More stories

  • in

    Environmental variables and machine learning models to predict cetacean abundance in the Central-eastern Mediterranean Sea

    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. & Kent, J. M. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cuttelod, A., García, V., Abdul Malak, D., Temple, H. & Katariya, V. The Mediterranean: A biodiversity hotspot under threat. In Wildl. a Chang. World an Anal. 2008 IUCN Red List Threat. Species 89–101 (2008).Coll, M. et al. The biodiversity of the Mediterranean Sea: Estimates, patterns, and threats. PLoS ONE 5, e11842–e11842 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coll, M. et al. The Mediterranean Sea under siege: Spatial overlap between marine biodiversity, cumulative threats and marine reserves. Glob. Ecol. Biogeogr. 21, 465–480 (2012).Article 

    Google Scholar 
    Micheli, F. et al. Cumulative human impacts on mediterranean and black sea marine ecosystems: Assessing current pressures and opportunities. PLoS ONE 8, e79889 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lejeusne, C., Chevaldonné, P., Pergent-Martini, C., Boudouresque, C. F. & Pérez, T. Climate change effects on a miniature ocean: The highly diverse, highly impacted Mediterranean Sea. Trends Ecol. Evol. 25, 250–260 (2010).Article 
    PubMed 

    Google Scholar 
    Tsirintanis, K. et al. Bioinvasion impacts on biodiversity, ecosystem services, and human health in the Mediterranean Sea. Aquatic Invasions, 17(3), 308–352 (2022).Article 

    Google Scholar 
    Sanderson, C. E. & Alexander, K. A. Unchartered waters: Climate change likely to intensify infectious disease outbreaks causing mass mortality events in marine mammals. Glob. Chang. Biol. 26, 4284–4301 (2020).Article 
    PubMed 

    Google Scholar 
    EEC, 1992. European Commission. In EU Council Directive 92/43/EEC on the Conservationof Natural Habitats and of Wild Fauna and Flora. Orkesterjournalen L 7–50 206 (1992).Bearzi, G. Interactions between cetacean and fisheries in the Mediterranean Sea. In: G. Notarbartolo di Sciara (Ed.), Cetaceans of the Mediterranean and Black Seas: state of knowledge and conservation strategies. A report to the ACCOBAMS Secretariat, Monaco, 9, 20 (2002). Reeves, R. R., Smith, B. D., Crespo, E. A. & Notarbartolo di Sciara, G. Dolphins, Whales and Porpoises : 2002–2010 Conservation Action Plan for the world’s Cetaceans (2003).Dolman, S., Evans, P., Ritter, F., Simmonds, M. & Swabe, J. Implications of new technical measures regulation for cetacean bycatch in European waters. Mar. Policy 124, 1043 (2020).
    Google Scholar 
    Carlucci, R. et al. Managing multiple pressures for cetaceans’ conservation with an Ecosystem-Based Marine Spatial Planning approach. J. Environ. Manage. 287, 112240 (2021).Article 
    PubMed 

    Google Scholar 
    Carlucci, R. et al. Assessment of cetacean–fishery interactions in the marine food web of the Gulf of Taranto (Northern Ionian Sea, Central Mediterranean Sea). Rev. Fish Biol. Fish. 31, 135–156 (2020).Article 

    Google Scholar 
    Fossi, C. & Lauriano, G. Impacts of shipping on the biodiversity of large marine vertebrates: Persistent organic pollutants, sewage and debris. Marit. Traffic Eff. Biodivers. Mediterr. Sea Rev Impacts Prior. Areas Mitig. Meas. 3, 65–73 (2008).
    Google Scholar 
    Cardellicchio, N. Persistent contaminants in dolphins: An indication of chemical pollution in the mediterranean sea. Water Sci. Technol. 32, 331–340 (1995).Article 
    CAS 

    Google Scholar 
    Fossi, M. C., Panti, C., Baini, M. & Lavers, J. L. A review of plastic-associated pressures: Cetaceans of the Mediterranean Sea and Eastern Australian Shearwaters as case studies. Front. Mar. Sci. 5, 125 (2018).Article 

    Google Scholar 
    Marsili, L., Jiménez, B. & Borrell, A. Persistent Organic Pollutants in Cetaceans Living in a Hotspot Area (Elsevier, 2018).Book 

    Google Scholar 
    Dolman, S. J., Evans, P. G. H., Notarbartolo-di-Sciara, G. & Frisch, H. Active sonar, beaked whales and European regional policy. Mar. Pollut. Bull. 63, 27–34 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    di Sciara, G. N. et al. Place-based approaches to marine mammal conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 85–100 (2016).Article 

    Google Scholar 
    Holcer, D., Fortuna, C. M., Mackelworth, P., Cebrian, D. & Requena Moreno, S. Adriatic Sea: Important Areas for Conservation of Cetaceans, Sea Turtles and Giant Devil Rays (2015).Carlucci, R. et al. Modeling the spatial distribution of the striped dolphin (Stenella coeruleoalba) and common bottlenose dolphin (Tursiops truncatus) in the Gulf of Taranto (Northern Ionian Sea, Central-eastern Mediterranean Sea). Ecol. Indic. 69, 707–721 (2016).Article 

    Google Scholar 
    Carlucci, R., Ricci, P., Cipriano, G. & Fanizza, C. Abundance, activity and critical habitat of the striped dolphin Stenella coeruleoalba in the Gulf of Taranto (northern Ionian Sea, central Mediterranean Sea). Aquat. Conserv. Freshw. Ecosyst. 28, 324–336 (2018).Article 

    Google Scholar 
    Carlucci, R. et al. Random Forest population modelling of striped and common-bottlenose dolphins in the Gulf of Taranto (Northern Ionian Sea, Central-eastern Mediterranean Sea). Estuar. Coast. Shelf Sci. 204, 177–192 (2018).Article 

    Google Scholar 
    Arcangeli, A., Campana, I. & Bologna, M. A. Influence of seasonality on cetacean diversity, abundance, distribution and habitat use in the western Mediterranean Sea: Implications for conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 995–1010 (2017).Article 

    Google Scholar 
    Panigada, S. et al. Estimating cetacean density and abundance in the Central and Western Mediterranean Sea through aerial surveys: Implications for Management. Deep. Res. Part II-Top. Stud. Oceanogr. 141, 41–58 (2017).Article 

    Google Scholar 
    Mannocci, L. et al. Assessing cetacean surveys throughout the Mediterranean Sea: A gap analysis in environmental space. Sci. Rep. 8, 1 (2018).Article 
    CAS 

    Google Scholar 
    Panigada, S. et al. Estimates of Abundance and Distribution of Cetaceans, Marine Mega-Fauna and Marine Litter in the Mediterranean Sea from 2018–2019 surveys. ACCOBAMS vol. ACCOBAMS S (2021).Paiu, R.-M. et al. Estimates of abundance and distribution of cetaceans in the Black Sea from 2019 surveys. ACCOBAMS 54, 45 (2021).
    Google Scholar 
    Azzolin, M. et al. Spatial distribution modelling of striped dolphin (Stenella coeruleoalba) at different geographical scales within the EU Adriatic and Ionian Sea Region, central-eastern Mediterranean Sea. Aquat. Conserv. Freshw. Ecosyst. 30, 1194–1207 (2020).Article 

    Google Scholar 
    Renò, V. et al. A SIFT-based software system for the photo-identification of the Risso’s dolphin. Ecol. Inform. 50, 95–101 (2019).Article 

    Google Scholar 
    Maglietta, R. et al. DolFin: an innovative digital platform for studying Risso’s dolphins in the Northern Ionian Sea (North-eastern Central Mediterranean). Sci. Rep. 8, 17185 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hammond, P. S. et al. Estimating the abundance of marine mammal populations. Front. Mar. Sci. 8, 96 (2021).Article 

    Google Scholar 
    Fontaine, M. C. et al. History of expansion and anthropogenic collapse in a top marine predator of the Black Sea estimated from genetic data. Proc. Natl. Acad. Sci. 109, E2569–E2576 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alter, S. E., Rynes, E. & Palumbi, S. R. DNA evidence for historic population size and past ecosystem impacts of gray whales. Proc. Natl. Acad. Sci. 104, 15162–15167 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chavez-Rosales, S., Palka, D. L., Garrison, L. P. & Josephson, E. A. Environmental predictors of habitat suitability and occurrence of cetaceans in the western North Atlantic Ocean. Sci. Rep. 9, 5833 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buckland, S. et al. Introduction to Distance Sampling: Estimating Abundance of Biological Populations (Oxford University Press, 2001).MATH 

    Google Scholar 
    Buckland, S. T. et al. Advanced Distance Sampling: Estimating Abundance of Biological Populations (OUP Oxford, 2004).MATH 

    Google Scholar 
    Laake, J. S. T., Buckland, E. A., Rexstad, T. A., Marques, C. S. & Oedekoven, F. Distance sampling: Methods and applications. Biometrics 72, 1389–1390 (2016).Article 

    Google Scholar 
    Hammond, P. S., Mizroch, S. A. & Donovan, G. P. Individual recognition of cetaceans: Use of photo-identification and other techniques to estimate population parameters. In Incorporating the Proceedings of the Symposium and Workshop on Individual Recognition and the Estimation of Cetacean Population Parameters (1990).Sandercock, B. K. Handbook of capture-recapture analysis. Biometrics 62, 1276–1277 (2006).Article 

    Google Scholar 
    Hammond, P. S. Mark-Recapture. In Encyclopedia of Marine Mammals (Third Edition) (eds Würsig, B. et al.) 580–584 (Academic Press, 2018).Pless, E., Saarman, N. P., Powell, J. R., Caccone, A. & Amatulli, G. A machine-learning approach to map landscape connectivity in Aedes aegypti with genetic and environmental data. Proc. Natl. Acad. Sci. 118, 9 (2021).Article 

    Google Scholar 
    Belanger, C. L. et al. Global environmental predictors of benthic marine biogeographic structure. Proc. Natl. Acad. Sci. 109, 14046–14051 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Frainer, A. et al. Climate-driven changes in functional biogeography of Arctic marine fish communities. Proc. Natl. Acad. Sci. USA 114, 12202–12207 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miller, D. L., Burt, M. L., Rexstad, E. A. & Thomas, L. Spatial models for distance sampling data: Recent developments and future directions. Methods Ecol. Evol. 4, 1001–1010 (2013).Article 

    Google Scholar 
    Zurell, D. et al. A standard protocol for reporting species distribution models. Ecography (Cop.) 43, 1261–1277 (2020).Article 

    Google Scholar 
    Redfern, J. V. et al. Techniques for cetacean-habitat modeling. Mar. Ecol. Prog. Ser. 310, 271–295 (2006).Article 

    Google Scholar 
    Hastie, T. J. & Tibshirani, R. J. Generalized Additive Models (Taylor & Francis, 1990).MATH 

    Google Scholar 
    Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).MATH 

    Google Scholar 
    Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article 
    MATH 

