Natal origin and age-specific egress of Pacific bluefin tuna from coastal nurseries revealed with geochemical markers
1.Duffy, L. M. et al. Global trophic ecology of yellowfin, bigeye, and albacore tunas: Understanding predation on micronekton communities at ocean-basin scales. Deep Sea Res. Part II Top. Stud. Oceanogr. 140, 55–73 (2017).ADS
Article
Google Scholar
2.Mariani, P., Andersen, K. H., Lindegren, M. & MacKenzie, B. Trophic impact of Atlantic bluefin tuna migrations in the North Sea. ICES J. Mar. Sci. 74, 1552–1560 (2017).Article
Google Scholar
3.Block, B. A. et al. Tracking apex marine predator movements in a dynamic ocean. Nature 475, 86–90 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
4.Arrizabalaga, H. et al. Chapter 3. Life history and migrations of Mediterranean bluefin tuna. In The Future Of Bluefin Tuna: Ecology, Fisheries Management, and Conservation (ed. Block, B. A.) 67–93 (Johns Hopkins University Press, 2019).
Google Scholar
5.Rooker, J. R. et al. Population connectivity of pelagic megafauna in the Cuba–Mexico–United States triangle. Sci. Rep. 9, 1663 (2019).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
6.Sun, J., Hinton, M. G. & Webster, D. G. Modeling the spatial dynamics of international tuna fleets. PLoS ONE 11, e0159626 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
7.Collette, B. B. et al. Conservation: High value and long life-double jeopardy for tunas and billfishes. Science 333, 291–292 (2011).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
8.Kerr, L. A., Cadrin, S. X., Secor, D. H. & Taylor, N. G. Modeling the implications of stock mixing and life history uncertainty of Atlantic bluefin tuna. Can. J. Fish. Aquat. Sci. 74, 1990–2004 (2017).Article
Google Scholar
9.Fromentin, J. M. & Lopuszanski, D. Migration, residency, and homing of bluefin tuna in the western Mediterranean Sea. ICES J. Mar. Sci. 71, 510–518 (2014).Article
Google Scholar
10.Lam, C. H., Galuardi, B. & Lutcavage, M. E. Movements and oceanographic associations of bigeye tuna (Thunnus obesus) in the Northwest Atlantic. Can. J. Fish. Aquat. Sci. 71, 1529–1543 (2014).Article
Google Scholar
11.Rooker, J. R. et al. Wide-ranging temporal variation in transoceanic movement and population mixing of bluefin tuna in the North Atlantic Ocean. Front. Mar. Sci. 6, 398 (2019).Article
Google Scholar
12.Bayliff, W. H. A review of the biology and fisheries for northern bluefin tuna, Thunnus thynnus, in the Pacific Ocean. FAO Fish. Tech. Pap. 336, 244–295 (1994).
Google Scholar
13.Collette, B. & Graves, J. Tunas and Billfishes of the World (Johns Hopkins University Press, 2019).
Google Scholar
14.Madigan, D. J., Baumann, Z. & Fisher, N. S. Pacific bluefin tuna transport Fukushima-derived radionuclides from Japan to California. Proc. Natl. Acad. Sci. U. S. A. 109, 9483–9486 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
15.Fujioka, K. et al. Spatial and temporal variability in the trans-Pacific migration of Pacific bluefin tuna (Thunnus orientalis) revealed by archival tags. Prog. Oceanogr. 162, 52–65 (2018).ADS
Article
Google Scholar
16.Fujioka, K., Masujima, M., Boustany, A. M. & Kitagawa, T. Horizontal movements of Pacific bluefin tuna. In Biology and Ecology of Bluefin Tuna (eds Kitagawa, T. & Kimura, S.) 101–122 (CRC Press, 2015).
