More stories

  • in

    The rise and fall of proboscidean ecological diversity

    1.Surovell, T., Waguespack, N. & Brantingham, P. J. Global archaeological evidence for proboscidean overkill. Proc. Natl Acad. Sci. USA 102, 6231–6236 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Smith, F. A., Smith, R. E. E., Lyons, S. K. & Payne, J. L. Body size downgrading of mammals over the late Quaternary. Science 360, 310–313 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Faith, J. T., Rowan, J., Du, A. & Barr, W. A. The uncertain case for human-driven extinctions prior to Homo sapiens. Quat. Res. 96, 88–104 (2020).Article 

    Google Scholar 
    4.Cuvier, G. Mémoires sur les Espèces d’Éléphants Vivants et Fossiles. Mémoires de l’Institut des Sciences et Arts 2, 1–22 (1800); https://www.biodiversitylibrary.org/page/16303001#page/175/mode/1up5.Osborn, H. F. The ancestral tree of the Proboscidea. Discovery, evolution, migration and extinction over a 50,000,000 year period. Proc. Natl Acad. Sci. USA 21, 404–412 (1935).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.International Union for Conservation of Nature. The IUCN Red List of Threatened Species Version 2021-1 (IUCN, 2021); https://www.iucnredlist.org7.Maglio, V. J. Origin and evolution of the Elephantidae. Trans. Am. Philos. Soc. 63, 1–149 (1973).Article 

    Google Scholar 
    8.Zhang, H., Wang, Y., Janis, C. M., Goodall, R. H. & Purnell, M. A. An examination of feeding ecology in Pleistocene proboscideans from southern China (Sinomastodon, Stegodon, Elephas), by means of dental microwear texture analysis. Quat. Int. 445, 60–70 (2017).Article 

    Google Scholar 
    9.Saegusa, H. Stegodontidae and Anancus: keys to understanding dental evolution in Elephantidae. Quat. Sci. Rev. 231, 106176 (2020).Article 

    Google Scholar 
    10.Hempson, G. P., Archibald, S. & Bond, W. J. A continent-wide assessment of the form and intensity of large mammal herbivory in Africa. Science 350, 1056–1061 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Silvestro, D., Salamin, N., Antonelli, A. & Meyer, X. Improved estimation of macroevolutionary rates from fossil data using a Bayesian framework. Paleobiology 45, 546–570 (2019).Article 

    Google Scholar 
    12.Clavel, J., Escarguel, G. & Merceron, G. mvMORPH: an R package for fitting multivariate evolutionary models to morphometric data. Methods Ecol. Evol. 6, 1311–1319 (2015).Article 

    Google Scholar 
    13.Cantalapiedra, J. L., Hernández Fernández, M., Azanza, B. & Morales, J. Congruent phylogenetic and fossil signatures of mammalian diversification dynamics driven by Tertiary abiotic change. Evolution 69, 2941–2953 (2015).PubMed 
    Article 

    Google Scholar 
    14.Silvestro, D., Antonelli, A., Salamin, N. & Quental, T. B. The role of clade competition in the diversification of North American canids. Proc. Natl Acad. Sci. USA 112, 8684–8689 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Sepkoski, J. J. A kinetic model of Phanerozoic taxonomic diversity I. Analysis of marine orders. Paleobiology 4, 223–251 (1978).Article 

    Google Scholar 
    16.Tassy, P. in European Neogene Mammal Chronology (eds Lindsay, E. H. et al.) 237–252 (Plenus Press, 1989).17.van der Made, J. in Elefantentreich: eine Fossilwelt in Europa (ed. Meller, H.) 340–360 (Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt-Landesmuseum für Vorgeschichte, 2010).18.Saarinen, J. J. et al. Patterns of maximum body size evolution in Cenozoic land mammals: eco-evolutionary processes and abiotic forcing. Proc. Biol. Sci. 281, 20132049 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    19.Fortelius, M. et al. Evolution of Neogene mammals in Eurasia: environmental forcing and biotic interactions. Annu. Rev. Earth Planet Sci. 42, 579–604 (2014).CAS 
    Article 

    Google Scholar 
    20.Marshall, C. R. & Quental, T. B. The uncertain role of diversity dependence in species diversification and the need to incorporate time-varying carrying capacities. Philos. Trans. R. Soc. Lond. B 371, 20150217 (2016).Article 
    CAS 

    Google Scholar 
    21.Vrba, E. S. Evolution, species and fossils: how does life evolve? S. Afr. J. Sci. 76, 61–84 (1980).
    Google Scholar 
    22.Cantalapiedra, J. L., Prado, J. L., Hernández Fernández, M. & Alberdi, M. T. Decoupled ecomorphological evolution and diversification in Neogene-Quaternary horses. Science 355, 627–630 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Calandra, I., Göhlich, U. B. & Merceron, G. How could sympatric megaherbivores coexist? Example of niche partitioning within a proboscidean community from the Miocene of Europe. Naturwissenschaften 95, 831–838 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Sanders, W. J. Proboscidea from Kanapoi, Kenya. J. Hum. Evol. 140, 102547 (2020).PubMed 
    Article 

    Google Scholar 
    25.Wang, S. et al. Evolution of Protanancus (Proboscidea, Mammalia) in East Asia. J. Vertebr. Paleontol. 35, e881830 (2015).Article 

    Google Scholar 
    26.Lister, A. M. The role of behaviour in adaptive morphological evolution of African proboscideans. Nature 500, 331–334 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Lister, A. M., Sher, A. V., van Essen, H. & Wei, G. The pattern and process of mammoth evolution in Eurasia. Quat. Int. 126, 49–64 (2005).Article 

    Google Scholar 
    28.Wei, G. et al. New materials of the steppe mammoth, Mammuthus trogontherii, with discussion on the origin and evolutionary patterns of mammoths. Sci. China Earth Sci. 53, 956–963 (2010).Article 

    Google Scholar 
    29.Stanley, S. M. Macroevolution: Patterns and Processes (W. H. Freeman and Company, 1979).30.Edwards, E. J. et al. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328, 587–591 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Faith, J. T., Rowan, J., Du, A. & Koch, P. L. Plio-Pleistocene decline of African megaherbivores: no evidence for ancient hominin impacts. Science 362, 938–941 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Kaya, F. et al. The rise and fall of the Old World savannah fauna and the origins of the African savannah biome. Nat. Ecol. Evol. 2, 241–246 (2018).PubMed 
    Article 

    Google Scholar 
    33.Saarinen, J. & Lister, A. M. Dental mesowear reflects local vegetation and niche separation in Pleistocene proboscideans from Britain. J. Quat. Sci. 31, 799–808 (2016).Article 

    Google Scholar 
    34.Rivals, F., Semprebon, G. M. & Lister, A. M. Feeding traits and dietary variation in Pleistocene proboscideans: a tooth microwear review. Quat. Sci. Rev. 219, 145–153 (2019).Article 

    Google Scholar 
    35.Vrba, E. S. in Living Fossils (eds Eldredge, N. & Stanley, S. M.) 62–79 (Springer, 1984).36.Herrera‐Flores, J. A., Stubbs, T. L. & Benton, M. J. Macroevolutionary patterns in Rhynchocephalia: is the tuatara (Sphenodon punctatus) a living fossil? Palaeontology 60, 319–328 (2017).Article 

    Google Scholar 
    37.Todd, N. E. Trends in proboscidean diversity in the African Cenozoic. J. Mamm. Evol. 13, 1–10 (2006).Article 

    Google Scholar 
    38.Rivals, F., Mol, D., Lacombat, F., Lister, A. M. & Semprebon, G. M. Resource partitioning and niche separation between mammoths (Mammuthus rumanus and Mammuthus meridionalis) and gomphotheres (Anancus arvernensis) in the Early Pleistocene of Europe. Quat. Int. 379, 164–170 (2015).Article 

    Google Scholar 
    39.Sanders, W. J. & Haile-Selassie, Y. A new assemblage of mid-Pliocene proboscideans from the Woranso-Mille area, Afar region, Ethiopia: taxonomic, evolutionary, and paleoecological considerations. J. Mamm. Evol. 19, 105–128 (2012).Article 

    Google Scholar 
    40.van der Geer, A. A. E. et al. The effect of area and isolation on insular dwarf proboscideans. J. Biogeogr. 43, 1656–1666 (2016).Article 

    Google Scholar 
    41.Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Vrba, E. S. in African Biogeography, Climate Change, and Hominid Evolution (eds Bromage, T. G. & Shrenk, F.) 19–39 (Oxford Univ. Press, 1999).43.Stuart, A. J. Late Quaternary megafaunal extinctions on the continents: a short review. Geol. J. 50, 338–363 (2015).Article 

    Google Scholar 
    44.Jukar, A. M., Lyons, S. K., Wagner, P. J. & Uhen, M. D. Late Quaternary extinctions in the Indian subcontinent. Palaeogeogr. Palaeoclimatol. Palaeoecol. 562, 110137 (2021).Article 

    Google Scholar 
    45.Raup, D. M. Extinction: Bad Genes or Bad Luck? (Norton, 1991).46.Cantalapiedra, J. L. et al. Conserving evolutionary history does not result in greater diversity over geological time scales. Proc. Biol. Sci. 286, 20182896 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Hublin, J.-J. et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature 546, 289–292 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.O’Connell, J. F. et al. When did Homo sapiens first reach Southeast Asia and Sahul? Proc. Natl Acad. Sci. USA 115, 8482–8490 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    50.Ardelean, C. F. et al. Evidence of human occupation in Mexico around the Last Glacial Maximum. Nature 584, 87–92 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Paradis, E. Analysis of Phylogenetics and Evolution with R (Springer, 2012).52.Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    53.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    54.MacLatchy, L. M., Desilva, J., Sanders, W. J. & Wood, B. in Cenozoic Mammals of Africa (eds Werdelin, L. & Sanders, W. J.) 471–545 (Univ. California Press, 2010). More

  • in

    Mosquito species identification using convolutional neural networks with a multitiered ensemble model for novel species detection

