More stories

  • in

    Morphological response accompanying size reduction of belemnites during an Early Jurassic hyperthermal event modulated by life history

    1.Reddin, C. J., Kocsis, Á. T., Aberhan, M. & Kiessling, W. Victims of ancient hyperthermal events herald the fates of marine clades and traits under global warming. Glob. Chang. Biol. 27, 868–878 (2021).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Reddin, C. J., Kocsis, Á. T. & Kiessling, W. Marine invertebrate migrations trace climate change over 450 million years. Glob. Ecol. Biogeogr. 27, 704–713 (2018).Article 

    Google Scholar 
    3.Kordas, R. L., Harley, C. D. G. & O’Connor, M. I. Community ecology in a warming world: The influence of temperature on interspecific interactions in marine systems. J. Exp. Mar. Bio. Ecol. 400, 218–226 (2011).Article 

    Google Scholar 
    4.Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 1–21 (2016).Article 

    Google Scholar 
    5.Hanken, J. & Wake, D. B. Miniaturization of body size: Organismal consequences and evolutionary significance. Annu. Rev. Ecol. Syst. 24, 501–519 (1993).Article 

    Google Scholar 
    6.Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Chang. 1, 401–406 (2011).ADS 
    Article 

    Google Scholar 
    7.Forster, J., Hirst, A. G. & Atkinson, D. Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proc. Natl. Acad. Sci. U. S. A. 109, 19310–19314 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Ohlberger, J. Climate warming and ectotherm body size – from individual physiology to community ecology. Funct. Ecol. 27, 991–1001 (2013).Article 

    Google Scholar 
    9.Garilli, V. et al. Physiological advantages of dwarfing in surviving extinctions in high-CO 2 oceans. Nat. Clim. Chang. 5, 678–682 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.0902080106 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Verberk, W. C. E. P. et al. Shrinking body sizes in response to warming: explanations for the temperature–size rule with special emphasis on the role of oxygen. Biol. Rev. 96, 247–268 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Angilletta, M. J., Steury, T. D. & Sears, M. W. Temperature, growth rate, and body size in ectotherms: Fitting pieces of a life-history puzzle. Integr. Comp. Biol. 44, 498–509 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Hoving, H. J. T. et al. Extreme plasticity in life-history strategy allows a migratory predator (jumbo squid) to cope with a changing climate. Glob. Chang. Biol. 19, 2089–2103 (2013).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Angilletta, M. J. & Dunham, A. E. The temperature-size rule in ectotherms: simple evolutionary explanations may not be general. Am. Nat. 162, 332–342 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Vinarski, M. V. On the applicability of Bergmann’s rule to ectotherms: the state of the art. Biol. Bull. Rev. 4, 232–242 (2014).Article 

    Google Scholar 
    16.Atkinson, D. Temperature and organism size: a biological law for organisms?. Adv. Ecol. Res. 25, 1–58 (1994).Article 

    Google Scholar 
    17.Atkinson, D. Effects of temperature on the size of aquatic ectotherms: Exceptions to the general rule. J. Therm. Biol. 20, 61–74 (1995).Article 

    Google Scholar 
    18.Forster, J. & Hirst, A. G. The temperature-size rule emerges from ontogenetic differences between growth and development rates. Funct. Ecol. 26, 483–492 (2012).Article 

    Google Scholar 
    19.Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Schulte, P. M. The effects of temperature on aerobic metabolism: Towards a mechanistic understanding of the responses of ectotherms to a changing environment. J. Exp. Biol. 218, 1856–1866 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Gillooly, J. F., Charnov, E. L., West, G. B., Savage, V. M. & Brown, J. H. Effects of size and temperature on developmental time. Nature 417, 70–73 (2002).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Riemer, K., Anderson-Teixeira, K. J., Smith, F. A., Harris, D. J. & Ernest, S. K. M. Body size shifts influence effects of increasing temperatures on ectotherm metabolism. Glob. Ecol. Biogeogr. 27, 958–967 (2018).Article 

    Google Scholar 
    23.Rosa, R. et al. Ocean warming enhances malformations, premature hatching, metabolic suppression and oxidative stress in the early life stages of a keystone squid. PLoS ONE 7, e38282 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Pecl, G. T. & Jackson, G. D. The potential impacts of climate change on inshore squid: Biology, ecology and fisheries. Rev. Fish Biol. Fish. 18, 373–385 (2008).Article 

    Google Scholar 
    25.Twitchett, R. J. The Lilliput effect in the aftermath of the end-Permian extinction event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 132–144 (2007).Article 

    Google Scholar 
    26.Harries, P. J. & Knorr, P. O. What does the ‘Lilliput Effect’ mean?. Palaeogeogr. Palaeoclimatol. Palaeoecol. 284, 4–10 (2009).Article 

    Google Scholar 
    27.Metcalfe, B., Twitchett, R. J. & Price-Lloyd, N. Changes in size and growth rate of ‘Lilliput’ animals in the earliest Triassic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 171–180 (2011).Article 

    Google Scholar 
    28.Chu, D. et al. Lilliput effect in freshwater ostracods during the Permian-Triassic extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 435, 38–52 (2015).Article 

    Google Scholar 
    29.Urbanek, A. Biotic crises in the history of upper silurian graptoloids: a palaeobiological model. Hist. Biol. https://doi.org/10.1080/10292389309380442 (1993).Article 

    Google Scholar 
    30.Urlichs, M. Stunting in invertebrates from the type area of the Cassian Formation (Early Carnian) of the dolomites (Italy). GeoAlp 8, 164–169 (2011).
    Google Scholar 
    31.Morten, S. D. & Twitchett, R. J. Fluctuations in the body size of marine invertebrates through the Pliensbachian-Toarcian extinction event. Palaeogeogr. Palaeoclimatol. Palaeoecol. https://doi.org/10.1016/j.palaeo.2009.08.023 (2009).Article 

    Google Scholar 
    32.Piazza, V., Ullmann, C. V. & Aberhan, M. Temperature-related body size change of marine benthic macroinvertebrates across the Early Toarcian Anoxic Event. Sci. Rep. 10, 1–13 (2020).Article 
    CAS 

    Google Scholar 
    33.Calosi, P., Putnam, H. M., Twitchett, R. J. & Vermandele, F. Marine metazoan modern mass extinction: improving predictions by integrating fossil, modern, and physiological data. Ann. Rev. Mar. Sci. 11, 369–390 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Gerber, S. Comparing the differential filling of morphospace and allometric space through time: the morphological and developmental dynamics of Early Jurassic ammonoids. Paleobiology 37, 369–382 (2011).Article 

    Google Scholar 
    35.Pálfy, J. & Smith, P. L. Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo-Ferrar flood basalt volcanism. Geology 28, 747–750 (2000).ADS 
    Article 

    Google Scholar 
    36.Caruthers, A. H., Smith, P. L. & Gröcke, D. R. The Pliensbachian-Toarcian (Early Jurassic) extinction, a global multi-phased event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 386, 104–118 (2013).Article 

    Google Scholar 
    37.Wignall, P. B. Large igneous provinces and mass extinctions. Earth Sci. Rev. 53, 1–33 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    38.Percival, L. M. E. et al. Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE: A link to the Karoo-Ferrar Large Igneous Province. Earth Planet. Sci. Lett. 428, 267–280 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    39.Foster, G. L., Hull, P., Lunt, D. J. & Zachos, J. C. Placing our current ‘hyperthermal’ in the context of rapid climate change in our geological past. Phil. Trans. R. Soc. A 376, 20170086 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Suan, G. et al. Secular environmental precursors to Early Toarcian (Jurassic) extreme climate changes. Earth Planet. Sci. Lett. 290, 448–458 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    41.Fantasia, A. et al. Global versus local processes during the Pliensbachian-Toarcian transition at the Peniche GSSP, Portugal: A multi-proxy record. Earth Sci. Rev. 198, 102932 (2019).CAS 
    Article 

    Google Scholar 
    42.Müller, T. et al. Ocean acidification during the early Toarcian extinction event: Evidence from Boron isotopes in brachiopods. Geology 48, 1184–1188 (2020).ADS 
    Article 

    Google Scholar 
    43.Suan, G., Mattioli, E., Pittet, B., Mailliot, S. & Lécuyer, C. Evidence for major environmental perturbation prior to and during the Toarcian (Early Jurassic) oceanic anoxic event from the Lusitanian Basin Portugal. Paleoceanography 23, A1202 (2008).ADS 
    Article 

    Google Scholar 
    44.Dera, G. et al. High-resolution dynamics of early Jurassic marine extinctions: The case of Pliensbachian-Toarcian ammonites (Cephalopoda). J. Geol. Soc. London 167, 21–33 (2010).CAS 
    Article 

    Google Scholar 
    45.Dera, G. et al. Climatic ups and downs in a disturbed Jurassic world. Geology 39, 215–218 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    46.Miguez-Salas, O., Rodríguez-Tovar, F. J. & Duarte, L. V. Selective incidence of the Toarcian oceanic anoxic event on macroinvertebrate marine communities: a case from the Lusitanian basin Portugal. Lethaia 50, 548–560 (2017).Article 

    Google Scholar 
    47.Correia, V. F., Riding, J. B., Duarte, L. V., Fernandes, P. & Pereira, Z. The palynological response to the Toarcian Oceanic Anoxic Event (Early Jurassic) at Peniche, Lusitanian Basin, western Portugal. Mar. Micropaleontol. 137, 46–63. https://doi.org/10.1016/j.marmicro.2017.10.004 (2017).ADS 
    Article 

    Google Scholar 
    48.Rita, P., Nätscher, P., Duarte, L. V., Weis, R. & De Baets, K. Mechanisms and drivers of belemnite body-size dynamics across the Pliensbachian-Toarcian crisis. R. Soc. Open Sci. 6, 190494 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Caswell, B. A. & Coe, A. L. The impact of anoxia on pelagic macrofauna during the Toarcian Oceanic Anoxic Event (Early Jurassic). Proc. Geol. Assoc. 125(4), 383–391. https://doi.org/10.1016/j.pgeola.2014.06.001 (2014).Article 

    Google Scholar 
    50.Ullmann, C. V., Thibault, N., Ruhl, M., Hesselbo, S. P. & Korte, C. Effect of a Jurassic oceanic anoxic event on belemnite ecology and evolution. Proc. Natl. Acad. Sci. U. S. A. 111, 10073–10076 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Dera, G., Toumoulin, A. & de Baets, K. Diversity and morphological evolution of Jurassic belemnites from South Germany. Palaeogeogr. Palaeoclimatol. Palaeoecol. 457, 80–97 (2016).Article 

    Google Scholar 
    52.Neige, P., Weis, R. & Fara, E. Ups and downs of belemnite diversity in the Early Jurassic of Western Tethys. Palaeontology 64, 263–283 (2021).Article 

    Google Scholar 
    53.Rita, P., De Baets, K. & Schlott, M. Rostrum size differences between Toarcian belemnite battlefields. Foss. Rec. 21, 171–182 (2018).Article 

    Google Scholar 
    54.Rita, P. et al. Biogeographic patterns of belemnite body size responses to episodes of environmental crisis. PeerJ Prepr. (2019).55.Hoffmann, R. & Stevens, K. The palaeobiology of belemnites – foundation for the interpretation of rostrum geochemistry. Biol. Rev. 95, 94–123 (2020).Article 

    Google Scholar 
    56.Adams, D. C. & Otárola-Castillo, E. Geomorph: An r package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393–399 (2013).Article 

    Google Scholar 
    57.Schlegelmilch, R. Die Belemniten des süddeutschen Jura. Die Belemniten des süddeutschen Jura https://doi.org/10.1007/978-3-8274-3083-0 (1998).Article 

    Google Scholar 
    58.McArthur, J. M. et al. Sr-isotope stratigraphy (87Sr/86Sr) of the lowermost Toarcian of Peniche, Portugal, and its relation to ammonite zonations. Newsletters Stratigr. 53, 297–312 (2020).Article 

    Google Scholar 
    59.Hesselbo, S. P., Jenkyns, H. C., Duarte, L. V. & Oliveira, L. C. V. Carbon-isotope record of the Early Jurassic (Toarcian) Oceanic Anoxic Event from fossil wood and marine carbonate (Lusitanian Basin, Portugal). Earth Planet. Sci. Lett. 253, 455–470 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    60.Klug, C., Schweigert, G., Fuchs, D., Kruta, I. & Tischlinger, H. Adaptations to squid-style high-speed swimming in Jurassic belemnitids. Biol. Lett. 12, 20150877 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    61.Seibel, B. A., Thuesen, E. V., Childress, J. J. & Gorodezky, L. A. Decline in pelagic cephalopod metabolism with habitat depth reflects differences in locomotory efficiency. Biol. Bull. 192, 262–278 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Mattioli, E., Pittet, B., Petitpierre, L. & Mailliot, S. Dramatic decrease of pelagic carbonate production by nannoplankton across the Early Toarcian anoxic event (T-OAE). Glob. Planet. Change 65, 134–145 (2009).ADS 
    Article 