Google Scholar
17.Fujioka, K. et al. Habitat use and movement patterns of small (age-0) juvenile Pacific bluefin tuna (Thunnus orientalis) relative to the Kuroshio. Fish. Oceanogr. 27, 185–198 (2018).Article
Google Scholar
18.Kitagawa, T., Kimura, S., Nakata, H. & Yamada, H. Diving behavior of immature, feeding Pacific bluefin tuna (Thunnus thynnus orientalis) in relation to season and area: The East China Sea and the Kuroshio–Oyashio transition region. Fish. Oceanogr. 13, 161–180 (2004).Article
Google Scholar
19.Rooker, J. R. et al. Natal homing and connectivity in Atlantic bluefin tuna populations. Science 322, 742–744 (2008).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
20.Wells, R. J. D., Rooker, J. R. & Itano, D. G. Nursery origin of yellowfin tuna in the Hawaiian Islands. Mar. Ecol. Prog. Ser. 461, 187–196 (2012).ADS
CAS
Article
Google Scholar
21.Wells, R. J. D. et al. Natal origin of Pacific bluefin tuna from the California current large marine ecosystem. Biol. Lett. 16, 20190878 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
22.Baumann, H. et al. Combining otolith microstructure and trace elemental analyses to infer the arrival of juvenile Pacific bluefin tuna in the California current ecosystem. ICES J. Mar. Sci. 72, 2128–2138 (2015).Article
Google Scholar
23.Rooker, J. R. & Secor, D. H. Otolith microchemistry: Migration and ecology of Atlantic bluefin tuna. In The Future of Bluefin Tuna: Ecology, Fisheries Management, and Conservation (ed. Block, B. A.) 45–66 (Johns Hopkins University Press, 2019).
Google Scholar
24.Kitchens, L. L. et al. Discriminating among yellowfin tuna Thunnus albacares nursery areas in the Atlantic Ocean using otolith chemistry. Mar. Ecol. Prog. Ser. 603, 201–213 (2018).ADS
CAS
Article
Google Scholar
25.Reeves, J., Chen, J., Wang, X. L., Lund, R. & Lu, Q. A review and comparison of changepoint detection techniques for climate data. J. Appl. Meteorol. Climatol. 46, 900–915 (2007).ADS
Article
Google Scholar
26.Killick, R. & Eckley, I. A. Changepoint: An R package for changepoint analysis. J. Stat. Softw. 58, 1–19 (2014).Article
Google Scholar
27.Liu, H., Gilmartin, J., Li, C. & Li, K. Detection of time-varying pulsed event effects on estuarine pelagic communities with ecological indicators after catastrophic hurricanes. Ecol. Indic. 123, 107327 (2021).Article
Google Scholar
28.Millar, R. B. Comparison of methods for estimating mixed stock fishery composition. Can. J. Fish. Aquat. Sci. 47, 2235–2241 (1990).Article
Google Scholar
29.Rooker, J. R., Secor, D. H., Zdanowicz, V. S. & Itoh, T. Discrimination of northern bluefin tuna from nursery areas in the Pacific Ocean using otolith chemistry. Mar. Ecol. Prog. Ser. 218, 275–282 (2001).ADS
CAS
Article
Google Scholar
30.Wells, R. J. D. et al. Natural tracers reveal population structure of albacore (Thunnus alalunga) in the eastern North Pacific Ocean. ICES J. Mar. Sci. 72, 2118–2127 (2015).Article
Google Scholar
31.Elsdon, T. S. et al. Otolith chemistry to describe movements and life history parameters of fishes: Hypotheses, assumptions, limitations and inferences. Oceanogr. Mar. Biol. Annu. Rev. 46, 297–330 (2008).
Google Scholar
32.Secor, D. H. Migration Ecology of Marine Fishes (Johns Hopkins University Press, 2015).