    System overviewTo address the open-set novel species detection problem, our system leverages a two-step image recognition process. Given an image of a mosquito specimen, the first step uses CNNs trained for species classification to extract relevant features from the image. The second step is a novelty detection algorithm, which evaluates the features extracted by the CNNs in order to detect whether the mosquito is a member of one of the sixteen species known to the CNNs of the system. The second step consists of two stages of machine learning algorithms (tier II and tier III) that evaluate the features generated in step one to separate known species from unknown species. Tier II components evaluate the features directly and are trained using known and unknown species. Tier III evaluates the answers provided by the tier II components to determine the final answer, and is trained using known species, unknown species used for training tier II components, and still more unknown species not seen by previous components. If the mosquito is determined by tier III not to be a member of one of the known species, it is classified as an unknown species, novel to the CNNs. This detection algorithm is tested on truly novel mosquito species, never seen by the system in training, as well as the species used in training. If a mosquito is recognized by the system as belonging to one of the sixteen known species (i.e. not novel), the image proceeds to species classification with one of the CNNs used to extract features.Unknown detection accuracyIn distinguishing between unknown species and known species, the algorithm achieved an average accuracy of 89.50 ± 5.63% and 87.71 ± 2.57%, average sensitivity of 92.18 ± 6.34% and 94.09 ± 2.52%, and specificity of 80.79 ± 7.32% and 75.82 ± 4.65%, micro-averaged and macro-averaged respectively, evaluated over twenty-five-fold validation (Table 1). Here, micro-average refers to the metric calculated without regard to species, such that each image sample has an equal weight, considered an image sample level metric. Macro-average refers to the metric first calculated within a species, then averaged between all species within the relevant class (known or unknown). Macro-average can be considered a species level metric, or a species normalized metric. Macro-averages tend to be lower than the micro-averages when species with higher sample sizes have the highest metrics, whereas micro-averages are lower when species with lower sample sizes have the highest metrics. Cross validation by mixing up which species were known and unknown produced variable sample sizes in each iteration, because each species had a different number of samples in the generated image dataset. Further sample size variation occurred as a result of addressing class imbalance in the training set. The mean number of samples varied for each of the 25 iterations because of the mix-up in data partitioning for cross-validation (see Table 1 for generalized metrics; see Supplementary Table 1, Datafolds for detailed sampling data).Table 1 Micro- and macro-averaged metrics of the novelty detection algorithm on the test set using 50-fold validation.Full size tableDifferences within the unknown species dictated by algorithm structureThe fundamental aim of novelty detection is to determine if the CNN in question is familiar with the species, or class, shown in the image. CNNs are designed to identify visually distinguishable classes, or categories. In our open-set problem, the distinction between known and unknown species is arbitrary from a visual perspective; it is only a product of the available data. However, the known or unknown status of a specimen is a determinable product of the feature layer outputs, or features, produced by the CNN’s visual processing of the image. Thus, we take a tiered approach, where CNNs trained on a specific set of species extract a specimen’s features, and independent classifiers trained on a wider set of species analyze the features produced by the CNNs to assess whether the CNNs are familiar with the species in question. The novelty detection algorithm consists of three tiers, hereafter referred to as Tier I, II, and III, intended to determine if the specimen being analyzed is from a closed set of species known to the CNN:Tier I: two CNNs used to extract features from the images.Tier II: a set of classifiers, such as SVMs, random forests, and neural networks, which independently process the features from Tier I CNNs to distinguish a specimen as either known or unknown species.Tier III: soft voting of the Tier II classifications, with a clustering algorithm, in this case a Gaussian Mixture Model (GMM), which is used to make determinations in the case of unconfident predictions.The tiered architecture necessitated partitioning of groups of species between the tiers, and an overview of the structure is summarized in Fig. 2A. The training schema resulted in three populations of unknown species: set U1, consisting of species used to train Tier I, also made available for training subsequent Tiers II and III; set U2, consisting of additional species unknown to the CNNs used to train Tiers II and III; and set N, consisting of species used only for testing (see Fig. 2B). Species known to the CNNs are referred to as set K. It is critical to measure the difference between these species sets, as any of the species may be encountered in the wild. U1 achieved 97.85 ± 2.81% micro-averaged accuracy and 97.34 ± 3.52% macro-averaged accuracy; U2 achieved 97.05 ± 1.94% micro-averaged accuracy and 97.30 ± 1.41% macro-averaged accuracy; N achieved 80.83 ± 19.91% micro-averaged accuracy and 88.72 ± 5.42% macro-averaged accuracy. The K set achieved 80.79 ± 7.32% micro-averaged accuracy and 75.83 ± 5.42% macro-averaged accuracy (see Table 2). The test set sample sizes for each of the twenty five folds are as follows, (formatted [K-taxa,K-samples;U1-taxa,U1-samples;U2-taxa,U2-samples;N-taxa,N-samples]): [16,683;8,51;10,536;13,456], [16,673;8,51;9,537;13,485], [16,673;8,51;8,523;13,508], [16,673;8,46;6,159;11,869], [16,694;8,51;7,483;10,548], [15,409;9,62;11,2906;8,546], [15,456;9,62;9,2458;12,1024], [15,456;10,67;13,2359;9,1115], [15,456;9,62;8,3189;12,306], [15,456;10,67;10,2874;10,601], [16,543;10,56;12,1450;10,1052], [16,484;9,52;11,2141;10,312], [16,492;10,54;11,2185;12,263], [16,512;8,45;15,2292;10,189], [16,480;9,49;9,1652;13,790], [16,442;9,44;11,1253;11,665], [16,494;10,54;14,1727;10,228], [16,442;9,55;13,1803;10,96], [16,538;10,60;8,1509;9,502], [16,489;10,60;13,1764;9,184], [16,462;8,47;13,1415;11,452], [16,437;8,54;9,1548;11,320], [16,447;8,55;11,654;10,1193], [16,547;8,44;9,1437;11,531], [16,548;7,52;7,1464;11,499]. See Supplementary Table 1, Datafolds for more detailed sample information.Figure 2The novelty detection architecture was designed with three tiers to assess whether the CNNs were familiar with the species shown in each image. (A) Tier I consisted of two CNNs used as feature extractors. Tier II consisted of initial classifiers making an initial determination about whether the specimen is known or unknown by analyzing the features of one of the Tier I CNNs, and the logits in the case of the wide and deep neural network (WDNN). In this figure, SVM refers to a support vector machine, and RF refers to a random forest. Tier III makes the final classification, first with soft voting of the Tier II outputs, then sending high confidence predictions as the final output and low confidence predictions to a Gaussian Mixture Model (GMM) to serve as the arbiter for low confidence predictions. (B) Data partitioning for training each component of the architecture is summarized: Tier I is trained on the K set of species, known to the algorithm; Tier I open-set CNN is also trained on the U1 set of species, the first set of unknown species used in training; Tier II is trained on K set, U1 set, and the U2 set of species, the second set of unknown species used in training; Tier III is trained on the same species and data-split as Tier II. Data-split ratios were variable for each species over each iteration (Xs,m where s represents a species, m represents a fold, and X is a percentage of the data devoted to training) for Tiers II and III; Xs,m was adjusted to manage class imbalance within genus across known and unknown classes. Testing was performed on each of the K, U1, and U2 sets, as well as the N set, the final set of unknown species reserved for testing the algorithm, such that it is tested on previously unseen taxa, replicating the plausible scenario to be encountered in deployment of CNNs for species classification. Over the twenty-five folds, each known species was considered unknown for at least five folds and included as novel for at least one-fold.Full size imageTable 2 Accuracy metrics for the known, unknown, and novel unknown species sets over twenty-five-fold validation.Full size tableSubsequent species classificationFollowing the novelty detection algorithm, species identified as known are sent for species classification to the closed-set Xception model used in Tier I of the novelty detection algorithm. Figure 3A shows the species classification results independently over the five folds of Tier I, which achieved a micro-averaged accuracy 97.04 ± 0.87% and a macro F1-score of 96.64 ± 0.96%. Figure 3B shows the species classification cascaded with the novelty detection methods where all unknown species are grouped into a single unknown class alongside the known classes in an aggregated mean confusion matrix over the twenty-five folds of the full methods, yielding a micro-averaged accuracy of 89.07 ± 5.58%, and a macro F1-score of 79.74 ± 3.65%. The confusion matrix is normalized by species and shows the average classification accuracy and error distribution. The independent accuracy for classifying a single species ranged from 72.44 ± 13.83% (Culex salinarius) to 100 ± 0% (Aedes dorsalis, Psorophora cyanescens), and 15 of the 20 species maintained an average sensitivity above 95%. Test set sample size for each species were as follows (formatted as species, [fold1,fold2,fold3,fold4,fold5]): Ae. aegypti: [127,0,133,132,126]; Ae. albopictus: [103,90,0,99,102]; Ae. dorsalis: [43,41,42,0,41]; Ae. japonicus: [162,159,154,156,0]; Ae. sollicitans: [57,0,60,58,60]; Ae. taeniorhynchus: [0,25,27,25,24]; Ae. vexans: [50,48,0,46,49]; An. coustani: [29,21,18,0,22]; An. crucians s.l.: [56,58,61,61,0]; An. freeborni: [87,0,77,79,80]; An. funestus s.l.: [158, 174,0,173,175]; An. gambiae s.l.: [182,178,178,0,166]; An. punctipennis: [0,36,31,34,33]; An. quadrimaculatus: [0,28,28,28,30]; Cx. erraticus: [47,47,44,49,0]; Cx. pipiens s.l.: [212,0,218,219,205]; Cx. salinarius: [25,26,0,26,25]; Ps. columbiae: [66,59,67,0, 64]; Ps. cyanescens: [0,55,56,54,56]; Ps. ferox: [40,31,41,34,0].Figure 3Mean normalized confusion matrices for species classification shows the distribution of error within species. The species classification in these confusion matrices was performed by the Tier I CNN, the closed-set Xception model. The confusion matrix conveys the ground truth of the sample horizontally, labels on the left, and the prediction of the full methods vertically, labels on the bottom. Accurate classification is across the diagonal, where ground truth and prediction match, and all other cells on the matrix describe the error. Sixteen species were known for a given fold, and 51 species were considered unknown for a given fold, with each of the twenty known species considered unknown for one fold. (A) The species classification independent of novelty detection shows an average accuracy of 97.04 ± 0.87% and a macro F1-score of 96.64 ± 0.96%, calculated over the five folds of Tier I classifiers, trained and tested over an average of 7174.8 and 1544.6 samples. Of the error, 73.5% occurred with species of the same genus as the true species. (B) The species classification as a subsequent step after novelty detection yielded 89.07 ± 5.58% average accuracy, and a macro F1-score of 79.74 ± 3.65% trained and tested on an average of 7174.8 and 519.44 samples, evaluated over the twenty-five folds of the novelty detection methods. First, a sample was sent to the novelty detection algorithm. If the sample was predicted to be known to the species classifier, which was the closed-set Xception algorithm used in Tier I, then the sample was sent to the algorithm for classification.Full size imageMany of the species which were a part of the unknown datasets had enough data to perform preliminary classification experiments. Thirty-nine of the 67 species had more than 40 image samples. Species classification on these 39 species yielded an unweighted accuracy of 93.06 ± 0.50% and a macro F1-score of 85.07 ± 1.81% (see Fig. 4A). The average F1-score for any one species was plotted against the number of specimens representing the samples in the species, which elucidates the relationship between the training data available and the accuracy (see Fig. 4B). No species with more than 100 specimens produced an F1-score below 93%.Figure 4Species classification across 39 species shows the strength of CNNs for generalized mosquito classification, and elucidates a guideline for the number of specimens required for confident classification. Classification achieved unweighted accuracy of 93.06 ± 0.50% and a macro F1-score of 85.07 ± 1.81%, trained, validated, and tested over an average of 9080, 1945, and 1945 samples over five folds. (A) The majority of the error in this confusion matrix shows confusion between species of the same genera. Some of the confusion outside of genera is more intuitive from an entomologist perspective, such as the 10.2% of Deinocerites cancer samples classified as Culex spp. Other errors are less intuitive, such as the 28.61% of Culiseta incidens samples classified as Aedes atlanticus. (B) This plot of average F1-score of a species against the number of specimens which made up the samples available for training and testing shows the relationship between the available data for a given specimen and classification accuracy. When following the database development methods described in this work, a general guideline of 100 specimens’ worth of data can be extrapolated as a requirement for confident mosquito species classification.Full size imageTest set sample size for each species in the 39 species closed-set classification were as follows (formatted as species, [fold1,fold2,fold3,fold4, fold5]): Ae. aegypti: [131,127,127,124,133]; Ae. albopictus: [99,99,107,97,95]; Ae. atlanticus: [15,13,14,14,15]; Ae. canadensis: [17,21,21,21,20]; Ae. dorsalis: [42,41,43,40,43]; Ae. flavescens: [13,14,14,14,14]; Ae. infirmatus: [17,15,19,18,16]; Ae. japonicus: [155,153,151,160,150]; Ae. nigromaculis: [6,6,5,5,5]; Ae. sollicitans: [63,61,58,57,60]; Ae. taeniorhynchus: [30,25,27,25,25]; Ae. triseriatus s.l.: [14,16,17,14,13]; Ae. trivittatus: [28,24,25,24,23]; Ae. vexans: [46,58,57,51,50]; An. coustani: [25,32,27,33,27]; An. crucians s.l.: [64,57,60,59,62]; An. freeborni s.l.: [85,77,82,74,89]; An. funestus s.l.: [181,187,166,175,161]; An. gambiae s.l.: [191,182,178,185,194]; An. pseudopunctipennis: [10,8,12,9,9]; An. punctipennis: [32,28,38,32,32]; An. quadrimaculatus: [30,33,26,37,35]; Coquillettidia perturbans: [31,29,30,32,35]; Cx. coronator: [10,9,10,11,10]; Cx. erraticus: [48,51,49,53,50]; Cx. nigripalpus: [14,14,13,13,13]; Cx. pipiens s.l.: [205,203,216,208,216]; Cx. restuans: [12,13,12,14,12]; Cx. salinarius: [24,25,24,23,24]; Cus. incidens: [9,9,9,9,8]; Cus. inornata: [9,9,8,9,9]; Deinocerites cancer: [10,10,10,10,9]; De. sp. Cuba-1: [16,14,15,14,15]; Mansonia titillans: [15,16,15,14,13]; Ps. ciliata: [29,26,24,23,28]; Ps. columbiae: [62,59,63,60,61]; Ps. cyanescens: [55,54,57,55,55]; Ps. ferox: [32,48,31,36,34]; Ps. pygmaea: [24,25,25,24,25].Comparison to alternative methodsSome intuitive simplifications of our methods, along with some common direct methods for novel species detection, are compared to our full methods. All compared methods were found to be statistically different from the full methods using McNemar’s test. The compared methods tested, along with their macro F1-score, standard deviation, and p-value as compared to the full methods, were as follows: (1) soft voting of all Tier II component outputs, without a GMM arbiter (86.87 ± 3.11%, p  More

  • in

    Emerging satellite observations for diurnal cycling of ecosystem processes

    1.Hennessey, T. L., Freeden, A. L. & Field, C. B. Environmental effects on circadian rhythms in photosynthesis and stomatal opening. Planta 189, 369–376 (1993).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Steed, G., Ramirez, D. C., Hannah, M. A. & Webb, A. A. R. Chronoculture, harnessing the circadian clock to improve crop yield and sustainability. Science 372, eabc9141 (2021).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Zhao, T. B. & Dai, A. G. The magnitude and causes of global drought changes in the twenty-first century under a low–moderate emissions scenario. J. Clim. 28, 4490–4512 (2015).Article 