    Google Scholar 
    Vapnik, N.V. Statistical Learning Theory (1998).Culley, C., Vijayakumar, S., Zampieri, G. & Angione, C. A mechanism-aware and multiomic machine-learning pipeline characterizes yeast cell growth. Proc. Natl. Acad. Sci. 117, 18869–18879 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moore, B. M. et al. Robust predictions of specialized metabolism genes through machine learning. Proc. Natl. Acad. Sci. 116, 2344–2353 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Renò, V. et al. Combined color semantics and deep learning for the automatic detection of dolphin dorsal fins. Electronics 9, 75 (2020).Article 

    Google Scholar 
    Maglietta, R., Milella, A., Caccia, M. & Bruzzone, G. A vision-based system for robotic inspection of marine vessels. Signal Image Video Process. 12, 471–478 (2018).Article 

    Google Scholar 
    Maglietta, R. et al. Automated hippocampal segmentation in 3D MRI using random undersampling with boosting algorithm. Pattern Anal. Appl. 19, 579–591 (2016).Article 
    MathSciNet 
    PubMed 

    Google Scholar 
    Ancona, N., Maglietta, R. & Stella, E. Data representations and generalization error in kernel based learning machines. Pattern Recognit. 39, 1588–1603 (2006).Article 
    MATH 

    Google Scholar 
    Martín, B., González-Arias, J. & Vicente-Virseda, J. A. Machine learning as a successful approach for predicting complex spatial temporal patterns in animal species abundance. Anim. Biodivers. Conserv. 2021, 25 (2021).
    Google Scholar 
    Dimauro, G. et al. A novel approach for biofilm detection based on a convolutional neural network. Electronics 9, 88 (2020).Article 

    Google Scholar 
    Inglese, P. et al. Multiple RF classifier for the hippocampus segmentation: Method and validation on EADC-ADNI Harmonized Hippocampal Protocol. Phys. Med. 31(8), 1085–1091 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Maglietta, R. et al. Convolutional neural networks for Risso’s Dolphins identification. IEEE Access 8, 80195–80206 (2020).Article 

    Google Scholar 
    Conference on Biological Diversity—Nagoya 2010 European Parliament resolution of 7 October 2010 on the EU strategic objectives for the 10th Meeting of the Conference of the Parties to the Convention on Biological Diversity (CBD), to be held in Nagoya (2010).EU. In Commission Decision (EU) 2017/848 of 17 May 2017 Laying Down Criteria and Methodological Standards on Good Environmental Status of Marine Waters and Specifications and Standardised Methods for Monitoring and Assessment, and Repealing Decision 2 (2017).European Commission. Directive 2014/89/EU of the European Parliament and of the Council of 23 July 2014 establishing a framework for maritime spatial planning. In Off. J. Eur. Union 2014, L 257, 135; MSFD (2008/56/EC) (2014).Muckenhirn, A., Baş, A. A. & Richard, F.-J. Assessing the influence of environmental and physiographic parameters on common bottlenose dolphin (Tusiops truncatus) distribution in the southern Adriatic Sea. In Proc. 1st Int. Electron. Conf. Biol. Divers. Ecol. Evol. (2021).Correia, A. et al. Predicting Cetacean Distributions in the Eastern North Atlantic to Support Marine Management. Front. Mar. Sci. 8, 256 (2021).Article 

    Google Scholar 
    Redfern, J. V., Barlow, J., Ballance, L. T., Gerrodette, T. & Becker, E. A. Absence of scale dependence in dolphin-habitat models for the eastern tropical Pacific Ocean. Mar. Ecol. Prog. Ser. 363, 1–14 (2008).Article 

    Google Scholar 
    Kruse, S. L. Aspects of the Biology, Ecology, and Behavior of Risso’s dolphins (Grampus griseus) off the California Coast (University of California, Santa Cruz, 1989).Kruse, S., Caldwell, D. K., Caldwell, M. C., Ridgway, S. H. & Harrison, R. Risso’s dolphin Grampus griseus (G. Cuvier, 1812). Handb. Mar. Mamm. Sec. B Dolphins Porpoises 6, 12 (1999).
    Google Scholar 
    Gómez-de-Segura, A., Hammond, P. S. & Raga, J. A. Influence of environmental factors on small cetacean distribution in the Spanish Mediterranean. J. Mar. Biol. Assoc. UK 88, 1185–1192 (2008).Article 

    Google Scholar 
    Pitchford, J. et al. Predictive spatial modelling of seasonal bottlenose dolphin (Tursiops truncatus) distributions in the Mississippi Sound: Seasonal spatial distributions of bottlenose dolphins. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 289–306 (2015).Article 

    Google Scholar 
    La Manna, G., Ronchetti, F. & Sarà, G. Predicting common bottlenose dolphin habitat preference to dynamically adapt management measures from a Marine Spatial Planning perspective. Ocean Coast. Manag. 130, 317–327 (2016).Article 

    Google Scholar 
    Becker, E. A. et al. Predicting cetacean abundance and distribution in a changing climate. Divers. Distrib. 25, 626–643 (2019).Article 

    Google Scholar 
    Cañadas, A. & Hammond, P. S. Abundance and habitat preferences of the short-beaked common dolphin Delphinus delphis in the southwestern Mediterranean: Implications for conservation. Endanger. Spec. Res. 4, 309–331 (2008).Article 

    Google Scholar 
    Mannocci, L. et al. Predicting cetacean and seabird habitats across a productivity gradient in the South Pacific gyre. Prog. Oceanogr. 120, 383–398 (2014).Article 

    Google Scholar 
    Carretta, J. V. Estimates of Marine Mammal, Sea Turtle, and Seabird Bycatch in the California Large-Mesh Drift Gillnet Fishery: 1990–2019 U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-654.
    https://doi.org/10.25923/7emj-za90 (2021).Rustam, F. et al. A performance comparison of supervised machine learning models for Covid-19 tweets sentiment analysis. PLoS ONE 16, e0245909 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    D’Addabbo, A. & Maglietta, R. Parallel selective sampling method for imbalanced and large data classification. Pattern Recognit. Lett. 62, 61–67 (2015).Article 

    Google Scholar 
    Dimauro, G. et al. An intelligent non-invasive system for automated diagnosis of anemia exploiting a novel dataset. Artif. Intell. Med. 136, 102477 (2023).Article 
    PubMed 

    Google Scholar 
    Spooner, A. et al. A comparison of machine learning methods for survival analysis of high-dimensional clinical data for dementia prediction. Sci. Rep. 10, 20410 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Becker, E. A. et al. Performance evaluation of cetacean species distribution models developed using generalized additive models and boosted regression trees. Ecol. Evol. 10, 5759–5784 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kosicki, J. Z. Generalised additive models and random forest approach as effective methods for predictive species density and functional species richness. Environ. Ecol. Stat. 27, 273–292 (2020).Article 
    CAS 

    Google Scholar 
    Barreto, J. et al. Drone-monitoring: Improving the detectability of threatened marine megafauna. Drones 5, 14 (2021).Article 

    Google Scholar 
    Sarr, J.-M.A. et al. Complex data labeling with deep learning methods: Lessons from fisheries acoustics. ISA Trans. 109, 113–125 (2021).Article 
    PubMed 

    Google Scholar 
    Capezzuto, F. et al. The bathyal benthopelagic fauna in the north-western Ionian Sea: Structure, patterns and interactions. Chem. Ecol. 26, 199–217 (2010).Article 

    Google Scholar 
    Harris, P. & Whiteway, T. Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins. Mar. Geol. 285, 69–86 (2011).Article 

    Google Scholar 
    Pescatore, T. & Senatore, M. R. A comparison between a present.day (Taranto Gulf) and a Miocene (Irpinian Basin) foredeep of the Southern Apennine (Italy). Spec. Publ. 1986, 169–182 (1986).
    Google Scholar 
    Rossi, S. & Gabbianelli, G. Geomorfologia del Golfo di Taranto. Ital. J. Geosci. 97, 423–437 (1978).
    Google Scholar 
    Federico, I. et al. Observational evidence of the basin-wide gyre reversal in the Gulf of Taranto. Geophys. Res. Lett. 47, 1030 (2020).Article 

    Google Scholar 
    Carlucci, R., Battista-Capezzuto, F., Serena, F. & Sion, L. Occurrence of the basking shark Cetorhinus maximus (Gunnerus, 1765) (Lamniformes: Cetorhinidae) in the central-eastern Mediterranean Sea. Ital. J. Zool. 81, 280–286 (2014).Article 

    Google Scholar 
    Matarrese, R., Chiaradia, M. T., Tijani, K., Morea, A. & Carlucci, R. Chlorophyll A multi-temporal analysis in coastal waters with MODIS data. Eur. J. Remote Sens. 2011, 39–48 (2011).
    Google Scholar 
    Civitarese, G., Gačić, M., Lipizer, M. & Eusebi-Borzelli, G. L. On the impact of the Bimodal Oscillating System (BiOS) on the biogeochemistry and biology of the Adriatic and Ionian Seas (Eastern Mediterranean). Biogeosciences 7, 3987–3997 (2010).Article 
    CAS 

    Google Scholar 
    Pinardi, N. et al. Marine rapid environmental assessment in the hack{newline} Gulf of Taranto: A multiscale approach. Nat. Hazards Earth Syst. Sci. 16, 2623–2639 (2016).Article 

    Google Scholar 
    Ciancia, E. et al. Investigating the chlorophyll-a variability in the Gulf of Taranto (North-western Ionian Sea) by a multi-temporal analysis of MODIS-Aqua Level 3/Level 2 data. Cont. Shelf Res. 155, 34–44 (2018).Article 

    Google Scholar 
    Trotta, F., Pinardi, N., Fenu, E., Grandi, A. & Lyubartsev, V. Multi-nest high-resolution model of submesoscale circulation features in the Gulf of Taranto. Ocean Dyn. 67, 1609–1625 (2017).Article 

    Google Scholar 
    Federico, I. et al. Coastal ocean forecasting with an unstructured grid model in the southern Adriatic and northern Ionian seas. Nat. Hazards Earth Syst. Sci. 17, 45–59 (2017).Article 

    Google Scholar 
    Trotta, F. et al. A relocatable ocean modeling platform for downscaling to shelf-coastal areas to support disaster risk reduction. Front. Mar. Sci. 8, 103 (2021).Article 

    Google Scholar 
    Artegiani, A. et al. The Adriatic Sea general circulation. Part I: Air-sea interactions and water mass structure. J. Phys. Oceanogr. 27, 1492–1514 (1997).Article 

    Google Scholar 
    Artegiani, A. et al. The Adriatic Sea general circulation. Part II: Baroclinic circulation structure. J. Phys. Oceanogr. 27, 1515–1532 (1997).Article 