Google Scholar
33.Chen, C. T. A., Ruo, R., Pai, S. C., Liu, C. T. & Wong, G. T. F. Exchange of water masses between East China Sea and the Kuroshio off northeastern Taiwan. Cont. Shelf Res. 15, 19–39 (1995).ADS
Article
Google Scholar
34.Sasaki, Y. N., Minobe, S., Asai, T. & Inatsu, M. Influence of the Kuroshio in the East China Sea on the early summer (Baiu) rain. J. Climate 25, 6627–6645 (2012).ADS
Article
Google Scholar
35.Sturrock, A. M., Trueman, C. N., Darnaude, A. M. & Hunter, E. Can otololith elemental chemistry retrospectively track migrations in marine fishes. J. Fish. Biol. 81, 766–795 (2012).CAS
PubMed
Article
PubMed Central
Google Scholar
36.Lebrato, M. et al. Global variability in seawater Mg:Ca and Sr:Ca ratios in the modern ocean. Proc. Nat. Acad. Sci. 117, 22281–22292 (2020).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
37.Rooker, J. R., Wells, R. J. D., Itano, D. G., Thorrold, S. R. & Lee, J. M. Natal origin and population connectivity of bigeye and yellowfin tuna in the Pacific Ocean. Fish. Oceanogr. 25, 277–291 (2016).Article
Google Scholar
38.Liao, W. H. & Ho, T. Y. Particulate trace metal composition and sources in the Kuroshio adjacent to the East China Sea: The importance of aerosol deposition. J. Geophys. Res. Oceans 123, 6207–6223 (2018).ADS
CAS
Article
Google Scholar
39.Campana, S. E. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297 (1999).ADS
CAS
Article
Google Scholar
40.Elsdon, T. S. & Gillanders, B. M. Relationship between water and otolith elemental concentrations in juvenile black bream Acanthopagrus butcheri. Mar. Ecol. Prog. Ser. 260, 263–272 (2003).ADS
CAS
Article
Google Scholar
41.Elsdon, T. S. & Gillanders, B. M. Interactive effects of temperature and salinity on otolith chemistry: Challenges for determining environmental histories of fish. Can. J. Fish. Aquat. Sci. 59, 1796–1808 (2002).CAS
Article
Google Scholar
42.Stanley, R. R. E. et al. Environmentally mediated trends in otolith composition of juvenile Atlantic cod (Gadus morhua). ICES J. Mar. Sci. 72, 2350–2363 (2015).Article
Google Scholar
43.Macdonald, J. I. & Crook, D. A. Variability in Sr:Ca and Ba:Ca ratios in water and fish otoliths across an estuarine salinity gradient. Mar. Ecol. Prog. Ser. 413, 147–161 (2010).ADS
CAS
Article
Google Scholar
44.Reis-Santos, P., Tanner, S. E., Elsdon, T. S., Cabral, H. N. & Gillanders, B. M. Effects of temperature, salinity and water composition on otolith elemental incorporation of Dicentrarchus labrax. J. Exp. Mar. Biol. Ecol. 446, 245–252 (2013).CAS
Article
Google Scholar
45.Rooker, J. R., Kraus, R. T. & Secor, D. H. Dispersive behaviors of black drum and red drum: Is otolith Sr:Ca a reliable indicator of salinity history?. Estuaries 27, 334–441 (2004).Article
Google Scholar
46.Hüssy, K. et al. Trace element patterns in otoliths: The role of biomineralization. Rev. Fish. Sci. Aquacult. https://doi.org/10.1080/23308249.2020.1760204 (2020).Article
Google Scholar
47.Thorrold, S. R., Jones, C. M. & Campana, S. E. Response of otolith microchemistry to environmental variations experienced by larval and juvenile Atlantic croaker (Micropogonias undulatus). Limnol. Oceanogr. 42, 102–111 (1997).ADS
CAS
Article
Google Scholar
48.Secor, D. H. & Rooker, J. R. Is otolith strontium a useful scalar of life-cycles in estuarine fishes?. Fish. Res. 1032, 1–14 (2000).
