More stories

  • in

    Coral larval settlement preferences linked to crustose coralline algae with distinct chemical and microbial signatures

    1.Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Hughes, T. P. & Tanner, J. E. Recruitment failure, life histories, and long-term decline of Caribbean corals. Ecology 81, 2250–2263 (2000).Article 

    Google Scholar 
    3.Doropoulos, C. et al. Characterizing the ecological trade-offs throughout the early ontogeny of coral recruitment. Ecol. Monogr. 86, 20–44 (2016).Article 

    Google Scholar 
    4.Tran, C. & Hadfield, M. G. Localization of sensory mechanisms utilized by coral planulae to detect settlement cues. Invertebr. Biol. 132, 195–206 (2013).Article 

    Google Scholar 
    5.Ritson-Williams, R. et al. New perspectives on ecological mechanisms affecting coral recruitment on reefs. Smithson Contrib. Mar. Sci. 38, 437–457 (2009).Article 

    Google Scholar 
    6.Gleason, D. F. & Hofmann, D. K. Coral larvae: From gametes to recruits. J. Exp. Mar. Biol. Ecol. 408, 42–57 (2011).Article 

    Google Scholar 
    7.Graham, E. M., Baird, A. H. & Connolly, S. R. Survival dynamics of scleractinian coral larvae and implications for dispersal. Coral Reefs 27, 529–539 (2008).ADS 
    Article 

    Google Scholar 
    8.Harrington, L., Fabricius, K., De’ath, G. & Negri, A. Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 85, 3428–3437 (2004).Article 

    Google Scholar 
    9.Ritson-Williams, R., Paul, V. J., Arnold, S. N. & Steneck, R. S. Larval settlement preferences and post-settlement survival of the threatened Caribbean corals Acropora palmata and A. cervicornis. Coral Reefs 29, 71–81 (2010).ADS 
    Article 

    Google Scholar 
    10.Tebben, J. et al. Chemical mediation of coral larval settlement by crustose coralline algae. Sci. Rep. 5, 10803 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Gómez-Lemos, L. A., Doropoulos, C., Bayraktarov, E. & Diaz-Pulido, G. Coralline algal metabolites induce settlement and mediate the inductive effect of epiphytic microbes on coral larvae. Sci. Rep. 8, 1–11 (2018).Article 
    CAS 

    Google Scholar 
    12.Morse, D. E. & Morse, A. N. C. Enzymatic characterization of the morphogen recognized by Agaricia humilis (scleractinian coral) larvae. Biol. Bull. 181, 104–122 (1991).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Negri, A. P., Webster, N. S., Hill, R. T. & Heyward, A. J. Metamorphosis of broadcast spawning corals in response to bacteria isolated from crustose algae. Mar. Ecol. Prog. Ser. 223, 121–131 (2001).ADS 
    Article 

    Google Scholar 
    14.Tebben, J. et al. Induction of larval metamorphosis of the coral Acropora millepora by tetrabromopyrrole isolated from a Pseudoalteromonas bacterium. PLoS ONE 6, e19082 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Sneed, J. M., Sharp, K. H., Ritchie, K. B. & Paul, V. J. The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals. Proc. R. Soc. B Biol. Sci. 281, 20133086 (2014).Article 
    CAS 

    Google Scholar 
    16.Tran, C. & Hadfield, M. G. Larvae of Pocillopora damicornis (Anthozoa) settle and metamorphose in response to surface-biofilm bacteria. Mar. Ecol. Prog. Ser. 433, 85–96 (2011).ADS 
    Article 

    Google Scholar 
    17.Quéré, G., Intertaglia, L., Payri, C. & Galand, P. E. Disease specific bacterial communities in a Coralline Algae of the Northwestern Mediterranean Sea: A combined culture dependent and -independent approach. Front Microbiol 10, 5 (2019).Article 

    Google Scholar 
    18.Yang, F., Mo, J., Wei, Z. & Long, L. Calcified macroalgae and their bacterial community in relation to larval settlement and metamorphosis of reef-building coral Pocillopora damicornis. FEMS Microbiol. Ecol. 97, fiaa215 (2021).Article 

    Google Scholar 
    19.Sneed, J. M., Ritson-Williams, R. & Paul, V. J. Crustose coralline algal species host distinct bacterial assemblages on their surfaces. ISME J. 9, 2527–2536 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Siboni, N. et al. Crustose coralline algae that promote coral larval settlement harbor distinct surface bacterial communities. Coral Reefs 39, 1703–1713 (2020).Article 

    Google Scholar 
    21.Kitamura, M., Koyama, T., Nakano, Y. & Uemura, D. Characterization of a natural inducer of coral larval metamorphosis. J. Exp. Mar. Biol. Ecol. 340, 96–102 (2007).Article 

    Google Scholar 
    22.Kitamura, M., Schupp, P. J., Nakano, Y. & Uemura, D. Luminaolide, a novel metamorphosis-enhancing macrodiolide for scleractinian coral larvae from crustose coralline algae. Tetrahedron Lett. 50, 6606–6609 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Webster, N. S., Uthicke, S., Botté, E. S., Flores, F. & Negri, A. P. Ocean acidification reduces induction of coral settlement by crustose coralline algae. Glob Change Biol. 19, 303–315 (2013).ADS 
    Article 

    Google Scholar 
    24.Mancuso, F. P., D’Hondt, S., Willems, A., Airoldi, L. & De Clerck, O. Diversity and temporal dynamics of the epiphytic bacterial communities associated with the canopy-forming seaweed Cystoseira compressa (Esper) Gerloff and Nizamuddin. Front. Microbiol. 7, 476 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Heyward, A. J. & Negri, A. P. Natural inducers for coral larval metamorphosis. Coral Reefs 18, 273–279 (1999).Article 

    Google Scholar 
    26.Ritson-Williams, R., Arnold, S. N., Paul, V. J. & Steneck, R. S. Larval settlement preferences of Acropora palmata and Montastraea faveolata in response to diverse red algae. Coral Reefs 33, 59–66 (2014).ADS 
    Article 

    Google Scholar 
    27.Morse, D. E., Hooker, N., Morse, A. N. C. & Jensen, R. A. Control of larval metamorphosis and recruitment in sympatric agariciid corals. J. Exp. Mar. Biol. Ecol. 116, 193–217 (1988).Article 

    Google Scholar 
    28.Barott, K. L. & Rohwer, F. L. Unseen players shape benthic competition on coral reefs. Trends Microbiol. 20, 621–628 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Price, N. Habitat selection, facilitation, and biotic settlement cues affect distribution and performance of coral recruits in French Polynesia. Oecologia 163, 747–758 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Rohwer, F., Seguritan, V., Azam, F. & Knowlton, N. Diversity and distribution of coral-associated bacteria. Mar. Ecol. Prog. Ser. 243, 1–10 (2002).ADS 
    Article 

    Google Scholar 
    31.Sogin, E. M., Anderson, P., Williams, P., Chen, C.-S. & Gates, R. D. Application of 1H-NMR metabolomic profiling for reef-building corals. PLoS ONE 9, e111274 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    32.Quinn, R. A. et al. Metabolomics of reef benthic interactions reveals a bioactive lipid involved in coral defence. Proc. R. Soc. B Biol. Sci. 283, 20160469 (2016).Article 
    CAS 

    Google Scholar 
    33.Cutignano, A. et al. Profiling of complex lipids in marine microalgae by UHPLC/tandem mass spectrometry. Algal Res. 17, 348–358 (2016).Article 

    Google Scholar 
    34.Paix, B. et al. A multi-omics analysis suggests links between the differentiated surface metabolome and epiphytic microbiota along the Thallus of a Mediterranean Seaweed Holobiont. Front. Microbiol. 11, 494 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Vohsen, S. A., Fisher, C. R. & Baums, I. B. Metabolomic richness and fingerprints of deep-sea coral species and populations. Metabolomics 15, 34 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Jiang, M. et al. Sparse partial-least-squares discriminant analysis for different geographical origins of Salvia miltiorrhiza by 1H-NMR-based metabolomics. Phytochem. Anal. 25, 50–58 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Webster, N. S., Soo, R., Cobb, R. & Negri, A. P. Elevated seawater temperature causes a microbial shift on crustose coralline algae with implications for the recruitment of coral larvae. ISME J. 5, 759–770 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Babcock, R. & Mundy, C. Coral recruitment: Consequences of settlement choice for early growth and survivorship in two scleractinians. J. Exp. Mar. Biol. Ecol. 206, 179–201 (1996).Article 

    Google Scholar 
    39.Zhang, J., Li, C., Yu, G. & Guan, H. Total synthesis and structure-activity relationship of glycoglycerolipids from marine organisms. Mar. Drugs 12, 3634–3659 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Cajka, T. & Fiehn, O. Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. TrAC Trends Anal. Chem. 61, 192–206 (2014).CAS 
    Article 

    Google Scholar 
    41.Deal, M. S., Hay, M. E., Wilson, D. & Fenical, W. Galactolipids rather than phlorotannins as herbivore deterrents in the brown seaweed Fucus vesiculosus. Oecologia 136, 107–114 (2003).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Plouguerné, E. et al. Glycoglycerolipids from Sargassum vulgare as potential antifouling agents. Front. Mar. Sci. 7, 116 (2020).Article 

    Google Scholar 
    43.Takahashi, Y., Itoh, K., Ishii, M., Suzuki, M. & Itabashi, Y. Induction of larval settlement and metamorphosis of the sea urchin Strongylocentrotus intermedius by glycoglycerolipids from the green alga Ulvella lens. Mar. Biol. 140, 763–771 (2002).CAS 
    Article 

    Google Scholar 
    44.Schmahl, G. Induction of stolon settlement in the scyphopolyps ofAurelia aurita (Cnidaria, Scyphozoa, Semaeostomeae) by glycolipids of marine bacteria. Helgoländer Meeresunters 39, 117–127 (1985).Article 

    Google Scholar 
    45.Murakami, H., Nobusawa, T., Hori, K., Shimojima, M. & Ohta, H. Betaine lipid is crucial for adapting to low temperature and phosphate deficiency in Nannochloropsis. Plant. Physiol. 177, 181–193 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Melo, T. et al. Lipidomics as a new approach for the bioprospecting of marine macroalgae—Unraveling the polar lipid and fatty acid composition of Chondrus crispus. Algal Res. 8, 181–191 (2015).Article 

    Google Scholar 
    47.Vogel, G. & Eichenberger, W. Betaine lipids in lower plants biosynthesis. of DGTS and DGTA in Ochromonas danica (Chrysophyceae) and the possible role of DGTS in lipid metabolism. Plant Cell Physiol 33, 427–436 (1992).CAS 

    Google Scholar 
    48.Meistertzheim, A.-L., Nugues, M. M., Quéré, G. & Galand, P. E. Pathobiomes differ between two diseases affecting reef building coralline algae. Front. Microbiol. 8, 1686 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Lema, K. A., Bourne, D. G. & Willis, B. L. Onset and establishment of diazotrophs and other bacterial associates in the early life history stages of the coral Acropora millepora. Mol. Ecol. 23, 4682–4695 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Gram, L., Melchiorsen, J. & Bruhn, J. B. Antibacterial activity of marine culturable bacteria collected from a global sampling of ocean surface waters and surface swabs of marine organisms. Mar. Biotechnol. N. Y. N. 12, 439–451 (2010).CAS 
    Article 

    Google Scholar 
    51.Daniel, R., Simon, M. & Wemheuer, B. Editorial: Molecular ecology and genetic diversity of the roseobacter clade. Front. Microbiol. 9, 1185 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Apprill, A., Marlow, H. Q., Martindale, M. Q. & Rappé, M. S. The onset of microbial associations in the coral Pocillopora meandrina. ISME J. 3, 685–699 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Bernasconi, R. et al. Establishment of coral-bacteria symbioses reveal changes in the core bacterial community with host ontogeny. Front. Microbiol. 10, 1529 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Quigley, K. M., Roa, C. A., Torda, G., Bourne, D. G. & Willis, B. L. Co-dynamics of Symbiodiniaceae and bacterial populations during the first year of symbiosis with Acropora tenuis juveniles. MicrobiologyOpen 9, e959 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Overmann, J. Green sulfur bacteria. in Bergey’s Manual of Systematics of Archaea and Bacteria (eds Trujillo, M. E. et al.) (2015).56.Ribes, M. et al. Functional convergence of microbes associated with temperate marine sponges. Environ. Microbiol. 14, 1224–1239 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Sogin, E. M., Putnam, H. M., Nelson, C. E., Anderson, P. & Gates, R. D. Correspondence of coral holobiont metabolome with symbiotic bacteria, archaea and Symbiodinium communities. Environ. Microbiol. Rep. 9, 310–315 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Gordon, G. D., Masaki, T. & Akioka, H. Floristic and distributional account of the common crustose coralline algae on Guam. Micronesica 12, 31 (1976).
    Google Scholar 
    59.Adey, W. H., Townsend, R. A. & Boykins, W. T. The crustose coralline algae (Rhodophyta: Corallinaceae) of the Hawaiian Islands. Smithson Contrib. Mar. Sci. 1, 1–74 (1982).Article 