    Google Scholar 
    Cushman-Roisin, B., Gacić, M., Poulain, P. M. & Artegiani, A. Physical Oceanography of the Adriatic Sea (2001).Escudier, R. et al. Mediterranean sea production centre MEDSEA_MULTIYEAR_PHY_006_004 (2021).Clementi, E. et al. Mediterranean sea physical analysis and forecast (CMEMS MED-Currents, EAS6 system) (Version 1) set. In Copernicus Monitoring Environment Marine Service (CMEMS) (2021).Madec, G. NEMO Ocean Engine (2008).Dobricic, S. & Nadia, P. An oceanographic three-dimensional variational data assimilation scheme. Ocean Model 22, 89–105 (2008).Article 

    Google Scholar 
    Roquet, F., Madec, G., McDougall, T. J. & Barker, P. M. Accurate polynomial expressions for the density and specific volume of seawater using the TEOS-10 standard. Ocean Model 90, 29–43 (2015).Article 

    Google Scholar 
    IOC, SCOR & IAPSO. In The International Thermodynamic Equation of Seawater—2010: Calculation and Use of Thermodynamic Properties 196 (2010).MEDSEA_MULTIYEAR_BGC_006_008 (2020).Mediterranean Sea Monthly and Daily Reprocessed Surface Chlorophyll Concentration from Multi Satellite observations + SeaWiFS daily climatology (2020).Volpe, G. et al. Mediterranean ocean colour Level 3 operational multi-sensor processing. Ocean Sci. 25, 1527–1532 (2019).
    Google Scholar 
    Berthon, J.-F. & Zibordi, G. Bio-optical relationships for the northern Adriatic Sea. Int. J. Remote Sens. 25, 1527–1532 (2004).Article 

    Google Scholar 
    De Dominicis, M. et al. A relocatable ocean model in support of environmental emergencies. Ocean Dyn. 64, 667–688 (2014).Article 

    Google Scholar 
    Freund, Y. & Schapire, R. E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Wu, J. et al. Hyperparameter optimization for machine learning models based on bayesian optimizationb. J. Electron. Sci. Technol. 17, 26–40 (2019).
    Google Scholar 
    Yang, L. & Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 415, 295–316 (2020).Article 

    Google Scholar  More

  • in

    Adaptive photoperiod interpretation modulates phenological timing in Atlantic salmon

    Bradshaw, W. E. & Holzapfel, C. M. Evolution of animal photoperiodism. Annu. Rev. Ecol. Evol. System. 2007, 1–25 (2007).Article 

    Google Scholar 
    Way, M., Hopkins, B. & Smith, P. Photoperiodism and diapause in insects. Nature 164, 615–615 (1949).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bromage, N., Porter, M. & Randall, C. Reproductive Biotechnology in Finfish Aquaculture 63–98 (Elsevier, 2001).Book 

    Google Scholar 
    Weil, Z. M. & Crews, D. Photoperiodism in Amphibians and Reptiles (ed. Nelson, R. J. et al.) 399–419 (Oxford University Press, 2010).Vera, L., Davie, A., Taylor, J. & Migaud, H. Differential light intensity and spectral sensitivities of Atlantic salmon, European sea bass and Atlantic cod pineal glands ex vivo. Gen. Comp. Endocrinol. 165, 25–33 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Smith, K. A., Schoen, M. W. & Czeisler, C. A. Adaptation of human pineal melatonin suppression by recent photic history. J. Clin. Endocrinol. Metabol. 89, 3610–3614 (2004).Article 
    CAS 

    Google Scholar 
    Refinetti, R. Enhanced circadian photoresponsiveness after prolonged dark adaptation in seven species of diurnal and nocturnal rodents. Physiol. Behav. 90, 431–437 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chang, A.-M., Scheer, F. A. & Czeisler, C. A. The human circadian system adapts to prior photic history. J. Physiol. 589, 1095–1102 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aschoff, J. & Daan, S. Human time perception in temporal isolation: Effects of illumination intensity. Chronobiol. Int. 14, 585–596 (1997).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tast, A. et al. The photophase light intensity does not affect the scotophase melatonin response in the domestic pig. Anim. Reprod. Sci. 65, 283–290 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Migaud, H. et al. A comparative ex vivo and in vivo study of day and night perception in teleosts species using the melatonin rhythm. J. Pineal Res. 41, 42–52 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Nisembaum, L. G., Martin, P., Lecomte, F. & Falcón, J. Melatonin and osmoregulation in fish: A focus on Atlantic salmon Salmo salar smoltification. J. Neuroendocrinol. 33, e12955 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Iigo, M. et al. Lack of circadian regulation of in vitro melatonin release from the pineal organ of salmonid teleosts. Gen. Comp. Endocrinol. 154, 91–97 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Iigo, M., Azuma, T. & Iwata, M. Lack of circadian regulation of melatonin rhythms in the sockeye salmon (Oncorhynchus nerka) in vivo and in vitro. Zool. Sci. 24, 67–70 (2007).Article 
    CAS 

    Google Scholar 
    Huang, T., Ruoff, P. & Fjelldal, P. G. Diurnal expression of clock genes in pineal gland and brain and plasma levels of melatonin and cortisol in Atlantic salmon parr and smolts. Chronobiol. Int. 27, 1697–1714 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fjelldal, P. G., Hansen, T. & Huang, T. Continuous light and elevated temperature can trigger maturation both during and immediately after smoltification in male Atlantic salmon (Salmo salar). Aquaculture 321, 93–100 (2011).Article 

    Google Scholar 
    Leclercq, E., Taylor, J., Sprague, M. & Migaud, H. The potential of alternative lighting-systems to suppress pre-harvest sexual maturation of 1+ Atlantic salmon (Salmo salar) post-smolts reared in commercial sea-cages. Aquacult. Eng. 44, 35–47 (2011).Article 

    Google Scholar 
    Fjelldal, P. G. et al. Development of supermale and all-male Atlantic salmon to research the vgll3 allele-puberty link. BMC Genet. 21, 1–13 (2020).Article 

    Google Scholar 
    Ricker, W. E. Computation and interpretation of biological statistics of fish populations. Bull. Fisher. Res. 191, 1–382 (1975).
    Google Scholar 
    Fjelldal, P. G. et al. Sexual maturation and smoltification in domesticated Atlantic salmon (Salmo salar L.)-is there a developmental conflict?. Physiol. Rep. 6, e13809 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    Lenth, R. emmeans: Estimated Marginal Means, Aka Least-Squares Means. R package version 1. 4. 3. 01 (2019).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Huang, T., Ruoff, P. & Fjelldal, P. G. Effect of continuous light on daily levels of plasma melatonin and cortisol and expression of clock genes in pineal gland, brain, and liver in Atlantic salmon postsmolts. Chronobiol. Int. 27, 1715–1734 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Davie, A., Minghetti, M. & Migaud, H. Seasonal variations in clock-gene expression in Atlantic salmon (Salmo salar). Chronobiol. Int. 26, 379–395 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Max, M. & Menaker, M. Regulation of melatonin production by light, darkness, and temperature in the trout pineal. J. Comp. Physiol. Part A 170, 479–489 (1992).CAS 

    Google Scholar 
    Randall, C. & Bromage, N. Photoperiodic history determines the reproductive response of rainbow trout to changes in daylength. J. Comp. Physiol. Part A 183, 651–660 (1998).Article 

    Google Scholar 
    Randall, C., Bromage, N., Duston, J. & Symes, J. Photoperiod-induced phase-shifts of the endogenous clock controlling reproduction in the rainbow trout: A circannual phase-response curve. Reproduction 112, 399–405 (1998).Article 
    CAS 

    Google Scholar 
    Duston, J. & Bromage, N. Photoperiodic mechanisms and rhythms of reproduction in the female rainbow trout. Fish Physiol. Biochem. 2, 35–51 (1986).Article 
    CAS 
    PubMed 

    Google Scholar 
    Duston, J. & Bromage, N. Circannual rhythms of gonadal maturation in female rainbow trout (Oncorhynchus mykiss). J. Biol. Rhythms 6, 49–53 (1991).Article 
    CAS 
    PubMed 

    Google Scholar 
    Taranger, G. L. et al. Abrupt changes in photoperiod affect age at maturity, timing of ovulation and plasma testosterone and oestradiol-17β profiles in Atlantic salmon, Salmo salar. Aquaculture 162, 85–98 (1998).Article 

    Google Scholar 
    Melo, M. C. et al. Salinity and photoperiod modulate pubertal development in Atlantic salmon (Salmo salar). J. Endocrinol. 220, 319–332 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hansen, T. J., Fjelldal, P. G., Folkedal, O., Vågseth, T. & Oppedal, F. Effects of light source and intensity on sexual maturation, growth and swimming behaviour of Atlantic salmon in sea cages. Aquac. Environ. Interact. 9, 193–204 (2017).Article 

    Google Scholar 
    Oppedal, F., Taranger, G. L., Juell, J.-E., Fosseidengen, J. E. & Hansen, T. Light intensity affects growth and sexual maturation of Atlantic salmon (Salmo salar) postsmolts in sea cages. Aquat. Living Resour. 10, 351–357 (1997).Article 

    Google Scholar 
    Harvey, A. C. et al. Inferring Atlantic salmon post-smolt migration patterns using genetic assignment. R. Soc. Open Sci. 6, 190426 (2019).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson, J. J., Gurarie, E., Bracis, C., Burke, B. J. & Laidre, K. L. Modeling climate change impacts on phenology and population dynamics of migratory marine species. Ecol. Model. 264, 83–97 (2013).Article 

    Google Scholar 
    Ljungstrӧm, G., Langbehn, T. J. & Jørgensen, C. Light and energetics at seasonal extremes limit poleward range shifts. Nat. Clim. Chang. 11, 530–536 (2021).Article 
    ADS 

    Google Scholar 
    Naish, K. A. & Hard, J. J. Bridging the gap between the genotype and the phenotype: Linking genetic variation, selection and adaptation in fishes. Fish Fish. 9, 396–422 (2008).Article 

    Google Scholar 
    Lehnert, S. J. et al. Genomic signatures and correlates of widespread population declines in salmon. Nat. Commun. 10, 1–10 (2019).Article 
    CAS 

    Google Scholar  More

  • in

    Playing “hide and seek” with the Mediterranean monk seal: a citizen science dataset reveals its distribution from molecular traces (eDNA)

    Shaw, J., Weyrich, L. & Cooper, A. Using environmental (e)DNA sequencing for aquatic biodiversity surveys: A beginner’s guide. Mar. Freshw. Res. 68, 68 (2016).
    Google Scholar 
    Smith, K. J. et al. Stable isotope analysis of specimens of opportunity reveals ocean-scale site fidelity in an elusive whale species. Front. Conserv. Sci. 2, 1–11 (2021).Article 