Google Scholar
49.Izzo, C., Reis-Santos, P. & Gillanders, B. M. Otolith chemistry does not just reflect environmental conditions: A meta-analytic evaluation. Fish Fish. 19, 441–454 (2018).Article
Google Scholar
50.Sturrock, A. M. et al. Quantifying physiological influences on otolith chemistry. Methods Ecol. Evol. 6, 806–816 (2015).Article
Google Scholar
51.Bath, G. E. et al. Strontium and barium uptake in aragonitic otoliths of marine fish. Geochim. Cosmochim. Acta 64, 1705–1714 (2000).ADS
CAS
Article
Google Scholar
52.Arai, T., Kotake, A., Kayama, S., Ogura, M. & Watanabe, Y. Movements and life history patterns of the skipjack tuna Katsuwonus pelamis in the western Pacific, as revealed by otolith Sr:Ca ratios. J. Mar. Biol. Assoc. U. K. 85, 1211–1271 (2005).Article
Google Scholar
53.Shiozaki, T., Kondo, Y., Yuasa, D. & Takeda, S. Distribution of major diazotrophs in the surface water of the Kuroshio from northeastern Taiwan to south of mainland Japan. J. Plankton Res. 40, 407–419 (2018).CAS
Article
Google Scholar
54.Nakata, K., Hada, A. & Masukawa, Y. Variation in food abundance for Japanese sardine larvae related to Kuroshio meander. Fish. Oceanogr. 3, 39–49 (1994).Article
Google Scholar
55.Kitagawa, T. et al. Horizontal and vertical movements of juvenile bluefin tuna (Thunnus orientalis) in relation to seasons and oceanographic conditions in the eastern Pacific Ocean. Fish. Oceanogr. 16, 409–421 (2007).Article
Google Scholar
56.Ichinokawa, M., Okamura, H., Oshima, K., Yokawa, K. & Takeuchi, Y. Spatiotemporal catch distribution of age-0 Pacific bluefin tuna Thunnus orientalis caught by the Japanese troll fishery in relation to surface sea temperature and seasonal migration. Fish. Sci. 80, 1181–1191 (2014).CAS
Article
Google Scholar
57.Shimose, T., Tanabe, T., Chen, K. S. & Hsu, C. C. Age determination and growth of Pacific bluefin tuna, Thunnus orientalis, off Japan and Taiwan. Fish. Res. 100, 134–139 (2009).Article
Google Scholar
58.Chiba, S. et al. Large-scale climate control of zooplankton transport and biogeography in the Kuroshio–Oyashio extension region. Geophys. Res. Lett. 40, 5182–5187 (2013).ADS
Article
Google Scholar
59.Hiraoka, Y., Fujioka, K., Fukuda, H., Watai, M. & Ohshimo, S. Interannual variation of the diet shifts and their effects on the fatness and growth of age-0 Pacific bluefin tuna (Thunnus orientalis) off the southwestern Pacific coast of Japan. Fish. Oceanogr. 28, 419–433 (2019).Article
Google Scholar
60.Inagake, D. et al. Migration of young bluefin tuna, Thunnus orientalis Temminck et Schlegel, through archival tagging experiments and its relation with oceanographic conditions in the western north Pacific. Bull. Natl Res. Inst. Far Seas Fish. 38, 53–81 (2001).
Google Scholar
61.Mohan, J. A. et al. Elements of time and place: Manganese and barium in shark vertebrae reflect age and upwelling histories. Proc. R. Soc. B Biol. Sci. 285, 20181760 (2018).Article
Google Scholar
62.Hsieh, Y. T. & Henderson, G. M. Barium stable isotopes in the global ocean: Tracer of Ba inputs and utilization. Earth Planet. Sci. Lett. 473, 269–278 (2017).ADS
CAS
Article
Google Scholar
63.Kimura, S. et al. Biological productivity of meso-scale eddies caused by front disturbances in the Kuroshio. ICES J. Mar. Sci. 54, 179–192 (1997).Article
Google Scholar
64.Tanaka, Y. et al. Occurrence of Pacific bluefin tuna (Thunnus orientalis) larvae off the Pacific coast of Tohoku area, northeastern Japan: Possibility of the discovery of the third spawning ground. Fish. Oceanogr. 29, 46–51 (2019).Article
Google Scholar
65.Shiao, J. C. et al. Contribution rates of different spawning and feeding grounds to adult Pacific bluefin tuna (Thunnus orientalis) in the northwestern Pacific Ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. https://doi.org/10.1016/j.dsr.2020.103453 (2020).Article
Google Scholar
66.Uematsu, Y., Ishihara, T., Hiraoka, Y., Shimose, T. & Ohshimo, S. Natal origin identification of Pacific bluefin tuna (Thunnus orientalis) by vertebral first annulus. Fish. Res. 199, 26–31 (2018).Article
Google Scholar
67.Kitagawa, T., Fujioka, K. & Suzuki, N. Migrations of Pacific bluefin tuna in the western Pacific Ocean. In The Future of Bluefin Tuna: Ecology, Fisheries Management, and Conservation (ed. Block, B. A.) 147–164 (Johns Hopkins University Press, 2019).
Google Scholar More