    Google Scholar 
    60.Rohart, F., Gautier, B., Singh, A. & Cao, K.-A.L. mixOmics: an R package for ‘omics feature selection and multiple data integration. BioRxiv 13, 108597 (2017).
    Google Scholar 
    61.Singh, A. et al. DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays. Bioinformatics 35, 3055–3062 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Null-model-based network comparison reveals core associations

    Null model toolboxWe have developed a software toolbox, anuran, (a toolbox with null models for identification of nonrandom patterns in association networks) that generates random networks and assesses properties of these networks. Three types of networks can be generated in the current implementation: completely randomized networks, degree-preserving networks, and a variation of both networks that keeps a fraction of the edges fixed. Networks without a synthetic CAN, meaning they do not contain any fixed edges, are referred to as negative controls in the remainder of the manuscript, while networks with a synthetic CAN are referred to as positive control networks. In combination, these null models can generate CAN sizes for (1) the situation where all edges are entirely random, (2) the situation where taxa connecting edges are random, but the presence of an edge is not, and (3) the situation where part of a network is random but the remainder is part of a CAN.For the completely randomized model, a network is initialized with the same nodes as the input network. Edges are then added randomly until the total edge number is equal to the number of edges in the input network. For the degree-preserving model, edges are swapped rather than removed and added back to the network, so that two edges (a, b) and (c, d) become the new edges (a, c) and (b, d). Hence, the model preserves the degree distribution found in the input network and each node has the same degree as it has in the original network, but other centralities such as the betweenness centrality can change. The user specifies both the number of random networks generated for each network (by default 10) and the number of sets (collections) of these networks (by default 50) that are sampled to calculate set sizes.As stated previously, variations of the above two null models can be used to construct positive control networks. For this procedure, a fraction of edges is extracted from the total union of edges across all networks. For fully randomized networks, these edges are first added, then edges are added until the total number of edges in the original network is reached. For the degree-preserving randomized networks, negative control networks (with preserved degree) are first generated. Then, for each edge in the fixed core, the algorithm attempts to find two edges that can be swapped so the fixed edge is created. If this fails, a random edge is deleted and the fixed edge is introduced, so the degree is not exactly preserved. To swap the edges successfully, it is necessary that each of the nodes participating in a fixed edge has another edge not part of the fixed core. As a result, the degree distribution can change significantly for networks where nodes in the fixed core are disconnected or where the fixed core is very large compared to the positive control network.It is possible to include nodes without significant associations in the network file as disconnected nodes (orphan nodes) by supplying the network file with the orphan nodes included as nodes without any edges. In this case, the random model reflects a situation where associations are randomly selected from all taxa. However, the degree-preserving networks are not affected by orphan nodes. The inclusion of orphan nodes leads to different estimates for set sizes for the random model that may lead to an overestimation of the significance of a CAN, as most taxa are too rare to acquire associations. Therefore, we ignored the presence of disconnected nodes in our case study.The toolbox has been implemented in Python 3.6 and consists of both an application programming interface and command-line interface (CLI). Documentation for the toolbox has been included as a supplement (Supplementary File 1), with this and additional vignettes available through the GitHub page at https://github.com/ramellose/anuran. Currently, the CLI pipeline assesses set sizes, (rank-transformed) betweenness, degree, and closeness centrality scores and several network-level properties: degree assortativity, connectivity, diameter, radius, and average shortest path length (Fig. 1). NetworkX implementations of these centrality calculations were used [21].The software uses a set-of-sets approach to identify CANs. A set is a specific collection of edges, such as the intersection set, which is the collection of edges present across multiple networks. The CANs are identified as differences of specific intersection sets. Hence, the toolbox specifically identifies sets and sets of sets that are likely to be of interest for microbial association networks. These sets represent collections of edges that are only present in one specific fraction of networks and distinguish between less conserved and more conserved edges.An example with four networks is illustrated with a Venn diagram (Fig. 1c). To obtain the difference of the intersections, the set that includes one or more additional networks is subtracted from the intersection set that includes fewer networks. These sets are referred to as combinations of intersections with fractions or integers, i.e., the intersection 0.5 refers to all intersections of 50% of the networks. Similarly, set of sets are identified by a combination of intersection numbers: the set of sets 6→10 refers to the difference of intersection 6 and intersection 10 and therefore contains no edges present in at least 10 networks. For most analyses, the difference of intersections is preferred over intersections since the intersections are nested. By taking the difference, it is possible to distinguish between more and less conserved associations.The equations for differences and k-intersections for groups of n networks are given below. The equations only refer to edge sets E, so they do not apply to numbers of matching nodes. The difference is the union of all sets Di for 1 up to n networks, where the sets Di contain all edges x present in an edge set Ei but not in the union of all other edge sets$${{{mathrm{Difference}}}} = mathop {bigcup}limits_{i = 1}^n {D_i} ;{{{mathrm{where}}}};D_i = left{ {x:x in E_i,x ,notin, mathop {bigcup}limits_{begin{array}{*{20}{c}} {j = 1} \ {i ne j} end{array}}^n {E_j} } right}$$The k-intersections are unions of intersections SI. These intersections SI are sets of groups of edge sets, where the groups I are k-permutations of n and Ei is a single edge set in I. Hence, for a total number of edge sets n, each of the groups I have size k and the collection of all possible groups is indicated as (P_k^n). For the 4-intersection for a group of 40 edge sets, the size of (P_k^n) can be calculated as the binomial coefficient (Big( {begin{array}{*{20}{c}} {40} \ 4 end{array}} Big)). This mathematical representation is not implemented directly in the software, as the software simply takes the set of all edges present in at least four networks and therefore ignores network identity.Hence, a k-intersection is the union of all intersections SI for I in (P_k^n)$${{{mathrm{Intersection}}}} = mathop {bigcup}limits_{I in P_k^n} {S_I} ;{{{mathrm{where}}}};S_I = left{ {x:x in mathop {bigcap}limits_{i in I} {E_i} } right}$$Since edges present in at least k networks but not in m networks represent less conserved edges, the difference of the intersections is calculated to distinguish between less conserved and more conserved edges. The difference of two intersections k and m, with SI and SJ defined identically to SI in the equation above is then given below$${{{mathrm{Difference}}}};{{{mathrm{of}}}};{{{mathrm{intersections}}}} = mathop {bigcup}limits_{I in P_k^n} {S_I} backslash mathop {bigcup}limits_{J in P_m^n} {S_J} ;{{{mathrm{where}}}};k < m$$To compare observed set sizes to set sizes of random networks, the Z-score test is carried out, which identifies set sizes in the input networks that are outside the range of set sizes inferred from groups of random networks. The SciPy normaltest implementation [22] of D’Agostino’s and Pearson’s omnibus normality test is used to test for both kurtosis and skewness [23, 24]. Since this test requires at least 20 observations, a warning is issued if the number of random networks needs to be increased.The toolbox can also assess centrality scores across networks. To ensure that centralities are not biased by edge number, these are first converted to ranks before a Mann–Whitney U test is used to assess whether the distributions of ranks are similar across groups of observed networks and random networks. The comparisons to random networks are repeated a number of times and parameter-free p values across all comparisons are calculated from the number of successful Mann–Whitney U tests. By default, Benjamini-Hochberg multiple-testing corrections (implemented in the statsmodel package) are carried out on these p values to correct for the number of taxa [25]. The approach for network-level properties is similar, with the software currently supporting assortativity, connectivity, diameter, radius, and the average shortest path length. If the networks are ordered, the toolbox can calculate Spearman correlations of these properties to the network order. For example, users could supply networks constructed across a pH gradient. The results of all analyses are exported to tab-delimited files so they can be further analyzed and visualized in the user’s preferred statistical environment.Finally, the toolbox includes an option for resampling networks. In this way, the resulting data show how trends in set sizes change as the number of networks is increased. The resulting data can be interpreted as a rarefaction curve, where flattening of the curve suggests that sufficient networks have been collected to identify all edges present in a specific fraction of networks.Case studiesGut microbial time series data were collected from 20 women each of whom donated stool samples for over a month, with a sampling frequency close to one sample per day (Vandeputte et al., submitted) [26]. These women also reported data on their menstrual cycle. For each sample, enterotype assignments were carried out as in Vandeputte et al. [27] with Dirichlet multinomial clustering. Samples were assigned to Bacteroides 1, Bacteroides 2, Ruminococcaceae, or Prevotella.Progression through the menstrual cycle was rescaled to 28 days (the average length of a menstrual cycle) for all women. For days where there was more than one sample, only the first sample was used. Taxa present in less than 50% of participants were discarded from the analysis. Association networks were constructed with fastLSA v1.0 [28] with data rarefied to 10,000 sequences per sample, with correlations inferred across a delay of three time points (α = 0.05). Set sizes were analyzed with anuran, by generating 20 networks per observed network and resampling 100 different groups from these. Positive controls were generated 20 times, with a core size equal to 20% of the union of edges at 10% prevalence (edges present in at least two networks) and at 50% prevalence (edges present in at least ten networks). Set sizes and centralities with a p value below 0.05 for comparisons to values from random networks were considered significantly different from the random networks. The anuran toolbox was also used to assess the effect of increasing the number of participants.The Walktrap community finding algorithm [29], implemented in the igraph R package v1.2.6 [30], was used to cluster the inferred CAN as the lack of negative edges in the CAN suggested that random walks could sufficiently identify clusters. To visualize enterotype-specific patterns of relative abundance, we computed the mean relative abundance of taxa per individual. We then took the median relative abundances across all individuals who belonged predominantly to the Ruminococcaceae enterotype, an enterotype previously linked to lower stool moisture [27], and subtracted from these all other median relative abundances, giving an estimate of taxa that had high abundance in the Ruminococcaceae enterotype compared to other enterotypes.For the case study on the sponge microbiome, QIIME-processed data were downloaded from Moitinho et al. [31]. Samples with fewer than 1000 counts were removed and the samples were rarefied to even depth at 1034 sequences. After rarefaction, the abundance data were first filtered for 20% taxon prevalence across all samples, then once more to ensure 20% prevalence across different orders. Counts for removed taxa were retained to preserve the sample sums. After excluding host orders with fewer than 50 samples, 10 orders remained. CoNet v1.1.1 with renormalisation was then used to infer association networks (Faust and Raes [2]). Edges were generated with Pearson correlation, Spearman correlation, mutual information, Bray–Curtis dissimilarity, and Kullback–Leibler distance. Edges were included if at least one method reached significance; only edges with a combined Q-value below 0.05 (estimated using a combination of permutation and bootstrapping) were retained. The CoNet CANs were inferred with anuran generating 20 negative control random networks per host order and resampling these 100 times. For the positive controls, 20 network groups were generated with a core size equal to 20% of the union of edges at 20% prevalence (edges present in at least two networks) and at 50% prevalence (edges present in at least five networks). Set sizes and centralities with a p value below 0.05 for comparisons to values from random networks were considered significantly different from the random networks. CoNet networks were compared to FlashWeave networks [7]. FlashWeave v0.16.0 was run as FlashWeave-S (sensitive set to true and heterogeneous to false), with all other settings set to the default. To compare FlashWeave networks to CoNet networks, anuran generated five randomized networks per order-specific network and resampled these five times.Prior research indicated that microbial abundance was a significant driver of community structure in sponges [32]. Therefore, taxa in the CAN were compared to taxa reported as indicators of high microbial abundance (HMA) or low microbial abundance (LMA) [32]. CAN network clusters were identified with manta v1.0.0 [33], as this algorithm has been designed to handle negative edges in the CAN. To run the clustering algorithm, default settings were used, except the number of iterations and permutations, which was set to 200. A Chi-squared test was used to compare HMA–LMA predictions to CAN cluster assignments (α = 0.05). More

  • in

    All shallow coastal habitats matter as nurseries for Mediterranean juvenile fish

    1.Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).Article 

    Google Scholar 
    2.Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Lindeboom, H. The coastal zone: An ecosystem under pressure. In Oceans 2020: Science Trends and the Challenge of Sustainability (ed. Field, J. G.) 49–84 (Island Press, 2002).
    Google Scholar 
    5.Airoldi, L., Balata, D. & Beck, M. W. The Gray Zone: Relationships between habitat loss and marine diversity and their applications in conservation. J. Exp. Mar. Biol. Ecol. 366, 8–15 (2008).Article 

    Google Scholar 
    6.Islam, S. & Tanaka, M. Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: A review and synthesis. Mar. Pollut. Bull. 48, 624–649 (2004).CAS 
    Article 

    Google Scholar 
    7.Vikas, M. & Dwarakish, G. S. Coastal pollution: A review. Aquat. Procedia 4, 381–388 (2015).Article 

    Google Scholar 
    8.Blaber, S. J. M. et al. Effects of fishing on the structure and functioning of estuarine and nearshore ecosystems. ICES J. Mar. Sci. 57, 590–602 (2000).Article 

    Google Scholar 
    9.Hussein, C. et al. Assessing the impact of artisanal and recreational fishing and protection on a white seabream (Diplodus sargus sargus) population in the north-western Mediterranean Sea using a simulation model. Part 1: Parameterization and simulations. Fish. Res. 108, 163–173 (2011).Article 

