More stories

  • in

    Open-source software for geospatial analysis

    Satellite imagery provides insight into where and how Earth’s surface changes, particularly in remote areas where in situ measurements are generally lacking. With the large volumes of data produced by satellites, we need streamlined computational pipelines for optimized processing capabilities. Although a multitude of platforms exists to process satellite data, these often have expensive license requirements that price out much of the geospatial community. Moreover, many of these platforms are propriety, but transparency is key when developing geospatial processing workflows. Open-source programming is critical to the creation of efficient imagery processing pipelines. More

  • in

    Tropical deforestation causes large reductions in observed precipitation

    Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5, 27–36 (2015).Article 
    ADS 

    Google Scholar 
    Spracklen, D. V., Baker, J. C. A., Garcia-Carreras, L. & Marsham, J. H. The effects of tropical vegetation on rainfall. Annu. Rev. Environ. Resour. 43, 193–218 (2018).Article 

    Google Scholar 
    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Spracklen, D. V., Arnold, S. R. & Taylor, C. M. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489, 282–285 (2012).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Staal, A. et al. Forest-rainfall cascades buffer against drought across the Amazon. Nat. Clim. Change 8, 539–543 (2018).Article 
    ADS 

    Google Scholar 
    Baker, J. C. A. & Spracklen, D. V. Divergent representation of precipitation recycling in the Amazon and the Congo in CMIP6 models. Geophys. Res. Lett. 49, e2021GL095136 (2022).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guan, K. et al. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci. 8, 284–289 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Staal, A. et al. Hysteresis of tropical forests in the 21st century. Nat. Commun. 11, 4978 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zemp, D. C. et al. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat. Commun. 8, 14681 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–854 (2013).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chagnon, F. J. F. & Bras, R. L. Contemporary climate change in the Amazon. Geophys. Res. Lett. 32, L13703 (2005).Article 
    ADS 

    Google Scholar 
    Khanna, J., Medvigy, D., Fueglistaler, S. & Walko, R. Regional dry-season climate changes due to three decades of Amazonian deforestation. Nat. Clim. Change 7, 200–204 (2017).Article 
    ADS 

    Google Scholar 
    Garcia-Carreras, L. & Parker, D. J. How does local tropical deforestation affect rainfall? Geophys. Res. Lett. 38, L19802 (2011).Article 
    ADS 

    Google Scholar 
    Leite-Filho, A. T., Soares-Filho, B. S., Davis, J. L., Abrahão, G. M. & Börner, J. Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon. Nat. Commun. 12, 2591 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McAlpine, C. A. et al. Forest loss and Borneo’s climate. Environ. Res. Lett. 13, 044009 (2018).Chapman, S. et al. Compounding impact of deforestation on Borneo’s climate during El Niño events. Environ. Res. Lett. 15, 084006 (2020).Spracklen, D. V. & Garcia-Carreras, L. The impact of Amazonian deforestation on Amazon basin rainfall. Geophys. Res. Lett. 42, 9546–9552 (2015).Article 
    ADS 

    Google Scholar 
    Jiang, Y. et al. Modeled response of South American climate to three decades of deforestation. J. Clim. 34, 2189–2203 (2021).Article 
    ADS 

    Google Scholar 
    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fassoni-Andrade, A. C. et al. Amazon hydrology from space: scientific advances and future challenges. Rev. Geophys. 59, e2020RG000728 (2021).Article 
    ADS 

    Google Scholar 
    Haiden, T., Janousek, M., Vitart, F., Ferranti, L. & Prates, F. Evaluation of ECMWF Forecasts, Including the 2019 Upgrade. ECMWF Technical Memorandum No. 853 (ECMWF, 2019).Esquivel-Muelbert, A. et al. Compositional response of Amazon forests to climate change. Glob. Change Biol. 25, 39–56 (2019).Article 
    ADS 

    Google Scholar 
    Brum, M. et al. ENSO effects on the transpiration of eastern Amazon trees. Philos. Trans. R. Soc. B 373, 20180085 (2018).Article 

    Google Scholar 
    Bagley, J. E., Desai, A. R., Harding, K. J., Snyder, P. K. & Foley, J. A. Drought and deforestation: has land cover change influenced recent precipitation extremes in the Amazon? J. Clim. 27, 345–361 (2014).Article 
    ADS 

