More stories

  • in

    The degree of urbanisation reduces wild bee and butterfly diversity and alters the patterns of flower-visitation in urban dry grasslands

    Sánchez-Bayo, F. & Wyckhuys, K. A. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27. https://doi.org/10.1016/j.biocon.2019.01.020 (2019).Article 

    Google Scholar 
    van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420. https://doi.org/10.1126/science.aax9931 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wagner, D. L. Insect declines in the anthropocene. Annu. Rev. Entomol. 65, 457–480. https://doi.org/10.1146/annurev-ento-011019-025151 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Goulson, D. The insect apocalypse, and why it matters. Curr. Biol. 29, R967–R971. https://doi.org/10.1016/j.cub.2019.06.069 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cardoso, P. et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 242, 108426. https://doi.org/10.1016/j.biocon.2020.108426 (2020).Article 

    Google Scholar 
    Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353. https://doi.org/10.1016/j.tree.2010.01.007 (2010).Article 
    PubMed 

    Google Scholar 
    Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957. https://doi.org/10.1126/science.1255957 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ollerton, J. Pollinator diversity: Distribution, ecological function, and conservation. Annu. Rev. Ecol. Evol. Syst. 48, 353–376. https://doi.org/10.1146/annurev-ecolsys-110316-022919 (2017).Article 

    Google Scholar 
    Klein, A.-M. et al. Importance of pollinators in changing landscapes for world crops. Proc. Biol. Sci. 274, 303–313. https://doi.org/10.1098/rspb.2006.3721 (2007).Article 
    PubMed 

    Google Scholar 
    Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals?. Oikos 120, 321–326. https://doi.org/10.1111/j.1600-0706.2010.18644.x (2011).Article 

    Google Scholar 
    Ollerton, J., Erenler, H., Edwards, M. & Crockett, R. Pollinator declines. Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science 346, 1360–1362. https://doi.org/10.1126/science.1257259 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wenzel, A., Grass, I., Belavadi, V. V. & Tscharntke, T. How urbanization is driving pollinator diversity and pollination—A systematic review. Biol. Conserv. 241, 108321. https://doi.org/10.1016/j.biocon.2019.108321 (2020).Article 

    Google Scholar 
    Senapathi, D., Goddard, M. A., Kunin, W. E. & Baldock, K. C. R. Landscape impacts on pollinator communities in temperate systems: Evidence and knowledge gaps. Funct. Ecol. 31, 26–37. https://doi.org/10.1111/1365-2435.12809 (2017).Article 

    Google Scholar 
    Fenoglio, M. S., Rossetti, M. R. & Videla, M. Negative effects of urbanization on terrestrial arthropod communities: A meta-analysis. Glob. Ecol. Biogeogr. 29, 1412–1429. https://doi.org/10.1111/geb.13107 (2020).Article 

    Google Scholar 
    Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126. https://doi.org/10.1111/geb.12404 (2016).Article 

    Google Scholar 
    Soanes, K. & Lentini, P. E. When cities are the last chance for saving species. Front. Ecol. Evol. 17, 225–231. https://doi.org/10.1002/fee.2032 (2019).Article 

    Google Scholar 
    Lynch, L. et al. Changes in land use and land cover along an urban-rural gradient influence floral resource availability. Curr. Landsc. Ecol. Rep. 6, 46–70. https://doi.org/10.1007/s40823-021-00064-1 (2021).Article 

    Google Scholar 
    Hall, D. M. et al. The city as a refuge for insect pollinators. Conserv. Biol. 31, 24–29. https://doi.org/10.1111/cobi.12840 (2017).Article 
    PubMed 

    Google Scholar 
    Buchholz, S. & Egerer, M. H. Functional ecology of wild bees in cities: Towards a better understanding of trait-urbanization relationships. Biodivers. Conserv. 29, 2779–2801. https://doi.org/10.1007/s10531-020-02003-8 (2020).Article 

    Google Scholar 
    Theodorou, P. et al. Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nat. Commun. 11, 576. https://doi.org/10.1038/s41467-020-14496-6 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Khalifa, S. A. M. et al. Overview of bee pollination and its economic value for crop production. Insects https://doi.org/10.3390/insects12080688 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Doyle, T. et al. Pollination by hoverflies in the Anthropocene. Proc. Biol. Sci. 287, 20200508. https://doi.org/10.1098/rspb.2020.0508 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rader, R. et al. Non-bee insects are important contributors to global crop pollination. Proc. Natl. Acad. Sci. USA. 113, 146–151. https://doi.org/10.1073/pnas.1517092112 (2016).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Persson, A. S., Ekroos, J., Olsson, P. & Smith, H. G. Wild bees and hoverflies respond differently to urbanisation, human population density and urban form. Landsc. Urban Plan. 204, 103901. https://doi.org/10.1016/j.landurbplan.2020.103901 (2020).Article 

    Google Scholar 
    Gathof, A. K., Grossmann, A. J., Herrmann, J. & Buchholz, S. Who can pass the urban filter? A multi-taxon approach to disentangle pollinator trait-environmental relationships. Oecologia 199, 165–179. https://doi.org/10.1007/s00442-022-05174-z (2022).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baldock, K. C. R. et al. Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc. Biol. Sci. 282, 20142849. https://doi.org/10.1098/rspb.2014.2849 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ramírez-Restrepo, L. & MacGregor-Fors, I. Butterflies in the city: A review of urban diurnal Lepidoptera. Urban Ecosyst. 20, 171–182. https://doi.org/10.1007/s11252-016-0579-4 (2017).Article 

    Google Scholar 
    Kuussaari, M. et al. Butterfly species’ responses to urbanization: Differing effects of human population density and built-up area. Urban Ecosyst. 24, 515–527. https://doi.org/10.1007/s11252-020-01055-6 (2020).Article 

    Google Scholar 
    Theodorou, P. The effects of urbanisation on ecological interactions. Curr. Opin. Insect. Sci. 52, 100922. https://doi.org/10.1016/j.cois.2022.100922 (2022).Article 
    PubMed 

    Google Scholar 
    Martins, K. T., Gonzalez, A. & Lechowicz, M. J. Patterns of pollinator turnover and increasing diversity associated with urban habitats. Urban Ecosyst. 20, 1359–1371. https://doi.org/10.1007/s11252-017-0688-8 (2017).Article 

    Google Scholar 
    Theodorou, P. et al. The structure of flower visitor networks in relation to pollination across an agricultural to urban gradient. Funct. Ecol. 31, 838–847. https://doi.org/10.1111/1365-2435.12803 (2017).Article 

    Google Scholar 
    Geslin, B., Gauzens, B., Thébault, E. & Dajoz, I. Plant pollinator networks along a gradient of urbanisation. PLoS ONE 8, e63421. https://doi.org/10.1371/journal.pone.0063421 (2013).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Udy, K. L., Reininghaus, H., Scherber, C. & Tscharntke, T. Plant–pollinator interactions along an urbanization gradient from cities and villages to farmland landscapes. Ecosphere https://doi.org/10.1002/ecs2.3020 (2020).Article 

    Google Scholar 
    Jędrzejewska-Szmek, K. & Zych, M. Flower-visitor and pollen transport networks in a large city: Structure and properties. Arthropod. Plant Interact. 7, 503–516. https://doi.org/10.1007/s11829-013-9274-z (2013).Article 

    Google Scholar 
    von der Lippe, M., Buchholz, S., Hiller, A., Seitz, B. & Kowarik, I. CityScapeLab Berlin: A research platform for untangling urbanization effects on biodiversity. Sustainability 12, 2565. https://doi.org/10.3390/su12062565 (2020).Article 

    Google Scholar 
    Dylewski, Ł, Maćkowiak, Ł & Banaszak-Cibicka, W. Are all urban green spaces a favourable habitat for pollinator communities? Bees, butterflies and hoverflies in different urban green areas. Ecol. Entomol. 44, 678–689. https://doi.org/10.1111/een.12744 (2019).Article 

    Google Scholar 
    Grossmann, A. J., Herrmann, J., Buchholz, S. & Gathof, A. K. Dry grassland within the urban matrix acts as favourable habitat for different pollinators including endangered species. Insect Conserv. Divers. https://doi.org/10.1111/icad.12607 (2022).Article 

    Google Scholar 
    Settele, J., Steiner, R., Feldmann, R. & Hermann, G. Schmetterlinge. Die Tagfalter Deutschlands: 720 Farbfotos. 3rd ed. (2015).Amiet, F. Hymenoptera Apidae, 1. Teil. Allgemeiner Teil, Gattungsschlüssel – Die Gattungen Apis, Bombus und Psithyrus (Centre Suisse de Cartographie de la Faune, 1996).
    Google Scholar 
    Amiet, F., Müller, A. & Neumeyer, R. Apidae 2. Colletes, Dufourea, Hylaeus, Nomia, Nomioides, Rhophitoides, Rophites, Sphecodes, Systropha (Fauna Helvetica, 1999).
    Google Scholar 
    Amiet, F., Herrmann, M., Müller, A. & Neumeyer, R. Apidae 3. Halictus, Lasioglossum (Centre Suisse de Cartographie de la Faune, 2001).
    Google Scholar 
    Amiet, F., Herrmann, M., Müller, A. & Neumeyer, R. Apidae 4. Anthidium, Chelostoma, Coelioxys, Dioxys, Heriades, Lithurgus, Megachile, Osmia, Stelis (Centre Suisse de Cartographie de la Faune, 2004).
    Google Scholar 
    Amiet, F., Herrmann, M., Müller, A. & Neumeyer, R. Apidae 5. Ammobates, Ammobatoides, Anthophora, Biastes, Ceratina, Dasypoda, Epeoloides, Epeolus, Eucera, Macropis, Melecta, Melitta, Nomada, Pasites, Tetralonia, Thyreus, Xylocopa (Centre Suisse de Cartographie de la Faune, 2007).
    Google Scholar 
    Amiet, F., Herrmann, M., Müller, A. & Neumeyer, R. Apidae 6. Andrena, Melliturga, Panurginus, Panurgus (Centre Suisse de Cartographie de la Faune, 2010).
    Google Scholar 
    Gokcezade, J. F., Gereben-Krenn, B.-A., Neumayer, J. & Krenn, H. W. Feldbestimmungsschlüssel für die Hummeln Österreichs, Deutschlands und der Schweiz (Hymenoptera, Apidae). Linzer biologische Beiträge 47, 5–42 (2015).
    Google Scholar 
    Bartsch, H. Tvåvingar: Blomflugor. Diptera: Syrphidae: Syrphinae: denna volym omfattar samtliga nordiska arter (ArtDatabanken Sveriges lantbruksuniversitet, 2009).
    Google Scholar 
    Bartsch, H. Tvåvingar: Blomflugor. Diptera: Syrphidae: Eristalinae & Microdontinae: denna volym omfattar samtliga nordiska arter (ArtDatabanken Sveriges lantbruksuniversitet, 2009).
    Google Scholar 
    Bot, S. & van de Meutter, F. Veldgids zweefvliegen (KNNV Uitgeverij, 2019).
    Google Scholar 
    Jäger, E. J. Rothmaler-Exkursionsflora von Deutschland. Gefäßpflanzen: Grundband 20th edn. (Springer Spektrum, 2011).
    Google Scholar 
    Senate Department for Urban Development and Housing. Berlin Environmental Atlas. 06.01 Actual Use of Built-up Areas/06.02 Inventory of Green and Open Spaces 2010 (2011).Holland, J. D., Bert, D. G. & Fahrig, L. Determining the spatial scale of species’ response to habitat. Bioscience 54, 227. https://doi.org/10.1641/0006-3568(2004)054[0227:DTSSOS]2.0.CO;2 (2004).Article 

