Morphological response accompanying size reduction of belemnites during an Early Jurassic hyperthermal event modulated by life history
1.Reddin, C. J., Kocsis, Á. T., Aberhan, M. & Kiessling, W. Victims of ancient hyperthermal events herald the fates of marine clades and traits under global warming. Glob. Chang. Biol. 27, 868–878 (2021).ADS
PubMed
Article
PubMed Central
Google Scholar
2.Reddin, C. J., Kocsis, Á. T. & Kiessling, W. Marine invertebrate migrations trace climate change over 450 million years. Glob. Ecol. Biogeogr. 27, 704–713 (2018).Article
Google Scholar
3.Kordas, R. L., Harley, C. D. G. & O’Connor, M. I. Community ecology in a warming world: The influence of temperature on interspecific interactions in marine systems. J. Exp. Mar. Bio. Ecol. 400, 218–226 (2011).Article
Google Scholar
4.Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 1–21 (2016).Article
Google Scholar
5.Hanken, J. & Wake, D. B. Miniaturization of body size: Organismal consequences and evolutionary significance. Annu. Rev. Ecol. Syst. 24, 501–519 (1993).Article
Google Scholar
6.Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Chang. 1, 401–406 (2011).ADS
Article
Google Scholar
7.Forster, J., Hirst, A. G. & Atkinson, D. Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proc. Natl. Acad. Sci. U. S. A. 109, 19310–19314 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
8.Ohlberger, J. Climate warming and ectotherm body size – from individual physiology to community ecology. Funct. Ecol. 27, 991–1001 (2013).Article
Google Scholar
9.Garilli, V. et al. Physiological advantages of dwarfing in surviving extinctions in high-CO 2 oceans. Nat. Clim. Chang. 5, 678–682 (2015).ADS
CAS
Article
Google Scholar
10.Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.0902080106 (2009).Article
PubMed
PubMed Central
Google Scholar
11.Verberk, W. C. E. P. et al. Shrinking body sizes in response to warming: explanations for the temperature–size rule with special emphasis on the role of oxygen. Biol. Rev. 96, 247–268 (2021).PubMed
Article
PubMed Central
Google Scholar
12.Angilletta, M. J., Steury, T. D. & Sears, M. W. Temperature, growth rate, and body size in ectotherms: Fitting pieces of a life-history puzzle. Integr. Comp. Biol. 44, 498–509 (2004).PubMed
Article
PubMed Central
Google Scholar
13.Hoving, H. J. T. et al. Extreme plasticity in life-history strategy allows a migratory predator (jumbo squid) to cope with a changing climate. Glob. Chang. Biol. 19, 2089–2103 (2013).ADS
PubMed
Article
PubMed Central
Google Scholar
14.Angilletta, M. J. & Dunham, A. E. The temperature-size rule in ectotherms: simple evolutionary explanations may not be general. Am. Nat. 162, 332–342 (2003).PubMed
Article
PubMed Central
Google Scholar
15.Vinarski, M. V. On the applicability of Bergmann’s rule to ectotherms: the state of the art. Biol. Bull. Rev. 4, 232–242 (2014).Article
Google Scholar
16.Atkinson, D. Temperature and organism size: a biological law for organisms?. Adv. Ecol. Res. 25, 1–58 (1994).Article
Google Scholar
17.Atkinson, D. Effects of temperature on the size of aquatic ectotherms: Exceptions to the general rule. J. Therm. Biol. 20, 61–74 (1995).Article
Google Scholar
18.Forster, J. & Hirst, A. G. The temperature-size rule emerges from ontogenetic differences between growth and development rates. Funct. Ecol. 26, 483–492 (2012).Article
Google Scholar
19.Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
20.Schulte, P. M. The effects of temperature on aerobic metabolism: Towards a mechanistic understanding of the responses of ectotherms to a changing environment. J. Exp. Biol. 218, 1856–1866 (2015).PubMed
Article
PubMed Central
Google Scholar
21.Gillooly, J. F., Charnov, E. L., West, G. B., Savage, V. M. & Brown, J. H. Effects of size and temperature on developmental time. Nature 417, 70–73 (2002).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
22.Riemer, K., Anderson-Teixeira, K. J., Smith, F. A., Harris, D. J. & Ernest, S. K. M. Body size shifts influence effects of increasing temperatures on ectotherm metabolism. Glob. Ecol. Biogeogr. 27, 958–967 (2018).Article
