More stories

  • in

    Development of an array of molecular tools for the identification of khapra beetle (Trogoderma granarium), a destructive beetle of stored food products

    Finkelman, S., Navarro, S., Rindner, M. & Dias, R. Effect of low pressure on the survival of Trogoderma granarium Everts, Lasioderma serricorne (F.) and Oryzaephilus surinamensis (L.) at 30°C. J. Stored. Prod. Res. 42, 23–30 (2006).Article 

    Google Scholar 
    Hosseininaveh, V., Bandani, A., Azmayeshfard, P., Hosseinkhani, S. & Kazzazi, M. Digestive proteolytic and amylolytic activities in Trogoderma granarium Everts (Dermestidae: Coleoptera). J. Stored. Prod. Res. 43, 515–522 (2007).Article 
    CAS 

    Google Scholar 
    Burges, H. D. Development of the khapra beetle, Trogoderma granarium, in the lower part of its temperature range. J. Stored. Prod. Res. 44, 32–35 (2008).Article 

    Google Scholar 
    Hagstrum, D. W. & Subramanyam, B. Stored-Product Insect Resource 1–518 (AACC International Inc, 2009).Book 

    Google Scholar 
    Beal, R. S. Synopsis of the economic species of Trogoderma occurring in the United States with description of a new species (Coleoptera: Dermestidae). Ann. Entomol. Soc. Am. 49, 559–566 (1956).Article 

    Google Scholar 
    Day, C. & White, B. Khapra beetle, Trogoderma granarium interceptions and eradications in Australia and around the world. Crawley, School of Agricultural and Resource Economics, University of Western Australia, SARE Working paper 1609, (2016).Kerr, J. A. Khapra beetle returns. Pest Control 49, 24–25 (1981).
    Google Scholar 
    Stibick, J.N. New pest response guidelines: khapra beetle. US Department of Agriculture, Marketing and Regulatory Programs, Animal and Plant Health Inspection Service, Riverdale, pp. 114 (2009).Myers, S. W. & Hagstrum, D. W. Quarantine. In Stored Product Protection (eds Hagstrum, D. W. et al.) 297–304 (Kansas State University Agricultural Experiment Station and Cooperative Extension Service, 2012).
    Google Scholar 
    Athanassiou, C. G., Phillips, T. W. & Wakil, W. Biology and control of the khapra beetle, Trogoderma granarium, a major quarantine threat to global food security. Annu. Rev. Entomol. 64, 131–148 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Barak, A. V. Development of a new trap to detect and monitor khapra beetle (Coleoptera: Dermestidae). J. Econ. Entom. 82, 1470–1477 (1989).Article 

    Google Scholar 
    Gerken, A. R. & Campbell, J. F. Life history changes in Trogoderma variabile and T. inclusum due to mating delay with implications for mating disruption as a management tactic. Ecol. Evol. 8, 2428–2439 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Partida, G. J. & Strong, R. G. Comparative studies on the biologies of six species of Trogoderma: T variabile. Ann. Entomol. Soc. Am. 68, 115–125 (1975).Article 

    Google Scholar 
    Strong, R. G. Comparative studies on the biologies of six species of Trogoderma: T inclusum. Ann. Entomol. Soc. Am. 68, 91–104 (1975).Article 

    Google Scholar 
    Phillips, T. W., Pfannenstiel, L. & Hagstrum, D. Survey of Trogoderma species (Coleoptera: Dermestidae) associated with international trade of dried distiller’s grains and solubles in the USA. Julius Kühn Archiv. 463, 233–238 (2008).
    Google Scholar 
    Hadaway, A. The biology of the beetles, Trogoderma granarium Everts and Trogoderma versicolor (Creutz). Bull. Entomol. Res. 46, 781–796 (1956).Article 
    CAS 

    Google Scholar 
    Phillips, T.W., Pfannenstiel, L. & Hagstrum, D. Survey of Trogoderma species (Coleoptera: Dermestidae) associated with international trade of dried distiller’s grains and solubles in the USA. In: Adler CS, Opit G, Fürstenau B, Müller-Blenkle C, Kern P, Arthur FH et al., editors. Proceedings of the 12th International Working Conference on Stored Product Protection; Vol. 1, Quedlinburg, Julius-Kühn-Archiv, pp. 233–238 (2018).Gorham, J.R. Insect and Mite Pests in Food: An Illustrated Key. Vol. 1 and 2. US Department of Agriculture, Agricultural Research Service (1991).Olson, R. L. O., Farris, R. E., Barr, N. B. & Cognato, A. I. Molecular identification of Trogoderma granarium (Coleoptera: Dermestidae) using the 16S gene. J. Pest Sci. 87, 701–710 (2014).Article 

    Google Scholar 
    Furui, S., Miyanoshita, A., Imamura, T., Minegishi, Y. & Kokutani, R. Qualitative real-time PCR identification of the khapra beetle, Trogoderma granarium (Coleoptera: Dermestidae). Appl. Entomol. Zool. 54, 101–107 (2019).Article 
    CAS 

    Google Scholar 
    Rako, L. et al. A LAMP (loop-mediated isothermal amplification) test for rapid identification of Khapra beetle (Trogoderma granarium). Pest Manag. Sci. 77, 5509–5521 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Castañé, C., Agustí, N., del Estal, P. & Riudavets, J. Survey of Trogoderma spp. in Spanish mills and warehouses. J. Stored. Prod. Res. 88, 101661 (2020).Article 

    Google Scholar 
    Trujillo-González, et al. Detection of khapra beetle environmental DNA using portable technologies in Australian biosecurity. Front. Insect Sci. 2, e795379 (2022).Article 

    Google Scholar 
    Svec, D., Tichopad, A., Novosadova, V., Pfaffl, M. W. & Kubista, M. How good is a PCR efficiency estimate: Recommendations for precise and robust qPCR efficiency assessments. Biomol. Detect. Quantif. 3, 9–16 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Taylor, S. C. et al. The Ultimate qPCR experiment: Producing publication quality, reproducible data the first time. Trends Biotechnol. 37, 761–774 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Van Holm, W. et al. A viability quantitative PCR dilemma: Are longer amplicons better?. Appl. Environ. Microbiol. 87, e0265320 (2021).Article 
    PubMed 

    Google Scholar 
    Ratnasingham, S. & Hebert, P. D. N. BOLD: The barcode of life data system (wwwbarcodinglifeorg). Mol. Ecol. Notes 7, 355–364 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wittwer, C. T. & Kusakawa, N. Real-time PCR. In Molecular microbiology: Diagnostic principles and practice (eds Persing, D. H. et al.) 71–84 (ASM Press, 2004).
    Google Scholar 
    Stewart, D. et al. A needle in a haystack: A multigene TaqMan assay for the detection of Asian gypsy moths in bulk pheromone trap samples. Biol. Invasions 21, 1843–1856 (2019).Article 

    Google Scholar 
    Butterwort, V. et al. A DNA extraction method for insects from sticky traps: Targeting a low abundance pest, Phthorimaea absoluta (Lepidoptera: Gelechiidae), in mixed species communities. J. Econ. Entom. 115, 844–851 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Carew, M. E., Coleman, R. A. & Hoffmann, A. A. Can non-destructive DNA extraction of bulk invertebrate samples be used for metabarcoding?. PeerJ 6, e4980 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Domingue, M.J. et al. Outcome of direct competition between Trogoderma granarium and Trogoderma inclusum over varying commodities, temperatures, and experimental duration. In Submission to Scientific Reports.Zieritz, A. et al. Development and evaluation of hotshot protocols for cost- and time-effective extraction of PCR-ready DNA from single freshwater mussel larvae (Bivalvia: Unionida). J. Molluscan Stud. 84, 198–201 (2018).Article 

    Google Scholar 
    Djoumad, A. et al. Development of a qPCR-based method for counting overwintering spruce budworm (Choristoneura fumiferana) larvae collected during fall surveys and for assessing their natural enemy load: A proof-of-concept study. Pest Manag. Sci. 78, 336–343 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, H., Rangasamy, M., Tan, S. Y., Wang, H. & Siegfried, B. D. Evaluation of five methods for total DNA extraction from western corn rootworm beetles. PLoS ONE 5, e11963 (2010).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beckmann, J. S. & Soller, M. Restriction fragment length polymorphisms in genetic improvement: Methodologies, mapping and costs. Theor. Appl. Genet. 67, 35–43 (1983).Article 
    CAS 
    PubMed 

    Google Scholar 
    Arimoto, M., Satoh, M., Uesugi, R. & Osakabe, M. PCR-RFLP analysis for identification of Tetranychus spider mite species (Acari: Tetranychidae). J. Econ. Entom. 106, 661–668 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vezenegho, S. B. et al. Discrimination of 15 Amazonian anopheline mosquito species by polymerase chain reaction—Restriction fragment length polymorphism. J. Med. Entomol. 59, 1060–1064 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Beal, R. S. Annotated checklist of Nearctic Dermestidae with revised key to the genera. Coleopt. Bull. 57, 391–404 (2003).Article 

    Google Scholar 
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS 
    PubMed 

    Google Scholar 
    Liu, H. & Mottern, J. An old remedy for a new problem? Identification of Ooencyrtus kuvanae (Hymenoptera: Encyrtidae), an egg parasitoid of Lycorma delicatula (Hemiptera: Fulgoridae) in North America. J. Insect Sci. 17, 18 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Simon, C. et al. Evolution, weighing, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87, 651–701 (1994).Article 
    CAS 