    Google Scholar 
    Senate Department for Urban Development and Housing. Berlin Environmental Atlas. 05.08 Biotope Types (2014).Hanski, I. A practical model of metapopulation dynamics. J. Anim. Ecol. 63, 151. https://doi.org/10.2307/5591 (1994).Article 

    Google Scholar 
    Hanski, I. Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos 87, 209. https://doi.org/10.2307/3546736 (1999).Article 

    Google Scholar 
    Senate Department for Urban Development and Housing. Berlin Environmental Atlas. 06.10 Building and Vegetation Heights (2014).Saura, S. & Torné, J. Conefor Sensinode 2.2: A software package for quantifying the importance of habitat patches for landscape connectivity. Environ. Model. Softw. 24, 135–139. https://doi.org/10.1016/j.envsoft.2008.05.005 (2009).Article 

    Google Scholar 
    Saure, C. Rote Liste und Gesamtartenliste der Bienen und Wespen (Hymenoptera part.) von Berlin mit Angaben zu den Ameisen. In Rote Listen der gefährdeten Pflanzen und Tiere von Berlin.Speight, M. C. D. Species Accounts of European Syrphidae (Diptera) (Syrph the Net Publications, 2014).
    Google Scholar 
    Middleton-Welling, J. et al. A new comprehensive trait database of European and Maghreb butterflies, Papilionoidea. Sci. Data 7, 351. https://doi.org/10.1038/s41597-020-00697-7 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dormann, C. F., Fründ, J., Blüthgen, N. & Gruber, B. Indices, graphs and null models: Analyzing bipartite ecological networks. Open Ecol. J. 2, 7–24. https://doi.org/10.2174/1874213000902010007 (2009).Article 

    Google Scholar 
    Kaiser-Bunbury, C. N. & Blüthgen, N. Integrating network ecology with applied conservation: A synthesis and guide to implementation. AoB Plants https://doi.org/10.1093/aobpla/plv076 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Almeida-Neto, M., Guimarães, P., Guimarães, P. R., Loyola, R. D. & Ulrich, W. A consistent metric for nestedness analysis in ecological systems: Reconciling concept and measurement. Oikos 117, 1227–1239. https://doi.org/10.1111/J.0030-1299.2008.16644.X (2008).Article 

    Google Scholar 
    Dormann, C. F. & Strauss, R. A method for detecting modules in quantitative bipartite networks. Methods Ecol. Evol. 5, 90–98. https://doi.org/10.1111/2041-210X.12139 (2014).Article 

    Google Scholar 
    Blüthgen, N., Menzel, F. & Blüthgen, N. Measuring specialization in species interaction networks. BMC Ecol. 6, 9. https://doi.org/10.1186/1472-6785-6-9 (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Patefield, W. M. Algorithm AS 159: An efficient method of generating random R × C tables with given row and column totals. J. Appl. Stat. 30, 91. https://doi.org/10.2307/2346669 (1981).Article 
    MATH 

    Google Scholar 
    Stein, K. et al. Plant–pollinator networks in Savannas of Burkina Faso, West Africa. Diversity 13, 1. https://doi.org/10.3390/d13010001 (2021).Article 
    ADS 

    Google Scholar 
    Escobedo-Kenefic, N. et al. Disentangling the effects of local resources, landscape heterogeneity and climatic seasonality on bee diversity and plant–pollinator networks in tropical highlands. Oecologia 194, 333–344. https://doi.org/10.1007/s00442-020-04715-8 (2020).Article 
    ADS 
    PubMed 

    Google Scholar 
    Renaud, E., Baudry, E. & Bessa-Gomes, C. Influence of taxonomic resolution on mutualistic network properties. Ecol. Evol. 10, 3248–3259. https://doi.org/10.1002/ece3.6060 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ropars, L., Dajoz, I., Fontaine, C., Muratet, A. & Geslin, B. Wild pollinator activity negatively related to honey bee colony densities in urban context. PLoS ONE 14, e0222316. https://doi.org/10.1371/journal.pone.0222316 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Egerer, M. & Kowarik, I. Confronting the modern gordian knot of urban beekeeping. Trends Ecol. Evol. 35, 956–959. https://doi.org/10.1016/j.tree.2020.07.012 (2020).Article 
    PubMed 

    Google Scholar 
    Zuur, A. F., Ieono, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).Book 
    MATH 

    Google Scholar 
    Bartón, K. MuMIn. multi-model inference, R package version 1.42.1 (2018).Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290. https://doi.org/10.1093/bioinformatics/btg412 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wood, T. J., Kaplan, I. & Szendrei, Z. Wild bee pollen diets reveal patterns of seasonal foraging resources for honey bees. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2018.00210 (2018).Article 

    Google Scholar 
    Proske, A., Lokatis, S. & Rolff, J. Impact of mowing frequency on arthropod abundance and diversity in urban habitats: A meta-analysis. Urban For Urban Green 76, 127714. https://doi.org/10.1016/j.ufug.2022.127714 (2022).Article 

    Google Scholar 
    Bates, A. J. et al. Changing bee and hoverfly pollinator assemblages along an urban-rural gradient. PLoS ONE 6, e23459. https://doi.org/10.1371/journal.pone.0023459 (2011).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Geslin, B. et al. The proportion of impervious surfaces at the landscape scale structures wild bee assemblages in a densely populated region. Ecol. Evol. 6, 6599–6615. https://doi.org/10.1002/ece3.2374 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Birdshire, K. R., Carper, A. L. & Briles, C. E. Bee community response to local and landscape factors along an urban-rural gradient. Urban Ecosyst. 23, 689–702. https://doi.org/10.1007/s11252-020-00956-w (2020).Article 

    Google Scholar 
    Goddard, M. A., Benton, T. G. & Dougill, A. J. Beyond the garden fence: Landscape ecology of cities. Trends Ecol. Evol. 25, 202–203. https://doi.org/10.1016/j.tree.2009.12.007 (2010).Article 

    Google Scholar 
    Theodorou, P. et al. Bumble bee colony health and performance vary widely across the urban ecosystem. J. Anim. Ecol. 91, 2135–2148. https://doi.org/10.1111/1365-2656.13797 (2022).Article 
    PubMed 

    Google Scholar 
    Potts, S. G., Vulliamy, B., Dafni, A., Ne’eman, G. & Willmer, P. Linking bees and flowers: How do floral communities structure pollinator communities?. Ecology 84, 2628–2642. https://doi.org/10.1890/02-0136 (2003).Article 

    Google Scholar 
    Ebeling, A., Klein, A.-M., Schumacher, J., Weisser, W. W. & Tscharntke, T. How does plant richness affect pollinator richness and temporal stability of flower visits?. Oikos 117, 1808–1815. https://doi.org/10.1111/j.1600-0706.2008.16819.x (2008).Article 

    Google Scholar 
    Theodorou, P. et al. Urban fragmentation leads to lower floral diversity, with knock-on impacts on bee biodiversity. Sci. Rep. 10, 21756. https://doi.org/10.1038/s41598-020-78736-x (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Potts, S. G. et al. Role of nesting resources in organising diverse bee communities in a Mediterranean landscape. Ecol. Entomol. 30, 78–85. https://doi.org/10.1111/j.0307-6946.2005.00662.x (2005).Article 

    Google Scholar 
    Fründ, J., Linsenmair, K. E. & Blüthgen, N. Pollinator diversity and specialization in relation to flower diversity. Oikos 119, 1581–1590. https://doi.org/10.1111/j.1600-0706.2010.18450.x (2010).Article 

    Google Scholar 
    Fornoff, F. et al. Functional flower traits and their diversity drive pollinator visitation. Oikos 126, 1020–1030. https://doi.org/10.1111/oik.03869 (2017).Article 
    CAS 

    Google Scholar 
    Hofmann, M. M. & Renner, S. S. One-year-old flower strips already support a quarter of a city’s bee species. J. Hymenopt. Res. 75, 87–95. https://doi.org/10.3897/jhr.75.47507 (2020).Article 

    Google Scholar 
    Verboven, H. A., Uyttenbroeck, R., Brys, R. & Hermy, M. Different responses of bees and hoverflies to land use in an urban–rural gradient show the importance of the nature of the rural land use. Landsc. Urban Plan. 126, 31–41. https://doi.org/10.1016/j.landurbplan.2014.02.017 (2014).Article 

    Google Scholar 
    Luder, K., Knop, E. & Menz, M. H. M. Contrasting responses in community structure and phenology of migratory and non-migratory pollinators to urbanization. Divers. Distrib. 24, 919–927. https://doi.org/10.1111/ddi.12735 (2018).Article 

    Google Scholar 
    Merckx, T. & van Dyck, H. Urbanization-driven homogenization is more pronounced and happens at wider spatial scales in nocturnal and mobile flying insects. Glob. Ecol. Biogeogr. 28, 1440–1455. https://doi.org/10.1111/geb.12969 (2019).Article 

    Google Scholar 
    Tzortzakaki, O., Kati, V., Panitsa, M., Tzanatos, E. & Giokas, S. Butterfly diversity along the urbanization gradient in a densely-built Mediterranean city: Land cover is more decisive than resources in structuring communities. Landsc. Urban Plan. 183, 79–87. https://doi.org/10.1016/j.landurbplan.2018.11.007 (2019).Article 

    Google Scholar 
    Krauss, J., Steffan-Dewenter, I. & Tscharntke, T. How does landscape context contribute to effects of habitat fragmentation on diversity and population density of butterflies?. J. Biogeogr. 30, 889–900. https://doi.org/10.1046/j.1365-2699.2003.00878.x (2003).Article 