    Google Scholar 
    63.Chamberlain, J. A. Locomotion in ancient seas: Constraint and opportunity in Cephalopod adaptive design. Geobios 15, 49–61 (1993).Article 

    Google Scholar 
    64.Rexfort, A. & Mutterlose, J. The role of biogeography and ecology on the isotope signature of cuttlefishes (Cephalopoda, Sepiidae) and the impact on belemnite studies. Palaeogeogr. Palaeoclimatol. Palaeoecol. 284, 153–163 (2009).Article 

    Google Scholar 
    65.Holland, S. M. The quality of the fossil record: a sequence stratigraphic perspective. Paleobiology 26, 148–168 (2000).Article 

    Google Scholar 
    66.Holland, S. M. The non-uniformity of fossil preservation. Philos. Trans. R. Soc. B Biol. Sci. 371, 2 (2016).
    Google Scholar 
    67.Korn, D. Impact of enviornmental perturbations o heterochronic develpments in Palaeozoic ammonoids. Evol. Chang. Heterochrony 245–260 (1995).68.Yacobucci, M. M. Plasticity of developmental timing as the underlying cause of high speciation rates in ammonoids. in Advancing research on living and fossil cephalopods 59–76 (Springer, Boston, MA, 1999).69.Landman, N. H. & Gyssant, J. R. Heterochrony and ecology in Jurassic and Cretaceous ammonites. Geobios 26, 247–255 (1993).Article 

    Google Scholar 
    70.McNamara, K. J. Heterochrony: the evolution of development. Evol. Educ. Outreach 5, 203–218 (2012).Article 

    Google Scholar 
    71.Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H. O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Pörtner, H. O. & Farrell, A. P. Ecology: Physiology and climate change. Science https://doi.org/10.1126/science.1163156 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Pimentel, M. S. et al. Impact of ocean warming on the early ontogeny of cephalopods: A metabolic approach. Mar. Biol. 159, 2051–2059 (2012).Article 

    Google Scholar 
    74.Komoroske, L. M. et al. Ontogeny influences sensitivity to climate change stressors in an endangered fish. Conserv. Physiol. 2, 1–13 (2014).Article 
    CAS 

    Google Scholar 
    75.Pörtner, H. O., Bock, C. & Mark, F. C. Oxygen- & capacity-limited thermal tolerance: Bridging ecology & physiology. J. Exp. Biol. 220, 2685–2696 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Harnik, P. G., Simpson, C. & Payne, J. L. Long-term differences in extinction risk among the seven forms of rarity. Proc. R. Soc. B Biol. Sci. 279, 4969–4976 (2012).Article 

    Google Scholar 
    77.Reddin, C. J., Kocsis, Á. T. & Kiessling, W. Climate change and the latitudinal selectivity of ancient marine extinctions. Paleobiology 45, 70–84 (2019).Article 

    Google Scholar 
    78.Dorey, N. et al. Ocean acidification and temperature rise: Effects on calcification during early development of the cuttlefish Sepia officinalis. Mar. Biol. 160, 2007–2022 (2013).CAS 
    Article 

    Google Scholar 
    79.Sigwart, J. D. et al. Elevated pCO2 drives lower growth and yet increased calcification in the early life history of the cuttlefish Sepia officinalis (Mollusca: Cephalopoda) Julia. ICES J. Mar. Sci. 73, 970–980 (2016).Article 

    Google Scholar 
    80.Gutowska, M. A., Melzner, F., Pörtner, H. O. & Meier, S. Cuttlebone calcification increases during exposure to elevated seawater pCO2 in the cephalopod Sepia officinalis. Mar. Biol. 157, 1653–1663 (2010).CAS 
    Article 

    Google Scholar 
    81.Kaplan, M. B., Mooney, T. A., McCorkle, D. C. & Cohen, A. L. Adverse effects of ocean acidification on early development of squid (Doryteuthis pealeii). PLoS ONE 8, e63714 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Otjacques, E. et al. Cuttlefish buoyancy in response to food availability and ocean acidification. Biology (Basel). https://doi.org/10.3390/biology9070147 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    83.Neige, P. & Boletzky, S. Morphometrics of the shell of three Sepia species (Mollusca: Cephalopoda): Intra- and interspecific variation. Zool. Beitraege. 38, 137–156 (1997).
    Google Scholar 
    84.Rita, P., Weis, R., Duarte, L. V. & De Baets, K. Taxonomical diversity and palaeobiogeographical affinity of belemnites from the Pliensbachian-Toarcian GSSP (Lusitanian Basin, Portugal). Pap. Palaeontol. https://doi.org/10.1002/spp2.1343 (2020).Article 

    Google Scholar 
    85.MacArthur, R. H. Geographical ecology: patterns in the distribution of species. (Princeton University Press, 1972).86.Gaston, K. J. The structure and dynamics of geographic ranges. (Oxford University Press on Demand, 2003).87.Duarte, L. Sequence stratigraphy and depositional setting of the Pliensbachian and Toarcian marly limestones in the Lusitanian Basin Portugal. Ciências da Terra 16, 17–23 (2007).
    Google Scholar 
    88.Reddin, C. J., Nätscher, P. S., Kocsis, Á. T., Pörtner, H.-O. & Kiessling, W. Marine clade sensitivities to climate change conform across timescales. Nat. Clim. Chang. 10, 249–253 (2020).ADS 
    Article 

    Google Scholar 
    89.Doyle, P. & Kelly, R. A. The Jurassic and Cretaceous belemnites of Kong Karls Land, Svalbard. (Norsk Polarinstitutt Oslo, 1988).90.Doyle, P. New records of dimitobelid belemnites from the cretaceous of james ross island Antarctica. Alcheringa 14, 159–175 (1990).Article 

    Google Scholar 
    91.Fedorov, A. et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging https://doi.org/10.1016/j.mri.2012.05.001 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    92.Rohatgi, A., Rehberg, S. & Stanojevic, Z. Webplotdigitizer: Version 4.1 of Webplotdigitizer. (2018).https://doi.org/10.5281/zenodo.1137880.93.Plate, T. & Heiberger, R. Package ‘ abind ’. (2016).94.Collyer, M. L. & Adams, D. C. RRPP: An r package for fitting linear models to high-dimensional data using residual randomization. Methods Ecol. Evol. 9, 1772–1779 (2018).Article 

    Google Scholar 
    95.Sherratt, E. Quick Guide to Geomorph v. 2.0. public.iastate.edu (2014).96.Torchiano, M. Package ‘ effsize ’. (2020).97.Gotelli, N. J., Dorazio, R. M., Ellison, A. M. & Grossman, G. D. Detecting temporal trends in species assemblages with bootstrapping procedures and hierarchical models. Philos. Trans. 365, 3621–3631 (2010).Article 

    Google Scholar 
    98.Hervé, M. Package ‘ RVAideMemoire ’. (2021).99.Mangiafico, S. Package ‘ rcompanion ’. (2021).100.Oksanen, J. et al. Package ‘vegan’ title community ecology package. Commun. Ecol. Packag. 2, 1–297 (2019).MathSciNet 

    Google Scholar 
    101.Pinheiro, J. et al. Package ‘nlme’. (2021).102.Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography (Cop.) 36, 27–46 (2013).Article 

    Google Scholar 
    103.R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria (2019).104.Garnier, S., Ross, N., Rudis, B. & Sciaini, M. Package ‘viridis’. (2021). More

  • in

    Author Correction: Determinants of genetic variation across eco-evolutionary scales in pinnipeds

    These authors contributed equally: Claire R. Peart, Sergio Tusso, Saurabh D. Pophaly.Science of Life Laboratories and Department of Evolutionary Biology, Uppsala University, Uppsala, SwedenClaire R. Peart, Sergio Tusso, Chi-Chih Wu, Aaron B. A. Shafer & Jochen B. W. WolfDivision of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, GermanyClaire R. Peart, Sergio Tusso, Saurabh D. Pophaly, Fidel Botero-Castro & Jochen B. W. WolfMax Planck Institute for Plant Breeding Research, Cologne, GermanySaurabh D. PophalyLaboratorio de Ecología de Pinnípedos ‘Burney J. Le Boeuf’, Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, Baja California Sur, MéxicoDavid Aurioles-GamboaDepartment of Natural Sciences, University of Houston-Downtown, Houston, TX, USAAmy B. BairdDepartment of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USAJohn W. BickhamBritish Antarctic Survey, Natural Environment Research Council, Cambridge, UKJaume Forcada & Joseph I. HoffmanElephant Seal Research Group, Sea Lion Island, Falkland IslandsFilippo Galimberti & Simona SanvitoDepartment of Anatomy, University of Otago, Dunedin, New ZealandNeil J. GemmellDepartment of Animal Behaviour, Bielefeld University, Bielefeld, GermanyJoseph I. HoffmanNorwegian Polar Institute, Fram Centre, Tromsø, NorwayKit M. Kovacs & Christian LydersenDepartment of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, FinlandMervi Kunnasranta & Tommi NymanNatural Resources Institute Finland (Luke), Joensuu, FinlandMervi KunnasrantaDepartment of Ecosystems in the Barents Region, Norwegian Institute of Bioeconomy Research, Svanhovd Research Station, Svanvik, NorwayTommi NymanLaboratory of Mammal Ecology, Universidade do Vale do Rio dos Sinos, São Leopoldo, BrazilLarissa Rosa de OliveiraNational Oceanic and Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Science Center, Marine Mammal Laboratory, Seattle, WA, USAAnthony J. OrrThe Saimaa Ringed Seal Genome Project, Institute of Biotechnology, University of Helsinki, Helsinki, FinlandMia ValtonenForensic Science & Environmental Life Sciences, Trent University, Peterborough, Ontario, CanadaAaron B. A. Shafer More

  • in

    The first mitochondrial genome of the genus Exhippolysmata (Decapoda: Caridea: Lysmatidae), with gene rearrangements and phylogenetic associations in Caridea

    1.De Grave, S. & Fransen, C. H. J. M. Carideorum Catalogus: The recent species of the dendrobranchiate, stenopodidean, procarididean and caridean shrimps (Crustacea: Decapoda). Zool. Med. Leiden 85(9), 195–588 (2011).
    Google Scholar 
    2.Shen, H., Braband, A. & Scholtz, G. Mitogenomic analysis of decapod crustacean phylogeny corroborates traditional views on their relationships. Mol. Phylogenet. Evol. 66(3), 776–789 (2013).PubMed 
    Article 

    Google Scholar 
    3.Chace, F. A. Jr. & Kensley, B. The cardiac notch in decapods. J. Crustacean Biol. 12(3), 442–447 (1992).Article 

    Google Scholar 
    4.Holthuis, L.B., Fransen, C.H.J.M. & Van Achterberg, C. The recent genera of the Caridean and Stenopodidean shrimps (Crustacea, Decapoda): with an appendix on the order Amphionidacea. Nationaal Natuurhistorisch Museum, Leiden, pp. 6–328 (1993).5.Martin, J. W. & Davis, G. E. An updated classification of the recent Crustacea. Los Angeles: Natural History Museum of County. Contrib. Sci. 39, 1–124 (2001).
    Google Scholar 
    6.De Grave, S. et al. A classification of living and fossil genera of decapod crustaceans. Raffles Bull. Zool. Suppl. 21, 1–109 (2009).
    Google Scholar 
    7.Bracken, H. D., De Grave, S. & Felder, D. L. Phylogeny of the infraorder Caridea based on mitochondrial and nuclear genes (Crustacea: Decapoda). Decapod Crustacean Phylogenet. 18, 274–298 (2009).
    Google Scholar 
    8.Li, C. P., De Grave, S., Lei, H. C., Chan, T. Y. & Chu, K. H. Molecular systematics of caridean shrimps based on five nuclear genes: Implications for superfamily classification. Zool. Anz. 250, 270–279 (2011).Article 

    Google Scholar 
    9.De Grave, S., Li, C. P., Tsang, L. M., Chu, K. H. & Chan, T. Y. Unweaving hippolytoid systematics (Crustacea, Decapoda, Hippolytidae): Resurrection of several families. Zool. Scr. 43(5), 496–507 (2014).Article 

    Google Scholar 
    10.Baeza, J. A. Protandric simultaneous hermaphroditism in the shrimps Lysmata bahia and Lysmata intermedia. Invertebr. Biol. 127(2), 181–188 (2008).Article 

    Google Scholar 
    11.Baeza, J. A. & Bauer, R. T. Experimental test of social mediation of sex change in a protandric sequential hermaphrodite; the marine shrimp Lysmata wurdemanni (Crustacea: Caridea). Behav. Ecol. Sociobiol. 55, 544–550 (2004).Article 