    Google Scholar 
    10.Hawkins, A. D. & Popper, A. N. A sound approach to assessing the impact of underwater noise on marine fishes and invertebrates. ICES J. Mar. Sci. 74, 635–651 (2017).Article 

    Google Scholar 
    11.Beck, M. W. et al. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 51, 633–641 (2001).Article 

    Google Scholar 
    12.Carr, M. H. Habitat selection and recruitment of an assemblage of temperate zone reef fishes. J. Exp. Mar. Biol. Ecol. 146, 113–137 (1991).Article 

    Google Scholar 
    13.Sheaves, M., Baker, R. & Johnston, R. Marine nurseries and effective juvenile habitats: an alternative view. Mar. Ecol. Prog. Ser. 318, 303–306 (2006).ADS 
    Article 

    Google Scholar 
    14.Leis, J. M. Are larvae of demersal fishes plankton or nekton?. Adv. Mar. Biol. https://doi.org/10.1016/S0065-2881(06)51002-8 (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Raventos, N. & Macpherson, E. Planktonic larval duration and settlement marks on the otoliths of Mediterranean littoral fishes. Mar. Biol. 138, 1115–1120 (2001).Article 

    Google Scholar 
    16.Di Franco, A. et al. Dispersal of larval and juvenile seabream: Implications for Mediterranean marine protected areas. Biol. Conserv. 192, 361–368 (2015).Article 

    Google Scholar 
    17.Di Franco, A. et al. Assessing dispersal patterns of fish propagules from an effective Mediterranean marine protected area. PLoS ONE 7, e52108 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Di Franco, A. & Guidetti, P. Patterns of variability in early-life traits of fishes depend on spatial scale of analysis. Biol. Lett. 7, 454–456 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Dahlgren, C. P. & Eggleston, D. B. Ecological processes underlying ontogenetic habitat shifts in a coral reef fish. Ecology 81, 2227–2240 (2000).Article 

    Google Scholar 
    20.Macpherson, E. Ontogenetic shifts in habitat use and aggregation in juvenile sparid fishes. J. Exp. Mar. Biol. Ecol. 220, 127–150 (1998).Article 

    Google Scholar 
    21.Dahlgren, C. P. et al. Marine nurseries and effective juvenile habitats: Concepts and applications. Mar. Ecol. Prog. Ser. 312, 291–295 (2006).ADS 
    Article 

    Google Scholar 
    22.Jennings, S. & Blanchard, J. L. Fish abundance with no fishing: predictions based on macroecological theory. J. Anim. Ecol. 73, 632–642 (2004).Article 

    Google Scholar 
    23.Jones, G. P. The importance of recruitment to the dynamics of a coral reef fish population. Ecology 71, 1691–1698 (1990).Article 

    Google Scholar 
    24.Sheaves, M., Baker, R., Nagelkerken, I. & Connolly, R. M. True value of estuarine and coastal nurseries for fish: Incorporating complexity and dynamics. Estuaries Coasts 38, 401–414 (2015).Article 

    Google Scholar 
    25.Harmelin-Vivien, M. L., Harmelin, J. G. & Leboulleux, V. Microhabitat requirements for settlement of juvenile Sparid fishes on Mediterranean rocky shores. Hydrobiologia 301, 309–320 (1995).Article 

    Google Scholar 
    26.Garcia-Rubies, A. & Macpherson, E. Substrate use and temporal pattern of recruitment in juvenile fishes of the Mediterranean littoral. Mar. Biol. 124, 35–42 (1995).Article 

    Google Scholar 
    27.Vigliola, L. Contrôle et régulation du recrutement des Sparidés (Poissons, Téléostéens) en Méditerranée : importance des processus pré- et post-installation benthique. Thèse Doct Sci Univ Aix-Marseille II Marseille. (1998).28.Cheminée, A. Ecological Functions, Transformations and Management of Infralittoral Rocky Habitats from the North-Western Mediterranean: The Case of Fish (Teleostei) Nursery Habitats (University of Nice, 2012).
    Google Scholar 
    29.Macpherson, E. & Zika, U. Temporal and spatial variability of settlement success and recruitment level in three blennoid fishes in the northwestern Mediterranean. Mar. Ecol. Prog. Ser. 182, 269–282 (1999).ADS 
    Article 

    Google Scholar 
    30.Heck, K., Hays, G. & Orth, R. Critical evaluation of the nursery role hypothesis for seagrass meadows. Mar. Ecol. Prog. Ser. 253, 123–136 (2003).ADS 
    Article 

    Google Scholar 
    31.Félix-Hackradt, F. C., Hackradt, C. W., Treviño-Otón, J., Pérez-Ruzafa, A. & García-Charton, J. A. Temporal patterns of settlement, recruitment and post-settlement losses in a rocky reef fish assemblage in the South-Western Mediterranean Sea. Mar. Biol. 160, 2337–2352 (2013).Article 

    Google Scholar 
    32.Cuadros, A. Settlement and Post-Settlement Processes of Mediterranean Littoral Fishes: Influence of Seascape Attributes and Environmental Conditions at Different Spatial Scales (Universidad de las Islas Baleares, 2015).
    Google Scholar 
    33.Bussotti, S. & Guidetti, P. Timing and habitat preferences for settlement of juvenile fishes in the marine protected area of torre guaceto (south-eastern Italy, Adriatic Sea). Ital. J. Zool. 78, 243–254 (2011).Article 

    Google Scholar 
    34.Bariche, M., Letourneur, Y. & Harmelin-Vivien, M. Temporal fluctuations and settlement patterns of native and lessepsian herbivorous fishes on the lebanese coast (Eastern Mediterranean). Environ. Biol. Fishes 70, 81–90 (2004).Article 

    Google Scholar 
    35.Mosconi, P. & Chauvet, C. Growth spatio-temporal variability of juveniles of sea-bream (Sparus aurata) between lagoonal and sea areas in the south of Lion’s Gulf. Vie Milieu Paris 40, 305–311 (1990).
    Google Scholar 
    36.Verdiell-Cubedo, D., Oliva-Paterna, F. J., Ruiz-Navarro, A. & Torralva, M. Assessing the nursery role for marine fish species in a hypersaline coastal lagoon (Mar Menor, Mediterranean Sea). Mar. Biol. Res. 9, 739–748 (2013).Article 

    Google Scholar 
    37.Letourneur, Y., Darnaude, A., Salen-Picard, C. & Harmelin-vivien, M. Spatial and temporal variations of fish assemblages in a shallow Mediterranean soft-bottom area (Gulf of Fos, France). Oceanol. Acta 24, 273–285 (2001).Article 

    Google Scholar 
    38.Le Pape, O. et al. Sources of organic matter for flatfish juveniles in coastal and estuarine nursery grounds: A meta-analysis for the common sole (Solea solea) in contrasted systems of Western Europe. J. Sea Res. 75, 85–95 (2013).Article 

    Google Scholar 
    39.Guidetti, P. & Bussotti, S. Recruitment of Diplodus annularis and Spondyliosoma cantharus (Sparidae) in shallow seagrass beds along the Italian coasts (Mediterranean Sea). Mar. Life 7, 47–52 (1997).
    Google Scholar 
    40.Guidetti, P. & Bussotti, S. Fish fauna of a mixed meadow composed by the seagrasses Cymodocea nodosa and Zostera noltii in the Western Mediterranean. Oceanol. Acta 23, 759–770 (2000).Article 

    Google Scholar 
    41.Guidetti, P. & Bussotti, S. Effects of seagrass canopy removal on fish in shallow Mediterranean seagrass (Cymodocea nodosa and Zostera noltii) meadows: a local-scale approach. Mar. Biol. 140, 445–453 (2002).Article 

    Google Scholar 
    42.Cuadros, A. et al. The three-dimensional structure of Cymodocea nodosa meadows shapes juvenile fish assemblages (Fornells Bay, Minorca Island). Reg. Stud. Mar. Sci. (2017).43.Francour, P. & Le Direac’h, L. Recrutement de l’ichtyofaune dans l’herbier superficiel à Posidonia oceanica de la réserve naturelle de Scandola (Corse, Méditerranée nord-occidentale): données préliminaires. Trav. Sci. Parc. Nat. Régional Corse 46, 71–91 (1994).
    Google Scholar 
    44.Francour, P. & Le Direac’h, L. Analyse spatiale du recrutement des poissons de l’herbier à Posidonia oceanica dans la réserve naturelle de Scandola (Corse, Méditerranée nord-occidentale). Contrat Parc Naturel Régional de la Corse & GIS Posidonie. LEML Publ Nice 1–23 (2001).45.Francour, P. & Le Direach, L. Le recrutement des poissons dans les herbiers à Posidonia oceanica : quels sont les facteurs influents ? in XXXIX AFL Congress 67–78 (1995).46.Le Direac’h, L. & Francour, P. Recrutement de Diplodus annularis (Sparidae) dans les herbiers de posidonie de la Réserve Naturelle de Scandola (Corse). Trav. Sci. Parc. Nat. Rég. Corse 57, 42–75 (1998).
    Google Scholar 
    47.Guidetti, P. Differences among fish assemblages associated with Nearshore Posidonia oceanica Seagrass Beds, Rocky–algal Reefs and unvegetated sand habitats in the Adriatic Sea. Estuar. Coast. Shelf Sci. 50, 515–529 (2000).ADS 
    Article 

    Google Scholar 
    48.Félix-Hackradt, F. C., Hackradt, C. W., Treviño-Otón, J., Pérez-Ruzafa, Á. & García-Charton, J. A. Habitat use and ontogenetic shifts of fish life stages at rocky reefs in South-western Mediterranean Sea. J. Sea Res. 88, 67–77 (2014).ADS 
    Article 

    Google Scholar 
    49.Félix-Hackradt, F. C. et al. Environmental determinants on fish post-larval distribution in coastal areas of south-western Mediterranean Sea. Estuar. Coast. Shelf Sci. 129, 59–72 (2013).ADS 
    Article 

    Google Scholar 
    50.Cheminée, A. et al. Nursery value of Cystoseira forests for Mediterranean rocky reef fishes. J. Exp. Mar. Biol. Ecol. 442, 70–79 (2013).Article 

    Google Scholar 
    51.Cheminée, A. et al. Juvenile fish assemblages in temperate rocky reefs are shaped by the presence of macro-algae canopy and its three-dimensional structure. Sci. Rep. 7, 14638 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    52.Cuadros, A. et al. Juvenile fish in Cystoseira forests: Influence of habitat complexity and depth on fish behaviour and assemblage composition. Mediterr. Mar. Sci. 20, 380–392 (2019).Article 

    Google Scholar 
    53.Hinz, H., Reñones, O., Gouraguine, A., Johnson, A. F. & Moranta, J. Fish nursery value of algae habitats in temperate coastal reefs. PeerJ 7, e6797 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Thiriet, P. D. et al. Abundance and diversity of Crypto- and Necto-Benthic coastal fish are higher in marine forests than in structurally less complex macroalgal assemblages. PLoS ONE 11, e0164121 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    55.Thiriet, P. Comparaison de la Structure des Peuplements de Poissons et des Processus Écologiques Sous-Jacents, Entre les Forêts de Cystoseires et des Habitats Structurellement Moins Complexes, dans l’Infralittoral Rocheux de Méditerranée Nord-Occidentale (University of Nice, 2014).
    Google Scholar 
    56.Cheminée, A. et al. Shallow rocky nursery habitat for fish: Spatial variability of juvenile fishes among this poorly protected essential habitat. Mar. Pollut. Bull. 119, 245–254 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    57.Mercader, M. et al. Spatial distribution of juvenile fish along an artificialized seascape, insights from common coastal species in the Northwestern Mediterranean Sea. Mar. Environ. Res. 137, 60–72 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Tournois, J. et al. Lagoon nurseries make a major contribution to adult populations of a highly prized coastal fish. Limnol. Oceanogr. 62, 1219–1233 (2017).ADS 
    Article 

    Google Scholar 
    59.Cuadros, A. et al. Settlement and post-settlement survival rates of the white seabream (Diplodus sargus) in the western Mediterranean Sea. PLoS ONE 13, e0190278 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    60.Cheminée, A., Francour, P. & Harmelin-Vivien, M. Assessment of Diplodus spp. (Sparidae) nursery grounds along the rocky shore of Marseilles (France, NW Mediterranean). Sci. Mar. 75, 181–188 (2011).Article 

    Google Scholar 
    61.Pastor, J., Koeck, B., Astruch, P. & Lenfant, P. Coastal man-made habitats: Potential nurseries for an exploited fish species, Diplodus sargus (Linnaeus, 1758). Fish. Res. 148, 74–80 (2013).Article 

    Google Scholar 
    62.Vigliola, L. et al. Spatial and temporal patterns of settlement among sparid fishes of the genus Diplodus in the northwestern Mediterranean. Mar. Ecol.-Prog. Ser. 168, 45–56 (1998).ADS 
    Article 

    Google Scholar 
    63.Vigliola, L. & Harmelin-Vivien, M. Post-settlement ontogeny in three Mediterranean reef fish species of the Genus Diplodus. Bull. Mar. Sci. 68, 271–286 (2001).
    Google Scholar 
    64.Cuadros, A. et al. Seascape attributes, at different spatial scales, determine settlement and post-settlement of juvenile fish. Estuar. Coast. Shelf Sci. 185, 120–129 (2017).ADS 
    Article 