    Google Scholar 
    Cozzi, G., Müller, C. B. & Krauss, J. How do local habitat management and landscape structure at different spatial scales affect fritillary butterfly distribution on fragmented wetlands?. Landsc. Ecol. 23, 269–283. https://doi.org/10.1007/s10980-007-9178-3 (2008).Article 

    Google Scholar 
    He, M. et al. Effects of landscape and local factors on the diversity of flower-visitor groups under an urbanization gradient, a case study in Wuhan, China. Diversity 14, 208. https://doi.org/10.3390/d14030208 (2022).Article 

    Google Scholar 
    Buchholz, S., Gathof, A. K., Grossmann, A. J., Kowarik, I. & Fischer, L. K. Wild bees in urban grasslands: Urbanisation, functional diversity and species traits. Landsc. Urban Plan. 196, 103731. https://doi.org/10.1016/j.landurbplan.2019.103731 (2020).Article 

    Google Scholar 
    Chapman, R. E. & Bourke, A. F. G. The influence of sociality on the conservation biology of social insects. Ecol. Lett. 4, 650–662. https://doi.org/10.1046/j.1461-0248.2001.00253.x (2001).Article 

    Google Scholar 
    Gaertner, M. et al. Non-native species in urban environments: Patterns, processes, impacts and challenges. Biol. Invasions 19, 3461–3469. https://doi.org/10.1007/s10530-017-1598-7 (2017).Article 

    Google Scholar 
    Kowarik, I. On the role of alien species in urban flora and vegetation. In Urban Ecology. An International Perspective on the Interaction Between Humans and Nature (ed. Marzluff, J. M.) 321–338 (2008).Lorenz, S. & Stark, K. Saving the honeybees in Berlin? A case study of the urban beekeeping boom. Environ. Sociol. 1, 116–126. https://doi.org/10.1080/23251042.2015.1008383 (2015).Article 

    Google Scholar 
    Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl. Acad. Sci. USA 104, 19891–19896. https://doi.org/10.1073/pnas.0706375104 (2007).Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856. https://doi.org/10.1126/science.1188321 (2010).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Dormann, C. F., Fründ, J. & Schaefer, H. M. Identifying causes of patterns in ecological networks: Opportunities and limitations. Annu. Rev. Ecol. Evol. Syst. 48, 559–584. https://doi.org/10.1146/annurev-ecolsys-110316-022928 (2017).Article 

    Google Scholar 
    Tylianakis, J. M., Laliberté, E., Nielsen, A. & Bascompte, J. Conservation of species interaction networks. Biol. Conserv. 143, 2270–2279. https://doi.org/10.1016/j.biocon.2009.12.004 (2010).Article 

    Google Scholar 
    Grilli, J., Rogers, T. & Allesina, S. Modularity and stability in ecological communities. Nat. Commun. 7, 12031. https://doi.org/10.1038/ncomms12031 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grass, I., Jauker, B., Steffan-Dewenter, I., Tscharntke, T. & Jauker, F. Past and potential future effects of habitat fragmentation on structure and stability of plant–pollinator and host-parasitoid networks. Nat. Ecol. Evol 2, 1408–1417. https://doi.org/10.1038/s41559-018-0631-2 (2018).Article 
    PubMed 

    Google Scholar 
    Kaiser-Bunbury, C. N. et al. Ecosystem restoration strengthens pollination network resilience and function. Nature 542, 223–227. https://doi.org/10.1038/nature21071 (2017).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bommarco, R. et al. Dispersal capacity and diet breadth modify the response of wild bees to habitat loss. Proc. Biol. Sci. 277, 2075–2082. https://doi.org/10.1098/rspb.2009.2221 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alarcón, R., Waser, N. M. & Ollerton, J. Year-to-year variation in the topology of a plant–pollinator interaction network. Oikos 117, 1796–1807. https://doi.org/10.1111/j.0030-1299.2008.16987.x (2008).Article 

    Google Scholar 
    Dupont, Y. L., Padrón, B., Olesen, J. M. & Petanidou, T. Spatio-temporal variation in the structure of pollination networks. Oikos 118, 1261–1269. https://doi.org/10.1111/j.1600-0706.2009.17594.x (2009).Article 

    Google Scholar 
    Santamaría, S. et al. Landscape effects on pollination networks in Mediterranean gypsum islands. Plant Biol. 20(Suppl 1), 184–194. https://doi.org/10.1111/plb.12602 (2018).Article 
    PubMed 

    Google Scholar  More

  • in

    The interplay between spatiotemporal overlap and morphology as determinants of microstructure suggests no ‘perfect fit’ in a bat-flower network

    Study siteThe study was conducted in the Brasília National Park (PNB), Federal District, Brazil (15º39′57″ S; 47º59′38″ W), a 42.355 ha Protected Area with a typical vegetation configuration found in the Cerrado of the central highlands of Brazil, i.e., a mosaic of gallery forest patches along rivers surrounded by a matrix of savannas and grasslands34. The climate in the region falls into the Aw category in the Köppen scale, categorizing a tropical wet savanna, with marked rainy (October to March) and dry (April to September) seasons.We carried out the study in eight fixed sampling sites scattered evenly throughout the PNB and separated by at least two kilometers from one another (Supplementary Fig. S1). The sites consisted of four cerrado sensu stricto sites (bushy savanna containing low stature trees); two gallery forest edges sites (ca. 5 m from forest edges, containing a transitional community), and two gallery forest interior sites. These three types reflect the overall availability of habitat types in the reserve (excluding grasslands) and are the most appropriate foraging areas to sample interactions as bat-visited plants are either bushes, trees, or epiphytes, but rarely herbs35.Bat and interaction samplingsWe sampled bat-plant interactions using pollen loads collected from bat individuals captured in the course of one phenological year, thus configuring an animal-centered sampling. We carried out monthly field campaigns to capture bats from October 2019 to February 2020, from August to September 2020, and from March to July 2021. In each month, we carried out eight sampling nights during periods of low moonlight intensity, each associated with one of the eight sites. Each night, we set 10 mist nets (2.6 × 12 m, polyester, denier 75/2, 36 mm mesh size, Avinet NET-PTX, Japan) at ground level randomly within the site, which were opened at sunset and closed after six hours. We accumulated a total sampling effort of 552 net-hours, 28,704 m2 of net area, or 172,224 m2h sensu Straube and Bianconi36.All captured bats were sampled for pollen, irrespective of family or feeding guild. We used glycerinated and stained gelatin cubes to collect pollen grains from the external body of bats (head, torso, wings, and uropatagium). Samples were stored individually, and care was taken not to cross-contaminate samples. Pollen types were identified by light microscopy, and palynomorphs were identified to the lowest-possible taxonomical level using an extensive personal reference pollen collection from plants from the PNB (details in next section). Palynomorphs were sometimes classified to the genus or family level or grouped in entities representing more than one species. Any palynomorph numbering five or fewer grains in one sample was considered contamination, alongside any anemophilous species irrespective of pollen number.Bats were identified using a specialized key37 and four ecomorphological variables were measured for each individual. (i) Forearm length and (ii) body mass were used to calculate the body condition index (BCI), a proxy of body robustness38, where higher BCI values indicate larger and heavier bats, which are less effective in interacting with flowers in general due to a lack of hovering behavior, the incapability of interacting with delicate flowers that cannot sustain them, a lower maneuverability and higher energetic requirements39. Moreover, we measured (iii) longest skull length (distance from the edge of the occipital region to the anterior edge of the lower lip) and (iv) rostrum length (distance from the anterior edge of the eye to the anterior edge of the lower lip) to calculate the rostrum-skull ratio (RSR), a proxy of morphological specialization to nectar consumption23. Higher RSR values indicate bats with proportionally longer rostra in relation to total skull length. Longer rostra in bats are associated with a weaker bite force and thus less effective in consuming harder food items such as fruits and insects, thus suggesting a higher adaptation to towards nectar40,41. Bats were then tagged with aluminum bands for individualization and released afterward. To evaluate the sampling completeness of the bat community and of the pollen types found on bats, we employed the Chao1 asymptotic species richness estimator and an individual-based sampling effort to estimate and plot rarefaction curves, calculating sampling completeness according to Chacoff et al.42.All methods were carried out in accordance with relevant guidelines and regulations. The permits to capture, handle and collect bats were granted by the Ethical Council for the Usage of Animals (CEUA) of the University of Brasília (permit 23106.119660/2019-07) and the Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) (permit: SISBIO 70268). Vouchers of each species, when the collection was possible, were deposited in the Mammal Collection of the University of Brasília.Assessment of the plant communityIn each of the eight sampling sites, we delimited a 1000 × 10 m transect, each of which was walked monthly for one phenological year (January and February 2020, August to December 2020, and March to July 2021) to build a floristic inventory of plants of interest and to estimate their monthly abundance of flowering individuals. Plant species of interest were any potential partner for bats, which included species already known to be pollinated by bats, presenting chiropterophilous traits sensu Faegri and Van Der Pijl43, or any plant that could be accessed by and reward bats, whose flowers passes all the three following criteria:(i) Nectar or pollen is presented as the primary reward to visitors. (ii) Corolla diameter of 1 cm or more. This criterion excludes small generalist and insect-pollinated flowers where the visitation by bats is mechanically unlikely. It applies to the corolla diameter in non-tubular flowers or the diameter of the tube opening. Exceptions were small and actinomorphic flowers aggregated in one larger pollination unit (pseudanthia) where the 1 cm threshold was applied to inflorescence diameter. (iii) Reward must be promptly available for bats. This criterion excludes species with selective morphological mechanisms, such as quill-shaped bee-pollinated flowers or flowers with long and narrow calcars.All flowering individuals of interest species found in the transects were registered. A variable number of flowers/inflorescences (n = 5–18) were collected per species for morphometric analysis. For each species, we calculated floral tube length (FTL), corresponding to the distance between the base of the corolla, calyx, or hypanthium (depending on the species) to its opening, and the corolla’s outermost diameter (COD), which corresponds to the diameter of the corolla opening (tubular flowers) or simply the corolla diameter (non-tubular flowers). For pseudanthia-forming species, inflorescence width was measured. Pseudanthia and non-tubular flowers received a dummy FTL value of 0.1 mm to represent low restriction and enable later calculations. Finally, we collected reference pollen samples from all species from anthers of open flowers, which were used to identify pollen types found on bats. For plant species found in pollen loads but not in the PNB, measures were taken from plants found either on the outskirts of the site (Inga spp.) or from dried material in an online database (Ceiba pentandra, in https://specieslink.net/) using the ImageJ software44. Vouchers were deposited in the Herbarium of the Botany Department, University of Brasília.Data analysisNetwork macrostructureWe built a weighted adjacency matrix i x j, where cells corresponded to the number of individuals of bat species i that interacted with plant species or morphotype j. All edges corresponding to legitimate interactions were included. With this matrix, we calculated three structural metrics to describe the network’s macrostructure. First, weighted modularity (Qw), calculated by the DIRTLPAwb + algorithm45. A modular network comprises subgroups of species in which interactions are stronger and more frequent than species out of these subgroups10, which may reveal functional groups in the network9. Qw varies from zero to one, the latter representing a perfectly modular network.Second, complementary specialization through the H2′ metric46. It quantifies how unique, on average, are the interactions made by species in the network, considering interaction weights and correcting for network size. It varies from zero to one, the latter corresponding to a specialized network where interactions perfectly complement each other because species do not share partners.Lastly, nestedness, using the weighted WNODA metric25. Nested networks are characterized by interaction asymmetries, where peripheral species are only a subset of the pool of species with which generalists interact47. The index was normalized to vary from zero to one, with one representing a perfectly nested network. Given that the network has a modular structure, we also tested for a compound topology, i.e., the existence of distinct network patterns within network modules, by calculating intra-module WNODA and between-module WNODA36. Internally nested modules appear in networks in which consumers specialize in groups of dissimilar or clustered resources and suggest the existence of distinct functional groups of consumers25,48. Metric significance (Qw, H2′, and WNODA) was assessed using a Monte Carlo procedure based on a null model. We used the vaznull model3, where random matrices are created by preserving the connectance of the observed matrix but allowing marginal totals to vary. One thousand matrices were generated and metrics were calculated for each of them. Metric significance (p) corresponded to the number of times the null model delivered a value equal to or higher than the observed metric, divided by the number of matrices. The significance threshold was considered p ≤ 0.05.Given a modular structure, we followed the framework of Phillips et al.49 that correlates network concepts (especially modularity) with the distribution of morphological variables of pollinators to unveil patterns of niche divergence in pollination networks. Given the most parsimonious module configuration suggested by the algorithm, we compared modules in terms of the distribution of morphological variables of the bat (RCR and BCI) and plant (FTL and COD) species that composed the module. Differences between modules means were tested with one-way ANOVAs.Drivers of network microstructureThe role of different ecological variables in determining pairwise interaction frequencies was assessed using a probability matrices approach3. This framework considers that an interaction matrix Y is a product of several probability matrices of the same size as Y, with each matrix representing the probability of species interacting based on an ecological mechanism. Thus, adapting it to our objectives, we have Eq. (1):$$mathrm{Y}=mathrm{f}(mathrm{A},mathrm{ M },mathrm{P},mathrm{ S})$$
    (1)
    where Y is the observed interaction matrix, and a function of interaction probability matrices based on species relative abundances (A), representing neutrality as species interact by chance; species morphological specialization (M), phenological overlap (P), and spatial overlap (S). We built models containing each of these matrices in the following ways:Relative abundance (A): matrix cells were the products of the relative abundances of bat and plant species. The relative abundances of bats were determined through capture frequencies (each species’ capture frequency divided by all captures, excluding recaptures) and the relative abundances of plants were determined by the number of flowering individuals recorded in transections (each species’ summed abundance in all transects and all months divided by the pooled abundance of all species in the network). Cell values were normalized to sum one.Morphological specialization (M): cells were the probability of species interacting based on their matching degree of morphological specialization. Morphologically specialized bats (i.e., longer rostra and smaller size) are more likely to interact with morphologically specialized flowers (i.e., longer tubes and narrower corollas), while unspecialized bats are more likely to interact with unspecialized, accessible flowers. For this purpose, we calculated a bat specialization index (BSI) as the ratio between RCR and BCI, where higher BSI values indicate overall lower body robustness and longer snout length. Likewise, the flower specialization index (FSI) was calculated for plants as the ratio between FTL and COD, where higher values indicate smaller, narrower, long-tubed flowers that require specialized morphology and behavior from bats for visitation. BSI and FTL were normalized to range between zero and one and were averaged between individuals of each species of bat or plant. Therefore, interaction probabilities were calculated as in Eq. (2):$${P}_{i,j}=1-|{BSI}_{i}-{FSI}_{j}|$$
    (2)
    where Pi,j is the interaction probability between bat species i and plant species j and |BSIi – FSIj| is the absolute difference between bat and plant specialization indexes. Similar index values (two morphologically specialized or unspecialized species interacting) lead to a low difference in specialization and thus to a high probability of interaction (Pi,j → 1), whereas the interaction between a morphologically specialized and a morphologically unspecialized species leads to a high absolute difference and thus lower probability of interaction (Pi,j → 0). Cell values of the resulting matrix were normalized to sum one.Phenological overlap (P): cells were the probability of species interacting based on temporal synchrony, calculated as the number of months that individuals of bat species i and flowering individuals of plant species j co-occurred in the research site, pooling all capture sites/transections. Cell values were normalized to sum one.Spatial overlap (S): cells were the probability of species interacting based on their co-occurrence over small-scale distances and vegetation types, calculated as the number of individuals from a bat species i captured in sampling sites where the plant species j was registered in the transection, considering all capture months. Cell values were normalized to sum one.Because more than one ecological mechanism may simultaneously drive interactions3,9, we built an additional set of seven models resultant from the element-wise multiplication of individual probability matrices:

    SP: The spatial and temporal distribution of species work simultaneously in driving a resource turnover in the community, driving interactions.

    AS: Abundance drives interactions between bats and plants, but within spatially clustered resources in the landscape caused by a turnover in species distributions.

    AP: Abundance drives interactions between bats and plants, but within temporally clustered resources caused by a seasonal distribution of resources.

    APS: Abundance drives interactions between bats and plants, but within resource clusters that emerge by a simultaneous temporal and spatial aggregation.

    MS: Similar to AS, but morphology drives interactions within spatial clusters.

    MP: Similar to MP, but morphology drives interactions within temporal clusters.

    MPS: Similar to APS, but morphology drives interactions within spatiotemporal clusters.

    Finally, we created a benchmark null model in which all cells in the matrix had the same probability value. All the compound matrices and the null model were also normalized to sum one.To compare the fit of these probability models with the real data, we conducted a maximum likelihood analysis3,9. We calculated the likelihood of each of these models in predicting the observed interaction matrix, assuming a multinomial distribution for the probability of interaction between species12. To compare model fit, we calculated the Akaike Information Criterion (AIC) for each model and their variation in AIC (ΔAIC) in relation to the best-fitting model. The number of species used in the probability matrices was considered the number of model parameters to penalize model complexity. Intending to assess whether nectarivorous bats and non-nectarivorous bats assembly sub-networks with different assembly rules, we created two partial networks from the observed matrix. One contained nectarivores only (subfamilies Glossophaginae and Lonchophyllinae) and their interactions, and the other contained frugivore and insectivore bats and their interactions. We repeated the likelihood procedure for these two partial networks.To conduct the likelihood analysis, we excluded plant species from the network that could not have their interaction probabilities measured, such as species found in pollen samples but not registered in the park or pollen types that could not be identified to the species level. Therefore, the interaction network Y and probability matrices did not include these species (details in Supplementary Table S1).SoftwareAnalyses were performed in R 3.6.050. Network metrics and null models were generated with the bipartite package51, and the sampling completeness analysis was performed with the vegan package52. Gephi 0.9.253 was used to draw the graph. More

  • in

    Tropical biodiversity linked to polar climate

    Wallace, A. R. Tropical Nature and Other Essays (Macmillan, 1878).
    Google Scholar 
    von Humboldt, A. Ansichten der Natur: mit wissenschaftlichen Erläuterungen (Cotta, 1808).
    Google Scholar 
    Brown, J. H. J. Biogeogr. 41, 8–22 (2014).Article 
    PubMed 

    Google Scholar 
    Fenton, I. S., Aze, T., Farnsworth, A., Valdes, P. & Saupe, E. E. Nature https://doi.org/10.1038/s41586-023-05712-6 (2023).Article 

    Google Scholar 
    Woodhouse, A., Swain, A., Fagan, W. F., Fraass, A. J. & Lowery, C. M. Nature https://doi.org/10.1038/s41586-023-05694-5 (2023).Article 

    Google Scholar 
    Yasuhara, M., Tittensor, D. P., Hillebrand, H. & Worm, B. Biol. Rev. 92, 199–215 (2017).Article 
    PubMed 

    Google Scholar 
    Yasuhara, M. et al. Proc. Natl Acad. Sci. USA 117, 12891–12896 (2020).Article 
    PubMed 

    Google Scholar 
    Song, H. et al. Proc. Natl Acad. Sci. USA 117, 17578–17583 (2020).Article 
    PubMed 

    Google Scholar 
    Penn, J. L., Deutsch, C., Payne, J. L. & Sperling, E. A. Science 362, eaat1327 (2018).Article 
    PubMed 

    Google Scholar 
    Janzen, D. H. Am. Nat. 101, 233–249 (1967).Article 

    Google Scholar 
    Hahn, L. C., Armour, K. C., Zelinka, M. D., Bitz, C. M. & Donohoe, A. Front. Earth Sci. 9, 710036 (2021).Article 

    Google Scholar 
    Penn, J. L. & Deutsch, C. Science 376, 524–526 (2022).Article 
    PubMed 

    Google Scholar  More

  • in

    Fungi feed bacteria for biodegradation

    The pesticide hexachlorocyclohexane (HCH) is a toxic and persistent contaminant in the environment. Some bacteria and fungi can degrade HCH and its isomers under laboratory conditions. However, in heterogeneous environments, where many different factors are at play, the biodegradation capacity is challenged by the availability of nutrients to support degraders’ growth. As opposed to bacteria, fungi are more adapted to heterogeneous habitats, and in some cases mycelial fungi can facilitate the transport of organic substrates throughout the mycosphere, increasing their availability to promote bacterial contaminant biodegradation. However, how this occurs is not entirely understood. In this study, Khan et al. demonstrate that mycelial nutrients transferred from nutrient-rich to nutrient-deprived habitats promote co-metabolic degradation of HCH by bacteria. The authors incubated a non-HCH-degrading fungus (Fusarium equiseti K3) and a co-metabolically HCH-degrading bacterium (Sphingobium sp. S8) in a structured model ecosystem. Results from 13C isotope labelling and metaproteomics showed that fungal 13C was incorporated into bacterial proteins responsible for HCH degradation, thus illustrating the importance of synergistic fungal–bacterial interactions for contaminant biodegradation in nutrient-poor environments. More

  • in

    Rainfall affects interactions between plant neighbours

    Lebrija-Trejos, E., Hernández, A. & Wright, S. J. Nature https://doi.org/10.1038/s41586-023-05717-1 (2023).Article 