    Google Scholar 
    4.Perkins-Kirkpatrick, S. E. & Gibson, P. B. Changes in regional heatwave characteristics as a function of increasing global temperature. Sci. Rep. 7, 12256 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Bates, L. M. & Hall, A. E. Stomatal closure with soil-water depletion not associated with changes in bulk leaf water status. Oecologia 50, 62–65 (1981).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Roessler, P. G. & Monson, R. K. Midday depression in net photosynthesis and stomatal conductance in Yucca-Glauca—relative contributions of leaf temperature and leaf-to-air water-vapor concentration difference. Oecologia 67, 380–387 (1985).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Tenhunen J. D., Pearcy R. W. & Lange O. L. in Stomatal Function (eds Zeiger, E. et al.) Ch. 15 (Stanford Univ. Press, 1987).8.Tucci, M. L. S., Erismann, N. M., Machado, E. C. & Ribeiro, R. V. Diurnal and seasonal variation in photosynthesis of peach palms grown under subtropical conditions. Photosynthetica 48, 421–429 (2010).CAS 
    Article 

    Google Scholar 
    9.Kosugi, Y. & Matsuo, N. Seasonal fluctuations and temperature dependence of leaf gas exchange parameters of co-occurring evergreen and deciduous trees in a temperate broad-leaved forest. Tree Physiol. 26, 1173–1184 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Koch, G. W., Amthor, J. S. & Goulden, M. L. Diurnal patterns of leaf photosynthesis, conductance and water potential at the top of a lowland rain-forest canopy in Cameroon—measurements from the Radeau-Des-Cimes. Tree Physiol. 14, 347–360 (1994).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Olioso, A., Carlson, T. N. & Brisson, N. Simulation of diurnal transpiration and photosynthesis of a water stressed soybean crop. Agric. For. Meteorol. 81, 41–59 (1996).Article 

    Google Scholar 
    12.Cowan, I. R. & Farquhar, G. D. Stomatal function in relation to leaf metabolism and environment: stomatal function in the regulation of gas exchange. Symposia Soc. Exp. Biol. 31, 471–505 (1977).CAS 

    Google Scholar 
    13.Bollig, C. & Feller, U. Impacts of drought stress on water relations and carbon assimilation in grassland species at different altitudes. Agric. Ecosyst. Environ. 188, 212–220 (2014).Article 

    Google Scholar 
    14.Koyama, K. & Takemoto, S. Morning reduction of photosynthetic capacity before midday depression. Sci. Rep. 4, 4389 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Nelson, J. A., Carvalhais, N., Migliavacca, M., Reichstein, M. & Jung, M. Water-stress-induced breakdown of carbon–water relations: indicators from diurnal FLUXNET patterns. Biogeosciences 15, 2433–2447 (2018).CAS 
    Article 

    Google Scholar 
    16.Xu, H., Xiao, J. F. & Zhang, Z. Q. Heatwave effects on gross primary production of northern mid-latitude ecosystems. Environ. Res. Lett. 15, 074027 (2020).Article 

    Google Scholar 
    17.Baldocchi, D. et al. FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 82, 2415–2434 (2001).Article 

    Google Scholar 
    18.Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54, 547–560 (2004).Article 

    Google Scholar 
    19.Xiao, J. F. et al. A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data. Remote Sens. Environ. 114, 576–591 (2010).Article 

    Google Scholar 
    20.Anderson, M. C., Allen, R. G., Morse, A. & Kustas, W. P. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sens. Environ. 122, 50–65 (2012).Article 

    Google Scholar 
    21.Sun, Y. et al. OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science 358, eaam5747 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    22.Mu, Q., Heinsch, F. A., Zhao, M. & Running, S. W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 111, 519–536 (2007).Article 

    Google Scholar 
    23.Fisher, J. B. et al. ECOSTRESS: NASA’s next generation mission to measure evapotranspiration from the International Space Station. Water Resour. Res. 56, 1–20 (2020).Article 

    Google Scholar 
    24.Hook, S. J. et al. In-flight validation of ECOSTRESS, Landsat 7 and 8 thermal infrared spectral channels using the Lake Tahoe CA/NV and Salton Sea CA automated validation sites. IEEE Trans. Geosci. Remote Sens. 58, 1294–1302 (2019).Article 

    Google Scholar 
    25.Hulley, G., Shivers, S., Wetherley, E. & Cudd, R. New ECOSTRESS and MODIS land surface temperature data reveal fine-scale heat vulnerability in cities: a case study for Los Angeles County, California. Remote Sens. 11, 2136 (2019).Article 

    Google Scholar 
    26.Anderson, M. C. et al. Interoperability of ECOSTRESS and Landsat for mapping evapotranspiration time series at sub-field scales. Remote Sens. Environ. 252, 112189 (2021).Article 

    Google Scholar 
    27.Anderson, M. C. et al. An intercomparison of drought indicators based on thermal remote sensing and NLDAS-2 simulations with US drought monitor classifications. J. Hydrometeorol. 14, 1035–1056 (2013).Article 

    Google Scholar 
    28.Li, X., Xiao, J., Fisher, J. B. & Baldocchi, D. D. ECOSTRESS estimates gross primary production with fine spatial resolution for different times of day from the International Space Station. Remote Sens. Environ. 258, 112360 (2021).Article 

    Google Scholar 
    29.Hulley, G. C. et al. Validation and quality assessment of the ECOSTRESS level-2 land surface temperature and emissivity product. IEEE Trans. Geosci. Remote Sens. https://doi.org/10.1109/TGRS.2021.3079879 (2021).30.Aragon, B., Houborg, R., Tu, K., Fisher, J. B. & McCabe, M. CubeSats enable high spatiotemporal retrievals of crop-water use for precision agriculture. Remote Sens. 10, 1867 (2018).Article 

    Google Scholar 
    31.Fisher, J. B. et al. The future of evapotranspiration: global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 53, 2618–2626 (2017).Article 

    Google Scholar 
    32.Turner, N. C., Schulze, E.-D. & Gollan, T. The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content. Oecologia 65, 348–355 (1985).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Moore, G. W. & Heilman, J. L. Proposed principles governing how vegetation changes affect transpiration. Ecohydrology 4, 351–358 (2011).Article 

    Google Scholar 
    34.Hulley, G. C. & Hook, S. J. Generating consistent land surface temperature and emissivity products between ASTER and MODIS data for earth science research. IEEE Trans. Geosci. Remote Sens. 49, 1304–1315 (2011).Article 

    Google Scholar 
    35.Fisher, J. B., Whittaker, R. H. & Malhi, Y. ET Come Home: a critical evaluation of the use of evapotranspiration in geographical ecology. Glob. Ecol. Biogeogr. 20, 1–18 (2011).Article 

    Google Scholar 
    36.Talsma, C. J. et al. Partitioning of evapotranspiration in remote sensing-based models. Agric. For. Meteorol. 260, 131–143 (2018).Article 

    Google Scholar 
    37.Otkin, J. A. et al. Examining rapid onset drought development using the thermal infrared-based evaporative stress index. J. Hydrometeorol. 14, 1057–1074 (2013).Article 

    Google Scholar 
    38.Stavros, E. N. et al. ISS observations offer insights into plant function. Nat. Ecol. Evolution 1, 0194 (2017).Article 

    Google Scholar 
    39.Taylor, T. E. et al. OCO-3 early mission operations and initial (vEarly) XCO2 and SIF retrievals. Remote Sens. Environ. 251, 112032 (2020).Article 

    Google Scholar 
    40.Frankenberg, C. et al. The Orbiting Carbon Observatory (OCO-2): spectrometer performance evaluation using pre-launch direct sun measurements. Atmos. Meas. Tech. 8, 301–313 (2015).CAS 
    Article 

    Google Scholar 
    41.Bilger, W., Schreiber, U. & Bock, M. Determination of the quantum efficiency of photosystem-II and of nonphotochemical quenching of chlorophyll fluorescence in the field. Oecologia 102, 425–432 (1995).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Maguire, A. J. et al. On the functional relationship between fluorescence and photochemical yields in complex evergreen needleleaf canopies. Geophys. Res. Lett. 47, e2020GL087858 (2020).Article 

    Google Scholar 
    43.Marrs, J. K. et al. Solar-induced fluorescence does not track photosynthetic carbon assimilation following induced stomatal closure. Geophys. Res. Lett. 47, e2020GL087956 (2020).CAS 
    Article 

    Google Scholar 
    44.Li, X. et al. Solar-induced chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis for a wide variety of biomes: first global analysis based on OCO-2 and flux tower observations. Glob. Change Biol. 24, 3990–4008 (2018).Article 

    Google Scholar 
    45.Frankenberg, C. et al. New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett. 38, L17706 (2011).Article 
    CAS 

    Google Scholar 
    46.Li, X. & Xiao, J. F. Mapping photosynthesis solely from solar-induced chlorophyll fluorescence: a global, fine-resolution dataset of gross primary production derived from OCO-2. Remote Sens. 11, 2563 (2019).Article 

    Google Scholar 
    47.Liu, J. J. et al. Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Nino. Science 358, eaam5690 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    48.Parazoo, N. C. et al. Towards a harmonized long-term spaceborne record of far-red solar-induced fluorescence. J. Geophys. Res. 124, 2518–2539 (2019).Article 

    Google Scholar 
    49.He, L. Y. et al. Tracking seasonal and interannual variability in photosynthetic downregulation in response to water stress at a temperate deciduous forest. J. Geophys. Res. 125, e2018JG005002 (2020).
    Google Scholar 
    50.Lin, C. J. et al. Evaluation and mechanism exploration of the diurnal hysteresis of ecosystem fluxes. Agric. For. Meteorol. 278, 107642 (2019).Article 

    Google Scholar 
    51.Magney, T. S. et al. Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proc. Natl Acad. Sci. USA 116, 11640–11645 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Yang, X. et al. FluoSpec 2—an automated field spectroscopy system to monitor canopy solar-induced fluorescence. Sensors (Basel) 18, 2063 (2018).Article 
    CAS 

    Google Scholar 
    53.Miura, T., Nagai, S., Takeuchi, M., Ichii, K. & Yoshioka, H. Improved characterisation of vegetation and land surface seasonal dynamics in central Japan with Himawari-8 hypertemporal data. Sci. Rep. 9, 15692 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    54.Bessho, K. et al. An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteorological Soc. Jpn 94, 151–183 (2016).Article 

    Google Scholar 
    55.Schmit, T. J. et al. A closer look at the ABI on the GOES-R series. Bull. Am. Meteorol. Soc. 98, 681–698 (2017).Article 

    Google Scholar 
    56.Oh, S. M., Borde, R., Carranza, M. & Shin, I. C. Development and intercomparison study of an atmospheric motion vector retrieval algorithm for GEO-KOMPSAT-2A. Remote Sens. 11, 2054 (2019).Article 

    Google Scholar 
    57.Yang, J., Zhang, Z. Q., Wei, C. Y., Lu, F. & Guo, Q. Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull. Am. Meteorol. Soc. 98, 1637–1658 (2017).Article 

    Google Scholar 
    58.Ouaknine, J. et al. The FCI on Board MTG: optical design and performances. In International Conference on Space Optics—ICSO 2014 (eds Sodnik, Z. et al.) 1056323 (SPIE, 2014).59.Wang, W. et al. An introduction to the Geostationary-NASA Earth Exchange (GeoNEX) products: 1. Top-of-atmosphere reflectance and brightness temperature. Remote Sens. 12, 1267 (2020).Article 

    Google Scholar 
    60.Yamamoto, Y., Ishikawa, H., Oku, Y. & Hu, Z. Y. An algorithm for land surface temperature retrieval using three thermal infrared bands of Himawari-8. J. Meteorological Soc. Jpn. 96B, 59–76 (2018).Article 

    Google Scholar 
    61.Yu, Y. & Yu, P. in The GOES-R Series. A New Generation of Geostationary Environmental Satellites (eds Goodman, S. J. et al.) Ch. 12 (2020).62.Takenaka, H. et al. Estimation of solar radiation using a neural network based on radiative transfer. J. Geophys. Res. 116, D08215 (2011).
    Google Scholar 
    63.Hashimoto, H. et al. Hourly GPP estimation in Australia using Himawari-8 AHI products. In IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium 4513–4515 (IEEE, 2020).64.Yan, K. et al. Evaluation of MODIS LAI/FPAR product collection 6. Part 1: consistency and improvements. Remote Sens. 8, 359 (2016).CAS 
    Article 

