. Green Chem. 14, 3026–3033 (2012).Article 
    CAS 

    Google Scholar 
    Su, L., Hong, R., Guo, X., Wu, J. & Xia, Y. Short-chain aliphatic ester synthesis using Thermobifida fusca cutinase. Food Chem. 206, 131–136 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Güvenç, A., Kapucu, N., Kapucu, H., Aydoğan, Ö. & Mehmetoğlu, Ü. Enzymatic esterification of isoamyl alcohol obtained from fusel oil: Optimization by response surface methodolgy. Enzyme Microb. Technol. 40, 778–785 (2007).Article 

    Google Scholar 
    Torres, S., Baigorí, M. D., Swathy, S., Pandey, A. & Castro, G. R. Enzymatic synthesis of banana flavour (isoamyl acetate) by Bacillus licheniformis S-86 esterase. Food Res. Int. 42, 454–460 (2009).Article 
    CAS 

    Google Scholar 
    Ando, H., Kurata, A. & Kishimoto, N. Antimicrobial properties and mechanism of volatile isoamyl acetate, a main flavour component of Japanese sake (Ginjo-shu). J. Appl. Microbiol. 118, 873–880 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ghamgui, H., Karra-Chaâbouni, M., Bezzine, S., Miled, N. & Gargouri, Y. Production of isoamyl acetate with immobilized Staphylococcus simulans lipase in a solvent-free system. Enzyme Microb. Technol. 38, 788–794 (2006).Article 
    CAS 

    Google Scholar 
    Romero, M., Calvo, L., Alba, C., Daneshfar, A. & Ghaziaskar, H. Enzymatic synthesis of isoamyl acetate with immobilized Candida antarctica lipase in n-hexane. Enzyme Microb. Technol. 37, 42–48 (2005).Article 
    CAS 

    Google Scholar 
    Borges, M. E. & Díaz, L. Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review. Renew. Sustain. Energy Rev. 16, 2839–2849 (2012).Article 
    CAS 

    Google Scholar 
    Li, K.-T., Wang, C.-K., Wang, I. & Wang, C.-M. Esterification of lactic acid over TiO2–ZrO2 catalysts. Appl. Catal. A 392, 180–183 (2011).Article 
    CAS 

    Google Scholar 
    Clark, J. H. & Rhodes, C. N. In Clean Synthesis Using Porous Inorganic Solid Catalysts and Supported Reagents, Vol. 4, (Royal Society of Chemistry, London, 2000). https://doi.org/10.1039/9781847550569Dekamin, M. G. et al. Sodium alginate: An efficient biopolymeric catalyst for green synthesis of 2-amino-4H-pyran derivatives. Int. J. Biol. Macromol. 87, 172–179 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Melfi, D. T., dos Santos, K. C., Ramos, L. P. & Corazza, M. L. Supercritical CO2 as solvent for fatty acids esterification with ethanol catalyzed by Amberlyst-15. J. Supercrit. Fluids 158, 104736 (2020).Article 
    CAS 

    Google Scholar 
    Azudin, N. Y., Mashitah, M. & Abd Shukor, S. R. Optimization of isoamyl acetate production in a solvent-free system. J. Food Qual. 36, 441–446 (2013).Article 
    CAS 

    Google Scholar 
    Ćorović, M. et al. Immobilization of Candida antarctica lipase B onto Purolite® MN102 and its application in solvent-free and organic media esterification. Bioprocess Biosyst. Eng. 40, 23–34 (2017).Article 
    PubMed 

    Google Scholar 
    Liu, C. & Luo, G. Synthesis of isoamyl acetate catalyzed by ferric tri-dodecylsulfonate. Riyong Huaxue Gongye 34, 403–405 (2004).
    Google Scholar 
    Narwal, S. K., Saun, N. K., Dogra, P. & Gupta, R. Green synthesis of isoamyl acetate via silica immobilized novel thermophilic lipase from Bacillus aerius. Russ. J. Bioorg. Chem. 42, 69–73 (2016).Article 
    CAS 