    Google Scholar 
    Wunderling, N. et al. Recurrent droughts increase risk of cascading tipping events by outpacing adaptive capacities in the Amazon rainforest. Proc. Natl Acad. Sci. USA 119, e2120777119 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fu, R. & Li, W. The influence of the land surface on the transition from dry to wet season in Amazonia. Theor. Appl. Climatol. 78, 97–110 (2004).Article 
    ADS 

    Google Scholar 
    Leite-Filho, A. T., de Sousa Pontes, V. Y. & Costa, M. H. Effects of deforestation on the onset of the rainy season and the duration of dry spells in southern Amazonia. J. Geophys. Res. Atmos. 124, 5268–5281 (2019).Article 
    ADS 

    Google Scholar 
    Negri, A. J., Adler, R. F., Xu, L. & Surratt, J. The Impact of Amazonian deforestation on dry season rainfall. J. Clim. 17, 1306–1319 (2004).Article 
    ADS 

    Google Scholar 
    Chagnon, F. J. F., Bras, R. L. & Wang, J. Climatic shift in patterns of shallow clouds over the Amazon. Geophys. Res. Lett. 31, L24212 (2004).Article 
    ADS 

    Google Scholar 
    Chambers, J. Q. & Artaxo, P. Biosphere–atmosphere interactions: deforestation size influences rainfall. Nat. Clim. Change 7, 175–176 (2017).Article 
    ADS 

    Google Scholar 
    Baudena, M., Tuinenburg, O. A., Ferdinand, P. A. & Staal, A. Effects of land-use change in the Amazon on precipitation are likely underestimated. Glob. Change Biol. 27, 5580–5587 (2021).Article 
    CAS 

    Google Scholar 
    Duku, C. & Hein, L. The impact of deforestation on rainfall in Africa: a data-driven assessment. Environ. Res. Lett. 16, 064044 (2021).Akkermans, T., Thiery, W. & Van Lipzig, N. P. M. The regional climate impact of a realistic future deforestation scenario in the Congo basin. J. Clim. 27, 2714–2734 (2014).Article 
    ADS 

    Google Scholar 
    Staal, A. et al. Feedback between drought and deforestation in the Amazon. Environ. Res. Lett. 15, 044024 (2020).Xu, X. et al. Deforestation triggering irreversible transition in Amazon hydrological cycle. Environ. Res. Lett. 17, 034037 (2022).Kooperman, G. J. et al. Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land. Nat. Clim. Change 8, 434–440 (2018).Article 
    ADS 

    Google Scholar 
    Chen, Z. et al. Global land monsoon precipitation changes in CMIP6 projections. Geophys. Res. Lett. 47, e2019GL086902 (2020).Stickler, C. M. et al. Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales. Proc. Natl Acad. Sci. USA 110, 9601–9606 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291 (2014).Article 
    ADS 

    Google Scholar 
    Strand, J. et al. Spatially explicit valuation of the Brazilian Amazon forest’s ecosystem services. Nat. Sustain. 1, 657–664 (2018).Article 

    Google Scholar 
    Potapov, P. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 3, 19–28 (2022).Article 

    Google Scholar 
    Li, Y. et al. Deforestation-induced climate change reduces carbon storage in remaining tropical forests. Nat. Commun. 13, 1964 (2022).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aragão, L. E. O. C. et al. Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia. Philos. Trans. R. Soc. B 363, 1779–1785 (2008).Article 

    Google Scholar 
    Marengo, J. A. et al. Changes in climate and land use over the Amazon region: current and future variability and trends. Front. Earth Sci. https://doi.org/10.3389/feart.2018.00228 (2018).Jiang, Y. et al. Widespread increase of boreal summer dry season length over the Congo rainforest. Nat. Clim. Change https://doi.org/10.1038/s41558-019-0512-y (2019).Van Der Ent, R. J. & Savenije, H. H. G. Length and time scales of atmospheric moisture recycling. Atmos. Chem. Phys. 11, 1853–1863 (2011).Article 
    ADS 

    Google Scholar 
    Sorí, R., Nieto, R., Vicente-Serrano, S. M., Drumond, A. & Gimeno, L. A Lagrangian perspective of the hydrological cycle in the Congo River basin. Earth Syst. Dyn. 8, 653–675 (2017).Article 
    ADS 