    Google Scholar 
    Chesson, P. J. Ecol. 106, 1773–1794 (2018).Article 

    Google Scholar 
    Barabás, G., D’Andrea, R. & Stump, S. M. Ecol. Monogr. 88, 277–303 (2018).Article 

    Google Scholar 
    Broekman, M. J. E. et al. Ecol. Lett. 22, 1957–1975 (2019).Article 
    PubMed 

    Google Scholar 
    Freckleton, R. P. & Lewis, O. T. Proc. R. Soc. B 273, 2909–2916 (2006).Article 
    PubMed 

    Google Scholar 
    Bagchi, R. et al. Nature 506, 85–88 (2014).Article 
    PubMed 

    Google Scholar 
    Chen, L. et al. Science 366, 124–128 (2019).Article 
    PubMed 

    Google Scholar 
    Milici, V. R., Dalui, D., Mickley, J. G. & Bagchi, R. J. Ecol. 108, 1800–1809 (2020).Article 

    Google Scholar 
    Song, X. & Corlett, R. T. Oikos 2022, e08509 (2022).Article 

    Google Scholar 
    Engelbrecht, B. M. J. et al. Nature 447, 80–82 (2007).Article 
    PubMed 

    Google Scholar 
    Krishnadas, M. & Stump, S. M. J. Ecol. 109, 2137–2151 (2021).Article 

    Google Scholar 
    Van Dyke, M. N., Levine, J. M. & Kraft, N. J. B. Nature 611, 507–511 (2022).Article 
    PubMed 

    Google Scholar  More

  • in

    Impending anthropogenic threats and protected area prioritization for jaguars in the Brazilian Amazon

    Estes, J. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).Article 
    CAS 

    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the World’s Largest Carnivores. Science 343, 151–162 (2014).Article 
    CAS 

    Google Scholar 
    Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).Article 
    CAS 

    Google Scholar 
    De La Torre, J. A., González-Maya, J. F., Zarza, H., Ceballos, G. & Medellín, R. A. The jaguar’s spots are darker than they appear: assessing the global conservation status of the jaguar (Panthera onca). Oryx 52, 300–315 (2018).Article 

    Google Scholar 
    Lindsey, P. A. et al. The performance of African protected areas for lions and their prey. Biol. Conserv. 209, 137–149 (2017).Article 

    Google Scholar 
    Carbone, C., Cowlishaw, G., Isaac, N. J. B. & Rowcliffe, J. M. How far do animals go? Determinants of day range in mammals. Am. Nat. 165, 290–297 (2005).Article 

    Google Scholar 
    Sanderson, E. W. et al. Planning to save a species: the jaguar as a model. Conserv. Biol. 16, 58–72 (2002).Article 

    Google Scholar 
    Rabinowitz, A. & Zeller, K. A. A range-wide model of landscape connectivity and conservation for the jaguar, Panthera onca. Biol. Conserv. 143, 939–945 (2010).Article 

    Google Scholar 
    Woodroffe, R. Predators and people: using human densities to interpret declines of large carnivores. Anim. Conserv. 3, 165–173 (2000).Article 

    Google Scholar 
    Crooks, K. R. Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv. Biol. 16, 488–502 (2002).Article 

    Google Scholar 
    Ferreira, A. S., Peres, C. A., Bogoni, J. A. & Cassano, C. G. Use of agroecosystem matrix habitats by mammalian carnivores (Carnivora): a global-scale analysis. Mammal Rev. https://doi.org/10.1111/mam12137 (2018).Thompson, J. J. et al. Range-wide factors shaping space use and movements by the Neotropic’s flagship predator: the jaguar. Curr. Biol. https://doi.org/10.1016/jcub202106029 (2021).Sunquist, M. & Sunquist, F. Wild Cats of the World. University of Chicago Press (2002).Leader-Williams, N. & Dublin, H. T. in Priorities for The Conservation Of Mammalian Diversity: Has The Panda Had Its Day? (eds. Entwistle, A., Dunstone, N.) 53−81 (Cambridge University Press, 2000).Thornton, D. et al. Assessing the umbrella value of a range-wide conservation network for jaguars (Panthera onca). Ecol. Appl. 26, 1112–1124 (2015).Article 

    Google Scholar 
    Olsoy, P. J. et al. Quantifying the effects of deforestation and fragmentation on a range-wide conservation plan for jaguars. Biol. Conserv. 203, 8–16 (2016).Article 

    Google Scholar 
    Morato, R. G., Beisiegel, B. M., Ramalho, E. E. & Boulhosa, R. L. P. Avaliação do risco de extinção da Onça-pintada Panthera onca (Linnaeus, 1758) no Brasil. Biodivers. Brasil. 3, 122–132 (2013).
    Google Scholar 
    Hunter, L. Carnivores of the World. Princeton Univ Press (2011).Morato, R. G. et al. Space use and movement of a neotropical top predator: The Endangered Jaguar. PLoS ONE 11, e0168176 (2016).Article 

    Google Scholar 
    Eriksson, C. E. et al. Extensive aquatic subsidies lead to territorial breakdown and high density of an apex predator. Ecology 103, e03543 (2022).Article 

    Google Scholar 
    Chapman, B. et al. in Animal Movement Across Scales 1st edn. (eds. Hansson, L-A, Akesson, S.) 11–30 (Oxford University Press, 2014).Quigley, H. et al. Panthera onca. (errata version published in 2018). The IUCN Red List of Threatened Species 2017:e.T15953A123791436. https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T15953A50658693.en (2017).Paviolo, A. et al. A biodiversity hotspot losing its top predator: the challenge of jaguar conservation in the Atlantic Forest of South America. Sci. Rep. 6, 37147 (2016).Article 
    CAS 

    Google Scholar 
    Tobler, M. W., Carillo-Perscastegui, S. E., Hartley, A. Z. & Powell, G. V. N. High jaguar densities and large population sizes in the core habitat of the southwestern Amazon. Biol. Conserv. 159, 375–381 (2013).Article 

    Google Scholar 
    Jędrzejewski, W. et al. Estimating large carnivore populations at global scale based on spatial predictions of density and distribution: application to the jaguar (Panthera onca). PLoS ONE 13, e0194719 (2018).Article 

    Google Scholar 
    Eva, H. D. et al. A proposal for defining the geographical boundaries of Amazonia; synthesis of the results from an expert consultation workshop organized by the European Commission in collaboration with the Amazon Cooperation Treaty Organization-JRC Ispra (No 21808-EN). https://core.ac.uk/download/pdf/38630683.pdf (2005).Nepstad, D. C., Stickler, C. M., Soares-Filho, B., Merry, F. & Nin, E. Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philos. Trans. R. Soc. B 363, 1737–1746 (2008).Article 

    Google Scholar 
    Marques, A. A. B., Schneider, M. & Peres, C. A. Human population and socioeconomic modulators of conservation performance in 788 Amazonian and Atlantic Forest reserves. PeerJ 4, pe2206 (2016).Article 

    Google Scholar 
    Jaguar 2030 Roadmap. Regional plan to save America’s largest cat and its ecosystems. https://www.internationaljaguarday.org/jaguar-conservation-roadmap (2018).Sanderson, E. W. et al. A systematic review of potential habitat suitability for the jaguar Panthera onca in central Arizona and New Mexico, USA. Oryx 2021, 1–12 (2021).
    Google Scholar 
    Simberloff, D. Flagships, umbrellas, and keystones: is single-species management passe’ in the landscape era. Biol. Conserv. 83, 247–57 (1998).Article 

    Google Scholar 
    Silvério, D. V. et al. Testing the Amazon savannization hypothesis: fire effects on invasion of a neotropical forest by native Cerrado and exotic pasture grasses. Philos. Trans. R. Soc. B 368, 20120427 (2013).Article 

    Google Scholar 
    Brazil’s National Institute for Space Research (INPE). Banco de dados de Queimadas INPE—Programa Queimadas. http://queimadasdgiinpebr/queimadas/bdqueimadas (2020b).Silva-Jr, C. H. L. et al. The Brazilian Amazon deforestation rate in 2020 is the greatest of the decade. Nat. Ecol. Evol. 5, 144–145 (2020).Article 

    Google Scholar 
    Walker, R. et al. Protecting the Amazon with protected areas. Proc. Natl Acad. Sci. USA 106, 10582–10586 (2009).Article 
    CAS 

    Google Scholar 
    Gray, C. L. et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7, 12306 (2016).Article 
    CAS 

    Google Scholar 
    Begotti, R. A. & Peres, C. A. Rapidly escalating threats to the biodiversity and ethnocultural capital of Brazilian Indigenous Lands. Land Use Policy 96, 104694 (2020).Article 

    Google Scholar 
    Walker, W. S. et al. The role of forest conversion, degradation, and disturbance in the carbon dynamics of Amazon indigenous territories and protected areas. Proc. Natl Acad. Sci. USA 117, 3015–3025 (2020).Article 
    CAS 

    Google Scholar 
    Moilanen, A., Arponen, A., Stokland, J. N. & Cabeza, M. Assessing replacement cost of conservation areas: How does habitat loss influence priorities? Biol. Conserv. 142, 575–585 (2009).Article 

    Google Scholar 
    Almeida-Rocha, J. A. & Peres, C. A. Nominally protected buffer zones around tropical protected areas are as highly degraded as the wider unprotected countryside. Biol. Conserv. 256, 109068 (2021).Article 

    Google Scholar 
    Terborgh, J. The role of felid predators in Neotropical Forests. Vida Silv. Neotrop. 2, 3–5 (1990).
    Google Scholar 
    Woodroffe, R. & Ginsberg, J. R. Edge effects and the extinction of populations inside protected areas. Science 280, 2126–2128 (1998).Article 
    CAS 

    Google Scholar 
    Brando, P. M. et al. The gathering firestorm in southern Amazonia. Sci. Adv. 6, 1632 (2020).Convention on the Conservation of Migratory Species of Wild Animals (CMS). Proposal for the Inclusion of the Jaguar in Appendices I and II of the Convention. https://www.cms.int/en/document/proposal-inclusion-jaguar-appendices-i-and-ii-convention (2022).Ceddia, M. G., Bardsley, N. O., Gomez-y-Paloma, S. & Sedlacek, S. Governance, agricultural intensification, and land sparing in tropical South America. Proc. Natl Acad. Sci. USA 111, 7242–7247 (2014).Laurance, W. F. et al. Impacts of roads and hunting on central African rainforest mammals. Conserv. Biol. 20, 1251–1261 (2006).Article 