    Google Scholar 
    Pizzio, L., Vázquez, P., Cáceres, C. & Blanco, M. Tungstophosphoric and molybdophosphoric acids supported on zirconia as esterification catalysts. Catal. Lett. 77, 233–239 (2001).Article 
    CAS 

    Google Scholar 
    Saha, B., Alqahtani, A. & Teo, H. T. R. Production of iso-Amyl Acetate: Heterogeneous Kinetics and Techno-feasibility Evaluation for Catalytic Distillation. Int. J. Chem. React. Eng. 3(1), https://doi.org/10.2202/1542-6580.1231 (2005).Osorio-Viana, W., Ibarra-Taquez, H. N., Dobrosz-Gomez, I. & Gómez-García, M. Á. Hybrid membrane and conventional processes comparison for isoamyl acetate production. Chem. Eng. Process. 76, 70–82 (2014).Article 
    CAS 

    Google Scholar 
    Fang, M. et al. Synthesis of isoamyl acetate using polyoxometalate-based sulfonated ionic liquid as catalyst. Indian J. Chem. Sect. A 53A, 1485–1492 (2014).Yang, Z., Zhou, C., Zhang, W., Li, H. & Chen, M. β-MnO2 nanorods: A new and efficient catalyst for isoamyl acetate synthesis. Colloids Surf., A 356, 134–139 (2010).Article 
    CAS 

    Google Scholar 
    Yang, Z. et al. Kinetic study and process simulation of transesterification of methyl acetate and isoamyl alcohol catalyzed by ionic liquid. Ind. Eng. Chem. Res. 54, 1204–1215 (2015).Article 
    CAS 

    Google Scholar 
    Dohendou, M., Pakzad, K., Nezafat, Z., Nasrollahzadeh, M. & Dekamin, M. G. Progresses in chitin, chitosan, starch, cellulose, pectin, alginate, gelatin and gum based (nano)catalysts for the Heck coupling reactions: A review. Int. J. Biol. Macromol. 192, 771–819. https://doi.org/10.1016/j.ijbiomac.2021.09.162 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Valiey, E., Dekamin, M. G. & Alirezvani, Z. Melamine-modified chitosan materials: An efficient and recyclable bifunctional organocatalyst for green synthesis of densely functionalized bioactive dihydropyrano[2,3-c]pyrazole and benzylpyrazolyl coumarin derivatives. Int. J. Biol. Macromol. 129, 407–421. https://doi.org/10.1016/j.ijbiomac.2019.01.027 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dekamin, M. G., Kazemi, E., Karimi, Z., Mohammadalipoor, M. & Naimi-Jamal, M. R. Chitosan: An efficient biomacromolecule support for synergic catalyzing of Hantzsch esters by CuSO4. Int. J. Biol. Macromol. 93, 767–774. https://doi.org/10.1016/j.ijbiomac.2016.09.012 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Valiey, E., Dekamin, M. G. & Bondarian, S. Sulfamic acid grafted to cross-linked chitosan by dendritic units: A bio-based, highly efficient and heterogeneous organocatalyst for green synthesis of 2,3-dihydroquinazoline derivatives. RSC Adv. 13, 320–334. https://doi.org/10.1039/D2RA07319F (2023).Article 
    ADS 
    CAS 

    Google Scholar 
    Dekamin, M. G., Azimoshan, M. & Ramezani, L. Chitosan: A highly efficient renewable and recoverable bio-polymer catalyst for the expeditious synthesis of α-amino nitriles and imines under mild conditions. Green Chem. 15, 811–820. https://doi.org/10.1039/C3GC36901C (2013).Article 
    CAS 