    Google Scholar 
    Dowton, M. & Austin, A. D. Evidence for AT-transversion bias in wasp (Hymenoptera: Symphyta) mitochondrial genes and its implications for the origin of parasitism. J. Mol. Evol. 44, 398–405 (1997).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Untergasser, A. et al. Primer3—New capabilities and interfaces. Nucleic Acids Res. 40, e115 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ye, J. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 134 (2012).Article 
    CAS 

    Google Scholar 
    Süss, B., Flekna, G., Wagner, M. & Hein, I. Studying the effect of single mismatches in primer and probe binding regions on amplification curves and quantification in real-time PCR. J. Microbiol. Methods 76, 316–319 (2009).Article 
    PubMed 

    Google Scholar 
    Stadhouders, R. et al. The effect of primer-template mismatches on the detection and quantification of nucleic acids using the 5’ nuclease assay. J. Mol. Diagn. 12, 109–117 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stewart, D. et al. A multi-species TaqMan PCR assay for the identification of Asian gypsy moths (Lymantria spp.) and other invasive Lymantriines of biosecurity concern to North America. PLoS ONE 11, e0160878 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bustin, S. A. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 1–12 (2009).Article 

    Google Scholar  More

  • in

    Landscapes of pesticide risk

    A large-scale field study finds that different bee species experience different levels of risk from pesticides, depending on how much land is farmed within their foraging range. For bumblebees and solitary bees, more seminatural habitat means less risk from pesticides, but this is not true for honeybees.In the discussion of how to protect bees from pesticides, bees are often treated as a monolith. It is assumed that what is good for one species is good for all, and that pesticides or changes to agricultural landscapes would affect all bee species equally. This is often taken one step further, with the western honeybee (Apis mellifera) being used as a surrogate species for all bees. Yet despite this simplification there are around 2,000 species of bee in Europe1 and 20,000 worldwide2 with a dazzling diversity of niches and life histories. With this in mind, the question arises of how valid the assumption is that honeybees represent a good surrogate species. In this issue of Nature Ecology & Evolution, Knapp et al.3 investigate this question by measuring how three species of bee with differing life histories respond to different agricultural land-use intensities, and find that a species’ foraging range plays a big part in pesticide exposure risk. More

  • in

    Better incentives are needed to reward academic software development

    Department of Ecology and Evolutionary Biology and Eversource Energy Center, University of Connecticut, Storrs, CT, USACory MerowDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USABrad Boyle & Brian J. EnquistDepartment of Geography, Florida State University, Tallahassee, FL, USAXiao FengBiodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, JapanJamie M. KassDepartment of Geography, University at Buffalo, Buffalo, NY, USABrian S. Maitner & Adam M. WilsonSchool of Biology and Ecology, University of Maine, Orono, ME, USABrian McGillMitchell Center for Sustainability Solutions, University of Maine, Orono, ME, USABrian McGillCenter for Macroecology, Evolution and Climate, Globe Institute, University of Copenhagen, Copenhagen, DenmarkHannah OwensFlorida Museum of Natural History, University of Florida, Gainesville, FL, USAHannah OwensDepartment of Biological Sciences, Purdue University, West Lafayette, IN, USADaniel S. ParkPurdue Center for Plant Biology, Purdue University, West Lafayette, IN, USADaniel S. ParkDepartment of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, Zurich, SwitzerlandAndrea PazDepartment of Biology, City College of the City University of New York, New York, NY, USAGonzalo E. Pinilla-BuitragoPhD Program in Biology, Graduate Center of the City University of New York, New York, NY, USAGonzalo E. Pinilla-BuitragoDepartment of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USAMark C. UrbanCenter of Biological Risk, University of Connecticut, Storrs, CT, USAMark C. UrbanDepartamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Vigo, SpainSara Varela More

  • in

    Breed and ruminal fraction effects on bacterial and archaeal community composition in sheep

    Breed differences in animal feed conversion and economic trait performanceThroughout the feed intake measurement period, summary statistics shows animals on test had an average DMI of 1.11 kg/d (SD = 0.18), ADG of 0.27 kg/d (SD = 0.1), FCR of 4.04 kg of DMI/ Kg of ADG (SD = 0.1), start weight of 29.60 kg (SD = 3.7), final live weight of 46.00 kg (SD = 2.9), carcass weight of 20.20 kg (SD = 1.6), and a KO% of 44.1% (SD = 2.3). Average daily gain (P = 0.005), FCR (P = 0.035), CW (P  More