    Google Scholar 
    Brancalion, P. H. S. et al. Análise crítica da Lei de Proteção da Vegetação Nativa (2012), que substituiu o antigo Código Florestal: atualizações e ações em curso. Natureza Conservação 14, 1–16 (2016).Wilkie, D. S., Bennett, E. L., Peres, C. A. & Cunningham, A. A. The empty forest revisited. Ann. N. Y. Acad. Sci. 1223, 120–128 (2011).Article 

    Google Scholar 
    Bogoni, J. A., Peres, C. A. & Ferraz, K. M. P. M. B. Extent, intensity and drivers of mammal defaunation: a continental-scale analysis across the Neotropics. Sci. Rep. 10, 14750 (2020).Article 
    CAS 

    Google Scholar 
    Ferrante, L. & Fearnside, P. M. Brazil’s new president and ‘ruralists’ threaten Amazonia’s environment, traditional peoples and the global climate. Environ. Conserv. 46, 261–263 (2019).Article 

    Google Scholar 
    Aragão, L. E. O. C. & Shimabukuro, Y. E. The incidence of fire in Amazonian forests with implications for REDD. Science 328, 1275–1278 (2010).Article 

    Google Scholar 
    Barlow, J. & Peres, C. A. Fire-mediated dieback and compositional cascade in an Amazonian forest. Philos. Trans. R. Soc. B 363, 1787 (2008).Article 

    Google Scholar 
    Michalski, F., Boulhosa, R. L. P., Faria, A. & Peres, C. A. Human–wildlife conflicts in a fragmented Amazonian forest landscape: determinants of large felid depredation on livestock. Anim. Conserv. https://doi.org/10.1111/j1469-1795200600025x (2006).Article 

    Google Scholar 
    Jorge, M. L. S. P., Galetti, M., Ribeiro, M. C. & Ferraz, K. M. P. M. B. Mammal defaunation as surrogate of trophic cascades in a biodiversity hotspot. Biol. Conserv. 163, 49–57 (2013).Article 

    Google Scholar 
    Menezes, J. F. S., Tortato, F. R., Roque, F. O., Oliveira-Santos, L. G. & Morato, R. G. Deforestation, fires, and lack of governance are displacing thousands of jaguars in Brazilian Amazon. Conserv. Sci. Pract. 3, e477 (2021).Morato, R. G. et al. Resource selection in an apex predator and variation in response to local landscape characteristics. Biol. Conserv. 228, 233–240 (2018).Article 

    Google Scholar 
    Romero-Muñoz, A. et al. Habitat loss and overhunting synergistically drive the extirpation of jaguars from the Gran Chaco. Divers. Distrib. 25, 176–190 (2018).Romero-Muñoz, A., Morato, R. G., Tortato, F. & Kuemmerle, T. Beyond fangs: beef and soybean trade drive jaguar extinction. Front. Ecol. Environ. 18, 67–68 (2020).Article 

    Google Scholar 
    Vilela, T. et al. A better Amazon road network for people and the environment. Proc. Natl Acad. Sci. USA 117, 7095–7102 (2020).Article 
    CAS 

    Google Scholar 
    Benítez-López, A., Alkemade, R. & Verweij, P. A. The impacts of roads and other infrastructure on mammal and bird populations: a meta-analysis. Biol. Conserv. 143, 1307–1316 (2010).Article 

    Google Scholar 
    Carter, N., Killion, A., Easter, T., Brandt, J. & Ford, A. Road development in Asia: assessing the range-wide risks to tigers. Sci. Adv. 6, eaaz9619 (2020).Article 

    Google Scholar 
    Abra, F. D. et al. Pay or prevent? Human safety, costs to society and legal perspectives on animal-vehicle collisions in São Paulo state, Brazil. PLoS ONE 14, e0215152 (2019).Article 
    CAS 

    Google Scholar 
    Joshi, A. R. et al. Tracking changes and preventing loss in critical tiger habitat. Sci. Adv. 2, e1501675 (2016).Article 

    Google Scholar 
    Peres, C. A. & Terborgh, J. Amazonian nature reserves: an analysis of the defensibility status of existing conservation units and design criteria for the future. Conserv. Biol. 9, 34–46 (1995).Article 

    Google Scholar 
    Sistema Nacional de Unidades de Conservação (SNUC). Lei 9985 de 18 de julho de 2000; Ministério do Meio Ambiente. (2000).Stocks, A. Too much for too few: problems of indigenous land rights in Latin America Annual. Rev. Anthropol. 34, 85–104 (2005).Article 

    Google Scholar 
    Mooers, A. Ø., Faith, D. P. & Maddison, W. P. Converting endangered species categories to probabilities of extinction for phylogenetic conservation prioritization. PLoS ONE 3, e3700 (2008).Article 

    Google Scholar 
    Staal, A. et al. Hysteresis of tropical forests in the 21st century. Nat. Commun. 11, 4978 (2020).Article 
    CAS 

    Google Scholar 
    Miranda, E. B. P. et al. Tropical deforestation induces thresholds of reproductive viability and habitat suitability in Earth’s largest eagles. Sci. Rep. 11, 1–17 (2021).Article 

    Google Scholar 
    Bowman, K. W. et al. Environmental degradation of indigenous protected areas of the Amazon as a slow onset event. Curr. Opin. Environ. Sustain. 50, 260–271 (2021).Article 

    Google Scholar 
    Wilson, K. A., Carwardine, J. & Possingham, H. P. Setting conservation priorities. Ann. N. Y. Acad. Sci. 1162, 237–264 (2009).Article 

    Google Scholar 
    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).Article 
    CAS 

    Google Scholar 
    Sales, L. P., Galetti, M. & Pires, M. M. Climate and land‐use change will lead to a faunal “savannization” on tropical rainforests. Glob. Change Biol. 26, 7036–7044 (2020).Article 

    Google Scholar 
    da Silva, J. M. C., Dias, T. C. A. C., da Cunha, A. C. & Cunha, H. F. A. Funding deficits of protected areas in Brazil. Land Use Policy 100, 104926 (2021).Article 

    Google Scholar 
    Nobre, C. A. et al. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proc. Natl Acad. Sci. USA 113, 10759–10768 (2016).Article 
    CAS 

    Google Scholar 
    Kauano, E. E., Silva, J. M. C. & Michalski, F. Illegal use of natural resources in federal protected areas of the Brazilian Amazon. PeerJ 5, e3902 (2017).Article 

    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2011).Article 

    Google Scholar 
    Instituto Brasileiro de Geografia e Estatística (IBGE). Censo demográfico Rio de Janeiro. http://www.ibge.gov.br (2020).Instituto Brasileiro de Geografia e Estatística (IBGE). Censo demográfico Rio de Janeiro. http://www.ibge.gov.br (2010).Instituto Brasileiro de Geografia e Estatística (IBGE). BC250—Base Cartográfica Contínua do Brasil—1:250,000—2017 Diretoria de Geociências—DGC / Coordenação de Cartografia—CCAR. http://www.metadadosgeoibgegovbr/geonetwork_ibge/srv/por/metadatashow?uuid=5a47e9ea-e2cd-423b-8646-53f67ff4ed2d (2017).MapBiomas. Projeto MapBiomas Coleção 5 da Série Anual de Mapas de Cobertura e Uso de Solo do Brasil. https://mapbiomas.org/colecoes-mapbiomas-1 (2019).Brazil’s National Institute for Space Research (INPE). Monitoramento do Desmatamento da Floresta Amazônica Brasileira por Satélite. http://www.obtinpebr/OBT/assuntos/programas/amazonia/prodes (2020a).ESRI. ArcGIS Desktop: Release 10 Redlands. (Environmental Systems Research Institute, 2019).Ministério do Meio Ambiente (MMA). Cadastro Nacional de Unidades de Conservação (CNUC). https://antigo.mma.gov.br/areas-protegidas/cadastro-nacional-de-ucs/dados-georreferenciados.html (2019).Fundação Nacional dos Povos Indígenas (FUNAI). Modalidades de Terra Indígenas. http://www.funaigovbr/indexphp/indios-no-brasil/terras-indigenas (2019).Tobler, M. W. & Powell, G. V. N. Estimating jaguar densities with camera traps: Problems with current designs and recommendations for future studies. Biol. Conserv. 159, 109–118 (2013).Article 

    Google Scholar 
    de Oliveira, T. G. et al. Red list assessment of the jaguar in Brazilian Amazonia. CatNews 7, 8–13 (2012).
    Google Scholar 
    Ramalho, F. B. L. Jaguar (Panthera Onca) Population Dynamics, Feeding Ecology, Human Induced Mortality, and Conservation in the Várzea Floodplain Forests of Amazonia. PhD Thesis. (University of São Paulo, 2012).Duarte, H. O. B., Boron, V., Carvalho, W. D. & Toledo, J. J. Amazon islands as predator refugia: jaguar density and temporal activity in Maracá-Jipioca. J. Mammal. 103, 440–446 (2022).Article 

    Google Scholar 
    Zar, J. H. Biostatistical Analysis 4th edn., (Pretince-Hall, 1999).Medellín, R. A. et al. El jaguar en el nuevo milenio. Fondo de Cultura Económica (Universidad Nacional Autónoma de México, Wildlife Conservation Society, 2002).Quigley, H. et al. Observations and preliminary testing of Jaguar depredation reduction techniques in and between core Jaguar populations. Parks 21, 63–72 (2015).Article 

    Google Scholar 
    Bogoni, J. A., Ferraz, K. M. P. M. B. & Peres, C. A. Continental-scale local extinctions in mammal assemblages are synergistically induced by habitat loss and hunting pressure. Biol. Conserv. 272, 109635 (2022).Article 

    Google Scholar 
    Valsecchi, J., Monteiro, M. C., Alvarenga, G. C., Lemos, L. P. & Ramalho, E. E. Community-based monitoring of wild felid hunting in Central Amazonia. Animal Conser. https://zslpublications.onlinelibrary.wiley.com/doi/pdf/10.1111/acv.12811 (2022).WWF. WWF Jaguar Strategy 2020–2030. https://wwflac.awsassets.panda.org/downloads/estrategia_jaguar_2020_2030_wwf.pdf (2020).Chape, S., Harrison, J., Spalding, M. D. & Lysenko, I. Measuring the extent and effectiveness of protected areas as an indicator for meeting global biodiversity targets. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 443–455 (2005).Article 
    CAS 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).Souza-Jr, C. M. et al. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sens. 12, 2735 (2020).Article 