Google Scholar
23.Rosa, R. et al. Ocean warming enhances malformations, premature hatching, metabolic suppression and oxidative stress in the early life stages of a keystone squid. PLoS ONE 7, e38282 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
24.Pecl, G. T. & Jackson, G. D. The potential impacts of climate change on inshore squid: Biology, ecology and fisheries. Rev. Fish Biol. Fish. 18, 373–385 (2008).Article
Google Scholar
25.Twitchett, R. J. The Lilliput effect in the aftermath of the end-Permian extinction event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 132–144 (2007).Article
Google Scholar
26.Harries, P. J. & Knorr, P. O. What does the ‘Lilliput Effect’ mean?. Palaeogeogr. Palaeoclimatol. Palaeoecol. 284, 4–10 (2009).Article
Google Scholar
27.Metcalfe, B., Twitchett, R. J. & Price-Lloyd, N. Changes in size and growth rate of ‘Lilliput’ animals in the earliest Triassic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 171–180 (2011).Article
Google Scholar
28.Chu, D. et al. Lilliput effect in freshwater ostracods during the Permian-Triassic extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 435, 38–52 (2015).Article
Google Scholar
29.Urbanek, A. Biotic crises in the history of upper silurian graptoloids: a palaeobiological model. Hist. Biol. https://doi.org/10.1080/10292389309380442 (1993).Article
Google Scholar
30.Urlichs, M. Stunting in invertebrates from the type area of the Cassian Formation (Early Carnian) of the dolomites (Italy). GeoAlp 8, 164–169 (2011).
Google Scholar
31.Morten, S. D. & Twitchett, R. J. Fluctuations in the body size of marine invertebrates through the Pliensbachian-Toarcian extinction event. Palaeogeogr. Palaeoclimatol. Palaeoecol. https://doi.org/10.1016/j.palaeo.2009.08.023 (2009).Article
Google Scholar
32.Piazza, V., Ullmann, C. V. & Aberhan, M. Temperature-related body size change of marine benthic macroinvertebrates across the Early Toarcian Anoxic Event. Sci. Rep. 10, 1–13 (2020).Article
CAS
Google Scholar
33.Calosi, P., Putnam, H. M., Twitchett, R. J. & Vermandele, F. Marine metazoan modern mass extinction: improving predictions by integrating fossil, modern, and physiological data. Ann. Rev. Mar. Sci. 11, 369–390 (2019).PubMed
Article
PubMed Central
Google Scholar
34.Gerber, S. Comparing the differential filling of morphospace and allometric space through time: the morphological and developmental dynamics of Early Jurassic ammonoids. Paleobiology 37, 369–382 (2011).Article
Google Scholar
35.Pálfy, J. & Smith, P. L. Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo-Ferrar flood basalt volcanism. Geology 28, 747–750 (2000).ADS
Article
Google Scholar
36.Caruthers, A. H., Smith, P. L. & Gröcke, D. R. The Pliensbachian-Toarcian (Early Jurassic) extinction, a global multi-phased event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 386, 104–118 (2013).Article
Google Scholar
37.Wignall, P. B. Large igneous provinces and mass extinctions. Earth Sci. Rev. 53, 1–33 (2001).ADS
CAS
Article
Google Scholar
38.Percival, L. M. E. et al. Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE: A link to the Karoo-Ferrar Large Igneous Province. Earth Planet. Sci. Lett. 428, 267–280 (2015).ADS
CAS
Article
Google Scholar
39.Foster, G. L., Hull, P., Lunt, D. J. & Zachos, J. C. Placing our current ‘hyperthermal’ in the context of rapid climate change in our geological past. Phil. Trans. R. Soc. A 376, 20170086 (2018).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
40.Suan, G. et al. Secular environmental precursors to Early Toarcian (Jurassic) extreme climate changes. Earth Planet. Sci. Lett. 290, 448–458 (2010).ADS
CAS
Article
Google Scholar
41.Fantasia, A. et al. Global versus local processes during the Pliensbachian-Toarcian transition at the Peniche GSSP, Portugal: A multi-proxy record. Earth Sci. Rev. 198, 102932 (2019).CAS
Article
Google Scholar
42.Müller, T. et al. Ocean acidification during the early Toarcian extinction event: Evidence from Boron isotopes in brachiopods. Geology 48, 1184–1188 (2020).ADS