  • in

    A density functional theory for ecology across scales

    Modular components of the DFTe energy functionalThe central ingredient of DFTe is an energy functional E, assembled according to Eq. (1). The methodology of DFTe can be understood by inspecting the dispersal and environmental energies in Eqs. (2) and (3) without interactions. In our first case study, illustrated in Fig. 2 and Supplementary Fig. 2, we demonstrate that equation (3), in conjunction with Eq. (2), can realistically describe the influence of the environment on species’ distributions. Mechanisms that alter the trade-off between dispersal and environment can be introduced as part of Eint. For instance, back reactions on the environment could be modelled with a bifunctional Ebr[Venv, n] that yields the equilibrated modified environment ({V}_{s}^{{{{{{{{rm{env}}}}}}}}}+delta {E}_{{{{{{{{rm{br}}}}}}}}}[{{{{{{{{bf{V}}}}}}}}}^{{{{{{{{rm{env}}}}}}}}},{{{{{{{bf{n}}}}}}}}]/delta {n}_{s}({{{{{{{bf{r}}}}}}}})), cf. Eq. (5).In the following we make explicit the interaction and resource energies that enter Eq. (1) and are used in our case studies of Figs. 2–7. We let Eint[n] include all possible bipartite interactions$${E}_{gamma }[{{{{{{{bf{n}}}}}}}}]=mathop{sum }limits_{{s,{s}^{{prime} }!=!1}atop {{s}^{{prime} }ne s}}^{S}{int}_{A}({{{{{{{rm{d}}}}}}}}{{{{{{{bf{r}}}}}}}})({{{{{{{rm{d}}}}}}}}{{{{{{{{bf{r}}}}}}}}}^{{prime} }){n}_{s}{({{{{{{{bf{r}}}}}}}})}^{{alpha }_{s}},{gamma }_{s{s}^{{prime} }}({{{{{{{bf{r}}}}}}}},, {{{{{{{{bf{r}}}}}}}}}^{{prime} }){n}_{{s}^{{prime} }}{({{{{{{{{bf{r}}}}}}}}}^{{prime} })}^{{beta }_{{s}^{{prime} }}},$$
    (6)
    which include amensalism, commensalism, mutualism, and so forth. Here, ({alpha }_{s},, {beta }_{{s}^{{prime} }}ge 0), and the interaction kernels ({gamma }_{s{s}^{{prime} }}) are assembled from fitness proxies of species s and ({s}^{{prime} }) (Supplementary Table 1). Higher-order interactions can be introduced, for example, through (i) terms like ({n}_{s},{gamma }_{s{s}^{{prime} }},{n}_{{s}^{{prime} }},{gamma }_{{s}^{{prime} }{s}^{{primeprime} }}^{{prime} },{n}_{{s}^{{primeprime} }}) that build on pairwise interactions or (ii) genuinely multipartite expressions like ({gamma }_{s{s}^{{prime} }{s}^{{primeprime} }}{n}_{s},,{n}_{{s}^{{prime} }},{n}_{{s}^{{primeprime} }}). Multi-partite interactions based on bipartite interactions do not seem to be an uncommon scenario48. However, there may be systems where nonzero coefficients ({gamma }_{s{s}^{{prime} }{s}^{{primeprime} }}) couple all species. This poses a challenge for mechanistic theories in general. Then, ‘simpler subsystems’ that have to be included in the DFTe workflow of Fig. 1a can only refer to situations where other energy components are absent, such as resource terms or complex environments. For example, the coefficients ({gamma }_{s{s}^{{prime} }{s}^{{primeprime} }}) could be extracted in an experiment with a controlled simple environment and then used to model the interacting species in a real-world setting. For (({alpha }_{s},, {beta }_{{s}^{{prime} }})=(1,1)) we identify the contact interaction in physics as ({gamma }_{s{s}^{{prime} }}propto delta ({{{{{{{bf{r}}}}}}}}-{{{{{{{{bf{r}}}}}}}}}^{{prime} })) with the two-dimensional delta function δ( ), while the Coulomb interaction amounts to setting ({gamma }_{s{s}^{{prime} }}propto 1/|{{{{{{{bf{r}}}}}}}}-{{{{{{{{bf{r}}}}}}}}}^{{prime} }|). The mechanistic effect of these interaction kernels on the density distributions is the same in ecology as it is in physics—a mathematical insight that inspired us to build ecological analogues to the phenomenology of quantum gases, which feature functionals of the kind in Eq. (6). Note that we do not introduce any quantum effects into ecology despite the fact that the mathematical structure of DFTe is borrowed in part from quantum physics. While the contact interaction is a suitable candidate for plants and especially microbes52, we expect long-range interactions (for example, repulsion of Coulomb type) to be more appropriate for species with long-range sensors, such as eyes. Both types of interactions feature in describing the ecosystems addressed in this work.In a natural setting the equilibrium abundances are ultimately constrained by the accessible resources. It is within these limits of resource availability that environment as well as intra- and inter-specific interactions can shape the density distributions. An energy term for penalising over- and underconsumption of resources is thus of central importance. Each species consumes resources from some of the K provided resources, indexed by k. A subset of species consumes the locally available resource density ρk(r) according to the resource requirements νks, which represent the absolute amount of resource k consumed by one individual (or aggregated constituent) of species s. The simple quadratic functional$${E}_{{{{{{{{rm{Res}}}}}}}}}[{{{{{{{bf{n}}}}}}}}]={int}_{A}({{{{{{{rm{d}}}}}}}}{{{{{{{bf{r}}}}}}}})mathop{sum }limits_{k=1}^{K}{{{{{{{{mathcal{L}}}}}}}}}_{k}left({{{{{{{bf{n}}}}}}}},, {rho }_{k}right)equiv zeta {int}_{A}({{{{{{{rm{d}}}}}}}}{{{{{{{bf{r}}}}}}}})mathop{sum }limits_{k=1}^{K}{w}_{k}({{{{{{{bf{r}}}}}}}}){left[mathop{sum }limits_{s=1}^{S}{nu }_{ks}{n}_{s}({{{{{{{bf{r}}}}}}}})-{rho }_{k}({{{{{{{bf{r}}}}}}}})right]}^{2}$$
    (7)
    proves appropriate. Here, νksns is the portion of resource density ρk that is consumed by species s. That is, νks  > 0 indicates that s requires resource k. If Eq. (7) is the total energy functional, then a single-species system with a single resource equilibrates with density n1(r) = ρ1(r)/ν11 at every position r, and additional DFTe energy components would modify this equilibrium. Predator–prey relationships are introduced by making species k a resource ({rho }_{k}=left]{n}_{k}right[), where (left]nright[) declares n a constant w.r.t. the functional differentiation of E, that is, the predator tends to align with the prey, not the prey with the predator. In view of the energy minimisation, the quadratic term in Eq. (7) entails that regions of low resource density ρk are less important than regions of high ρk. The different resources k have the same ability to limit the abundances, such that the limiting resource k = l at r has to come with the largest of weights wl(r), irrespective of the absolute amounts of resources at r. For example, the weights wk have to ensure that an essential but scarce mineral has (a priori) the same ability to limit the abundances as a resource like water, which might be abundant in absolute terms. To that end, we specify the weights$${w}_{k}({{{{{{{bf{r}}}}}}}})=frac{1}{{bar{rho }}_{k}^{2}}mathop{sum}limits_{s}eta ({nu }_{ks})exp left[sigma left(frac{{lambda }_{ks}}{{lambda }_{ls}}-1right)right],$$
    (8)
    which are inspired by the smooth minimum function, where σ  λls irrelevant at r. Using ({E}_{{{{{{{{rm{Res}}}}}}}}}), we show that an analytically solvable minimal example of two amensalistically interacting species already exhibits a plethora of resource-dependent equilibrium states (see Supplementary Notes and Supplementary Fig. 1).We specify the DFTe energy functional in Eq. (1) by summing Eqs. (2), (3), (6), and (7) and by (optionally) constraining the abundances to N via Lagrange multipliers μ:$$E[{{{{{{{bf{n}}}}}}}},, {{{{{{{boldsymbol{mu }}}}}}}}]({{{{{{{bf{N}}}}}}}}) equiv E[{{{{{{{bf{n}}}}}}}}]+{E}_{{{{{{{{boldsymbol{mu }}}}}}}}}[{{{{{{{bf{n}}}}}}}}]({{{{{{{bf{N}}}}}}}})\ equiv {E}_{{{{{{{{rm{dis}}}}}}}}}[{{{{{{{bf{n}}}}}}}}]+{E}_{{{{{{{{rm{env}}}}}}}}}[{{{{{{{bf{n}}}}}}}}]+{E}_{gamma }[{{{{{{{bf{n}}}}}}}}]+{E}_{{{{{{{{rm{Res}}}}}}}}}[{{{{{{{bf{n}}}}}}}}]+mathop{sum }limits_{s=1}^{S}{mu }_{s}left({N}_{s}-{int}_{A}({{{{{{{rm{d}}}}}}}}{{{{{{{bf{r}}}}}}}}),{n}_{s}right).$$
    (9)
    Uniform situations are characterised by spatially constant ingredients ns = Ns/A, ρk = Rk/A, coefficients τs, etc. for the DFTe energy, such that Eq. (9) reduces to a function E(N) with building blocks$${E}_{{{{{{{{rm{dis}}}}}}}}}longrightarrow frac{1}{2,A}mathop{sum }limits_{s=1}^{S}{tau }_{s},{N}_{s}^{2},$$
    (10)
    $${E}_{{{{{{{{rm{env}}}}}}}}}longrightarrow mathop{sum }limits_{s=1}^{S}{V}_{s}^{{{{{{{{rm{env}}}}}}}}},{N}_{s},$$
    (11)
    $${E}_{gamma }longrightarrow mathop{sum }limits_{{s,{s}^{{prime} }!=!1}atop {{s}^{{prime} }ne s}}^{S}frac{{N}_{s}^{{alpha }_{s}},{gamma }_{s{s}^{{prime} }},{N}_{{s}^{{prime} }}^{{beta }_{{s}^{{prime} }}}}{{A}^{{alpha }_{s}+{beta }_{{s}^{{prime} }}-1}},$$
    (12)
    $${E}_{{{{{{{{rm{Res}}}}}}}}}longrightarrow Amathop{sum }limits_{k=1}^{K}{{{{{{{{mathcal{L}}}}}}}}}_{k}left({{{{{{{bf{N}}}}}}}}/A,, {R}_{k}/Aright).$$
    (13)
    Ecosystem equilibria from the DFTe energy functionalThe general form of Eq. (9) gives rise to two types of minimisers (viz., equilibria): First, we term$${{{{{{{mathcal{H}}}}}}}}({{{{{{{bf{N}}}}}}}})equiv E[tilde{{{{{{{{bf{n}}}}}}}}}]equiv mathop{min }limits_{{{{{{{{bf{n}}}}}}}}}left{E[{{{{{{{bf{n}}}}}}}}],left|,{int}_{A}({{{{{{{rm{d}}}}}}}}{{{{{{{bf{r}}}}}}}}),{{{{{{{bf{n}}}}}}}}({{{{{{{bf{r}}}}}}}})={{{{{{{bf{N}}}}}}}},{{{{{{{rm{(fixed)}}}}}}}}right.right}$$
    (14)
    the ‘DFTe hypersurface’, with (tilde{{{{{{{{bf{n}}}}}}}}}) the energy-minimising spatial density profiles for given (fixed) N. Second, the ecosystem equilibrium is attained at the equilibrium abundances (hat{{{{{{{{bf{N}}}}}}}}}={int}_{A}({{{{{{{rm{d}}}}}}}}{{{{{{{bf{r}}}}}}}}),hat{{{{{{{{bf{n}}}}}}}}}({{{{{{{bf{r}}}}}}}})), which yield the global energy minimum$${{{{{{{mathcal{H}}}}}}}}(hat{{{{{{{{bf{N}}}}}}}}})=mathop{min }limits_{{{{{{{{bf{N}}}}}}}}},{{{{{{{mathcal{H}}}}}}}}({{{{{{{bf{N}}}}}}}}),$$
    (15)
    where the minimisation samples all admissible abundances, that is, ({{{{{{{bf{N}}}}}}}}in {left({{mathbb{R}}}_{0}^{+}right)}^{times S}) if no further constraints are imposed.The direct minimisation of E[n] is most practical for uniform systems, which only require us to minimise E(N) over an S-dimensional space of abundances. For the general nonuniform case, we adopt a two-step strategy that reflects Eqs. (14) and (15). First, we obtain the equilibrated density distributions on ({{{{{{{mathcal{H}}}}}}}}) for fixed N from the computational DPFT framework26,27,28,29,30,31. Second, a conjugate gradient descent searches ({{{{{{{mathcal{H}}}}}}}}({{{{{{{bf{N}}}}}}}})) for the global minimiser (hat{{{{{{{{bf{N}}}}}}}}}). Technically, we perform the computationally more efficient descent in μ-space. Local minima are frequently encountered, and we identify the best candidate for the global minimum from many individual runs that are initialised with random μ. Note that system realisations with energies close to the global minimum, especially local minima, are likely observable in reality, assuming that the system can equilibrate at all. There is always an equilibrium if the energy functional is bounded from below, together with the fact that the support (abundances/densities) of the energy functional is finite in any practical application. If some DFTe energy components are chosen (too) negative, the system can be unstable, in which case the energy functional has no minimum and is inappropriate for modelling the equilibrium in question. This means that another energy functional has to be considered, or, in the worst case, that DFTe is incapable of simulating this system. We also caution that no numerical optimisation algorithms for non-convex black-box functions can guarantee to find the global minimum, not even approximately. Without analytically available characteristics of the global minimum, all one may hope for are candidates of the minimiser, and those may not even be local minima—there is no way to be certain that an optimum proposed by a numerical optimisation algorithm is stable.Density-potential functional theory (DPFT) in Thomas–Fermi (TF) approximationDefining$${V}_{s}({{{{{{{bf{r}}}}}}}})={mu }_{s}-frac{delta {E}_{{{{{{{{rm{dis}}}}}}}}}[{{{{{{{bf{n}}}}}}}}]}{delta {n}_{s}({{{{{{{bf{r}}}}}}}})}$$
    (16)
    for all s, we obtain the reversible Legendre transform$${E}_{{{{{{{{rm{dis}}}}}}}}}^{{{{{{{{rm{L}}}}}}}}}[{{{{{{{bf{V}}}}}}}}-{{{{{{{boldsymbol{mu }}}}}}}}]={E}_{{{{{{{{rm{dis}}}}}}}}}[{{{{{{{bf{n}}}}}}}}]+mathop{sum }limits_{s=1}^{S}{int}_{A}({{{{{{{rm{d}}}}}}}}{{{{{{{bf{r}}}}}}}}),({V}_{s}-{mu }_{s}),{n}_{s}$$
    (17)
    of the dispersal energy and thereby supplement the total energy with the additional variables V:$$E[{{{{{{{bf{V}}}}}}}},, {{{{{{{bf{n}}}}}}}},, {{{{{{{boldsymbol{mu }}}}}}}}]({{{{{{{bf{N}}}}}}}})={E}_{{{{{{{{rm{dis}}}}}}}}}^{{{{{{{{rm{L}}}}}}}}}[{{{{{{{bf{V}}}}}}}}-{{{{{{{boldsymbol{mu }}}}}}}}]-{int}_{A}({{{{{{{rm{d}}}}}}}}{{{{{{{bf{r}}}}}}}}),{{{{{{{bf{n}}}}}}}}cdot ({{{{{{{bf{V}}}}}}}}-{{{{{{{{bf{V}}}}}}}}}^{{{{{{{{rm{env}}}}}}}}})+{E}_{{{{{{{{rm{int}}}}}}}}}[{{{{{{{bf{n}}}}}}}}]+{{{{{{{boldsymbol{mu }}}}}}}}cdot {{{{{{{bf{N}}}}}}}}.$$
    (18)
    This density-potential functional is equivalent to (but more flexible than) the density-only functional E[n,  μ](N). The minimisers of E[n] are thus among the stationary points of Eq. (18) and are obtained by solving$${n}_{s}[{V}_{s}-{mu }_{s}]({{{{{{{bf{r}}}}}}}})=frac{delta {E}_{{{{{{{{rm{dis}}}}}}}}}^{{{{{{{{rm{L}}}}}}}}}[{V}_{s}-{mu }_{s}]}{delta {V}_{s}({{{{{{{bf{r}}}}}}}})}$$
    (19)
    and$${V}_{s}[{{{{{{{bf{n}}}}}}}}]({{{{{{{bf{r}}}}}}}})={V}_{s}^{{{{{{{{rm{env}}}}}}}}}({{{{{{{bf{r}}}}}}}})+frac{delta {E}_{{{{{{{{rm{int}}}}}}}}}[{{{{{{{bf{n}}}}}}}}]}{delta {n}_{s}({{{{{{{bf{r}}}}}}}})}$$
    (20)
    self-consistently for all ns while enforcing ∫A(dr) ns(r) = Ns. Specifically, starting from V(0) = Venv, such that ({n}_{s}^{(0)}={n}_{s}[{V}_{s}^{(0)}-{mu }_{s}^{(0)}]), we iterate$${n}_{s}^{(i)}mathop{longrightarrow }limits^{{{{{{{{rm{equation}}}}}}}},(20)}{V}_{s}^{(i+1)}={V}_{s}[{{{{{{{{bf{n}}}}}}}}}^{(i)}]mathop{longrightarrow }limits^{{{{{{{{rm{equation}}}}}}}},(19)}{n}_{s}^{(i+1)}=(1-{theta }_{s}),{n}_{s}^{(i)}+{theta }_{s},{n}_{s}left[{V}_{s}^{(i+1)}-{mu }_{s}^{(i+1)}right]$$
    (21)
    until all ns are converged sufficiently. This self-consistent loop establishes a trade-off between dispersal energy and effective environment V by forcing an initial out-of-equilibrium density distribution to equilibrate at fixed N. We adjust ({mu }_{s}^{(i)}) in each iteration i such that ({n}_{s}^{(i)}) integrates to Ns. Small enough density admixtures, with 0  More