    Google Scholar 
    Alirezvani, Z., Dekamin, M. G. & Valiey, E. Cu (II) and magnetite nanoparticles decorated melamine-functionalized chitosan: A synergistic multifunctional catalyst for sustainable cascade oxidation of benzyl alcohols/Knoevenagel condensation. Sci. Rep. 9, 17758 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rostami, N., Dekamin, M., Valiey, E. & Fanimoghadam, H. Chitosan-EDTA-Cellulose network as a green, recyclable and multifunctional biopolymeric organocatalyst for the one-pot synthesis of 2-amino-4H-pyran derivatives. Sci. Rep. 12, 8642–8642 (2022).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Frindy, S., el Kadib, A., Lahcini, M., Primo, A. & García, H. Copper nanoparticles stabilized in a porous chitosan aerogel as a heterogeneous catalyst for C−S cross-coupling. ChemCatChem 7, 3307–3315 (2015).Article 
    CAS 

    Google Scholar 
    Pettignano, A. et al. Alginic acid aerogel: A heterogeneous Brønsted acid promoter for the direct Mannich reaction. New J. Chem. 39, 4222–4226 (2015).Article 
    CAS 

    Google Scholar 
    Schnepp, Z. Biopolymers as a flexible resource for nanochemistry. Angew. Chem. Int. Ed. 52, 1096–1108 (2013).Article 
    CAS 

    Google Scholar 
    Khrunyk, Y., Lach, S., Petrenko, I. & Ehrlich, H. Progress in modern marine biomaterials research. Mar. Drugs 18, 589 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee, I. Molecular self-assembly: Smart design of surface and interface via secondary molecular interactions. Langmuir 29, 2476–2489. https://doi.org/10.1021/la304123b (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Shaheed, N., Javanshir, S., Esmkhani, M., Dekamin, M. G. & Naimi-Jamal, M. R. Synthesis of nanocellulose aerogels and Cu-BTC/nanocellulose aerogel composites for adsorption of organic dyes and heavy metal ions. Sci. Rep. 11, 18553 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abdullah, M. A. et al. Processing Aspects and biomedical and environmental applications of sustainable nanocomposites containing nanofillers. In Sustainable Polymer Composites and Nanocomposites, (eds Inamuddin et al.) 727–757 (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-05399-4_25Dekamin, M. G. et al. Alginic acid: A highly efficient renewable and heterogeneous biopolymeric catalyst for one-pot synthesis of the Hantzsch 1,4-dihydropyridines. RSC Adv. 4, 56658–56664. https://doi.org/10.1039/C4RA11801D (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Ilkhanizadeh, S., Khalafy, J. & Dekamin, M. G. Sodium alginate: A biopolymeric catalyst for the synthesis of novel and known polysubstituted pyrano[3,2-c]chromenes. Int. J. Biol. Macromol. 140, 605–613. https://doi.org/10.1016/j.ijbiomac.2019.08.154 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dekamin, M. G. et al. Alginic acid: A mild and renewable bifunctional heterogeneous biopolymeric organocatalyst for efficient and facile synthesis of polyhydroquinolines. Int. J. Biol. Macromol. 108, 1273–1280. https://doi.org/10.1016/j.ijbiomac.2017.11.050 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rostami, N., Dekamin, M. G. & Valiey, E. Chitosan-EDTA-cellulose bio-based network: A recyclable multifunctional organocatalyst for green and expeditious synthesis of Hantzsch esters. Carbohydr. Polym. Technol. Appl. 5, 100279. https://doi.org/10.1016/j.carpta.2022.100279 (2023).Article 
    CAS 

    Google Scholar 
    Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S. & Escaleira, L. A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76, 965–977. https://doi.org/10.1016/j.talanta.2008.05.019 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hill, W. J. & Hunter, W. G. A review of response surface methodology: A literature survey. Technometrics 8, 571–590. https://doi.org/10.1080/00401706.1966.10490404 (1966).Article 
    MathSciNet 

    Google Scholar 
    Hamidi, F. et al. Acid red 18 removal from aqueous solution by nanocrystalline granular ferric hydroxide (GFH); optimization by response surface methodology & genetic-algorithm. Sci. Rep. 12, 1–15 (2022).Article 

    Google Scholar 
    Han, X.-X. et al. Syntheses of novel halogen-free Brønsted–Lewis acidic ionic liquid catalysts and their applications for synthesis of methyl caprylate. Green Chem. 17, 499–508 (2015).Article 
    CAS 