    Google Scholar 
    van der Ent, R. J., Savenije, H. H. G., Schaefli, B. & Steele-Dunne, S. C. Origin and fate of atmospheric moisture over continents. Water Resour. Res. 46, W09525 (2010).ADS 

    Google Scholar 
    Feng, Y. et al. Doubling of annual forest carbon loss over the tropics during the early twenty-first century. Nat. Sustain. 4, 441–451 (2022).
    Google Scholar 
    Tuinenburg, O. A., Bosmans, J. H. C. & Staal, A. The global potential of forest restoration for drought mitigation. Environ. Res. Lett. 17, 034045 (2022).Met Office. Cartopy: a cartographic python library with a Matplotlib interface 2010–2015. Met Office https://scitools.org.uk/cartopy (2022).Hoyer, S. & Hamman, J. xarray: N-D labeled arrays and datasets in Python. J. Open Res. Softw. https://doi.org/10.5334/jors.148 (2017).Zhuang, J. xESMF. Zenodo https://doi.org/10.5281/zenodo.1134365 (2022).Baker, J. C. A. & Spracklen, D. V. Climate benefits of intact Amazon forests and the biophysical consequences of disturbance. Front. For. Glob. Change https://doi.org/10.3389/ffgc.2019.00047 (2019).Schaaf, C. & Wang, Z. MCD43A3 MODIS/Terra+Aqua BRDF/Albedo Daily L3 Global – 500m V006. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/modis/mcd43a3.006 (2015).Waskom, M. Seaborn: statistical data visualization. J. Open Source Softw. 6, 3021 (2021).Article 
    ADS 

    Google Scholar 
    Chen, M. et al. Global land use for 2015–2100 at 0.05° resolution under diverse socioeconomic and climate scenarios. Sci. Data 7, 320 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xie, P. et al. NOAA Climate Data Record (CDR) of CPC Morphing technique (CMORPH) high resolution global precipitation estimates, version 1. NOAA National Centers for Environmental Information https://doi.org/10.25921/w9va-q159 (2019).Xie, P. et al. A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeorol. 8, 607–626 (2007).Article 
    ADS 

    Google Scholar 
    Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).Article 
    ADS 

    Google Scholar 
    Elke, R., Hänsel, S., Finger, P., Schneider, U. & Ziese, M. GPCC Climatology Version 2022 at 0.25°: monthly land-surface precipitation climatology for every month and the total year from rain-gauges built on GTS-based and historical data. GPCC https://doi.org/10.5676/DWD_GPCC/CLIM_M_V2022_025 (2022).Huffman, G. J. A., Behrangi, R. F., Adler, D. T., Bolvin, E. J. & Nelkin, G. G. Introduction to the new version 3 GPCP monthly global precipitation analysis. GPCP https://docserver.gesdisc.eosdis.nasa.gov/public/project/MEaSUREs/GPCP/Release_Notes.GPCPV3.2.pdf (2022).Hou, A. Y. et al. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 95, 701–722 (2014).Article 
    ADS 

    Google Scholar 
    Kobayashi, S. et al. The JRA-55 reanalysis: general specifications and basic characteristics. J. Meteorol. Soc. Japan 93, 5–48 (2015).Article 
    ADS 

    Google Scholar 
    Gelaro, R. et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).Article 
    ADS 

    Google Scholar 
    Chen, M., Xie, P. & Janowiak, J. E. Global land precipitation: a 50-yr monthly analysis based on gauge observations. J. Hydrometeorol. 3, 249–266 (2002).Article 
    ADS 

    Google Scholar 
    Nguyen, P. et al. The CHRS data portal, an easily accessible public repository for PERSIANN global satellite precipitation data. Sci. Data 6, 1180296 (2019).Article 

    Google Scholar 
    Ashouri, H. et al. PERSIANN-CDR: daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Am. Meteorol. Soc. 96, 69–83 (2015).Article 
    ADS 

    Google Scholar 
    Nguyen, P. et al. Persiann dynamic infrared–rain rate (PDIR-now): a near-real-time, quasi-global satellite precipitation dataset. J. Hydrometeorol. 21, 2893–2906 (2020).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sadeghi, M. et al. PERSIANN-CCS-CDR, a 3-hourly 0.04° global precipitation climate data record for heavy precipitation studies. Sci. Data 8, 157 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huffman, G. J. et al. The TRMM Multisatellite Precipitation Analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 8, 38–55 (2007).Article 
    ADS 

