More stories

  • in

    Identifying aphid resistance in the ancestral wheat Triticum monococcum under field conditions

    1.Shewry, P. R. Wheat. J. Exp. Bot. 60, 1537–1553 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Shewry, P. R. & Hey, S. J. The contribution of wheat to human diet and health. Food Energy Secur. 4, 178–202 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Shiferaw, B. et al. Crops that feed the world 10: Past successes and future challenges to the role played by wheat in global food security. Food Secur. 5, 291–317 (2013).Article 

    Google Scholar 
    4.Pickett, J. A. et al. Delivering sustainable crop protection systems via the seed: Exploiting natural constitutive and inducible defence pathways. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 369, 20120281 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    5.Dinant, S., Bonnemain, J. L., Girousse, C. & Kehr, J. Phloem sap intricacy and interplay with aphid feeding. C. R. Biol. 333, 504–515 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Rabbinge, R., Drees, E. M., van der Graaf, M., Verberne, F. C. M. & Wesselo, A. Damage effects of cereal aphids in wheat. Netherlands J. Plant Pathol. 87, 217–232 (1981).Article 

    Google Scholar 
    7.Leather, S. R., Walters, K. F. A. & Dixon, A. F. G. Factors determining the pest status of the bird cherry-oat aphid, Rhopalosiphum padi (L.) (Hemiptera: Aphididae), in Europe: A study and review. Bull. Entomol. Res. 79, 345–360 (1989).Article 

    Google Scholar 
    8.Halbert, S. E., Connelly, J. B., Bishop, G. W. & Blackmer, J. L. Transmission of barley yellow dwarf virus by field collected aphids (Homoptera: Aphididae) and their relative importance in barley yellow dwarf epidemiology in southwestern Idaho. Ann. Appl. Biol. 121, 105–121 (1992).Article 

    Google Scholar 
    9.Chapin, J. W., Thomas, J. S., Gray, S. M., Smith, D. M. & Halbert, S. E. Seasonal abundance of aphids (Homoptera: Aphididae) in wheat and their role as barley yellow dwarf virus vectors in the South Carolina coastal plain. J. Econ. Entomol. 94, 410–421 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Tanguy, S. & Dedryver, C. Reduced BYDV–PAV transmission by the grain aphid in a Triticum monococcum line. Eur. J. Plant Pathol. 123, 281–289 (2009).Article 

    Google Scholar 
    11.Yu, W. et al. Variation in the transmission of barley yellow dwarf virus-PAV by different Sitobion avenae clones in China. J. Virol. Methods 194, 1–6 (2013).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Voss, T. S., Kieckhefer, R. W., Fuller, B. W., Mcleod, M. J. & Beck, D. A. Yield losses in maturing spring wheat caused by cereal aphids (Homoptera: Aphididae) under laboratory conditions. J. Econ. Entomol. 90, 1346–1350 (1997).Article 

    Google Scholar 
    13.Aradottir, G. I. & Crespo-Herrera, L. Host plant resistance in wheat to barley yellow dwarf viruses and their aphid vectors: A review. Curr. Opin. Insect Sci. 45, 59–68 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Foster, S. P. et al. A mutation (L1014F) in the voltage-gated sodium channel of the grain aphid, Sitobion avenae, is associated with resistance to pyrethroid insecticides. Pest Manag. Sci. 70, 1249–1253 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Carvalho, F. P. Agriculture, pesticides, food security and food safety. Environ. Sci. Policy 9, 685–692 (2006).Article 

    Google Scholar 
    16.Pickett, J. A. Food security: Intensification of agriculture is essential, for which current tools must be defended and new sustainable technologies invented. Food Energy Secur. 2, 167–173 (2013).Article 

    Google Scholar 
    17.Bezemer, T. M., Jones, T. H. & Knight, K. J. Long-term effects of elevated CO2 and temperature on populations of the peach potato aphid Myzus persicae and its parasitoid aphidius matricariae. Oecologia 116, 128–135 (1998).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Van Der Putten, W. H., Macel, M. & Visser, M. E. Predicting species distribution and abundance responses to climate change: Why it is essential to include biotic interactions across trophic levels. Philos. Trans. R. Soc. B. 365, 2025–2034 (2010).Article 

    Google Scholar 
    19.Thaler, J. S. Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 399, 686–688 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    20.Agrawal, A. A. Macroevolution of plant defense strategies. Trends Ecol. Evol. 22, 103–109 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Rasmann, S., Chassin, E., Bilat, J., Glauser, G. & Reymond, P. Trade-off between constitutive and inducible resistance against herbivores is only partially explained by gene expression and glucosinolate production. J. Exp. Bot. 66, 2527–2534 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Turley, N. E. & Johnson, M. T. J. Ecological effects of aphid abundance, genotypic variation, and contemporary evolution on plants. Oecologia 178, 747–759 (2015).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Züst, T. & Agrawal, A. A. Mechanisms and evolution of plant resistance to aphids. Nat. Plants 2, 1–9 (2016).Article 
    CAS 

    Google Scholar 
    24.Kogan, M. & Ortman, E. F. Antixenosis: A new term proposed to define painter’s ‘nonpreference’ modality of resistance. Bull. Entomol. Soc. Am. 24, 175–176 (1978).
    Google Scholar 
    25.Mumm, R. & Dicke, M. Variation in natural plant products and the attraction of bodyguards involved in indirect plant defense. Can. J. Zool. 88, 628–667 (2010).CAS 
    Article 

    Google Scholar 
    26.Stout, M. J. Reevaluating the conceptual framework for applied research on host-plant resistance. Insect Sci. 20, 263–272 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Aradottir, G. I., Martin, J. L., Clark, S. J., Pickett, J. A. & Smart, L. E. Searching for wheat resistance to aphids and wheat bulb fly in the historical Watkins and Gediflux wheat collections. Ann. Appl. Biol. 170, 179–188 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Singh, B. et al. Characterization of bird cherry-oat aphid (Rhopalosiphum padi L.) behaviour and aphid host preference in relation to partially resistant and susceptible wheat landraces. Ann. Appl. Biol. https://doi.org/10.1111/aab.12616 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Radchenko, E. E. Resistance of Triticum species to cereal aphids. Czech J. Genet. Plant Breed. 47, 67–70 (2011).Article 

    Google Scholar 
    30.Sotherton, N. W. & Lee, G. Field assessments of resistance to the aphids Sitobion avenae and Metopolophium dirhodum in old and modern spring-sown wheats. Ann. Appl. Biol. 112, 239–248 (1988).Article 

    Google Scholar 
    31.Hu, X. S. et al. Resistance of wheat accessions to the English grain aphid Sitobion avenae. PLoS ONE 11, 1–17 (2016).
    Google Scholar 
    32.Salamini, F., Ozkan, H., Brandolini, A., Schäfer-Pregl, R. & Martin, W. Genetics and geography of wild cereal domestication in the near east. Nat. Rev. Genet. 3, 429–441 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Greenslade, A. F. C. et al. Triticum monococcum lines with distinct metabolic phenotypes and phloem-based partial resistance to the bird cherry-oat aphid Rhopalosiphum padi. Ann. Appl. Biol. 168, 435–449 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Spiller, N. J. & Llewellyn, M. A comparison of the level of resistance in diploid Triticum monococcum and hexaploid Triticum aestivum wheat seedlings to the aphids Metopolophium dirhodum and Rhopalosiphum padi. Ann. Appl. Biol. 109, 173–177 (1986).Article 

    Google Scholar 
    35.Migui, S. M. & Lamb, R. J. Patterns of resistance to three cereal aphids among wheats in the genus Triticum (Poaceae). Bull. Entomol. Res. 93, 323–333 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Migui, S. M. & Lamb, R. J. Seedling and adult plant resistance to Sitobion avenae (Hemiptera: Aphididae) in Triticum monococcum (Poaceae), an ancestor of wheat. Bull. Entomol. Res. 94, 35–46 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.di Pietro, J. P., Caillaud, C. M., Chaubet, B., Pierre, J. S. & Trottet, M. Variation in resistance to the grain aphid, Sitobion avenae (Sternorhynca: Aphididae), among diploid wheat genotypes: Multivariate analysis of agronomic data. Plant Breed. 117, 407–413 (1998).Article 

    Google Scholar 
    38.Simon, A. L., Wellham, P. A. D., Aradottir, G. I. & Gange, A. C. Unravelling mycorrhiza-induced wheat susceptibility to the English grain aphid Sitobion avenae. Sci. Rep. 7, 1–11 (2017).CAS 
    Article 

    Google Scholar 
    39.Rosenheim, J. A. Source-sink dynamics for a generalist insect predator in habitats with strong higher-order predation. Ecol. Monogr. 71, 93–116 (2001).
    Google Scholar 
    40.Pålsson, J. et al. Recruiting on the spot: A biodegradable formulation for lacewings to trigger biological control of aphids. Insects 10, 1–15 (2019).Article 

    Google Scholar 
    41.Mohamed, A. H., Lester, P. J. & Holtzer, T. O. Abundance and effects of predators and parasitoids on the Russian wheat aphid (Homoptera: Aphididae) under organic farming conditions in Colorado. Environ. Entomol. 29, 360–368 (2000).Article 

    Google Scholar 
    42.Schröder, M. L., Glinwood, R., Ingell, R. & Krüger, K. Visual cues and host-plant preference of the bird cherry-oat aphid, Rhopalosiphum padi (Hemiptera: Aphididae). Afr. Entomol. 22, 428–436 (2014).Article 

    Google Scholar 
    43.Weaver, D. K. et al. Cultivar preferences of ovipositing wheat stem sawflies as influenced by the amount of volatile attractant. J. Econ. Entomol. 102, 1009–1017 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Dong, L. et al. Characterization of volatile aroma compounds in different brewing barley cultivars. J. Sci. Food Agric. 95, 915–921 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Mattiolo, E., Licciardello, F., Lombardo, G. M., Muratore, G. & Anastasi, U. Volatile profiling of durum wheat kernels by HS–SPME/GC–MS. Eur. Food Res. Technol. 243, 147–155 (2017).CAS 
    Article 

    Google Scholar 
    46.Schröder, M. L., Glinwood, R., Webster, B., Ignell, R. & Krüger, K. Olfactory responses of Rhopalosiphum padi to three maize, potato, and wheat cultivars and the selection of prospective crop border plants. Entomol. Exp. Appl. 157, 241–253 (2015).Article 
    CAS 

    Google Scholar 
    47.Evans, E. W. & Youssef, N. N. Numerical responses of aphid predators to varying prey density among utah alfalfa fields. J. Kansas Entomol. Soc. 65, 30–38 (1992).
    Google Scholar 
    48.Garratt, M. P. D., Wright, D. J. & Leather, S. R. The effects of organic and conventional fertilizers on cereal aphids and their natural enemies. Agric. For. Entomol. 12, 307–318 (2010).
    Google Scholar 
    49.Messina, F. J. & Sorenson, S. M. Effectiveness of lacewing larvae in reducing Russian wheat aphid populations on susceptible and resistant wheat. Biol. Control 21, 19–26 (2001).Article 

    Google Scholar 
    50.Farid, A., Johnson, J. B., Shafii, B. & Quisenberry, S. S. Tritrophic studies of Russian wheat aphid, a parasitoid, and resistant and susceptible wheat over three parasitoid generations. Biol. Control 12, 1–6 (1998).Article 

    Google Scholar 
    51.Ponder, K. L., Pritchard, J., Bale, J. S. & Harrington, R. Feeding behaviour of the aphid Rhopalosiphum padi (Hemiptera: Aphididae) on nitrogen and water-stressed barley (Hordeum vulgare) seedlings. Bull. Entomol. Res. 91, 125–130 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Cabrera, H. M., Argandoña, V. H., Zúñiga, G. E. & Corcuera, L. J. Effect of infestation by aphids on the water status of barley and insect development. Phytochemistry 40, 1083–1088 (1995).CAS 
    Article 

    Google Scholar 
    53.Pons, X. & Tatchell, G. M. Drought stress and cereal aphid performance. Ann. Appl. Biol. 126, 19–31 (1995).Article 

    Google Scholar 
    54.Silva, P. S., Albuquerque, G. S., Tauber, C. A. & Tauber, M. J. Life history of a widespread Neotropical predator, Chrysopodes (Chrysopodes) lineafrons (Neuroptera: Chrysopidae). Biol. Control 41, 33–41 (2007).Article 

    Google Scholar 
    55.Malina, R., Praslička, J. & Schlarmannová, J. Developmental rates of the aphid Aphis pomi (Aphidoidea: Aphididae) and its parasitoid Aphidius ervi (Hymenoptera: Aphidiidae). Biologia 65, 899–902 (2010).Article 

    Google Scholar 
    56.Bensadia, F., Boudreault, S., Guay, J. F., Michaud, D. & Cloutier, C. Aphid clonal resistance to a parasitoid fails under heat stress. J. Insect Physiol. 52, 146–157 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Vorburger, C., Ganesanandamoorthy, P. & Kwiatkowski, M. Comparing constitutive and induced costs of symbiont-conferred resistance to parasitoids in aphids. Ecol. Evol. 3, 706–713 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 3, 52–58 (2013).ADS 
    Article 

    Google Scholar  More

  • in

    China’s economic approach to protecting its ecology

    SPOTLIGHT
    29 June 2021

    China’s economic approach to protecting its ecology

    Ecotourism could provide an alternative income for those who risk losing their livelihoods when areas are given national-park status.

    Sarah O’Meara

    0

    Sarah O’Meara

    Sarah O’Meara is a freelance journalist in London.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Tourists take photos at a bird-observation ecotourism point in Ziyun Village, in southeast China’s Fujian province.Credit: Xinhua/Shutterstock

    Later this year, China will announce the first parks to be included in its new protected-areas system. It is aiming to replace the current fragmented network of poorly managed protected areas with a national-park model similar to that in other nations.Since the idea was mooted in 2013, the Chinese government has drawn on expertise from around the world and set up ten pilot national parks to test specific conservation strategies.Yet, millions of people work in and around these areas, doing everything from farming to running hotels. And once the parks receive formal protection, there will be a much smaller window for commercial activities and these people risk losing their livelihoods, says Rose Niu, chief conservation officer at the Paulson Institute in Washington DC. For the plan to succeed, China’s National Forestry and Grassland Administration will need to achieve a balance between protecting the country’s ecological systems and its people, Niu says. Her team has been closely involved in the plan’s development: advising on policy planning, training and the sharing of information between Chinese and international experts.
    Spotlight on Ecology in China
    Proposed ideas to tackle the loss in earnings that local people could face include compensation schemes and the resettling of households. Jobs will also be created in park management and protection and in ecotourism to encourage residents to be employed as part of conservation efforts.Niu thinks that encouraging local people to embrace this new economy, which also includes jobs in organic farming and wildlife management, is a very ambitious goal. “People’s awareness of these ideas is, sorry to say, still not very high. So you have to develop very strict rules for planning and management, so any ecotourism doesn’t get out of control. This can happen quickly, because it’s such a lucrative area and China has a highly entrepreneurial culture.”People, protected areas and ChinaEconomic development and environmental protection have a complicated history in China, born of the competing needs of boosting rural economies and conserving their natural resources. Short-term, profit-oriented projects have often won out.For example, Jiuzhaigou, a biodiverse and famously scenic valley in Sichuan province, was designated a nature reserve in 1982 because of its endangered plants and animals, including giant pandas. Poorly managed tourism followed and the local economy boomed, but the reserve declined. A sharp rise in air and water pollution led to the removal of private transport and the closure of hotels and restaurants in the reserve at the end of 2004.However, simply suspending tourism projects to regain control over the environment has an immediate knock-on effect for local residents, says Linjing Ren, a public-policy researcher at Northwestern Polytechnical University in Xi’an, China. “Many rely on offering accommodation and catering services for tourists, and can suddenly lose their main source of income,” she says.