    Google Scholar 
    Rehman, K. et al. Operational parameters optimization for remediation of crude oil-polluted water in floating treatment wetlands using response surface methodology. Sci. Rep. 12, 1–11 (2022).Article 

    Google Scholar 
    Kamari, S., Ghorbani, F. & Sanati, A. M. Adsorptive removal of lead from aqueous solutions by amine–functionalized magMCM-41 as a low–cost nanocomposite prepared from rice husk: Modeling and optimization by response surface methodology. Sustain. Chem. Pharm. 13, 100153. https://doi.org/10.1016/j.scp.2019.100153 (2019).Article 

    Google Scholar 
    Sanati, A. M., Kamari, S. & Ghorbani, F. Application of response surface methodology for optimization of cadmium adsorption from aqueous solutions by Fe3O4@SiO2@APTMS core–shell magnetic nanohybrid. Surf. Interfaces 17, 100374. https://doi.org/10.1016/j.surfin.2019.100374 (2019).Article 
    CAS 

    Google Scholar 
    Guner, S. G. & Dericioglu, A. Nacre-mimetic epoxy matrix composites reinforced by two-dimensional glass reinforcements. RSC Adv. 6, 33184–33196 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Shao, Y., Zhao, H.-P. & Feng, X.-Q. Optimal characteristic nanosizes of mineral bridges in mollusk nacre. RSC Adv. 4, 32451–32456 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Jaji, A. Z. et al. Synthesis, characterization, and cytocompatibility of potential cockle shell aragonite nanocrystals for osteoporosis therapy and hormonal delivery. Nanotechnol. Sci. Appl. 10, 23 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Çam, M. & Aaby, K. Optimization of extraction of apple pomace phenolics with water by response surface methodology. J. Agric. Food Chem. 58, 9103–9111 (2010).Article 
    PubMed 

    Google Scholar 
    Iwuchukwu, I. J. et al. Optimization of photosynthetic hydrogen yield from platinized photosystem I complexes using response surface methodology. Int. J. Hydrog. Energy 36, 11684–11692 (2011).Article 
    CAS 

    Google Scholar 
    Hu, C. et al. Characterization and photocatalytic activity of noble-metal-supported surface TiO2/SiO2. Appl. Catal. A 253, 389–396 (2003).Article 
    CAS 

    Google Scholar 
    Noda, L. K., de Almeida, R. M., Probst, L. F. D. & Gonçalves, N. S. Characterization of sulfated TiO2 prepared by the sol–gel method and its catalytic activity in the n-hexane isomerization reaction. J. Mol. Catal. A Chem. 225, 39–46 (2005).Article 
    CAS 

    Google Scholar 
    Jalali-Heravi, M., Parastar, H. & Ebrahimi-Najafabadi, H. Characterization of volatile components of Iranian saffron using factorial-based response surface modeling of ultrasonic extraction combined with gas chromatography–mass spectrometry analysis. J. Chromatogr. A 1216, 6088–6097 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sendzikiene, E., Sinkuniene, D., Kazanceva, I. & Kazancev, K. Optimization of low quality rapeseed oil transesterification with butanol by applying the response surface methodology. Renew. Energy 87, 266–272 (2016).Article 
    CAS 

    Google Scholar 
    Das, R., Sarkar, S. & Bhattacharjee, C. Photocatalytic degradation of chlorhexidine—a chemical assessment and prediction of optimal condition by response surface methodology. J. Water Process Eng. 2, 79–86 (2014).Article 

    Google Scholar 
    Nandiwale, K. Y., Galande, N. D. & Bokade, V. V. Process optimization by response surface methodology for transesterification of renewable ethyl acetate to butyl acetate biofuel additive over borated USY zeolite. RSC Adv. 5, 17109–17116 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Soltani, R. D. C. & Safari, M. Periodate-assisted pulsed sonocatalysis of real textile wastewater in the presence of MgO nanoparticles: Response surface methodological optimization. Ultrason. Sonochem. 32, 181–190 (2016).Article 