    Google Scholar 
    65.Moore, B. et al. The potential of the Geostationary Carbon Cycle Observatory (GeoCarb) to provide multi-scale constraints on the carbon cycle in the Americas. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2018.00109 (2018).66.Zoogman, P. et al. Tropospheric emissions: monitoring of pollution (TEMPO). J. Quant. Spectrosc. Radiat. Transf. 186, 17–39 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Courrèges-Lacoste, G. B. et al. Knowing what we Breathe: Sentinel 4: a Geostationary Imaging UVN Spectrometer for Air Quality Monitoring. In International Conference on Space Optics—ICSO 2016 (eds Karafolas, N. et al.) 105621J (SPIE, 2017).68.Wekerle, T., Pessoa, J. B., da Costa, L. & Trabasso, L. G. Status and trends of smallsats and their launch vehicles—an up-to-date review. J. Aerosp. Technol. Manag. 9, 269–286 (2017).Article 

    Google Scholar 
    69.Ryswyk, M. V. Planet announces 50 cm SkySat imagery, tasking dashboard and up to 12× revisit. Planet (9 June 2020); https://www.planet.com/pulse/tasking-dashboard-50cm-12x-revisit-announcement/70.Blackwell, W. J. et al. An overview of the TROPICS NASA Earth Venture mission. Q. J. R. Meteorol. Soc. 144, 16–26 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Gao, F., Masek, J., Schwaller, M. & Hall, F. On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 44, 2207–2218 (2006).Article 

    Google Scholar 
    72.Franco, A. C. & Luttge, U. Midday depression in savanna trees: coordinated adjustments in photochemical efficiency, photorespiration, CO2 assimilation and water use efficiency. Oecologia 131, 356–365 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Keller, M., Schimel, D. S., Hargrove, W. W. & Hoffman, F. M. A continental strategy for the National Ecological Observatory Network. Front. Ecol. Environ. 6, 282–284 (2008).Article 

    Google Scholar  More

  • in

    Sexual competition and kin recognition co-shape the traits of neighboring dioecious Diospyros morrisiana seedlings

    1.Karban, R. Plant behaviour and communication. Ecol. Lett. 11, 727–739 (2008).PubMed 
    Article 

    Google Scholar 
    2.Chen, B. J. W., During, H. J. & Anten, N. P. R. Detect the neighbor: Identity recognition at the root level in plants. Plant Sci. 195, 157–167 (2012).PubMed 
    Article 
    CAS 

    Google Scholar 
    3.Inderjit, Seastedt, T. R. et al. Allelopathy and plant invasions: traditional, congeneric, and bio-geographical approaches. Biol. Invasions 10, 875–890 (2008).Article 

    Google Scholar 
    4.Yang, X., Li, L., Xu, Y. & Kong, C. Kin recognition in rice (Oryza sativa) lines. New Phytol 220, 567–578 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    5.Kasperbauer, M. J. & Hunt, P. G. Shoot/root assimilate allocation and nodulation of vigna unguiculata seedlings as influenced by shoot light environment. Plant Soil 161, 97–101 (1994).Article 

    Google Scholar 
    6.Yu, P., Hochholdinger, F. & Li, C. Plasticity of lateral root branching in maize. Front. Plant Sci. 10, 363 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Fang, S. et al. Genotypic recognition and spatial responses by rice roots. Proc. Natl Acad. Sci. USA 110, 2670–2675 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Biedrzycki, M. L., Jilany, T. A., Dudley, S. A. & Bais, H. P. Root exudates mediate kin recognition in plants. Commun. Integr. Biol. 3, 28–35 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Wilczek, A. M. et al. Effects of genetic perturbation on seasonal life history plasticity. Science 323, 930–934 (2009).PubMed 
    Article 
    CAS 

    Google Scholar 
    10.Bhatt, M. V., Khandelwal, A. & Dudley, S. A. Kin recognition, not competitive interactions, predicts root allocation in young Cakile edentula seedling pairs. N. Phytol. 189, 1135–1142 (2011).Article 

    Google Scholar 
    11.Mercer, C. A. & Eppley, S. M. Kin and sex recognition in a dioecious grass. Plant Ecol. 215, 845–852 (2014).Article 

    Google Scholar 
    12.Dong, T., Li, J., Liao, Y., Chen, B. J. W. & Xu, X. Root-mediated sex recognition in a dioecious tree. Sci. Rep. 7, 1–7 (2017).Article 
    CAS 

    Google Scholar 
    13.Renner. The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. Am. J. Bot. 101, 1588–1596 (2014).PubMed 
    Article 

    Google Scholar 
    14.Lovett Doust, J., O’Brien, G. & Lovett Doust, L. Effect of density on secondary sex characteristics and sex ratio in Silene alba (Caryophyllaceae). Am. J. Bot. 74, 40–46 (1987).Article 

    Google Scholar 
    15.Eppley, S. M. Females make tough neighbors: sex-specific competitive effects in seedlings of a dioecious grass. Oecologia 146, 549–554 (2006).PubMed 
    Article 

    Google Scholar 
    16.Graff, P., Rositano, F. & Aguiar, M. R. Changes in sex ratios of a dioecious grass with grazing intensity: the interplay between gender traits, neighbour interactions and spatial patterns. J. Ecol. 101, 1146–1157 (2013).Article 

    Google Scholar 
    17.Dudley, S. A. & File, A. L. Kin recognition in an annual plant. Biol. Lett. 3, 435–438 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Semchenko, M., Saar, S. & Lepik, A. Plant root exudates mediate neighbour recognition and trigger complex behavioural changes. N. Phytol. 204, 631–637 (2014).Article 

    Google Scholar 
    19.Li, J., Xu, X. L. & Liu, Y. R. Kin recognition in plants with distinct lifestyles: implications of biomass and nutrient niches. Plant Growth Regul. 84, 333–339 (2018).Article 
    CAS 

    Google Scholar 
    20.Lepik, A., Abakumova, M., Zobel, K. & Semchenko, M. Kin recognition is density-dependent and uncommon among temperate grassland plants. Funct. Ecol. 26, 1214–1220 (2012).Article 

    Google Scholar 
    21.Murphy, G. P. & Dudley, S. A. Kin recognition: Competition and cooperation in Impatiens (Balsaminaceae). Am. J. Bot. 96, 1990–1996 (2009).PubMed 
    Article 

    Google Scholar 
    22.Rogers, S. R. & Eppley, S. M. Testing the interaction between inter-sexual competition and phosphorus availability in a dioecious gras. Botany 710, 704–710 (2012).Article 
    CAS 

    Google Scholar 
    23.Bierzychudek, P. & Eckhart, V. Spatial segregation of the sexes of dioecious plants. Am. Nat. 132, 34–43 (1988).Article 

    Google Scholar 
    24.Mercer, C. A. Spatial segregation of the sexes in a salt marsh grass Distichlis spicata (Poaceae). Master Thesis, Portland State University, Portland, Oregon, USA. https://doi.org/10.15760/etd.173 (Portland State University, 2010).25.Hamilton, W. D. The genetical evolution of social behavior, I & II. J. Theor. Biol. 7, 1–52 (1964).PubMed 
    Article 
    CAS 

    Google Scholar 
    26.Haichar, Z. & Bernard, C. Root exudates mediated interactions belowground. Soil Biol. Biochem. 77, 69–80 (2014).Article 
    CAS 

    Google Scholar 
    27.Biedrzycki, M. L., Venkatachalam, L. & Bais, H. P. Transcriptome analysis of Arabidopsis thaliana plants in response to kin and stranger recognition. Plant Signal. Behav. 6, 1515–1524 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    28.Zhu, S. et al. Effects of root exudates on the growth and development of male and female Morus alba seedlings. Plant Physiol. J. 52, 134–140 (2016).
    Google Scholar 
    29.Mercer, C. A. & Eppley, S. M. Inter-sexual competition in a dioecious grass. Oecologia 164, 657–664 (2010).PubMed 
    Article 

    Google Scholar 
    30.Herrera, C. M. Plant size, spacing patterns, and host-plant selection in Osyris Quadripartita, a hemiparasitic dioecious shrub. J. Ecol. 76, 995–1006 (1988).Article 

    Google Scholar 
    31.Yangxia, Z., Fengyun, L. E. I., Shuang, Q. I. U. & Shanmei, Z. Effects of fatty acid ester compounds on growth and physiological characteristics of water melon seedlings. J. Hunan Agric. Univ. Sci. 46, 297–302 (2020).
    Google Scholar 
    32.Huimin, L. I. et al. The special bacterial metabolites and allelopathic potentials in Casuarina equisetifolia woodland of different stand ages. Chin. J. Appl. Environ. Biol. 22, 808–814 (2016).
    Google Scholar 
    33.Zhang, Jhong, Sun, Hlong, Chen, Syang, Zeng, L. I. & Wang, Ttao Anti-fungal activity, mechanism studies on α-Phellandrene and Nonanal against Penicillium cyclopium. Bot. Stud. 58, 1–9 (2017).Article 
    CAS 

    Google Scholar 
    34.Zhou, T. et al. Effects of essential oil decanal on growth and transcriptome of the postharvest fungal pathogen Penicillium expansum. Postharvest Biol. Technol. 145, 203–212 (2018).Article 
    CAS 

    Google Scholar 
    35.Varga, S. Effects of arbuscular mycorrhizas on reproductive traits in sexually dimorphic plants. J. Agric. Res. 8, 11–24 (2010).
    Google Scholar 
    36.Varga, S. Transgenerational effects of plant sex and arbuscular mycorrhizal symbiosis. N. Phytol. 199, 812–821 (2013).Article 

    Google Scholar 
    37.Varga, S., Vega-Frutis, R. & Kytöviita, M.-M. Competitive interactions are mediated in a sex-specific manner by arbuscular mycorrhiza in Antennaria dioica. Plant Biol. 19, 217–226 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    38.Varga, S. Effects of arbuscular mycorrhizal fungi and maternal plant sex on seed germination and early plant establishment. Am. J. Bot. 102, 358–366 (2015).PubMed 
    Article 

    Google Scholar 
    39.Bawa, K. S. Evolution of dioecy in flowering plants. Annu. Rev. Ecol. Syst. 11, 15–39 (1980).Article 

    Google Scholar 
    40.Zheng, D.-S., Liu, X. & Li, Y. Cultivated plants originated in China. J. Plant Genet. Resour. 13, 1–10 (2012).
    Google Scholar 
    41.Fang, S., Yan, X. & Liao, H. 3D reconstruction and dynamic modeling of root architecture in situ and its application to crop phosphorus research. Plant J. 60, 1096–1108 (2009).PubMed 
    Article 
    CAS 

    Google Scholar 
    42.Akagi, T. et al. Development of molecular markers associated with sexuality in Diospyros lotus L. and their application in D. kaki Thunb. J. Jpn. Soc. Hortic. Sci. 83, 214–221 (2014).Article 
    CAS 

    Google Scholar 
    43.Akagi, T., Henry, I. M., Tao, R. & Comai, L. A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science 346, 646–650 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    44.Badri, D. V. et al. Application of natural blends of phytochemicals derived from the root exudates of arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J. Biol. Chem. 288, 4502–4512 (2013).45.Fiehn, O. et al. Quality control for plant metabolomics: reporting MSI-compliant studies. Plant J. 53, 691–704 (2008).Article 
    CAS 

    Google Scholar 
    46.Lenth, R. V. Least-squares means: the {R} package {lsmeans}. J. Stat. Softw. 69, 1–33 (2016).Article 

    Google Scholar 
    47.Paine, C. E. T. et al. How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists. Methods Ecol. Evol. 3, 245–256 (2012).Article 

    Google Scholar 
    48.R Core Team. R: A Language and Environment for Statistical Computing (2017). More

  • in

    Tropical deforestation induces thresholds of reproductive viability and habitat suitability in Earth’s largest eagles

    1.McQueen, A. et al. Evolutionary drivers of seasonal plumage colours: colour change by moult correlates with sexual selection, predation risk and seasonality across passerines. Ecol. Lett. 22, 1838–1849 (2019).PubMed 

    Google Scholar 
    2.Menezes, J. F., Kotler, B. P. & Dixon, A. K. Risk pump in Gerbillus pyramidum: quality of poor habitats increases with more conspecifics. Ethol. Ecol. Evol. 31, 140–154 (2019).
    Google Scholar 
    3.Stephens, D., Brown, J. & Ydenberg, R. Foraging: Behavior and Ecology. (University of Chicago Press, 2007).4.Schweiger, A., Fünfstück, H.-J. & Beierkuhnlein, C. Availability of optimal-sized prey affects global distribution patterns of the golden eagle Aquila chrysaetos. J. Avian Biol. 46, 81–88 (2015).
    Google Scholar 
    5.Carbone, C. & Gittleman, J. L. A common rule for the scaling of carnivore density. Science (80-.) 295, 2273–2276 (2002).ADS 
    CAS 