    Wild yaks navigate the Sanjiangyuan region of northwest China’s Qinghai province. The number of wild animals in the area is on the rise.Credit: CHINE NOUVELLE/SIPA/Shutterstock

    And despite government efforts, protected areas continue to be exploited for commercial use. As recently as 2016, officials from five provinces were disciplined for allowing environmental regulations to be flouted. Their misdemeanours included allowing the discharge of untreated waste water into rivers and the mining of coal.Having agricultural areas inside protected regions can also lead to conflict between people and wildlife. In the Qinling Mountains in central China, for example, the establishment of a nature reserve increased the numbers of animals such as bears and wild boar that eat and damage crops. Unfortunately, the government’s financial compensation scheme does not completely cover such losses, according to Yali Wen, a researcher at Beijing Forestry University who specializes in economics and the environment.“One thing that could be improved is more government funding for human and wildlife conflicts. Not only is this fair, but it gives communities an incentive to engage with the idea that natural resources need to be protected in the long term,” Wen says.New parks, new ecotourismThe need for a strategic approach to ensure the economic security of communities affected by the plan is urgent, given that four of the ten pilot parks are in western and central China, which contain the country’s poorest regions. The Giant Panda National Park, for instance — a 27,133-square-kilometre wildlife corridor in central China — encompasses impoverished areas in Sichuan, Shaanxi and Gansu provinces. And most of the 17,000 households who live inside the largest pilot park, 123,100-square-kilometre Sanjiangyuan in the northwest of Qinghai, make their living by yak herding. Many have collective land rights, which allow them to use the land for grazing, says Lu Zhi, a conservation biologist at Peking University in Beijing.

    Bee hives, tended by local villagers, adorn cliffs in Guanba. The hives are in a community-conserved conservation area that also includes panda and otter habitats.Credit: Lu Zhi

    But instead of paying compensation to local communities to convert swathes of land from grazing to parkland — an expensive exercise — the government decided to recruit one person from each household to retrain as a park ranger. According to Niu, who evaluated the retraining scheme in 2019, each community ranger is paid 20,000 yuan (US$3,100) per year to monitor wildlife and protect the local environment. This alternative livelihood makes them less dependent on the park’s natural resources, she says. “The herders said that although that salary is not a lot of money — it’s roughly the price of three yaks — they were very proud to be doing this work. The project was well designed to give them a sense of ownership.”Government statistics say that 17,211 herders have already been hired to monitor the conservation of grassland and wildlife and raise awareness of environmental laws.New ideas in actionTerry Townshend, a wildlife conservationist and biodiversity adviser to Beijing’s government, has since 2017 been training yak herders in Qinghai in the kinds of skills that ecologists hope could be a model for sustainable development since 2017. In 2016, he met the official responsible for Zaduo, a county in Qinghai Province where snow leopards roam the valleys, at a wildlife-watching festival organized by the Shan Shui Conservation Centre, a Chinese non-profit body. After mentioning that snow-leopard tours had been popular and lucrative in other countries, Townshend was invited to write an ecotourism proposal for Zaduo. Three months later, his ideas were given the green light.“There’s very little literature on doing anything like this,” says Townshend. “I think it’s the first of its kind in China. I made it up from scratch. I remember flying there, thinking, is this really going to work? Are we really going to get Tibetan herders to come to a classroom to do training?”

    A-Ta, a Tibetan herder whose income largely comes from raising yaks and collecting caterpillar fungus, places debris in a bag as he leads his team of rubbish collectors in Sanjiangyuan.Credit: Ng Han Guan/AP/Shutterstock

    Over 3 days, Townshend and other specialists gave 16 herders the skills they needed to host tourists and take them on tours of local wildlife spots — everything from cooking and basic first aid to animal tracking and identification. What was key to the project’s success, he says, was giving the community autonomy to make decisions. By 2019, the project had generated 1 million yuan in revenue. “They made all major calls, from pricing the tours to deciding the programme’s organizational structure, and all of the income stays with the households,” says Townshend. “The long-term advantage is that the risk of local people killing wildlife is reduced, because they now see these predators as assets. It also means that tourism is carefully managed and profits [are] divided entirely equally.”Townshend says the project was fortunate to have the three key elements he thinks are required for success: abundant wildlife, an effective community structure that can cooperatively deal with issues as they arise and the full support of local government.From working with other snow-leopard-tourism teams in Italy, India, Nepal, Sweden and Afghanistan, he has found that projects missing any one of those ingredients are likely to fail. “Often, if the project is not effectively managed, there can be a breakdown in social cohesion. Families end up competing, with some benefiting more than others, causing jealousy and negative behaviour,” he says.The need for full community buy-inIn 2018, Wen and his team at Beijing Forestry University surveyed 1,270 households inside and adjacent to the mooted pilot Giant Panda National Park. Around one-fifth had chosen to participate in local ecotourism schemes, such as running farm tours, providing catering and accommodation and selling local products to tourists. And Wen’s team found that those that did were already in a better economic and social position than were those who declined1.“The early adopters were those who could afford to take a risk. They were already financially secure, had some form of higher education and were well placed geographically to work with tourists,” says Wen, adding that successful ecotourism depends on the ability of participants to withstand the risks and difficulties common to starting a business.“In China, this means having a combination of financial and social capital: enough money to provide a safety net and strong-enough community connections to ensure that you can get support when you need it,” he says. And ultimately, the tourists need to turn up: local government has to deliver a well-considered and managed plan to encourage tourism into the area, he says.One challenge posed by bringing ecotourism into poor communities is that it has the potential to exacerbate existing social divisions. Wen’s survey participants complained that wealthy people in the area were better equipped to take advantage of the fresh economic opportunities. “They felt it resulted in a widening gap between rich and poor,” he says.Yet, despite income disparities, and complaints about how tourists can be invasive, Wen says that overall attitudes towards ecotourism were extremely positive, with most locals agreeing that the advantages entirely outweighed the disadvantages. Many of the most attractive aspects of ecotourism stem from a shift in people’s daily priorities, his research suggests. As agriculture has become more mechanized and fewer family members are needed to tend small plots, young people head to the cities for work. Creating ecotourism business models gives them an economic incentive to stay, he says. “Generations of families like the idea of being able to stay together, and the projects also increase people’s sense of pride in their home towns.” A chance for the next generationEcologists in China hope that future generations will develop and improve ecotourism projects in protected areas. Niu, who grew up in a remote area of China, says it is key that any change to a person’s way of life brought about by government policy is voluntary. “No one should be forced to move, for example. But if people who live in remote areas are willing to move to places where they can access better public services, like schooling for their children and health care for seniors, the relocation should not be criticized,” she says. “The government should also give people opportunities to take part in sustainable business such as ecotourism, so they don’t have to rely on the overuse of natural resources.”Lu has spent more than a decade developing a community conservation programme in the village of Guanba, in a part of Sichuan province that is also home to pandas. The programme includes a social enterprise that sells local honey. She says it took many years for people in China to come to appreciate these kinds of ecological products and for a market to grow around it. And it’s still in its early stages of profitability.As the programme slowly developed and overcame setbacks, the community began to think more deeply about how to protect its environment. Eventually, in 2015, it declared the forest land around Guanba a community conservation area. Now the village has three separate ventures, all owned by the community. They are run by young people who moved back to the area to be part of this work.Lu is confident that the village will benefit from the involvement of that younger generation.“We are ecologists,” she says. “We are not trained in business management. We need to train people to do both. And ensure they bring these projects to life in far less than a decade.”

    doi: https://doi.org/10.1038/d41586-021-01741-1This article is part of Nature Spotlight on Ecology in China, an editorially independent supplement. Advertisers have no influence over the content.

    References1.Ma, B. et al. J. Environ. Manage. 250, 109506 (2019).PubMed 
    Article 

    Google Scholar 
    Download references

    Competing Interests
    The author declares no competing interests.

    Related Articles

    Biodiversity’s importance is growing in China’s urban agenda

    Seeing biodiversity from a Chinese perspective

    How to limit the ecological costs of urbanization in China

    Spotlight on Ecology in China

    Subjects

    Ecology

    Government

    Policy

    Latest on:

    Ecology

    Red light, green light: both signal ‘go’ to deadly algae
    Research Highlight 24 JUN 21

    Limited potential for bird migration to disperse plants to cooler latitudes
    Article 23 JUN 21

    Migratory birds aid the redistribution of plants to new climates
    News & Views 23 JUN 21

    Government

    Cameroon: doubt could mean vaccine doses expire
    Correspondence 29 JUN 21

    It is dangerous to normalize solar geoengineering research
    Correspondence 29 JUN 21

    Deadly Myanmar mine disaster caused by poor planning, say data sleuths
    News 29 JUN 21

    Policy

    Mental health of graduate students sorely overlooked
    Career Feature 28 JUN 21

    Impact factor abandoned by Dutch university in hiring and promotion decisions
    Career News 25 JUN 21

    Killing at Chinese university highlights tensions over tenure system
    News 25 JUN 21

    Jobs from Nature Careers

    All jobs

    Research Career Development Fellowships at the Institute of Structural and Molecular Biology, UCL/Birkbeck: Expression of Interest for 2021
    University College London (UCL)
    London, United Kingdom

    JOB POST

    Senior Research Associate – Data Scientist
    University of Bristol
    Bristol, United Kingdom

    JOB POST

    High Performance Computing (HPC) System Engineer (Linux)
    CRUK Manchester Institute
    Manchester, United Kingdom

    JOB POST

    School Lecturer, Senior Lecturer, Associate Professor and Professor roles
    University of Bristol
    Bristol, United Kingdom

    JOB POST

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    Framing of visual content shown on popular social media may affect viewers’ attitudes to threatened species

    1.Akram, W. & Kumar, R. A study on positive and negative effects of social media on society. Int. J. Comput. Sci. Eng. 5, 351–354 (2017).
    Google Scholar 
    2.Freeman, B. & Chapman, S. Is, “YouTube” telling or selling you something? Tobacco content on the YouTube video-sharing website. Tob. Control 16, 207–210 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Lipsman, A., Mudd, G., Rich, M. & Bruich, S. The power of “like”: How brands reach (and influence) fans through social-media marketing. J. Advert. Res. 52, 40–52 (2012).Article 

    Google Scholar 
    4.Romero, D. M., Galuba, W., Asur, S. & Huberman, B. A. Influence and passivity in social media in Joint European Conference on Machine Learning and Knowledge Discovery in Databases (eds. Gunopulos, D. Hofmann, T., Malerba, D. & Vazirgiannis, M.)  18–33 (Springer, 2011).5.Kucharski, A. Study epidemiology of fake news. Nature 540, 525–525 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Correia, R. A. et al. Digital data sources and methods for conservation culturomics. Conserv. Biol. 35, 398–411 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.El Bizri, H. R., Morcatty, T. Q., Lima, J. J. & Valsecchi, J. The thrill of the chase: Uncovering illegal sport hunting in Brazil through YouTubeTM posts. Ecol. Soc. 20, 1–30 (2015).
    Google Scholar 
    8.Sbragaglia, V., Correia, R. A., Coco, S. & Arlinghaus, R. Data mining on YouTube reveals fisher group-specific harvesting patterns and social engagement in recreational anglers and spearfishers. ICES J. Mar. Sci. 77, 2234–2244 (2020).Article 

    Google Scholar 
    9.Oteros-Rozas, E., Martín-López, B., Fagerholm, N., Bieling, C. & Plieninger, T. Using social media photos to explore the relation between cultural ecosystem services and landscape features across five European sites. Ecol. Ind. 94, 74–86 (2018).Article 

    Google Scholar 
    10.Richards, D. R. & Tunçer, B. Using image recognition to automate assessment of cultural ecosystem services from social media photographs. Ecosyst. Serv. 31, 318–325 (2018).Article 

    Google Scholar 
    11.Aguilera-Alcalá, N., Morales-Reyes, Z., Martín-López, B., Moleón, M. & Sánchez-Zapata, J. A. Role of scavengers in providing non-material contributions to people. Ecol. Indic. 117, 106643 (2020).Article 

    Google Scholar 
    12.Hausmann, A. et al. Social media data can be used to understand tourists’ preferences for nature-based experiences in protected areas. Conserv. Lett. 11, e12343 (2018).Article 

    Google Scholar 
    13.Do, Y. Valuating aesthetic benefits of cultural ecosystem services using conservation culturomics. Ecosyst. Serv. 36, 100894 (2019).Article 

    Google Scholar 
    14.Casola, W. R., Rushing, J., Futch, S., Vayer, V., Lawson, D. F., Cavalieri, M. J., Larson, L. R. & Peterson, N. How do YouTube videos impact tolerance of wolves? Human Dimens. Wildl. 1–13 (2020).15.Miranda, E. B., Ribeiro, R. P. Jr. & Strüssmann, C. The ecology of human-anaconda conflict: A study using internet videos. Trop. Conserv. Sci. 9, 43–77 (2016).Article 

    Google Scholar 
    16.Rust, N. A. Media framing of financial mechanisms for resolving human–predator conflict in Namibia. Hum. Dimens. Wildl. 20, 440–453 (2015).Article 

    Google Scholar 
    17.Margalida, A. & Donázar, J. A. Fake news and vultures. Nat. Sustain. 3, 492–493 (2020).18.Nekaris, K.A.-I., Campbell, N., Coggins, T. G., Rode, E. J. & Nijman, V. Tickled to death: Analysing public perceptions of ‘cute’videos of threatened species (slow lorises–Nycticebus spp.) on Web 2.0 Sites. PLoS ONE 8, e69215 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Lambertucci, S. A., Margalida, A., Amar, A. & Ballejo, F. Presumed killers? Vultures, stakeholders, science and misperceptions. Conserv. Sci. Pract. https://doi.org/10.1111/csp2.415 (2021).Article 

    Google Scholar 
    20.Kusmanoff, A. M., Fidler, F., Gordon, A., Garrard, G. E. & Bekessy, S. A. Five lessons to guide more effective biodiversity conservation message framing. Conserv. Biol. 34, 1131–1141 (2020).PubMed 
    Article 

    Google Scholar 
    21.Jones, C., Hine, D. W. & Marks, A. D. The future is now: Reducing psychological distance to increase public engagement with climate change. Risk Anal. 37, 331–341 (2017).PubMed 
    Article 