  • in

    Differential global distribution of marine picocyanobacteria gene clusters reveals distinct niche-related adaptive strategies

    Different picocyanobacterial communities exhibit distinct gene repertoiresTo analyze the distribution of Prochlorococcus and Synechococcus reads along the Tara Oceans transect, metagenomic reads corresponding to the bacterial size fraction were recruited against 256 picocyanobacterial reference genomes, including SAGs and MAGs representative of uncultured lineages (e.g., Prochlorococcus HLIII-IV, Synechococcus EnvA or EnvB). This yielded a total of 1.07 billion recruited reads, of which 87.7% mapped onto Prochlorococcus genomes and 12.3% onto Synechococcus genomes, which were then functionally assigned by mapping them onto the manually curated Cyanorak v2.1 CLOG database [19]. In order to identify picocyanobacterial genes potentially involved in niche adaptation, we analyzed the distribution across the oceans of flexible (i.e. non-core) genes. Clustering of Tara Oceans stations according to the relative abundance of flexible genes resulted in three well-defined clusters for Prochlorococcus (Fig. 1A), which matched those obtained when stations were clustered according to the relative abundance of Prochlorococcus ESTUs, as assessed using the high-resolution marker gene petB, encoding cytochrome b6 (Fig. 1A; [24]). Only a few discrepancies can be observed between the two trees, including stations TARA-070 that displayed one of the most disparate ESTU compositions and TARA-094, dominated by the rare HLID ESTU (Fig. 1A). Similarly, for Synechococcus, most of the eight assemblages of stations discriminated based on the relative abundance of ESTUs (Fig. 1B) were also retrieved in the clustering based on flexible gene abundance, except for a few intra-assemblage switches between stations, notably those dominated by ESTU IIA (Fig. 1B). Despite these few variations, four major clusters can be clearly delineated in both Synechococcus trees, corresponding to four broadly defined ecological niches, namely (i) cold, nutrient-rich, pelagic or coastal environments (blue and light red in Fig. 1B), (ii) Fe-limited environments (purple and grey), (iii) temperate, P-depleted, Fe-replete areas (yellow) and (iv) warm, N-depleted, Fe-replete regions (dark red). This correspondence between taxonomic and functional information was also confirmed by the high congruence between distance matrices based on ESTU relative abundance and on CLOG relative abundance (p-value  0.01) are marked by a cross. Φsat: index of iron limitation derived from satellite data. PAR30: satellite-derived photosynthetically available radiation at the surface, averaged on 30 days. DCM: depth of the deep chlorophyll maximum.Full size imageIdentification of individual genes potentially involved in niche partitioningTo identify genes relevant for adaptation to a specific set of environmental conditions and enriched in specific ESTU assemblages, we selected the most representative genes from each module (Dataset 5; Figs. 3, S2). Most genes retrieved this way encode proteins of unknown or hypothetical function (85.7% of 7,485 genes). However, among the genes with a functional annotation (Dataset 6), a large fraction seems to have a function related to their realized environmental niche (Figs. 3, S2). For instance, many genes involved in the transport and assimilation of nitrite and nitrate (nirA, nirX, moaA-C, moaE, mobA, moeA, narB, M, nrtP; [6]) as well as cyanate, an organic form of nitrogen (cynA, B, D, S), are enriched in the Prochlorococcus blue module, which is correlated with the HLIIA-D ESTU and to low inorganic N, P, and silica levels and anti-correlated with Fe availability (Fig. 2A–C). This is consistent with previous studies showing that while only a few Prochlorococcus strains in culture possess the nirA gene and even less the narB gene, natural Prochlorococcus populations inhabiting N-poor areas do possess one or both of these genes [40,41,42]. Similarly, numerous genes amongst the most representative of Prochlorococcus brown, red and turquoise modules are related to adaptation of HLIIIA/IVA, HLIA and LLIA ESTUs to Fe-limited, cold P-limited, and cold, mixed waters, respectively (Fig. 3). Comparable results were obtained for Synechococcus, although the niche delineation was less clear than for Prochlorococcus since genes within each module exhibited lower correlations with the module eigenvalue (Fig. S2). These results therefore constitute a proof of concept that this network analysis was able to retrieve niche-related genes from metagenomics data.Fig. 3: Violin plots highlighting the most representative genes of each Prochlorococcus module.For each module, each gene is represented as a dot positioned according to its correlation with the eigengene for each module, the most representative genes being localized on top of each violin plot. Genes mentioned in the text and/or in Dataset 6 have been colored according to the color of the corresponding module, indicated by a colored bar above each module. The text above violin plots indicates the most significant environmental parameter(s) and/or ESTU(s) for each module, as derived from Fig. 2.Full size imageIdentification of eCAGs potentially involved in niche partitioningIn order to better understand the function of niche-related genes, notably of the numerous unknowns, we then integrated global distribution data with gene synteny in reference genomes using a network approach (Datasets 7, 8). This led us to identify clusters of adjacent genes in reference genomes, and thus potentially involved in the same metabolic pathway (Figs. 4, S3, S4; Dataset 6). These clusters were defined within each module and thus encompass genes with similar distribution and abundance in situ. Hereafter, these environmental clusters of adjacent genes will be called “eCAGs”.Fig. 4: Delineation of Prochlorococcus eCAGs, defined as a set of genes that are both adjacent in reference genomes and share a similar in situ distribution.Nodes correspond to individual genes with their gene name (or significant numbers of the CK number, e.g. 1234 for CK_00001234) and are colored according to their WGCNA module. A link between two nodes indicates that these two genes are less than five genes apart in at least one genome. The bottom insert shows the most significant environmental parameter(s) and/or ESTU(s) for each module, as derived from Fig. 2.Full size imageeCAGs related to nitrogen metabolismThe well-known nitrate/nitrite gene cluster involved in uptake and assimilation of inorganic forms of N (see above), which is present in most Synechococcus genomes (Dataset 6), was expectedly not restricted to a particular niche in natural Synechococcus populations, as shown by its quasi-absence from WGCNA modules. In Prochlorococcus, this cluster is separated into two eCAGs enriched in low-N areas (Fig. S5A, B), most genes being included in Pro-eCAG_002, present in only 13 out of 118 Prochlorococcus genomes, while nirA and nirX form an independent eCAG (Pro-eCAG_001) due to their presence in many more genomes. The quasi-core ureA-G/urtB-E genomic region was also found to form a Prochlorococcus eCAG (Pro-eCAG_003) that was impoverished in low-Fe compared to other regions (Fig. S5C, D), in agreement with its presence in only two out of six HLIII/IV genomes. We also uncovered several other Prochlorococcus and Synechococcus eCAGs that seem to be involved in the transport and/or assimilation of more unusual and/or complex forms of nitrogen, which might either be degraded into elementary N molecules or possibly directly used by cells for e.g. the biosynthesis of proteins or DNA. Indeed, we detected in both genera an eCAG (Pro-eCAG_004 and Syn-eCAG_001; Fig. S6A, B; Dataset 6) that encompasses speB2, an ortholog of Synechocystis PCC 6803 sll1077, previously annotated as encoding an agmatinase [29, 43] and which was recently characterized as a guanidinase that degrades guanidine rather than agmatine to urea and ammonium [44]. E. coli produces guanidine under nutrient-poor conditions, suggesting that guanidine metabolism is biologically significant and potentially prevalent in natural environments [44, 45]. Furthermore, the ykkC riboswitch candidate, which was shown to specifically sense guanidine and to control the expression of a variety of genes involved in either guanidine metabolism or nitrate, sulfate, or bicarbonate transport, is located immediately upstream of this eCAG in Synechococcus reference genomes, all genes of this cluster being predicted by RegPrecise 3.0 to be regulated by this riboswitch (Fig. S6C; [45, 46]). The presence of hypA and B homologs within this eCAG furthermore suggests that, in the presence of guanidine, these homologs could be involved in the insertion of Ni2+, or another metal cofactor, in the active site of guanidinase. The next three genes of this eCAG, which encode an ABC transporter similar to the TauABC taurine transporter in E. coli (Fig. S6C), could be involved in guanidine transport in low-N areas. Of note, the presence in most Synechococcus/Cyanobium genomes possessing this eCAG of a gene encoding a putative Rieske Fe-sulfur protein (CK_00002251) downstream of this gene cluster, seems to constitute a specificity compared to the homologous gene cluster in Synechocystis sp. PCC 6803. The presence of this Fe-S protein suggests that Fe is used as a cofactor in this system and might explain why this gene cluster is absent from picocyanobacteria thriving in low-Fe areas, while it is present in a large proportion of the population in most other oceanic areas (Fig. S6A, B).Another example of the use of organic N forms concerns compounds containing a cyano radical (C ≡ N). The cyanate transporter genes (cynABD) were indeed found in a Prochlorococcus eCAG (Pro-eCAG_005, also including the conserved hypothetical gene CK_00055128; Fig. S7A, B). While only a small proportion of the Prochlorococcus community possesses this eCAG in warm, Fe-replete waters, it is absent from other oceanic areas in accordance with its low frequency in Prochlorococcus genomes (present in only two HLI and five HLII genomes). In Synechococcus these genes were not included in a module, and thus are not in an eCAG (Dataset 6; Fig. S7C), but seem widely distributed despite their presence in only a few Synechococcus genomes (mostly in clade III strains; [6, 47, 48]). Interestingly, we also uncovered a 7-gene eCAG (Pro-eCAG_006 and Syn-eCAG_002), encompassing a putative nitrilase gene (nitC), which also suggests that most Synechococcus cells and a more variable fraction of the Prochlorococcus population could use nitriles or