    Google Scholar 
    12.Xu, Y., Song, L. S. & Li, X. Z. The molecular phylogeny of Caridea based on 16S rDNA sequences. Mar. Sci. 29(9), 36–41 (2005).CAS 

    Google Scholar 
    13.Baeza, J. A. Testing three models on the adaptive significance of protandric simultaneous hermaphroditism in a marine shrimp. Evolution 60, 1840–1850 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Baeza, J. A. Molecular systematics of peppermint and cleaner shrimps: phylogeny and taxonomy of the genera Lysmata and Exhippolysmata (Crustacea: Caridea: Hippolytidae). Zool. J. Linn. Soc. Lond. 160, 254–265 (2010).Article 

    Google Scholar 
    15.Baeza, J. A. Molecular phylogeny of broken-back shrimps (genus Lysmata and allies): A test of the ‘Tomlinson-Ghiselin’ hypothesis explaining the evolution of hermaphroditism. Mol. Phylogenet. Evol. 69, 46–62 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Baeza, J. A. & Prakash, S. An integrative taxonomic and phylogenetic approach reveals a complex of cryptic species in the ‘peppermint’ shrimp Lysmata wurdemanni sensu stricto. Zool. J. Linn. Soc. Lond. 185(4), 1018–1038 (2019).Article 

    Google Scholar 
    17.Boore, J. L. Animal mitochondrial genomes. Nucleic Acids Res. 27(8), 1767–1780 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Liu, Q. N., Zhu, B. J., Dai, L. S., Wei, G. Q. & Liu, C. L. The complete mitochondrial genome of the wild silkworm moth, Actias selene. Gene 505(2), 291–299 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Tan, M. H. et al. Comparative mitogenomics of the Decapoda reveals evolutionary heterogeneity in architecture and composition. Sci. Rep. 9, 10756 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    20.Gissi, C., Iannelli, F. & Pesole, G. Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity 101(4), 301–320 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Rich, A. & Rajbhandary, U. L. Transfer RNA: Molecular structure, sequence, and properties. Annu. Rev. Biochem. 45(1), 805–860 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Staton, J. L., Daehler, L. L. & Brown, W. M. Mitochondrial gene arrangement of the horseshoe crab Limulus polyphemus L.: Conservation of major features among arthropod classes. Mol. Biol. Evol. 14(8), 867–874 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Miller, A. D., Murphy, N. P., Burridge, C. P. & Austin, C. M. Complete mitochondrial DNA sequences of the decapod crustaceans Pseudocarcinus gigas (Menippidae) and Macrobrachium rosenbergii (Palaemonidae). Mar. Biotechnol. 7(4), 339–349 (2005).CAS 
    Article 

    Google Scholar 
    24.Ivey, J. L. & Santos, S. R. The complete mitochondrial genome of the Hawaiian anchialine shrimp Halocaridina rubra Holthuis, 1963 (Crustacea: Decapoda: Atyidae). Gene 394(1–2), 35–44 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Wang, Z. et al. Complete mitochondrial genome of Parasesarma affine (Brachyura: Sesarmidae): Gene rearrangements in Sesarmidae and phylogenetic analysis of the Brachyura. Int. J. Biol. Macromol. 118, 31–40 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Lü, Z. M. et al. Complete mitochondrial genome of Ophichthus brevicaudatus reveals novel gene order and phylogenetic relationships of Anguilliformes. Int. J. Biol. Macromol. 135, 609–618 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    27.Shen, X., Li, X., Sha, Z., Yan, B. & Xu, Q. Complete mitochondrial genome of the Japanese snapping shrimp Alpheus japonicus (Crustacea: Decapoda: Caridea): Gene rearrangement and phylogeny within Caridea. Sci. China Life Sci. 55(7), 591–598 (2012).PubMed 
    Article 

    Google Scholar 
    28.Wang, Q. et al. Characterization and comparison of the mitochondrial genomes from two Alpheidae species and insights into the phylogeny of Caridea. Genomics 112(1), 65–70 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Shen, X. et al. The complete mitochondrial genome of the ridgetail white prawn Exopalaemon carinicauda Holthuis, 1950 (Crustacean: Decapoda: Palaemonidae) revealed a novel rearrangement of tRNA genes. Gene 437(1–2), 1–8 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Moritz, C. & Brown, W. M. Tandem duplications in animal mitochondrial DNAs: Variation in incidence and gene content among lizards. Proc. Natl. Acad. Sci. 84(20), 7183–7187 (1987).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Lavrov, D. V., Boore, J. L. & Brown, W. M. Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: Duplication and nonrandom loss. Mol. Biol. Evol. 19(2), 163–169 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Lunt, D. H. & Hyman, B. C. Animal mitochondrial DNA recombination. Nature 387(6630), 247 (1997).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Dowton, M. & Campbell, N. J. H. Intramitochondrial recombination-is it why some mitochondrial genes sleep around?. Trends Ecol. Evol. 16(6), 269–271 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Sun, S., Cheng, J., Sun, S. & Sha, Z. Complete mitochondrial genomes of two deep-sea pandalid shrimps, Heterocarpus ensifer and Bitias brevis: Insights into the phylogenetic position of Pandalidae (Decapoda:Caridea). J. Oceanol. Limnol. 38(3), 816–825 (2020).CAS 
    Article 

    Google Scholar 
    35.Tan, M. H., Gan, H. M., Lee, Y. P., Poore, G. C. & Austin, C. M. Digging deeper: new gene order rearrangements and distinct patterns of codons usage in mitochondrial genomes among shrimps from the Axiidea, Gebiidea and Caridea (Crustacea: Decapoda). Peer J. 5, e2982 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Aljanabi, S. M. & Martinez, I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res. 25, 4692–4693 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Dierckxsens, N., Mardulyn, P. & Smits, G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45(4), e18 (2017).PubMed 

    Google Scholar 
    38.Bernt, M. et al. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 69, 313–319 (2013).Article 

    Google Scholar 
    39.Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25(17), 3389–3402 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Perna, N. T. & Kocher, T. D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 41, 353–358 (1995).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Grant, J. R. & Stothard, P. The CGView Server: A comparative genomics tool for circular genomes. Nucleic Acids Res. 36, 181–184 (2008).Article 
    CAS 

    Google Scholar 
    43.Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).CAS 
    Article 

    Google Scholar 
    44.Nielsen, R. Statistical tests of selective neutrality in the age of genomics. Heredity 86, 641–647 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30(14), 3059–3066 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17(4), 540–552 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Xia, X. & Xie, Z. DAMBE: Software package for data analysis in molecular biology and evolution. J. Hered. 92(4), 371–373 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32(1), 268–274 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Nylander, J. A., Ronquist, F., Huelsenbeck, J. P. & Nieves-Aldrey, J. Bayesian phylogenetic analysis of combined data. Syst. Biol. 53(1), 47–67 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Lineage-specific protection and immune imprinting shape the age distributions of influenza B cases

    Case dataMedically attended influenza B cases in New Zealand were identified from samples taken from patients with influenza-like illness (ILI) attended by a network of general practitioners recruited for surveillance (2430 cases with an identified influenza B lineage) and from non-surveillance hospital samples (1606 cases with an identified lineage) analyzed by regional diagnostic laboratories and by the World Health Organization (WHO) National Influenza Centre at the Institute for Environmental Science and Research (ESR). Briefly, general practice surveillance operates from May to September, with participating practices collecting nasopharyngeal or throat swabs from the first ILI patient examined on each Monday, Tuesday, and Wednesday. ILI is defined as an “acute respiratory tract infection characterized by an abrupt onset of at least two of the following: fever, chills, headache, and myalgia”38. A subset of the New Zealand data (cases from 2002 to 2013) was previously compiled by Vijaykrishna et al.28 along with cases from Australia reported to the WHO Collaborating Centre for Reference and Research on Influenza in Melbourne.Statistical model of influenza B susceptibility based on infection historyFor lineage V (B/Victoria), we modeled the number of cases in people born in birth year b observed in season y as a multinomial draw with probabilities given by:$${theta }_{V}(b,y)=D(b,y)beta (b,y){Z}_{V}(b,y)rho (b,y)$$
    (1)
    with an analogous equation defining the multinomial distribution θY(b, y) for lineage Y (B/Yamagata). D(b, y) is the fraction of the population that was born in year b as of observation season y. Z(b, y) is the susceptibility to lineage V during season y of a person born in year b relative to that of an unexposed person. β(b, y) is a baseline probability of infection with influenza B that captures differences in transmission associated with age (thus depending on b and y) and is equal to β1 if people born in year b are in preschool during season y (0–5 years old), β2 if they are school-age children or teenagers (6–17 years old), or β3 if they are 18 or older. ρ(b,y) is an age-specific factor equal to a parameter ρ if people are  0. Letting α1 and α2 be the instantaneous attack rates for preschoolers and school-age children:$${P}_{mathrm{N}}(A)=left{begin{array}{ll}{e}^{-{alpha }_{1}(A-m)}frac{(1-{e}^{-{alpha }_{1}})}{{alpha }_{1}},hfill&,{text{if}},A; le; {A}_{mathrm{s}}\ {e}^{-{alpha }_{1}({A}_{mathrm{s}}-m)}{e}^{-{alpha }_{2}(A-{A}_{mathrm{s}})}frac{(1-{e}^{-{alpha }_{2}})}{{alpha }_{2}},&,{text{if}},A; > ; {A}_{mathrm{s}}end{array}right.$$
    (26)
    where As is the age at which children start going to school (4 years old in the Netherlands69). It is noteworthy that for school-age children (the equation for A  > As on the bottom), the correction term for uncertainty in sampling is not necessary for the time spent in preschool (assumed to be exactly As years), only for the time after preschool (A − As).Handling cases with missing lineage informationWe assumed cases with missing lineage information in 2002 (n = 61), 2011 (n = 312), and 2019 (n = 206) belonged to B/Victoria, as 99% or more of identified cases in those seasons were B/Victoria (86/87 cases in 2002, 276/280 cases in 2011, and 552/552 cases in 2019) as were 94%, 92%, and 92%, respectively, of isolates from sequence databases (for Australia and New Zealand combined). We assumed cases with missing lineage information belonged to B/Yamagata in 2013 (n = 37), 2014 (n = 77), and 2017 (n = 87), when the majority of identified cases were B/Yamagata (268/272, 131/138, and 473/489, respectively), as were 99%, 94%, and 84%, respectively, of isolates in sequence databases. Unidentified cases in other seasons were disregarded, because both lineages were present at higher frequencies among identified cases. Removing unidentified cases altogether in all seasons led to similar parameter estimates.Sequence divergence analysisTo estimate the amount of evolution within and between lineages, we analyzed all complete HA and NA sequences from human influenza B isolates available on GISAID in July 2019. The set of isolates used in this analysis differs from the set used to estimate lineage frequencies, because we required isolates to have complete sequences (although not all sequences listed as complete on GISAID were in fact complete). Two isolates collected in 2000 (B/Hong Kong/548/2000 and B/Victoria/504/2000) were deposited as B/Victoria but our BLAST assignment indicated they were in fact B/Yamagata (their low divergence from B/Yamagata strains was a clear outlier). NA sequences from isolates B/Kanagawa/73 and B/Ann Arbor/1994 were only small fragments (99 and 100 amino acids long) poorly aligned with other sequences and were thus excluded. We also excluded NA sequences from B/Yamagata isolates B/Catalonia/NSVH100773835/2018 and B/Catalonia/NSVH100750997/2018, because they were extremely diverged (60% and 38%) from the reference strain B/Yamagata/16/88 and aligned poorly with other sequences.To compare sequence diversity within and between lineages over time, we aligned sequences using MAFFT v. 7.31070 and calculated percent amino acid differences in pairs of sequences from the same lineage and in pairs with one sequence from each. For each year, we sampled 100 sequences from each lineage (or used all sequences if 100 or fewer were available) to limit the number of pairwise calculations. To estimate how much B/Yamagata and B/Victoria evolved since the late 1980s, we calculated percent amino acid differences between each B/Yamagata and B/Victoria sequence, and the corresponding HA and NA sequences of reference strains B/Yamagata/16/88 and B/Victoria/2/87. Unlike in the analysis of pairwise divergence within each time point, we used all sequences from each lineage in each year. We excluded sites in which one or both sequences had gaps or ambiguous amino acids.To compare HA and NA divergence between influenza B lineages with divergence between influenza A subtypes, we downloaded complete HA and NA sequences from H3N2 and H1N1 isolated since 1977 and available on GISAID in August 2019. Homologous sites in the HA of H3N2 and H1N1 are difficult to identify by conventional sequence alignment, and instead we used the algorithm by Burke and Smith71 implemented on the Influenza Research Database website72. Both H3N2 and H1N1 sequences were aligned with the reference H3N2 sequence A/Aichi/2/68. We verified that this method matched sites on the stalk and head of the H1N1 HA with sites on the stalk and head of H3N2 HA by comparing the resulting alignment with the alignment in Supplementary Fig. S2 of Kirkpatrick et al.73. To limit the total number of influenza A sequences analyzed, we randomly selected 100 H3N2 and 100 H1N1 sequences for years in which more than 100 sequences were available, and used all available sequences for the remaining years. Isolates A/Canterbury/58/2000, A/Canterbury/87/2000, and A/Canterbury/55/2000 were excluded, because both H1N1-like and H3N2-like sequences were available under the same isolate name on GISAID.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Environmental DNA reveals the fine-grained and hierarchical spatial structure of kelp forest fish communities