    Google Scholar 
    6.Athreya, V., Odden, M. & Linnell, J. A cat among the dogs: leopard Panthera pardus diet in a human-dominated landscape in western Maharashtra, India. Oryx https://doi.org/10.1017/s0030605314000106 (2014).Article 

    Google Scholar 
    7.Van der Meer, T., McPherson, S. & Downs, C. Temporal changes in prey composition and biomass delivery to African Crowned Eagle nestlings in urban areas of KwaZulu-Natal, South Africa. Ostrich 83, 241–250 (2018).
    Google Scholar 
    8.Miranda, E. B. P., Ribeiro-Jr., R. P. & Strüssmann, C. The ecology of human-anaconda conflict: a study using internet videos. Trop. Conserv. Sci. 9, 26–60 (2016).
    Google Scholar 
    9.Paviolo, A. et al. A biodiversity hotspot losing its top predator: the challenge of jaguar conservation in the Atlantic Forest of South America. Sci. Rep. 6, 37147 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Miranda, E. B. P., Menezes, J. F. S., Farias, C. C., Munn, C. & Peres, C. A. Species distribution modeling reveals strongholds and potential reintroduction areas for the world’s largest eagle. PLoS ONE 14, e0216323 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    11.Marshall, B. M. et al. Hits close to home: repeated persecution of King Cobras (Ophiophagus hannah) in Northeastern Thailand. Trop. Conserv. Sci. 11, 1–14 (2018).
    Google Scholar 
    12.Carbone, C., Pettorelli, N. & Stephens, P. A. The bigger they come, the harder they fall: body size and prey abundance influence predator-prey ratios. Biol. Lett. 7, 312–315 (2011).PubMed 

    Google Scholar 
    13.Garcia-Heras, M. S., Mougeot, F., Simmons, R. E. & Arroyo, B. Regional and temporal variation in diet and provisioning rates suggest weather limits prey availability for an endangered raptor. Ibis (Lond. 1859) 159, 567–579 (2017).
    Google Scholar 
    14.Miranda, E. B., Jácomo, A. T. D. A., Tôrres, N. M., Alves, G. B. & Silveira, L. What are jaguars eating in a half-empty forest? Insights from diet in an overhunted Caatinga reserve. J. Mammal. 99, 724–731 (2018).
    Google Scholar 
    15.Ellis, D. H. & Gombobaatar, S. Ecology of the Golden Eagle in Mongolia, part 2: prey. J. Raptor Res. 54, 30–37 (2020).
    Google Scholar 
    16.Zuluaga, S. & Echeverry-Galvis, M. Á. Domestic fowl in the diet of the Black-and-chestnut Eagle (Spizaetus isidori) in the Eastern Andes of Colombia: a potential conflict with humans. Ornitol. Neotrop. 27, 113–120 (2016).
    Google Scholar 
    17.McPherson, S. C. & Brown, M. Downs CT (2015) Diet of the crowned eagle (Stephanoaetus coronatus) in an urban landscape: potential for human-wildlife conflict?. Urban Ecosyst. https://doi.org/10.1007/s11252-015-0500-6 (2015).Article 

    Google Scholar 
    18.Michalski, F., Boulhosa, R. L. P., Faria, A. & Peres, C. A. Human-wildlife conflicts in a fragmented Amazonian forest landscape: determinants of large felid depredation on livestock. Anim. Conserv. 9, 179–188 (2006).
    Google Scholar 
    19.Lamichhane, B. R. et al. Rapid recovery of tigers Panthera tigris in Parsa Wildlife Reserve, Nepal. Oryx 52, 16–24 (2018).
    Google Scholar 
    20.Tortato, F. R., Izzo, T. J., Hoogesteijn, R. & Peres, C. A. The numbers of the beast: valuation of jaguar (Panthera onca) tourism and cattle depredation in the Brazilian Pantanal. Glob. Ecol. Conserv. 11, 106–114 (2017).
    Google Scholar 
    21.Macdonald, C. et al. Conservation potential of apex predator tourism. Biol. Conserv. 215, 132–141 (2017).
    Google Scholar 
    22.Karanth, K. U., Kumar, N. S., Nichols, J. D., Link, W. A. & Hines, J. E. Tigers and their prey: predicting carnivore densities from prey abundance. Proc. Natl. Acad. Sci. USA 101, 4854–4858 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Nelson, A. A. et al. Native prey distribution and migration mediates wolf (Canis lupus) predation on domestic livestock in the Greater Yellowstone Ecosystem 94(4). Can. J. Zool. 94, 291–299 (2016).
    Google Scholar 
    24.Terborgh, J. & Estes, J. Trophic Cascades: Predators, Prey, and the Changing Dynamics of Nature (Island Press, 2013).25.Miranda, E. B. P. Prey composition of harpy eagles (Harpia harpyja) in Raleighvallen, Suriname. Trop. Conserv. Sci. 11, 1–8 (2018).
    Google Scholar 
    26.Miranda, E. B. P. Conservation implications of harpy eagle Harpia harpyja predation patterns. Endanger. Species Res. 29, 69–79 (2015).
    Google Scholar 
    27.Vargas González, J. D. J. et al. Breeding habitat suitability index for the harpy eagle in Panama: conservation implications. J. Raptor Res. Press, (2020).28.Touchton, J., Hsu, Y. & Palleroni, A. Foraging ecology of reintroduced captive-bred subadult harpy eagles (Harpia harpyja) on Barro Colorado Island, Panama. Ornitol. Neotrop. 13, 365–379 (2002).
    Google Scholar 
    29.Miranda, E. B. P., Peres, C. A., Marini, M. Â. & Downs, C. T. Harpy Eagle (Harpia harpyja) nest tree selection: logging in Amazonian forests threatens Earth’s largest eagle. Biol. Conserv. 250, 108754 (2020).
    Google Scholar 
    30.Muñiz-López, R. et al. Movements of Harpy Eagles Harpia harpyja during their first two years after hatching Movements of Harpy Eagles Harpia harpyja during their first two years after hatching. Bird Study 3657, 509–514 (2016).
    Google Scholar 
    31.Muñiz-López, R. Harpy Eagle (Harpia harpyja) mortality in Ecuador. Stud. Neotrop. Fauna Environ. 30, 1–5 (2017).
    Google Scholar 
    32.Urios, V., Muñiz-López, R. & Vidal-Mateo, J. Juvenile Dispersal of Harpy Eagles (Harpia harpyja) in Ecuador. J. Raptor Res. 51, 439–445 (2017).
    Google Scholar 
    33.Monsalvo, J. A. B., Heming, N. M. & Marini, M. Â. Breeding biology of neotropical accipitriformes: current knowledge and research priorities. Rev. Bras. Ornitol. 26, 151–186 (2018).
    Google Scholar 
    34.Hall, C. Harpy Eagle Studbook Harpia harpyja North American Regional. (2011).35.Alvarez-Cordero, E. Biology and conservation of the harpy eagle in Venezuela and Panama. DSc Thesis. (University of Florida, Florida, USA, 1996).36.Rettig, N. Breeding behavior of the harpy eagle (Harpia harpyja). Auk 95, 629–643 (1978).
    Google Scholar 
    37.Giudice, R., Piana, R. & Williams, M. Tree architecture as a determinant factor in nest-tree selection by Harpy Eagles. In Neotropical Raptors (eds. Bildstein, K. L., Barber, D. R. & Zimmerman, A.) 14–22 (Hawk Mountain Sanctuary, 2007).38.Miranda, E. B. P. de, Peres, C. A. & Downs, C. T. Perceptions of livestock predation (or the lack of it) drive the persecution of Earth’s largest eagle. Anim. Conserv. Press (2020).39.Giraldo-Amaya, M. A. T. E. O., Aguiar-Silva, F. H., Aparício, K. M. & Zuluaga, S. Human persecution on the harpy eagle: a widespread threat?. J. Raptor Res. 55, 1–6 (2020).
    Google Scholar 
    40.Terborgh, J. et al. Ecological meltdown in predator-free forest fragments. Science (80-). 294, 1923–1926 (2001).ADS 
    CAS 

    Google Scholar 
    41.Aguiar-Silva, H. Uso e seleção de recursos por harpia em múltiplas escalas espaciais: persistência e vulnerabilidade (INPA, 2016).42.Aguiar-Silva, F., Sanaiotti, T. & Luz, B. Food habits of the Harpy Eagle, a top predator from the Amazonian rainforest canopy. J. Raptor Res. 48, 24–45 (2014).
    Google Scholar 
    43.Silva, D. A. Comunidade de mamíferos de médio e grande porte em fragmentos florestais da amazônia meridional (Unemat – Nova Xavantina, 2016).44.Miranda, E. B. P., Campbell-Thompson, E., Muela, A. & Vargas, F. H. Sex and breeding status affect prey composition of Harpy Eagles Harpia harpyja. J. Ornithol. 159, 141–150 (2017).
    Google Scholar 
    45.Terborgh, J. Five New World Primates: A Study in Comparative Ecology (Princeton University Press, 2014).46.Oliveira, A. T. M. et al. Primate and ungulate responses to teak agroforestry in a southern Amazonian landscape. Mamm. Biol. 96, 45–52 (2019).
    Google Scholar 
    47.Michalski, F. & Peres, C. A. Gamebird responses to anthropogenic forest fragmentation and degradation in a southern Amazonian landscape. PeerJ 5, e3442 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    48.Barbosa, H. Estrutura de comunidades de mamíferos de médio e grande porte em fragmentos florestais da Amazônia Meridional (Unemat – Cáceres, 2012).49.Michalski, F. & Peres, C. A. Anthropogenic determinants of primate and carnivore local extinctions in a fragmented forest landscape of southern Amazonia. Biol. Conserv. 124, 383–396 (2005).
    Google Scholar 
    50.Trinca, C. T. & Ferrari, S. F. Caça em assentamento rural na amazônia matogrossense. Diálogos em ambiente e sociedade no Brasil (2006).51.Schneider, M. & Peres, C. A. Environmental costs of government-sponsored agrarian settlements in Brazilian Amazonia. PLoS ONE 10, e0134016 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    52.Cavalcante, T. et al. Niche overlap between two sympatric frugivorous Neotropical primates: improving ecological niche models using closely-related taxa. Biodivers. Conserv. 29, 2749–2763 (2020).
    Google Scholar 
    53.Peres, C. A. Synergistic effects of subsistence hunting and habitat fragmentation on Amazonian forest vertebrates. Conserv. Biol. 15, 1490–1505 (2001).
    Google Scholar 
    54.Bowler, M. et al. Harpy eagles (Harpia harpyja) nesting at Refugio Amazonas, Tambopata, Peru feed on abundant disturbance-tolerant species. Food Webs 24, e00154 (2020).
    Google Scholar 
    55.Cavalcante, T., Tuyama, C. A. & Mourthe, I. Insights into the development of a juvenile harpy eagle’s hunting skills. Acta Amaz 49, 114–117 (2019).
    Google Scholar 
    56.Campbell-Thompson, E., Vargas, F. H., Watson, R. T., Muela, A. & Cáceres, N. C. Effect of sex and age at release on the independence of hacked harpy eagles. J. Raptor Res. 46, 158–167 (2012).
    Google Scholar 
    57.Watson, R. T., McClure, C. J. W., Vargas, F. H. & Jenny, J. P. Trial restoration of the harpy eagle, a large, long-lived, tropical forest raptor panama and belize. J. Raptor Res. 50, 3–22 (2016).
    Google Scholar 
    58.Touchton, J. The Harpy Eagle. In The eagle watchers: Observing and conserving raptors around the world (eds. Tingay, R. & Katzner, T.) 264 (Cornell University Press, 2010).59.Crisostomo, A. C., Alencar, A., Mesquita, I., Silva, I. & Dourado, M. Terras Indígenas Na Amazônia Brasileira: reservas de carbono e barreiras ao desmatamento (2015).60.Villas Boas, O. & Villas Boas, C. A marcha para o oeste: a epopéia da expedição Roncador-Xingu (Globo, 1994).61.Tufiño, P. Cunsi Pindo: The Mistress of the Monkeys (Simbioe, 2007).62.Reina, R. E. & Kensinger, K. M. The Gift of Birds: Featherworking of Native South American Peoples. (University Museum of Archaeology & Anthropology, 1991).63.Anonymous. Lei de Proteção à Fauna, Lei 5.197, de 03 de janeiro de 1967. (1967).64.Campos-Silva, J. V. & Peres, C. A. Community-based management induces rapid recovery of a high-value tropical freshwater fishery. Sci. Rep. 6, 34745 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Antunes, A. P. et al. Subsistence hunting rights in the Brazilian Amazon. Land Use Policy 84, 1–11 (2019).
    Google Scholar 
    66.Aleixo, A. & Galetti, M. The conservation of the avifauna in a lowland Atlantic forest in south-east Brazil. Bird Conserv. Int. 7, 235–261 (1997).
    Google Scholar 
    67.Lees, A. C. & Peres, C. A. Conservation value of remnant riparian forest corridors of varying quality for Amazonian birds and mammals. Conserv. Biol. 22, 439–449 (2008).PubMed 