    Google Scholar 
    65.Morat, F. et al. Diet of the Mediterranean european shag, Phalacrocorax aristotelis desmarestii, in a northwestern mediterranean area: a competitor for local fisheries?. Sci. Rep. Port. Cros. Natl. Park 28, 113–132 (2014).
    Google Scholar 
    66.Morat, F. et al. Offshore–onshore linkages in the larval life history of sole in the Gulf of Lions (NW-Mediterranean). Estuar. Coast. Shelf Sci. 149, 194–202 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    67.La Mesa, G., Louisy, P. & Vacchi, M. Assessment of microhabitat preferences in juvenile dusky grouper (Epinephelus marginatus) by visual sampling. Mar. Biol. 140, 175–185 (2002).Article 

    Google Scholar 
    68.Vacchi, M., La Mesa, G., Finoia, M. G., Guidetti, P. & Bussotti, S. Protection measures and juveniles of dusky grouper, Epinephelus marginatus (Lowe, 1834) (Pisces, Serranidae), in the Marine Reserve of Ustica Island (Italy, Mediterranean Sea). Mar. Life 9, 63–70 (1999).
    Google Scholar 
    69.Bodilis, P., Ganteaume, A. & Francour, P. Presence of 1 year-old dusky groupers along the French Mediterranean coast. J. Fish Biol. 62, 242–246 (2003).Article 

    Google Scholar 
    70.Bodilis, P., Ganteaume, A. & Francour, P. Recruitment of the dusky grouper (Epinephelus marginatus) in the north-western Mediterranean Sea. Cybium 27, 123–129 (2003).
    Google Scholar 
    71.Mercader, M. et al. Observation of juvenile dusky groupers (Epinephelus marginatus) in artificial habitats of North-Western Mediterranean harbors. Mar. Biodivers. 47, 371–372 (2016).Article 

    Google Scholar 
    72.Raventos, N. & Macpherson, E. Environmental influences on temporal patterns of settlement in two littoral labrid fishes in the Mediterranean Sea. Estuar. Coast. Shelf Sci. 63, 479–487 (2005).ADS 
    Article 

    Google Scholar 
    73.Raventos, N. & Macpherson, E. Effect of pelagic larval growth and size-at-hatching on post-settlement survivorship in two temperate labrid fish of the genus Symphodus. Mar. Ecol. Prog. Ser. 285, 205–211 (2005).ADS 
    Article 

    Google Scholar 
    74.Macpherson, E. & Raventos, N. Settlement patterns and post-settlement survival in two Mediterranean littoral fishes: influences of early-life traits and environmental variables. Mar. Biol. 148, 167–177 (2005).Article 

    Google Scholar 
    75.Raventos, N. Effects of wave action on nesting activity in the littoral five-spotted wrasse, Symphodus roissali,(Labridae), in the northwestern Mediterranean Sea. Sci. Mar. 68, 257–264 (2004).Article 

    Google Scholar 
    76.Schunter, C. et al. A novel integrative approach elucidates fine-scale dispersal patchiness in marine populations. Sci. Rep. 9, 10796 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Biagi, F., Gambaccini, S. & Zazzetta, M. Settlement and recruitment in fishes: The role of coastal areas. Ital. J. Zool. 65, 269–274 (1998).Article 

    Google Scholar 
    78.Franco, A. et al. Use of shallow water habitats by fish assemblages in a Mediterranean coastal lagoon. Estuar. Coast. Shelf Sci. 66, 67–83 (2006).ADS 
    Article 

    Google Scholar 
    79.Harmelin-Vivien, M. L. et al. Évaluation visuelle des peuplements et populations de Poissons: Méthodes et problèmes. Rev. Ecol. Terre Vie 40, 467–539 (1985).
    Google Scholar 
    80.Faillettaz, R. et al. Spatio-temporal patterns of larval fish settlement in the northwestern Mediterranean Sea. Mar. Ecol. Prog. Ser. 650, 153–173 (2020).ADS 
    Article 

    Google Scholar 
    81.Le Direach, L. et al. Programme NUhAGE : Nurseries, habitats, génie écologique, Rapport final. Contrat GIS Posidonie: MIO: P2A développement/Agence de l’Eau Rhône-Méditerranée-Corse-Conseil Général du Var. 1–146 (2015).82.Orellana, S., Hernández, M. & Sansón, M. Diversity of Cystoseira sensu lato (Fucales, Phaeophyceae) in the eastern Atlantic and Mediterranean based on morphological and DNA evidence, including Carpodesmia gen. emend. and Treptacantha gen. emend. Eur. J. Phycol. 54, 447–465 (2019).CAS 
    Article 

    Google Scholar 
    83.Ballesteros, E. Els vegetals i la zonació litoral: espècies, comunitats i factors que influeixen en la seva distribució. (1992).84.Medrano, A. et al. Ecological traits, genetic diversity and regional distribution of the macroalga Treptacantha elegans along the Catalan coast (NW Mediterranean Sea). Sci. Rep. 10, 19219 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Clarke, K. R., Gorley, R. N., Somerfield, P. J. & Warwick, R. M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. (Primer-E Ltd, 2001).86.Clarke, K. R. & Gorley, R. N. Primer v6: User Manual/Tutorial-Primer-E Ltd. (2006).87.Anderson, M., Gorley, R. & Clarke, K. PERMANOVA+ for PRIMER: guide to software and statistical methods. (Primer-e, 2008).88.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2017).89.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).MATH 
    Book 

    Google Scholar 
    90.August, P. V. The role of habitat complexity and heterogeneity in structuring tropical mammal communities. Ecology 64, 1495–1507 (1983).Article 

    Google Scholar 
    91.Wedding, L. M., Lepczyk, C. A., Pittman, S. J., Friedlander, A. M. & Jorgensen, S. Quantifying seascape structure: Extending terrestrial spatial pattern metrics to the marine realm. Mar. Ecol. Prog. Ser. 427, 219–223 (2011).ADS 
    Article 

    Google Scholar 
    92.Thiriet, P., Cheminée, A., Mangialajo, L. & Francour, P. How 3D complexity of macrophyte-formed habitats affect the processes structuring fish assemblages within coastal temperate seascapes? in Underwater Seascapes (eds. Musard, O. et al.) 185–199 (Springer, 2014).93.Cheminée, A., Merigot, B., Vanderklift, M. A. & Francour, P. Does habitat complexity influence fish recruitment?. Mediterr. Mar. Sci. 17, 39–46 (2016).Article 

    Google Scholar 
    94.Mercader, M. et al. Is artificial habitat diversity a key to restoring nurseries for juvenile coastal fish? Ex situ experiments on habitat selection and survival of juvenile seabreams. Restor. Ecol. 27, 1155–1165 (2019).Article 

    Google Scholar 
    95.Winemiller, K. O. & Leslie, M. A. Fish assemblages across a complex, tropical freshwater/marine ecotone. Environ. Biol. Fishes 34, 29–50 (1992).Article 

    Google Scholar 
    96.Nagelkerken, I. et al. Importance of mangroves, seagrass beds and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Estuar. Coast. Shelf Sci. 51, 31–44 (2000).ADS 
    Article 

    Google Scholar 
    97.Adams, A. J. et al. Nursery function of tropical back-reef systems. Mar. Ecol. Prog. Ser. 318, 287–301 (2006).ADS 
    Article 

    Google Scholar 
    98.Vigliola, L., Harmelin-Vivien, M. & Meekan, M. G. Comparison of techniques of back-calculation of growth and settlement marks from the otoliths of three species of Diplodus from the Mediterranean Sea. Can. J. Fish. Aquat. Sci. 57, 1291–1299 (2000).Article 

    Google Scholar 
    99.Ventura, D., Lasinio, G. J. & Ardizzone, G. Temporal partitioning of microhabitat use among four juvenile fish species of the genus Diplodus (Pisces: Perciformes, Sparidae). Mar. Ecol. 36, 1013–1032 (2015).ADS 
    Article 

    Google Scholar 
    100.Thibaut, T., Blanfune, A., Boudouresque, C. F. & Verlaque, M. Decline and local extinction of Fucales in French Riviera: the harbinger of future extinctions?. Mediterr. Mar. Sci. 16, 206–224 (2015).Article 

    Google Scholar 
    101.Thibaut, T., Pinedo, S., Torras, X. & Ballesteros, E. Long-term decline of the populations of Fucales (Cystoseira spp. and Sargassum spp.) in the Alberes coast (France, North-western Mediterranean). Mar. Pollut. Bull. 50, 1472–1489 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    102.Thibaut, T. et al. Unexpected temporal stability of cystoseira and sargassum forests in port-cros, one of the Oldest Mediterranean Marine National Parks. Cryptogam. Algol. 37, 61–90 (2016).Article 

    Google Scholar 
    103.Blanfuné, A., Boudouresque, C. F., Verlaque, M. & Thibaut, T. The fate of Cystoseira crinita, a forest-forming Fucale (Phaeophyceae, Stramenopiles), in France (North Western Mediterranean Sea). Estuar. Coast. Shelf Sci. 181, 196–208 (2016).ADS 
    Article 

    Google Scholar 
    104.Sales, M., Cebrian, E., Tomas, F. & Ballesteros, E. Pollution impacts and recovery potential in three species of the genus Cystoseira (Fucales, Heterokontophyta). Estuar. Coast. Shelf Sci. 92, 347–357 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    105.Sala, E., Boudouresque, C. F. & Harmelin-Vivien, M. Fishing, trophic cascades, and the structure of algal assemblages: Evaluation of an old but untested paradigm. Oikos 82, 425–439 (1998).Article 

    Google Scholar 
    106.Sala, E., Kizilkaya, Z., Yildirim, D. & Ballesteros, E. Alien marine fishes deplete algal biomass in the Eastern Mediterranean. PLoS ONE 6, e17356 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    107.Planes, S. et al. Spatio-temporal variability in growth of juvenile sparid fishes from the Mediterranean littoral zone. J. Mar. Biol. Assoc. UK 79, 137–143 (1999).Article 

    Google Scholar 
    108.Macpherson, E. et al. Mortality of juvenile fishes of the genus Diplodus in protected and unprotected areas in the western Mediterranean Sea. Mar. Ecol. Prog. Ser. 160, 135–147 (1997).ADS 
    Article 

    Google Scholar 
    109.Pankhurst, N. W. & Munday, P. L. Effects of climate change on fish reproduction and early life history stages. Mar. Freshw. Res. 62, 1015–1026 (2011).CAS 
    Article 

    Google Scholar 
    110.Hidalgo, M. et al. Accounting for ocean connectivity and hydroclimate in fish recruitment fluctuations within transboundary metapopulations. Ecol. Appl. 29, e01913 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    111.Nagelkerken, I., Sheaves, M., Baker, R. & Connolly, R. M. The seascape nursery: A novel spatial approach to identify and manage nurseries for coastal marine fauna. Fish Fish. 16, 362–371 (2015).Article 

    Google Scholar 
    112.Colloca, F. et al. The seascape of demersal fish nursery areas in the North Mediterranean Sea, a first step towards the implementation of spatial planning for trawl fisheries. PLoS ONE 10, e0119590 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    113.Cheminée, A., Feunteun, E., Clerici, S., Bertrand, C. & Francour, P. Management of infralittoral habitats: towards a seascape scale approach. in Underwater Seascapes: From geographical to ecological perspectives (eds. Musard, O., Francour, P. & Feunteun, E.) 240 (Springer, 2014).114.Grober-Dunsmore, R., Pittman, S. J., Caldow, C., Kendall, M. S. & Frazer, T. K. A landscape ecology approach for the study of ecological connectivity across tropical marine seascapes. Ecol. Connect. Trop. Coast. Ecosyst. 1, 493–530 (2009).
    Google Scholar 
    115.Meinesz, A., Lefevre, J. R. & Astier, J. M. Impact of coastal development on the infralittoral zone along the southeastern Mediterranean shore of continental France. Mar. Pollut. Bull. 23, 343–347 (1991).Article 

    Google Scholar 
    116.Boudouresque, C. F. et al. The Management of Mediterranean Coastal Habitats: A Plea for a Socio-ecosystem-Based Approach. in Evolution of Marine Coastal Ecosystems under the Pressure of Global Changes (eds. Ceccaldi, H.-J. et al.) 297–320 (Springer, 2020).117.Seitz, R. D., Wennhage, H., Bergström, U., Lipcius, R. N. & Ysebaert, T. Ecological value of coastal habitats for commercially and ecologically important species. ICES J. Mar. Sci. 71, 648–665 (2014).Article 

    Google Scholar 
    118.Boudouresque, C. F. et al. Protection and conservation of Posidonia oceanica meadows. RAMOGE and RAC. (SPA publisher, 2012).119.Sartoretto, S. et al. An integrated method to evaluate and monitor the conservation state of coralligenous habitats: The INDEX-COR approach. Mar. Pollut. Bull. 120, 222–231 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    120.Meinesz, A. & Blanfuné, A. 1983–2013: Development of marine protected areas along the French Mediterranean coasts and perspectives for achievement of the Aichi target. Mar. Policy 54, 10–16 (2015).Article 