    1.IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science—Policy Platform on Biodiversity and Ecosystem Services (eds Brondizio, E. S. et al.) (IPBES Secretariat, 2019).2.Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Biodiversity Synthesis ed Ma (World Resources Institute, 2005). http://www.loc.gov/catdir/toc/ecip0512/2005013229.html. Accessed June 2019.3.Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486(7401), 105 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    4.Vellend, M. et al. Homogenization of forest plant communities and weakening of species–environment relationships via agricultural land use. J. Ecol. 95(3), 565–573. https://doi.org/10.1111/j.1365-2745.2007.01233.x (2007).Article 

    Google Scholar 
    5.Karp, D. S. et al. Intensive agriculture erodes β-diversity at large scales. Ecol. Lett. 15(9), 963–970. https://doi.org/10.1111/j.1461-0248.2012.01815.x (2012).Article 
    PubMed 

    Google Scholar 
    6.Anderson, M. J. et al. Navigating the multiple meanings of β diversity: A roadmap for the practicing ecologist. Ecol. Lett. 14(1), 19–28. https://doi.org/10.1111/j.1461-0248.2010.01552.x (2011).ADS 
    Article 
    PubMed 

    Google Scholar 
    7.Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation?. Trends Ecol. Evol. 31(1), 67–80. https://doi.org/10.1016/j.tree.2015.11.005 (2016).Article 
    PubMed 

    Google Scholar 
    8.Mori, A. S., Isbell, F. & Seidl, R. β-Diversity, community assembly, and ecosystem functioning. Trends Ecol. Evol. 33(7), 549–564 (2018).Article 

    Google Scholar 
    9.Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85(2), 183–206 (2010).Article 

    Google Scholar 
    10.Wang, S., Lamy, T., Hallett, L. M. & Loreau, M. Stability and synchrony across ecological hierarchies in heterogeneous metacommunities: Linking theory to data. Ecography (Cop) 42(6), 1200–1211. https://doi.org/10.1111/ecog.04290 (2019).Article 

    Google Scholar 
    11.Olden, J. D. Biotic homogenization: A new research agenda for conservation biogeography. J. Biogeogr. 33(12), 2027–2039. https://doi.org/10.1111/j.1365-2699.2006.01572.x (2006).Article 

    Google Scholar 
    12.Loreau, M., Mouquet, N. & Gonzalez, A. Biodiversity as spatial insurance in heterogeneous landscapes. Proc. Natl. Acad. Sci. 100(22), 12765–12770 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    13.Harrison, S. Species Diversity, Spatial Scale, and Global Change (Sinauer Sunderland, 1993).
    Google Scholar 
    14.Sax, D. F. & Gaines, S. D. Species diversity: From global decreases to local increases. Trends Ecol. Evol. 18(11), 561–566 (2003).Article 

    Google Scholar 
    15.Hillebrand, H. & Matthiessen, B. Biodiversity in a complex world: Consolidation and progress in functional biodiversity research. Ecol. Lett. 12(12), 1405–1419 (2009).Article 

    Google Scholar 
    16.Magurran, A. E. & McGill, B. J. Biological Diversity: Frontiers in Measurement and Assessment (Oxford University Press, 2010).
    Google Scholar 
    17.Usseglio, P. Quantifying reef fishes: Bias in observational approaches. In Ecology of Fishes on Coral Reefs (ed Mora, C.) 270–273 (Cambridge University Press, 2015). https://www.cambridge.org/core/books/ecology-of-fishes-on-coral-reefs/quantifying-reef-fishes-bias-in-observational-approaches/660760F9E62CC61DEB48C8124AD44CDC. Accessed June 2019.18.Caldwell, Z. R., Zgliczynski, B. J., Williams, G. J. & Sandin, S. A. Reef Fish survey techniques: Assessing the potential for standardizing methodologies. PLoS One 11(4), e0153066. https://doi.org/10.1371/journal.pone.0153066 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314(5800), 787–790 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    20.Barbier, E. B. Marine ecosystem services. Curr. Biol. 27(11), R507–R510 (2017).CAS 
    Article 

    Google Scholar 
    21.Goodwin, K. D. et al. DNA sequencing as a tool to monitor marine ecological status. Front. Mar. Sci. 4, 107. https://doi.org/10.3389/fmars.2017.00107 (2017).Article 

    Google Scholar 
    22.Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 26(21), 5872–5895. https://doi.org/10.1111/mec.14350 (2017).Article 
    PubMed 

    Google Scholar 
    23.Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21(8), 2045–2050. https://doi.org/10.1111/j.1365-294X.2012.05470.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    24.Creer, S. et al. The ecologist’s field guide to sequence-based identification of biodiversity. Methods Ecol. Evol. 7(9), 1008–1018. https://doi.org/10.1111/2041-210X.12574 (2016).Article 

    Google Scholar 
    25.Stat, M. et al. Ecosystem biomonitoring with eDNA: Metabarcoding across the tree of life in a tropical marine environment. Sci. Rep. 7(1), 12240. https://doi.org/10.1038/s41598-017-12501-5 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Bakker, J. et al. Environmental DNA reveals tropical shark diversity in contrasting levels of anthropogenic impact. Sci. Rep. 7(1), 16886. https://doi.org/10.1038/s41598-017-17150-2 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Port, J. A. et al. Assessing vertebrate biodiversity in a kelp forest ecosystem using environmental DNA. Mol. Ecol. 25(2), 527–541. https://doi.org/10.1111/mec.13481 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    28.Andruszkiewicz, E. A. et al. Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding. PLoS One 12(4), e0176343. https://doi.org/10.1371/journal.pone.0176343 (2017).MathSciNet 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Yamamoto, S. et al. Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Sci. Rep. 7, 40368. https://doi.org/10.1038/srep40368 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.O’Donnell, J. L. et al. Spatial distribution of environmental DNA in a nearshore marine habitat. PeerJ 5, e3044. https://doi.org/10.7717/peerj.3044 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Jeunen, G.-J. et al. Environmental DNA (eDNA) metabarcoding reveals strong discrimination among diverse marine habitats connected by water movement. Mol. Ecol. Resour. 19(2), 426–438. https://doi.org/10.1111/1755-0998.12982 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Stat, M. et al. Combined use of eDNA metabarcoding and video surveillance for the assessment of fish biodiversity. Conserv. Biol. 33(1), 196–205 (2019).Article 

    Google Scholar 
    33.West, K. M. et al. eDNA metabarcoding survey reveals fine-scale coral reef community variation across a remote, tropical island ecosystem. Mol. Ecol. 29(6), 1069–1086. https://doi.org/10.1111/mec.15382 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    34.Graham, H. M. Effects of local deforestation on the diversity and structure of Southern California giant kelp forest food webs. Ecosystems 7(4), 341–357. https://doi.org/10.1007/s10021-003-0245-6 (2004).Article 

    Google Scholar 
    35.Miller, R. J. et al. Giant kelp, Macrocystis pyrifera, increases faunal diversity through physical engineering. Proc R Soc B Biol Sci 285(1874), 20172571 (2018).Article 

    Google Scholar 
    36.Lamy, T. et al. Scale-specific drivers of kelp forest communities. Oecologia 186(1), 217–233 (2018).ADS 
    Article 

    Google Scholar 
    37.Vergés, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl. Acad. Sci. 113(48), 13791–13796 (2016).Article 

    Google Scholar 
    38.Steneck, R. S. et al. Kelp forest ecosystems: Biodiversity, stability, resilience and future. Environ. Conserv. 29(04), 436–459 (2003).Article 

    Google Scholar 
    39.Nekola, J. C. & White, P. S. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26(4), 867–878. https://doi.org/10.1046/j.1365-2699.1999.00305.x (1999).Article 

    Google Scholar 
    40.Claisse, J. T. et al. Biogeographic patterns of communities across diverse marine ecosystems in southern California. Mar. Ecol. 39(S1), e12453. https://doi.org/10.1111/maec.12453 (2018).MathSciNet 
    Article 

    Google Scholar 
    41.Jerde, C. L., Wilson, E. A. & Dressler, T. L. Measuring global fish species richness with eDNA metabarcoding. Mol. Ecol. Resour. 19(1), 19–22. https://doi.org/10.1111/1755-0998.12929 (2019).Article 
    PubMed 

    Google Scholar 
    42.Sigsgaard, E. E. et al. Seawater environmental DNA reflects seasonality of a coastal fish community. Mar. Biol. 164(6), 128. https://doi.org/10.1007/s00227-017-3147-4 (2017).CAS 
    Article 

    Google Scholar 
    43.Nickols, K. J., Wilson White, J., Largier, J. L. & Gaylord, B. Marine population connectivity: Reconciling large-scale dispersal and high self-retention. Am. Nat. 185(2), 196–211. https://doi.org/10.1086/679503 (2015).Article 
    PubMed 

    Google Scholar 
    44.Nickols, K. J., Gaylord, B. & Largier, J. L. The coastal boundary layer: Predictable current structure decreases alongshore transport and alters scales of dispersal. Mar. Ecol. Prog. Ser. 464, 17–35 (2012).ADS 
    Article 

    Google Scholar 
    45.Sassoubre, L. M., Yamahara, K. M., Gardner, L. D., Block, B. A. & Boehm, A. B. Quantification of environmental DNA (eDNA) shedding and decay rates for three marine fish. Environ. Sci. Technol. 50(19), 10456–10464. https://doi.org/10.1021/acs.est.6b03114 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    46.Collins, R. A. et al. Persistence of environmental DNA in marine systems. Commun. Biol. 1(1), 185. https://doi.org/10.1038/s42003-018-0192-6 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Andruszkiewicz Allan, E., Zhang, W. G., Lavery, C. A. & Govindarajan, F. A. Environmental DNA shedding and decay rates from diverse animal forms and thermal regimes. Environ. DNA 3(2), 492–514. https://doi.org/10.1002/edn3.141 (2021).Article 

    Google Scholar 
    48.Hansen, B. K., Bekkevold, D., Clausen, L. W. & Nielsen, E. E. The sceptical optimist: Challenges and perspectives for the application of environmental DNA in marine fisheries. Fish Fish. 19(5), 751–768. https://doi.org/10.1111/faf.12286 (2018).Article 

    Google Scholar 
    49.Weltz, K. et al. Application of environmental DNA to detect an endangered marine skate species in the wild. PLoS One 12(6), e0178124. https://doi.org/10.1371/journal.pone.0178124 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Fram, J. P. et al. Physical pathways and utilization of nitrate supply to the giant kelp, Macrocystis pyrifera. Limnol. Oceanogr. 53(4), 1589–1603. https://doi.org/10.4319/lo.2008.53.4.1589 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    51.Jackson, G. A. & Winant, C. D. Effect of a kelp forest on coastal currents. Cont. Shelf. Res. 2(1), 75–80 (1983).ADS 
    Article 

    Google Scholar 
    52.Grant, W. D. & Madsen, O. S. The continental-shelf bottom boundary layer. Annu. Rev. Fluid Mech. 18(1), 265–305. https://doi.org/10.1146/annurev.fl.18.010186.001405 (1986).ADS 
    MathSciNet 
    Article 
    MATH 

    Google Scholar 
    53.Leary, P. R. et al. “Internal tide pools” prolong kelp forest hypoxic events. Limnol. Oceanogr. 62(6), 2864–2878. https://doi.org/10.1002/lno.10716 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    54.Gaylord, B. et al. Spatial patterns of flow and their modification within and around a giant kelp forest. Limnol. Oceanogr. 52(5), 1838–1852 (2007).ADS 
    Article 

    Google Scholar 
    55.Lafferty, K. D., Benesh, K. C., Mahon, A. R., Jerde, C. L. & Lowe, C. G. Detecting Southern California’s white sharks with environmental DNA. Front. Mar. Sci. 5, 355. https://doi.org/10.3389/fmars.2018.00355 (2018).Article 

    Google Scholar 
    56.Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: Detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2(7), 150088 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    57.Hyde, J. R. & Vetter, R. D. The origin, evolution, and diversification of rockfishes of the genus Sebastes (Cuvier). Mol. Phylogenet. Evol. 44(2), 790–811 (2007).CAS 
    Article 