    Google Scholar 
    22.McDonald, R. I., Chai, H. Y. & Newell, B. R. Personal experience and the ‘psychological distance’of climate change: An integrative review. J. Environ. Psychol. 44, 109–118 (2015).Article 

    Google Scholar 
    23.Festinger, L. Cognitive dissonance. Sci. Am. 207, 93–106 (1962).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Harmon-Jones, E. & Mills, J. An introduction to cognitive dissonance theory and an overview of current persepectives on the theory in Cognitive Dissonance: Perspectives on a Pivotal Theory in Social Psychology (eds. Harmon-Jones, E. & Mills, J) 3–21 (American Psychological Association1999).25.Ballejo, F., Plaza, P. I. & Lambertucci, S. A. The conflict between scavenging birds and farmers: Field observations do not support people’s perceptions. Biol. Conserv. 248, 108627 (2020).Article 

    Google Scholar 
    26.Guerisoli, M. D. L. M. et al. Characterization of puma–livestock conflicts in rangelands of central Argentina. R. Soc. Open Sci. 4, 170852 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Torres, D. F., Oliveira, E. S. & Alves, R. R. Conflicts between humans and terrestrial vertebrates: A global review. Trop. Conserv. Sci. 11, 1940082918794084 (2018).
    Google Scholar 
    28.Inskip, C. & Zimmermann, A. Human-felid conflict: A review of patterns and priorities worldwide. Oryx 43, 18–34 (2009).Article 

    Google Scholar 
    29.Arnulphi, V. B. C., Lambertucci, S. A. & Borghi, C. E. Education can improve the negative perception of a threatened long-lived scavenging bird, the Andean condor. PLoS ONE 12, e0185278 (2017).Article 
    CAS 

    Google Scholar 
    30.Duriez, O. et al. Vultures attacking livestock: A problem of vulture behavioural change or farmers’ perception?. Bird Conserv. Int. 29, 437–453 (2019).Article 

    Google Scholar 
    31.Margalida, A., Campión, D. & Donázar, J. A. Vultures vs livestock: Conservation relationships in an emerging conflict between humans and wildlife. Oryx 48, 172–176 (2014).Article 

    Google Scholar 
    32.Reyes-Menendez, A., Saura, J. R. & Filipe, F. Marketing challenges in the# MeToo era: Gaining business insights using an exploratory sentiment analysis. Heliyon 6, e03626 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Ballejo, F., Grilli, M. G. & Lambertucci, S. A. A long and troublesome journey: People’s perceptions and attitudes along the migratory path of a scavenger bird. Ethnobiol. Conserv. 8, 1–13 (2019).
    Google Scholar 
    34.Zollo, F. et al. Debunking in a world of tribes. PLoS ONE 12, e0181821 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    35.Bessi, A. et al. Users polarization on Facebook and Youtube. PLoS ONE 11, e0159641 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Baumeister, R. F., Bratslavsky, E., Finkenauer, C. & Vohs, K. D. Bad is stronger than good. Rev. Gen. Psychol. 5, 323–370 (2001).Article 

    Google Scholar 
    37.Plaza, P. I., Martínez-López, E. & Lambertucci, S. A. The perfect threat: Pesticides and vultures. Sci. Total Environ. 687, 1207–1218 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Macdonald, E. A. et al. Conservation inequality and the charismatic cat: Felis felicis. Glob. Ecol. Conserv. 3, 851–866 (2015).Article 

    Google Scholar 
    39.Kaczensky, P. Large carnivore depredation on livestock in Europe. Ursus. 11, 59–71 (1999).40.Patterson, B. D., Kasiki, S. M., Selempo, E. & Kays, R. W. Livestock predation by lions (Panthera leo) and other carnivores on ranches neighboring Tsavo National Parks, Kenya. Biol. Conserv. 119, 507–516 (2004).Article 

    Google Scholar 
    41.Sommers, A. P., Price, C. C., Urbigkit, C. D. & Peterson, E. M. Quantifying economic impacts of large-carnivore depredation on Bovine calves. J. Wildl. Manag. 74, 1425–1434 (2010).Article 

    Google Scholar 
    42.Wang, S. W. & Macdonald, D. W. Livestock predation by carnivores in Jigme Singye Wangchuck National Park, Bhutan. Biol. Conserv. 129, 558–565 (2006).Article 

    Google Scholar 
    43.Ballejo, F., Plaza, P. I. & Lambertucci, S. A. The productive, ecological, and perception problem of the “unacceptable” livestock losses due to scavenger birds. Biol. Conserv. 250, 108723 (2020).Article 

    Google Scholar 
    44.Toivonen, T. et al. Social media data for conservation science: A methodological overview. Biol. Conserv. 233, 298–315 (2019).Article 

    Google Scholar 
    45.Troumbis, A. Y. & Iosifidis, S. A decade of Google Trends-based Conservation culturomics research: A critical evaluation of an evolving epistemology. Biol. Conserv. 248, 108647 (2020).Article 

    Google Scholar 
    46.Buechley, E. R. & Şekercioğlu, Ç. H. The avian scavenger crisis: Looming extinctions, trophic cascades, and loss of critical ecosystem functions. Biol. Conserv. 198, 220–228 (2016).Article 

    Google Scholar 
    47.Ogada, D. L., Keesing, F. & Virani, M. Z. Dropping dead: Causes and consequences of vulture population declines worldwide. Ann. N. Y. Acad. Sci. 1249, 57–71 (2012).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Ogada, D. L. The power of poison: Pesticide poisoning of Africa’s wildlife. Ann. N. Y. Acad. Sci. 1322, 1–20 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Plaza, P. I. & Lambertucci, S. A. What do we know about lead contamination in wild vultures and condors? A review of decades of research. Sci. Total Environ. 654, 409–417 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Behmke, S. et al. Chronic lead exposure is epidemic in obligate scavenger populations in eastern North America. Environ. Int. 79, 51–55 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Grilli, M. G., Bildstein, K. L. & Lambertucci, S. A. Nature’s clean-up crew: Quantifying ecosystem services offered by a migratory avian scavenger on a continental scale. Ecosyst. Serv. 39, 100990 (2019).Article 

    Google Scholar 
    52.Plaza, P. I., Blanco, G. & Lambertucci, S. A. Implications of bacterial, viral and mycotic microorganisms in vultures for wildlife conservation, ecosystem services and public health. Ibis 162, 1109–1124 (2020).Article 

    Google Scholar 
    53.Lazer, D. M. et al. The science of fake news. Science 359, 1094–1096 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Clement, J. YouTube-statistics & facts. statista.  https://www.statista.com/topics/2019/youtube/ (2019).55.Guerisoli, M. D. L. M., Luengos Vidal, E., Caruso, N., Giordano, A. J. & Lucherini, M. Puma–livestock conflicts in the Americas: A review of the evidence. Mammal Rev. 66, 33–43 (2020).Article 

    Google Scholar 
    56.R Core Team. A language and environment for statistical computing. (R Foundation for Statistical Computing, 2015).57.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat soft. 67, 1–48  (2014). More

  • in

    Pangenomics reveals alternative environmental lifestyles among chlamydiae

    1.McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl Acad. Sci. 110, 3229–3236 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    2.Horn, M. Chlamydiae as symbionts in eukaryotes. Annu. Rev. Microbiol. 62, 113–131 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Taylor-Brown, A., Vaughan, L., Greub, G., Timms, P. & Polkinghorne, A. Twenty years of research into Chlamydia-like organisms: a revolution in our understanding of the biology and pathogenicity of members of the phylum Chlamydiae. Pathog. Dis. 73, 1–15 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Wagner, M. & Horn, M. The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr. Opin. Biotechnol. 17, 241–249 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Rivas-Marín, E. & Devos, D. P. The Paradigms They Are a-Changin’: past, present and future of PVC bacteria research. Antonie van. Leeuwenhoek 111, 785–799 (2018).PubMed 
    Article 

    Google Scholar 
    6.Elwell, C., Mirrashidi, K. & Engel, J. Chlamydia cell biology and pathogenesis. Nat. Rev. Microbiol. 14, 385–400 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Collingro, A., Köstlbacher, S. & Horn, M. Chlamydiae in the Environment. Trends Microbiol. 28, 877–888 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Lagkouvardos, I. et al. Integrating metagenomic and amplicon databases to resolve the phylogenetic and ecological diversity of the Chlamydiae. ISME J. 8, 115–125 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Greub, G. & Raoult, D. Microorganisms resistant to free-living amoebae. Clin. Microbiol. Rev. 17, 413–433 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. 115, 6506–6511 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Taylor-Brown, A., Madden, D. & Polkinghorne, A. Culture-independent approaches to chlamydial genomics. Micro. Genom. 4, e000145 (2018).
    Google Scholar 
    12.Sixt, B. S. & Valdivia, R. H. Molecular Genetic Analysis of Chlamydia Species. Annu. Rev. Microbiol. 70, 179–198 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Bachmann, N. L., Polkinghorne, A. & Timms, P. Chlamydia genomics: providing novel insights into chlamydial biology. Trends Microbiol. 22, 464–472 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Subtil, A. & Dautry-Varsat, A. Chlamydia: five years A.G. (after genome). Curr. Opin. Microbiol. 7, 85–92 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Collingro, A. et al. Unity in Variety—The Pan-Genome of the Chlamydiae. Mol. Biol. Evol. 28, 3253–3270 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Taylor-Brown, A. et al. Metagenomic Analysis of Fish-Associated Ca. Parilichlamydiaceae Reveals Striking Metabolic Similarities to the Terrestrial Chlamydiaceae. Genom. Biol. Evol. 10, 2587–2595 (2018).Article 
    CAS 

    Google Scholar 
    17.Baker, B. J., Lazar, C. S., Teske, A. P. & Dick, G. J. Genomic resolution of linkages in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria. Microbiome 3, 14 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Collingro, A. et al. Unexpected genomic features in widespread intracellular bacteria: evidence for motility of marine chlamydiae. ISME J. 11, 2334–2344 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Dharamshi, J. E. et al. Marine Sediments Illuminate Chlamydiae Diversity and Evolution. Curr. Biol. 30, 1032–1048.e7 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Pillonel, T., Bertelli, C. & Greub, G. Environmental Metagenomic Assemblies Reveal Seven New Highly Divergent Chlamydial Lineages and Hallmarks of a Conserved Intracellular Lifestyle. Front. Microbiol. 9, 79 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Taylor-Brown, A., Bachmann, N. L., Borel, N. & Polkinghorne, A. Culture-independent genomic characterisation of Candidatus Chlamydia sanzinia, a novel uncultivated bacterium infecting snakes. BMC Genom. 17, 710 (2016).Article 

    Google Scholar 
    22.Taylor-Brown, A. et al. Culture-independent genomics of a novel chlamydial pathogen of fish provides new insight into host-specific adaptations utilized by these intracellular bacteria. Environ. Microbiol. 19, 1899–1913 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Stairs, C. W. et al. Chlamydial contribution to anaerobic metabolism during eukaryotic evolution. Sci. Adv. 6, eabb7258 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    24.Brockhurst, M. A. et al. The Ecology and Evolution of Pangenomes. Curr. Biol. 29, R1094–R1103 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 39, 499–509 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Wu, D. et al. A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462, 1056–1060 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    28.Chen, I. A. et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 47, D666-D677 (2019).29.Schulz, F. et al. Towards a balanced view of the bacterial tree of life. Microbiome 5, 140 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Subtil, A., Collingro, A. & Horn, M. Tracing the primordial Chlamydiae: extinct parasites of plants? Trends Plant Sci. 19, 36–43 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Cenci, U. et al. Biotic Host-Pathogen Interactions As Major Drivers of Plastid Endosymbiosis. Trends Plant Sci. 22, 316–328 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Blair, P. M. et al. Exploration of the Biosynthetic Potential of the Populus Microbiome. mSystems 3, e00045-18 (2018).33.Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Huerta-Cepas, J. et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44, D286–D293 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Miele, V., Penel, S. & Duret, L. Ultra-fast sequence clustering from similarity networks with SiLiX. BMC Bioinforma. 12, 116 (2011).Article 

    Google Scholar 
    36.Abby, S. S. & Rocha, E. P. C. The non-flagellar type III secretion system evolved from the bacterial flagellum and diversified into host-cell adapted systems. PLoS Genet. 8, e1002983 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Peters, J., Wilson, D. P., Myers, G., Timms, P. & Bavoil, P. M. Type III secretion à la Chlamydia. Trends Microbiol. 15, 241–251 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Archuleta, T. L. et al. The Chlamydia effector chlamydial outer protein N (CopN) sequesters tubulin and prevents microtubule assembly. J. Biol. Chem. 286, 33992–33998 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Verma, A. & Maurelli, A. T. Identification of two eukaryote-like serine/threonine kinases encoded by Chlamydia trachomatis serovar L2 and characterization of interacting partners of Pkn1. Infect. Immun. 71, 5772–5784 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Omsland, A., Sixt, B. S., Horn, M. & Hackstadt, T. Chlamydial metabolism revisited: interspecies metabolic variability and developmental stage-specific physiologic activities. FEMS Microbiol. Rev. 38, 779–801 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Schwöppe, C., Winkler, H. H. & Neuhaus, H. E. Properties of the glucose-6-phosphate transporter from Chlamydia pneumoniae (HPTcp) and the glucose-6-phosphate sensor from Escherichia coli (UhpC). J. Bacteriol. 184, 2108–2115 (2002).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    42.Tjaden, J. et al. Two nucleotide transport proteins in Chlamydia trachomatis, one for net nucleoside triphosphate uptake and the other for transport of energy. J. Bacteriol. 181, 1196–1202 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Schmitz-Esser, S. et al. ATP/ADP translocases: a common feature of obligate intracellular amoebal symbionts related to Chlamydiae and Rickettsiae. J. Bacteriol. 186, 683–691 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Haferkamp, I. et al. Tapping the nucleotide pool of the host: novel nucleotide carrier proteins of Protochlamydia amoebophila. Mol. Microbiol. 60, 1534–1545 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Rosario, C. J. & Tan, M. The early gene product EUO is a transcriptional repressor that selectively regulates promoters of Chlamydia late genes. Mol. Microbiol. 84, 1097–1107 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Belland, R. J. et al. Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis. Proc. Natl Acad. Sci. U. S. A. 100, 8478–8483 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    47.Kislyuk, A. O., Haegeman, B., Bergman, N. H. & Weitz, J. S. Genomic fluidity: an integrative view of gene diversity within microbial populations. BMC Genom. 12, 32 (2011).Article 

    Google Scholar 
    48.McInerney, J. O., McNally, A. & O’Connell, M. J. Why prokaryotes have pangenomes. Nat. Microbiol. 2, 17040 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Wang, Z. & Wu, M. Comparative Genomic Analysis of Acanthamoeba Endosymbionts Highlights the Role of Amoebae as a ‘Melting Pot’ Shaping the Rickettsiales Evolution. Genom. Biol. Evol. 9, 3214–3224 (2017).CAS 
    Article 