cyanides in warm, Fe-replete waters and more particularly in low-N areas such as the Indian Ocean (Fig. 5A, B). The whole operon (nitHBCDEFG; Fig. 5C), called Nit1C, was shown to be upregulated in the presence of cyanide and to trigger an increase in the rate of ammonia accumulation in the heterotrophic bacterium Pseudomonas fluorescens [49], suggesting that like cyanate, cyanide could constitute an alternative nitrogen source in marine picocyanobacteria as well. However, given the potential toxicity of these C ≡ N-containing compounds [50], we cannot exclude that these eCAGs could also be devoted to cell detoxification [45, 47]. Such an example of detoxification has been described for arsenate and chromate that, as analogs of phosphate and sulfate respectively, are toxic to marine phytoplankton and must be actively exported out of the cells [51, 52].Fig. 5: Global distribution map of the eCAG involved in nitrile or cyanide transport and assimilation.A Prochlorococcus Pro-eCAG_006. B Synechococcus Syn-eCAG_002. C The genomic region in Prochlorococcus marinus MIT9301. The size of the circle is proportional to relative abundance of each genus as estimated based on the single-copy core gene petB and this gene was also used to estimate the relative abundance of other genes in the population. Black dots represent Tara Oceans stations for which Prochlorococcus or Synechococcus read abundance was too low to reach the threshold limit.Full size imageWe detected the presence of an eCAG encompassing asnB, pyrB2, and pydC (Pro-eCAG_007, Syn-eCAG_003, Fig. S8), which could contribute to an alternative pyrimidine biosynthesis pathway and thus provide another way for cells to recycle complex nitrogen forms. While this eCAG is found in only one fifth of HLII genomes and in quite specific locations for Prochlorococcus, notably in the Red Sea, it is found in most Synechococcus cells in warm, Fe-replete, N and P-depleted niches, consistent with its phyletic pattern showing its absence only from most clade I, IV, CRD1, and EnvB genomes (Fig. S8; Dataset 6). More generally, most N-uptake and assimilation genes in both genera were specifically absent from Fe-depleted areas, including the nirA/narB eCAG for Prochlorococcus, as mentioned by Kent et al. [36] as well as guanidinase and nitrilase eCAGs. In contrast, picocyanobacterial populations present in low-Fe areas possess, in addition to the core ammonium transporter amt1, a second transporter amt2, also present in cold areas for Synechococcus (Fig. S9). Additionally, Prochlorococcus populations thriving in HNLC areas also possess two amino acid-related eCAGs that are present in most Synechococcus genomes, the first one involved in polar amino acid N-II transport (Pro-eCAG_008; natF-G-H-bgtA; [53]; Fig. S10A, B) and the second one (leuDH-soxA-CK_00001744, Pro-eCAG_009, Fig. S10C, D) that notably encompasses a leucine dehydrogenase, able to produce ammonium from branched-chain amino acids. This highlights the profound difference in N acquisition mechanisms between HNLC regions and Fe-replete, N-deprived areas: the primary nitrogen sources for picocyanobacterial populations dwelling in HNLC areas seem to be ammonium and amino acids, while N acquisition mechanisms are more diverse in N-limited, Fe-replete regions.eCAGs related to phosphorus metabolismAdaptation to P depletion has been well documented in marine picocyanobacteria showing that while in P-replete waters Prochlorococcus and Synechococcus essentially rely on inorganic phosphate acquired by core transporters (PstSABC), strains isolated from low-P regions and natural populations thriving in these areas additionally contain a number of accessory genes related to P metabolism, located in specific genomic islands [6, 14, 30,31,32, 54]. Here, we indeed found in Prochlorococcus an eCAG containing the phoBR operon (Pro-eCAG_010) that encodes a two-component system response regulator, as well as an eCAG including the alkaline phosphatase phoA (Pro-eCAG_011), both present in virtually the whole Prochlorococcus population from the Mediterranean Sea, the Gulf of Mexico and the Western North Atlantic Ocean, which are known to be P-limited [30, 55] (Fig. S11A, B). By comparison, in Synechococcus, we only identified the phoBR eCAG (Syn-eCAG_005, Fig. S11C) that is systematically present in warm waters whatever the limiting nutrient, in agreement with its phyletic pattern in reference genomes showing its specific absence from cold thermotypes (clades I and IV, Dataset 6). Furthermore, although our analysis did not retrieve them within eCAGs due to the variability of gene content and synteny in this genomic region, even within each genus, several other P-related genes were enriched in low-P areas but partially differed between Prochlorococcus and Synechococcus (Figs. 3, S2, S11; Dataset 6). While the genes putatively encoding a chromate transporter (ChrA) and an arsenate efflux pump ArsB were present in both genera in different proportions, a putative transcriptional phosphate regulator related to PtrA (CK_00056804; [56]) was specific to Prochlorococcus. Synechococcus in contrast harbors a large variety of alkaline phosphatases (PhoX, CK_00005263 and CK_00040198) as well as the phosphate transporter SphX (Fig. S11).Phosphonates, i.e. reduced organophosphorus compounds containing C–P bonds that represent up to 25% of the high-molecular-weight dissolved organic P pool in the open ocean, constitute an alternative P form for marine picocyanobacteria [57]. We indeed identified, in addition to the core phosphonate ABC transporter (phnD1-C1-E1), a second previously unreported putative phosphonate transporter phnC2-D2-E2-E3 (Pro-eCAG_012; Fig. 6A). Most of the Prochlorococcus population in strongly P-limited areas of the ocean harbored these genes, while they were absent from other areas, consistent with their presence in only a few Prochlorococcus and no Synechococcus genomes. Furthermore, as previously described [58,59,60], we found a Prochlorococcus eCAG encompassing the phnYZ operon involved in C-P bond cleavage, the putative phosphite dehydrogenase ptxD, and the phosphite and methylphosphonate transporter ptxABC (Pro-eCAG_0013, Dataset 6; Fig. 6B, [60,61,62]). Compared to these previous studies that mainly reported the presence of these genes in Prochlorococcus cells from the North Atlantic Ocean, here we show that they actually occur in a much larger geographic area, including the Mediterranean Sea, the Gulf of Mexico, and the ALOHA station (TARA_132) in the North Pacific, even though they were present in a fairly low fraction of Prochlorococcus cells. These genes occurred in an even larger proportion of the Synechococcus population, although not found in an eCAG for this genus (Fig. S12; Dataset 6). Synechococcus cells from the Mediterranean Sea, a P-limited area dominated by clade III [24], seem to lack phnYZ, in agreement with the phyletic pattern of these genes in reference genomes, showing the absence of this two-gene operon in the sole clade III strain that possesses the ptxABDC gene cluster. In contrast, the presence of the complete gene set (ptxABDC-phnYZ) in the North Atlantic, at the entrance of the Mediterranean Sea, and in several clade II reference genomes rather suggests that it is primarily attributable to this clade. Altogether, our data indicate that part of the natural populations of both Prochlorococcus and Synechococcus would be able to assimilate phosphonate and phosphite as alternative P-sources in low-P areas using the ptxABDC-phnYZ operon. Yet, the fact that no picocyanobacterial genome except P. marinus RS01 (Fig. 6C) possesses both phnC2-D2-E2-E3 and phnYZ, suggests that the phosphonate taken up by the phnC2-D2-E2-E3 transporter could be incorporated into cell surface phosphonoglycoproteins that may act to mitigate cell mortality by grazing and viral lysis, as recently suggested [63].Fig. 6: Global distribution map of eCAGs putatively involved in phosphonate and phosphite transport and assimilation.A Prochlorococcus Pro-eCAG_012 putatively involved in phosphonate transport. B Prochlorococcus Pro-eCAG_013, involved in phosphonate/phosphite uptake and assimilation and phosphonate C-P bond cleavage. C The genomic region encompassing both phnC2-D2-E2-E3 and ptxABDC-phnYZ specific to P. marinus RS01. The size of the circle is proportional to relative abundance of Prochlorococcus as estimated based on the single-copy core gene petB and this gene was also used to estimate the relative abundance of other genes in the population. Black dots represent Tara Oceans stations for which Prochlorococcus read abundance was too low to reach the threshold limit.Full size imageeCAGs related to iron metabolismAs for macronutrients, it has been hypothesized that the survival of marine picocyanobacteria in low-Fe regions was made possible through several strategies, including the loss of genes encoding proteins that contain Fe as a cofactor, the replacement of Fe by another metal cofactor, and the acquisition of genes involved in Fe uptake and storage [14, 15, 36, 39, 64]. Accordingly, several eCAGs encompassing genes encoding proteins interacting with Fe were found in modules anti-correlated to HNLC regions in both genera. These include three subunits of the (photo)respiratory complex succinate dehydrogenase (SdhABC, Pro-eCAG_014, Syn-eCAG_006, Fig. S13; [65]) and Fe-containing proteins encoded in most abovementioned eCAGs involved in N or P metabolism, such as the guanidinase (Fig. S6), the NitC1 (Fig. 5), the pyrB2 (Fig. S8), the phosphonate (Fig. 6, S12), and the urea and inorganic nitrogen eCAGs (Fig. S5). Most Synechococcus cells thriving in Fe-replete areas also possess the sodT/sodX eCAG (Syn-eCAG_007, Fig. S14A, B) involved in nickel transport and maturation of the Ni-superoxide dismutase (SodN), these three genes being in contrast core in Prochlorococcus. Additionally, Synechococcus from Fe-replete areas, notably from the Mediterranean Sea and the Indian Ocean, specifically possess two eCAGs (Syn-eCAG_008 and 009; Fig. S14C, D), involved in the biosynthesis of a polysaccharide capsule that appear to be most similar to the E. coli groups 2 and 3 kps loci [66]. These extracellular structures, known to provide protection against biotic or abiotic stress, were recently shown in Klebsiella to provide a clear fitness advantage in nutrient-poor conditions since they were associated with increased growth rates and population yields [67]. However, while these authors suggested that capsules may play a role in Fe uptake, the significant reduction in the relative abundance of kps genes in low-Fe compared to Fe-replete areas (t-test p-value  More