    Google Scholar 
    Matsuura, K. & Willmott, C. J. Terrestrial precipitation: 1900-2017 gridded monthly time series. Global Precipitation Archive http://climate.geog.udel.edu/~climate/html_pages/Global2017/README.GlobalTsP2017.html (2018). More

  • in

    Observed reductions in rainfall due to tropical deforestation

    RESEARCH BRIEFINGS
    01 March 2023

    Tropical deforestation affects local and regional precipitation, but the effects are uncertain and have not been determined using observations. Satellite data sets were used to show reductions in precipitation over areas of tropical forest loss, with stronger reductions seen as the deforested area expands. More

  • in

    Coastal algal blooms have intensified over the past 20 years

    RESEARCH BRIEFINGS
    01 March 2023

    Global spatial and temporal patterns of coastal phytoplankton blooms were characterized using daily satellite imaging between 2003 and 2020. These blooms were identified on the coast of 126 of the 153 ocean-bordering countries examined. The extent and frequency of blooms have increased globally over the past two decades. More

  • in

    Alcobiosis, an algal-fungal association on the threshold of lichenisation

    Wilkinson, D. At cross purposes. Nature 412, 485 (2001).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    de Bary, H. A. Über Symbiose [On Symbiosis]. Tageblatt für die Versammlung Dtsch. Naturforscher und Aerzte (in Cassel) [Daily J. Conf. Ger. Sci. Phys.] (in Ger. 51, 121–126 (1878).Lücking, R., Leavitt, S. D. & Hawksworth, D. L. Species in lichen-forming fungi: balancing between conceptual and practical considerations, and between phenotype and phylogenomics. Fungal Div.109, 99–154 (Springer, Netherlands, 2021).de Vries, J. & Archibald, J. M. Plant evolution: Landmarks on the path to terrestrial life. New Phytol. 217, 1428–1434 (2018).Article 
    PubMed 

    Google Scholar 
    Ahmadjian, V. The Lichen Symbiosis (John Wiley & Sons, 1993).
    Google Scholar 
    Lücking, R., Hodkinson, B. P. & Leavitt, S. D. The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota-approaching one thousand genera. Bryologist 119, 361–416 (2016).Article 

    Google Scholar 
    Schneider, K., Resl, P. & Spribille, T. Escape from the cryptic species trap: lichen evolution on both sides of a cyanobacterial acquisition event. Mol. Ecol. 25, 3453–3468 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wedin, M., Döring, H. & Gilenstam, G. Saprotrophy and lichenization as options for the same fungal species on different substrata: Environmental plasticity and fungal lifestyles in the Stictis-Conotrema complex. New Phytol. 164, 459–465 (2004).Article 

    Google Scholar 
    Muggia, L., Baloch, E., Stabentheiner, E., Grube, M. & Wedin, M. Photobiont association and genetic diversity of the optionally lichenized fungus Schizoxylon albescens. FEMS Microbiol. Ecol. 75, 255–272 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sanders, W. B., Moe, R. L. & Ascaso, C. Ultrastructural study of the brown alga Petroderma maculiforme (Phaeophyceae) in the free-living state and in lichen symbiosis with the intertidal marine fungus Verrucaria tavaresiae (Ascomycotina). Eur. J. Phycol. 40, 353–361 (2005).Article 
    CAS 

    Google Scholar 
    Vondrák, J. et al. From Cinderella to Princess. Preslia 94, 143–181 (2022).Article 

    Google Scholar 
    Hawksworth, D. L. The variety of fungal-algal symbioses, their evolutionary significance, and the nature of lichens. Bot. J. Linn. Soc. 96, 3–20 (1988).Article 

    Google Scholar 
    Larsson, K. H. & Ryvarden, L. Corticioid fungi of Europe 1. Acanthobasidium–Gyrodontium. Synop. Fungorum 43, 1–266 (2021).
    Google Scholar 
    Albertini, J. B., von Schweinitz, L. D. Conspectus fungorum in Lusatiae Superioris agro Niskiensi crescentium, e methodo Persooniana. (DE: Sumtibus Kummerianis, Lipsiae 1805) https://doi.org/10.5962/bhl.title.3601.Poelt, J. & Jülich, W. Über die Beziehungen zweier corticioider Basidiomyceten zu Algen. Österr. Bot. Zeitschrift 116, 400–410 (1969).Article 