    Google Scholar 
    50.Moliner, C., Fournier, P.-E. & Raoult, D. Genome analysis of microorganisms living in amoebae reveals a melting pot of evolution. FEMS Microbiol. Rev. 34, 281–294 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Bertelli, C. et al. Sequencing and characterizing the genome of Estrella lausannensis as an undergraduate project: training students and biological insights. Front. Microbiol. 6, 101 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Bertelli, C., Goesmann, A. & Greub, G. Criblamydia sequanensis Harbors a Megaplasmid Encoding Arsenite Resistance. Genom. Announc. 2, e00949–14 (2014).Article 

    Google Scholar 
    53.Köstlbacher, S., Collingro, A., Halter, T., Domman, D. & Horn, M. Coevolving Plasmids Drive Gene Flow and Genome Plasticity in Host-Associated Intracellular Bacteria. Curr. Biol. 31, 346–357.e3 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    54.Bertelli, C. et al. CRISPR System Acquisition and Evolution of an Obligate IntracellularChlamydia-Related Bacterium. Genom. Biol. Evol. 8, 2376–2386 (2016).CAS 
    Article 

    Google Scholar 
    55.Benamar, S. et al. Developmental Cycle and Genome Analysis of Protochlamydia massiliensis sp. nov. a New Species in the Parachlamydiacae Family. Front. Cell. Infect. Microbiol. 7, 385 (2017).56.Panwar, P. et al. Influence of the polar light cycle on seasonal dynamics of an Antarctic lake microbial community. Microbiome 8, 116 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Venn, A. A., Loram, J. E. & Douglas, A. E. Photosynthetic symbioses in animals. J. Exp. Bot. 59, 1069–1080 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Cavanaugh, C. M. Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats. Nature 302, 58–61 (1983).CAS 
    Article 
    ADS 

    Google Scholar 
    59.Hu, J., Jin, K., He, Z.-G. & Zhang, H. Citrate lyase CitE in Mycobacterium tuberculosis contributes to mycobacterial survival under hypoxic conditions. PLoS ONE 15, e0230786 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Kantor, R. S. et al. Genome-Resolved Meta-Omics Ties Microbial Dynamics to Process Performance in Biotechnology for Thiocyanate Degradation. Environ. Sci. Technol. 51, 2944–2953 (2017).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    61.Wang, Z. et al. A new method for rapid genome classification, clustering, visualization, and novel taxa discovery from metagenome. https://doi.org/10.1101/812917.62.Sabehi, G. et al. New insights into metabolic properties of marine bacteria encoding proteorhodopsins. PLoS Biol. 3, e273 (2005).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    63.Croitoru, K. Faculty Opinions recommendation of Environmental genome shotgun sequencing of the Sargasso Sea. Faculty Opin.—Post-Publ. Peer Rev. Biomed. Lit. (2014). https://doi.org/10.3410/f.1017813.793496370.64.Gómez-Consarnau, L. et al. Proteorhodopsin phototrophy promotes survival of marine bacteria during starvation. PLoS Biol. 8, e1000358 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    65.Omsland, A., Sager, J., Nair, V., Sturdevant, D. E. & Hackstadt, T. Developmental stage-specific metabolic and transcriptional activity of Chlamydia trachomatis in an axenic medium. Proc. Natl Acad. Sci. 109, 19781–19785 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    66.Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes—a 2019 update. Nucleic Acids Res. 48, D445–D453 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Glasemacher, J., Bock, A. K., Schmid, R. & Schønheit, P. Purification and Properties of acetyl-CoA Synthetase (ADP-forming), an Archaeal Enzyme of Acetate Formation and ATP Synthesis, From the Hyperthermophile Pyrococcus Furiosus. Eur. J. Biochem. 244, 561–567 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    68.Stairs, C. W., Leger, M. M. & Roger, A. J. Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140326 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    69.Leger, M. M., Gawryluk, R. M. R., Gray, M. W. & Roger, A. J. Evidence for a hydrogenosomal-type anaerobic ATP generation pathway in Acanthamoeba castellanii. PLoS ONE 8, e69532 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    70.Novák, L. et al. Arginine deiminase pathway enzymes: evolutionary history in metamonads and other eukaryotes. BMC Evol. Biol. 16, 197 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    71.Benoit, S. L., Maier, R. J., Sawers, R. G. & Greening, C. Molecular Hydrogen Metabolism: a Widespread Trait of Pathogenic Bacteria and Protists. Microbiol. Mol. Biol. Rev. 84, e00092–19 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Søndergaard, D., Pedersen, C. N. S. & Greening, C. HydDB: a web tool for hydrogenase classification and analysis. Sci. Rep. 6, 34212 (2016).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    73.Kleiner, M. et al. Metaproteomics of a gutless marine worm and its symbiotic microbial community reveal unusual pathways for carbon and energy use. Proc. Natl Acad. Sci. U. S. A. 109, E1173–E1182 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Schut, G. J. & Adams, M. W. W. The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J. Bacteriol. 191, 4451–4457 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Greening, C. et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 10, 761–777 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Hou, S. et al. Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol. Direct 3, 26 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    77.Berney, M., Greening, C., Conrad, R., Jacobs, W. R. Jr & Cook, G. M. An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia. Proc. Natl Acad. Sci. U. S. A. 111, 11479–11484 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    78.Kaji, M. et al. The hydA gene encoding the H(2)-evolving hydrogenase of Clostridium perfringens: molecular characterization and expression of the gene. FEMS Microbiol. Lett. 181, 329–336 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Lindmark, D. G., Muller, M. & Shio, H. Hydrogenosomes in Trichomonas vaginalis. J. Parasitol. 61, 552 (1975).Article 

    Google Scholar 
    80.Edgar, R. C. Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinformatics 34, 2371–2375 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Lagkouvardos, I. et al. IMNGS: A comprehensive open resource of processed 16S rRNA microbial profiles for ecology and diversity studies. Sci. Rep. 6, 33721 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    82.Stride, M. C. et al. Molecular characterization of ‘Candidatus Parilichlamydia carangidicola,’ a novel Chlamydia-like epitheliocystis agent in yellowtail kingfish, Seriola lalandi (Valenciennes), and the proposal of a new family, ‘Candidatus Parilichlamydiaceae’ fam. nov. (order Chlamydiales). Appl. Environ. Microbiol. 79, 1590–1597 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Draghi, A. et al. Characterization of ‘Candidatus Piscichlamydia salmonis’ (Order Chlamydiales), a Chlamydia-Like Bacterium Associated With Epitheliocystis in Farmed Atlantic Salmon (Salmo salar). J. Clin. Microbiol. 42, 5286–5297 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Neuendorf, E. et al. Chlamydia caviae infection alters abundance but not composition of the guinea pig vaginal microbiota. Pathog. Dis. 73, ftv019 (2015).85.Kelly, J. et al. Composition and diversity of mucosa-associated microbiota along the entire length of the pig gastrointestinal tract; dietary influences. Environ. Microbiol. 19, 1425–1438 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    86.Kelly, M. S. et al. The Nasopharyngeal Microbiota of Children With Respiratory Infections in Botswana. Pediatr. Infect. Dis. J. 36, e211–e218 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Liechty, E. R. et al. The levonorgestrel-releasing intrauterine system is associated with delayed endocervical clearance of Chlamydia trachomatis without alterations in vaginal microbiota. Pathog. Dis. 73, ftv070 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    88.Ganz, H. H. et al. Community-Level Differences in the Microbiome of Healthy Wild Mallards and Those Infected by Influenza A Viruses. mSystems 2, e00188–16 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Pizzetti, I. et al. Chlamydial seasonal dynamics and isolation of ‘Candidatus Neptunochlamydia vexilliferae’ from a Tyrrhenian coastal lake. Environ. Microbiol. 18, 2405–2417 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    90.Nylund, A. et al. Genotyping of Candidatus Syngnamydia salmonis (chlamydiales; Simkaniaceae) co-cultured in Paramoeba perurans (amoebozoa; Paramoebidae). Arch. Microbiol. 200, 859–867 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Kahane, S., Gonen, R., Sayada, C., Elion, J. & Friedman, M. G. Description and partial characterization of a new Chlamydia-like microorganism. FEMS Microbiol. Lett. 109, 329–333 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    92.Vouga, M., Baud, D. & Greub, G. Simkania negevensis, an insight into the biology and clinical importance of a novel member of the Chlamydiales order. Crit. Rev. Microbiol. 43, 62–80 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    93.Ziegler, M. et al. Coral bacterial community structure responds to environmental change in a host-specific manner. Nat. Commun. 10, 3092 (2019).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    94.Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 13219 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    95.Torres-Beltrán, M. et al. A compendium of geochemical information from the Saanich Inlet water column. Sci. Data 4, 170159 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    96.Hawley, A. K. et al. A compendium of multi-omic sequence information from the Saanich Inlet water column. Sci. Data 4, 170160 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Orsi, W., Song, Y. C., Hallam, S. & Edgcomb, V. Effect of oxygen minimum zone formation on communities of marine protists. ISME J. 6, 1586–1601 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    98.Köstlbacher, S. et al. Draft Genome Sequences of Bacterium STE3 and sp. Strain AcF84. Endosymbionts spp. Microbiol. Resour. Announc. 9, e00220–e00220 (2020).PubMed 

    Google Scholar 
    99.Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    100.Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genom. Res. 25, 1043–1055 (2015).CAS 
    Article 

    Google Scholar 
    101.Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    102.Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    103.Hendrickx, F. et al. A masculinizing supergene underlies an exaggerated male reproductive morph in a spider. https://doi.org/10.1101/2021.02.09.430505.104.Philippe, H. et al. Mitigating Anticipated Effects of Systematic Errors Supports Sister-Group Relationship between Xenacoelomorpha and Ambulacraria. Curr. Biol. 29, 1818–1826.e6 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    105.Minh, B. Q., Nguyen, M. A. T. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    106.Le, S. Q. & Gascuel, O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 25, 1307–1320 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    107.Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    108.Quang, L. S., Gascuel, O. & Lartillot, N. Empirical profile mixture models for phylogenetic reconstruction. Bioinformatics 24, 2317–2323 (2008).CAS 
    Article 

    Google Scholar 
    109.Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. 35, 518–522 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    110.Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    111.Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    112.Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    113.Wang, H.-C., Minh, B. Q., Susko, E. & Roger, A. J. Modeling Site Heterogeneity with Posterior Mean Site Frequency Profiles Accelerates Accurate Phylogenomic Estimation. Syst. Biol. 67, 216–235 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    114.Matsen, F. A., Kodner, R. B. & Armbrust, E. V. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinforma. 11, 538 (2010).Article 

    Google Scholar 
    115.Hausmann, B. et al. Peatland Acidobacteria with a dissimilatory sulfur metabolism. ISME J. 12, 1729–1742 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    116.Konstantinidis, K. T., Rosselló-Móra, R. & Amann, R. Uncultivated microbes in need of their own taxonomy. ISME J. 11, 2399–2406 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    117.Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer, 2016).118.Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genom. Res. 13, 2498–2504 (2003).CAS 
    Article 

    Google Scholar 
    119.Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    120.Huerta-Cepas, J. et al. Fast Genome-Wide Functional Annotation through Orthology Assignment by eggNOG-Mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    121.Maistrenko, O. M. et al. Disentangling the impact of environmental and phylogenetic constraints on prokaryotic within-species diversity. ISME J. 14, 1247–1259 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    122.Snipen, L. & Liland, K. H. micropan: an R-package for microbial pan-genomics. BMC Bioinforma. 16, 79 (2015).Article 
    CAS 

    Google Scholar 
    123.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).124.Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: a Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc.: Ser. B (Methodol.) 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar 
    125.Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. J. Mol. Biol. 428, 726–731 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    126.Quevillon, E. et al. InterProScan: protein domains identifier. Nucleic Acids Res. 33, W116–W120 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    127.El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    128.Haft, D. H., Selengut, J. D. & White, O. The TIGRFAMs database of protein families. Nucleic Acids Res. 31, 371–373 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    129.Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    130.Guy, L., Kultima, J. R. & Andersson, S. G. E. genoPlotR: comparative gene and genome visualization in R. Bioinformatics 26, 2334–2335 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    131.Abby, S. S. & Rocha, E. P. C. Identification of Protein Secretion Systems in Bacterial Genomes Using MacSyFinder. Methods Mol. Biol. 1615, 1–21 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    132.Abby, S. S. et al. Identification of protein secretion systems in bacterial genomes. Sci. Rep. 6, 1–14 (2016).Article 
    CAS 

    Google Scholar 
    133.Couvin, D. et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 46, W246–W251 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    134.Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    135.Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    136.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    137.Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    138.Pruesse, E., Peplies, J. & Glöckner, F. O. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    139.Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    140.Lemoine, F. et al. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 556, 452–456 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar  More

  • in

    Subglacial erosion has the potential to sustain microbial processes in Subglacial Lake Whillans, Antarctica

    1.Achberger, A. M. et al. Microbial Community Structure of Subglacial Lake Whillans, West Antarctica. Front. Microbiol. 7, 1457, https://doi.org/10.3389/fmicb.2016.01457 (2016).2.Boyd, E. S., Skidmore, M., Mitchell, A. C., Bakermans, C. & Peters, J. W. Methanogenesis in subglacial sediments. Environ. Microbiol. Rep. 2, 685–692 (2010).CAS 
    Article 

    Google Scholar 
    3.Christner, B. C. et al. A microbial ecosystem beneath the West Antarctic ice sheet. Nature 512, 310–313 (2014).CAS 
    Article 

    Google Scholar 
    4.Michaud, A. B. et al. Microbial oxidation as a methane sink beneath the West Antarctic Ice Sheet. Nat. Geosci. 10, 582–586 (2017).CAS 
    Article 

    Google Scholar 
    5.Mikucki, J. A. et al. A contemporary microbially maintained subglacial ferrous “ocean”. Science 324, 397–400 (2009).CAS 
    Article 

    Google Scholar 
    6.Skidmore, M., Anderson, S. P., Sharp, M., Foght, J. & Lanoil, B. D. Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering processes. Appl. Environ. Microbiol. 71, 6986–6997 (2005).CAS 
    Article 

    Google Scholar 
    7.Stibal, M. et al. Methanogenic potential of Arctic and Antarctic subglacial environments with contrasting organic carbon sources. Global Change Biol. 18, 3332–3345 (2012).Article 

    Google Scholar 
    8.Vick-Majors, T. J. et al. Physiological ecology of microorganisms in subglacial lake whillans. Front. Microbiol. 7, 1705, https://doi.org/10.3389/fmicb.2016.01705 (2016).9.Lanoil, B. et al. Bacteria beneath the West Antarctic Ice Sheet. Environ. Microbiol. 11, 609–615 (2009).CAS 
    Article 

    Google Scholar 
    10.Purcell, A. M. et al. Microbial sulfur transformations in sediments from Subglacial Lake Whillans. Front. Microbiol. 5, 594, https://doi.org/10.3389/fmicb.2014.00594 (2014).11.Michaud, A. B. et al. Solute sources and geochemical processes in Subglacial Lake Whillans, West Antarctica. Geology 44, 347–350 (2016).CAS 
    Article 

    Google Scholar 
    12.Brunner, B., Arnold, G. L., Roy, H., Muller, I. A. & Jorgensen, B. B. Off limits: sulfate below the sulfate methane transition. Front. Earth Sci. 4, 16 (2016).Article 