  • in

    Spatio-temporal visualization and forecasting of $${text {PM}}_{10}$$ PM 10 in the Brazilian state of Minas Gerais

    Martins, L. C. et al. Poluição atmosférica e atendimentos por pneumonia e gripe em São Paulo, Brasil. Revista de Saúde Pública 36, 88–94 (2002).Article 
    PubMed 

    Google Scholar 
    Goudarzi, G. et al. Health risk assessment on human exposed to heavy metals in the ambient air PM10 in Ahvaz, Southwest Iran. Int. J. Biometeorol. 62, 1075–1083 (2018).Article 
    ADS 
    PubMed 

    Google Scholar 
    Makri, A. & Stilianakis, N. I. Vulnerability to air pollution health effects. Int. J. Hygiene Environ. Health 211, 326–336 (2008).Article 

    Google Scholar 
    Idani, E. et al. Characteristics, sources, and health risks of atmospheric PM10-bound heavy metals in a populated Middle Eastern City. Toxin Rev. 39, 266–274 (2020).Article 

    Google Scholar 
    Wang, J., Hu, Z., Chen, Y., Chen, Z. & Xu, S. Contamination characteristics and possible sources of PM10 and PM2.5 in different functional areas of Shanghai, China. Atmos. Environ. 68, 221–229 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Guarnieri, M. & Balmes, J. R. Outdoor air pollution and asthma. Lancet 383, 1581–1592 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson, J. O., Thundiyil, J. G. & Stolbach, A. Clearing the air: A review of the effects of particulate matter air pollution on human health. J. Med. Toxicol. 8, 166–175 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Roy, D., Seo, Y.-C., Kim, S. & Oh, J. Human health risks assessment for airborne PM10-bound metals in Seoul, Korea. Environ. Sci. Pollut. Res. 26, 24247–24261 (2019).Article 
    CAS 

    Google Scholar 
    Maesano, C. et al. Impacts on human mortality due to reductions in PM10 concentrations through different traffic scenarios in Paris, France. Sci. The Total. Environ. 698, 134257 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Maleki, H., Sorooshian, A., Goudarzi, G., Nikfal, A. & Baneshi, M. M. Temporal profile of PM10 and associated health effects in one of the most polluted cities of the world (Ahvaz, Iran) between 2009 and 2014. Aeolian Res. 22, 135–140 (2016).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Medina, S., Le Tertre, A. & Saklad, M. The Apheis project: Air pollution and health—A European information system. Air Qual. Atmos. Heal. 2, 185–198 (2009).Article 

    Google Scholar 
    Medina, S., Plasencia, A., Ballester, F., Mücke, H. & Schwartz, J. Apheis: Public health impact of PM10 in 19 European cities. J. Epidemiol. Community Heal. 58, 831–836 (2004).Article 
    CAS 

    Google Scholar 
    Pérez-Martínez, P. J., de Fátima Andrade, M. & de Miranda, R. M. Traffic-related air quality trends in São Paulo, Brazil. J. Geophys. Res. Atmos. 120, 6290–6304 (2015).Article 
    ADS 

    Google Scholar 
    Sánchez-Ccoyllo, O. R. et al. Vehicular particulate matter emissions in road tunnels in Sao Paulo, Brazil. Environ. Monitoring Assess. 149, 241–249 (2009).Article 

    Google Scholar 
    Ribeiro, H. & de Assunção, J. V. Historical overview of air pollution in São Paulo Metropolitan Area, Brazil: Influence of mobile sources and related health effects. WIT Trans. Built Environ. 52,10 (2001).Bravo, M. A. & Bell, M. L. Spatial heterogeneity of PM10 and O3 in São Paulo, Brazil, and implications for human health studies. J. Air Waste Manag. Assoc. 61, 69–77 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    De Freitas, E. D., Martins, L. D., da Silva Dias, P. L. & de Fátima Andrade, M. A simple photochemical module implemented in rams for tropospheric ozone concentration forecast in the metropolitan area of Sao Paulo, Brazil: Coupling and validation. Atmos. Environ. 39, 6352–6361 (2005).Article 
    ADS 

    Google Scholar 
    Encalada-Malca, A. A., Cochachi-Bustamante, J. D., Rodrigues, P. C., Salas, R. & López-Gonzales, J. L. A spatio-temporal visualization approach of PM10 concentration data in Metropolitan Lima. Atmosphere 12, 609 (2021).Article 
    ADS 

    Google Scholar 
    do Meio Ambiente, C. N. Institutes the national air quality control programee. Tech. Rep., Official Journal of the Federative Republic of Brazil (1989).do Meio Ambiente, C. N. Sets standards of primary and secondary air quality and even the criteria for acute episodes of air pollution. Tech. Rep., Official Journal of the Federative Republic of Brazil (1990).Artaxo, P. O estado da qualidade do ar no brasil. Work. Pap. WRI Brasil 32 (2021).Costa, A. F., Hoek, G., Brunekreef, B. & Ponce de Leon, A. C. Air pollution and deaths among elderly residents of Sao Paulo, Brazil: An analysis of mortality displacement. Environ. Health Perspectives 125, 349–354 (2017).Article 
    CAS 

    Google Scholar 
    Bravo, M. A., Son, J., De Freitas, C. U., Gouveia, N. & Bell, M. L. Air pollution and mortality in São Paulo, Brazil: Effects of multiple pollutants and analysis of susceptible populations. J. Exposure Sci. Environ. Epidemiol. 26, 150–161 (2016).Article 
    CAS 