    Google Scholar  More

  • in

    Microplastic contamination of the drilling bivalve Hiatella arctica in Arctic rhodolith beds

    1.PlasticsEurope. Plastics the—Facts 2019: An Analysis of European Plastics Production, Demand and Waste Data (PlasticsEurope, 2019).
    Google Scholar 
    2.Eriksen, M. et al. Plastic pollution in the world’s oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 9, e111913. https://doi.org/10.1371/journal.pone.0111913 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518. https://doi.org/10.1126/science.aba3656 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Bergmann, M., Tekman, M. B. & Gutow, L. Sea change for plastic pollution. Nature 544, 297. https://doi.org/10.1038/544297a (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Imhof, H. K. et al. Spatial and temporal variation of macro-, meso- and microplastic abundance on a remote coral island of the Maldives, Indian Ocean. Mar. Pollut. Bull. 116, 340–347. https://doi.org/10.1016/j.marpolbul.2017.01.010 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    6.Obbard, R. W. Microplastics in polar regions: The role of long range transport. Curr. Opin. Environ. Sci. Health 1, 24–29. https://doi.org/10.1016/j.coesh.2017.10.004 (2018).Article 

    Google Scholar 
    7.Wessel, C. C., Lockridge, G. R., Battiste, D. & Cebrian, J. Abundance and characteristics of microplastics in beach sediments: Insights into microplastic accumulation in northern Gulf of Mexico estuaries. Mar. Pollut. Bull. 109, 178–183. https://doi.org/10.1016/j.marpolbul.2016.06.002 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Woodall, L. C. et al. The deep sea is a major sink for microplastic debris. Royal Soc. Open Sci. https://doi.org/10.1098/rsos.140317 (2014).Article 

    Google Scholar 
    9.Barnes, D. K. A., Galgani, F., Thompson, R. C. & Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. Royal Soc. Lond. Ser. B, Biol. Sci. 364, 1985–1998. https://doi.org/10.1098/rstb.2008.0205 (2009).CAS 
    Article 

    Google Scholar 
    10.Arthur, C., Baker, J. E. & Bamford, H. A. Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris, September 9–11, 2008 (University of Washington Tacoma, 2009).
    Google Scholar 
    11.Hartmann, N. B. et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic Debris. Environ. Sci. Technol. 53, 1039–1047. https://doi.org/10.1021/acs.est.8b05297 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Lusher, A. in Marine Anthropogenic Litter (eds Bergmann, M., Gutow, L. & Klages, M.) 245–307 (Springer International Publishing, 2015).13.Cole, M., Lindeque, P., Halsband, C. & Galloway, T. S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 62, 2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Wright, S. L., Thompson, R. C. & Galloway, T. S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 178, 483–492. https://doi.org/10.1016/j.envpol.2013.02.031 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    15.de Sá, L. C., Oliveira, M., Ribeiro, F., Rocha, T. L. & Futter, M. N. Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future?. Sci. Total Environ. 645, 1029–1039. https://doi.org/10.1016/j.scitotenv.2018.07.207 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Bråte, I. L. N. et al. Mytilus spp. as sentinels for monitoring microplastic pollution in Norwegian coastal waters: A qualitative and quantitative study. Environ. Pollut. 243, 383–393. https://doi.org/10.1016/j.envpol.2018.08.077 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    17.Lusher, A. L., Tirelli, V., O’Connor, I. & Officer, R. Microplastics in Arctic polar waters: The first reported values of particles in surface and sub-surface samples. Sci. Rep. 5, 14947. https://doi.org/10.1038/srep14947 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Cózar, A. et al. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the thermohaline circulation. Sci. Adv. 3, e1600582. https://doi.org/10.1126/sciadv.1600582 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Kanhai, L. D. K. et al. Microplastics in sub-surface waters of the Arctic Central Basin. Mar. Pollut. Bull. 130, 8–18. https://doi.org/10.1016/j.marpolbul.2018.03.011 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    20.Tekman, M. B. et al. Tying up loose ends of microplastic pollution in the Arctic: Distribution from the sea surface through the water column to deep-sea sediments at the HAUSGARTEN observatory. Environ. Sci. Technol. 54, 4079–4090. https://doi.org/10.1021/acs.est.9b06981 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    21.Obbard, R. W. et al. Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth’s Future 2, 315–320. https://doi.org/10.1002/2014EF000240 (2014).ADS 
    Article 

    Google Scholar 
    22.Peeken, I. et al. Arctic sea ice is an important temporal sink and means of transport for microplastic. Nat. Commun. 9, 1505. https://doi.org/10.1038/s41467-018-03825-5 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Kanhai, L. D. K., Gardfeldt, K., Krumpen, T., Thompson, R. C. & O’Connor, I. Microplastics in sea ice and seawater beneath ice floes from the Arctic Ocean. Sci. Rep. 10, 5004. https://doi.org/10.1038/s41598-020-61948-6 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Bergmann, M. et al. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. J. Sci. Adv. 5, eaax1157. https://doi.org/10.1126/sciadv.aax1157 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    25.Amélineau, F. et al. Microplastic pollution in the Greenland Sea: Background levels and selective contamination of planktivorous diving seabirds. Environ. Pollut. 219, 1131–1139. https://doi.org/10.1016/j.envpol.2016.09.017 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Kühn, S. et al. Plastic ingestion by juvenile polar cod (Boreogadus saida) in the Arctic Ocean. Polar Biol. 41, 1269–1278. https://doi.org/10.1007/s00300-018-2283-8 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Fang, C. et al. Microplastic contamination in benthic organisms from the Arctic and sub-Arctic regions. Chemosphere 209, 298–306. https://doi.org/10.1016/j.chemosphere.2018.06.101 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    28.Bråte, I. L. N. et al. Microplastics in Marine Bivalves from the Nordic Environment Vol. 504 (Nordic Council of Ministers, 2020).Book 

    Google Scholar 
    29.Misund, O. A. et al. Norwegian fisheries in the Svalbard zone since 1980. Regulations, profitability and warming waters affect landings. Polar Sci. 10, 312–322. https://doi.org/10.1016/j.polar.2016.02.001 (2016).ADS 
    Article 

    Google Scholar 
    30.Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373–386. https://doi.org/10.2307/3545850 (1994).Article 

    Google Scholar 
    31.Foster, M. S. Rhodoliths: Between rocks and soft places. J. Phycol. 37, 659–667 (2001).Article 

    Google Scholar 
    32.Fredericq, S. et al. The critical importance of rhodoliths in the life cycle completion of both macro- and microalgae, and as holobionts for the establishment and maintenance of marine biodiversity. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00502 (2019).Article 

    Google Scholar 
    33.Krayesky-Self, S. et al. Eukaryotic life inhabits rhodolith-forming coralline algae (Hapalidiales, Rhodophyta), remarkable marine benthic microhabitats. Sci. Rep. 7, 45850. https://doi.org/10.1038/srep45850 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Kamenos, N. A., Moore, P. G., Hall-Spencer, J. & Donnan, D. Maerl: Its value as a habitat for commercial species. Shellfish News 18, 8–9 (2004).
    Google Scholar 
    35.Kamenos, N. A., Moore, P. G. & Hall-Spencer, J. M. Nursery-area function of maerl grounds for juvenile queen scallops Aequipecten opercularis and other invertebrates. Mar. Ecol. Prog. Ser. 274, 183–189. https://doi.org/10.3354/meps274183 (2004).ADS 
    Article 

    Google Scholar 
    36.Gagnon, P., Matheson, K. & Stapleton, M. Variation in rhodolith morphology and biogenic potential of newly discovered rhodolith beds in Newfoundland and Labrador (Canada). Bot. Mar. 55, 85–99 (2012).Article 

    Google Scholar 
    37.Teichert, S. et al. Rhodolith beds (Corallinales, Rhodophyta) and their physical and biological environment at 80°31’N in Nordkappbukta (Nordaustlandet, Svalbard Archipelago, Norway). Phycologia 51, 371–390 (2012).Article 

    Google Scholar 
    38.Teichert, S. et al. Arctic rhodolith beds and their environmental controls. Facies 60, 15–37. https://doi.org/10.1007/s10347-013-0372-2 (2014).Article 

    Google Scholar 
    39.Teichert, S. Hollow rhodoliths increase Svalbard’s shelf biodiversity. Sci. Rep. 4, 6972. https://doi.org/10.1038/srep06972 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Denisenko, S. G., Denisenko, N. V., Lehtonen, K. K., Andersin, A. B. & Laine, A. O. Macrozoobenthos of the Pechora Sea (SE Barents Sea): Community structure and spatial distribution in relation to environmental conditions. Mar. Ecol. Prog. Ser. 258, 109–123 (2003).ADS 
    Article 

    Google Scholar 
    41.Rees, H. L. & Dare, P. J. Sources of Mortality and Associated Life-Cycle Traits of Selected Benthic Species: A Review Vol. 33, 36 (CEFAS Directorate of Fisheries Research, 1993).
    Google Scholar 
    42.Sejr, M. K. et al. Growth and production of Hiatella arctica (Bivalvia) in a high-Arctic fjord (Young Sound, Northeast Greenland). Mar. Ecol. Prog. Ser. 244, 163–169. https://doi.org/10.3354/meps244163 (2002).ADS 
    Article 

    Google Scholar 
    43.Witman, J. D. & Sebens, K. P. Regional variation in fish predation intensity: A historical perspective in the Gulf of Maine. Oecologia 90, 305–315. https://doi.org/10.1007/bf00317686 (1992).ADS 
    Article 
    PubMed 

    Google Scholar 
    44.Kamenos, N. A., Moore, P. G. & Hall-Spencer, J. M. Small-scale distribution of juvenile gadoids in shallow inshore waters; what role does maerl play?. ICES J. Mar. Sci. 61, 422–429 (2004).Article 

    Google Scholar 
    45.Teichert, S., Voigt, N. & Wisshak, M. Do skeletal Mg/Ca ratios of Arctic rhodoliths reflect atmospheric CO2 concentrations?. Polar Biol. 43, 2059–2069. https://doi.org/10.1007/s00300-020-02767-3 (2020).Article 

    Google Scholar 
    46.Ragazzola, F. et al. Phenotypic plasticity of coralline algae in a High CO2 world. Ecol. Evol. 3, 3436–3446. https://doi.org/10.1002/ece3.723 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Teichert, S. & Freiwald, A. Polar coralline algal CaCO3-production rates correspond to intensity and duration of the solar radiation. Biogeosciences 11, 833–842. https://doi.org/10.5194/bg-11-833-2014 (2014).ADS 
    Article 

    Google Scholar 
    48.Büdenbender, J., Riebesell, U. & Form, A. Calcification of the Arctic coralline red algae Lithothamnion glaciale in response to elevated CO2. Mar. Ecol. Prog. Ser. 441, 79–87 (2011).ADS 
    Article 

    Google Scholar 
    49.Wisshak, M. et al. Habitat Characteristics and Carbonate Cycling of Macrophyte-Supported Polar Carbonate Factories (Svalbard)—Cruise No. MSM55—June 11–June 29, 2016—Reykjavik (Iceland)—Longyearbyen (Norway) 58 (Bremen, 2017).50.Löder, M. G. J. et al. Enzymatic purification of microplastics in environmental samples. Environ. Sci. Technol. 51, 14283–14292. https://doi.org/10.1021/acs.est.7b03055 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    51.Hufnagl, B. et al. A methodology for the fast identification and monitoring of microplastics in environmental samples using random decision forest classifiers. Anal. Methods 11, 2277–2285. https://doi.org/10.1039/C9AY00252A (2019).CAS 
    Article 

    Google Scholar 
    52.Yanfang, L., Hua, Z. & Cheng, T. A review of possible pathways of marine microplastics transport in the ocean. Anthr. Coasts 3, 6–13. https://doi.org/10.1139/anc-2018-0030 (2020).Article 

    Google Scholar 
    53.Erni-Cassola, G., Zadjelovic, V., Gibson, M. I. & Christie-Oleza, J. A. Distribution of plastic polymer types in the marine environment; A meta-analysis. J. Hazard. Mater. 369, 691–698. https://doi.org/10.1016/j.jhazmat.2019.02.067 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    54.Choy, C. A. et al. The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column. Sci. Rep. 9, 7843. https://doi.org/10.1038/s41598-019-44117-2 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Kooi, M. et al. The effect of particle properties on the depth profile of buoyant plastics in the ocean. Sci. Rep. 6, 33882. https://doi.org/10.1038/srep33882 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Vinay Kumar, B. N., Löschel, L. A., Imhof, H. K., Löder, M. G. J. & Laforsch, C. Analysis of microplastics of a broad size range in commercially important mussels by combining FTIR and Raman spectroscopy approaches. Environ. Pollut. https://doi.org/10.1016/j.envpol.2020.116147 (2020).Article 
    PubMed 

    Google Scholar 
    57.Löder, M. G. J. & Gerdts, G. in Marine Anthropogenic Litter (eds Bergmann, M., Gutow, L. & Klages, M.) 201–227 (Springer International Publishing, 2015).58.Wisshak, M. et al. Epibenthos dynamics and environmental fluctuations in two contrasting Polar carbonate factories (Mosselbukta and Bjørnøy-Banken, Svalbard). Front. Mar. Sci. 6, 667. https://doi.org/10.3389/fmars.2019.00667 (2019).Article 