    Google Scholar 
    Coll, M. et al. The biodiversity of the Mediterranean Sea: Estimates, patterns, and threats. PLoS One 5, (2010).Cavanagh, R. D. & Gibson, C. Overview of the conservation status of cartilaginous fishes (Chondrichthyans) in the Mediterranean Sea. https://doi.org/10.2305/iucn.ch.2007.mra.3.en (2007).Pace, D. S., Tizzi, R. & Mussi, B. Cetaceans value and conservation in the Mediterranean Sea. Journal Biodivers. Endanger. Species S1:
    S1.004 (2015).Carlucci, R. et al. Modeling the spatial distribution of the striped dolphin (Stenella coeruleoalba) and common bottlenose dolphin (Tursiops truncatus) in the Gulf of Taranto (Northern Ionian Sea, Central-eastern Mediterranean Sea). Ecol. Indic. 69, 707–721 (2016).Article 

    Google Scholar 
    Boldrocchi, G. et al. Distribution, ecology, and status of the white shark, Carcharodon carcharias, in the Mediterranean Sea. Rev. Fish Biol. Fish. 27, 515–534 (2017).Article 

    Google Scholar 
    Karamanlidis, A. A. et al. The Mediterranean monk seal Monachus monachus: Status, biology, threats, and conservation priorities. Mammal Review 46, 92–105. https://doi.org/10.1111/mam.12053 (2016).Article 

    Google Scholar 
    Johnson, W. M. The role of the Mediterranean monk seal (Monachus monachus) in European history and culture, from the fall of Rome to the 20th century Monk Seals in Post-Classical History. (2004).Johnson, W. M. & Lavigne, D. M. The Mediterranean Monk Seal (Monachus monachus) in Ancient History and Literature Monk Seals in Antiquity. (1999).Israëls, l. D. Thirty Years of Mediterranean Monk Seal Protection – A Review. Netherlands Com- Mission Int. Nat. Prot. Inst. voor Taxon. Zoölogie/Zoölogische Museum, Univ. van Amsterdam, Amsterdam, Netherlands. Meded. No. 281–65. (1992).Stringer, C. B. et al. Neanderthal exploitation of marine mammals in Gibraltar. Proc. Natl. Acad. Sci. U. S. A. 105, 14319–14324 (2008).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    La Mesa, G., Lauriano, G., Mo, G., Paglialonga, A. & Tunesi, L. Assessment of the conservation status of marine species of the Habitats Directive (92/43/EEC) in Italy: results, drawbacks and perspectives of the fourth national report (2013–2018). Biodivers Conserv (2021).Adamantopoulou, S., Karamanlidis, A. A., Dendrinos, P. & Gimenez, O. Citizen science indicates significant range recovery and defines new conservation priorities for Earth’s most endangered pinniped in Greece. Anim. Conserv. https://doi.org/10.1111/acv.12806 (2022).Article 

    Google Scholar 
    Nicolaou, H., Dendrinos, P., Marcou, M., Michaelides, S. & Karamanlidis, A. A. Re-establishment of the Mediterranean monk seal Monachus monachus in Cyprus: Priorities for conservation. Oryx 55, 526–528 (2021).Article 

    Google Scholar 
    Tenan, S. et al. Evaluating mortality rates with a novel integrated framework for nonmonogamous species. Conserv. Biol. 30, 1307–1319 (2016).Article 
    PubMed 

    Google Scholar 
    Vanpe, C. et al. Estimating abundance of a recovering transboundary brown bear population with capture- recapture models. Peer Community Journal, 2, e71. (2022).Lecaudey, L. A., Schletterer, M., Kuzovlev, V. V., Hahn, C. & Weiss, S. J. Fish diversity assessment in the headwaters of the Volga River using environmental DNA metabarcoding. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 1785–1800 (2019).Article 

    Google Scholar 
    Itakura, H. et al. Environmental DNA analysis reveals the spatial distribution, abundance, and biomass of Japanese eels at the river-basin scale. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 361–373 (2019).Article 

    Google Scholar 
    Closek, C. J. et al. Marine vertebrate biodiversity and distribution within the central California current using environmental DNA (eDNA) metabarcoding and ecosystem surveys. Front. Mar. Sci. Vol. 6. (2019).Boldrocchi, G. & Storai, T. Data-mining social media platforms highlights conservation action for the Mediterranean Critically Endangered blue shark Prionace glauca. Aquat. Conserv. Mar. Freshw. Ecosyst. 31, 3087–3099 (2021).Article 

    Google Scholar 
    Thiel, M. et al. Citizen scientists and marine research: Volunteer participants, their contributions, and projection for the future. Oceanogr. Mar. Biol. An Annu. Rev. 52, 257–314 (2014).
    Google Scholar 
    Araujo, G. et al. Citizen science sheds light on the cryptic ornate eagle ray Aetomylaeus vespertilio. Aquat. Conserv. Mar. Freshw. Ecosyst. 30, 2012–2018 (2020).Article 

    Google Scholar 
    Silvertown, J. A new dawn for citizen science. Trends Ecol. Evol. 24, 467–471 (2009).Article 
    PubMed 

    Google Scholar 
    Dickinson, J. L., Zuckerberg, B. & Bonter, D. N. Citizen science as an ecological research tool: Challenges and benefits. Annu. Rev. Ecol. Evol. Syst. 41, 149–172 (2010).Article 

    Google Scholar 
    Barnes, M. A. et al. Environmental conditions influence eDNA persistence in aquatic systems. Environ. Sci. Technol. 48, (2014).Strickler, K. M., Fremier, A. K. & Goldberg, C. S. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biol. Conserv. 183, 85–92 (2015).Article 

    Google Scholar 
    Eichmiller, J., Best, S. E. & Sorensen, P. W. Effects of temperature and trophic state on degradation of environmental DNA in lake water. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.5b05672 (2016).Article 
    PubMed 

    Google Scholar 
    Mächler, E., Osathanunkul, M. & Altermatt, F. Shedding light on eDNA: neither natural levels of UV radiation nor the presence of a filter feeder affect eDNA-based detection of aquatic organisms. PLoS ONE 13, 1–15 (2018).Article 

    Google Scholar 
    Jo, T., Murakami, H., Yamamoto, S., Masuda, R. & Minamoto, T. Effect of water temperature and fish biomass on environmental DNA shedding, degradation, and size distribution. Ecol. Evol. 9, 1135–1146 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mauvisseau, Q. et al. The multiple states of environmental DNA and what is known about their persistence in aquatic environments. Environ. Sci. Technol. 56, 5322–5333 (2022).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Valsecchi, E. et al. A species – specific qPCR assay provides novel insight into range expansion of the Mediterranean monk seal (Monachus monachus ) by means of eDNA analysis. Biodivers. Conserv. 31, 1175–1196 (2022).Article 

    Google Scholar 
    Collins, R. A. et al. Persistence of environmental DNA in marine systems. Commun. Biol. https://doi.org/10.1038/s42003-018-0192-6 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhao, B., P.M., B. & Timbros, K. The particle size distribution of environmental DNA varies with species and degradation. Sci. Total Environ. 797, 149175 (2021).Würtz, M. Mediterranean submarine canyons. in Ecology and Governance (ed. IUCN) 192 (2012).Valsecchi, E. et al. Ferries and environmental DNA: Underway sampling from commercial vessels provides new opportunities for systematic genetic surveys of marine biodiversity. Front. Mar. Sci. 8, 1–17 (2021).Article 

    Google Scholar 
    Bustin, S. A. et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 622, 611–622 (2009).Article 

    Google Scholar 
    Klymus, K. E. et al. Reporting the limits of detection and quantification for environmental DNA assays. Environ. DNA 1–12. https://doi.org/10.1002/edn3.29 (2019).Goldberg, G. et al. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol. Evol. 1299–1307. https://doi.org/10.1111/2041-210X.12595 (2016).Farrell, J. A. et al. Detection and population genomics of sea turtle species via noninvasive environmental DNA analysis of nesting beach sand tracks and oceanic water. Mol. Ecol. Resour. (2022).Shamblin, B. M. et al. Loggerhead turtle eggshells as a source of maternal nuclear genomic DNA for population genetic studies. Mol. Ecol. Resour. 11, 110–115 (2011).Article 
    PubMed 

    Google Scholar 
    MacKenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255 (2002).Article 

    Google Scholar 
    White, G. C. & Burnham, K. P. Program MARK: survival estimation from populations of marked animals. Bird Study 37–41 (1999).Akaike, H. Information theory and an extension of the maximum likelihood principle in Breakthroughs in Statistics, Vol.I, Foundations and Basic Theory, (eds. Kotz, S. and Johnson, N.L.) 610–624 (Springer-Verlag, New York, 1992).Adamantopoulou, S. et al. Movements of Mediterranean Monk Seals (Monachus monachus) in the Eastern Mediterranean Sea. Aquat. Mamm. 37, 256–261 (2011).Article 

    Google Scholar  More

  • in

    Geographical variability of bacterial communities of cryoconite holes of Andean glaciers

    In this study, we provide the first description of the bacterial communities of cryoconite holes from South American glaciers, in particular from both small high-elevation glaciers of the Central Andes in the Santiago Metropolitan Region (Chile), and from the tongues of two large glaciers in Patagonian Andes that reach low altitudes. These pieces of information fill a large geographical gap in our knowledge of glacier environments because this is the first description of the microbial communities of supraglacial environments in South America, a continent with about 30,000 km2 covered by ice29. Results showed that the large Patagonian glaciers (Exploradores and Perito Moreno) had the highest oxygen concentrations, while Iver and East Iver had the lowest ones and Morado an intermediate value. This pattern could be related to the different altitudes of the glaciers. Indeed, since water temperature in cryoconite holes is always quite low and stable at all altitudes, oxygen solubility in these environments is related to the atmospheric partial pressure of oxygen that decreases at increasing altitude30. This result is consistent with [O2] values we found in our samples. Indeed, Exploradores and Perito Moreno are located in Patagonia at low altitudes ( 40%), whereas mining is also an additional important black carbon source50. Their similarity can therefore derive also from being exposed to the same general ecological conditions, including high UV radiation, oxidative stress, anthropic pressures, and probably, also from similar sources of bacteria. These results therefore highlight that correlative studies like the present ones can hardly disentangle the effects of geographical positions and ecological conditions on the structure of cryoconite hole bacterial communities, and further studies should be designed to add insight into this still open question.Analyses of alpha diversity indices indicated that cryoconite holes on Exploradores glacier showed the highest richness and evenness. Samples on the Exploradores were collected close to the glacier terminus, surrounded by a rich evergreen broadleaf vegetation, and in an area with abundant supraglacial debris and frequented by tourists. The higher biodiversity of this large, low-altitude glacier, compared to that of the small, high-altitude Iver and East Iver glaciers is not surprising, as the rich evergreen broadleaf forest that surrounds the tongue of the first glacier can be the source of a richer and more diverse bacterial community than the bare ground surrounding the other ones. However, it is more surprising that the alpha biodiversity of the large, low-altitude Perito Moreno was intermediate and similar to that of the Morado glacier. Interestingly, Perito Moreno was the southernmost glacier among those we collected, and was surrounded by a less diverse forest, dominated by southern beeches, Nothofagus ssp. than that of Exploradores, while Morado was the glacier where samples were collected at the lowest altitude among the three glaciers near Santiago. We may therefore speculate that a broad gradient related to altitude and general climate conditions of the area surrounding the glacier may somehow affect its biodiversity. For instance, among the most abundant orders, Cytophagales were more abundant on high than on low-elevation glaciers (Fig. 5b). A similar pattern was observed for the Micrococcales and Chitinophagales (Fig. 5c–k) with the only exception of Iver.In summary, we provide the first-ever description of the bacterial communities of cryoconite holes of glaciers in South America, specifically in the Southern Andes. This study thus fills an important gap of knowledge as almost no information was previously available on the cryoconite holes of this continent, and opens the possibility of future biogeography analyses including samples from almost every important glacial area of the world. The five glaciers we investigated are still a too small sample for thoroughly assessing the ecological processes that control cryoconite hole bacterial communities, and a larger set of environmental variables should also be considered, but we hope this study can be the basis for further investigations aiming at a deeper understanding of these extreme environments. More