    Google Scholar 
    Chiarelli, P. S. et al. The association between air pollution and blood pressure in traffic controllers in Santo André, São Paulo, Brazil. Environ. Res. 111, 650–655 (2011).Article 
    CAS 

    Google Scholar 
    Ventura, L. M. B., de Oliveira Pinto, F., Soares, L. M., Luna, A. S. & Gioda, A. Forecast of daily PM2.5 concentrations applying artificial neural networks and holt-winters models. Air Qual. Atmos. Heal. 12, 317–325 (2019).Article 
    CAS 

    Google Scholar 
    Leão, M. L. P., Zhang, L. & da Silva Júnior, F. M. R. Effect of particulate matter (PM2.5 and PM10) on health indicators: Climate change scenarios in a Brazilian Metropolis. Environ. Geochem. Heal. 44, 1–12 (2022).Habermann, M. & Gouveia, N. Application of land use regression to predict the concentration of inhalable particular matter in São Paulo City, Brazil. Engenharia Sanit. e Ambiental 17, 155–162 (2012).Article 

    Google Scholar 
    Braga, A. L. F., Pereira, L. A. A., Procópio, M., André, P. A. D. & Saldiva, P. H. D. N. Association between air pollution and respiratory and cardiovascular diseases in Itabira, Minas Gerais State. Brazil. Cadernos de Saúde Pública 23, S570–S578 (2007).Article 
    PubMed 

    Google Scholar 
    Pinto, W. D. P., Reisen, V. A. & Monte, E. Z. Previsão da concentração de material particulado inalável, na região da grande vitória, ES, Brasil, utilizando o modelo sarimax. Engenharia Sanitária e Ambiental 23, 307–318 (2018).Article 

    Google Scholar 
    Schornobay-Lui, E. et al. Prediction of short and medium term PM10 concentration using artificial neural networks. Manag. Environ. Qual. An Int. J. 30, 414–436 (2018).Neto, P. S. D. M. et al. Neural-based ensembles for particulate matter forecasting. IEEE Access 9, 14470–14490 (2021).Article 

    Google Scholar 
    Albuquerque Filho, F. S. D., Madeiro, F., Fernandes, S. M., de Mattos Neto, P. S. & Ferreira, T. A. Time-series forecasting of pollutant concentration levels using particle swarm optimization and artificial neural networks. Química Nova 36, 783–789 (2013).Lei, T. M., Siu, S. W., Monjardino, J., Mendes, L. & Ferreira, F. Using machine learning methods to forecast air quality: A case study in Macao. Atmosphere 13, 1412 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Yu, T. et al. Study on the regional prediction model of PM2.5 concentrations based on multi-source observations. Atmos. Pollut. Res. 13, 101363 (2022).Article 
    CAS 

    Google Scholar 
    Li, J., Xu, G. & Cheng, X. Combining spatial pyramid pooling and long short-term memory network to predict PM2.5 concentration. Atmos. Pollut. Res. 13, 101309 (2022).Article 
    CAS 

    Google Scholar 
    Cordova, C. H. et al. Air quality assessment and pollution forecasting using artificial neural networks in Metropolitan Lima-Peru. Sci. Rep. 11, 1–19 (2021).Article 

    Google Scholar 
    Plocoste, T., Calif, R. & Jacoby-Koaly, S. Temporal multiscaling characteristics of particulate matter PM10 and ground-level ozone O3 concentrations in caribbean region. Atmos. Environ. 169, 22–35 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Calif, R. & Schmitt, F. G. Multiscaling and joint multiscaling description of the atmospheric wind speed and the aggregate power output from a wind farm. Nonlinear Process. Geophys. 21, 379–392 (2014).Article 
    ADS 

    Google Scholar 
    Hyndman, R. J. & Khandakar, Y. Automatic time series forecasting: The forecast package for r. J. Stat. Softw. 27, 1–22 (2008).Article 

    Google Scholar 
    Harvey, A. C. Forecasting, structural time series models and the Kalman filter (Cambridge University Press, 1990).Book 
    MATH 

    Google Scholar 
    Zhang, G. P. Time series forecasting using a hybrid arima and neural network model. Neurocomputing 50, 159–175 (2003).Article 
    MATH 

    Google Scholar 
    Liao, T. W. Clustering of time series data—A survey. Pattern Recognit. 38, 1857–1874 (2005).Article 
    ADS 
    MATH 

    Google Scholar 
    Bell, M. L., Samet, J. M. & Dominici, F. Time-series studies of particulate matter. Annu. Rev. Public Heal. 25, 247–280 (2004).Article 

    Google Scholar 
    Hyndman, R. J. & Athanasopoulos, G. Forecasting: Principles and Practice (OTexts, 2018).
    Google Scholar 
    Box, G. E., Hillmer, S. C. & Tiao, G. C. Analysis and modeling of seasonal time series. in Seasonal analysis of economic time series, 309–344 (NBER, 1978).Sulandari, W., Suhartono, Subanar & Rodrigues, P. C. Exponential smoothing on modeling and forecasting multiple seasonal time series: An overview. Fluctuation Noise Lett. 20, 2130003 (2021).Article 
    ADS 

    Google Scholar 
    Rodrigues, P. C., Awe, O. O., Pimentel, J. S. & Mahmoudvand, R. Modelling the behaviour of currency exchange rates with singular spectrum analysis and artificial neural networks. Stats 3, 137–157 (2020).Article 

    Google Scholar 
    Sako, K., Mpinda, B. N. & Rodrigues, P. C. Neural networks for financial time series forecasting. Entropy 24, 657 (2022).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coelho, Leite et al. Statistical and artificial neural networks models for electricity consumption forecasting in the Brazilian industrial sector. Energies 15, 588 (2022).Article 

    Google Scholar 
    Sulandari, W., Subanar, S., Lee, M. H. & Rodrigues, P. C. Time series forecasting using singular spectrum analysis, fuzzy systems and neural networks. MethodsX 7, 101015 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sulandari, W. et al. Indonesian electricity load forecasting using singular spectrum analysis, fuzzy systems and neural networks. Energy 190, 116408 (2020).Article 

    Google Scholar 
    Rodrigues, P. C. & Mahmoudvand, R. The benefits of multivariate singular spectrum analysis over the univariate version. J. Frankl. Inst. 355, 544–564 (2018).Article 
    MathSciNet 
    MATH 

    Google Scholar  More

  • in

    Microbial keystone taxa drive succession of plant residue chemistry

    Lal R, Bruce JP. The potential of world cropland soils to sequester C and mitigate the greenhouse effect. Environ Sci Policy. 1999;2:177–85.Article 
    CAS 

    Google Scholar 
    Wang J, Feng L, Palmer PI, Liu Y, Fang S, Bosch H, et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature. 2020;586:720–3.Article 
    CAS 
    PubMed 

    Google Scholar 
    Lal R. Managing soils and ecosystems for mitigating anthropogenic carbon emissions and advancing global food security. Bioscience. 2010;60:708–21.Article 

    Google Scholar 
    Rumpel C, Lehmann J, Chabbi A. ‘4 per 1,000’ initiative will boost soil carbon for climate and food security. Nature. 2018;553:27–27.Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhao Y, Wang M, Hu S, Zhang X, Ouyang Z, Zhang G, et al. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc Natl Acad Sci USA. 2018;115:4045–50.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yang F, Xu Y, Cui Y, Meng Y, Dong Y, Li R, et al. Variation of soil organic matter content in croplands of china over the last three decades (in Chinese). Acta Pedol Sin. 2017;5:1047–56.
    Google Scholar 
    Lehmann J, Hansel CM, Kaiser C, Kleber M, Maher K, Manzoni S, et al. Persistence of soil organic carbon caused by functional complexity. Nat Geosci. 2020;13:529–34.Article 
    CAS 

    Google Scholar 
    Schmidt M, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA. et al. Persistence of soil organic matter as an ecosystem property. Nature. 2011;478:49–56.Article 
    CAS 
    PubMed 

    Google Scholar 
    Lehmann J, Kleber M. The contentious nature of soil organic matter. Nature. 2015;528:60–68.Article 
    CAS 
    PubMed 

    Google Scholar 
    Cotrufo MF, Soong JL, Horton AJ, Campbell EE, Haddix ML, Wall DH, et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat Geosci. 2015;8:776–9.Article 
    CAS 

    Google Scholar 
    Schnitzer M, Monreal CM. Quo vadis soil organic matter research? A biological link to the chemistry of humification. Adv Agron. 2011;113:139–213.
    Google Scholar 
    Wang X, Sun B, Mao J, Sui Y, Cao X. Structural convergence of maize and wheat straw during two-year decomposition under different climate conditions. Environ Sci Technol. 2012;46:7159–65.Article 
    CAS 
    PubMed 

    Google Scholar 
    Liang C, Schimel JP, Jastrow JD. The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol. 2017;2:17105.Article 
    CAS 
    PubMed 

    Google Scholar 
    Wickings K, Grandy AS, Reed SC, Cleveland CC. The origin of litter chemical complexity during decomposition. Ecol Lett. 2012;15:1180–8.Article 
    PubMed 

    Google Scholar 
    Grandy AS, Neff JC. Molecular C dynamics downstream: the biochemical decomposition sequence and its impact on soil organic matter structure and function. Sci Total Environ. 2008;404:297–307.Article 
    CAS 
    PubMed 

    Google Scholar 
    Jenkinson DS, Ayanaba A. Decomposition of 14C labeled plant material under tropical conditions. Soil Sci Soc Am J. 1977;41:912–5.Article 
    CAS 