    Google Scholar 
    58.Min, M. A., Barber, P. H. & Gold, Z. MiSebastes: An eDNA metabarcoding primer set for rockfishes (genus Sebastes). bioRxiv. (2020). http://biorxiv.org/content/early/2020/10/30/2020.10.29.360859.abstract. Accessed January 2021.59.Gold, Z., Sprague, J., Kushner, D. J., Zerecero Marin, E. & Barber, P. H. eDNA metabarcoding as a biomonitoring tool for marine protected areas. PLoS One 16(2), e0238557. https://doi.org/10.1371/journal.pone.0238557 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Civade, R. et al. Spatial representativeness of environmental DNA metabarcoding signal for fish biodiversity assessment in a natural freshwater system. PLoS One 11(6), e0157366 (2016).Article 

    Google Scholar 
    61.Berry, T. E. et al. Marine environmental DNA biomonitoring reveals seasonal patterns in biodiversity and identifies ecosystem responses to anomalous climatic events. PLoS Genet. 15(2), e1007943. https://doi.org/10.1371/journal.pgen.1007943 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Ausubel, J. H., Stoeckle, M. Y. & Gaffney, P. Final Report of the 1st US National Conference on Marine Environmental DNA (eDNA). (2019).
    63.Reed, D. C. SBC LTER: Reef: Annual time series of biomass for kelp forest species, ongoing since 2000. Environ. Data Initiat. https://doi.org/10.6073/pasta/23965abf42954f345cfd6642fe3c4810 (2018).64.O’Donnell, J. L., Kelly, R. P., Lowell, N. C. & Port, J. A. Indexed PCR primers induce template-specific bias in large-scale DNA sequencing studies. PLoS One 11(3), e0148698 (2016).Article 

    Google Scholar 
    65.Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30(5), 614–620 (2014).CAS 
    Article 

    Google Scholar 
    66.Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).Article 

    Google Scholar 
    67.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17(1), 10–12 (2011).Article 

    Google Scholar 
    68.Mahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm: Robust and fast clustering method for amplicon-based studies. PeerJ 2, e593 (2014).Article 

    Google Scholar 
    69.Huson, D. H. et al. MEGAN community edition—interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 12(6), 1–12 (2016).Article 

    Google Scholar 
    70.McMurdie, P. J. & Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8(4), e61217. https://doi.org/10.1371/journal.pone.0061217 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Crist, T. O., Veech, J. A., Gering, J. C. & Summerville, K. S. Partitioning species diversity across landscapes and regions: A hierarchical analysis of alpha, beta, and gamma diversity. Am. Nat. 162(6), 734–743 (2003).Article 

    Google Scholar 
    72.Muggeo, V. M. R. Estimating regression models with unknown break-points. Stat. Med. 22(19), 3055–3071 (2003).Article 

    Google Scholar 
    73.Legendre, P., Borcard, D. & Roberts, D. W. Variation partitioning involving orthogonal spatial eigenfunction submodels. Ecology 93(5), 1234–1240. https://doi.org/10.1890/11-2028.1 (2012).Article 
    PubMed 

    Google Scholar 
    74.Silva, A. R., Dias, C. T. S., Cecon, P. R. & Rêgo, E. R. An alternative procedure for performing a power analysis of Mantel’s test. J. Appl. Stat. 42(9), 1984–1992. https://doi.org/10.1080/02664763.2015.1014894 (2015).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    75.Dufrêne, M. & Legendre, P. Species assemblages and indicator species: The need for a flexible asymetrical approach. Ecol. Monogr. 67(3), 345–366 (1997).
    Google Scholar 
    76.Team, R. C. R: A language and environment for statistical computing. (2018). https://www.r-project.org/. Accessed June 2018.77.Oksanen, J. et al. Package ‘vegan.’ Community Ecol Packag version:2. (2015). More

  • in

    Extensive standing genetic variation from a small number of founders enables rapid adaptation in Daphnia

    Study systemWe studied a D. magna population (OHZ) from a small, shallow man-made pond in Oud-Heverlee, Belgium (50°50´ N– 4°39′ E). This pond was constructed for pisciculture in 1970 and has a detailed record of fish-stocking densities for 16 years (Fig. 1a). Dormant stages of D. magna were sampled from three depths of a sediment core, corresponding to three time periods that varied in the level of fish-predation pressure: (1) the pre-fish period (1970–1972), during which no fish were stocked in the pond; (2) the high-fish period (1976–1979), a period with high fish-predation pressure due to intensive fish stocking; (3) the reduced-fish period (1988–1990), with relaxed fish predation pressure due to a reduction in fish stocking (Fig. 1a)9,10,37. This archive was previously sampled using a standard Plexiglas corer with inner diameter of 5.2 cm10. Dating of the sedimentary archive could not be completed with traditional radioisotope analysis, but was based on dry weight and organic matter content under the assumption of a constant sedimentation rate since the establishment of the pond10. The cores contained the full sediment archive, including the transition to the mineral sediment. Sediment cores were aligned using the patterns of Daphnia dormant egg abundance and changes in size of the dormant egg cases as described in Cousyn et al.10. The dormant stages were hatched in the laboratory and taking advantage of the parthenogenetic reproduction mode of D. magna as long as conditions are favorable, we started up clonal lines. The resulting clonal lines are each genetically unique, as dormant stages in D. magna are the result of sexual reproduction. Our approach was thus to sequence the full genome of a random sample of 12 individuals from each of three depth layers of a sediment core representing populations that occurred in three periods with distinct fish-predation pressure.In addition to the reconstruction of temporal genome dynamics, we used twelve regional populations of D. magna distributed along strong environmental gradients of fish-predation pressure in the region. Six populations (DANA, U2, TER1, MO, KNO15, and TER2) were sampled from fishless ponds, while six populations (ZW4, LRV, ZW3, OHN, OM2, and OM3) were sampled from ponds that harbored fish (Supplementary Table 1). These genotypes were hatched from dormant eggs isolated from the upper 2–3 cm of sediment of the study ponds.Whole-genome sequencingTo reconstruct the genomic history, we resequenced the 36 D. magna lines resurrected from the OHZ pond and validated it with additional whole-genome resequencing of 144 D. magna genotypes spread across twelve spatial populations along a fish gradient in the region (Supplementary Table 1). Twelve individuals from each temporal subpopulation of the sediment core and 8–17 individuals per population in the spatial survey were used for genomic DNA extraction using the Nucleo Spin Tissue extraction kit (Macherey-Nagel, Germany), with overnight incubation at 56 °C and following the manufacturer’s instructions. We quantified DNA using PicoGreen reagent (Life Technologies) on a DTX 880 spectrofluorometer (Beckman Coulter). For each sample, 1 µg of gDNA was normalized in a final volume of 50 µl of Tris Buffer, pH 8.5, and sheared using an E220 Focused Ultrasonicator in conjunction with a microTube plate (Covaris) in accordance with the manufacturer’s recommendations. Sheared genomic DNA was assayed on a 2200 TapeStation (Agilent) with High Sensitivity DNA Screentapes to determine the distribution of sheared fragments. The sheared genomic DNA was then prepared into Illumina compatible DNA Sequencing (DNASeq) 100-bp paired-end libraries utilizing NextFlex chemistry (Bio Scientific). Following library construction, libraries were assayed on a 2200 TapeStation (Agilent) with High Sensitivity DNA Screentapes to determine the final library size. Libraries were quantified using the Illumina Library Quantification Kit (Kapa Biosystems) and normalized to an average concentration of 2 nM prior to pooling. Genomic DNA quantification and normalization, shearing setup, library construction, library quantification, library normalization, and library pooling were performed utilizing a Biomek FXP dual-hybrid automated liquid handler (Beckman Coulter). C-Bot (TruSeq PE Cluster Kit v3, Illumina) was used for cluster generation and the Illumina HiSeq2500 platform (TruSeq SBS Kit v3 reagent kit) for paired-end sequencing with 100-bp read length following the manufacturer’s instructions.Short-read mapping and variant callingThe paired end reads (100 × 2) of each individual were first analyzed using FASTQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) for quality checks. Subsequently, low-quality base trimming and adapter cleaning was performed using the Trimmomatic software38. Here, parameter values to remove adapter sequences were chosen for seedMismatches (2), palindromeClipThreshold (30), and simpleClipThreshold (10). The minimum phred quality required to keep a base was set to 28, and the minimum read length to 50 bp. Furthermore, the cleaned reads were mapped to the D. magna genome version 2.439 using Bowtie240 software with very-sensitive parameter settings (-D 20 -R 3 -N 0 -L 20 -i S,1,0.50) and insert size between 200 and 700 bp. The mapped reads were then marked for duplicates using the MarkDuplicates feature of Picard tools (http://broadinstitute.github.io/picard/) to avoid PCR duplicates. The resulting sorted BAM files were then used for variant calling using FreeBayes41. FreeBayes41 is a haplotype-based variant caller that calls SNPs, indel, and complex variants. Minimum base quality was set to 30 with minimum coverage of four reads. We obtained more than 3 × 106 raw variants (3 441 615) for the OHZ temporal subpopulations and 6 × 106 raw variants for the spatial populations.Only biallelic SNPs supported by at least four reads and sequenced in at least 90% of individuals were retained after filtering. The draft genome of Daphnia magna consists of thousands of scaffolds and contigs. To remove repetitive and paralogous regions in the genome, we used the 293 scaffolds greater than 5 kb that altogether represent 84% of the sequenced genome. Further SNP filtering was performed based on D. magna gene models, such that each polymorphic SNP contained within genic regions could be unambiguously assigned to only one gene locus, thereby removing uncertainties attributed to sequence reads mapping to paralogs and to overlapping genes coding on alternative strands of DNA. Finally, SNPs at frequencies below 5% (pooled subpopulations) were removed retaining a total of 724,321 SNPs (mean coverage 20 reads per SNP/individual; 99.6% SNPs with missing values less than 5%) for the temporal analysis of the OHZ population and 748,511 SNPs for the spatial populations. These SNPs were used for downstream analyses.Population differentiationWe calculated both genome-wide and locus-specific levels of genetic differentiation (FST; Weir & Cockerham 198442) using the diffCalc function of the diveRsity43 package in R44. These calculations were performed for each pair of temporal subpopulations (i.e., pairwise FST) in the temporal setting (OHZ) and for six random pairs of nonfish and fish populations in the spatial survey.To calculate allele frequencies in the temporal analysis, we used vcfglxgt function of vcflib (https://github.com/vcflib/vcflib) to set genotypes that are most likely to be true based on maximum genotype likelihood. We then identified the significant differences in allele frequencies between temporal subpopulations over time (P value < 0.01) using a modified chi-square test developed by RS Waples (Waples 1989)11 and implemented in the TAFT software45 (hereafter referred to as Waples test) that accounts for effective population size (Ne), yielding 30,669 significant SNPs (4.23% of total OHZ SNPs) by comparing the prefish and high-fish temporal subpopulation and yielding 11,257 SNPs (1.55% of total OHZ SNPs) for the high-fish and reduced-fish temporal subpopulation comparison; 1771 SNPs showed significant allele-frequency changes in both transitions, most of them also showing a significant reversal in the second transition. To determine whether the observed number of SNPs that showed a significant reversal in allele frequencies is higher than expected by chance, we estimated the null distribution by randomly permuting the temporal subpopulation labels (i.e., prefish, high fish, and reduced fish) and alleles per locus (724,321 SNPs), and recalculating the number of reversals based on Buffalo and Coop 202012.Estimation of effective population size (N e)Effective population sizes (Ne) were calculated from θ = 4Neµ, across the whole genome and with a mutation rate per generation of 4 × 10−946 and a generation time of one year (Daphnia undergoes 10–15 asexual generations and one sexual generation per year), where Ɵ is Watterson’s diversity index and µ is mutation rate. Watterson Ɵ was calculated using the folded SFS option in ANGSD software47 and found to be stable, i.e., near 0.03 across the three subpopulations (prefish, high fish, and reduced fish). The calculated Ne was found to be ~1.66 million in the prefish temporal subpopulation and ~1.72 million for the high-fish and reduced-fish temporal subpopulations. Similarly, for spatial populations, the value ranges from ~1.06 to 1.45 million (Supplementary Table 2).Detecting genomic islands of differentiationFor each scaffold, and for each pairwise comparison among temporal subpopulations and six independent fish and no-fish replicate pairs in the spatial survey, a hidden Markov model (HMM) was used to distinguish genomic regions of high, moderate, or low differentiation among (sub)populations. We used a similar approach as used earlier by Soria-Carrasco et al. (2014)48. In brief, for each of these three levels of genetic differentiation (i.e., the hidden states), a Gaussian distribution of log10(FST + 1) was assumed with the mean and variance initialized as those of the log10(FST + 1) values within each respective level. We then used the Baum–Welch algorithm49 to refine the Gaussian model for each state and the transition matrix among the states. Direct transition from the low to the high state was not allowed. Hidden states were then estimated from the data and we estimated the parameters by the Viterbi algorithm using the R package HiddenMarkov50. A high differentiating island between genomes is defined to contain at least three consecutive SNPs categorized as high-state SNPs by HMM, yielding 6111 and 2879 islands of genomic differentiation between the prefish vs high-fish (mean length: 2428 bp) and the high-fish vs reduced-fish comparison (mean length: 1713 bp), respectively. Similarly, for six independent spatial fish vs no-fish comparisons, the number of islands of differentiation ranged between 4136 and 7493 (with range of mean length 1879–3290 bp), depending upon the comparison (Supplementary Table 3).Functional annotation and enrichment analysisWe investigated the function of the outlier SNPs (P values smaller than 0.01) in the comparison among temporal subpopulations (prefish vs high fish and high fish vs reduced fish) and in HMM-based high-differentiation islands in spatial comparisons. Transcriptome-based functional annotation was performed using the Daphnia magna genome version 2.439. The pathway enrichment analysis was performed using the orthologous genes of D. magna in the D. pulex genome51 based on OrthoDB gene families52 and the KEGG pathway database53. Out of ~29,000 annotated genes of D. magna, 17,400 genes have 17,832 orthologs in D. pulex. However, due to the fragmented status of the D. magna genome assembly, manual curation for high-quality gene models resulted in a total of 12,264 D. magna genes used in our study, of which 2402 genes are annotated to KEGG pathways. Ortholog mapping is not unique. A given gene from the source species, here D. magna, can map to a single, multiple, or no ortholog in the target species, here D. pulex. This can bias statistical tests when referencing to D. pulex genomics resources. We used the number of nonunique mappings for each D. magna gene on the KEGG pathways of D. pulex to weight-adjust the confusion matrix for Fisher’s exact test to obtain the correct P values. Significant pathways are defined as those with FDR corrected (Benjamini–Hochberg method) P values smaller than 0.05. The data analysis was performed using Python packages (NumPy v1.17.454, SciPy v1.4.155, statsmodels v0.11.1, and plotly v4.8.1).Rarefaction analysisRarefaction analyses were used to determine the rate at which outlier SNPs accumulate in the temporal subpopulation or in the set of regional populations as a function of sample size, i.e., the number of individuals sampled from a given population or group of populations. These analyses were performed separately for the prefish as well as for the reduced-fish temporal subpopulation, in both cases to assess the number of individuals needed to accumulate a given percentage of the SNPs that were suggested to be important for the evolution in response to fish through an outlier analysis of the prefish to high-fish transition. With the rarefaction analysis on the prefish population, we estimate the minimum number of individuals that are needed to reach sufficient genetic variation to enable the observed level of adaptation to fish in this population. The rarefaction analysis on the reduced-fish temporal subpopulation was to assess whether the level of genetic polymorphism declined or increased following the period of strong selection by fish. We thus aimed to evaluate how much evolutionary potential a certain number of individuals from the oldest (i.e., before the introduction of fish) as well as the youngest temporal subpopulation (i.e., after a wave of selection) represent. In the first set of analyses, we used the 1109 SNPs belonging to the divergent SNPs that showed significant changes in allele frequencies in the prefish to high-fish transition and also a significant reversal during the high-fish to reduced-fish and were potentially under positive selection (i.e. excluding hitchhiked SNPs) in the OHZ population. This group of SNPs represent polymorphisms that are presumably adaptive or at least contribute to adaptive allelic variants and hence contribute to the adaptive potential of the temporal subpopulations. The analyses were performed by rarefying the genotype matrix of all 12 individuals from either the prefish or the reduced-fish population to all possible (i.e., 4095) subsets of samples of 1–12 genotypes. For each of these subsets we then calculated the average proportion of polymorphic SNPs. These values were plotted against sample size to generate rarefaction curves. Similarly, rarefaction analyses were performed for the 1003 SNPs belonging to the outlier SNPs that were potentially under positive selection (i.e., excluding hitchhiked SNPs) in the OHZ population and that were also present as SNPs in the full spatial dataset (90.4% of the total number of 1109 SNPs). In this case, rarefaction curves were plotted by randomly resampling (1000 times) 1–30 individuals from the total of the 111 individuals of the Leuven regional populations in the spatial data set (i.e., the cluster of populations that represents a sample of nearby populations (within a radius of 10 km) to the focal OHZ population).Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Distributions of photosynthetic traits, shoot growth, and anti-herbivory defence within a canopy of Quercus serrata in different soil nutrient conditions