Article
Google Scholar
43.Suan, G., Mattioli, E., Pittet, B., Mailliot, S. & Lécuyer, C. Evidence for major environmental perturbation prior to and during the Toarcian (Early Jurassic) oceanic anoxic event from the Lusitanian Basin Portugal. Paleoceanography 23, A1202 (2008).ADS
Article
Google Scholar
44.Dera, G. et al. High-resolution dynamics of early Jurassic marine extinctions: The case of Pliensbachian-Toarcian ammonites (Cephalopoda). J. Geol. Soc. London 167, 21–33 (2010).CAS
Article
Google Scholar
45.Dera, G. et al. Climatic ups and downs in a disturbed Jurassic world. Geology 39, 215–218 (2011).ADS
CAS
Article
Google Scholar
46.Miguez-Salas, O., Rodríguez-Tovar, F. J. & Duarte, L. V. Selective incidence of the Toarcian oceanic anoxic event on macroinvertebrate marine communities: a case from the Lusitanian basin Portugal. Lethaia 50, 548–560 (2017).Article
Google Scholar
47.Correia, V. F., Riding, J. B., Duarte, L. V., Fernandes, P. & Pereira, Z. The palynological response to the Toarcian Oceanic Anoxic Event (Early Jurassic) at Peniche, Lusitanian Basin, western Portugal. Mar. Micropaleontol. 137, 46–63. https://doi.org/10.1016/j.marmicro.2017.10.004 (2017).ADS
Article
Google Scholar
48.Rita, P., Nätscher, P., Duarte, L. V., Weis, R. & De Baets, K. Mechanisms and drivers of belemnite body-size dynamics across the Pliensbachian-Toarcian crisis. R. Soc. Open Sci. 6, 190494 (2019).ADS
PubMed
PubMed Central
Article
Google Scholar
49.Caswell, B. A. & Coe, A. L. The impact of anoxia on pelagic macrofauna during the Toarcian Oceanic Anoxic Event (Early Jurassic). Proc. Geol. Assoc. 125(4), 383–391. https://doi.org/10.1016/j.pgeola.2014.06.001 (2014).Article
Google Scholar
50.Ullmann, C. V., Thibault, N., Ruhl, M., Hesselbo, S. P. & Korte, C. Effect of a Jurassic oceanic anoxic event on belemnite ecology and evolution. Proc. Natl. Acad. Sci. U. S. A. 111, 10073–10076 (2014).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
51.Dera, G., Toumoulin, A. & de Baets, K. Diversity and morphological evolution of Jurassic belemnites from South Germany. Palaeogeogr. Palaeoclimatol. Palaeoecol. 457, 80–97 (2016).Article
Google Scholar
52.Neige, P., Weis, R. & Fara, E. Ups and downs of belemnite diversity in the Early Jurassic of Western Tethys. Palaeontology 64, 263–283 (2021).Article
Google Scholar
53.Rita, P., De Baets, K. & Schlott, M. Rostrum size differences between Toarcian belemnite battlefields. Foss. Rec. 21, 171–182 (2018).Article
Google Scholar
54.Rita, P. et al. Biogeographic patterns of belemnite body size responses to episodes of environmental crisis. PeerJ Prepr. (2019).55.Hoffmann, R. & Stevens, K. The palaeobiology of belemnites – foundation for the interpretation of rostrum geochemistry. Biol. Rev. 95, 94–123 (2020).Article
Google Scholar
56.Adams, D. C. & Otárola-Castillo, E. Geomorph: An r package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393–399 (2013).Article
Google Scholar
57.Schlegelmilch, R. Die Belemniten des süddeutschen Jura. Die Belemniten des süddeutschen Jura https://doi.org/10.1007/978-3-8274-3083-0 (1998).Article
Google Scholar
58.McArthur, J. M. et al. Sr-isotope stratigraphy (87Sr/86Sr) of the lowermost Toarcian of Peniche, Portugal, and its relation to ammonite zonations. Newsletters Stratigr. 53, 297–312 (2020).Article
Google Scholar
59.Hesselbo, S. P., Jenkyns, H. C., Duarte, L. V. & Oliveira, L. C. V. Carbon-isotope record of the Early Jurassic (Toarcian) Oceanic Anoxic Event from fossil wood and marine carbonate (Lusitanian Basin, Portugal). Earth Planet. Sci. Lett. 253, 455–470 (2007).ADS
CAS
Article
Google Scholar
60.Klug, C., Schweigert, G., Fuchs, D., Kruta, I. & Tischlinger, H. Adaptations to squid-style high-speed swimming in Jurassic belemnitids. Biol. Lett. 12, 20150877 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
61.Seibel, B. A., Thuesen, E. V., Childress, J. J. & Gorodezky, L. A. Decline in pelagic cephalopod metabolism with habitat depth reflects differences in locomotory efficiency. Biol. Bull. 192, 262–278 (1997).CAS
PubMed
Article