    Google Scholar 
    Tan, K. T., Lee, K. T. & Mohamed, A. R. A glycerol-free process to produce biodiesel by supercritical methyl acetate technology: An optimization study via response surface methodology. Biores. Technol. 101, 965–969 (2010).Article 
    CAS 

    Google Scholar 
    Nagaraju, N., Peeran, M. & Prasad, D. Synthesis of isoamyl acetate usin NaX and NaY zeolites as catalysts. React. Kinet. Catal. Lett. 61, 155–160 (1997).Article 
    CAS 

    Google Scholar 
    Pizzio, L. R. & Blanco, M. N. Isoamyl acetate production catalyzed by H3PW12O40 on their partially substituted Cs or K salts. Appl. Catal. A 255, 265–277 (2003).Article 
    CAS 

    Google Scholar 
    Dekamin, M. G., Karimi, Z. & Farahmand, M. Tetraethylammonium 2-(N-hydroxycarbamoyl)benzoate: A powerful bifunctional metal-free catalyst for efficient and rapid cyanosilylation of carbonyl compounds under mild conditions. Catal. Sci. Technol. 2, 1375–1381. https://doi.org/10.1039/C2CY20037F (2012).Article 
    CAS 

    Google Scholar 
    Dekamin, M. G., Sagheb-Asl, S. & Reza Naimi-Jamal, M. An expeditious synthesis of cyanohydrin trimethylsilyl ethers using tetraethylammonium 2-(carbamoyl)benzoate as a bifunctional organocatalyst. Tetrahedron Lett. 50, 4063–4066. https://doi.org/10.1016/j.tetlet.2009.04.090 (2009).Article 
    CAS 

    Google Scholar 
    Alirezvani, Z., Dekamin, M. G. & Valiey, E. New hydrogen-bond-enriched 1,3,5-tris(2-hydroxyethyl) isocyanurate covalently functionalized MCM-41: An efficient and recoverable hybrid catalyst for convenient synthesis of acridinedione derivatives. ACS Omega 4, 20618–20633. https://doi.org/10.1021/acsomega.9b02755 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Info-gap theory to determine cost-effective eradication of invasive species

    Peterson, A. T. & Vieglais, D. A. Predicting species invasions using ecological niche modeling: New approaches from bioinformatics attack a pressing problem. Bioscience 51, 363–371 (2001).Article 

    Google Scholar 
    Atkinson, I. A. E. Introduced mammals and models for restoration. Biol. Conserv. 99, 81–96 (2001).Article 

    Google Scholar 
    Parkes, J. P. & Panetta, F. D. Eradication of invasive species: progress and emerging issues in the 21st century. In Invasive Species Management: A Handbook of Principles and Techniques (eds Clout, M. N. & Williams, P. A.) (Oxford University Press, 2009).
    Google Scholar 
    Baker, C. M., Hodgson, J. C., Tartaglia, E. & Clarke, R. H. Modelling tropical fire ant (Solenopsis geminata) dynamics and detection to inform an eradication project. Biol. Invasions 19, 2959–2970 (2017).Article 

    Google Scholar 
    Simberloff, D. How much information on population biology is needed to manage introduced species?. Conserv. Biol. 17, 83–92 (2003).Article 

    Google Scholar 
    Hulme, P. E. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).Article 

    Google Scholar 
    Meyerson, L. A. & Mooney, H. A. Invasive alien species in an era of globalization. Front. Ecol. Environ. 5, 199–208 (2007).Article 

    Google Scholar 
    Sanchirico, J. N., Albers, H. J., Fischer, C. & Coleman, C. Spatial Management of invasive species: Pathways and policy options. Environ. Resour. Econ. 45, 517–535 (2010).Article 

    Google Scholar 
    Caplat, P., Hui, C., Maxwell, B. D. & Peltzer, D. A. Cross-scale management strategies for optimal control of trees invading from source plantations. Biol. Invasions 16, 677–690 (2014).Article 