  • in

    Above-ground tree carbon storage in response to nitrogen deposition in the U.S. is heterogeneous and may have weakened

    Forest Inventory dataTree growth, tree survival, and plot-level basal area data were compiled from the Forest Inventory and Analysis (FIA) program database (accessed on January 24, 2017, FIA phase 2 manual version 6.1; http://www.fia.fs.fed.us/). Aboveground tree biomass was estimated from tree diameter measurements44 and then multiplied by 0.5 to estimate aboveground C. Tree growth rates were calculated from the difference in estimated aboveground C between the latest and first live measurement of every tree and divided by the elapsed time between measurements to the day. Tree species that had at least 2000 individual trees after the data filters were applied were retained for further growth and survival evaluation. The probability of tree survival was calculated using the first measurement to the last measurement of a plot. Trees that were alive at both measurements were assigned a value of 1 (survived) and trees alive at the first and dead at the last measurement were assigned a value of 0 (dead). The duration between the first and last measurement was used to determine the annual probability of tree survival. Trees that were recorded as dead at both measurement inventories and trees that were harvested were excluded from the survival analysis.Predictor data: Climate, deposition, size, and competitionThere were six predictors that were related to the response rate of growth or survival for each individual tree: mean annual temperature, mean annual precipitation, mean annual total nitrogen deposition, mean annual total S deposition, tree size, and plot-level competition.To obtain total N and S deposition rates for each tree, we used spatially modeled N and S deposition data from the National Atmospheric Deposition Program’s Total Deposition Science Committee32. Annual N and S deposition rates were then averaged from the first year of measurement to the last year of measurement for every tree so that each tree had an individualized average N deposition based on the remeasurement years, and each species had an individualized range of average N deposition exposure based on its distribution. Monthly mean temperature and precipitation values were obtained in a gridded (4 x 4 km) format from the PRISM Climate Group at Oregon State45 for the contiguous US and averaged between measurement periods for each tree in a similar manner. Tree size was represented by estimated aboveground tree C (previously described). Because the climate and deposition predictors were tailored to each plot, the years assessed varied by plot, but spanned 2000–2016. Thus, the results from the earlier study6 used conditions from the 1980–1990s, whereas the results from this study used more recent environmental and stand conditions. Tree competition was represented by a combination two factors: (1) plot basal area and (2) the basal area of trees larger than the focal tree being modeled. How all six variables were statistically modeled is discussed below.Modeling tree growth and survivalWe developed in ref. 20 multiple models to predict tree growth (G; kg C year−1) and survival (P(s); annual probability of survival). Our growth model (Eq. 1 and 2) assumes that there is a potential maximum growth rate (a) that is modified by up to six predictors in our study (which are multipliers from 0 to 1): temperature (T), precipitation (P), N deposition (N), S deposition (S), tree size (m), and competition. The potential full growth model included all six terms (Eq. 1 for the general form and Eq. 2 for the specific form). The size effect was modeled as a power function (z) based on the aboveground biomass (m). N deposition may affect the allometric relationships between tree diameter and aboveground tree biomass46, but these relationships are not yet accounted for in U.S. inventories44. Competition between trees was modeled as a function of plot basal area (BA) and the basal area of trees larger than that of the tree of interest (BAL) similar to the methods of47. The environmental factors (N deposition, S deposition, temperature, precipitation) were modeled as two-term lognormal functions (e.g., t1 and t2 for temperature effects, n1 and n2 for nitrogen deposition effects). The two-term lognormal functions allowed for flexibility in both the location of the peak (determined by t1 for temperature, for example), and the steepness of the curve (determined by t2 for temperature, for example). Thus, the full growth model is presented in Eq. 2.$$G=potentialgrowthratetimes competitiontimes temperaturetimes precipitationtimes {S}_{dep}times {N}_{dep}$$
    (1)
    $$G=a* {m}^{z}* {e}^{({c}_{1}* BAL+{c}_{2}* {{{{mathrm{ln}}}}}(BA))}* {e}^{-0.5* {left(frac{ln(T/{t}_{1})}{{t}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(P/{p}_{1})}{{p}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(N/{n}_{1})}{{n}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(S/{s}_{1})}{{s}_{2}}right)}^{2}}$$
    (2)
    We examined a total of five different growth models: (1) a full model with the size, competition, climate, S deposition, and N deposition terms (Eq. 2); (2) a model with all terms except the N deposition term; (3) a model with all terms except the S deposition term; (4) a model with all terms but without S and N deposition terms; and (5) a null model that estimated a single parameter for the mean growth parameter (a in Eq. 2).The annual probability of survival (P(s)) was estimated similarly as for growth, except that the probability was a function of time and we explored two different representations for competition. The general form of the model is shown in Eq. 3, and the full survival model in Eqs. 4, 5 for the two competition forms.$$P(s)={[acdot {{{{{rm{size}}}}}}times competitiontimes temperaturetimes precipitationtimes {N}_{dep}times {S}_{dep}]}^{time}$$
    (3)
    $$P(s)= {left[a* [((1-z{c}_{1}{e}^{-z{c}_{2}* m})* {e}^{-z{c}_{3}* {m}^{z{c}_{4}}})({e}^{-b{r}_{1}* B{A}_{ratio}{,}^{br2}* B{A}^{b{r}_{3}}})]vphantom{{left.* {e}^{-0.5* {left(frac{ln(T/{t}_{1})}{{t}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(P/{p}_{1})}{{p}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(N/{n}_{1})}{{n}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(S/{s}_{1})}{{s}_{2}}right)}^{2}}right]}}^{time}right.}\ {left.* {e}^{-0.5* {left(frac{ln(T/{t}_{1})}{{t}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(P/{p}_{1})}{{p}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(N/{n}_{1})}{{n}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(S/{s}_{1})}{{s}_{2}}right)}^{2}}right]}^{time}$$
    (4)
    $$P(s)= {left[a* left({e}^{-0.5* {left(frac{ln(m/{m}_{1})}{{m}_{2}}right)}^{2}* -0.5* {left(frac{ln(BA/b{a}_{1})}{b{a}_{2}}right)}^{2}* -0.5* {left(frac{ln(BAL+1/b{l}_{1}+1)}{b{l}_{2}}right)}^{2}}right)vphantom{{left.* {e}^{-0.5* {left(frac{ln(T/{t}_{1})}{{t}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(P/{p}_{1})}{{p}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(N/{n}_{1})}{{n}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(S/{s}_{1})}{{s}_{2}}right)}^{2}}right]}^{time}}right.}\ {left.* {e}^{-0.5* {left(frac{ln(T/{t}_{1})}{{t}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(P/{p}_{1})}{{p}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(N/{n}_{1})}{{n}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(S/{s}_{1})}{{s}_{2}}right)}^{2}}right]}^{time}$$
    (5)
    A total of nine survival models were examined: four using the formulation for size and competition in Eq. 4 (with the same combinations of predictors as above for growth), four using formulation for size and competition in Eq. 5, and a null survival model in which a mean annual estimate of survival (a) was raised to the exponent of the elapsed time.Parameters for each of the growth and survival models above were fit for a given species using maximum likelihood estimates through simulated annealing with 100,000 iterations via the likelihood package (v2.1.1) in Program R. Akaike’s Information Criteria (AIC) was estimated for all models. The best model was the model with the lowest AIC, and statistically indistinguishable models are those with a delta AIC  More

  • in

    Impact of test, vaccinate or remove protocol on home ranges and nightly movements of badgers a medium density population

    DEFRA. Strategy for Achieving Officially Bovine Tuberculosis Free Status for England: The ‘edge area’ strategy. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/300447/pb14088-bovine-tb-strategy-140328.pdf (2014).Campbell, E. L. et al. Interspecific visitation of cattle and badgers to fomites: A transmission risk for bovine tuberculosis?. Ecol. Evol. 9(15), 8479–8489 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roberts, T., O’Connor, C., Nuñez-Garcia, J., De La Rua-Domenech, R. & Smith, N. H. Unusual cluster of Mycobacterium bovis infection in cats. Vet. Rec. 174(13), 326–326 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Phipps, E. et al. Bovine tuberculosis in working foxhounds: Lessons learned from a complex public health investigation. Epidemiol. Infect. 147, 1–6 (2019).Article 

    Google Scholar 
    Delahay, R. J., De Leeuw, A. N. S., Barlow, A. M., Clifton-Hadley, R. S. & Cheeseman, C. L. The status of Mycobacterium bovis infection in UK wild mammals: A review. Vet. J. 164(2), 90–105 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fitzgerald, S. D. & Kaneene, J. B. Wildlife reservoirs of bovine tuberculosis worldwide: Hosts, pathology, surveillance, and control. Vet. Pathol. 50(3), 488–499 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Skuce, R. A., Allen, A. R. & McDowell, S. W. J. Herd-level risk factors for bovine tuberculosis: A literature review. Vet Med Int 2012, 621210 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ayele, W. Y., Neill, S. D., Zinsstag, J., Weiss, M. G. & Pavlik, I. Bovine tuberculosis: An old disease but a new threat to Africa. Int. J. Tuberc. Lung Dis. 8(8), 924–937 (2004).CAS 
    PubMed 

    Google Scholar 
    Gallagher, J. & Clifton-Hadley, R. S. Tuberculosis in badgers; a review of the disease and its significance for other animals. Res. Vet. 69(3), 203–217 (2000).Article 
    CAS 

    Google Scholar 
    Allen, A. et al. Genome epidemiology of Mycobacterium bovis infection in contemporaneous, sympatric badger and cattle populations in Northern Ireland. Access Microbiol. 1(1A), 385 (2019).Article 

    Google Scholar 
    APHA. Bovine Tuberculosis in England in 2020—Epidemiological analysis of the 2020 data and historical trends. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1027591/tb-epidemiological-report-2020.pdf (2021).DAERA. Tuberculosis disease statistics in Northern Ireland 2022. https://www.daera-ni.gov.uk/publications/tuberculosis-disease-statistics-northern-ireland-2022 (2022).Woodroffe, R. et al. Effects of culling on badger Meles meles spatial organization: Implications for the control of bovine tuberculosis. J. Appl. Ecol. 43(1), 1–10 (2006).Article 