    Google Scholar 
    13.Holmkvist, L. et al. Sulfate reduction below the sulfate–methane transition in Black Sea sediments. Deep Sea Res. Part I: Oceanogr. Res. Pap. 58, 493–504 (2011).CAS 
    Article 

    Google Scholar 
    14.Siegfried, M. R., Fricker, H. A., Roberts, M., Scambos, T. A. & Tulaczyk, S. A decade of West Antarctic subglacial lake interactions from combined ICESat and CryoSat-2altimetry. Geophys. Res. Lett. 41, 891–898 (2014).Article 

    Google Scholar 
    15.Christner, B. C., Skidmore, M. L., Priscu, J. C., Tranter, M. & Foreman, C. M. In Psychrophiles: From Biodiversity to Biotechology (Springer, Berlin), p. 51–71 (eds F. Schinner, R. Margesin, J.-C. Marx, & C. Gerday) (2008).16.Stumm, W. & Morgan, J. J. Aquatic Chemistry. Chemical Equilibria and Rates in Natural Waters. 3rd edn, 1022 (Wiley Interscience, 1996).17.Wang, G., Spivack, A. J., Rutherford, S., Manor, U. & D’Hondt, S. Quantification of co-occurring reaction rates in deep subseafloor sediments. Geochim. Cosmochim. Acta 72, 3479–3488 (2008).CAS 
    Article 

    Google Scholar 
    18.Sharp, M. & Tranter, M. Glacier biogeochemistry. Geochem. Perspect. 7, 1–164 (2018).
    Google Scholar 
    19.Christner, B. C. et al. Limnological conditions in Subglacial Lake Vostok, Antarctica. Limnol. Oceanogr. 51, 2485–2501 (2006).Article 

    Google Scholar 
    20.Wadham, J. L. et al. Potential methane reservoirs beneath Antarctica. Nature 488, 633–637 (2012).CAS 
    Article 

    Google Scholar 
    21.Macdonald, M. L., Wadham, J. L., Telling, J. & Skidmore, M. L. Glacial erosion liberates lithologic energy sources for microbes and acidity for chemical weathering beneath glaciers and ice sheets. Front. Earth Sci. 6, 212 (2018).Article 

    Google Scholar 
    22.Telling, J. et al. Rock comminution as a source of hydrogen for subglacial ecosystems. Nat. Geosci. 8, 851–855 (2015).CAS 
    Article 

    Google Scholar 
    23.Tulaczyk, S., Kamb, B., Scherer, R. P. & Engelhardt, H. F. Sedimentary processes at the base of a West Antarctic ice stream: Constraints from textural and compositional properties of subglacial debris. J. Sediment. Res. 68, 487–496 (1998).Article 

    Google Scholar 
    24.Hodson, T. O. et al. Physical processes in Subglacial Lake Whillans, West Antarctica: inferences from sediment cores. Earth Planet. Sci. Lett. 444, 56–63 (2016).CAS 
    Article 

    Google Scholar 
    25.Kameda, J., Saruwatari, K. & Tanaka, H. H-2 generation during dry grinding of kaolinite. J. Colloid Interface Sci. 275, 225–228 (2004).CAS 
    Article 

    Google Scholar 
    26.Kita, I., Matsuo, S. & Wakita, H. H-2 generation by reaction between H2O and crushed rock – an experimental-study on H-2 degassing from the active fault zone. J. Geophys. Res. 87, 789–795 (1982).
    Google Scholar 
    27.Nesbitt, H. W., Bancroft, G. M., Pratt, A. R. & Scaini, M. J. Sulfur and iron surface states on fractured pyrite surfaces. Am. Mineral. 83, 1067–1076 (1998).28.Borda, M. J., Elsetinow, A. R., Schoonen, M. A. & Strongin, D. R. Pyrite-induced hydrogen peroxide formation as a driving force in the evolution of photosynthetic organisms on an early earth. Astrobiology 1, 283–288 (2001).CAS 
    Article 

    Google Scholar 
    29.Borda, M. J., Elsetinow, A. R., Strongin, D. R. & Schoonen, M. A. A mechanism for the production of hydroxyl radical at surface defect sites on pyrite. Geochim. Cosmochim. Acta 67, 935–939 (2003).CAS 
    Article 

    Google Scholar 
    30.Raiswell, R. Chemical models of solute acquisition in glacial meltwaters. J. Glaciol. 30, 49–57 (1984).CAS 
    Article 

    Google Scholar 
    31.Brown, G. H. Glacier meltwater hydrochemistry. Appl. Geochem. 17, 855–883 (2002).CAS 
    Article 

    Google Scholar 
    32.Goldstein, R. H. Fluid inclusions in sedimentary and diagenetic systems. Lithos 55, 159–193 (2001).CAS 
    Article 

    Google Scholar 
    33.Konnerup-Madsen, J. & Rose-Hansen, J. Volatiles associated with alkaline igneous rift activity – fluid inclusions in the Ilimaussaq intrusion and the Gardar granitic complexes (south Greenland). Chem. Geol. 37, 79–93 (1982).CAS 
    Article 

    Google Scholar 
    34.Keller, W. D. & Reesman, A. L. Glacial milks and their laboratory-simulated counterparts. Geol. Soci. Am. Bull. 74, 61–76 (1963).CAS 
    Article 

    Google Scholar 
    35.Walter, B. F., Steele-MacInnis, M. & Markl, G. Sulfate brines in fluid inclusions of hydrothermal veins: Compositional determinations in the system H2O-Na-Ca-Cl-SO4. Geochim. Cosmochim. Acta 209, 184–203 (2017).CAS 
    Article 

    Google Scholar 
    36.Tranter, M. et al. Geochemical weathering at the bed of Haut Glacier d’Arolla, Switzerland – a new model. Hydrol. Process. 16, 959–993 (2002).Article 

    Google Scholar 
    37.Sugahara, H., Takano, Y., Ogawa, N. O., Chikaraishi, Y. & Ohkouchi, N. Nitrogen isotopic fractionation in ammonia during adsorption on silicate surfaces. ACS Earth Space Chem. 1, 24–29 (2017).CAS 
    Article 

    Google Scholar 
    38.Kameda, J., Saruwatari, K. & Tanaka, H. H2 generation in wet grinding of granite and single-crystal powders and implications for H2 concentration on active faults. Geophys. Res. Lett. 30, 2063, https://doi.org/10.1029/2003gl018252 (2003).39.Martinelli, G. & Plescia, P. Carbon dioxide and methane emissions from calcareous-marly rock under stress: experimental tests results. Ann. Geophys. 48, 167–173 (2005).
    Google Scholar 
    40.Burke, E. A. J. Raman microspectrometry of fluid inclusions. Lithos 55, 139–158 (2001).CAS 
    Article 

    Google Scholar 
    41.Diamond, L. W. Review of the systematics of CO2–H2O fluid inclusions. Lithos 55, 69–99 (2001).CAS 
    Article 

    Google Scholar 
    42.Wang, Q., Shen, C., Chen, Q., Zhang, L. & Lu, H. Pore characteristics and gas released by crush methods of Wufeng-Longmaxi Shale in the Northwest of Hubei Province, China. Acta Geol. Sin. 89, 93–96 (2015).Article 

    Google Scholar 
    43.Martinelli, G. & Plescia, P. Mechanochemical dissociation of calcium carbonate: laboratory data and relation to natural emissions of CO2. Phys. Earth Planet. Inter. 142, 205–214 (2004).CAS 
    Article 

    Google Scholar 
    44.Etiope, G. & Ionescu, A. Low-temperature catalytic CO2 hydrogenation with geological quantities of ruthenium: a possible abiotic CH4 source in chromitite-rich serpentinized rocks. Geofluids 15, 438–452 (2015).CAS 
    Article 

    Google Scholar 
    45.Neubeck, A., Duc, N. T., Bastviken, D., Crill, P. & Holm, N. G. Formation of H2 and CH4 by weathering of olivine at temperatures between 30 and 70°C. Geochem. Trans. 12, 6 (2011).CAS 
    Article 

    Google Scholar 
    46.Hasegawa, M., Ogata, T. & Sato, M. Mechano-radicals produced from ground quartz and quartz glass. Powder Technol. 85, 269–274 (1995).CAS 
    Article 

    Google Scholar 
    47.Bak, E. N. et al. Production of reactive oxygen species from abraded silicates. Implications for the reactivity of the Martian soil. Earth Planet. Sci. Lett. 473, 113–121 (2017).CAS 
    Article 

    Google Scholar 
    48.Zhang, P., Yuan, S. & Liao, P. Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions. Geochim. Cosmochim. Acta 172, 444–457 (2016).CAS 
    Article 

    Google Scholar 
    49.Kaur, J. & Schoonen, M. A. Non-linear hydroxyl radical formation rate in dispersions containing mixtures of pyrite and chalcopyrite particles. Geochim. Cosmochim. Acta 206, 364–378 (2017).CAS 
    Article 

    Google Scholar 
    50.Hurowitz, J. A., Tosca, N. J., McLennan, S. M. & Schoonen, M. A. A. Production of hydrogen peroxide in Martian and lunar soils. Earth Planet. Sci. Lett. 255, 41–52 (2007).CAS 
    Article 

    Google Scholar 
    51.Kwan, W. P. & Voelker, B. M. Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite. Environ. Sci. Technol. 36, 1467–1476 (2002).CAS 
    Article 

    Google Scholar 
    52.Bottrell, S. H. & Tranter, M. Sulphide oxidation under partially anoxic conditions at the bed of the Haut Glacier d’Arolla, Switzerland. Hydrol. Process. 16, 2363–2368 (2002).Article 

    Google Scholar 
    53.Hawkings, J. R. et al. Biolabile ferrous iron bearing nanoparticles in glacial sediments. Earth Planet. Sci. Lett. 493, 92–101 (2018).CAS 
    Article 

    Google Scholar 
    54.Hawkings, J. R. et al. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nat. Commun. 5, 3929 (2014).CAS 
    Article 

    Google Scholar 
    55.Anastasio, C., Galbavy, E. S., Hutterli, M. A., Burkhart, J. F. & Friel, D. K. Photoformation of hydroxyl radical on snow grains at Summit, Greenland. Atmos. Environ. 41, 5110–5121 (2007).CAS 
    Article 

    Google Scholar 
    56.Anastasio, C. & Jordan, A. L. Photoformation of hydroxyl radical and hydrogen peroxide in aerosol particles from Alert, Nunavut: implications for aerosol and snowpack chemistry in the Arctic. Atmos. Environ. 38, 1153–1166 (2004).CAS 
    Article 

    Google Scholar 
    57.Whiticar, M. J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 161, 291–314 (1999).CAS 
    Article 

    Google Scholar 
    58.Bernard, B. B., Brooks, J. M. & Sackett, W. M. Light (C1-C3) hydrocarbons in shelf sediments of Gulf of Mexico. Trans. Am. Geophys. Union 57, 931 (1976).
    Google Scholar 
    59.Siegfried, M. R. & Fricker, H. A. Thirteen years of subglacial lake activity in Antarctica from multi-mission satellite altimetry. Ann. Glaciol. 59, 42–55 (2018).Article 

    Google Scholar 
    60.Fisher, A. T. et al. High geothermal heat flux measured below the West Antarctic Ice Sheet. Sci. Adv. 1, 9 (2015).Article 

    Google Scholar 
    61.Tulaczyk, S. et al. WISSARD at Subglacial Lake Whillans, West Antarctica: scientific operations and initial observations. Ann. Glaciol. 55, 51–58 (2014).Article 

    Google Scholar 
    62. Alley, R. B., Blankenship, D. D., Bentley, C. R. & Rooney, S. T. Till beneath ice stream B. 3. Till deformation: evidence and implications. J. Geophys. Res.-Solid Earth Planets 92, 8921–8929 (1987).Article 

    Google Scholar 
    63.Fricker, H. A. & Scambos, T. Connected subglacial lake activity on lower Mercer and Whillans Ice Streams, West Antarctica, 2003-2008. J. Glaciol. 55, 303–315 (2009).Article 

    Google Scholar 
    64.Alley, R. B., Blankenship, D. D., Bentley, C. R. & Rooney, S. T. Deformation of till beneath ice stream B, West Antarctica. Nature 322, 57–59 (1986).Article 

    Google Scholar 
    65.Vick-Majors, T. J. et al. Biogeochemical connectivity between freshwater ecosystems beneath the West Antarctic Ice Sheet and the sub-ice marine environment. Global Biogeochem. Cycles 34, 17 (2020).Article 
    CAS 

    Google Scholar 
    66.Christianson, K., Jacobel, R. W., Horgan, H. J., Anandakrishnan, S. & Alley, R. B. Subglacial Lake Whillans – Ice-penetrating radar and GPS observations of a shallow active reservoir beneath a West Antarctic ice stream. Earth Planet. Sci. Lett. 331, 237–245 (2012).Article 
    CAS 

    Google Scholar 
    67.Horgan, H. J. et al. Subglacial Lake Whillans – Seismic observations of a shallow active reservoir beneath a West Antarctic ice stream. Earth Planet. Sci. Lett. 331, 201–209 (2012).Article 
    CAS 

    Google Scholar 
    68.Fricker, H. A., Scambos, T., Bindschadler, R. & Padman, L. An active subglacial water system in West Antarctica mapped from space. Science 315, 1544 (2007).CAS 
    Article 

    Google Scholar 
    69.Priscu, J. C. et al. A microbiologically clean strategy for access to the Whillans Ice Stream subglacial environment. Antarct. Sci. 25, 637–647 (2013).Article 

    Google Scholar 
    70.Michaud, A. B. et al. Environmentally clean access to Antarctic subglacial aquatic environments. Antarct. Sci. 32, 329–340 (2020).Article 

    Google Scholar 
    71.Viollier, E., Inglett, P. W., Hunter, K., Roychoudhury, A. N. & Van Cappellen, P. The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Appl. Geochem. 15, 785–790 (2000).CAS 
    Article 

    Google Scholar 
    72.Parkhurst, D. L. & Appelo, C. J. User’s guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resources Investigations Report 99-4259, 312 (1999).73.Baga, A. N., Johnson, G. R. A., Nazhat, N. B. & Saadalla-Nazhat, R. A. A simple spectrophotometric determination of hydrogen peroxide at low concentrations in aqueous solution. Anal. Chim. Acta 204, 349–353 (1988).CAS 
    Article 

    Google Scholar 
    74.Miller, B. R. et al. Medusa: A Sample Preconcentration and GC/MS Detector System for in Situ Measurements of Atmospheric Trace Halocarbons, Hydrocarbons, and Sulfur Compounds. Anal Chem. 80, 1536–1545 (2008).75.Arnold, T. Nitrogen trifluoride global emissions estimated from updated atmospheric measurements. Proc Natl Acad Sci. 110, 2029–2034 (2013).76.UC Davis Stable Isotope Facility. Analysis of Carbon Dioxide (CO2) by GasBench-IRMS, https://stableisotopefacility.ucdavis.edu/co2.html (2018).77.UC Davis Stable Isotope Facility. Analysis of Methane (CH4) by GasBench-Precon-IRMS, https://stableisotopefacility.ucdavis.edu/ch4.html (2018).78.Yarnes, C. δ13C and δ2H measurement of methane from ecological and geological sources by gas chromatography/combustion/pyrolysis isotope-ratio mass spectrometry. Rapid Commun. Mass Spectrom. 27, 1036–1044 (2013).CAS 
    Article 