    Google Scholar 
    59.Frias, J. P. G. L., Lyashevska, O., Joyce, H., Pagter, E. & Nash, R. Floating microplastics in a coastal embayment: A multifaceted issue. Mar. Pollut. Bull. 158, 111361. https://doi.org/10.1016/j.marpolbul.2020.111361 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    60.Rochman, C. M. et al. Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci. Rep. 5, 14340. https://doi.org/10.1038/srep14340 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Digka, N., Tsangaris, C., Torre, M., Anastasopoulou, A. & Zeri, C. Microplastics in mussels and fish from the Northern Ionian Sea. Mar. Pollut. Bull. 135, 30–40. https://doi.org/10.1016/j.marpolbul.2018.06.063 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    62.Santana, M. F. M., Ascer, L. G., Custódio, M. R., Moreira, F. T. & Turra, A. Microplastic contamination in natural mussel beds from a Brazilian urbanized coastal region: Rapid evaluation through bioassessment. Mar. Pollut. Bull. 106, 183–189. https://doi.org/10.1016/j.marpolbul.2016.02.074 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    63.Gomiero, A., Strafella, P., Øysæd, K. B. & Fabi, G. First occurrence and composition assessment of microplastics in native mussels collected from coastal and offshore areas of the northern and central Adriatic Sea. Environ. Sci. Pollut. Res. Int. 26, 24407–24416. https://doi.org/10.1007/s11356-019-05693-y (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    64.Mathalon, A. & Hill, P. Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Mar. Pollut. Bull. 81, 69–79. https://doi.org/10.1016/j.marpolbul.2014.02.018 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    65.Van Cauwenberghe, L., Claessens, M., Vandegehuchte, M. B. & Janssen, C. R. Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environ. Pollut. 199, 10–17. https://doi.org/10.1016/j.envpol.2015.01.008 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    66.Li, J. et al. Using mussel as a global bioindicator of coastal microplastic pollution. Environ. Pollut. 244, 522–533. https://doi.org/10.1016/j.envpol.2018.10.032 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    67.Woodall, L. C. et al. Using a forensic science approach to minimize environmental contamination and to identify microfibres in marine sediments. Mar. Pollut. Bull. 95, 40–46. https://doi.org/10.1016/j.marpolbul.2015.04.044 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    68.Kowalski, N., Reichardt, A. M. & Waniek, J. J. Sinking rates of microplastics and potential implications of their alteration by physical, biological, and chemical factors. Mar. Pollut. Bull. 109, 310–319. https://doi.org/10.1016/j.marpolbul.2016.05.064 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    69.Kooi, M., Nes, E. H. V., Scheffer, M. & Koelmans, A. A. Ups and downs in the ocean: Effects of biofouling on vertical transport of microplastics. Environ. Sci. Technol. 51, 7963–7971. https://doi.org/10.1021/acs.est.6b04702 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Barrows, A. P. W., Cathey, S. E. & Petersen, C. W. Marine environment microfiber contamination: Global patterns and the diversity of microparticle origins. Environ. Pollut. 237, 275–284. https://doi.org/10.1016/j.envpol.2018.02.062 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    71.Halsband, C. & Herzke, D. Plastic litter in the European Arctic: What do we know?. Emerg. Contam. 5, 308–318. https://doi.org/10.1016/j.emcon.2019.11.001 (2019).Article 

    Google Scholar 
    72.Bergmann, M., Lutz, B., Tekman, M. B. & Gutow, L. Citizen scientists reveal: Marine litter pollutes Arctic beaches and affects wild life. Mar. Pollut. Bull. 125, 535–540. https://doi.org/10.1016/j.marpolbul.2017.09.055 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    73.von Moos, N., Burkhardt-Holm, P. & Köhler, A. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ. Sci. Technol. 46, 11327–11335. https://doi.org/10.1021/es302332w (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    74.Kolandhasamy, P. et al. Adherence of microplastics to soft tissue of mussels: A novel way to uptake microplastics beyond ingestion. Sci. Total Environ. 610–611, 635–640. https://doi.org/10.1016/j.scitotenv.2017.08.053 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    75.Löder, M. G. J., Kuczera, M., Mintenig, S., Lorenz, C. & Gerdts, G. Focal plane array detector-based micro-Fourier-transform infrared imaging for the analysis of microplastics in environmental samples. J. Environ. Chem. 12, 563–581. https://doi.org/10.1071/EN14205 (2015).CAS 
    Article 

    Google Scholar 
    76.Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
    Google Scholar 
    77.R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
    Google Scholar 
    78.Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn, 498 (Springer, 2002).Book 

    Google Scholar 
    79.Vegan: Community Ecology Package (2020). More

  • in

    A global dataset of inland fisheries expert knowledge

    Freshwater fish are important contributors to human livelihoods, food and nutrition, recreation, ecosystem services, and biological diversity. Yet, they inhabit some of the most threatened ecosystems globally1, face higher declines relative to marine and terrestrial species2, and are disproportionally understudied3,4. Inland fisheries are subjected to a suite of anthropogenic stressors across aquatic-terrestrial landscapes5, including flow alterations, dams, invasive species, sedimentation, drought, and pollution6,7,8. Evaluating stressors and their impacts on global inland fisheries is essential for effective management, monitoring, and conservation6, but unlike marine fisheries, there is no standardized method to assess inland fisheries9.Data inputs for a fisheries threat assessment typically include baseline information, such as species-specific landings or in situ population data (volume and composition), size (population and landings), and biomass. In addition, multi-stressor interactions (e.g., synergistic, additive) across complex habitats often warrant cross-ecosystem and cross-sector evaluations at multiple scales10,11. However, in the case of inland fisheries, these data inputs are severely deficient and often disparate in many regions12,13, which challenges the development of a global assessment. Thus, evaluating stressors and their impacts on inland fisheries necessitates the use of additional data sources (e.g., expert knowledge) beyond those typically derived directly from fish or fish habitats12,14. Local and subject-matter expertise can provide contextualized insights where spatial data are limited or unattainable (e.g., emerging threats15) and where empirical evidence is incomplete (e.g., multi-stressor interactions).Expert elicitation (i.e., expert opinion synthesis, where opinion is the preliminary state of knowledge of an individual) is increasingly used to inform ecological evaluations and guide water infrastructure, development, food security, and conservation decision-making and assessments, especially in data-poor scenarios14,16. While spatial data can be integrated as a suite of individual stressors (i.e., input variables) within ranking systems for the development of vulnerability or habitat assessments for conservation purposes14,17, the utilization of spatial variables is limited by the method for determining relative impacts (i.e., value judgment)18. Cumulate impact scores and systematic weighted ranking of threats are often based on geographically biased, small sized, or non-representative subsets of experts’ opinions (e.g., global weight determination from eight experts5). Thus, data collection for this study was motivated by the development of a global assessment of threats to major inland fisheries, and the overarching need for tractable freshwater indicators. The data generated contribute essential relative influence scores for the assessment and provide a timely snapshot of inland fisheries as perceived by fisheries professionals. Threat composition and influence have broader potential applications to inform vulnerability and adaptation components of freshwater conservation and management targets (e.g., United Nations (UN) Sustainable Development Goals, UN International Decade “Water for Sustainable Development,” Convention on Biological Diversity, Ramsar Convention on Wetlands).This paper introduces a dataset that can help address a knowledge gap in understanding natural and human influences on inland fisheries with local, contextualized fishery evaluations. Derived from an electronic survey, data comprise perceptions from fisheries professionals (n = 536) on the relative influence and spatial associations of fishery threats, recent successes, and adaptive capacity measures within the respondent’s fishery of expertise.In the context of the survey, we use the term “threat” as a proximate human activity or process (“direct threat”) causing degradation or impairment (“stress”; e.g., reduced population size, fragmented riparian habitat) to ecological targets (e.g., species, communities, ecosystems; in this case, fishery)19. We considered only the threats most proximate and direct to the target (fishery) and excluded stresses (i.e., symptoms, degraded key attributes) and contributing factors (i.e., root causes, underlying factors). For example, we considered pollutants (direct threat) rather than the pollution source (contributing factor) or the resulting contaminated water (stress, effect). We addressed the ambiguity of the term ‘fishery’20 by allowing respondents to indicate a geographic location (specific point) within their fishery area. This allows for spatial attribution with an inclusive use of ‘fishery’ as it pertains to threats (e.g., threats to a fish population of fishery-targeted species, catch characteristics, or the habitat in which the fishery operates).We structured survey questions about the occurrence and relative influence of threats to the production and health of inland fisheries using 29 specified individual threats derived from well-studied pressures to inland fisheries in addition to pressures emerging as threats to fisheries (e.g., climate change, plastics15). We categorized individual threats into five well-established categories: habitat degradation, pollution, overexploitation, species invasion, and climate change1,7 for organizational context in the survey. We also designed survey questions specifically to understand the social adaptive capacity of fishers using five major community-level domains: fisher access to assets (e.g., financial, technological, service), fisher and institutional flexibility to adapt to changing conditions (e.g., livelihood alternatives, adaptive management), social capital and organization to enable cooperation and collective action (e.g., co-management), learning and problem-solving for responding to threats, and fishers’ sense of agency to influence and shape actions and outcomes21.This dataset can be useful as an overview assessment, on which future assessments may expand for specific temporal or spatial interests. Some data in this dataset (e.g., microplastics, invasive species disturbances) are otherwise unattainable at relevant scales from geospatial information and therefore provide novel information. Potential uses include demographic influences on threat perceptions, spatial distribution of adaptive capacity measures paired with climate change or other threats, external factors driving multi-stressor interactions, and paired geospatial and expert-derived threat analysis. These data can provide insights on fisheries as a coupled human-natural system and inform regional and global freshwater assessments. More

  • in

    Wood-inhabiting fungal responses to forest naturalness vary among morpho-groups

    1.Keenan, R. J. et al. Forest ecology and management dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 352, 9–20 (2015).Article 

    Google Scholar 
    2.Siitonen, J. Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecol. Bull. 49, 11–41 (2001).
    Google Scholar 
    3.Stokland, J. N., Siitonen, J. & Jonsson, B. G. Biodiversity in Dead Wood (Cambridge University Press, 2012).Book 

    Google Scholar 
    4.Nordén, J., Penttilä, R., Siitonen, J., Tomppo, E. & Ovaskainen, O. Specialist species of wood-inhabiting fungi struggle while generalists thrive in fragmented boreal forests. J. Ecol. 101, 701–712 (2013).Article 

    Google Scholar 
    5.Tikkanen, O.-P., Martikainen, P., Hyvärinen, E., Junninen, K. & Kouki, J. Red-listed boreal forest species of Finland: Associations with forst structure, tree species, and decaying wood. Ann. Zool. Fennici 43, 373–383 (2006).
    Google Scholar 
    6.Sippola, A.-L., Lehesvirta, T. & Renvall, P. Effect of selective logging on coarse woody debris and diversity of wood-decaying polypores in eastern Finland. Ecol. Bull. 49, 243–254 (2001).
    Google Scholar 
    7.Axelsson, A. L., Östlund, L. & Hellberg, E. Changes in mixed deciduous forests of boreal Sweden 1866–1999 based on interpretation of historical records. Landsc. Ecol. 17, 403–418 (2002).Article 

    Google Scholar 
    8.Eriksson, S., Skånes, H., Hammer, M. & Lönn, M. Current distribution of older and deciduous forests as legacies from historical use patterns in a Swedish boreal landscape (1725–2007). For. Ecol. Manag. 260, 1095–1103 (2010).Article 

    Google Scholar 
    9.Wallenius, T. H., Lilja, S. & Kuuluvainen, T. Fire history and tree species composition in managed Picea abies stands in southern Finland: Implications for restoration. For. Ecol. Manag. 250, 89–95 (2007).Article 

    Google Scholar 
    10.Stokland, J. N. Host-tree associattions. In Biodiversity in Dead Wood (eds Stokland, J. N. et al.) 82–109 (Cambridge University Press, 2012).Chapter 

    Google Scholar 
    11.Kouki, J., Arnold, K. & Martikainen, P. Long-term persistence of aspen – A key host for many threatened species—Is endangered in old-growth conservation areas in Finland. J. Nat. Conserv. 12, 41–52 (2004).Article 

    Google Scholar 
    12.Komonen, A., Tuominen, L., Purhonen, J. & Halme, P. Landscape structure influences browsing on a keystone tree species in conservation areas. For. Ecol. Manag. 457, 117724 (2020).Article 

    Google Scholar 
    13.Purhonen, J. et al. Morphological traits predict host-tree specialization in wood-inhabiting fungal communities. Fungal Ecol. 46, 100863 (2020).Article 

    Google Scholar 
    14.Dowding, P. Nutrient uptake and allocation during substrate exploitation by fungi. In The Fungal Community. Its Organization and Role in the Ecosystems (eds Wicklow, D. T. & Carroll, G. C.) 612–636 (Marcel Dekker Inc, 1981).
    Google Scholar 
    15.Boddy, L., Frankland, J. & van West, P. Ecology of Saprotrophic Basidiomycetes (Elsevier Ltd, 2008).
    Google Scholar 
    16.Kahl, T. et al. Wood decay rates of 13 temperate tree species in relation to wood properties, enzyme activities and organismic diversities. For. Ecol. Manag. 391, 86–95 (2017).Article 