    Google Scholar  More

  • in

    Late Cenozoic cooling restructured global marine plankton communities

    Jonkers, L., Hillebrand, H. & Kucera, M. Global change drives modern plankton communities away from the pre-industrial state. Nature 570, 372–375 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Barton, A. D., Irwin, A. J., Finkel, Z. V. & Stock, C. A. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. Proc. Natl Acad. Sci. USA 113, 2964–2969 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beaugrand, G., Reid, P. C., Ibanez, F., Lindley, J. A. & Edwards, M. Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296, 1692–1694 (2002).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cheung, W. W., Watson, R. & Pauly, D. Signature of ocean warming in global fisheries catch. Nature 497, 365–368 (2013).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Herbert-Read, J. E. et al. A global horizon scan of issues impacting marine and coastal biodiversity conservation. Nat. Ecol. Evol. 6, 1262–1270 (2022).Article 
    PubMed 

    Google Scholar 
    Yasuhara, M. & Deutsch, C. A. Paleobiology provides glimpses of future ocean. Science 375, 25–26 (2022).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Fenton, I. S. et al. Triton, a new species-level database of Cenozoic planktonic foraminiferal occurrences. Sci. Data 8, 160 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Strack, A., Jonkers, L., Rillo, M. C., Hillebrand, H. & Kucera, M. Plankton response to global warming is characterized by non-uniform shifts in assemblage composition since the last ice age. Nat. Ecol. Evol. 6, 1871–1880 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mokany, K. & Ferrier, S. Predicting impacts of climate change on biodiversity: a role for semi‐mechanistic community‐level modelling. Divers. Distrib. 17, 374–380 (2011).Article 

    Google Scholar 
    Pörtner, H.-O. et al. eds IPCC: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2022).Pontarp, M. et al. The latitudinal diversity gradient: novel understanding through mechanistic eco-evolutionary models. Trends Ecol. Evol. 34, 211–223 (2019).Article 
    PubMed 

    Google Scholar 
    Schumm, M. et al. Common latitudinal gradients in functional richness and functional evenness across marine and terrestrial systems. Proc. R. Soc. B 286, 20190745 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rutherford, S., D’Hondt, S. & Prell, W. Environmental controls on the geographic distribution of zooplankton diversity. Nature 400, 749–753 (1999).Article 
    ADS 
    CAS 

    Google Scholar 
    Worm, B., Lotze, H. K. & Myers, R. A. Predator diversity hotspots in the blue ocean. Proc. Natl Acad. Sci. USA 100, 9884–9888 (2003).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Fenton, I. S., Pearson, P. N., Dunkley Jones, T. & Purvis, A. Environmental predictors of diversity in recent planktonic foraminifera as recorded in marine sediments. PLoS ONE 11, e0165522 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chaudhary, C., Saeedi, H. & Costello, M. J. Bimodality of latitudinal gradients in marine species richness. Trends Ecol. Evol. 31, 670–676 (2016).Article 
    PubMed 

    Google Scholar 
    Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip in marine species richness around the equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rillo, M. C., Miller, C. G., Kučera, M. & Ezard, T. H. G. Intraspecific size variation in planktonic foraminifera cannot be consistently predicted by the environment. Ecol. Evol. 10, 11579–11590 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yasuhara, M. et al. Past and future decline of tropical pelagic biodiversity. Proc. Natl Acad. Sci. USA 117, 12891–12896 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thomas, E. Descent into the icehouse. Geology 36, 191–192 (2008).Article 
    ADS 

    Google Scholar 
    Fenton, I. S. et al. The impact of Cenozoic cooling on assemblage diversity in planktonic foraminifera. Phil. Trans. R. Soc. B 371, 20150224 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Crame, J. A. Early Cenozoic evolution of the latitudinal diversity gradient. Earth Sci. Rev. 202, 103090 (2020).Article 

    Google Scholar 
    Yasuhara, M. et al. Time machine biology. Oceanography 33, 16–28 (2020).Article 

    Google Scholar 
    Alegret, L., Arreguín-Rodríguez, G. J., Trasviña-Moreno, C. A. & Thomas, E. Turnover and stability in the deep sea: benthic foraminifera as tracers of Paleogene global change. Global Planet. Change 196, 103372 (2021).Article 

    Google Scholar 
    Gaskell, D. E. et al. The latitudinal temperature gradient and its climate dependence as inferred from foraminiferal δ18O over the past 95 million years. Proc. Natl Acad. Sci. USA 119, e2111332119 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mannion, P. D., Upchurch, P., Benson, R. B. & Goswami, A. The latitudinal biodiversity gradient through deep time. Trends Ecol. Evol. 29, 42–50 (2014).Article 
    PubMed 

    Google Scholar 
    Raja, N. B. & Kiessling, W. Out of the extratropics: the evolution of the latitudinal diversity gradient of Cenozoic marine plankton. Proc. R. Soc. B 288, 20210545 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Herbert, T. D. et al. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 9, 843–847 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Steinthorsdottir, M. et al. The Miocene: the future of the past. Paleoceanogr. Paleoclimatology 36, e2020PA004037 (2021).Article 

    Google Scholar 
    Brown, R. M., Chalk, T. B., Crocker, A. J., Wilson, P. A. & Foster, G. L. Late Miocene cooling coupled to carbon dioxide with Pleistocene-like climate sensitivity. Nat. Geosci. 15, 664–670 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Guillermic, M., Misra, S., Eagle, R. & Tripati, A. Atmospheric CO2 estimates for the Miocene to Pleistocene based on foraminiferal δ11B at Ocean Drilling Program Sites 806 and 807 in the Western Equatorial Pacific. Clim. Past 18, 183–207 (2022).Article 

    Google Scholar 
    Jablonski, D., Roy, K. & Valentine, J. W. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314, 102–106 (2006).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Yasuhara, M., Hunt, G., Dowsett, H. J., Robinson, M. M. & Stoll, D. K. Latitudinal species diversity gradient of marine zooplankton for the last three million years. Ecol. Lett. 15, 1174–1179 (2012).Article 
    PubMed 

    Google Scholar 
    Ezard, T. H. G., Aze, T., Pearson, P. N. & Purvis, A. Interplay between changing climate and species’ ecology drives macroevolutionary dynamics. Science 332, 349–351 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Peters, S. E., Kelly, D. C. & Fraass, A. J. Oceanographic controls on the diversity and extinction of planktonic foraminifera. Nature 493, 398–401 (2013).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Woodhouse, A. et al. Adaptive ecological niche migration does not negate extinction susceptibility. Sci. Rep. 11, 15411 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yasuhara, M., Tittensor, D. P., Hillebrand, H. & Worm, B. Combining marine macroecology and palaeoecology in understanding biodiversity: microfossils as a model. Biol. Rev. 92, 199–215 (2017).Article 
    PubMed 

    Google Scholar 
    Bindoff, N. L. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) (IPCC, Cambridge Univ. Press, 2019).Aze, T. et al. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biol. Rev. 86, 900–927 (2011).Article 
    PubMed 

    Google Scholar 
    Delmas, E. et al. Analysing ecological networks of species interactions. Biol. Rev. 94, 16–36 (2019).Article 
    PubMed 

    Google Scholar 
    Rojas, A., Calatayud, J., Kowalewski, M., Neuman, M. & Rosvall, M. A multiscale view of the Phanerozoic fossil record reveals the three major biotic transitions. Commun. Biol. 4, 309 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Swain, A., Devereux, M. & Fagan, W. F. Deciphering trophic interactions in a mid-Cambrian assemblage. iScience 24, 102271 (2021).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shaw, J. O. et al. Disentangling ecological and taphonomic signals in ancient food webs. Paleobiology 47, 385–401 (2021).Article 

    Google Scholar 
    Swain, A., Maccracken, S., Fagan, W. & Labandeira, C. Understanding the ecology of host plant–insect herbivore interactions in the fossil record through bipartite networks. Paleobiology 48, 239–260 (2022).Article 

    Google Scholar 
    Poisot, T., Canard, E., Mouquet, N. & Hochberg, M. E. A comparative study of ecological specialization estimators. Methods Ecol. Evol. 3, 537–544 (2012).Article 

    Google Scholar 
    Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Boscolo-Galazzo, F. and Crichton, K.A. et al. Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science 371, 1148–1152 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Boscolo-Galazzo, F. et al. Late Neogene evolution of modern deep-dwelling plankton. Biogeosciences 19, 743–762 (2022).Article 
    ADS 

    Google Scholar 
    Keller, G. in The Miocene Ocean: Paleoceanography and Biogeography Vol. 163, 177–196 (Geological Society of America, 1985).Holbourn, A. E. et al. Late Miocene climate cooling and intensification of southeast Asian winter monsoon. Nat. Commun. 9, 1584 (2018).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Willeit, M., Ganopolski, A., Calov, R., Robinson, A. & Maslin, M. The role of CO2 decline for the onset of Northern Hemisphere glaciation. Quat. Sci. Rev. 119, 22–34 (2015).Article 
    ADS 

    Google Scholar 
    Hayashi, T. et al. Latest Pliocene Northern Hemisphere glaciation amplified by intensified Atlantic meridional overturning circulation. Commun. Earth Environ. 1, 25–10 (2020).Article 
    ADS 

    Google Scholar 
    Lam, A. R., Crundwell, M. P., Leckie, R. M., Albanese, J. & Uzel, J. P. Diachroneity rules the mid-latitudes: a test case using late Neogene planktic foraminifera across the Western Pacific. Geosciences 12, 190 (2022).Article 
    ADS 

    Google Scholar 
    Lowery, C. M., Bown, P. R., Fraass, A. J. & Hull, P. M. Ecological response of plankton to environmental change: thresholds for extinction. Annu. Rev. Earth Planet. Sci. 48, 403–429 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Rillo, M. C. et al. On the mismatch in the strength of competition among fossil and modern species of planktonic Foraminifera. Global Ecol. Biogeogr. 28, 1866–1878 (2019).Article 

    Google Scholar 
    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).Article 
    ADS 

    Google Scholar 
    Monllor-Hurtado, A., Pennino, M. G. & Sanchez-Lizaso, J. L. Shift in tuna catches due to ocean warming. PLoS ONE 12, e0178196 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).Article 
    PubMed 

    Google Scholar 
    Mora, C. et al. Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biol. 11, e1001682 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Renaudie, J., Lazarus, D.B. & Diver, P. NSB (Neptune Sandbox Berlin): an expanded and improved database of marine planktonic microfossil data and deep-sea stratigraphy. Palaeontol. Electron. 23, p.a11 (2020).
    Google Scholar 
    Pearson, P. N. in Atlas of Oligocene Planktonic Foraminifera (eds Wade, B. S. et al) 415–428 (Cushman Foundation of Foraminiferal Research, 2018).Liow, L. H., Skaug, H. J., Ergon, T. & Schweder, T. Global occurrence trajectories of microfossils: environmental volatility and the rise and fall of individual species. Paleobiology 36, 224–252 (2010).Article 