    Google Scholar 
    Long, Y., Van der Merwe, J., Thomas, M. L., McKirdy, S. & Kompas, T. Biosecurity for valuable environmental island assets: Spatial post-border surveillance for early detection. Ecol. Econ. forthcoming (2022).Kroetz, K. & Sanchirico, J. N. The bioeconomics of spatial-dynamic systems in natural resource management. Annu. Rev. Resour. Econ. 7, 189–207 (2015).Article 

    Google Scholar 
    Liu, Y., Wang, P., Thomas, M. L., Zheng, D. & McKirdy, S. J. Cost-effective surveillance of invasive species using info-gap theory. Sci. Rep. 11, 22828 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Homans, F. & Horie, T. Optimal detection strategies for an established invasive pest. Ecol. Econ. 70, 1129–1138 (2011).Article 

    Google Scholar 
    Mehta, S. V., Haight, R. G., Homans, F. R., Polasky, S. & Venette, R. C. Optimal detection and control strategies for invasive species management. Ecol. Econ. 61, 237–245 (2007).Article 

    Google Scholar 
    Moffitt, L. J., Stranlund, J. K. & Osteen, C. D. Robust detection protocols for uncertain introductions of invasive species. J. Environ. Manage. 89, 293–299 (2008).Article 
    PubMed 

    Google Scholar 
    Yokomizo, H., Possingham, H. P., Hulme, P. E., Grice, A. C. & Buckley, Y. M. Cost-benefit analysis for intentional plant introductions under uncertainty. Biol. Invasions 14, 839–849 (2011).Article 

    Google Scholar 
    Ben-Haim, Y. Info-gap Decision Theory: Decisions Under Severe Uncertainty 2nd edn. (Academic Press, 2006).
    Google Scholar 
    Knight, F. H. Risk, Uncertainty, and Profit (Houghton Mifflin Company, 1921).
    Google Scholar 
    Regan, H. M. et al. Robust decision-making under severe uncertainty for conservation management. Ecol. Appl. 15, 1471–1477 (2005).Article 

    Google Scholar 
    Ben-Haim, Y. Uncertainty, probability and information-gaps. Reliab. Eng. Syst. Saf. 85, 249–266 (2004).Article 

    Google Scholar 
    Ben-Haim, Y. & Demertzis, M. Decision making in times of Knightian uncertainty: An info-gap perspective. Economics 10, 1 (2016).Article 

    Google Scholar 
    Lever, C. Naturalized Reptiles and Amphibians of the World (Oxford University Press, 2003).
    Google Scholar 
    Wilson, J. R. U., Dormontt, E. E., Prentis, P. J., Lowe, A. J. & Richardson, D. M. Something in the way you move: Dispersal pathways affect invasion success. Trends Ecol. Evol. 24, 136–144 (2009).Article 
    PubMed 

    Google Scholar 
    Torres-Carvajal, O. On the origin of South American populations of the common house gecko (Gekkonidae: Hemidactylus frenatus). NeoBiota 27, 69–79 (2015).Article 

    Google Scholar 
    Hoskin, C. J. The invasion and potential impact of the Asian House Gecko (Hemidactylus frenatus) in Australia. Austral Ecol. 36, 240–251 (2011).Article 

    Google Scholar 
    Barnett, L. K. Understanding Range Expansion of Asian House Geckos (Hemidactylus frenatus) in Natural Environments (James Cook University, 2017).
    Google Scholar 
    Norval, G. & Mao, J.-J. An instance of a house gecko (Hemidactylus frenatus Schlegel, 1836) utilizing an electrical timer for thermoregulation. IRCF Reptil. Amphib. 22, 76–78 (2015).Article 

    Google Scholar 
    Greenslade, P., Burbidge, A. A. & Lynch, A. J. J. Keeping Australias islands free of introduced rodents Barrow Island. Pac. Conserv. Biol. 19, 284–294 (2013).Article 

    Google Scholar 
    Perella, C. D. & Behm, J. E. Understanding the spread and impact of exotic geckos in the greater Caribbean region. Biodivers. Conserv. 29, 1109–1134 (2020).Article 