    Google Scholar 
    Li Y, Chen N, Harmon ME, Li Y, Cao X, Chappell MA, et al. Plant species rather than climate greatly alters the temporal pattern of litter chemical composition during long-term decomposition. Sci Rep. 2015;5:15783.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Preston CM, Nault JR, Trofymow JA, Smyth C, Grp CW. Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 1. Elemental composition, tannins, phenolics, and proximate fractions. Ecosystems. 2009;12:1053–77.Article 
    CAS 

    Google Scholar 
    Kallenbach CM, Frey SD, Grandy AS. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat Commun. 2016;7:13630.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wickings K, Stuart Grandy A, Reed S, Cleveland C. Management intensity alters decomposition via biological pathways. Biogeochemistry. 2011;104:365–79.Article 

    Google Scholar 
    Schimel JP, Schaeffer SM. Microbial control over carbon cycling in soil. Front Microbiol. 2012;3:348.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sun B, Wang X, Wang F, Jiang Y, Zhang X-X. Assessing the relative effects of geographic location and soil type on microbial communities associated with straw decomposition. Appl Environ Microbiol. 2013;79:3327.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Balser TC, Firestone MK. Linking microbial community composition and soil processes in a California annual grassland and mixed-conifer forest. Biogeochemistry. 2005;73:395–415.Article 
    CAS 

    Google Scholar 
    Grandy AS, Neff JC, Weintrau MN. Carbon structure and enzyme activities in alpine and forest ecosystems. Soil Biol Biochem. 2007;39:2701–11.Article 
    CAS 

    Google Scholar 
    Maynard DS, Crowther TW, Bradford MA. Competitive network determines the direction of the diversity-function relationship. Proc Natl Acad Sci USA. 2017;114:11464–9.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wagg C, Bender SF, Widmer F, van der Heijden MGA. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci USA. 2014;111:5266–70.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Snajdr J, Cajthaml T, Valaskova V, Merhautova V, Petrankova M, Spetz P, et al. Transformation of Quercus petraea litter: successive changes in litter chemistry are reflected in differential enzyme activity and changes in the microbial community composition. FEMS Microbiol Ecol. 2011;75:291–303.Article 
    CAS 
    PubMed 

    Google Scholar 
    Banerjee S, Kirkby CA, Schmutter D, Bissett A, Kirkegaard JA, Richardson AE. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol Biochem. 2016;97:188–98.Article 
    CAS 

    Google Scholar 
    Banerjee S, Schlaeppi K, van der Heijden MGA. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol. 2018;16:567–76.Article 
    CAS 
    PubMed 

    Google Scholar 
    Carrias J-F, Gerphagnon M, Rodríguez-Pérez H, Borrel G, Loiseau C, Corbara B, et al. Resource availability drives bacterial succession during leaf-litter decomposition in a bromeliad ecosystem. FEMS Microbiol Ecol. 2020;96:fiaa045.Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhan P, Liu Y, Wang H, Wang C, Xia M, Wang N, et al. Plant litter decomposition in wetlands is closely associated with phyllospheric fungi as revealed by microbial community dynamics and co-occurrence network. Sci Total Environ. 2021;753:142194.Article 
    CAS 
    PubMed 

    Google Scholar 
    Panettieri M, Knicker H, Murillo JM, Madejon E, Hatcher PG. Soil organic matter degradation in an agricultural chronosequence under different tillage regimes evaluated by organic matter pools, enzymatic activities and CPMAS C-13 NMR. Soil Biol Biochem. 2014;78:170–81.Article 
    CAS 

    Google Scholar 
    Skjemstad JO, Clarke P, Taylor JA, Oades JM, Newman RH. The removal of magnetic-materials from surface soils – a solid state 13C CP/MAS NMR study. Aust J Soil Res. 1994;32:1215–29.Article 
    CAS 

    Google Scholar 
    Sokolenko S, Jézéquel T, Hajjar G, Farjon J, Akoka S, Giraudeau P. Robust 1D NMR lineshape fitting using real and imaginary data in the frequency domain. J Magn Reson. 2019;298:91–100.Article 
    CAS 
    PubMed 

    Google Scholar 
    Grandy AS, Strickland MS, Lauber CL, Bradford MA, Fierer N. The influence of microbial communities, management, and soil texture on soil organic matter chemistry. Geoderma.2009;150:278–86.Article 
    CAS 

    Google Scholar 
    Saiya-Cork KR, Sinsabaugh RL, Zak DR. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol Biochem. 2002;34:1309–15.Article 
    CAS 

    Google Scholar 
    Allison SD, Jastrow JD. Activities of extracellular enzymes in physically isolated fractions of restored grassland soils. Soil Biol Biochem. 2006;38:3245–56.Article 
    CAS 

    Google Scholar 
    Zhang XD, Amelung W. Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biol Biochem. 1996;28:1201–6.Article 
    CAS 

    Google Scholar 
    Lee CK, Barbier BA, Bottos EM, McDonald IR, Cary SC. The inter-valley soil comparative survey: the ecology of dry valley edaphic microbial communities. ISME J. 2012;6:1046–57.Article 
    CAS 
    PubMed 

    Google Scholar 
    Degnan PH, Ochman H. Illumina-based analysis of microbial community diversity. ISME J. 2012;6:183–94.Article 
    CAS 
    PubMed 

    Google Scholar 
    Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007;35:7188–96.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, et al. Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol. 2013;22:5271–7.Article 
    PubMed 

    Google Scholar 
    Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, et al. Microbial co-occurrence relationships in the human microbiome. PLoS Comp Biol. 2012;8:e1002606.Article 
    CAS 

    Google Scholar 
    Chong IG, Jun CH. Performance of some variable selection methods when multicollinearity is present. Chemometrics Intell Lab Syst. 2005;78:103–12.Article 
    CAS 

    Google Scholar 
    Strukelj M, Brais S, Mazerolle MJ, Pare D, Drapeau P. Decomposition patterns of foliar litter and deadwood in managed and unmanaged stands: A 13-year experiment in boreal mixedwoods. Ecosystems. 2018;21:68–84.Article 
    CAS 

    Google Scholar 
    Manzoni S, Piñeiro G, Jackson RB, Jobbágy EG, Kim JH, Porporato A. Analytical models of soil and litter decomposition: Solutions for mass loss and time-dependent decay rates. Soil Biol Biochem. 2012;50:66–76.Article 
    CAS 

    Google Scholar 
    Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30.Article 

    Google Scholar 
    Grace JB (ed). Structural Equation Modeling and Natural Systems. Cambridge University Press, Cambridge, 2006.Shen Y, Cheng R, Xiao W, Yang S, Guo Y, Wang N, et al. Labile organic carbon pools and enzyme activities of Pinus massoniana plantation soil as affected by understory vegetation removal and thinning. Sci Rep. 2018;8:573.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gallo ME, Lauber CL, Cabaniss SE, Waldrop MP, Sinsabaugh RL, Zak DR. Soil organic matter and litter chemistry response to experimental N deposition in northern temperate deciduous forest ecosystems. Glob Change Biol. 2005;11:1514–21.Article 

    Google Scholar 
    Wilhelm RC, Singh R, Eltis LD, Mohn WW. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J. 2019;13:413–29.Article 
    CAS 
    PubMed 

    Google Scholar 
    Sahay H, Yadav AN, Singh AK, Singh S, Kaushik R, Saxena AK. Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech. 2017;7:118.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robledo M, Rivera L, Jimenez-Zurdo JI, Rivas R, Dazzo F, Velazquez E, et al. Role of Rhizobium endoglucanase CelC2 in cellulose biosynthesis and biofilm formation on plant roots and abiotic surfaces. Micro Cell Factories. 2012;11:125.Article 
    CAS 

    Google Scholar 
    Wang X, Bian Q, Jiang Y, Zhu L, Chen Y, Liang Y, et al. Organic amendments drive shifts in microbial community structure and keystone taxa which increase C mineralization across aggregate size classes. Soil Biol Biochem. 2021;153:108062.Article 
    CAS 

    Google Scholar 
    Joergensen RG. Amino sugars as specific indices for fungal and bacterial residues in soil. Biol Fert Soils. 2018;54:559–68.Article 
    CAS 

    Google Scholar 
    Chen Y, Sun R, Sun T, Chen P, Yu Z, Ding L, et al. Evidence for involvement of keystone fungal taxa in organic phosphorus mineralization in subtropical soil and the impact of labile carbon. Soil Biol Biochem. 2020;148:107900.Article 
    CAS 

    Google Scholar 
    Puentes-Tellez PE, Salles JF. Construction of effective minimal active microbial consortia for lignocellulose degradation. Micro Ecol. 2018;76:419–29.Article 
    CAS 

    Google Scholar 
    Zark M, Dittmar T. Universal molecular structures in natural dissolved organic matter. Nat Commun. 2018;9:3178.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lynch LM, Sutfin NA, Fegel TS, Boot CM, Covino TP, Wallenstein MD. River channel connectivity shifts metabolite composition and dissolved organic matter chemistry. Nat Commun. 2019;10:459.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Filley TR, Boutton TW, Liao JD, Jastrow JD, Gamblin DE. Chemical changes to nonaggregated particulate soil organic matter following grassland-to-woodland transition in a subtropical savanna. J Geophys Res Biogeosci. 2008;113:G03009.Article 

    Google Scholar 
    Stewart CE, Neff JC, Amatangelo KL, Vitousek PM. Vegetation effects on soil organic matter chemistry of aggregate fractions in a Hawaiian forest. Ecosystems. 2011;14:382–97.Article 
    CAS 

    Google Scholar  More