    Google Scholar 
    Byrne, A. W., Paddy Sleeman, D., O’Keeffe, J. & Davenport, J. The ecology of the European badger (Meles meles) in Ireland: A review. Biol. Environ. 112, 105–132 (2012).Article 

    Google Scholar 
    McDonald, J., Robertson, A. & Silk, M. Wildlife disease ecology from the individual to the population: Insights from a long-term study of a naturally infected European badger population. J. Anim. Ecol. 87(1), 101–112 (2017).Article 
    PubMed 

    Google Scholar 
    Macdonald, D. W., Newman, C. & Buesching, C. D. Badgers in the rural landscape—conservation paragon or farmland pariah? Lessons from the Wytham Badger Project. Wildlife conservation on farmland 2, 65–95 (2015).
    Google Scholar 
    Judge, J., Wilson, G. J., Macarthur, R., McDonald, R. A. & Delahay, R. J. Abundance of badgers (Meles meles) in England and Wales. Sci. Rep. 7(1), 1–8 (2017).Article 
    CAS 

    Google Scholar 
    Feore, S. & Montgomery, W. I. Habitat effects on the spatial ecology of the European badger (Meles meles). J. Zool. 247(4), 537–549 (1999).Article 

    Google Scholar 
    Reid, N., Etherington, T. R., Wilson, G. J., Montgomery, W. I. & McDonald, R. A. Monitoring and population estimation of the European badger Meles meles in Northern Ireland. Wildlife Biol. 18(1), 46–57 (2012).Article 

    Google Scholar 
    DAERA. Farm animal populations: Cattle populations in Northern Ireland from 1981 to 2019. https://www.daera-ni.gov.uk/publications/farm-animal-population-data (2019).DEFRA. Livestock numbers in the UK (data to December 2019). https://www.gov.uk/government/statistical-data-sets/structure-of-the-livestock-industry-in-england-at-december.39 (2020).DEFRA. Setting the minimum and maximum numbers in badger cull areas in 2021—Advice to Natural England. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1015421/tb-min-max-numbers-2021.pdf (2021).Griffin, J. M. et al. The impact of badger removal on the control of tuberculosis in cattle herds in Ireland. Prev. Vet. Med. 67(4), 237–266 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ham, C., Donnelly, C. A., Astley, K. L., Jackson, S. Y. B. & Woodroffe, R. Effect of culling on individual badger Meles meles behaviour: Potential implications for bovine tuberculosis transmission. J. Appl. Ecol. 56(11), 2390–2399 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Olea-Popelka, F. J. et al. Targeted badger removal and the subsequent risk of bovine tuberculosis in cattle herds in county Laois, Ireland. Prev. Vet. Med. 88(3), 178–184 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Donnelly, C. A. et al. Positive and negative effects of widespread badger culling on tuberculosis in cattle. Nature 439(7078), 843–846 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Byrne, A. W., White, P. W., McGrath, G., O’Keeffe, J. & Martin, S. W. Risk of tuberculosis cattle herd breakdowns in Ireland: Effects of badger culling effort, density and historic large-scale interventions. Vet. Res. 45(1), 1–10 (2014).Article 

    Google Scholar 
    Wright, D. M. et al. Herd-level bovine tuberculosis risk factors: Assessing the role of low-level badger population disturbance. Sci. Rep. 5, 1–11 (2015).Article 

    Google Scholar 
    Jenkins, H. E., Woodroffe, R. & Donnelly, C. A. The duration of the effects of repeated widespread badger culling on cattle tuberculosis following the cessation of culling. PLoS ONE 5(2), e9090 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tuyttens, F. A. M. et al. Spatial perturbation caused by a badger (Meles meles) culling operation: Implications for the function of territoriality and the control of bovine tuberculosis (Mycobacterium bovis). J. Anim. Ecol. 69(5), 815–828 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Carter, S. P. et al. Culling-induced social perturbation in Eurasian badgers Meles meles and the management of TB in cattle: An analysis of a critical problem in applied ecology. Proc. R. Soc. B. 274(1626), 2769–2777 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Donnelly, C. A. et al. Impact of localized badger culling on tuberculosis incidence in British cattle. Nature 426(6968), 834–837 (2003).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vicente, J., Delahay, R. J., Walker, N. J. & Cheeseman, C. L. Social organization and movement influence the incidence of bovine tuberculosis in an undisturbed high-density badger Meles meles population. J Anim Ecol. 76(2), 348–360 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Riordan, P., Delahay, R. J., Cheeseman, C., Johnson, P. J. & Macdonald, D. W. Culling-induced changes in badger (Meles meles) behaviour, social organisation and the epidemiology of bovine tuberculosis. PLoS ONE 6(12), e28904 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kowalczyk, R., Jȩdrzejewska, B. & Zalewski, A. Annual and circadian activity patterns of badgers (Meles meles) in Białowieża Primeval Forest (eastern Poland) compared with other palaearctic populations. J. Biogeogr. 30(3), 463–472 (2003).Article 

    Google Scholar 
    Smith, G. C., Delahay, R. J., McDonald, R. A. & Budgey, R. Model of selective and non-selective management of badgers (Meles meles) to control bovine tuberculosis in badgers and cattle. PLoS ONE 11(11), e0167206 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Garnett, B. T., Delahay, R. J. & Roper, T. J. Ranging behaviour of European badgers (Meles meles) in relation to bovine tuberculosis (Mycobacterium bovis) infection. Appl. Anim. Behav. Sci. 94(3–4), 331–340 (2005).Article 

    Google Scholar 
    Weber, N. et al. Badger social networks correlate with tuberculosis infection. Curr. 23(20), 915–916 (2013).Article 

    Google Scholar 
    Ellwood, S. A. et al. An active-radio-frequency-identification system capable of identifying co-locations and social-structure: Validation with a wild free-ranging animal. Methods Ecol. Evol. 8(12), 1822–1831 (2017).Article 

    Google Scholar 
    Noonan, M. et al. A new Magneto-Inductive tracking technique to uncover subterranean activity: what do animals do underground?. Methods Ecol. Evol. 6(5), 510–520 (2015).Article 

    Google Scholar 
    Schütz, K. et al. Behavioral and physiological responses of trap-induced stress in European badgers. J. Wildl. Manag. 70(3), 884–891 (2006).Article 

    Google Scholar 
    Clinchy, M. et al. Fear of the human “super predator” far exceeds the fear of large carnivores in a model mesocarnivore. Behav. Ecol. 27(6), 1826–1832 (2016).
    Google Scholar 
    Bidder, O. R. et al. Step by step: Reconstruction of terrestrial animal movement paths by dead-reckoning. Mov. Ecol. https://doi.org/10.1186/s40462-015-0055-4 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gunner, R. M. et al. Dead-reckoning animal movements in R: a reappraisal using Gundog. Tracks. Anim. Biotelem. 9(1), 1–37 (2021).
    Google Scholar 
    McClune, D. W., Marks, N. J., Delahay, R. J., Montgomery, W. I. & Scantlebury, D. M. Behaviour-time budget and functional habitat use of a free-ranging European badger (Meles meles). Anim. Biotelem. 3(7), 1–7 (2015).
    Google Scholar 
    McClune, D. et al. Tri-axial accelerometers quantify behaviour in the Eurasian badger (Meles meles): towards an automated interpretation of field data. Anim. Biotelem. 2(1), 1–6 (2014).Article 

    Google Scholar 
    Gaughran, A. et al. Dispersal patterns in a medium-density Irish badger population: Implications for understanding the dynamics of tuberculosis transmission. Ecol. Evol. 9(23), 13142–13152 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kelly, D. J. et al. Extra Territorial Excursions by European badgers are not limited by age, sex or season. Sci. Rep. 10(1), 1–2 (2020).Article 

    Google Scholar 
    Macdonald, D. W., Newman, C., Buesching, C. D. & Johnson, P. J. Male-biased movement in a high-density population of the Eurasian badger (Meles meles). J. Mammal. 89(5), 1077–1086 (2008).Article 

    Google Scholar 
    Courcier, E. A. et al. Evaluating the application of the dual path platform VetTB test for badgers (Meles meles) in the test and vaccinate or remove (TVR) wildlife research intervention project in Northern Ireland. Res. Vet. Sci. 130, 170–178 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Menzies, F. D. et al. Test and vaccinate or remove: Methodology and preliminary results from a badger intervention research project. Vet. Rec. 189, e248 (2021).Article 
    PubMed 

    Google Scholar 
    O’Hagan, M. J. H. et al. Effect of selective removal of badgers (Meles meles) on ranging behaviour during a “test and Vaccinate or Remove” intervention in Northern Ireland. Epidemiol. Infect. 149(1), e125 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roper, T. J. The structure and function of badger setts. J. Zool. 227(4), 691–698 (1992).Article 

    Google Scholar 
    DAERA. The Test and Vaccinate or Remove (TVR) Wildlife Intervention Research Project. Year 1 Report—2014. https://www.daera-ni.gov.uk/sites/default/files/publications/dard/tvr-year-1-report.pdf (2014).Brown, E., Cooney, R. & Rogers, F. Veterinary guidance on the practical use of the BadgerBCG tuberculosis vaccine. In Pract. 35(3), 143–146 (2013).Article 

    Google Scholar 
    Magowan, E. A. et al. Dead-reckoning elucidates fine-scale habitat use by European badgers Meles meles. Anim. Biotelem. 10(1), 1–11 (2022).Article 

    Google Scholar 
    McGill, K. et al. Seroconversion against antigen MPB83 in badgers (Meles meles) vaccinated with multiple doses of BCG strain Sofia. Res. Vet. Sci. 149, 119–124. https://doi.org/10.1016/j.rvsc.2022.06.011 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gaughran, A. et al. Super-ranging. A new ranging strategy in European badgers. PLoS ONE 13(2), e0191818 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williams, H. J. et al. Identification of animal movement patterns using tri-axial magnetometry. Mov. Ecol. 5(1), 6 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brendel C, Helder R, Chevallier D, Zaytoon J, Georges JY, and Handrich Y. Testing a global positioning system on free ranging badgers Meles meles. Mammal Notes, The Mammal Society, Southampton. https://www.mammal.org.uk/wp-content/uploads/2016/04/Note–Brendel-MN-2012-1.pdf (2012).Börger, L. et al. Effects of sampling regime on the mean and variance of home range size estimates. J. Anim. Ecol. 75(6), 1393–1405 (2006).Article 
    PubMed 

    Google Scholar 
    Calenge, C. The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Modell. 197(3–4), 516–519 (2006).Article 

    Google Scholar 
    Calabrese, J. M., Fleming, C. H. & Gurarie, E. ctmm: An r package for analyzing animal relocation data as a continuous-time stochastic process. Methods Ecol. Evol. 7(9), 1124–1132 (2016).Article 