PubMed Central
Google Scholar
62.Mattioli, E., Pittet, B., Petitpierre, L. & Mailliot, S. Dramatic decrease of pelagic carbonate production by nannoplankton across the Early Toarcian anoxic event (T-OAE). Glob. Planet. Change 65, 134–145 (2009).ADS
Article
Google Scholar
63.Chamberlain, J. A. Locomotion in ancient seas: Constraint and opportunity in Cephalopod adaptive design. Geobios 15, 49–61 (1993).Article
Google Scholar
64.Rexfort, A. & Mutterlose, J. The role of biogeography and ecology on the isotope signature of cuttlefishes (Cephalopoda, Sepiidae) and the impact on belemnite studies. Palaeogeogr. Palaeoclimatol. Palaeoecol. 284, 153–163 (2009).Article
Google Scholar
65.Holland, S. M. The quality of the fossil record: a sequence stratigraphic perspective. Paleobiology 26, 148–168 (2000).Article
Google Scholar
66.Holland, S. M. The non-uniformity of fossil preservation. Philos. Trans. R. Soc. B Biol. Sci. 371, 2 (2016).
Google Scholar
67.Korn, D. Impact of enviornmental perturbations o heterochronic develpments in Palaeozoic ammonoids. Evol. Chang. Heterochrony 245–260 (1995).68.Yacobucci, M. M. Plasticity of developmental timing as the underlying cause of high speciation rates in ammonoids. in Advancing research on living and fossil cephalopods 59–76 (Springer, Boston, MA, 1999).69.Landman, N. H. & Gyssant, J. R. Heterochrony and ecology in Jurassic and Cretaceous ammonites. Geobios 26, 247–255 (1993).Article
Google Scholar
70.McNamara, K. J. Heterochrony: the evolution of development. Evol. Educ. Outreach 5, 203–218 (2012).Article
Google Scholar
71.Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H. O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
72.Pörtner, H. O. & Farrell, A. P. Ecology: Physiology and climate change. Science https://doi.org/10.1126/science.1163156 (2008).Article
PubMed
PubMed Central
Google Scholar
73.Pimentel, M. S. et al. Impact of ocean warming on the early ontogeny of cephalopods: A metabolic approach. Mar. Biol. 159, 2051–2059 (2012).Article
Google Scholar
74.Komoroske, L. M. et al. Ontogeny influences sensitivity to climate change stressors in an endangered fish. Conserv. Physiol. 2, 1–13 (2014).Article
CAS
Google Scholar
75.Pörtner, H. O., Bock, C. & Mark, F. C. Oxygen- & capacity-limited thermal tolerance: Bridging ecology & physiology. J. Exp. Biol. 220, 2685–2696 (2017).PubMed
Article
PubMed Central
Google Scholar
76.Harnik, P. G., Simpson, C. & Payne, J. L. Long-term differences in extinction risk among the seven forms of rarity. Proc. R. Soc. B Biol. Sci. 279, 4969–4976 (2012).Article
Google Scholar
77.Reddin, C. J., Kocsis, Á. T. & Kiessling, W. Climate change and the latitudinal selectivity of ancient marine extinctions. Paleobiology 45, 70–84 (2019).Article
Google Scholar
78.Dorey, N. et al. Ocean acidification and temperature rise: Effects on calcification during early development of the cuttlefish Sepia officinalis. Mar. Biol. 160, 2007–2022 (2013).CAS
Article
Google Scholar
79.Sigwart, J. D. et al. Elevated pCO2 drives lower growth and yet increased calcification in the early life history of the cuttlefish Sepia officinalis (Mollusca: Cephalopoda) Julia. ICES J. Mar. Sci. 73, 970–980 (2016).Article
Google Scholar
80.Gutowska, M. A., Melzner, F., Pörtner, H. O. & Meier, S. Cuttlebone calcification increases during exposure to elevated seawater pCO2 in the cephalopod Sepia officinalis. Mar. Biol. 157, 1653–1663 (2010).CAS
Article
Google Scholar
81.Kaplan, M. B., Mooney, T. A., McCorkle, D. C. & Cohen, A. L. Adverse effects of ocean acidification on early development of squid (Doryteuthis pealeii). PLoS ONE 8, e63714 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
82.Otjacques, E. et al. Cuttlefish buoyancy in response to food availability and ocean acidification. Biology (Basel). https://doi.org/10.3390/biology9070147 (2020).Article
PubMed
PubMed Central
Google Scholar
83.Neige, P. & Boletzky, S. Morphometrics of the shell of three Sepia species (Mollusca: Cephalopoda): Intra- and interspecific variation. Zool. Beitraege. 38, 137–156 (1997).