    Google Scholar 
    79.Matsuoka, K., Skoglund, A., & Roth, G. Quantarctica3 (Norwegian Polar Institute, 2018).80.Haran, T., Bohlander, J., Scambos, T., Painter, T. & Fahnestock, M. MODIS Mosaic of 883 Antarctica 2003-2004 (MOA2004) Image Map, Version 1 (NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado USA., 2005).81.Smith, B., Joughin, I., Tulaczyk, S. & Fricker, H. A. Antarctic Active Subglacial Lake Inventory 887 from ICESat Altimetry, Version 1 (NSIDC: National Snow and Ice Data Center, Boulder, Colorado USA., 2012). More

  • in

    Alkalinity cycling and carbonate chemistry decoupling in seagrass mystify processes of acidification mitigation

    1.Waldbusser, G. G. & Salisbury, J. E. Ocean acidification in the coastal zone from an Organism’s perspective: Multiple system parameters, frequency domains, and habitats. Annu. Rev. Mar. Sci. 6, 221–247 (2014).ADS 
    Article 

    Google Scholar 
    2.Duarte, C. M. et al. Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH. Estuaries Coasts 36, 221–236 (2013).CAS 
    Article 

    Google Scholar 
    3.Johnson, Z. I. et al. Dramatic variability of the carbonate system at a temperate coastal ocean site (Beaufort, North Carolina, USA) is regulated by physical and biogeochemical processes on multiple timescales. PLoS ONE 8, e85117 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    4.Baumann, H. & Smith, E. M. Quantifying metabolically driven ph and oxygen fluctuations in US nearshore habitats at diel to interannual time scales. Estuaries Coasts 41, 1102–1117 (2018).CAS 
    Article 

    Google Scholar 
    5.Carstensen, J. & Duarte, C. M. Drivers of pH variability in coastal ecosystems. Environ. Sci. Technol. 53, 4020–4029 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Clark, H. R. & Gobler, C. J. Diurnal fluctuations in CO2 and dissolved oxygen concentrations do not provide a refuge from hypoxia and acidification for early-life-stage bivalves. Mar. Ecol. Prog. Ser. 558, 1–14 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    7.Mangan, S., Urbina, M. A., Findlay, H. S., Wilson, R. W. & Lewis, C. Fluctuating seawater pH/pCO2 regimes are more energetically expensive than static pH/pCO2 levels in the mussel Mytilus edulis. Proc. R. Soc. B Biol. Sci. 284, 20171642 (2017).Article 
    CAS 

    Google Scholar 
    8.Hauri, C., Gruber, N., McDonnell, A. M. P. & Vogt, M. The intensity, duration, and severity of low aragonite saturation state events on the California continental shelf. Geophys. Res. Lett. 40, 3424–3428 (2013).ADS 
    Article 

    Google Scholar 
    9.Pacella, S. R., Brown, C. A., Waldbusser, G. G., Labiosa, R. G. & Hales, B. Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification. Proc. Natl. Acad. Sci. U. S. A. 115, 3870–3875 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Adelsman, H. & Whitely Binder, L. Ocean Acidification: From Knowledge to Action, Washington State’s Strategic Response. Washington State Blue Ribbon Panel on Ocean Acidification. (Washington Department of Ecology, Olympia, Washington, 2012).11.Nielsen, K. et al. Emerging Understanding of the Potential Role of Seagrass and Kelp as an Ocean Acidification Management Tool in California (California Ocean Science Trust, Oakland, CA, 2018).12.Ekstrom, J. A. et al. Vulnerability and adaptation of US shellfisheries to ocean acidification. Nat. Clim. Change 5, 207–214 (2015).ADS 
    Article 

    Google Scholar 
    13.Koweek, D. A. et al. Expected limits on the ocean acidification buffering potential of a temperate seagrass meadow. Ecol. Appl. 28, 1694–1714 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Miller, C. A., Yang, S. & Love, B. A. Moderate increase in TCO2 enhances photosynthesis of seagrass Zostera japonica, but not Zostera marina: Implications for acidification mitigation. Front. Mar. Sci. 4, 2 (2017).Article 

    Google Scholar 
    15.Cyronak, T. et al. Short-term spatial and temporal carbonate chemistry variability in two contrasting seagrass meadows: Implications for pH buffering capacities. Estuaries Coasts 41, 1282–1296 (2018).CAS 
    Article 

    Google Scholar 
    16.Unsworth, R. K. F., Collier, C. J., Henderson, G. M. & McKenzie, L. J. Tropical seagrass meadows modify seawater carbon chemistry: Implications for coral reefs impacted by ocean acidification. Environ. Res. Lett. 7, 024026 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    17.Hendriks, I. E. et al. Photosynthetic activity buffers ocean acidification in seagrass meadows. Biogeosciences 11, 333–346 (2014).ADS 
    Article 
    CAS 

    Google Scholar 
    18.Greiner, C. M., Klinger, T., Ruesink, J. L., Barber, J. S. & Horwith, M. Habitat effects of macrophytes and shell on carbonate chemistry and juvenile clam recruitment, survival, and growth. J. Exp. Mar. Biol. Ecol. 509, 8–15 (2018).CAS 
    Article 

    Google Scholar 
    19.Groner, M. L. et al. Oysters and eelgrass: Potential partners in a high pCO2 ocean. Ecology 99, 1802–1814 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Waldbusser, G. G. et al. Ocean acidification has multiple modes of action on bivalve larvae. PLoS ONE 10, e0128376 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    21.Hurd, C. L. et al. Ocean acidification as a multiple driver: How interactions between changing seawater carbonate parameters affect marine life. Mar. Freshw. Res. 71, 263–274 (2020).CAS 
    Article 

    Google Scholar 
    22.Hales, B., Suhrbier, A., Waldbusser, G. G., Feely, R. A. & Newton, J. A. The carbonate chemistry of the “Fattening Line,” Willapa Bay, 2011–2014. Estuaries Coasts 1–14 (2016).23.Ricart, A. M. et al. Coast-wide evidence of low pH amelioration by seagrass ecosystems. Glob. Change Biol. 27, 2580–2591 (2021).ADS 
    Article 

    Google Scholar 
    24.Hoppe, C. J. M., Langer, G., Rokitta, S. D., Wolf-Gladrow, D. A. & Rost, B. Implications of observed inconsistencies in carbonate chemistry measurements for ocean acidification studies. Biogeosciences 9, 2401–2405 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    25.Buapet, P., Gullström, M. & Björk, M. Photosynthetic activity of seagrasses and macroalgae in temperate shallow waters can alter seawater pH and total inorganic carbon content at the scale of a coastal embayment. Mar. Freshw. Res. 2, 2 (2013).
    Google Scholar 
    26.Waldbusser, G. G. et al. Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nat. Clim. Change 5, 273–280 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    27.Comeau, S., Carpenter, R. C. & Edmunds, P. J. Coral reef calcifiers buffer their response to ocean acidification using both bicarbonate and carbonate. Proc. R. Soc. B-Biol. Sci. 280, 20122374 (2013).CAS 
    Article 

    Google Scholar 
    28.Kawahata, H. et al. Perspective on the response of marine calcifiers to global warming and ocean acidification—Behavior of corals and foraminifera in a high CO2 world “hot house”. Prog. Earth Planet. Sci. 6, 5 (2019).Article 

    Google Scholar 
    29.Ries, J. B. A physicochemical framework for interpreting the biological calcification response to CO2-induced ocean acidification. Geochim. Cosmochim. Acta 75, 4053–4064 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    30.Raven, J. A., Giordano, M., Beardall, J. & Maberly, S. C. Algal evolution in relation to atmospheric CO2: Carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philos. Trans. R. Soc. B Biol. Sci. 367, 493–507 (2012).CAS 
    Article 

    Google Scholar 
    31.Vieira, S., Cartaxana, P., Máguas, C. & Marques da Silva, J. Photosynthesis in estuarine intertidal microphytobenthos is limited by inorganic carbon availability. Photosynth. Res. 128, 85–92 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Egleston, E. S., Sabine, C. L. & Morel, F. M. M. Revelle revisited: Buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity. Glob. Biogeochem. Cycles 24, GB1002 (2010).ADS 
    Article 
    CAS 

    Google Scholar 
    33.Cyronak, T., Santos, I. R., McMahon, A. & Eyre, B. D. Carbon cycling hysteresis in permeable carbonate sands over a diel cycle: Implications for ocean acidification. Limnol. Oceanogr. 58, 131–143 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Burdige, D. J. & Zimmerman, R. C. Impact of sea grass density on carbonate dissolution in Bahamian sediments. Limnol. Oceanogr. 47, 1751–1763 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Chou, W.-C. et al. A Unique Diel Pattern in Carbonate Chemistry in the Seagrass Meadows of Dongsha 1 Island: implications for ocean acidification buffering. ESSOAr. https://doi.org/10.1002/essoar.10504715.1 (2020).36.Su, J. et al. Chesapeake Bay acidification buffered by spatially decoupled carbonate mineral cycling. Nat. Geosci. 13, 441–447 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    37.Enríquez, S. & Schubert, N. Direct contribution of the seagrass Thalassia testudinum to lime mud production. Nat. Commun. 5, 3835 (2014).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    38.Currin, C., Brewer, J. & Delano, P. Tide Flat Microphytobenthos: Biomass Distribution, Community Composition and Trophic Role in a Macrotidal Alaskan Estuary (National Centers for Coastal Ocean Science, Beaufort, NC, 2002).39.Martin, S. et al. Comparison of Zostera marina and maerl community metabolism. Aquat. Bot. 83, 161–174 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    40.Ries, J. B., Ghazaleh, M. N., Connolly, B., Westfield, I. & Castillo, K. D. Impacts of seawater saturation state (ΩA = 0.4–4.6) and temperature (10, 25 °C) on the dissolution kinetics of whole-shell biogenic carbonates. Geochim. Cosmochim. Acta 192, 318–337 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    41.Brewer, P. G. & Goldman, J. C. Alkalinity changes generated by phytoplankton growth1. Limnol. Oceanogr. 21, 108–117 (1976).ADS 
    CAS 
    Article 

    Google Scholar 
    42.Gazeau, F., Urbini, L., Cox, T. E., Alliouane, S. & Gattuso, J.-P. Comparison of the alkalinity and calcium anomaly techniques to estimate rates of net calcification. Mar. Ecol. Prog. Ser. 527, 1–12 (2015).ADS 
    Article 
    CAS 

    Google Scholar 
    43.Wolf-Gladrow, D. A., Zeebe, R. E., Klaas, C., Körtzinger, A. & Dickson, A. G. Total alkalinity: The explicit conservative expression and its application to biogeochemical processes. Mar. Chem. 106, 287–300 (2007).CAS 
    Article 

    Google Scholar 
    44.Cai, W.-J., Wang, Y. & Hodson, R. E. Acid-base properties of dissolved organic matter in the estuarine waters of Georgia, USA. Geochim. Cosmochim. Acta 62, 473–483 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    45.Ko, Y. H., Lee, K., Eom, K. H. & Han, I.-S. Organic alkalinity produced by phytoplankton and its effect on the computation of ocean carbon parameters. Limnol. Oceanogr. 61, 1462–1471 (2016).ADS 
    Article 

    Google Scholar 
    46.Invers, O., Zimmerman, R. C., Alberte, R. S., Pérez, M. & Romero, J. Inorganic carbon sources for seagrass photosynthesis: an experimental evaluation of bicarbonate use in species inhabiting temperate waters. J. Exp. Mar. Biol. Ecol. 265, 203–217 (2001).CAS 
    Article 

    Google Scholar 
    47.Sand-Jensen, K. & Gordon, D. M. Differential ability of marine and freshwater macrophytes to utilize HCO3- and CO2. Mar. Biol. 80, 247–253 (1984).CAS 
    Article 

    Google Scholar 
    48.Larkum, A. W. D., Davey, P. A., Kuo, J., Ralph, P. J. & Raven, J. A. Carbon-concentrating mechanisms in seagrasses. J. Exp. Bot. 68, 3773–3784 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Rubio, L. et al. Direct uptake of HCO3- in the marine angiosperm Posidonia oceanica (L.) Delile driven by a plasma membrane H+ economy. Plant Cell Environ. 40, 2820–2830 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Fernández, J. A., García-Sánchez, M. J. & Felle, H. H. Physiological evidence for a proton pump and sodium exclusion mechanisms at the plasma membrane of the marine angiosperm Zostera marina L. J. Exp. Bot. 50, 1763–1768 (1999).
    Google Scholar 
    51.Berg, P. et al. Dynamics of benthic metabolism, O2, and pCO2 in a temperate seagrass meadow. Limnol. Oceanogr. 64, 2586–2604 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    52.Buapet, P., Rasmusson, L. M., Gullstrom, M. & Bjork, M. Photorespiration and carbon limitation determine productivity in temperate seagrasses. PLoS ONE 8, e83804 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    53.Garcı́a-Sánchez, M. J., Jaime, M. P., Ramos, A., Sanders, D. & Fernández, J. ,. Sodium-dependent nitrate transport at the plasma membrane of leaf cells of the marine higher plant Zostera marina L. Plant Physiol. 122, 879–886 (2000).Article 

    Google Scholar 
    54.Drechsler, Z. & Beer, S. Utilization of inorganic carbon by Ulva lactuca. Plant Physiol. 97, 1439–1444 (1991).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Ribas-Ribas, M. et al. Effects of upwelling, tides and biological processes on the inorganic carbon system of a coastal lagoon in Baja California. Estuar. Coast. Shelf Sci. 95, 367–376 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    56.Omarjee, A., Taljaard, S., Weerts, S. P. & Adams, J. B. The influence of mouth status on pH variability in small temporarily closed estuaries. Estuar. Coast. Shelf Sci. 246, 107043 (2020).CAS 
    Article 

    Google Scholar 
    57.McCutcheon, M. R., Staryk, C. J. & Hu, X. Characteristics of the carbonate system in a semiarid estuary that experiences summertime hypoxia. Estuaries Coasts. 42, 1509–1523 (2019).CAS 
    Article 

    Google Scholar 
    58.Miller, C. A. & Kelley, A. L. Seasonality and biological forcing modify the diel frequency of nearshore pH extremes in a subarctic Alaskan estuary. Limnol. Oceanogr. 66, 1475–1491 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    59.Moxham, R. M. & Nelson, A. E. Trace Elements Reconnaissance in the Jakolof Bay Area, Southern Alaska (United States Department of Interior, Geological Survey, 1950).60.Hartwell, S. I., Dasher, D. & Lomax, T. Characterization of Benthic Habitats and Contaminant Assessment in Kenai Peninsula Fjords and Bays (NOAA Technical Memorandum NOS NCCOS, 2016).61.Lueker, T. J., Dickson, A. G. & Keeling, C. D. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: Validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar. Chem. 70, 105–119 (2000).CAS 
    Article 