    1.Niinemets, Ü. Within-canopy variations in functional leaf traits: Structural, chemical and ecological controls and diversity of responses. In Canopy Photosynthesis: From Basics to Applications (eds Hikosaka, K. et al.) 101–142 (Springer, Dordrecht, 2016).Chapter 

    Google Scholar 
    2.Field, C. Allocating leaf nitrogen for the maximization of carbon gain: Leaf age as a control on the allocation program. Oecologia 56, 341–347 (1983).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Hikosaka, K. et al. A meta-analysis of leaf nitrogen distribution within plant canopies. Ann. Bot. 118(2), 239–247 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Kitao, M. et al. Canopy nitrogen distribution is optimized to prevent photoinhibition throughout the canopy during sun flecks. Sci. Rep. 8, 503 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    5.Lambers, H., Chapin, F. S. III & Pons, T. L. Ecological biochemistry: Allelopathy and defense against herbivores. In Plant Physiological Ecology 2nd edn (eds Lambers, H. et al.) 445–477 (Springer, New York, 2008).Chapter 

    Google Scholar 
    6.Bachofen, C., D’Odorico, P. & Buchmenn, N. Light and VPD gradients drive foliar nitrogen partitioning and photosynthesis in the canopy of European beech and silver fir. Oecologia 192, 323–339 (2020).ADS 
    PubMed 
    Article 

    Google Scholar 
    7.Mole, S., Ross, J. A. M. & Waterman, P. G. Light-induced variation in phenolic levels in foliage of rain-forest plants, I. Chemical changes. J. Chem. Ecol. 14(1), 1–21 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Yamasaki, M. & Kikuzawa, K. Temporal and spatial variations in leaf herbivory within a canopy of Fagus crenata. Oecologia 137(2), 226–232 (2003).ADS 
    PubMed 
    Article 

    Google Scholar 
    9.Niinemets, Ü., Ellsworth, D. S., Lukjanova, A. & Tobias, M. Site fertility and the morphological and photosynthetic acclimation of Pinus sylvestris needles to light. Tree Physiol. 21, 1231–1244 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Niinemets, Ü., Cescatti, A., Lukjanova, A., Tobias, M. & Truus, L. Modification of light-acclimation of Pinus sylvestris shoot architecture by site fertility. Agric. For. Meteorol. 111, 121–140 (2002).ADS 
    Article 

    Google Scholar 
    11.Ishii, H., Kitaoka, S., Fujisawa, T., Maruyama, Y. & Koike, T. Plasticity of shoot and needle morphology and photosynthesis of two Picea species with different site preferences in northern Japan. Tree Physiol. 27, 1595–1605 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Bryant, J. P., Chapin, F. S. III. & Klein, D. R. Carbon/nutrient balance of boreal plants to vertebrate herbivory. Oikos 40, 357–368 (1983).CAS 
    Article 

    Google Scholar 
    13.Coley, P. D., Bryant, J. P. & Chapin, F. S. III. Resource availability and plant antiherbivore defense. Science 230(4728), 895–899 (1985).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Herms, D. A. & Mattson, W. J. The dilemma of plants: To grow or defend. Q. Rev. Biol. 63(3), 283–335 (1992).Article 

    Google Scholar 
    15.Sun, Y. et al. Negative effects of the simulated nitrogen deposition on plant phenolic metabolism: A meta-analysis. Sci. Total Environ. 719, 137442 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Kolstad, A. L., Asplund, J., Nilsson, M.-C., Ohlson, M. & Nybakken, L. Soil fertility and charcoal as determinants of growth and allocation of secondary plant metabolites in seedlings of European beech and Norway spruce. Environ. Exp. Bot. 131, 39–46 (2016).CAS 
    Article 

    Google Scholar 
    17.Caldwell, E., Read, J. & Sanson, G. D. Which leaf mechanical traits correlate with insect herbivory among feeding guilds. Ann. Bot. 117, 349–361 (2016).PubMed 

    Google Scholar 
    18.Warren, C. R. & Adams, M. A. Distribution of N, rubisco and photosynthesis in Pinus pinaster and acclimation to light. Plant Cell Environ. 24(6), 597–609 (2001).CAS 
    Article 

    Google Scholar 
    19.Koike, T., Kitao, M., Maruyama, Y., Mori, S. & Lei, T. T. Leaf morphology and photosynthetic adjustments among deciduous broad-leaved trees within the vertical canopy profile. Tree Physiol. 21, 951–958 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Iio, A., Fukasawa, H., Nose, Y., Kato, S. & Kakubari, Y. Vertical, horizontal and azimuthal variations in leaf photosynthetic characteristics within a Fagus crenata crown in relation to light acclimation. Tree Physiol. 25, 533–544 (2005).PubMed 
    Article 

    Google Scholar 
    21.Scartazza, A., Baccio, D. D., Bertolotto, P., Gavrichkova, O. & Matteucci, G. Investigating the European beech (Fagus sylvatica L.) leaf characteristics along the vertical canopy profile: Leaf structure, photosynthetic capacity, light energy dissipation and photoprotection mechanisms. Tree Physiol. 36, 1060–1076 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.McClure, J. W. Physiology of flavonoids in plants. In Plant Flavonoids in Biology and Medicine (eds Cody, V. et al.) 77–85 (Alan R. Liss Inc, New York, 1985).
    Google Scholar 
    23.Løvdal, T., Plsen, K. M., Slimestad, R., Verheul, M. & Lillo, C. Synergetic effects of nitrogen depletion, temperature, and light on the content of phenolic compounds and gene expression in leaves of tomato. Phytochemistry 71, 605–613 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    24.Christopoulos, M. V. & Tsantili, E. Participation of phenylalanine ammonia-lyase (PAL) in increased phenolic compounds in fresh cold stressed walnut (Juglans regia L.) kernels. Postharvest Biol. Technol. 104, 17–25 (2015).CAS 
    Article 

    Google Scholar 
    25.Tanaka, K. et al. Changes in photosynthesis and leaf characteristics with tree height in five dipterocarp species in a tropical rain forest. Tree Physiol. 26, 865–873 (2006).Article 

    Google Scholar 
    26.Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J. & Villar, R. Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytol. 182, 565–588 (2009).PubMed 
    Article 

    Google Scholar 
    27.Rowe, W. J. & Potter, D. A. Vertical stratification of feeding by Japanese beetle within linden tree canopies: Selective foraging or height per se?. Oecologia 108, 459–466 (1996).ADS 
    PubMed 
    Article 

    Google Scholar 
    28.Le Corff, J. & Marquis, R. J. Differences between understorey and canopy in herbivore community composition and leaf quality for two oak species in Missouri. Ecol. Entomol. 24, 46–58 (1999).Article 

    Google Scholar 
    29.Jamieson, M. A., Schwartzberg, E. G., Raffa, K. F., Reich, P. B. & Lindroth, R. L. Experimental climate warming alters aspen and birch phytochemistry and performance traits for an outbreak insect herbivore. Glob. Chang. Biol. 21, 2698–2710 (2015).ADS 
    PubMed 
    Article 

    Google Scholar 
    30.Tripler, C. E., Canham, C. D., Inouye, R. S. & Schnurr, J. L. Soil nitrogen availability, plant luxury consumption, and herbivory by white-tailed deer. Oecologia 133, 517–524 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Galloway, J. N. et al. Nitrogen cycles: Past, present and future. Biogeochemistry 70, 153–226 (2004).CAS 
    Article 

    Google Scholar 
    32.Kimura, S. D., Saito, M., Hara, H., Xu, Y. H. & Okazaki, M. Comparison of nitrogen dry deposition on cedar and oak leaves in the Tama hills using foliar rinsing method. Water Air Soil Pollut. 202, 369–377 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    33.Imamura, N., Tanaka, N., Ohte, N. & Yamamoto, H. Natural transfer with rainfall in the canopies of a broad-leaved deciduous forest in okuchichibu. J. Jpn. For. Soc. 94, 74–83 (2012) ((In Japanese)).CAS 
    Article 

    Google Scholar 
    34.Ogasawara, R., Yamamoto, T. & Arita, T. Biomass and production of the Konara (Quercus serrata) secondary stand. Hardwood Res. 4, 257–262 (1987) ((In Japanese)).
    Google Scholar 
    35.Kitao, M. et al. Increased phytotoxic O3 dose accelerates autumn senescence in an O3-sensitive beech forest even under the present-level O3. Sci. Rep. 6, 32549 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Kume, A., Nasahara, K. N., Nagai, S. & Muraoka, H. The ratio transmitted near-infrared radiation to photosynthetically active radiation (PAR) increases in proportion to the adsorbed PAR in the canopy. J. Plant Res. 124(1), 99–106 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Ivančič, I. & Degobbis, D. An optimal manual procedure for ammonia analysis in natural waters by the indophenol blue method. Water Res. 18(9), 1143–1147 (1984).Article 