Google Scholar
84.Rita, P., Weis, R., Duarte, L. V. & De Baets, K. Taxonomical diversity and palaeobiogeographical affinity of belemnites from the Pliensbachian-Toarcian GSSP (Lusitanian Basin, Portugal). Pap. Palaeontol. https://doi.org/10.1002/spp2.1343 (2020).Article
Google Scholar
85.MacArthur, R. H. Geographical ecology: patterns in the distribution of species. (Princeton University Press, 1972).86.Gaston, K. J. The structure and dynamics of geographic ranges. (Oxford University Press on Demand, 2003).87.Duarte, L. Sequence stratigraphy and depositional setting of the Pliensbachian and Toarcian marly limestones in the Lusitanian Basin Portugal. Ciências da Terra 16, 17–23 (2007).
Google Scholar
88.Reddin, C. J., Nätscher, P. S., Kocsis, Á. T., Pörtner, H.-O. & Kiessling, W. Marine clade sensitivities to climate change conform across timescales. Nat. Clim. Chang. 10, 249–253 (2020).ADS
Article
Google Scholar
89.Doyle, P. & Kelly, R. A. The Jurassic and Cretaceous belemnites of Kong Karls Land, Svalbard. (Norsk Polarinstitutt Oslo, 1988).90.Doyle, P. New records of dimitobelid belemnites from the cretaceous of james ross island Antarctica. Alcheringa 14, 159–175 (1990).Article
Google Scholar
91.Fedorov, A. et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging https://doi.org/10.1016/j.mri.2012.05.001 (2012).Article
PubMed
PubMed Central
Google Scholar
92.Rohatgi, A., Rehberg, S. & Stanojevic, Z. Webplotdigitizer: Version 4.1 of Webplotdigitizer. (2018).https://doi.org/10.5281/zenodo.1137880.93.Plate, T. & Heiberger, R. Package ‘ abind ’. (2016).94.Collyer, M. L. & Adams, D. C. RRPP: An r package for fitting linear models to high-dimensional data using residual randomization. Methods Ecol. Evol. 9, 1772–1779 (2018).Article
Google Scholar
95.Sherratt, E. Quick Guide to Geomorph v. 2.0. public.iastate.edu (2014).96.Torchiano, M. Package ‘ effsize ’. (2020).97.Gotelli, N. J., Dorazio, R. M., Ellison, A. M. & Grossman, G. D. Detecting temporal trends in species assemblages with bootstrapping procedures and hierarchical models. Philos. Trans. 365, 3621–3631 (2010).Article
Google Scholar
98.Hervé, M. Package ‘ RVAideMemoire ’. (2021).99.Mangiafico, S. Package ‘ rcompanion ’. (2021).100.Oksanen, J. et al. Package ‘vegan’ title community ecology package. Commun. Ecol. Packag. 2, 1–297 (2019).MathSciNet
Google Scholar
101.Pinheiro, J. et al. Package ‘nlme’. (2021).102.Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography (Cop.) 36, 27–46 (2013).Article
Google Scholar
103.R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria (2019).104.Garnier, S., Ross, N., Rudis, B. & Sciaini, M. Package ‘viridis’. (2021). More