    Google Scholar 
    62.Dickson, A. Thermodynamics of the Dissociation of Boric-Acid in Synthetic Seawater from 273.15-K to 318.15-K. Deep-Sea Res. Part Oceanogr. Res. Pap. 37, 755–766 (1990).ADS 
    CAS 
    Article 

    Google Scholar 
    63.Uppström, L. R. The boron/chlorinity ratio of deep-sea water from the Pacific Ocean. Deep Sea Res. Oceanogr. Abstr. 21, 161–162 (1974).ADS 
    Article 

    Google Scholar  More

  • in

    Stresses affect inbreeding depression in complex ways: disentangling stress-specific genetic effects from effects of initial size in plants

    Angeloni F, Ouborg NJ, Leimu R (2011) Meta-analysis on the association of population size and life history with inbreeding depression in plants. Biol Conserv 144:35–43Article 

    Google Scholar 
    Armbruster P, Reed DH (2005) Inbreeding depression in benign and stressful environments. Heredity 95:235–242CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Barrett SCH (2010) Understanding plant reproductive diversity. Philos Trans R Soc B 365:99–109Article 

    Google Scholar 
    Bierne N, Tsitrone A, David P (2000) An inbreeding model of associative overdominance during a population bottleneck. Genetics 155:1981–1990CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bijlsma R, Bundgaard J, van Putten WF (1999) Environmental dependence of inbreeding depression and purging in Drosophila melanogaster. J Evol Biol 12:1125–1137Article 

    Google Scholar 
    Brown KE, Kelly JK (2019) Severe inbreeding depression is predicted by the “rare allele load” in Mimulus guttatus. Evolution 74:587–596PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Byers DL, Waller DM (1999) Do plant populations purge their genetic load? Effects of population size and mating history on inbreeding depression. Annu Rev Ecol Syst 30:479–513Article 

    Google Scholar 
    Campbell SA, Halitschke R, Thaler JS, Kessler A (2014) Plant mating systems affect adaptive plasticity in response to herbivory. Plant J 78:481–490CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Carleial S, van Kleunen M, Stift M (2017) Relatively weak inbreeding depression in selfing but also in outcrossing populations of North American Arabidopsis lyrata. J Evol Biol 30:1994–2004CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Charlesworth B (2018) Mutational load, inbreeding depression and heterosis in subdivided populations. Mol Ecol 27:4991–5003PubMed 
    Article 

    Google Scholar 
    Charlesworth D, Willis JH (2009) The genetics of inbreeding depression. Nat Rev Genet 10:783–796CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cheptou PO, Imbert E, Lepart J, Escarre J (2000) Effects of competition on lifetime estimates of inbreeding depression in the outcrossing plant Crepis sancta (Asteraceae). J Evol Biol 13:522–531Article 

    Google Scholar 
    Cheptou P-O, Donohue K (2011) Environment-dependent inbreeding depression. Its ecological and evolutionary significance. N. Phytol 189:395–407Article 

    Google Scholar 
    Cheptou P-O, Lepart J, Escarré J (2001) Inbreeding depression under intraspecific competition in a highly outcrossing population of Crepis sancta (Asteraceae). Evidence for frequency‐dependent variation. Am J Bot 88:1424–1429CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Colmer TD, Voesenek LACJ (2009) Flooding tolerance. Suites of plant traits in variable environments. Funct Plant Biol 36:665CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Crow JF (1958) Some possibilities for measuring selection intensities in man. Hum Biol 30:1–13CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Darwin C (1878) The effects of cross and self fertilisation in the vegetable kingdom, 2nd edn. John Murray, London, UKBook 

    Google Scholar 
    Diekmann M (2003) Species indicator values as an important tool in applied plant ecology—a review. Basic Appl Ecol 4:493–506Article 

    Google Scholar 
    Dudash MR (1990) Relative fitness of selfed and outcrossed progeny in a self-compatible, protandrous species, Sabatia angularis L. (Gentianaceae). A comparison in three environments. Evolution 44:1129–1139PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Eckert CG, Barrett SCH (1994) Inbreeding depression in partially self-fertilizing Decodon verticillatus (Lythraceae). Population-genetic and experimental analyses. Evolution 48:952–964PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Ellenberg H, Weber HE, Dull R, Wirth V, Werner W, Paulissen D (2001) Zeigerwerte von Pflanzen in Mitteleuropa, 3rd edn. Erich Goltze, Göttingen
    Google Scholar 
    Fox CW, Reed DH (2011) Inbreeding depression increases with environmental stress. An experimental study and meta-analysis. Evolution 65:246–258PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Glémin S (2003) How are deleterious mutations purged? Drift versus nonrandom mating. Evolution 57:2678–2687PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    González AM, Ron AM, de, Lores M, Santalla M (2014) Effect of the inbreeding depression in progeny fitness of runner bean (Phaseolus coccineus L.) and it is implications for breeding. Euphytica 200:413–428Article 

    Google Scholar 
    Hedrick PW, Kalinowski ST (2000) Inbreeding depression in conservation biology. Annu Rev Ecol Syst 31:139–162Article 

    Google Scholar 
    Hilbig W (1975) Übersicht über die Pflanzengesellschaften des südlichen Teiles der DDR XII – Die Großseggenrieder. Hercynia 12:341–356
    Google Scholar 
    Husband BC, Schemske DW (1996) Evolution of the magnitude and timing of inbreeding depression in plants. Evolution 50:54–70PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Ivey CT, Carr DE (2005) Effects of herbivory and inbreeding on the pollinators and mating system of Mimulus guttatus (Phrymaceae). Am J Bot 92:1641–1649PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Keller LF, Grant PR, Grant BR, Petren K (2002) Environmental conditions affect the magnitude of inbreeding depression in survival of Darwin’s finches. Evolution 56:1229–1239PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241Article 

    Google Scholar 
    Kéry M, Matthies D, Spillmann H-H (2000) Reduced fecundity and offspring performance in small populations of the declining grassland plants Primula veris and Gentiana lutea. J Ecol 88:17–30Article 

    Google Scholar 
    Kondrashov AS, Houle D (1997) Genotype—environment interactions and the estimation of the genomic mutation rate in Drosophila melanogaster. Proc R Soc Lond B Biol Sci 258:221–227
    Google Scholar 
    Li Y, van Kleunen M, Stift M (2019) Sibling competition does not magnify inbreeding depression in North American Arabidopsis lyrata. Heredity 123:723–732PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Assoc., Sunderland, MA,
    Google Scholar 
    O’Grady JJ, Brook BW, Reed DH, Ballou JD, Tonkyn DW, Frankham R (2006) Realistic levels of inbreeding depression strongly affect extinction risk in wild populations. Biol Conserv 133:42–51Article 

    Google Scholar 
    Oberdorfer E, Schwabe A (2001) Pflanzensoziologische Exkursionsflora. Für Deutschand und angrenzende Gebiete, 8th edn. E. Ulmer, Stuttgart
    Google Scholar 
    Reed DH, Fox CW, Enders LS, Kristensen TN (2012) Inbreeding-stress interactions. Evolutionary and conservation consequences. Ann N. Y Acad Sci 1256:33–48PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Rehling F, Matthies D, Sandner TM (2019) Responses of a legume to inbreeding and the intensity of novel and familiar stresses. Ecol Evol 9:1255–1267PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rosche C, Hensen I, Lachmuth S (2018) Local pre-adaptation to disturbance and inbreeding-environment interactions affect colonisation abilities of diploid and tetraploid Centaurea stoebe. Plant Biol 20:75–84CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Sandner TM, Matthies D (2016) The effects of stress intensity and stress type on inbreeding depression in Silene vulgaris. Evolution 70:1225–1238PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Sandner TM, Matthies D (2017) Interactions of inbreeding and stress by poor host quality in a root hemiparasite. Ann Bot 119:143–150PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Sandner TM, Matthies D (2018) Inbreeding limits responses to environmental stress in Silene vulgaris. Environ Exp Bot 147:86–94Article 

    Google Scholar 
    Schmitt J, Eccleston J, Ehrhardt DW (1987) Dominance and suppression, size-dependent growth and self-thinning in a natural Impatiens capensis population. J Ecol 75:651Article 

    Google Scholar 
    Schmitt J, Ehrhardt DW (1990) Enhancement of inbreeding depression by dominance and suppression in Impatiens capensis. Evolution 44:269–278PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Schrieber K, Schweiger R, Kröner L, Müller C, Campbell H (2019) Inbreeding diminishes herbivore-induced metabolic responses in native and invasive plant populations. J Ecol 107:923–936Article 

    Google Scholar 
    Truscott A-M, Soulsby C, Palmer SCF, Newell L, Hulme PE (2006) The dispersal characteristics of the invasive plant Mimulus guttatus and the ecological significance of increased occurrence of high-flow events. J Ecol 94:1080–1091Article 

    Google Scholar 
    Walisch TJ, Colling G, Poncelet M, Matthies D (2012) Effects of inbreeding and interpopulation crosses on performance and plasticity of two generations of offspring of a declining grassland plant. Am J Bot 99:1300–1313PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Waller DM (1985) The genesis of size hierarchies in seedling populations of Impatiens capensis Meerb. N. Phytol 100:243–260Article 

    Google Scholar 
    Waller DM, Dole J, Bersch AJ (2008) Effects of stress and phenotypic variation on inbreeding depression in Brassica rapa. Evolution 62:917–931PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Waples RS (2020) An estimator of the Opportunity for Selection that is independent of mean fitness. Evolution 74:1942–1953PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Weigel KA (2001) Controlling inbreeding in modern breeding programs. J Dairy Sci 84:E177–E184CAS 
    Article 

    Google Scholar 
    Weiner J (1985) Size hierarchies in experimental populations of annual plants. Ecology 66:743–752Article 

    Google Scholar 
    Willi Y, Dietrich S, van Kleunen M, Fischer M (2007) Inter-specific competitive stress does not affect the magnitude of inbreeding depression. Evol Ecol Res 9:959–974
    Google Scholar 
    Willis JH (1993) Partial self-fertilization and inbreeding depression in two populations of Mimulus guttatus. Heredity 71:145–154Article 

    Google Scholar 
    Wright S (1922) Coefficients of inbreeding and relationship. Am Nat 56:330–338Article 

    Google Scholar 
    Yun L, Agrawal AF (2014) Variation in the strength of inbreeding depression across environments. Effects of stress and density dependence. Evolution 68:3599–3606PubMed 
    Article 

    Google Scholar  More

  • in

    Phylogenomics illuminates the evolution of bobtail and bottletail squid (order Sepiolida)