    Google Scholar 
    QGIS.org. QGIS Geographic Information System. QGIS Association. https://qgis.org/en/site/ (2021).Fleming, C. H. et al. Rigorous home range estimation with movement data: A new autocorrelated kernel density estimator. Ecology 96(5), 1182–1188 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fleming, C. H. et al. Estimating where and how animals travel: An optimal framework for path reconstruction from autocorrelated tracking data. Ecology 97(3), 576–582 (2016).CAS 
    PubMed 

    Google Scholar 
    Fleming, C. H. et al. Correcting for missing and irregular data in home-range estimation. Ecol. Appl. 28(4), 1003–1010 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gula, R. & Theuerkauf, J. The need for standardization in wildlife science: Home range estimators as an example. Eur. J. Wildl. Res. 59, 713–718 (2013).Article 

    Google Scholar 
    Schuler, K. L., Schroeder, G. M., Jenks, J. A. & Kie, J. G. Ad hoc smoothing parameter performance in kernel estimates of GPS-derived home ranges. Wildl. Biol. 20(5), 259–266 (2014).Article 

    Google Scholar 
    Huck, M., Davison, J. & Roper, T. J. Comparison of two sampling protocols and four home-range estimators using radio-tracking data from urban badgers Meles meles. Wildl. Biol. 14(4), 467–477 (2008).Article 

    Google Scholar 
    Scull, P., Palmer, M., Frey, F. & Kraly, E. A comparison of two home range modeling methods using Ugandan mountain gorilla data. Int. J. Geogr. Inf. Sci. 26(11), 2111–2121 (2012).Article 

    Google Scholar 
    Woodroffe, R. et al. Ranging behaviour of badgers Meles meles vaccinated with Bacillus Calmette Guerin. J. Appl. Ecol. 54(3), 718–725 (2017).Article 

    Google Scholar 
    Signer, J. & Fieberg, J. R. A fresh look at an old concept: Home-range estimation in a tidy world. PeerJ 9, e11031 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Woodroffe, R. et al. Badgers prefer cattle pasture but avoid cattle: implications for bovine tuberculosis control. Ecology 19(10), 1201–1208 (2016).
    Google Scholar 
    Hijmans RJ. Introduction to the geosphere package (version 1 .5–10). Cran (2019).Dewhirst, O. P. et al. Improving the accuracy of estimates of animal path and travel distance using GPS drift-corrected dead reckoning. Ecol. Evol. 6(17), 6210–6222 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    QGIS.org. Working with vector data. QGIS Desktop 3.16 User Guide. pp 304. https://docs.qgis.org/3.22/en/docs/user_manual/index.html (2022).Qasem, L. et al. Tri-axial acceleration as a proxy for animal energy expenditure; should we be summing values or calculating the vector?. PLoS ONE 7(2), e31187 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilson, R. P. et al. Estimates for energy expenditure in free-living animals using acceleration proxies; a reappraisal. J anim Ecol. 89(1), 161–172 (2020).Article 
    PubMed 

    Google Scholar 
    RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA http://www.rstudio.com/ (2021).Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Barton K. Package “MuMin”. Cran (2018).Rogers, L. M., Cheeseman, C. L., Mallinson, P. J. & Clifton-Hadley, R. The demography of a high-density badger (Meles meles) population in the west of England. J. Zool. 242(4), 705–728 (1997).Article 

    Google Scholar 
    Macdonald, D. W. & Newman, C. Population dynamics of badgers (Meles meles) in Oxfordshire, UK: Numbers, density and cohort life histories, and a possible role of climate change in population growth. J. Zool. 256(1), 121–138 (2002).Article 

    Google Scholar 
    Kruuk, H., & MacDonald, D. Group territories of carnivores: empires and enclaves. In 25th Symposium of the British Ecological Society (1985).Roper, T. J., Shepherdson, D. J. & Davies, J. M. Scent marking with faeces and anal secretion in the European badger (Meles meles): seasonal and spatial characteristics of latrine use in relation to territoriality. Behaviour 97(1–2), 94–117 (1986).
    Google Scholar 
    Sleeman, D. P. et al. How many Eurasian badgers Meles meles L. are there in the republic of Ireland?. Eur. J. Wildl. Res. 55(4), 333–344 (2009).Article 

    Google Scholar 
    Carter, S. P. et al. BCG vaccination reduces risk of tuberculosis infection in vaccinated badgers and unvaccinated badger cubs. PLoS ONE 7(12), e49833 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Byrne, A., Parnell, A., O’Keeffe, J. & Madden, J. The challenge of estimating wildlife populations at scale: the case of the European badger (Meles meles) in Ireland. Eur. J. Wildl. Res. 67(5), 1–10 (2021).Article 

    Google Scholar 
    Minta, S. C. Sexual differences in spatio-temporal interaction among badgers. Oecologia 96(3), 402–409 (1993).Article 
    PubMed 

    Google Scholar 
    Annavi, G. et al. Neighbouring-group composition and within-group relatedness drive extra-group paternity rate in the European badger (Meles meles). J. Evol. Biol. 27(10), 2191–2203 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    DEFRA. Monitoring regional changes in badger numbers. Research Project Final Report. http://randd.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&ProjectID=14237. Accessed 07 February 2023 (2009).Johnson, D. D., Jetz, W. & Macdonald, D. W. Environmental correlates of badger social spacing across Europe. J. Biogeogr. 29(3), 411–425 (2002).Article 

    Google Scholar 
    Kruuk, H. Spatial organization and territorial behaviour of the European badger Meles meles. J Zool. 184(1), 1–19 (1978).Article 

    Google Scholar 
    Macdonald, D., Newman, C., Dean, J., Buesching, C. & Johnson, P. The distribution of Eurasian badger, Meles meles, setts in a high-density area: field observations contradict the sett dispersion hypothesis. Oikos 106(2), 295–307 (2004).Article 

    Google Scholar 
    Sleeman, D. P. & Mulcahy, M. F. Loss of territoriality in a local badger Meles meles population at Kilmurry, Co Cork, Irealnd. Irish Nat. J. 28(1), 11–19 (2005).
    Google Scholar 
    Byrne, A. W., O’Keeffe, J., Buesching, C. D. & Newman, C. Push and pull factors driving movement in a social mammal: Context dependent behavioral plasticity at the landscape scale. Curr. Zool. 65(5), 517–525 (2019).Article 
    PubMed 

    Google Scholar 
    Cheeseman, C. L., Cresswell, W. J., Harris, S. & Mallinson, P. J. Comparison of dispersal and other movements in two Badger (Meles meles) populations. Mamm. Rev. 18(1), 51–59 (1988).Article 

    Google Scholar 
    Seebacher, F. & Krause, J. Epigenetics of social behaviour. TREE 34(9), 818–830 (2019).PubMed 

    Google Scholar 
    Allen, A. et al. European badger (Meles meles) responses to low-intensity, selective culling: Using mark–recapture and relatedness data to assess social perturbation. Ecol. Solut. Evid. 3(3), e12165 (2022).Article 

    Google Scholar 
    Loureiro, F., Rosalino, L. M., Macdonald, D. W. & Santos-Reis, M. Path tortuosity of Eurasian badgers (Meles meles) in a heterogeneous Mediterranean landscape. Ecol. Res. 22(5), 837–844 (2007).Article 

    Google Scholar 
    Sun, Q., Stevens, C., Newman, C., Buesching, C. & Macdonald, D. Cumulative experience, age-class, sex and season affect the behavioural responses of European badgers (Meles meles) to handling and sedation. Anim Welf. 24(4), 373–385 (2015).Article 

    Google Scholar 
    Conlan, A. et al. Potential benefits of cattle vaccination as a supplementary control for bovine tuberculosis. PLoS Comput. Biol. 11(2), e1004038 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gormley, E. et al. Oral vaccination of free-living badgers (Meles meles) with Bacille Calmette Guérin (BCG) vaccine confers protection against tuberculosis. PLoS ONE 12(1), e0168851 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Benton, C. H. et al. Badger vaccination in England: Progress, operational effectiveness and participant motivations. People Nat. 2(3), 761–775 (2020).Article 

    Google Scholar  More

  • in

    Life cycle of the cold-water coral Caryophyllia huinayensis

    The solitary cold-water scleractinian C. huinayensis is described here as a brooder. Although reproduction in scleractinian CWCs is still poorly known, no other temperate species has yet been described to brood larvae. The solitary temperate CWC D. dianthus12, as well as the temperate colonial CWC D. pertusum8,10,38, M. oculata8,10 and O. varicosa9 reproduce by broadcast spawning. Brooding has only been reported in subpolar and polar solitary CWCs from the Southern Ocean17,18.Although quantitative data on the number of larvae released in the four Southern Ocean brooders are lacking, a potential number of larvae released per polyp can be inferred from their maximum fecundity (Table 1). C. huinayensis appears to be in the lower range of larvae production (6.5 ± 11.4 month-1 larvae), when compared its larval size (750–1080 µm length) with Balanophyllia malouinensis larvae ( > 600 µm, Table 1).Table 1 Larval features of scleractinian CWC species.Full size tableThorson’s rule43,44 states that organisms at higher latitudes tend to produce larger and fewer offspring and are frequently brooders. However, the brooding C. huinayensis appears to defy this rule, as it occurs at mid-latitudes (36° and 48.5° S33,45). Though the phylogeography of C. huinayensis is not yet clear, six other solitary species of the genus Caryophyllia are endemic to Antarctica46, suggesting that the genus may have originated in the Southern Ocean, with the mid-latitude distribution of C. huinayensis making the downstream end dispersal via the cold Humboldt Current branching off the Southern Ocean. In our case, Thorson’s rule does not seem to be a good predictor of the macroevolutionary patterns and reproductive mode in Caryophyllia.A better explanation can be inferred from Kerr et al.47. Their phylogenetic study on scleractinians revealed that the change from spawning to brooding (or vice versa) is based on the sexuality of the corals (i.e., gonochoric or hermaphroditic) and not on latitudinal distribution. The main pathway is from gonochoric spawners to gonochoric brooders, then to hermaphroditic brooders, and finally hermaphroditic spawning, which is the dominant reproductive mode in shallow-water corals.The results of our study indicate that C. huinayensis reproduces throughout the year, albeit with large temporal variations in the number of larvae released. However, the fluctuations were not seasonal. This may be due to the fact that the aquarium for this experiment lacked external timing signals (zeitgebers) usually found in the field, i.e., there were no fluctuations e.g., in water temperature, food frequency, food quality, or salinity, which might otherwise have synchronized the corals’ internal clock. Although, it is not yet known if the local C. huinayensis population exhibits seasonality in their larval release, the lack of larvae in April 2021 could also be due to poor internal fertilisation success based on the quality and/or quantity of sperm released (which was never observed).If there is no seasonal release of larvae from the natural coral population, this may indicate that rapid recolonisation is possible throughout the year following a disturbance. Substrate alterations are usually observed in the Patagonian fjord region, where strong physical disturbances such as landslides occur48, due to precipitation and earthquakes49. Also, hypoxia events ( More