    Google Scholar 
    68.Zimbres, B., Machado, R. B. & Peres, C. A. Anthropogenic drivers of headwater and riparian forest loss and degradation in a highly fragmented southern Amazonian landscape. Land Use Policy 72, 354–363 (2018).
    Google Scholar 
    69.Michalski, F., Metzger, J. P. & Peres, C. A. Rural property size drives patterns of upland and riparian forest retention in a tropical deforestation frontier. Glob. Environ. Change 20, 705–712 (2010).
    Google Scholar 
    70.Mori, S. A. & Prance, G. T. Taxonomy, ecology, and economic botany of the Brazil nut (Bertholletia excelsa Humb. & Bonpl.: Lecythidaceae). Adv. Econ. Bot. 8, 130–150 (1990).
    Google Scholar 
    71.Buckley, R. Conservation Tourism (CAB International, 2010).72.Ribeiro, S. M. C. et al. Can multifunctional livelihoods including recreational ecosystem services (RES) and non timber forest products (NTFP) maintain biodiverse forests in the Brazilian Amazon?. Ecosyst. Serv. 31, 517–526 (2018).
    Google Scholar 
    73.Strand, J. et al. Spatially explicit valuation of the Brazilian Amazon Forest’s Ecosystem Services. Nat. Sustain. 1, 657 (2018).
    Google Scholar 
    74.Kirkby, C. A. et al. Closing the ecotourism-conservation loop in the Peruvian Amazon. Environ. Conserv. 38, 6–17 (2011).
    Google Scholar 
    75.Kirkby, C. A. et al. The market triumph of ecotourism: an economic investigation of the private and social benefits of competing land uses in the Peruvian Amazon. PLoS ONE 5, e13015 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Vianna, G. M. et al. Shark-diving tourism as a financing mechanism for shark conservation strategies in Malaysia. Mar. Policy 94, 220–226 (2018).
    Google Scholar 
    77.Fearnside, P. M. Deforestation in Brazilian Amazonia: history, rates, and consequences. Conserv. Biol. 19, 680–688 (2005).
    Google Scholar 
    78.Junior, C. S. & Lima, M. Soy Moratorium in Mato Grosso: deforestation undermines the agreement. Land Use Policy 71, 540–542 (2018).
    Google Scholar 
    79.Lima, M. et al. The paradoxical situation of the white-lipped peccary (Tayassu pecari) in the state of Mato Grosso, Brazil. Perspect. Ecol. Conserv. 17, 36–39 (2019).
    Google Scholar 
    80.Eri, M. et al. Capitalizing on opportunities provided by pasture sudden death to enhance livestock sustainable management in Brazilian Amazonia. Environ. Dev. 4, 100499 (2020).
    Google Scholar 
    81.Anonymous. Novo Código Florestal, Lei 12.651 de 25 de maio de 2012, Dispõe sobre a proteção da vegetação nativa (Subchefia de assuntos jurídicos, 2012).82.Zimbres, B., Peres, C. A. & Machado, R. B. Terrestrial mammal responses to habitat structure and quality of remnant riparian forests in an Amazonian cattle-ranching landscape. Biol. Conserv. 206, 283–292 (2017).
    Google Scholar 
    83.Koeppen, W. Climatologia: con un estudio de los climas de la tierra (1948).84.Radam-Brasil. Projeto Radam-Brasil: levantamento de recursos naturais (1983).85.Ayres, J. M. Observações sobre a ecologia e o comportamento dos cuxiús (Chiropotes albinasus e Chiropotes satanas, Cebidae: Primates) (1981).86.Miranda, E. B. P. de et al. Harpy Eagle nest activity patterns: Potential ecotourism and conservation opportunities in the Amazon Forest. Bird Conserv. Int. (in press) (2021).87.Rosenfield, R. N., Grier, J. W. & Fyfe, R. W. reducing management and research disturbance. In Raptor Research and Management Techniques (ed. Bird, D. M.) 351–364 (Hancock House Publishers, 2007).88.Pagel, J. E. & Thorstrom, R. K. Accessing nests. In Raptor Research and Management Techniques (ed. Bird, D. M.) 171–180 (Hancock House Publishers, 2007).89.Ellis, D. H. & Schimitt, N. J. Behavior of the Golden Eagle: An Illustrated Ethogram. (Hancock House Publishers, 2017).90.Ferguson-Lees, J. & Christie, D. Raptors of the World (Houghton Mifflin Harcourt, 2001).91.Brown, D. A test of randomness of nest spacing. Wildfowl 26, 102–103 (1975).
    Google Scholar 
    92.Emmons, L. & Feer, F. Neotropical Rainforest Mammals: A Field Guide (University of Chicago Press, 1997).93.Sick, H. Ornitologia brasileira, uma introdução (Universidade de Brasília, 1984).94.Goffart, M. Function and Form in the Sloth (Pergamon Press, 1971).95.Dunning, J. Handbook of Avian Body Masses (CRC, 1993).
    Google Scholar 
    96.Gotelli, N. & Aaron, M. A Primer of Ecological Statistics (Sinauer Associates, 2005).97.Krebs, C. Ecological Methodology (Benjamin/Cummings, 1999).98.Ashe, E., Noren, D. P. & Williams, R. Animal behaviour and marine protected areas: incorporating behavioural data into the selection of marine protected areas for an endangered killer whale population. Anim. Conserv. 13, 196–203 (2010).
    Google Scholar 
    99.Miranda, E. B. P., Peres, C. A. & Downs, C. T. Changes in soil fertility mosaics in the Amazon Forest induced by an apex predator. Press (2020).100.R Core. R: A Language and Environment for Statistical Computing. (2020). More

  • in

    Quantifying finer-scale behaviours using self-organising maps (SOMs) to link accelerometery signatures with behavioural patterns in free-roaming terrestrial animals

    Data collectionData were collected in the Sunshine Coast region in Queensland, Australia (− 26.65° S, 153.07° E), from February to April 2019. All methods were carried out in accordance with relevant guidelines and regulations. All experimental protocols and methods were approved and carried out in compliance with the ARRIVE guidelines under the approval of the University of the Sunshine Coast (USC) Animal Ethics permit (ANA/16/109T); Human Ethics permit (A181114) and in conjunction with the Sunshine Coast Council (SCC) Local Law permit (OM18/19).
    Animals used in the trialsWe recruited 10 domestic cats through an approved media release (males n = 6; females n = 4; weight 2.8–8.4 kg; age 1.5–12 years; body length 38–53 cm; foreleg length 16–19 cm). As per the Sunshine Coast Council local law requirements, all cats had to be neutered, registered and microchipped to participate in the study.
    EquipmentWe fitted each cat with a retail harness, to which we attached a tri-axial accelerometer (AX3; Axivity, Newcastle University, UK; 23 × 32.5 × 8.9 mm; 11 g) using cable ties (Fig. 1a). The accelerometer was initialised using the Open Movement Graphical User Interaction application (OMGUI; V1.0.0.37). Because a trade-off exists between data resolution and battery life, we logged data at 50 Hz and with a dynamic range of ± 8 g, with a 13-bit resolution, similar to a previous study23. When combined with the in-built memory storage capacity of 512 MB, and battery limitations, this configuration resulted in a maximum of 8–14 days of data collection. The quartz Real Time Clock and calendar provided a timestamp with a frequency of 32.768 kHz and a precision of ± 50 ppm, with manufacturer specifications indicating a drift of 0.18 s per hour. To overcome this drift over the eight days, we calibrated devices by video recording the signals of five claps/taps on the device, at the start and end of each individual data collection period, and also at random times during the day.Figure 1(a) The anatomical position of the accelerometer (AX3) on the sternum of the cat. (b) The activity of swatting stimulated by the use of a feather. (c) The axis orientation of the accelerometer planes, which are represented in the accelerometer trace data in the MATLAB interface. Fore-aft (surge), lateral (sway) and dorso-ventral (heave) movement is reflected in the X, Y and Z signals.Full size imageWe positioned the accelerometer on the scapular brace-strap of the harness, inverted such that the accelerometer was on the sternum of the cat (Fig. 1a–c). Field trials over four months on four cats in the study determined that this position, in comparison with mounting on the dorsal cranial median plane, did not interfere with the animals’ balance; it also removed all of the abnormal movement behaviours and unnecessary discomfort to the cat2. The positioning of the logging device on the frontal anterior, median plane, resulted in the primary axis for fore-aft (surge), lateral (sway) and dorso-ventral (heave) movement to be reflected in the X, Y and Z signals, respectively (Fig. 1c).The accelerometer harness was used in conjunction with the CatBib for the relevant treatment periods. The total combined mass of the harness, accelerometer and Catbib was to 34.1 g, with a minimum cat mass of 2.8 kg, suggesting the equipment did not weigh above 1.2% of total body weight in any cat studied. The CatBib is a prey protector device, manufactured from a lightweight, washable neoprene material, that is attached to a cat’s safety collar (Fig. 1b). The dimensions of the bib are 17.5 mm × 17.5 mm × 6.5 mm, with a total mass of 23.1 g and it is purple in colour. All cats adjusted to the harness and CatBib within the first hour of deployment and no subsequent adjustments were required. All cats had unrestricted access to roam freely outside during the eight days of field trials.To capture training data, each cat was filmed with a GoPro + 3 Hero device (H.264—1920 × 1080; f/2.8; 60 fps), undertaking natural or stimulated active behaviours through play (Fig. 1b). These activities or behaviours were manually documented to track the activity, date and the timestamps. We conducted two treatments over the eight days: in the first, cats were fitted with CatBib, whereas in the other, bibs were not worn. Each treatment was conducted for four consecutive days, and the sequence of treatments for each cat was randomised. The accelerometer device on the harness was left on the cats for the entire field trial and recorded continuously for the eight days (~ 192 h per cat; total = 2304 h).Data analysisEach accelerometer trace file was exported as a raw binary file through OMIGUI and imported into a custom-built MATLAB GUI. To build our training dataset, the video file timestamp information, determined using Mediainfo (version 18.08, 2018), was used to define the start time for a subset of the accelerometer trace, and the video length to define the end point (Supp. Fig. 1). Offsets between the accelerometer trace and video files were determined using the closest calibrated tap signal trace for each day. We were able to watch each video file in synchrony with the accelerometer trace, and manually annotate each movement/activity from the video files to the accelerometer subset (Clemente et al.)24 (Supp. 1.1. Matlab interface instructions; Supp. Fig. 1).We grouped activities according to behaviour into three classes: Sedentary, Eating and Locomotive and Hunting. We further subdivided each group into behaviours. Sedentary included lying, sitting, grooming and watching; Eating and Locomotive included—eating/drinking, walking, trotting; and for Hunting—galloping, jumping, pouncing, swatting, biting/holding (Supp. Table 1).The accelerometer trace was then further divided into rolling epochs of 50 samples in length, using 1 s duration at 50 Hz to ensure intensive acceleratory bursts of short duration such as jumping and pouncing are captured. The behaviour with the maximum frequency within each epoch was assigned as that epoch’s label. Raw accelerometer data in each epoch was assigned as that epoch’s label. Raw accelerometer data in each epoch was summarized using 26 of the most effective variables for procedure accuracy identified by Tatler et al.25. We included: axial acceleration (X, Y, Z),mean acceleration (X, Y, Z); minimum acceleration.(X, Y, Z); maximum acceleration (X, Y, Z); standard deviation of acceleration (X, Y, Z); Signal Magnitude Area, minimum Overall Dynamic Body Acceleration (ODBA); maximum ODBA, minimum Vectorial Dynamic Body Acceleration VDBA; maximum VDBA, sum ODBA; sum VDBA; correlation (XY, YZ, XZ); skewness (X, Y, Z); and kurtosis (X, Y, Z)25 (See Supp. Table 2 for a detailed description of each variable). Finally, we coded the two treatments: BibON and BibOFF and included this information in the training data set.Classification modellingTo determine whether we could predict cat hunting behaviours, we analysed the training data sets using a Kohonen super Self Organising Map (SOM) in the R package ‘Kohonen’ version 2.0.1926,27.Machine learning procedures such as random forest and support vector machines each provide computationally powerful methods of data classification, however each method is not equal in how it visualises its output. SOMS have been used in behavioural studies10,13,14,15 for their ability to efficiently create easily interpreted maps and identify patterns of behaviour. Self-organizing maps differ from other artificial neural networks as they apply competitive learning as opposed to error-correction learning. In this study, a self-organising map algorithm was chosen for its efficiency in visualising multi-dimensional and complex data onto an easily interpreted two dimensional map output. SOMs also have the ability to visualise which variables are most influential with the use of component planes (Fig. 3b–e) and unlike other procedures mentioned, SOMs use cluster analysis which in this study aids in identifying similar behaviours and visualising them closer together (in clusters) on the map output.To prepare data for the SOM function a random sample of the classifiers for the trained data were extracted, along with their associated behaviour, and combined into a list with 2 elements (measurements and activity). This list was then input into the function supersom.R function, with the grid argument defined using the somgrid.R function [e.g. supersom(TrainingData, grid = somgrid(7, 7, “hexagonal”))]. The 7 × 7 grid function was chosen based on a sensitivity analysis exploring all combinations of grids between 4 to 9 units in length (n = 36, Supp. Fig. 2). The 7 × 7 grid represented the grid which produced the highest accuracy and map symmetry26,28,29. We further tested the effect of the number of times the complete data set is presented to the network by varying the rlen argument in the supersom.R function. We found no obvious increase in overall accuracy with increased iterations, and therefore used the default length of 100 times (Supp. Figure 3). Each supersom procedure created was then tested using the predict.R function, with the newdata argument directed to a testing data set, which was a similar 2 element list containing all samples not included in the training data set. The result of this test was then assembled into a confusion matrix using the table.R function with predictions compared with the known behaviours in the test data set [e.g. table(predictions = ssom.pred$predictions$activity, activity = testData$activity) ]. A confusion matrix is a table where each row represents the instances in a predicted class, while each column represents the instances in the observed class, allowing mislabelled epochs to be easily identified. The confusion matrix was then finally used to compute four specific accuracy metrics—sensitivity (or recall), precision, specificity, as well as overall accuracy.To identify relationships between the size of training dataset, we trained a randomised subset of the BibOFF training data, to predict the remaining BibOFF data from all cats. We tested 35 different subset sample sizes from 100 to 100,000, replicating each sample size ten times (with replacement) to determine variation at each sample size.We then tested the extent to which accelerometer traces are modified by the presence of the CatBib. This modification was indicated by a change in overall prediction accuracy of the SOM between BibOFF and BibON treatments. To do this, we trained the SOM using a subset of the trained data for BibOFF and tested it against annotated classified BibON samples. In order to statistically compare results from bootstrap resampling, we took the median among bootstrap samples as the estimate of performance and quantified uncertainty using the corresponding 2.5th and 97.5th percentiles to represent credible 95% confidence intervals (CIs). We chose the median as a measure of central tendency, because resampling distributions were truncated at 1, so were skewed. If CIs for any pair of estimates (medians) do not overlap, then this is evidence of a significant difference between the estimates. If, however, one estimated median fell within the confidence interval for another estimate, then this was used as evidence of a lack of significant difference. For all other outcomes, differences are equivocal, and we interpreted them tentatively on the basis of the relative overlap in CIs.Finally we compared the output of the SOM with the output from a decision tree classification method using a random forest (RF) approach from the randomForest.R package30. We chose random forest as a comparison as this method has previously been shown to perform better than other similar methods (e.g. k-nearest neighbour, support vector machine, and naïve Bayes) when classifying behavioural data on free moving animals25,31. We trained both the SOM and RF procedures using the same 20,000 randomly selected epochs, and compared the overall accuracy for predicting the behaviour for the remaining ~ 192,000 epochs. The SOM was built using a 7 × 7 grid patterns, with the rlen argument set to 100. The RF was built with the number of trees set to 100 and the number of variables randomly sampled as candidates at each split set to 4. More