    Genome skimming provides robust phylogenyPioneering molecular phylogenetic studies in Sepiolida that used short regions of a few mitochondrial and nuclear genes failed to resolve the relationship of major clades9,22,23. To increase the number of phylogenetically informative sites, Sanchez et al.11 sequenced and analyzed the transcriptomes of multiple species of Euprymna Steenstrup, 1887, related bobtail squids including Sepiola parva Sasaki, 1913 and Sepiola birostrata Sasaki, 1918, and several bottletail squids. They found that S. parva grouped with the Euprymna species to the exclusion of S. birostrata, and further morphological analysis led to the formal redefinition of the genus Euprymna and the reassignment of S. parva Sasaki, 1913 to Euprymna parva11. The following year, in an exhaustive study of hectocotylus structure, Bello19 proposed that Euprymna be split back into the original Euprymna Steenstrup, 1998 and a newly defined genus, Eumandya Bello 2020 that contains E. parva Sasaki, 1913 and E. pardalota Reid 2011, two taxa whose arms have two rows of suckers rather than four as in other Euprymna species. Similarly, Bello introduced a new genus, Lusepiola Bello, 2020 that has the effect of renaming Sepiola birostrata Sasaki, 1918 as Lusepiola birostrata. For clarity, we adopt the finer-grained nomenclature of Bello below, but happily note that E. parva and E. pardalota have the same abbreviations in both the notation of Sanchez et al.11 and Bello19.Sanchez et al.11 also emphasized the need for more taxon sampling, careful species assignment, and the inclusion of more informative sites when studying this group of cephalopods. However, the distribution and lifestyle of many lineages of Sepiolida makes the collection of fresh tissue for RNA sequencing very challenging. To overcome this limitation, we sequenced the genomic DNA of several Sepiolida species at shallow coverage up to 3.6× and accessed by this way several mitochondrial and nuclear loci. Most of our samples were carefully identified at the species level based on morphological characters.We recovered the mitochondrial genomes of the species targeted in this study and annotated the 13 protein-coding genes, 22 tRNAs, and two rRNAs (although only the conserved region of the large and small rRNA was obtained for Rondeletiola minor Naef, 1912).Additionally, we also downloaded the complete mitochondrial genomes of S. austrinum and Idiosepius sp., and the transcriptome of E. tasmanica available in the NCBI database. The transcriptome of E. tasmanica was used to extract its complete set of mitochondrial protein-coding genes. We could reconstruct the mitochondrial gene order for all species with complete mtDNA genomes, but we observed no re-arrangement for members of Sepiolidae, and only Sepiadarium austrinum deviated from the arrangement seen in all other Sepiadariidae (Fig. S1).To complement the mitochondrial-based evolutionary history, we also annotated several nuclear loci. As ribosomal gene clusters are present in numerous copies, they were successfully retrieved for almost all the species, except for 28S of the Sepiadariidae sp. specimen, which appeared problematic and was excluded.By mapping reads to the reference genome of E. scolopes, we obtained 3,279,410 loci shared between at least two species and further selected 5215 loci presented in most of our Sepiolidae species, but allowed some missing data in the Euprymna + Eumandya clade. This was done because the phylogenetic relationships of the Euprymna + Eumandya species were previously described in detail in Sanchez et al.11 using transcriptome data. Out of the 5215 loci, 5164 loci had a per-site coverage ranging between two and five. After trimming and removal of regions without informative sites, 577 loci remained. These ultraconserved loci had lengths ranging between 10 and 690 base pairs (bp), with an average of 65 bp. Our alignment matrix had a length of 37,512 bp and consisted of 16,495 distinct site patterns, and variable sites between 1 and 130 bp with an average value of 7 bp. We expected a low value of variable sites because these regions are highly conserved.We considered resolved nodes to be those with the ultrafast bootstrap support and posterior probability larger than 95% and 0.9, respectively. Only the very unresolved nodes were found based on the mito_nc matrix (Fig. 1). However, among the species in these nodes, Adinaefiola ligulata Naef, 1912 was well supported with amino acid sequences from mitochondrial genes (posterior probability of 1 and 94% bootstrap support) and partially by the ultraconserved loci (posterior probability of 1, but only 85% bootstrap support) as sister to the Sepiola clade (Figs. 2 and S2). Moreover, compared to the mito_nc matrix and with identical topology, mito_aa and UCEbob fully resolved the relationship of the Indo-Pacific and Mediterranean Sea Sepiolinae. The tree generated by the nuclear_rRNA produces a topology with most nodes unsupported (Fig. S3), suggesting these markers are too conserved for assessing the relationships among this group.Fig. 1: Phylogeny of Sepiolida based on nucleotide sequences from the mitochondria (mt_nc matrix).The topology of the maximum likelihood tree is shown. Numbers by the nodes indicate bootstrap support and the Bayesian posterior probabilities. Values of bootstrap support and posterior probabilities above 95% and 0.95, respectively, are not shown. (*) indicates that the node was resolved with the mito_aa and UCEbob matrices. (+) indicate that A. ligulata is sister to Sepiola using mito_aa with ultrafast bootstrap support of 94% and a posterior probability of 1. Abbreviations: IP, Indo-Pacific Ocean; MA, Mediterranean Sea, and the Atlantic Ocean.Full size imageFig. 2: Phylogenetic tree of Sepiolida based on conserved nuclear loci (UCEbob matrix).The topology of the maximum likelihood tree is shown. Numbers in by the nodes indicate the bootstrap support and the Bayesian posterior probability. Values of bootstrap support and posterior probabilities above 95% and 0.95, respectively, are not shown. IP, Indo-Pacific Ocean; MA, Mediterranean Sea, and the Atlantic Ocean.Full size imageUsing the UCEbob matrix, the topology and supported relationships of Euprymna + Eumandya species resemble those reported in Sanchez et al.11 using transcriptome sequences, proving our protocol valid when using low coverage sequencing and when a reference genome of the closest related species is available.The position of R. minor showed discordance between mitochondrial and nuclear datasets. Using the mitochondrial matrices, R. minor rendered the Sepietta Naef, 1912 clade paraphyletic, whereas using the UCEbob and rRNA_nc matrices, R. minor appeared sister to the Sepietta clade. These relationships were resolved in both mitochondrial and nuclear-based trees and require further investigation with more DNA markers and a wider population sampling.Molecular systematics of Sepiolida cladesUsing the complete mitochondrial genome, ribosomal nuclear genes, and ultraconserved loci, we recovered the monophyly of the two families of the order Sepiolida—Sepiadariidae and Sepiolidae9,24—and the monophyly of the three described subfamilies of the family Sepiolinae. However, contrary to what is proposed based on morphology in Young24, the Rossinae is not sister to all the remaining Sepiolidae but rather is sister to Heteroteuthinae, although this is unresolved in the UCE phylogeny. With the lack of systematic work on these subfamilies, our robust phylogenetic backbone in Sepiolida using new samples carefully identified by morphology and with museum vouchers, represents a notable advance to clarify the evolution of morphological traits in major clades within the family.Based on morphological characters of the hectocotylus, Bello19 recently split the polyphyletic Sepiola Leach 1817 into Lusepiola, Adinaefiola, and Boletzkyola, reserving Sepiola for the S. atlantica group sensu Naef 1923. These newly defined clades are consistent with our molecular phylogeny here and in Sanchez11, who also noted the polyphyly of Sepiola in the Indo-Pacific lineage.We find that Sepiolinae can be robustly split into two geographically distinct tribes: one that comprises species with known distribution in the Indo-Pacific region (tribe Euprymmini new tribe, defined as Sepiolinae with a closed bursa copulatrix, type genus Euprymna) and the other including all the Mediterranean and Atlantic species (tribe Sepiolini Appellof, 1989, defined here as Sepiolinae with an open bursa copulatrix, type genus Sepiola). Our molecular relationship is consistent with 13 of the 15 apomorphies used in the cladogram shown in Fig. 21 in Bello19. The other two proposed apomorphies in Bello (his apomorphic characters 4 and 6) group two IP lineages, Lusepiola and Inioteuthis, in a clade with species from the Mediterranean and Atlantic. Such relationships contradict our Euprymmini-Sepiolini sister relationship. Moreover, according to our phylogeny, apomorphy 6 of Bello, characterized by the participation of ventral and dorsal pedicels in the formation of the hectocotylus copulatory apparatus, implies that the male ancestor of Sepiolinae had a more developed hectocotylus that was simplified in the Euprymna and Eumandya clades.Among euprymins, we confirmed the monophyly of Euprymna Steenstrup 1887 as found previously by transcriptome analysis11. We also support the monophyly of Eumandya Bello, 2020 (Figs. 1 and 2), grouping the type species E. pardalota with E. parva along with the unnamed “Type 1” Ryukyuan species of Sanchez et al.11, for which only hatchlings were available. The phylogenomic grouping of Ryukyuan “Type 1” with Eumandya suggests that when its adults are found (or hatchlings are raised to maturity), its arms will carry two rows of suckers. We also found an adult of a Ryukyuan “Type 4” (extending the notation of Sanchez et al.11 in the coastal waters of Kume Island, that groups with E. scolopes from Hawaii, suggesting a divergence based on geographic isolation in the North Pacific. We also find that Lusepiola birostrata (formerly Sepiola birostrata) is grouped with Inioteuthis japonica as sister to a clade containing Euprymna, Eumandya, and an unnamed sepioline from Port Kembla, at the northeast of Martin Island in Australian waters.Among the sepiolins, we confirm the monophyly of Sepietta (only for nuclear-genome-based trees, see below). Adinaefiola, another genus erected by Bello19, with Sepiola ligulata Naef 1912 as its type species; was found sister to the Sepiola clade, but only in the tree based on amino acid mitochondrial sequences (mito_aa matrix) with a bootstrap value of 94% and a posterior probability of 1 (Fig. S2).Outside the sepiolines, members of the subfamily Heteroteuthinae are the most elusive and underrepresented in studies of cephalopod systematics due to their oceanic lifestyles. The placement of several heteroteuthin remains controversial. Lindgren et al.9, with six nuclear and four mitochondrial genes downloaded from GenBank found that Sepiolina Naef, 1912 was sister to Heteroteuthis Gray, 1849 + Rossia Owen, 1834+ Stoloteuthis Verril, 1881; rendering the subfamily Heteroteuthinae polyphyletic. In contrast, our work supports the monophyly of Heteroteuthinae by including Stoloteuthis and Heteroteuthis in this subfamily, while Rossia was placed within the Rossinae (Figs. 1, 2, S2). Members of Heteroteuthinae included in this study formed a sister group to a monophyletic Rossinae (Figs. 1, 2, S2). Semirossia, however, rendered the Rossia clade paraphyletic. Further discussion about the position of Semirossia is difficult because of the lack of information about the original source of this specimen in Kawashima et al.25.The light organ and luminescence evolutionBobtail squids are thought to use the bioluminescence of their light organ to camouflage them from predators while foraging and swimming at night through a mechanism called counter-illumination. This has been researched extensively using E. scolopes as a model system26,27,28. Unfortunately, the limited number of sequences available and the misidentification of bobtail squids in the GenBank database11,29,30 have hindered our understanding of the light organ evolution in the whole taxon.Our robust phylogeny and Bayesian reconstruction of ancestral bioluminescence clarify how the light organ and its luminescence have evolved in the family Sepiolidae. Members of Sepiolinae comprise neritic and benthic adults with bilobed light organs, except for two genera: Inioteuthis from the Indo-Pacific region, and the Sepietta species from the Mediterranean Sea and the Atlantic waters. The ancestor of the Sepiolinae very likely possessed a bilobed light organ that harbored luminescent symbiotic bacteria (Fig. 3). This character persisted until the ancestor of the euprymnins and sepiolins. Assuming that R. minor is sister to the Sepietta clade (as shown with the nuclear-based dataset, Fig. 2), it is clear that the bilobed light organ was lost once in Inioteuthis and Sepietta, and simplified to a rounded organ in R. minor. The alternative scenario, where R. minor renders the Sepietta clade paraphyletic (based on mitochondrial matrices, Fig. 1), is less plausible as it implies that the light organ was lost twice in the Sepietta group, once in S. obscura and then in the ancestor of S. neglecta and S. oweniana; or alternatively that it was lost in the ancestor of Sepietta-Rondelentiola followed by a reversion of this character in the lineage of Rondelentiola.Fig. 3: Ancestral character reconstruction (ASR).ASR of (a) the shape of the light organ and (b) the origin of luminescence in the Sepiolida. The posterior probability of each state is shown as a pie chart, mapped tree generated in BEAST (based on mito_nt matrix, see below), with the outgroups removed.Full size imageThe light organ is also present in all members of Heteroteuthinae. These bobtails are pelagic as adults, and their light organ appears as a single visceral organ rather than the bilobed form found in nektobenthic Sepiolinae. In contrast to the bacteriogenic luminescence of the light organ in E. scolopes31, previous studies in H. dispar3 failed to detect symbiotic bacteria and suggested that the luminescence has an autogenic origin. Thus, it seems plausible that the monophyly of Heteroteuthinae found in our study supports the findings in Lindgren et al.9 for convergent evolution of autogenic light organs associated with pelagic lifestyle in many squid, octopus, and Vampyroteuthis Chun, 19039,32.Divergence time of SepiolidaThe absence of fossils for this group limited our calculations of divergence time to the use of secondary calibrations. These calibrations can provide more accurate estimates depending on the type of primary calibrations that are used33. We retrieved secondary calibrations from previous estimations in Tanner et al.15, who used eleven fossil records spanning from coleoids to gastropods in transcriptome-based phylogenetic trees. Specifically, we used the time for the splits of Sepia esculenta and S. officinalis (~91 Mya), Idiosepiidae, and Sepiolida (~132 Mya) and the origin of the Decapodiformes (root age, ~174 Mya) (Fig. 4). These calibrations and our robust phylogenetic trees allow us to investigate the events that shape the divergence of some clades of the order Sepiolida (Figs. 4,  S4).Fig. 4: A chronogram of sepiolids using complete mitochondrial genes.Red dots indicate the nodes with secondary calibrations. K-Pg, refers to the Cretaceous-Paleogene boundary and MSC, to the Messinian salinity crisis.Full size imageSepiolida appeared before the Cretaceous-Paleogene extinction event34, during the middle Mesozoic around 94 Mya (95% HPD = 60.61–130.72). This time frame coincides with the rapid diversification of several oegopsida lineages15,35. Our molecular estimates also indicate that radiation of Sepiolidae and Sepidariidae occurred around the Cretaceous-Paleogene boundaries and is concurrent with the rapid diversification of modern marine percomorph fishes around the globe, after the extinction of Mesozoic fishes36,37.Among the species of Sepiolinae collected in the Mediterranean Sea for this study, only Sepiola robusta Naef, 1912, and Sepiola affinis Naef, 1912 are endemic to the Mediterranean Sea38. The distribution of the other species includes the Mediterranean Sea, North Atlantic Ocean, East Atlantic Ocean, and/or up to the Gulf of Cadiz. The confidence intervals for the split between the Mediterranean-Atlantic and Indo-Pacific lineages, and their diversification, overlap during the early Eocene to the beginning of the Oligocene (Figs. 4 and  S4). This time interval coincides with the end of the Tethys Sea, which separated the Indo-Pacific from the Mediterranean and Atlantic region through the Indian-Mediterranean Seaway39,40. This separation also influenced the divergence of loliginid clades, coinciding with the split between the Eastern Atlantic plus Mediterranean clade (Loligo, Afrololigo, Alloteuthis) and Indo-Pacific clade (Uroteuthis and Loliolus) (~55 Mya based on Fig. 2 in Anderson and Marian41).Our chronogram indicates that the ancestor of Sepiolinae arose prior to the early Eocene around 46 Mya (95% HPD = 25.16–69.49) (Fig. 4), already possessing a bilobed light organ hosting luminescent bacteria (Fig. 3). We estimate that the split between S. affinis and S. intermedia occurred around 2.62 Mya (95% HPD = 0.3–7.4) (Fig. 4) during the end of the Zanclean period, when the Atlantic Ocean refilled the Mediterranean after the Messinian salinity crisis42,43. While S. affinis is a coastal species with a narrow depth limit, S. intermedia inhabits a wider range of deeper waters. It is possible that two populations of their ancestor, each adapted to a different ecological niche and diverged sympatrically in Mediterranean waters, and, after the speciation, S. intermedia extended its distribution outside the Mediterranean to the Gulf of Cadiz44.We also estimate that the split between H. dispar Rüppell, 1844 and H. hawaiiensis (Berry, 1909) occurred around 2.4 Mya (95% HPD = 0.46–5.88), coinciding with the closure of the Isthmus of Panama around 2.8 Mya45. Surveys of these species found H. hawaiiensis in the North Pacific and H. dispar in the North Atlantic Ocean and Mediterranean Sea46. A recent speciation event might be the reason for the lack of morphological differences between the two species46. Thus, these species may be rendered as cryptic species, a phenomenon increasingly reported in oceanic cephalopods47. The sister species of this cryptic species complex, H. dagamensis Robson, 1924, appeared before, around 6 Mya, and is reported with broad distribution in the South Atlantic Ocean off South Africa, the Gulf of Mexico, North Atlantic Ocean between Ireland and Newfoundland in Canada, and the South Pacific Ocean off New Zealand48,49,50.The origin of the Heteroteuthis ancestor of H. dispar, H. hawaiiensis, and H. dagamensis can be placed in the Pacific Ocean. After the formation of the Isthmus of Panama, the northern population of Heteroteuthis might have split into H. hawaiiensis in North Pacific and H. dispar in the Atlantic Ocean (from where it also migrated to the Mediterranean Sea). Meanwhile, the formation of the equatorial currents isolated the southern population of Heteroteuthis and gave rise to H. dagamensis. Then, H. dagamensis extended its distribution from the Southern Pacific to the South Atlantic Ocean, the North Atlantic waters, and the Gulf of Mexico. Analysis of molecular species delimitation, however, suggests that H. dagamensis includes cryptic lineages among Atlantic and New Zealand populations30.While the origin of Heteroteuthis might also be in the Atlantic Ocean, the higher diversity of heteroteuthins in the Pacific (H. hawaiiensis, H. dagamensis, H. ryukyuensis Kubodera, Okutani and Kosuge, 2009, H. nordopacifica Kubodera and Okutani, 2011, and an unknown H. sp. KER (only known from molecular studies49)) than at the Atlantic (H. dispar and H. dagamensis), make its origin at the Atlantic less plausible. Moreover, the Atlantic Heteroteuthis were found nested within Heteroteuthinae species from the Pacific, supporting Pacific Ocean origin (Figs. 1, 4).By sequencing the genomic DNA of sepiolids at low coverage, we recovered complete mitochondrial genomes and nuclear ribosomal genes for most of our collections. Furthermore, mapping reads to the reference genome of E. scolopes allowed us to retrieve additional nuclear-ultraconserved regions. We demonstrate that these nuclear and mitochondrial loci are useful to reconstruct robust phylogenetic trees, especially when the transcriptomes of specimens are difficult to collect, as for sepiolids inhabiting oceanic environments. Finally, our study integrated genomic DNA sequencing with confident morphological identification, which helped to reconstruct the ancestral character of the light organ and its luminescence in sepiolids, and clarify how major lineages have evolved, establishing the existence of distinct Indo-Pacific and Mediterranean-Atlantic subfamilies of Sepiolinae. Our collections and genomically anchored phylogenies will provide a reliable foundation classification of sepiolids for future studies. More