    Google Scholar 
    17.Abrego, N. & Salcedo, I. Variety of woody debris as the factor influencing wood-inhabiting fungal richness and assemblages: Is it a question of quantity or quality?. For. Ecol. Manag. 291, 377–385 (2013).Article 

    Google Scholar 
    18.Lindblad, I. Wood-inhabiting fungi on fallen logs of Norway spruce: Relations to forest management and substrate quality. Nord. J. Bot. 18, 243–255 (1998).Article 

    Google Scholar 
    19.Tomao, A., Antonio Bonet, J., Castaño, C. & de-Miguel, S. How does forest management affect fungal diversity and community composition? Current knowledge and future perspectives for the conservation of forest fungi. For. Ecol. Manag. 457, 1176 (2020).Article 

    Google Scholar 
    20.Bader, P., Jansson, S. & Jonsson, B. G. Wood-inhabiting fungi and substratum decline in selectively logged boreal spruce forests. Biol. Conserv. 72, 355–362 (1995).Article 

    Google Scholar 
    21.Heilmann-Clausen, J. & Christensen, M. Does size matter?. For. Ecol. Manag. 201, 105–117 (2004).Article 

    Google Scholar 
    22.Nordén, B., Götmark, F., Tönnberg, M. & Ryberg, M. Dead wood in semi-natural temperate broadleaved woodland: Contribution of coarse and fine dead wood, attached dead wood and stumps. For. Ecol. Manag. 194, 235–248 (2004).Article 

    Google Scholar 
    23.Ottosson, E. et al. Diverse ecological roles within fungal communities in decomposing logs of Picea abies. FEMS Microbiol. Ecol. 91, 1–13 (2015).Article 
    CAS 

    Google Scholar 
    24.Juutilainen, K., Mönkkönen, M., Kotiranta, H. & Halme, P. The effects of forest management on wood-inhabiting fungi occupying dead wood of different diameter fractions. For. Ecol. Manag. 313, 283–291 (2014).Article 

    Google Scholar 
    25.Jönsson, M., Ruete, A., Kellner, O., Gunnarsson, U. & Snäll, T. Will forest conservation areas protect functionally important diversity of fungi and lichens over time?. Biodivers. Conserv. https://doi.org/10.1007/s10531-015-1035-0 (2016).Article 

    Google Scholar 
    26.Abrego, N., Norberg, A. & Ovaskainen, O. Measuring and predicting the influence of traits on the assembly processes of wood-inhabiting fungi. J. Ecol. https://doi.org/10.1111/1365-2745.12722 (2017).Article 

    Google Scholar 
    27.Bässler, C. et al. Functional response of lignicolous fungal guilds to bark beetle deforestation. Ecol. Indic. 65, 149–160 (2016).Article 

    Google Scholar 
    28.Bässler, C., Heilmann-Clausen, J., Karasch, P., Brandl, R. & Halbwachs, H. Ectomycorrhizal fungi have larger fruit bodies than saprotrophic fungi. Fungal Ecol. 17, 205–212 (2015).Article 

    Google Scholar 
    29.Sherwood, M. A. Convergent evolution in discomycetes from bark and wood. Bot. J. Linn. Soc. 82, 15–34 (1981).Article 

    Google Scholar 
    30.Unterseher, M., Otto, P. & Morawetz, W. Species richness and substrate specificity of lignicolous fungi in the canopy of a temperate, mixed deciduous forest. Mycol. Prog. 4, 117–132 (2005).Article 

    Google Scholar 
    31.Dawson, S. K. & Jönsson, M. Just how big is intraspecific trait variation in basidiomycete wood fungal fruit bodies?. Fungal Ecol. 46, 100865 (2020).Article 

    Google Scholar 
    32.Dawson, S. K. et al. Handbook for the measurement of macrofungal functional traits: A start with basidiomycete wood fungi. Funct. Ecol. 33, 372–387 (2019).Article 

    Google Scholar 
    33.Zanne, A. E. et al. Fungal functional ecology: Bringing a trait-based approach to plant-associated fungi. Biol. Rev. 95, 409–433 (2020).PubMed 
    Article 

    Google Scholar 
    34.Nordén, B., Ryberg, M., Götmark, F. & Olausson, B. Relative importance of coarse and fine woody debris for the diversity of wood-inhabiting fungi in temperate broadleaf forests. Biol. Conserv. 117, 1–10 (2004).Article 

    Google Scholar 
    35.Stokland, J. N. & Larsson, K. Forest ecology and management legacies from natural forest dynamics : Different effects of forest management on wood-inhabiting fungi in pine and spruce forests. For. Ecol. Manag. 261, 1707–1721 (2011).Article 

    Google Scholar 
    36.Cajander, A. K. Forest types and their significance. Acta For. Fenn. 56, 1–69 (1949).
    Google Scholar 
    37.Ahti, T., Hämet-Ahti, L. & Jalas, J. Vegetation zones and their sections in northwestern Europe. Ann. Bot. Fenn. 5, 169–211 (1968).
    Google Scholar 
    38.Renaud, V., Innes, J. L., Dobbertin, M. & Rebetez, M. Comparison between open-site and below-canopy climatic conditions in Switzerland for different types of forests over 10 years (1998–2007). Theor. Appl. Climatol. 105, 119–127 (2011).ADS 
    Article 

    Google Scholar 
    39.Renvall, P. Community structure and dynamics of wood-rotting Basidiomycetes on decomposing conifer trunks in northern Finland. Karstenia 35, 1–51 (1995).Article 

    Google Scholar 
    40.Abrego, N., Halme, P., Purhonen, J. & Ovaskainen, O. Fruit body based inventories in wood-inhabiting fungi: Should we replicate in space or time?. Fungal Ecol. 20, 225–232 (2016).Article 

    Google Scholar 
    41.Halme, P. & Kotiaho, J. S. The importance of timing and number of surveys in fungal biodiversity research. Biodivers. Conserv. 21, 205–219 (2012).Article 

    Google Scholar 
    42.Purhonen, J., Huhtinen, S., Kotiranta, H. & Kotiaho, J. S. Detailed information on fruiting phenology provides new insights on wood-inhabiting fungal detection. Fungal Ecol. 27, 175–177 (2017).Article 

    Google Scholar 
    43.Royal Botanic Gardens Kew, Landcare Research-NZ & Chinese Academy of Science. Index Fungorum. www.indexfungorum.org 01.03.2017 (2017).44.Barton, K. MuMIn: Multi-Model Inference. R Package Version 1.43.6. https://CRAN.R-project.org/package=MuMIn 15.11.2020 (2019).45.R Core Team. R: A Language and Environment for Statistical Computing. Available at: https://www.r-project.org/ (2017).46.Magnusson, A. et al. glmmTMB: Generalized Linear Mixed Models Using Template Model Builder. https://cran.r-project.org/web/packages/glmmTMB/glmmTMB.pdf 30.08.2018 (2018).47.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.4-4. https://cran.r-project.org/web/packages/vegan/index.html 30.12.2017 (2017).48.Abrego, N., Bässler, C., Christensen, M. & Heilmann-Clausen, J. Implications of reserve size and forest connectivity for the conservation of wood-inhabiting fungi in Europe. Biol. Conserv. 191, 469–477 (2015).Article 

    Google Scholar 
    49.Halme, P. et al. The effects of habitat degradation on metacommunity structure of wood-inhabiting fungi in European beech forests. Biol. Conserv. 168, 24–30 (2013).Article 

    Google Scholar 
    50.Edman, M., Kruys, N. & Jonsson, B. G. Local dispersal sources strongly affect colonization patterns of wood-decaying fungi on spruce logs. Ecol. Appl. 14, 893–901 (2004).Article 

    Google Scholar 
    51.Komonen, A. & Müller, J. Dispersal ecology of deadwood organisms and connectivity conservation. Conserv. Biol. 32, 535–545 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Abrego, N. & Salcedo, I. How does fungal diversity change based on woody debris type? A case study in Northern Spain. Ekologija 57, 109–119 (2011).Article 

    Google Scholar 
    53.Juutilainen, K., Halme, P., Kotiranta, H. & Mönkkönen, M. Size matters in studies of dead wood and wood-inhabiting fungi. Fungal Ecol. 4, 342–349 (2011).Article 

    Google Scholar 
    54.Heilmann-Clausen, J. & Christensen, M. Wood-inhabiting macrofungi in Danish beech-forests ? conflicting diversity patterns and their implications in a conservation perspective. Biol. Conserv. 122, 633–642 (2005).Article 

    Google Scholar 
    55.Moore, D., Gange, A. C., Gange, E. G. & Boddy, L. Fruit bodies: Their production and develpoment in relation to environment. In Ecology of Saprotrophic Basidiomycetes (eds Boddy, L. et al.) (Elsevier, 2008).
    Google Scholar 
    56.Junninen, K., Similä, M., Kouki, J. & Kotiranta, H. Assemblages of wood-inhabiting fungi along the gradients of succession and naturalness in boreal pine-dominated forests in Fennoscandia. Ecography (Cop.) 29, 75–83 (2006).Article 

    Google Scholar 
    57.Agren, J. & Zackrisson, O. Age and size structure of Pinus sylvestris populations on mires in Central and Northern Sweden. J. Ecol. 78, 1049–1062 (1990).Article 

    Google Scholar 
    58.Niemelä, T., Wallenius, T. & Kotiranta, H. The kelo tree, a vanishing substrate of specified wood-inhabiting fungi. Polish Bot. J. 47, 91–101 (2002).
    Google Scholar 
    59.Venugopal, P., Julkunen-Tiitto, R., Junninen, K. & Kouki, J. Phenolic compounds in Scots pine heartwood: Are kelo trees a unique woody substrate?. Can. J. For. Res. 46, 225–233 (2016).CAS 
    Article 

    Google Scholar 
    60.Jonsson, B. G. et al. Dead wood availability in managed Swedish forests – Policy outcomes and implications for biodiversity. For. Ecol. Manag. 376, 174–182 (2016).Article 

    Google Scholar 
    61.Runnel, K. & Lõhmus, A. Deadwood-rich managed forests provide insights into the old-forest association of wood-inhabiting fungi. Fungal Ecol. 27, 155–167 (2017).Article 

    Google Scholar 
    62.Junninen, K. & Komonen, A. Conservation ecology of boreal polypores: A review. Biol. Conserv. 144, 11–20 (2011).Article 

    Google Scholar 
    63.Krah, F. S. et al. Independent effects of host and environment on the diversity of wood-inhabiting fungi. J. Ecol. 106, 1428–1442. https://doi.org/10.1111/1365-2745.12939 (2018).Article 

    Google Scholar 
    64.Hoppe, B. et al. Linking molecular deadwood-inhabiting fungal diversity and community dynamics to ecosystem functions and processes in Central European forests. Fungal Divers. 77, 367–379 (2016).Article 

    Google Scholar 
    65.Kubartová, A., Ottosson, E., Dahlberg, A. & Stenlid, J. Patterns of fungal communities among and within decaying logs, revealed by 454 sequencing. Mol. Ecol. 21, 4514–4532 (2012).PubMed 
    Article 

    Google Scholar 
    66.Kazartsev, I., Shorohova, E., Kapitsa, E. & Kushnevskaya, H. Decaying Picea abies log bark hosts diverse fungal communities. Fungal Ecol. 33, 1–12 (2018).Article 

    Google Scholar 
    67.von Bonsdorff, T. et al. New national and regional biological records for Finland 8. Contributions to agaricoid, gastroid and ascomycetoid taxa of fungi 5. Memo. Soc. pro Fauna Flora Fenn. 92, 120–128 (2016).
    Google Scholar 
    68.von Bonsdorff, T. et al. New national and regional biological records for Finland 5. Contributions to agaricoid and ascomycetoid taxa of fungi 4. Memo. Soc. pro Fauna Flora Fenn. 91, 56–66 (2015).
    Google Scholar 
    69.Frøslev, T. G. et al. Man against machine: Do fungal fruitbodies and eDNA give similar biodiversity assessments across broad environmental gradients?. Biol. Conserv. 233, 201–212 (2019).Article 

    Google Scholar 
    70.Esri. ArcMap, version 10.5.1. http://desktop.arcgis.com/en/arcmap/ 04.09.2017 (2017). Available at: http://desktop.arcgis.com/en/arcmap/. More

  • in

    Towards omics-based predictions of planktonic functional composition from environmental data