  • in

    Water quality drives the regional patterns of an algal metacommunity in interconnected lakes

    1.Leibold, M. A. et al. The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7, 601–613. https://doi.org/10.1111/j.1461-0248.2004.00608.x (2004).Article 

    Google Scholar 
    2.McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185. https://doi.org/10.1016/j.tree.2006.02.002 (2006).Article 
    PubMed 

    Google Scholar 
    3.Kraft, N. et al. Community assembly, coexistence, and the environmental filtering metaphor. Funct. Ecol. https://doi.org/10.1111/1365-2435.12345 (2014).Article 

    Google Scholar 
    4.de la Sancha, N. U., Higgins, C. L., Presley, S. J. & Strauss, R. E. Metacommunity structure in a highly fragmented forest: has deforestation in the Atlantic Forest altered historic biogeographic patterns?. Divers. Distrib. 20, 1058–1070. https://doi.org/10.1111/ddi.12210 (2014).Article 

    Google Scholar 
    5.Leibold, M. & Mikkelson, G. Coherence, species turnover, and boundary clumping: Elements of meta-community structure. Oikos 97, 237–250. https://doi.org/10.1034/j.1600-0706.2002.970210.x (2002).Article 

    Google Scholar 
    6.Presley, S., Higgins, C. & Willig, M. A comprehensive framework for the evaluation of metacommunity structure. Oikos 119, 908–917. https://doi.org/10.1111/j.1600-0706.2010.18544.x (2010).Article 

    Google Scholar 
    7.Dallas, T. & Drake, J. M. Relative importance of environmental, geographic, and spatial variables on zooplankton metacommunities. Ecosphere 5, 1–13. https://doi.org/10.1890/ES14-00071.1 (2014).Article 

    Google Scholar 
    8.Heino, J., Mykrä, H. & Muotka, T. Temporal variability of nestedness and idiosyncratic species in stream insect assemblages. Divers. Distrib. 15, 198–206. https://doi.org/10.1111/j.1472-4642.2008.00513.x (2009).Article 

    Google Scholar 
    9.Henriques-Silva, R., Lindo, Z. & Peres-Neto, P. R. A community of metacommunities: exploring patterns in species distributions across large geographical areas. Ecology 94, 627–639. https://doi.org/10.1890/12-0683.1 (2013).Article 
    PubMed 

    Google Scholar 
    10.Dallas, T. & Drake, J. M. Relative importance of environmental, geographic, and spatial variables on zooplankton metacommunities. Ecosphere 5, art104. https://doi.org/10.1890/ES14-00071.1 (2014).Article 

    Google Scholar 
    11.Erős, T. et al. Quantifying temporal variability in the metacommunity structure of stream fishes: The influence of non-native species and environmental drivers. Hydrobiologia 722, 31–43. https://doi.org/10.1007/s10750-013-1673-8 (2014).Article 

    Google Scholar 
    12.Fernandes, I. M., Henriques-Silva, R., Penha, J., Zuanon, J. & Peres-Neto, P. R. Spatiotemporal dynamics in a seasonal metacommunity structure is predictable: The case of floodplain-fish communities. Ecography 37, 464–475. https://doi.org/10.1111/j.1600-0587.2013.00527.x (2014).Article 

    Google Scholar 
    13.Tonkin, J. D. et al. The role of dispersal in river network metacommunities: Patterns, processes, and pathways. Freshw. Biol. 63, 141–163. https://doi.org/10.1111/fwb.13037 (2018).Article 

    Google Scholar 
    14.Kim, S., Chung, S., Park, H., Cho, Y. & Lee, H. Analysis of environmental factors associated with cyanobacterial dominance after river weir installation. Water https://doi.org/10.3390/w11061163 (2019).Article 

    Google Scholar 
    15.Deng, J. et al. Effects of nutrients, temperature and their interactions on spring phytoplankton community succession in Lake Taihu, China. PLoS ONE 9, e113960–e113960. https://doi.org/10.1371/journal.pone.0113960 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Yang, J., Jiang, H., Liu, W. & Wang, B. Benthic algal community structures and their response to geographic distance and environmental variables in the Qinghai-Tibetan lakes with different salinity. Front. Microbiol. 9, 578–578. https://doi.org/10.3389/fmicb.2018.00578 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Zhou, J. et al. Microbial community structure and associations during a marine dinoflagellate bloom. Front. Microbiol. 9, 1201. https://doi.org/10.3389/fmicb.2018.01201 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.RDevelopmentCoreTeam. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).
    Google Scholar 
    19.Baird, R. B. Standard Methods for the Examination of Water and Wastewater 23rd edn. (Water Environment Federation, American Public Health Association, 2017).
    Google Scholar 
    20.Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
    Google Scholar 
    21.Cajo, J. F. T. B. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 1167–1179. https://doi.org/10.2307/1938672 (1986).Article 

    Google Scholar 
    22.Tuomisto, H. A diversity of beta diversities: straightening up a concept gone awry. Part 2. Quantifying beta diversity and related phenomena. Ecography 33, 23–45. https://doi.org/10.1111/j.1600-0587.2009.06148.x (2010).Article 

    Google Scholar 
    23.Clements, F. E. Nature and structure of the climax. J. Ecol. 24, 252–284. https://doi.org/10.2307/2256278 (1936).Article 

    Google Scholar 
    24.Kurthen, A. L. et al. Metacommunity structures of macroinvertebrates and diatoms in high mountain streams, Yunnan, China. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.571887 (2020).Article 

    Google Scholar 
    25.Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137. https://doi.org/10.1139/f80-017 (1980).Article 

    Google Scholar 
    26.López-González, C., Presley, S. J., Lozano, A., Stevens, R. D. & Higgins, C. L. Metacommunity analysis of Mexican bats: environmentally mediated structure in an area of high geographic and environmental complexity. J. Biogeogr. 39, 177–192. https://doi.org/10.1111/j.1365-2699.2011.02590.x (2012).Article 

    Google Scholar 
    27.Heino, J., Soininen, J., Alahuhta, J., Lappalainen, J. & Virtanen, R. Metacommunity ecology meets biogeography: effects of geographical region, spatial dynamics and environmental filtering on community structure in aquatic organisms. Oecologia 183, 121–137. https://doi.org/10.1007/s00442-016-3750-y (2017).ADS 
    Article 
    PubMed 

    Google Scholar 
    28.Heino, J. & Alahuhta, J. Elements of regional beetle faunas: faunal variation and compositional breakpoints along climate, land cover and geographical gradients. J. Anim. Ecol. 84, 427–441. https://doi.org/10.1111/1365-2656.12287 (2015).Article 
    PubMed 

    Google Scholar 
    29.Mallin, M. A., McIver, M. R., Ensign, S. H. & Cahoon, L. B. Photosynthetic and heterotrophic impacts of nutrient loading to blackwater streams. Ecol. Appl. 14, 823–838. https://doi.org/10.1890/02-5217 (2004).Article 

    Google Scholar 
    30.B-Béres, V. et al. Autumn drought drives functional diversity of benthic diatom assemblages of continental intermittent streams. Adv. Water Resour. 126, 129–136. https://doi.org/10.1016/j.advwatres.2019.02.010 (2019).ADS 
    Article 

    Google Scholar 
    31.Kagalou, I., Petridis, D. & Tsimarakis, G. Seasonal variation of water quality parameters and plankton in a shallow Greek lake. J. Freshw. Ecol. 18, 199–206. https://doi.org/10.1080/02705060.2003.9664485 (2003).CAS 
    Article 

    Google Scholar 
    32.Padisák, J., Crossetti, L. O. & Naselli-Flores, L. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621, 1–19. https://doi.org/10.1007/s10750-008-9645-0 (2009).Article 

    Google Scholar 
    33.Schabhüttl, S. et al. Temperature and species richness effects in phytoplankton communities. Oecologia 171, 527–536. https://doi.org/10.1007/s00442-012-2419-4 (2013).ADS 
    Article 
    PubMed 

    Google Scholar 
    34.Chen, S. et al. Geographical patterns of algal communities associated with different urban lakes in China. Int. J. Environ. Res. Public Health 17, 1009. https://doi.org/10.3390/ijerph17031009 (2020).Article 
    PubMed Central 

    Google Scholar 
    35.Hwang, S.-J., Kim, H.-S., Shin, J.-K., Oh, J.-M. & Kong, D.-S. Grazing effects of a freshwater bivalve (Corbicula leana Prime) and large zooplankton on phytoplankton communities in two Korean lakes. Hydrobiologia 515, 161–179. https://doi.org/10.1023/B:HYDR.0000027327.06471.1e (2004).Article 

    Google Scholar 
    36.Moss, B. et al. How important is climate? Effects of warming, nutrient addition and fish on phytoplankton in shallow lake microcosms. J. Appl. Ecol. 40, 782–792. https://doi.org/10.1046/j.1365-2664.2003.00839.x (2003).Article 

    Google Scholar 
    37.Chen, S. et al. Local habitat heterogeneity determines the differences in benthic diatom metacommunities between different urban river types. Sci. Total Environ. 669, 711–720. https://doi.org/10.1016/j.scitotenv.2019.03.030 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Spatio-temporal distribution patterns of Plutella xylostella (Lepidoptera: Plutellidae) in a fine-scale agricultural landscape based on geostatistical analysis