    Google Scholar 
    Voytsekhovich, A., Ordynets, O. & Akimov, Y. Optionally lichenized fungi of Hyphodontia (Agaricomycetes, Schizoporaceae) and their photobiont composition. Aктyaльнi Пpoблeми Бoтaнiки Ta Eкoлoгiї. Maтepiaли Miжнapoднoї Кoнфepeнцiї Moлoдиx Учeниx 65 (2013).Voytsekhovich, A., Mikhailyuk, T., Akimov, Y., Ordynets, A., Gustavs, L. Optionally lichenized fungi of Hyphodontia (Agaricomycetes, Schizoporaceae). 8th Congress of the International Symbiosis Society, Lisbon, 12–18 July 2015. Lisbon, PT:, 217 (Conf. abstract) (2015).Gustavs L, Schiefelbein U, Darienko T, P. T. Symbioses of the green algal genera Coccomyxa and Elliptochloris (Trebouxiophyceae, Chlorophyta). in Algal and Cyanobacteria Symbioses (ed. Grube M, Seckbach J) 169–208 (2017).Darienko, T., Gustavs, L., Eggert, A., Wolf, W. & Pröschold, T. Evaluating the species boundaries of green microalgae (Coccomyxa, Trebouxiophyceae, Chlorophyta) using integrative taxonomy and DNA barcoding with further implications for the species identification in environmental samples. PLoS ONE 10, 1–31 (2015).Article 

    Google Scholar 
    Malavasi, V. et al. DNA-based taxonomy in ecologically versatile microalgae: A re-evaluation of the species concept within the coccoid green algal genus Coccomyxa (Trebouxiophyceae, Chlorophyta). PLoS ONE 11, e0151137 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Green, T. G. A., Nash, T. H. Lichen Biology. In Lichen Biology, Second Edition 152–181 (Cambridge University Press, Cambridge, 2008) https://doi.org/10.1017/CBO9780511790478.Lindgren, H. et al. Cophylogenetic patterns in algal symbionts correlate with repeated symbiont switches during diversification and geographic expansion of lichen-forming fungi in the genus Sticta (Ascomycota, Peltigeraceae). Mol. Phylogenet. Evol. 150, 106860 (2020).Article 
    PubMed 

    Google Scholar 
    Kulichová, J., Škaloud, P. & Neustupa, J. Molecular diversity of green corticolous microalgae from two sub-mediterranean European localities. Eur. J. Phycol. 49, 345–355 (2014).Article 

    Google Scholar 
    Pröschold, T. & Darienko, T. The green puzzle Stichococcus (Trebouxiophyceae, Chlorophyta): New generic and species concept among this widely distributed genus. Phytotaxa 441, 113–142 (2020).Article 

    Google Scholar 
    Meier, F. A., Scherrer, S. & Honegger, R. Faecal pellets of lichenivorous mites contain viable cells of the lichen-forming ascomycete Xanthoria parietina and its green algal photobiont. Trebouxia arboricola. Biol. J. Linn. Soc. 76, 259–268 (2002).Article 

    Google Scholar 
    Bernicchia, A. & Gorjón, S. P. Corticiaceae s.l. 1008 (2010), ISBN: 9788890105791.Parmasto, E. Descriptiones taxorum novorum. Combinationes novae. Proc. Acad. Sci. Est. SSR. Biol. 16, 377–394 (1967).
    Google Scholar 
    Hjortstam, K., Larsson, K., Ryvarden, L. & Eriksson, J. The Corticiaceae of North Europe. (Oslo: Fungiflora, 1988).Jaag, O. Coccomyxa schmidle Monographie einer algengattung. Beitr. Kryptogamenflora Schweiz 8, 1–132 (1933).
    Google Scholar 
    Oberwinkler, F. Die gattungen der Basidiolichenen. Vorträge aus dem Gesamtgebiet der Botanik. Herausgegeb. v. d. Deutsch. bot. Ges. Neue Folge 4, 139–169 (1970).
    Google Scholar 
    Poelt, J. Basidienflechten, eine in den Alpen lange übersehene Pflanzengruppe. Jahrb. Vereins Schutze Alpenpfl. Tiere 40, 81–92 (1975).
    Google Scholar 
    Eriksson, J., Hjortstam, K. The Corticiaceae of North Europe. Vol. 6. (Grønlands Eskefabrikk, 1981).Oberwinkler, F. Basidiolichens. In Fungal Association 211–225 (Springer, Berlin Heidelberg, Berlin, 2001). https://doi.org/10.1007/978-3-662-07334-6_12.Chapter 