    Google Scholar 
    38.Bray, R. H. & Kurtz, L. T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59(1), 39–46 (1945).ADS 
    CAS 
    Article 

    Google Scholar 
    39.Murphy, J. & Riley, J. P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chem. Acta 27, 31–36 (1962).CAS 
    Article 

    Google Scholar 
    40.Watanabe, M., Ryu, K., Kita, K., Takagi, K. & Koike, T. Effects of nitrogen load on the growth and photosynthesis of hybrid larch F1 (Larix gmelinii var. japonica × L. kaempferi) grown on serpentine soil. Environ. Exp. Bot 83, 73–81 (2012).CAS 
    Article 

    Google Scholar 
    41.Watanabe, M. et al. Photosynthetic traits of Siebold’s beech and oak saplings grown under free air ozone exposure in northern Japan. Environ. Pollut. 174, 50–56 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).ADS 
    CAS 
    Article 

    Google Scholar 
    43.Barnes, J. D., Balaguer, L., Manrique, E., Elvira, S. & Davison, A. W. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environ. Exp. Bot. 32(2), 85–100 (1992).CAS 
    Article 

    Google Scholar 
    44.Julkunen-Tiitto, R. Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics. J. Agric. Food Chem. 33, 213–217 (1985).CAS 
    Article 

    Google Scholar 
    45.Bate-Smith, E. C. Astringent tannins of Acer species. Phytochemistry 16, 1421–1426 (1977).CAS 
    Article 

    Google Scholar 
    46.Clegg, M. S., Keen, C. L., Lönnerdal, B. & Hurley, L. S. Influence of ashing techniques on the analysis of trace elements in animal tissue I. Wet Ashing. Biol. Trace Elem. Res. 3, 107–115 (1981).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Takashima, T., Hikosaka, K. & Hirose, T. Photosynthesis or persistence: Nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell Environ. 27, 1047–1054 (2004).CAS 
    Article 

    Google Scholar 
    48.Vogan, P. J. & Sage, R. F. Effects of low atmospheric CO2 and elevated temperature during growth on the gas exchange responses of C3, C3–C4 intermediate, and C4 species from three evolutionary lineages of C4 photosynthesis. Oecologia 169, 341–352 (2012).ADS 
    PubMed 
    Article 

    Google Scholar 
    49.Evans, J. R. & Seemann, J. R. The allocation of protein nitrogen in the photosynthetic apparatus: Costs, consequences and control. In Photosynthesis (ed. Briggs, W. R.) 183–205 (Alan R Liss Inc, New York, 1989).
    Google Scholar 
    50.Niinemets, Ü. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol. Res. 25, 693–714 (2010).Article 

    Google Scholar 
    51.Niinemets, Ü., Keenan, T. F. & Hallik, L. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. New Phytol. 205, 973–993 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    52.Migita, C., Chiba, Y. & Tange, T. Seasonal and spatial variations in leaf nitrogen content and resorption in a Quercus serrata canopy. Tree Physiol. 27, 63–70 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Kitao, M. et al. Effects of chronic elevated ozone exposure on gas exchange responses of adult beech trees (Fagus sylvatica) as related to the within-canopy light gradient. Environ. Pollut. 157, 537–544 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.R Development Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria. (2018).55.Imaizumi, T. An introductory guide to statistical analysis-generalized linear models for proportion data using R. J. Weed Sci. Tech. 55(4), 275–286 (2010) ((In Japanese)).Article 

    Google Scholar 
    56.Underwood, A. J. Techniques of analysis of variance in experimental marine biology and ecology. Oceanogr. Mar. Biol. Ann. Rev. 19, 513–605 (1981).
    Google Scholar  More

  • in

    Silica nanoparticles as pesticide against insects of different feeding types and their non-target attraction of predators

    1.Bhattacharya, A., Bhaumik, A., Pathipati, U., Mandel, S. & Epidi, T. T. Nano-particles: A recent approach to insect pest control. Afr. J. Biotechnol. 9, 3489–3493 (2010).
    Google Scholar 
    2.Barik, T. K., Sahu, B. & Swain, V. Nanosilica- from medicine to pest control. Parasitol. Res. 103, 253–258 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Gajbhiye, M., Kesharwani, J., Ingle, A., Gade, A. & Rai, M. Fungus mediated synthesis of silver nanoparticles and its activity against pathogenic fungi in combination of fluconazole. Nanomedicine 5, 382–386 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Goswami, A., Roy, I., Sengupta, S. & Debnath, N. Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519, 1252–1257 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    5.Abbasi, A., Sufyan, M., Arif, M. J. & Sahi, S. T. Effect of silicon on tritrophic interaction of cotton, Gossypium hirsutum (Linnaeus), Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) and the predator, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). Arthropod. Plant Interect. 14, 717–725 (2020).Article 

    Google Scholar 
    6.Croissant, J. G. et al. Synthetic amorphous silica nanoparticles: Toxicity, biomedical and environmental implications. Nat. Rev. Mater. 5, 886–909 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    7.Zhang, H. et al. Formation and enhanced biocidal activity of water-dispersable organic nanoparticles. Nat. Nanotechnol. 3, 506–511 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Ayoub, H. A., Khairy, M., Rashwan, F. A. & Abdel-Hafez, H. F. Synthesis and characterization of silica nanostructures for cotton leaf worm control. J. Nanostruct. Chem. 7, 91–100 (2017).CAS 
    Article 

    Google Scholar 
    9.Shoaib, A. et al. Entomotoxic effect of silicon dioxide nanoparticles on Plutella xylostella (L.) (Lepidoptera: Plutellidae) under laboratory conditions. Toxicol. Environ. Chem. 100, 80–91 (2018).CAS 
    Article 

    Google Scholar 
    10.Rastogi, A. et al. Application of silicon nanoparticles in agriculture. 3 Biotech 9, 90 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Galal, O. A. & El Samahy, M. F. M. Genetical effects of using silica nanoparticles as biopesticide on Drosophila melanogaster. Egypt. J. Genet. Cytol 41, 87–106 (2012).Article 

    Google Scholar 
    12.Smith, B. C. Effects of silica on the survival of Coleomegilla maculata lengi (Coleoptera: Coccinellidae) and Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Can. Entomol. 101, 460–462 (1969).Article 

    Google Scholar 
    13.Mousa, K. M., Elsharkawy, M. M., Khodeir, I. A., El-Dakhakhni, T. N. & Youssef, A. E. Growth perturbation, abnormalities and mortality of oriental armyworm Mythimna separata (Walker) (Lepidoptera: Noctuidae) caused by silica nanoparticles and Bacillus thuringiensis toxin. Egypt. J. Biol. Pest Control 24, 283–287 (2014).
    Google Scholar 
    14.El-Samahy, M. F. M., Khafagy, I. F. & El-Ghobary, A. M. A. Efficiency of silica nanoparticles, two bioinsecticides, peppermint extract and insecticide in controlling cotton leafworm, Spodoptera littoralis Boisd. and their effects on some associated natural enemies in sugar beet fields. J. Plant Prot. Pathol. Mansoura Univ. 6, 1221–1230 (2015).
    Google Scholar 
    15.El-Samahy, M. F. M. & Galal, O. A. Evaluation of silica nanoparticles as a new approach to control faba bean (Vicia faba L.) insects and its genotoxic effect on M2 plants. Egypt. J. Agric. Res. 90, 869–888 (2012).
    Google Scholar 
    16.Hodson, M. J., White, P. J., Mead, A. & Broadley, M. R. Phylogenetic variation in the silicon composition of plants. Ann. Bot. 96, 1027–1046 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Cooke, J. & Leishman, M. R. Consistent alleviation of abiotic stress with silicon addition: A meta-analysis. Funct. Ecol. 30, 1340–1357 (2016).Article 

    Google Scholar 
    18.Sangster, A. G. & Hodson, M. J. Silica in higher plants, in Evered, D. & O’Connor, M. (eds.) 90–111, Silicon Biochemistry, Ciba Found. Symp. 121 (Wiley, Chichester, U. K., 1986).19.Johnson, S. N., Hartley, S. E., Ryalls, J. M. W., Frew, A. & Hall, C. R. Targeted plant defense: Silicon conserves hormonal defense signaling impacting chewing but not fluid-feeding herbivores. Ecology https://doi.org/10.1002/ecy.3250 (2021).Article 
    PubMed 

    Google Scholar 
    20.Painter, R. H. Insect resistance in crop plants 520 (MacMillan, 1951).
    Google Scholar 
    21.Sasamoto, K. Studies on the relation between insect pests and silica content in rice plant (III). On the relation between some physical properties of silicified rice plant and injuries by rice stem borer, rice plant skipper and rice stem maggot. Oyo Kontyu 11, 66–69 (1955).
    Google Scholar 
    22.Takahashi, E. Uptake mode and physiological functions of silica. Science of the Rice Plant: Physiology, 420–433 (Food and Agriculture Policy Resource Center, Tokyo, 1995).23.Keeping, M. G. & Meyer, J. H. Calcium silicate enhances resistance of sugarcane to the African stalk borer Eldana saccharina Walker (Lepidoptera: Pyralidae). Agric. For. Entomol. 4, 265–274 (2002).Article 

    Google Scholar 
    24.Reynolds, O. L., Keeping, M. G. & Meyer, J. H. Silicon-augmented resistance of plants to herbivorous insects: A review. Ann. Appl. Biol. 155, 171–186 (2009).CAS 
    Article 

    Google Scholar 
    25.Massey, F. P. & Hartley, S. E. Physical defences wear you down: Progressive and irreversible impacts of silica on insect herbivores. J. Anim. Ecol. 78, 281–291 (2009).PubMed 
    Article 

    Google Scholar 
    26.Agarie, S. et al. Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Prod. Sci. 1, 96–103 (1998).Article 

    Google Scholar 
    27.Ye, M. et al. Priming of jasmonate mediated antiherbivore defence responses in rice by silicon. Proc. Natl. Acad. Sci. USA 110, E3631–E3639 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Mumm, R. & Dicke, M. Variation in natural plant products and the attraction of bodyguards involved in indirect plant defense. Can. J. Zool. 88, 628–667 (2010).CAS 
    Article 

    Google Scholar 
    29.Dudareva, N., Negre, F., Nagegowda, D. A. & Orlova, I. Plant volatiles: Recent advances and future perspectives. Crit. Rev. Plant Sci. 25, 417–440 (2006).CAS 
    Article 

    Google Scholar 
    30.Leroy, N., de Tombeur, F., Walgraffe, Y., Cornélis, J.-T. & Verheggen, F. J. Silicon and plant natural defenses against insect pests: Impact on plant volatile organic compounds and cascade effects on multitrophic interactions. Plants 8, 444 (2019).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    31.Gurr, G. M. & Kvedaras, O. L. Synergizing biological control: Scope for sterile insect technique, induced plant defences and cultural techniques to enhance natural enemy impact. Biol. Control 52, 198–207 (2010).Article 

    Google Scholar 
    32.Reynolds, O. L., Padula, M. P., Zeng, R. & Gurr, G. M. Silicon: Potential to promote direct and indirect effects on plant defense against arthropod pests in agriculture. Front. Plant Sci. 7, 744 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Hall, C. R., Waterman, J. M., Vandegeer, R. K., Hartley, S. E. & Johnson, S. N. The role of silicon in antiherbivore phytohormonal signalling. Front. Plant Sci. 10, 1132 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Liu, J. et al. Silicon supplementation alters the composition of herbivore-induced plant volatiles and enhances attraction of parasitoids to infested rice plants. Front. Plant Sci. 8, 1–8 (2017).
    Google Scholar 
    35.Johnson, S. N., Rowe, R. C. & Hall, C. R. Silicon is an inducible and effective herbivore defence against Helicoverpa punctigera (Lepidoptera: Noctuidae) in soybean. Bull. Entomol. Res. 110, 417–422 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    36.Kvedaras, O. L., An, M., Choi, Y. S. & Gurr, G. M. Silicon enhances natural enemy attraction and biological control through induced plant defences. Bull. Entomol. Res. 100, 367–371 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Connick, V. J. The impact of silicon fertilisation on the chemical ecology of grapevine, Vitis vinifera constitutive and induced chemical defences against arthropod pests and their natural enemies. Ph.D. Thesis, Charles Sturt University, Albury-Wodonga, NSW, Australia (2011).38.Moraes, J. C. et al. Silicon influence on the tritrophic interaction: Wheat plants, the greenbug Schizaphis graminum (Rondani) (Hemiptera: Aphididae), and its natural enemies, Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) and Aphidius colemani Viereck (Hymenoptera: Aphidiidae). Neotrop. Entomol. 33, 619–624 (2004).Article 

    Google Scholar 
    39.Bao-shan, L., Chun-hui, L., Li-jun, F., Shu-chun, Q. & Min, Y. Effect of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings. J. For. Res. (Harbin) 15, 138–140 (2004).Article 