    Google Scholar 
    Lazarus, D., Weinkauf, M. & Diver, P. Pacman profiling: a simple procedure to identify stratigraphic outliers in high-density deep-sea microfossil data. Paleobiology 38, 144–161 (2012).Article 

    Google Scholar 
    Woodhouse, A. et al. Paleoecology and evolutionary response of planktonic foraminifera to the Plio-Pleistocene intensification of Northern Hemisphere glaciations. Preprint at EGUsphere https://doi.org/10.5194/egusphere-2022-844 (2022).Woodhouse, A. et al. Paleoecology and evolutionary response of planktonic foraminifera to the mid-Pliocene Warm Period and Plio-Pleistocene bipolar ice sheet expansion. Biogeosciences 20, 121–139 (2023).Article 
    ADS 

    Google Scholar 
    Dormann, C. F., Fründ, J., Blüthgen, N. & Gruber, B. Indices, graphs and null models: analyzing bipartite ecological networks. Op. Ecol. J. 2, 7–24 (2009).Article 

    Google Scholar 
    Swain, A. et al. Sampling bias and the robustness of ecological metrics for plant-damage-type association networks. Ecology https://doi.org/10.1002/ecy.3922 (2022).Julliard, R., Clavel, J., Devictor, V., Jiguet, F. & Couvet, D. Spatial segregation of specialists and generalists in bird communities. Ecol. Lett. 9, 1237–1244 (2006).Article 
    PubMed 

    Google Scholar 
    Vaughan, I. P. et al. econullnetr: an R package using null models to analyse the structure of ecological networks and identify resource selection. Methods Ecol. Evol. 9, 728–733 (2018).Article 
    MathSciNet 

    Google Scholar  More

  • in

    A molecular atlas reveals the tri-sectional spinning mechanism of spider dragline silk

    Chromosomal-scale genome assembly and full spidroin gene set of T. clavata
    To explore dragline silk production in T. clavata, we sought to assemble a high-quality genome of this species. Thus, we first performed a cytogenetic analysis of T. clavata captured from the wild in Dali City, Yunnan Province, China, and found a chromosomal complement of 2n = 26 in females and 2n = 24 in males, comprising eleven pairs of autosomal elements and unpaired sex chromosomes (X1X1X2X2 in females and X1X2 in males) (Fig. 1a). Then, DNA from adult T. clavata was used to generate long-read (Oxford Nanopore Technologies (ONT)), short-read (Illumina), and Hi-C data (Supplementary Data 1). A total of 349.95 Gb of Nanopore reads, 199.55 Gb of Illumina reads, and ~438.41 Gb of Hi-C raw data were generated. Our sequential assembly approach (Supplementary Fig. 1c) resulted in a 2.63 Gb genome with a scaffold N50 of 202.09 Mb and a Benchmarking Universal Single-Copy Ortholog (BUSCO) genome completeness score of 93.70% (Table 1; Supplementary Data 3). Finally, the genome was assembled into 13 pseudochromosomes. Sex-specific Pool-Seq analysis of spiders indicated that Chr12 and Chr13 were sex chromosomes (Fig. 1b; Supplementary Fig. 2). Based on the MAKER2 pipeline34 (Supplementary Fig. 1e), we annotated 37,607 protein-encoding gene models and predicted repetitive elements with a collective length of 1.42 Gb, accounting for 53.94% of the genome.Table 1 Characteristics of the T. clavata genome assemblyFull size tableTo identify T. clavata spidroin genes, we searched the annotated gene models for sequences similar to 443 published spidroins (Supplementary Data 6) and performed a phylogenetic analysis of the putative spidroin sequences for classification (Supplementary Fig. 12a). Based on the knowledge that a typical spidroin gene consists of a long repeat domain sandwiched between the nonrepetitive N/C-terminal domains16, 128 nonrepetitive hits were primarily identified. These candidates were further validated and reconstructed using full-length transcript isoform sequencing (Iso-seq) and transcriptome sequencing (RNA-seq) data. We thus identified 28 spidroin genes, among which 26 were full-length (Supplementary Fig. 11a), including 9 MaSps, 5 minor ampullate spidroins (MiSps), 2 flagelliform spidroins (FlSps), 1 tubuliform spidroin (TuSp), 2 aggregate spidroins (AgSp), 1 aciniform spidroin (AcSp), 1 pyriform spidroin (PySp), and 5 other spidroins. This full set of spidroin genes was located across nine of the 13 T. clavata chromosomes. Interestingly, we found that the MaSp1a–c & MaSp2e, MaSp2a–d, and MiSp-a–e genes were distributed in three independent groups on chromosomes 4, 7, and 6, respectively (Fig. 1c). Notably, using the genomic data of another orb-weaving spider species, Trichonephila antipodiana35, we identified homologous group distributions of spidroin genes on T. antipodiana chromosomes (Fig. 1d), which indicated the reliability of the grouping results of our study. When we compared the spidroin gene catalog of T. clavata and those of five other orb-web spider species with genomic data28,29,36,37, we found that T. clavata and Trichonephila clavipes possessed the largest number of spidroin genes (28 genes in both species; Fig. 1e).To further explore the expression of spidroin genes in different glands, all morphologically distinct glands (major and minor ampullate- (Ma and Mi), flagelliform- (Fl), tubuliform- (Tu), and aggregate (Ag) glands) were cleanly and separately dissected from adult female T. clavata spiders except for the aciniform and pyriform glands, which could not be cleanly separated because of their proximal anatomical locations and were therefore treated as a combined sample (aciniform & pyriform gland (Ac & Py)). After RNA sequencing of these silk glands, we performed expression clustering analysis of transcriptomic data and found that the Ma and Mi glands showed the closest relationship in terms of both morphological structure (Fig. 1g) and gene expression (Fig. 1f, h). We noted that the expression profiles of spidroin genes were largely consistent with their putative roles in the corresponding morphologically distinct silk glands; for example, MaSp expression was found in the Ma gland (Fig. 1h). However, some spidroin transcripts, such as MiSps and TuSp, were expressed in several silk glands (Fig. 1h). Unclassified spidroin genes, such as Sp-GP-rich, did not appear to show gland-specific expression (Fig. 1h).In summary, the chromosomal-scale genome of T. clavata allowed us to obtain detailed structural and location information for all spidroin genes of this species. We also found a relatively diverse set of spidroin genes and a grouped distribution of MaSps and MiSps in T. clavata.Dragline silk origin and the functional character of the Ma gland segmentsTo further evaluate the detailed molecular characteristics of the Ma gland-mediated secretion of dragline silk, we performed integrated analyses of the transcriptomes of the three T. clavata Ma gland segments and the proteome and metabolome of T. clavata dragline silk (Fig. 2a). Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) analysis of dragline silk mainly showed a thick band above 240 kDa, suggesting a relatively small variety of total proteins (Fig. 2b). Subsequent liquid chromatography–mass spectrometry (LC–MS) analysis identified 28 proteins, including ten spidroins (nine MaSps and one MiSp) and 18 nonspidroin proteins (one glucose dehydrogenase (GDH), one mucin-19, one venom protein, and 15 SpiCEs of dragline silk (SpiCE-DS)) (Fig. 2b; Supplementary Data 10). Among these proteins, we found that the core protein components of dragline silk in order of intensity-based absolute quantification (iBAQ) percentages were MaSp1c (37.7%), MaSp1b (12.2%), SpiCE-DS1 (11.9%, also referred to as SpiCE-NMa1 in a previous study28), MaSp1a (10.4%), and MaSp-like (7.2%), accounting for approximately 80% of the total protein abundance in dragline silk (Fig. 2b). These results revealed potential protein components that might be highly correlated with the excellent strength and toughness of dragline silk.Fig. 2: Dragline silk origin and the functional character of the Ma gland segments.a Schematic illustration of Ma gland segmentation. b Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) (left) and LC–MS (right) analyses of dragline silk protein. iBAQ, intensity-based absolute quantification. Similar results were obtained in three independent experiments and summarized in Source data. c Classification of the identified metabolites in dragline silk. d LC–MS analyses of the metabolites. e LC–MS analyses of the golden extract from T. clavata dragline silk. The golden pigment was extracted with 80% methanol. The extracted ion chromatograms (EICs) showed a peak at m/z 206 [M + H]+ for xanthurenic acid. f Pearson correlation of different Ma gland segments (Tail, Sac, and Duct). g Expression clustering of the Tail, Sac, and Duct. The transcriptomic data were clustered according to the hierarchical clustering (HC) method. h Combinational analysis of the transcriptome and proteome showing the expression profile of the dragline silk genes in the Tail, Sac, and Duct. i Concise biosynthetic pathway of xanthurenic acid (tryptophan metabolism) in the T. clavata Ma gland. Gene expression levels mapped to tryptophan metabolism are shown in three segments of the Ma gland. Enzymes involved in the pathway are indicated in red, and the genes encoding the enzymes are shown beside them. j Gene Ontology (GO) enrichment analysis of Ma gland segment-specific genes indicating the biological functions of the Tail, Sac, and Duct. The top 12 significantly enriched GO terms are shown for each segment of the Ma gland. A P-value  2) were identified in the 2 kb regions upstream and downstream of genes, and 10,501,151 (Tail), 11,356,55 (Sac), and 9,778,368 (Duct) significant ATAC peaks (RPKM  > 2) were identified at the whole-genome level. The Tail (mean RPKM: 1.78) and Sac (mean RPKM: 2.04) plots showed genes with more accessible chromatin than the Duct (mean RPKM: 1.59) plots (Fig. 3a). We then analyzed the genome-wide DNA methylation level in the Tail, Sac, and Duct. We found the highest levels of DNA methylation in the CG context (beta value: 0.12 in Tail, 0.13 in Sac, and 0.10 in Duct) and only a small amount in the CHH (beta value: 0.04 in Tail, 0.05 in Sac, and 0.03 in Duct) and CHG (beta value: 0.04 in Tail, 0.05 in Sac, and 0.04 in Duct) contexts (Fig. 3b). Overall, there was no significant difference in methylation levels among the Tail, Sac, and Duct. Taken together, our results suggest a potential regulatory role of CA rather than DNA methylation in the transcription of dragline silk genes.Fig. 3: Comprehensive epigenetic features and ceRNA network of the tri-sectional Ma gland.a Metagene plot of ATAC-seq signals and heatmap of the ATAC-seq read densities in the Tail, Sac, and Duct. The chromatin accessibility was indicated by the mean RPKM value (upper) and the blue region (bottom). b Metagene plot of DNA methylation levels in CG/CHG/CHH contexts in the Tail, Sac, and Duct. (c, d) Screenshots of the methylation and ATAC-seq tracks of the MaSp1b (c) and MaSp2b (d) genes within the Tail, Sac, and Duct. The potential TF motifs (E-value More