    Google Scholar 
    Jülich, W. A new lichenized Athelia from Florida. Persoonia 10, 149–151 (1978).
    Google Scholar 
    Zavada, M. S. & Simoes, P. The possible demi-lichenization of the basidiocarps of Trametes Versicolor (L.:Fries) pilat (polyporaceae). Northeast. Nat. 8, 101–112 (2001).
    Google Scholar 
    Neustroeva, N., Mukhin, V., Novakovskaya, I. & Patova, E. Biodiversity of symbiotic algae of wood decay Basidimycetes in the Central Urals. III Russ. Natl. Conf. “Information Technol. Biodivers. Res. 1, 83–92 (2020).
    Google Scholar 
    Zavada, M. S., DiMichele, L. & Toth, C. R. The possible demi-lichenization of Trametes versicolor (L.: Fries) Pilát (Polyporaceae): The transfer of fixed 14CO2 from epiphytic algae to T. versicolor. Northeast. Nat. 11, 33–40 (2004).Article 

    Google Scholar 
    Mukhin, V. A., Patova, E. N., Kiseleva, I. S., Neustroeva, N. V. & Novakovskaya, I. V. Mycetobiont symbiotic algae of wood-decomposing fungi. Russ. J. Ecol. 47, 133–137 (2016).Article 
    CAS 

    Google Scholar 
    Sanders, W. B. & Masumoto, H. Lichen algae: The photosynthetic partners in lichen symbioses. Lichenologist 53, 347–393 (2021).Article 

    Google Scholar 
    Krause, G. & Weis, E. Chlorophyll fluorescence and photosynthesis: the basics. Annu. Rev. Plant Biol. 42(1), 313–349 (1991).Article 
    CAS 

    Google Scholar 
    Lüttge, U. & Büdel, B. Resurrection kinetics of photosynthesis in desiccation-tolerant terrestrial green algae (Chlorophyta) on tree bark. Plant Biol. 12, 437–444 (2010).Article 
    PubMed 

    Google Scholar 
    Lange, O. L. Moisture content and CO2 exchange of lichens: I. Influence of temperature on moisture-dependent net photosynthesis and dark respiration in Ramalina maciformis. Oecologia 45, 82–87 (1980).Article 
    ADS 
    PubMed 

    Google Scholar 
    Palmqvist, K. & Sundberg, B. Light use efficiency of dry matter gain in five macrolichens: Relative impact of microclimate conditions and species-specific traits. Plant Cell Environ. 23, 1–14 (2000).Article 

    Google Scholar 
    Vondrak, J. & Kubásek, J. Algal stacks and fungal stacks as adaptations to high light in lichens. Lichenol. 45(1), 115 (2013).Article 

    Google Scholar 
    Smith, N. G. & Dukes, J. S. Plant respiration and photosynthesis in global-scale models: Incorporating acclimation to temperature and CO2. Glob. Chang. Biol. 19, 45–63 (2013).Article 
    ADS 
    PubMed 

    Google Scholar 
    Medeiros, P. M. & Simoneit, B. R. T. Analysis of sugars in environmental samples by gas chromatography-mass spectrometry. J. Chromatogr. A 1141, 271–278 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Honegger, R. Functional aspects of the lichen symbiosis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 553–578 (1991).Article 
    CAS 

    Google Scholar 
    Honegger, R. The lichen symbiosis—What is so spectacular about it?. Lichenologist 30, 193–212 (1998).Article 

    Google Scholar 
    Kirk, P. M. et al. (eds) Dictionary of the Fungi 10th edn. (CABI, Netherlands, 2008).
    Google Scholar 
    Ahmadjian, V. The lichen alga Trebouxia: Does it occur free-living?. Plant Syst. Evol. 158, 243–247 (1988).Article 