    Google Scholar 
    Davis, M. A. Invasion biology. In Encyclopedia of Biological Invasions (eds Simberloff, D. & RejmÁNek, M.) 364–369 (University of California Press, 2011).
    Google Scholar 
    García-Díaz, P., Ross, J. V., Vall-llosera, M. & Cassey, P. Low detectability of alien reptiles can lead to biosecurity management failure: A case study from Christmas Island (Australia). NeoBiota. 45, 75–92 (2019).Article 

    Google Scholar 
    Koopman, B. O. Search and Screening. Operations Evaluation Group (OEG) Report. (1946).Grasinger, M., O’Malley, D., Vesselinov, V. & Karra, S. Decision analysis for robust CO2 injection: Application of Bayesian-Information-Gap Decision Theory. Int. J. Greenh. Gas Control 49, 73–80 (2016).Article 
    CAS 

    Google Scholar 
    MathWorks. MATLAB R2018b. (MathWorks, 2018).Commonwealth Government of Australia. Approval—Gorgon Gas Development (EPBC Reference: 2008/4178). (2009).Kalaris, T. et al. The role of surveillance methods and technologies in plant biosecurity. In The Handbook of Plant Biosecurity: Principles and Practices for the Identification, Containment and Control of Organisms that Threaten Agriculture and the Environment Globally (eds Gordh, G. & McKirdy, S.) 309–337 (Springer, 2014).Chapter 

    Google Scholar 
    Sharma, S., Mckirdy, S. & Macbeth, F. The biosecurity continuum and trade: Tools for post-border biosecurity. In The Handbook of Plant Biosecurity: Principles and Practices for the Identification, Containment and Control of Organisms that Threaten Agriculture and the Environment Globally (eds Gordh, G. & McKirdy, S.) 189–206 (Springer, 2014).Chapter 

    Google Scholar 
    Epanchin-Niell, R. S. Economics of invasive species policy and management. Biol. Invasions 19, 3333–3354 (2017).Article 

    Google Scholar 
    Gregg, H. et al. Invasive rodent eradication on islands. Conserv. Biol. 21, 1258–1268 (2007).Article 

    Google Scholar 
    Parkes, J. Feasibility plan to eradicate Common mynas (Acridotheres tristis) from Mangaia Island, Cook Islands. Landcare Research Contract Report LC0506/184. (2006).Barun, A. & Simberloff, D. Carnivores. In Encyclopedia of Biological Invasions (eds Simberloff, D. & RejmÁNek, M.) 95–100 (University of California Press, 2011).
    Google Scholar 
    Pluess, T. et al. When are eradication campaigns successful? A test of common assumptions. Biol. Invasions 14, 1365–1378 (2012).Article 

    Google Scholar 
    Epanchin-Niell, R. S., Haight, R. G., Berec, L., Kean, J. M. & Liebhold, A. M. Optimal surveillance and eradication of invasive species in heterogeneous landscapes. Ecol. Lett. 15, 803–812 (2012).Article 
    PubMed 

    Google Scholar 
    Rout, T. M., Thompson, C. J. & McCarthy, M. A. Robust decisions for declaring eradication of invasive species. J. Appl. Ecol. 46, 782–786 (2009).Article 

    Google Scholar 
    Hauser, C. E. & McCarthy, M. A. Streamlining “search and destroy”: Cost-effective surveillance for invasive species management. Ecol. Lett. 12, 683–692 (2009).Article 
    PubMed 

    Google Scholar 
    Epanchin-Niell, R. S. & Hastings, A. Controlling established invaders: Integrating economics and spread dynamics to determine optimal management. Ecol. Lett. 13, 528–541 (2010).Article 
    PubMed 

    Google Scholar 
    Moore, J. L. et al. Protecting islands from pest invasion: Optimal allocation of biosecurity resources between quarantine and surveillance. Biol. Conserv. 143, 1068–1078 (2010).Article 

    Google Scholar 
    Rout, T. M., Moore, J. L., Possingham, H. P. & McCarthy, M. A. Allocating biosecurity resources between preventing, detecting, and eradicating island invasions. Ecol. Econ. 71, 54–62 (2011).Article 

    Google Scholar  More