    Google Scholar 
    40.Azimi, R., Borzelabad, M. J., Feizi, H. & Azimi, A. Interaction of SiO2 nanoparticles with seed prechilling on germination and early seedling growth of tall wheatgrass (Agropyron elongatum L.). Pol. J. Chem. Technol. 16, 25–29 (2014).CAS 
    Article 

    Google Scholar 
    41.Suriyaprabha, R., Karunakaran, G., Yuvakkumar, R., Rajendran, V. & Kannan, N. Foliar application of silica nanoparticles on the phytochemical responses of maize (Zea mays L.) and its toxicological behavior. Synth. React. Inorgan. Met. Org. Nano-Met. Chem. 44, 1128–1131 (2014).CAS 
    Article 

    Google Scholar 
    42.Alsaeedi, A. H., Elgarawany, M. M., El-Ramady, H., Alshaal, T. & AL-Otaibi A. O. A. Application of silica nanoparticles induces seed germination and growth of cucumber (Cucumis sativus). Met. Environ. Arid. Land Agric. Sci. 28, 57–68 (2019).43.Roohizadeh, G., Majd, A. & Arbabian, S. The effect of sodium silicate and silica nanoparticles on seed germination and some of growth indices in the Vicia faba L. Trop. Plant Res. 2, 85–89 (2015).
    Google Scholar 
    44.Thabet, A. F., Galal, O. A., El-Samahy, M. F. M. & Tuda, M. Higher toxicity of nano-scale TiO2 and dose-dependent genotoxicity of nano-scale SiO2 on the cytology and seedling development of broad bean Vicia faba. Appl. Sci. 1, 956 (2019).CAS 

    Google Scholar 
    45.Yang, Z. et al. Assessment of the phytotoxicity of metal oxide nanoparticles on two crop plants, maize (Zea mays L.) and rice (Oryza sativa L.). Int. J. Environ. Res. Public Health 12, 15100–15109 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Sharifi-Rad, J., Sharifi-Rad, M. & Teixeira da Silva, J. A. Morphological, physiological and biochemical responses of crops (Zea mays L., Phaseolus vulgaris L.), medicinal plants (Hyssopus officinalis L., Nigella sativa L.), and weeds (Amaranthus retroflexus L., Taraxacum officinale F. H. Wigg) exposed to SiO2 nanoparticles. J. Agric. Sci. Technol. 18, 1027–1040 (2016).
    Google Scholar 
    47.Silva, G. H. & Monteiro, R. T. Toxicity assessment of silica nanoparticles on Allium cepa. Ecotox. Environ. Contam. 12, 25–31 (2017).
    Google Scholar 
    48.Khan, Z. & Ansari, M. Y. K. Impact of engineered Si nanoparticles on seed germination, vigour index and genotoxicity assessment via DNA damage of root tip cells in Lens culinaris. J. Plant. Biochem. Physiol. 6, 5243–5246 (2018).Article 

    Google Scholar 
    49.Galal, O. A., Thabet, A. F., Tuda, M. & El-Samahy, M. F. M. RAPD analysis of genotoxic effects of nano-scale SiO2 and TiO2 on broad bean (Vicia faba L.). J. Fac. Agric. Kyushu Univ. 65, 57–63 (2020).CAS 
    Article 

    Google Scholar 
    50.Elsadany, M. F. I., Aboulila, A. A., Abo-Sein, T. M. & Magouz, R. I. E. Effect of silica nano-particles in control of mite Tetranychus cucurbitacearum (Sayed) and agronomic traits of soybean plants and qualitative assessment of its genotoxicity using total protein and RAPD analysis. J. Agric. Chem. Biotechnol. Mansoura Univ. 6, 529–544 (2015).
    Google Scholar 
    51.Salama, H. S., Dimetry, N. Z. & Salem, S. A. On the host preference and biology of the cotton leaf worm Spodoptera littoralis Bois. Zeitung Angew Entomol. 67, 261–266 (1971).Article 

    Google Scholar 
    52.Anonymous,. Data sheets on quarantine organisms. EPPO list A2 (European and Mediterranean Plant Protection Organization, 1981).
    Google Scholar 
    53.Hassan, A. S., Moussa, M. A. & Nasr, E. A. Behaviour of larvae and adults of the cotton leaf worm, Prodenia litura. Bull. Soc. Ent. Egypt 44, 337–343 (1960).
    Google Scholar 
    54.Talati, G. M. & Butani, P. G. Reproduction and population dynamics of groundnut aphid. Guj. Agric. Univ. Res. J. 5, 54–56 (1980).
    Google Scholar 
    55.Dixon, A. F. G. Structure of aphid populations. Annu. Rev. Entomol. 30, 155–174 (1985).Article 

    Google Scholar 
    56.Jackai, L. E. N. & Daoust, R. A. Insect pests of cowpeas. Annu. Rev. Entomol. 31, 95–119 (1986).Article 

    Google Scholar 
    57.Singh, S. R. Insects damaging cowpeas in Asia. In Cowpea research, production and utilization (eds Singhand, S. R. & Rachie, K. O.) 247–264 (Wiley, 1985).
    Google Scholar 
    58.Atiri, G. I. & Thottappilly, G. Aphis craccivora settling behaviour and acquisition of cowpea aphid borne mosaic virus in aphid-resistant cowpea lines. Entomol. Exp. Appl. 39, 241–245 (1985).Article 

    Google Scholar 
    59.Aamer, N. A. & Hegazi, E. M. Parasitoids of the leaf miners Liriomyza spp. (Diptera: Agromyzidae) attacking faba bean in Alexandria, Egypt. Egypt. J. Biol. Pest Control 24, 301–305 (2014).
    Google Scholar 
    60.Bassiony, R. A., Abou-Attia, F. A., Samy, M. A., Youssef, A. E. & Ueno, T. Infestation caused by the agromyzid leafminer Liriomyza trifolii of bean crops in Kafr EL-Shiekh, Egypt. J. Fac. Agric. Kyushu Univ. 62, 435–438 (2017).Article 

    Google Scholar 
    61.Borges, I., Soares, A. O., Magro, A. & Hemptinne, J. L. Prey availability in time and space is a driving force in life history evolution of predatory insects. Evol. Ecol. 25, 1307–1319 (2011).Article 

    Google Scholar 
    62.Hendawy, M. A., Saleh, A. A. A., Jabbar, A. S. & El-Hadary, A. S. N. Efficacy of some insecticides against the cowpea aphid, Aphis craccivora Koch infesting cowpea plants and their associated predators under laboratory and field conditions. Zagazig J. Agric. Res. 45, 2367–2375 (2018).Article 

    Google Scholar 
    63.Jabbar, A. S., Zawrah, M. F. M., Amer, S. A. M. & Saleh, A. A. A. Ecological and biological studies of certain predatory insects of aphid Aphis craccivora (koch.) on cowpea. Res J Parasitol 15, 20–30 (2020).Article 

    Google Scholar 
    64.Khodeir, I. A. et al. Population densities of pest aphids and their associated natural enemies on faba bean in Kafr EL–Sheikh, Egypt. J. Fac. Agric. Kyushu Univ. 65, 97–102 (2020).Article 

    Google Scholar 
    65.Lattin, J. D. Bionomics of the anthocoridae. Annu. Rev. Entomol. 44, 207–231 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Tuda, M. & Shima, K. Relative importance of weather and density dependence on the dispersal and on-plant activity of the predator Orius minutus. Popul. Ecol. 44, 251–257 (2002).Article 

    Google Scholar 
    67.Henderson, C. F. & Tilton, E. W. Tests with acaricides against the brow wheat mite. J. Econ. Entomol. 48, 157–161 (1955).CAS 
    Article 

    Google Scholar 
    68.Kergoat, G. J. et al. A novel reference dated phylogeny for the genus Spodoptera Guenée (Lepidoptera: Noctuidae: Noctuinae): new insights into the evolution of a pest-rich genus. Mol. Phylogenet. Evol. 161, 107161 (2021).PubMed 
    Article 

    Google Scholar 
    69.Emrani, S. N., Arzani, A. & Saeidi, G. Seed viability, germination and seedling growth of canola (Brassica napus L.) as influenced by chemical mutagens. Afr. J. Biotechnol. 10, 12602–12613 (2011).CAS 
    Article 

    Google Scholar 
    70.Edmond, J. B. & Drapala, W. J. The effects of temperature, sand and soil, and acetone on germination of okra seed. Proc. Am. Soc. Hort. Sci. 71, 428–434 (1958).
    Google Scholar 
    71.Ranal, M. A. & de Santana, D. G. How and why to measure the germination process?. Braz. J. Bot. 29, 1–11 (2006).Article 

    Google Scholar 
    72.Dahindwal, A. S., Lather, B. P. S. & Singh, J. Efficacy of seed treatment on germination, seedling emergence and vigor of cotton (Gossypium hirsutum) genotypes. Seed Res. 19, 59–61 (1991).
    Google Scholar 
    73.Derbalah, A. S., Morsey, S. Z. & El-Samahy, M. Some recent approaches to control Tuta absoluta in tomato under greenhouse conditions. Afr. Entomol. 20, 27–34 (2012).Article 

    Google Scholar 
    74.Borei, H. A., El-Samahy, M. F. M., Galal, O. A. & Thabet, A. F. The efficiency of silica nanoparticles in control cotton leafworm, Spodoptera littoralis Boisd. (Lepidoptera: Noctuidae) in soybean under laboratory conditions. Glob. J. Agric. Food Saf. Sci. 1, 161–168 (2014).
    Google Scholar 
    75.Debnath, N., Mitra, S., Das, S. & Goswami, A. Synthesis of surface functionalized silica nanoparticles and their use as entomotoxic nanocides. Powder Technol. 221, 252–256 (2012).CAS 
    Article 

    Google Scholar 
    76.El-Bendary, H. M. & El-Helaly, A. A. First record nanotechnology in agricultural: Silica nanoparticles a potential new insecticide for pest control. Appl. Sci. Rep. 4, 241–246 (2013).
    Google Scholar 
    77.Rowen, E. & Kaplan, I. Eco-evolutionary factors drive induced plant volatiles: A meta-analysis. New Phytol. 210, 284–294 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Fawe, A., Abou-Zaid, M., Menzies, J. & Bélanger, R. Silicon-mediated accumulation of flavonoid phytoalexins in cucumber. Phytopathology 88, 396–401 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Coscun, D. et al. The controversies of silicon’s role in plant biology. New Phytol. 221, 67–85 (2019).Article 

    Google Scholar 
    80.Murakami, S. et al. Insect-induced Daidzein, Formononetin and their conjugates in soybean leaves. Metabolites 4, 532–546 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    81.Kessler, A. & Baldwin, I. T. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291, 2141–2144 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    82.Horiuchi, J.-I. et al. A comparison of the responses of Tetranychus urticae (Acari: Tetranychidae) and Phytoseiulus persimilis (Acari: Phytoseiidae) to volatiles emitted from lima bean leaves with different levels of damage made by T. urticae or Spodoptera exigua (Lepidoptera: Noctuidae). Appl. Entomol. Zool. 38, 109–116 (2003).Article 

    Google Scholar 
    83.Yoneya, K., Kugimiya, S. & Takabayashi, J. Can herbivore-induced plant volatiles inform predatory insect about the most suitable stage of its prey?. Physiol. Entomol. 34, 379–386 (2009).CAS 
    Article 

    Google Scholar 
    84.Acevedo, F. E. et al. Quantitative proteomic analysis of the fall armyworm saliva. Insect Biochem. Mol. Biol. 86, 81–92 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    85.Vet, L. E. & Dicke, M. Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37, 141–172 (1992).Article 

    Google Scholar 
    86.Yan, Z. G. & Wang, C. Z. Similar attractiveness of maize volatiles induced by Helicoverpa armigera and Pseudaletia separata to the generalist parasitoid Campoletis chlorideae. Entomol. Exp. Appl. 118, 87–96 (2006).CAS 
    Article 

    Google Scholar 
    87.McCormick, A. C., Unsicker, S. B. & Gershenzon, J. The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends Plant Sci. 17, 303–310 (2012).Article 
    CAS 

    Google Scholar 
    88.Lee, C. W. et al. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ. Toxicol. Chem. 29, 669–675 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    89.Sabaghnia, N. & Janmohammadi, M. Effect of nanosilicon particles application on salinity tolerance in early growth of some lentil genotypes. Ann. UMCS Biol. 69, 39–55 (2014).
    Google Scholar 
    90.Slomberg, D. L. & Schoenfisch, M. H. Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ. Sci. Technol. 46, 10247–10254 (2012).CAS 
    PubMed 

    Google Scholar 
    91.Le, V. N. et al. Uptake, transport, distribution and bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. J. Nanobiotechnol. 12, 50 (2014).Article 
    CAS 

    Google Scholar  More