    1.Zalucki, M. P. et al. Estimating the economic cost of one of the world’s major insect pests, Plutella xylostella: Just how long is a piece of string?. J. Econ. Entomol. 105, 1115–1129 (2012).PubMed 
    Article 

    Google Scholar 
    2.Li, Z. Y., Feng, X., Liu, S. S., You, M. S. & Furlong, M. J. Biology, ecology, and management of the diamondback moth in China. Annu. Rev. Entomol. 61(1), 277–296 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Talekar, N. S. & Shelton, A. M. Biology, ecology, and management of the diamondback moth. Annu. Rev. Entomol. 38(1), 275–301 (1993).Article 

    Google Scholar 
    4.Zhu, L. et al. Population dynamics of diamondback moth, Plutella xylostella (L.) in northern China: The effect of migration, cropping patterns and climate. Pest Manag. Sci. 74(8), 1845–1853 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Furlong, M. J., Wright, D. J. & Dosdall, L. M. Diamondback moth ecology and management: Problems, progress, and prospects. Annu. Rev. Entomol. 58, 517–541 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Sayyed, A. H., Saeed, S., Noorulane, M. & Crickmore, N. Genetic, biochemical, and physiological characterization of spinosad resistance in Plutella xylostella (Lepidoptera: Plutellidae). J. Econ. Entomol. 101(5), 1658–1666 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Machekano, H., Mvumi, B. M. & Nyamukondiwa, C. Loss of coevolved basal and plastic responses to temperature may underlie trophic level host-parasitoid interactions under global change. Biol. Control 118, 44–54 (2018).Article 

    Google Scholar 
    8.Chapman, J. W. et al. High-altitude migration of the diamondback moth Plutella xylostella to the U.K.: A study using radar, aerial netting, and ground trapping. Ecol. Entomol. 27(6), 641–650 (2002).Article 

    Google Scholar 
    9.Mazzi, D. & Dorn, S. Movement of insect pests in agricultural landscapes. Ann. Appl. Biol. 160(2), 97–113 (2012).Article 

    Google Scholar 
    10.Wei, S. J. et al. Genetic structure and demographic history reveal migration of the diamondback moth Plutella xylostella (Lepidoptera: Plutellidae) from the southern to Northern Regions of China. PLoS ONE 8(4), e59654 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Fu, X., Xing, Z., Liu, Z., Ali, A. & Wu, K. Migration of diamondback moth, Plutella xylostella, across the Bohai Sea in northern China. Crop Prot. 64, 143–149 (2014).Article 

    Google Scholar 
    12.Li, Z. et al. Population dynamics and management of diamondback moth (Plutella xylostella) in China: The relative contributions of climate, natural enemies and cropping patterns. Bull. Entomol. Res. 106(2), 197–214 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Machekano, H. et al. Disentangling factors limiting diamondback moth, Plutella xylostella (L.), spatio-temporal population abundance: A tool for pest forecasting. J. Appl. Entomol. 143, 670–682 (2019).CAS 
    Article 

    Google Scholar 
    14.Eziah, V. Y., Rose, H. A., Wilkes, M., Clift, A. D. & Mansfiled, S. Population dynamics of the diamondback moth Plutella xylostella L. (Lepidoptera: Yponomeutidae) in the Sydney region of Australia. Int. J. Biol. Chem. Sci. 4(4), 1062–1082 (2011).
    Google Scholar 
    15.Alam, T., Raju, S. V. S., Raghuraman, M. & Kumar, K. R. Population dynamics of diamondback moth, Plutella xylostella (L.) on cauliflower Brassica oleracea L. var. Botrytis in relation to weather factors of eastern uttar pradesh region. J. Exp. Zool. India 19(1), 289–292 (2016).
    Google Scholar 
    16.Karimzadeh, J., Bonsall, M. B. & Wright, D. J. Bottom-up and top-down effects in a tritrophic system: The population dynamics of Plutella xylostella (L.)-Cotesia plutellae (Kurdjumov) on different host plants. Ecol. Entomol. 29(3), 285–293 (2004).Article 

    Google Scholar 
    17.Soufbaf, M., Fathipour, Y., Karimzadeh, J. & Zalucki, M. P. Effects of plant availability on population size and dynamics of an insect community: Diamondback moth and two of its parasitoids. Bull. Entomol. Res. 104(4), 418–431 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Li, Z. Y. et al. Population dynamics and ‘outbreaks’ of diamondback moth, Plutella xylostella, in Guangdong province, China: Climate or the failure of management?. J. Econ. Entomol. 105(3), 739–752 (2012).PubMed 
    Article 

    Google Scholar 
    19.Sutcliffe, L. M. E., Batáry, P., Becker, T., Orci, K. M. & Leuschner, C. Both local and landscape factors determine plant and Orthoptera diversity in the semi-natural grasslands of Transylvania, Romania. Biodivers. Conserv. 24(2), 229–245 (2015).Article 

    Google Scholar 
    20.Carrière, Y. et al. Effects of local and landscape factors on population dynamics of a cotton pest. PLoS ONE 7(6), e39862 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    21.Moroń, D., Skórka, P., Lenda, M., Celary, W. & Tryjanowski, P. Railway lines affect spatial turnover of pollinator communities in an agricultural landscape. Divers. Distrib. 23(9), 1090–1097 (2017).Article 

    Google Scholar 
    22.Skellern, M. P., Welham, S. J., Watts, N. P. & Cook, S. M. Meteorological and landscape influences on pollen beetle immigration into oilseed rape crops. Agric. Ecosyst. Environ. 241, 150–159 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Meisner, M. H., Zaviezo, T. & Rosenheim, J. A. Landscape crop composition effects on cotton yield, Lygus hesperus densities and pesticide use. Pest Manag. Sci. 73(1), 232–239 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Furlong, M. J. et al. Ecology of diamondback moth in Australian canola: Landscape perspectives and the implications for management. Aust. J. Exp. Agric. 48(12), 1494–1505 (2008).Article 

    Google Scholar 
    25.Rogers, C. D., Guimaraes, R. M. L., Evans, K. A. & Rogers, S. A. Spatial and temporal analysis of wheat bulb fly (Delia coarctata, Fallén) oviposition: Consequences for pest population monitoring. J. Pest Sci. 88, 75–86 (2014).Article 

    Google Scholar 
    26.Silva, G. A. et al. Control failure likelihood and spatial dependence of insecticide resistance in the tomato pinworm, Tuta absoluta. Pest Manag. Sci. 67, 913–920 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Rossi, R. E., Mulla, D. J., Journel, A. G. & Franz, E. H. Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecol. Monogr. 62(2), 277–314 (1992).Article 

    Google Scholar 
    28.Leibhold, A. M., Rossi, R. E. & Kemp, W. P. Geostatistics and geographic information systems in applied insect ecology. Annu. Rev. Entomol. 38(1), 303–327 (1993).Article 

    Google Scholar 
    29.Veran, S. et al. Modeling spatiotemporal dynamics of outbreaking species: Influence of environment and migration in a locust. Ecology 96(3), 737–748 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Martins, J. C. et al. Assessing the spatial distribution of Tuta absoluta (lepidoptera: gelechiidae) eggs in open-field tomato cultivation through geostatistical analysis. Pest Manag. Sci. 74(1), 30–36 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Cocco, A., Serra, G., Lentini, A., Deliperi, S. & Delrio, G. Spatial distribution and sequential sampling plans for Tuta absoluta (Lepidoptera: Gelechiidae) in greenhouse tomato crops. Pest Manag. Sci. 71(9), 1311–1323 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Sciarretta, A., Zinni, A., Mazzocchetti, A. & Trematerra, P. Spatial analysis of Lobesia botrana (lepidoptera: tortricidae) male population in a mediterranean agricultural landscape in Central Italy. Environ. Entomol. 37(2), 382 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Sciarretta, A. & Trematerra, P. Spatio-temporal distribution of Ceratitis capitata population in a heterogeneous landscape in Central Italy. J. Appl. Entomol. 135(4), 241–251 (2011).Article 

    Google Scholar 
    34.Fuzhou. https://baike.baidu.com/item/%E7%A6%8F%E5%B7%9E/165311?fr=Aladdin (2021).35.Fujian Meteorological Service Center. http://fj.cma.gov.cn/#qxfw (2021).36.Farias, P. R. S., Roberto, S. R., Lopes, J. R. S. & Perecin, D. Geostatistical characterization of the spatial distribution of Xylella fastidiosa sharpshooter vectors on citrus. Neotrop. Entmol. 33, 13–20 (2002).Article 

    Google Scholar 
    37.Cambardella, C. A. et al. Field-scale variability of soil proprieties in central Iowa soils. Soil Sci. Soc. Am. J. 58, 1240–1248 (1994).Article 

    Google Scholar 
    38.Zhou, C. B., Lin, Z. F., Xie, S. H. & Ji, X. C. Population dynamics of Plutella xylostella and its influence factors in Hainan. Plant Prot 36(5), 124–128 (2010) (in Chinese, English abstract).
    Google Scholar 
    39.Golizadeh, A. L. I., Kamali, K., Fathipour, Y. & Abbasipour, H. Temperature-dependent development of diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) on two Brassicaceous host plants. Insect Sci. 14(4), 309–316 (2007).Article 

    Google Scholar 
    40.Bhagat, P., Yadu, Y. K. & Sharma, G. L. Seasonal incidence and effect of abiotic factors on population dynamics of diamondback moth (Plutella xylostella L.) on cabbage (Brassica oleracea var. Capitata L.) crop. J. Enotomol. Zool. Stud. 6(2), 2001–2003 (2018).
    Google Scholar 
    41.Wang, E. G. & Zheng, Y. L. Seasonal abundance of diamondback moth, Plutella xylostella, adult in Linhai, Zhejiang. Chin. Bull. Entomol. 44(2), 271–274 (2007) (in Chinese, English abstract).ADS 

    Google Scholar 
    42.Lin, X. J., Xie, W. L., Liu, J. B. & Zeng, L. Investigation of the occurrence of Plutella xylostella in Guangzhou. Guangdong Agric. Sci. 36(16), 91–97 (2013) (in Chinese, English abstract).
    Google Scholar 
    43.Harcourt, D. G. Major mortality factors in the population dynamics of the diamondback moth, Plutella maculipennis (Curt.) (Lepidoptera: Plutellidae). Mean. Can. Entomol. 32, 55–66 (1963).Article 

    Google Scholar 
    44.Rahman, M. M., Zalucki, M. P. & Furlong, M. J. Diamondback moth egg susceptibility to rainfall: Effects of host plant and oviposition behavior. Entomol. Exp. Appl. https://doi.org/10.1111/eea.12816 (2019).Article 

    Google Scholar 
    45.Kobori, Y. & Amano, H. Effect of rainfall on a population of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Appl. Entomol. Zool. 38(2), 249–253 (2003).Article 

    Google Scholar 
    46.Ayalew, G., Sciarretta, A., Baumgärtner, J., Ogol, C. & Löhr, B. Spatial distribution of diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), at the field and the regional level in Ethiopia. Int. J. Pest Manag. 54(1), 31–38 (2008).Article 

    Google Scholar 
    47.Mo, J., Greg, B., Mike, K. & Rick, R. Local dispersal of the diamondback moth (Plutella xylostella (L.)) (Lepidoptera: Plutellidae). Environ. Entomol. 32(1), 71–79 (2003).Article 

    Google Scholar 
    48.Xiong, L. G. et al. Biological characteristic of overwintering in the diamondback moth, Plutella xylostella. Plant Prot. 36, 90–93 (2010) (in Chinese, English abstract).
    Google Scholar 
    49.Campos, W. G., Schoereder, J. H. & Sperber, C. F. Does the age of the host plant modulate migratory activity of Plutella xylostella?. Entomol. Sci. 7(4), 323–329 (2004).Article 

    Google Scholar 
    50.Zhao, Z. H., Hui, C., He, D. H. & Ge, F. Effects of position within wheat field and adjacent habitats on the density and diversity of cereal aphids and their natural enemies. Biocontrol 58, 765–776 (2013).CAS 
    Article 

    Google Scholar 
    51.Sciarretta, A. & Trematerra, P. Geostatistical tools for the study of insect spatial distribution: Practical implications in the integrated management of orchard and vineyard pests. Plant Prot. Sci. 50(2), 97–110 (2014).Article 

    Google Scholar 
    52.Saeed, R., Sayyed, A. H., Shad, S. A. & Zaka, S. M. Effect of different host plants on the fitness of diamond-back moth, Plutella xylostella (Lepidoptera: Plutellidae). Crop Prot. 29(2), 178–182 (2010).Article 

    Google Scholar 
    53.Chen, L. L. et al. Cover crops enhance natural enemies while help suppressing pests in a tea plantation. Ann.. Entomol. Soc. Am. 112(4), 348–355 (2019).Article 

    Google Scholar  More