  • in

    Adjusting time-of-day and depth of fishing provides an economically viable solution to seabird bycatch in an albacore tuna longline fishery

    Ferretti, F., Worm, B., Britten, G., Heithaus, M. & Lotze, H. Patterns and ecosystem consequences of shark declines in the ocean. Ecol. Lett. 13, 1055–1071 (2010).PubMed 

    Google Scholar 
    Heithaus, M. et al. Seagrasses in the age of sea turtle conservation and shark overfishing. Front. Mar. Sci. 1, 1–6 (2014).Article 

    Google Scholar 
    Estes, J. et al. Megafaunal impacts on structure and function of ocean ecosystems. Annu. Rev. Env. Resour. 41, 83–116 (2016).Article 

    Google Scholar 
    Anderson, O. et al. Global seabird bycatch in longline fisheries. Endanger. Species Res. 14, 91–106 (2011).Article 

    Google Scholar 
    Dias, M. et al. Threats to seabirds: A global assessment. Biol. Conserv. 237, 525–537 (2019).Article 

    Google Scholar 
    Phillips, R. et al. The conservation status and priorities for albatrosses and large petrels. Biol. Conserv. 201, 169–183 (2016).Article 

    Google Scholar 
    Werner, T., Kraus, S., Read, A. & Zollett, E. Fishing techniques to reduce the bycatch of threatened marine animals. Mar. Technol. Soc. J. 40, 50–68 (2006).Article 

    Google Scholar 
    Hall, M., Gilman, E., Minami, H., Mituhasi, T. & Carruthers, E. Mitigating bycatch in tuna fisheries. Rev. Fish Biol. Fish. 27, 881–908 (2017).Article 

    Google Scholar 
    Gilman, E., Brothers, N. & Kobayashi, D. Principles and approaches to abate seabird bycatch in longline fisheries. Fish Fish. 6, 35–49 (2005).Article 

    Google Scholar 
    Gilman, E., Chaloupka, M., Wiedoff, B. & Willson, J. Mitigating seabird bycatch during hauling by pelagic longline vessels. PLoS ONE 9, e84499 (2014).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Juan-Jorda, M., Murua, H., Arrizabalaga, H., Dulvy, N. & Restrepo, V. Report card on ecosystem-based fisheries management in tuna regional fisheries management organizations. Fish Fish. 19, 321–339 (2018).Article 

    Google Scholar 
    ACAP. Review and best practice advice for reducing the impact of pelagic longline fisheries on seabirds. Agreement on the Conservation of Albatrosses and Petrels, Hobart, Australia (2019).Crespo, P. & Crawford, R. Bycatch and the Marine Stewardship Council (MSC): A Review of the Efficacy of the MSC Certification Scheme in Tackling the Bycatch of Non-target Species (Birdlife International, 2019).
    Google Scholar 
    Nakano, H., Okazaki, M. & Okamoto, H. Analysis of catch depth by species for tuna longline fishery based on catch by branch lines. Bull. Nat. Res. Inst. Far Seas Fish. 34, 43–62 (1997).
    Google Scholar 
    Musyl, M. et al. Postrelease survival, vertical and horizontal movements, and thermal habitats of five species of pelagic sharks in the central Pacific Ocean. Fish. Bull. 109, 341–368 (2011).
    Google Scholar 
    Gabr, M. & El-Haweet, A. Pelagic longline fishery for albacore in the Mediterranean Sea off Egypt. Turk. J. Fish. Aquat. Sci. 12, 735–741 (2012).Article 

    Google Scholar 
    MEC. Marine Stewardship Council Public Certification Report. French Polynesia Albacore and Yellowfin Longline Fishery. ME Certification Ltd., Lymington, UK (2018).Gilman, E. et al. Robbing Peter to pay Paul: Replacing unintended cross-taxa conflicts with intentional tradeoffs by moving from piecemeal to integrated fisheries bycatch management. Rev. Fish Biol. Fish. 29, 93–123 (2019).Article 

    Google Scholar 
    SCS. Tri Marine Atlantic albacore (Thunnus alalunga) Longline Fishery. MSC Fishery Assessment Report. SCS Global Services, Emeryville, USA (2022).Gilman, E. et al. Phylogeny explains capture mortality of sharks and rays in pelagic longline fisheries: A global meta-analytic synthesis. Sci. Rep. https://doi.org/10.1038/s41598-022-21976-w (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    WCPFC. Conservation and Management Measure to Mitigate the Impact of Fishing for Highly Migratory Fish Stocks on Seabirds. CMM 2018-03. Western and Central Pacific Fisheries Commission, Kolonia, Federated States of Micronesia (2018).IATTC. Resolution to Mitigate the Impact on Seabirds of Fishing for Species Covered by the IATTC. Resolution C-11-02. Inter-American Tropical Tuna Commission, La Jolla, USA (2011).Melvin, E., Guy, T. & Read, L. Best practice seabird bycatch mitigation for pelagic longline fisheries targeting tuna and related species. Fish. Res. 149, 5–18 (2014).Article 

    Google Scholar 
    Huang, H. Incidental catch of seabirds and sea turtles by Taiwanese longline fleets in the Pacific Ocean. Fish. Res. 170, 179–189 (2015).Article 

    Google Scholar 
    Jimenez, S. et al. Towards mitigation of seabird bycatch: Large-scale effectiveness of night setting and tori lines across multiple pelagic longline fleets. Bio. Cons. 247, 108642 (2020).Article 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. Version 2022–1. Online resource www.iucnredlist.org. ISSN 2307–8235. International Union for the Conservation of Nature, Gland, Switzerland (2022).Gilman, E., Castejon, V., Loganimoce, E. & Chaloupka, M. Capability of a pilot fisheries electronic monitoring system to meet scientific and compliance monitoring objectives. Mar. Policy 113, 103792 (2020).Article 

    Google Scholar 
    Gilman, E., Chaloupka, M. & Sieben, C. Ecological risk assessment of a data-limited fishery using an ensemble of approaches. Mar. Policy 133, 104752 (2021).Article 

    Google Scholar 
    WPRFMC. Appendix 5. Fact Sheets on Seabird Bycatch Mitigation Methods for Pelagic Longline Fisheries. Report of the Workshop to Review Seabird Bycatch Mitigation Measures for Hawaii’s Pelagic Longline Fisheries. ISBN: 978–1–944827–37–3. Western Pacific Regional Fishery Management Council, Honolulu (2019).Melvin, E., Dietrich, K., Suryan, R. & Fitzgerald, S. Lessons from seabird conservation in Alaskan longline fisheries. Cons. Biol. 33, 842–852 (2019).Article 

    Google Scholar 
    Ward, P. & Myers, R. Inferring the depth distribution of catchability for pelagic fishes and correcting for variations in the depth of longline fishing gear. Can. J. Fish. Aquat. Sci. 62, 1130–1142 (2005).Article 

    Google Scholar 
    Rice, P., Goodyear, C., Prince, E., Snodgrass, D. & Serafy, J. Use of catenary geometry to estimate hook depth during near-surface pelagic longline fishing: Theory versus practice. N. Am. J. Fish. Manag. 27, 1148–1161 (2007).Article 

    Google Scholar 
    Zhou, C. & Brothers, N. Interaction frequency of seabirds with longline fisheries: Risk factors and implications for management. ICES J. Mar. Sci. 78, 1278–1287 (2021).Article 

    Google Scholar 
    Childers, J., Snyder, S. & Kohin, S. Migration and behavior of juvenile North Pacific albacore (Thunnus alalunga). Fish. Oceanogr. 20, 157–173 (2011).Article 

    Google Scholar 
    Cosgrove, R., Arregui, I., Arrizabalaga, H., Goni, N. & Sheridan, M. New insights to behavior of North Atlantic albacore tuna (Thunnus alalunga) observed with pop-up satellite archival tags. Fish. Res. 150, 89–99 (2014).Article 

    Google Scholar 
    Williams, et al. Vertical behavior and diet of albacore tuna (Thunnus alalunga) vary with latitude in the South Pacific Ocean. Deep -Sea Res. II 113, 154–169 (2015).Punt, A., Butterworth, D., de Moor, C., De Oliveira, J. & Haddon, M. Management strategy evaluation: Best practices. Fish Fish. 17, 303–334 (2016).Article 

    Google Scholar 
    Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in Bayesian workflow. J. R. Soc. Ser. A 182, 1–14 (2019).MathSciNet 

    Google Scholar 
    Gelman, A., et al. Bayesian Workflow. arXiv:2011.01808v1 (2020).Fahrmeir, L. & Lang, S. Bayesian inference for generalised additive mixed models based on Markov random field priors. Appl. Stat. 50, 201–220 (2001).
    Google Scholar 
    Yao, Y., Vehtari, A., Simpson, D. & Gelman, A. Using stacking to average Bayesian predictive distributions (with Discussion). Bayesian Anal. 13, 917–1003 (2018).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Fávero, L., Hair, J., Souza, R., Albergaria, M. & Brugni, T. Zero-inflated generalized linear mixed models: a better way to understand data relationships. Mathematics 9, 1100 (2021).Article 

    Google Scholar 
    Gilman, E. et al. Tori lines mitigate seabird bycatch in a pelagic longline fishery. Rev. Fish Biol. Fish. 31, 653–666 (2021).Article 

    Google Scholar 
    Makowski, D., Ben-Shachar, M. & Lüdecke, D. bayestestR: Describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. 4, 1541 (2019).Article 
    ADS 

    Google Scholar 
    Yau, K., Wang, K. & Lee, A. Zero-Inflated negative binomial mixed regression modeling of over-dispersed count data with extra zeros. Biom. J. 45, 437–452 (2003).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Congdon, P. Applied Bayesian Modelling. Wiley and Sons Ltd, UK. (2003).Günhan, B., Röver, C. & Friede, T. Random-effects meta-analysis of few studies involving rare events. Res. Synth. Methods 11, 74–90 (2020).Article 
    PubMed 

    Google Scholar 
    Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bürkner, P. brms: An R Package for Bayesian multilevel models using Stan. J. Stat. Softw. 81, 1–28 (2017).
    Google Scholar 
    Ott, M., Plummer, M. & Roos, M. How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. Stat. Med. 40, 4505–4521 (2021).Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vehtari, A., Gelman, A., Simpson, D., Carpenter, B. & Bürkner, P. Rank-normalization, folding, and localization: an improved Rhat for assessing convergence of MCMC (with Discussion). Bayesian Anal. 16, 667–718 (2021).Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Kruschke, J. & Liddell, T. The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychon. Bull. Rev. 25, 178–206 (2018).Article 
    PubMed 

    Google Scholar 
    Lenth, R. Least-squares means: the R package lsmeans. J. Stat. Softw. 69, 1–33 (2016).Article 

    Google Scholar 
    Lenth R (2020) emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.5.2-1. https://CRAN.R-project.org/package=emmeans More