    From SSN to PFCsWe analyzed the 1,914,171 proteins from 885 MAGs from marine plankton, recovered from 12 geographically bound assemblies of metagenomic sets corresponding to a total of 93 Tara Oceans samples from the 0.2 to 3 µm and 0.2 to 1.6 µm size fractions21. A flowchart of our bioinformatic pipeline is available in Supplementary Fig. 1. 39.6% of the MAGs’ proteins (757,457) were involved in our SSN, i.e., they had at least one similarity relationship with another protein that satisfied the chosen threshold of 80% similarity and 80% coverage (see “Methods”). In total, 51.1% of the network proteins could be annotated to 4922 unique molecular function IDs in the KEGG database37, associated with 327 distinct metabolic pathways (a full list of these pathways is available in Supplementary Data 1). In total, 85.2% of the network proteins were annotated to 17,009 eggNOG functional descriptions38,39.The SSN involved 233,756 connected components (CCs), i.e., groups of nodes (here proteins) connected together by at least one path and disconnected from the rest of the network. According to KEGG and eggNOG databases, 15.3% and 48.5% of the CCs remained without any functional annotation (i.e., all sequences from the CC were unmatched in the databases, or had a match but were not yet linked to any biological function, Table 1), and 14.8% were functionally unannotated for both databases. We ranked the functional homogeneity of CCs involving at least one functional annotation from 0 (all annotations in the CC are different) to 1 (all annotations in the CC are the same) and found mean homogeneity scores of 0.99 over 1 for KEGG annotations and 0.94 over 1 for eggNOG ones (see “Methods” for score calculation details). Only 88 (0.04%) CCs had a homogeneity score below 0.5 in both annotation databases, all with sizes below five proteins. 177 CCs (0.07%) had a score below 0.8 in both databases, all under 12 proteins in size. These CCs were kept in the analysis while tagged as poorly homogenous. We thereafter considered each CC as a PFC, numbered from #1 to #233,756.Table 1 Metrics computed on the 233,756 protein functional clusters (PFC) from the sequence similarity network of MAGs proteins.Full size tableTo check for the influence of taxonomic relationships between the MAGs on our PFCs, we computed different metrics based on MAGs taxonomic annotations provided by Delmont et al.21. (Table 1). This taxonomic annotation based on 43 single-copy core genes allowed to annotate 100% of the MAGs at the domain level, and 95% of the MAGs at the phylum level, the remaining 5% corresponding to Bacteria MAGs of unidentified phyla21. Only 1330 PFCs (0.6%) mixed proteins from the Archaea and Bacteria domains. PFCs were very homogeneous at the phylum level, then the homogeneity decreased at lower taxonomic rank, meaning that PFCs studied here were generally not specific from a single class, order, family, genus, or MAG (Table 1). In total, 7834 PFCs (3.4%) were only composed of proteins with no functional annotation in KEGG and eggNOG databases, and no taxonomic annotation under the phylum level. Their sizes ranged from 2 to 30 proteins (mean of 2.62). Their 20,552 proteins came from Euryarchaeota MAGs (12,458; 60.6%), Bacteria MAGs of unidentified phylum (2742; 13.3%), Candidatus Marinimicrobia MAGs (2451; 11.9%), Proteobacteria MAGs (1528; 7.4%), Acidobacteria MAGs (1031; 5%), Verrucomicrobia MAGs (103; 0.5%), Planctomycetes MAGs (89; 0.4%), Bacteroidetes MAGs (79; 0.4%), Chloroflexi MAGs (59; 0.3%) and Candidate Phyla Radiation MAGs (12; 0.05%). We hereafter considered these functionally and taxonomically unknown PFCs as “dark” PFCs40,41. Their nucleotidic sequences are available in separate supplementary files (see “Data availability”). The abundance of dark PFCs was significantly different from the abundance of other PFCs in 85 samples over 93 (two-sided Wilcoxon rank-sum test, p-value  More

  • in

    Evidence for use of both capital and income breeding strategies in the mangrove tree crab, Aratus pisonii

    1.Mendo, T., Semmens, J. M., Lyle, J. M., Tracey, S. R. & Moltschaniwskyj, N. Reproductive strategies and energy sources fueling reproductive growth in a protracted spawner. Mar. Biol. 163, 2 (2016).Article 

    Google Scholar 
    2.Stephens, P. A., Boyd, I. L., McNamara, J. M. & Houston, A. I. Capital breeding and income breeding: their meaning, measurement, and worth. Ecology 90, 2057–2067 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Bonnet, X., Bradshaw, D. & Shine, R. Capital versus income breeding: An ectothermic perspective. Oikos 83, 333–342 (1998).Article 

    Google Scholar 
    4.Johnson, R. A. Capital and income breeding and the evolution of colony founding strategies in ants. Insectes Soc. 53, 316–322 (2006).Article 

    Google Scholar 
    5.Wheatley, K. E., Bradshaw, C. J., Harcourt, R. G. & Hindell, M. A. Feast or famine: Evidence for mixed capital–income breeding strategies in Weddell seals. Oecologia 155, 11–20 (2008).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Tammaru, T. & Haukioja, E. Capital breeders and income breeders among Lepidoptera: Consequences to population dynamics. Oikos 77, 561–564 (1996).Article 

    Google Scholar 
    7.McHuron, E. A., Costa, D. P., Schwarz, L. & Mangel, M. State-dependent behavioural theory for assessing the fitness consequences of anthropogenic disturbance on capital and income breeders. Methods Ecol. Evol. 8, 552–560 (2017).Article 

    Google Scholar 
    8.Williams, C. T. et al. Seasonal reproductive tactics: Annual timing and the capital-to-income breeder continuum. Philos. Trans. R. Soc. B 372, 20160250 (2017).Article 

    Google Scholar 
    9.Kerby, J. & Post, E. Capital and income breeding traits differentiate trophic match–mismatch dynamics in large herbivores. Philos. Trans. R. Soc. B 368, 20120484 (2013).Article 

    Google Scholar 
    10.Zeng, Y., McLay, C. & Yeo, D. C. Capital or income breeding crabs: Who are the better invaders?. Crustaceana 87, 1648–1656 (2014).Article 

    Google Scholar 
    11.Griffen, B. D. The timing of energy allocation to reproduction in an important group of marine consumers. PLoS ONE 13, e0199043 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    12.Boudreau, S. A. & Worm, B. Ecological role of large benthic decapods in marine ecosystems: A review. Mar. Ecol. Prog. Ser. 469, 195–213 (2012).ADS 
    Article 

    Google Scholar 
    13.Holland, D. S. & Kasperski, S. The impact of access restrictions on fishery income diversification of US West Coast fishermen. Coast. Manag. 44, 452–463 (2016).Article 

    Google Scholar 
    14.Edwards, M. & Richardson, A. J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430, 881–884 (2004).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Anilkumar, G. Reproductive physiology of female crustaceans. Ph.D. thesis, University of Calicut, India (1980).16.Lovrich, G. A., Romero, M. C., Tapella, F. & Thatje, S. Distribution, reproductive and energetic conditions of decapod crustaceans along the Scotia Arc (Southern Ocean). Sci. Mar. 69, 183–193 (2005).Article 

    Google Scholar 
    17.Sainmont, J., Andersen, K. H., Varpe, Ø. & Visser, A. W. Capital versus income breeding in a seasonal environment. Am. Nat. 184, 466–476 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Griffen, B. D. Metabolic costs of capital energy storage in a small-bodied ectotherm. Ecol. Evol. 7, 2423–2431 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Varpe, Ø., Jørgensen, C., Tarling, G. A. & Fiksen, Ø. The adaptive value of energy storage and capital breeding in seasonal environments. Oikos 118, 363–370 (2009).Article 

    Google Scholar 
    20.Varpe, Ø., Jørgensen, C., Tarling, G. A. & Fiksen, Ø. Early is better: Seasonal egg fitness and timing of reproduction in a zooplankton life-history model. Oikos 116, 331–1342 (2007).Article 

    Google Scholar 
    21.Warner, G. F. The life history of the mangrove tree crab, Aratus pisoni. J. Zool. 153, 321–335 (1967).Article 

    Google Scholar 
    22.Díaz, H. & Conde, J. E. Population dynamics and life history of the mangrove crab Aratus pisonii (Brachyura, Grapsidae) in a marine environment. Bull. Mar. Sci. 45, 148–163 (1989).
    Google Scholar 
    23.de Arruda Leme, M. H. & Negreiros-Fransozo, M. L. Reproductive patterns of Aratus pisonii (Decapoda: Grapsidae) from an estuarine area of São Paulo northern coast, Brazil. Rev. Biol. Trop. 46, 673–678 (1998).
    Google Scholar 
    24.Cannizzo, Z. J., Lang, S. Q., Benitez-Nelson, B. & Griffen, B. D. An artificial habitat increases the reproductive fitness of a range-shifting species within a newly colonized ecosystem. Sci. Rep. 10, 554 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Riley, M. E., Vogel, M. & Griffen, B. D. Fitness-associated consequences of an omnivorous diet for the mangrove tree crab Aratus pisonii. Aquat. Biol. 20, 35–43 (2014).Article 

    Google Scholar 
    26.López, B. & Conde, J. E. Dietary variation in the crab Aratus pisonii (H. Milne Edwards, 1837)(Decapoda, Sesarmidae) in a mangrove gradient in northwestern Venezuela. Crustaceana 86, 1051–1069 (2013).Article 

    Google Scholar 
    27.Erickson, A. A., Feller, I. C., Paul, V. J., Kwiatkowski, L. M. & Lee, W. Selection of an omnivorous diet by the mangrove tree crab Aratus pisonii in laboratory experiments. J. Sea Res. 59, 59–69 (2008).ADS 
    Article 

    Google Scholar 
    28.Beever, J. W., Simberloff, D. & King, L. L. Herbivory and predation by the mangrove tree crab Aratus pisonii. Oecologia 43, 317–328 (1979).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Riley, M. E., Johnston, C. A., Feller, I. C. & Griffen, B. D. Range expansion of Aratus pisonii (mangrove tree crab) into novel vegetative habitats. Southeast. Nat. 13, N43–N48 (2014).Article 

    Google Scholar 
    30.Cannizzo, Z. J. & Griffen, B. D. Changes in spatial behaviour patterns by mangrove tree crabs following climate-induced range shift into novel habitat. Anim. Behav. 121, 79–86 (2016).Article 

    Google Scholar 
    31.Riley, M. E. & Griffen, B. D. Habitat-specific differences alter traditional biogeographic patterns of life history in a climate-change induced range expansion. PLoS ONE 12, e0176263 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    32.Cannizzo, Z. J. & Griffen, B. D. An artificial habitat facilitates a climate-mediated range expansion into a suboptimal novel ecosystem. PLoS ONE 14, e0207416 (2019).Article 
    CAS 

    Google Scholar 
    33.Bernardo, J. & Agosta, S. J. Evolutionary implications of hierarchical impacts of nonlethal injury on reproduction, including maternal effects. Biol. J. Linn. Soc. 86, 309–331 (2005).Article 

    Google Scholar 
    34.Griffen, B. D., Cannizzo, Z. J., Carver, J. & Meidell, M. Reproductive and energetic costs of injury in the mangrove tree crab. Mar. Ecol. Prog. Ser. 640, 127–137 (2020).ADS 
    Article 

    Google Scholar 
    35.De Arruda Leme, M. H., De Sousa Soares, V. & Pinheiro, M. A. A. Population dynamics of the mangrove tree crab Aratus pisonii (Brachyura: Sesarmidae) in the estuarine complex of Cananéia-Iguape, São Paulo, Brazil. Pan-Am. J. Aquat. Sci. 9, 259–266 (2014).
    Google Scholar 
    36.Skov, M. W. et al. Marching to a different drummer: Crabs synchronize reproduction to a 14-month lunar-tidal cycle. Ecology 86, 1164–1171 (2005).Article 

    Google Scholar 
    37.Schmidt, A. J., Bemvenuti, C. E. & Diele, K. Effects of geophysical cycles on the rhythm of mass mate searching of a harvested mangrove crab. Anim. Behav. 84, 333–340 (2012).Article 

    Google Scholar 
    38.Dronkers, J. J. Tidal Computations in Rivers and Coastal Waters (Wiley, 1964).
    Google Scholar 
    39.Varpe, Ø. Life history adaptations to seasonality. Integr. Comp. Biol. 57, 943–960 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Conde, J. E. et al. Population and life history features of the crab Aratus pisonii (Decapoda: Grapsidae) in a subtropical estuary. Interciencia 25, 151–158 (2000).
    Google Scholar 
    41.Elner, R. W. & Beninger, P. G. Multiple reproductive strategies in snow crab, Chionoecetes opilio: Physiological pathways and behavioral plasticity. J. Exp. Mar. Biol. Ecol. 193, 93–112 (1995).Article 

    Google Scholar 
    42.Tepolt, C. K. & Somero, G. N. Master of all trades: Thermal acclimation and adaptation of cardiac function in a broadly distributed marine invasive species, the European green crab, Carcinus maenas. J. Exp. Biol. 217, 1129–1138 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Ruiz, G., Fofonoff, P., Steves, B. & Dahlstrom, A. Marine crustacean invasions in North America: a synthesis of historical records and documented impacts. In In the Wrong Place-Alien Marine Crustaceans: Distribution, Biology and Impacts 215–250. (Springer, 2011).44.Griffen, B. D. & Mosblack, H. Predicting diet and consumption rate differences between and within species using gut ecomorphology. J. Anim. Ecol. 80, 854–863 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Cannizzo, Z. J., Dixon, S. R. & Griffen, B. D. An anthropogenic habitat within a suboptimal colonized ecosystem provides improved conditions for a range-shifting species. Ecol. Evol. 8, 1521–1533 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More