    Google Scholar 
    Sanders, W. B. Complete life cycle of the lichen fungus Calopadia puiggarii (Pilocarpaceae, Ascomycetes) documented in situ: Propagule dispersal, establishment of symbiosis, thallus development, and formation of sexual and asexual reproductive structures. Am. J. Bot. 101, 1836–1848 (2014).Article 
    PubMed 

    Google Scholar 
    Rindi, F. & Guiry, M. Composition and spatial variability of terrestrial algal assemblages occurring at the bases of urban walls in Europe. Phycologia 43, 225–235 (2004).Article 

    Google Scholar 
    Stonyeva, M. P., Uzunov, B. A. & Gärtner, G. Aerophytic green algae, epimycotic on Fomes fomentarius (L. ex Fr.) Kickx. Annu. Sofia Univ “St. Kliment Ohridski”. Fac. Biol. 99, 19–25 (2015).
    Google Scholar 
    Aras, S. & Cansaran, D. Isolation of DNA for sequence analysis from herbarium material of some lichen specimens. Turk. J. Bot. 30, 449–453 (2006).
    Google Scholar 
    Hall, T. BioEdit: A userfriendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).CAS 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Posada, D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vondrák, J. & Kubásek, J. Algal stacks and fungal stacks as adaptations to high light in lichens. Lichenol. 45, 115–124 (2013).Article 

    Google Scholar 
    Kubásek, J., Hájek, T. & Glime, J. M. Bryophyte photosynthesis in sunflecks: Greater relative induction rate than in tracheophytes. J. Bryol. 36, 110–117 (2014).Article 

    Google Scholar 
    Kubásek, J. et al. Moss stomata do not respond to light and CO2 concentration but facilitate carbon uptake by sporophytes: A gas exchange, stomatal aperture, and C-13-labelling study. New Phytol. 230, 1815–1828 (2021).Article 
    PubMed 

    Google Scholar 
    Feige, G. & Kremer, B. Unusual carbohydrate pattern in Trentepohlia species. Phytochemistry 19, 1844–1845 (1980).Article 
    CAS 

    Google Scholar 
    Tonon, T., Li, Y. & McQueen-Mason, S. Mannitol biosynthesis in algae: More widespread and diverse than previously thought. New Phytol. 213, 1573–1579 (2017).Article 
    PubMed 

    Google Scholar 
    Gustavs, L., Görs, M. & Karsten, U. Polyol patterns in biofilm-forming aeroterrestrial green algae (Trebouxiophyceae, Chlorophyta). J. Phycol. 47, 533–537 (2011).Article 
    PubMed 

    Google Scholar  More

  • in

    Effect of different plant communities on NO2 in an urban road greenbelt in Nanjing, China

    Cui, Y. Z. et al. Rapid growth in nitrogen dioxide pollution over Western China, 2005–2013. Atmos. Chem. Phys. 16, 6207–6221. https://doi.org/10.5194/acp-16-6207-2016 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Gu, J. B. et al. Ground-Level NO2 concentrations over China inferred from the Satellite OMI and CMAQ model simulations. Remote Sens. 9, 519. https://doi.org/10.3390/rs9060519 (2017).Article 
    ADS 

    Google Scholar 
    Cui, Y. Z. et al. Spatio-Temporal heterogeneous impacts of the drivers of NO2 pollution in Chinese cities: Based on satellite observation data. Remote Sens. 14, 3487. https://doi.org/10.3390/rs14143487 (2022).Article 
    ADS 

    Google Scholar 
    Huang, Z. Y., Xu, X. K., Ma, M. G. & Shen, J. W. Assessment of NO2 population exposure from 2005 to 2020 in China. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-022-21420-6 (2022).Article 

    Google Scholar 
    Zheng, Z. H., Yang, Z. W., Wu, Z. F. & Marinello, F. Spatial variation of NO2 and its impact factors in China: An application of sentinel-5P products. Remote Sens. 11, 1939. https://doi.org/10.3390/rs11161939 (2019).Article 
    ADS 

    Google Scholar 
    Bignal, K. L., Ashmore, M. R., Headley, A. D., Stewart, K. & Weigert, K. Ecological impacts of air pollution from road transport on local vegetation. Appl. Geochem. 22, 1265–1271. https://doi.org/10.1016/j.apgeochem.2007.03.017 (2007).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhu, Y. J. et al. Spatiotemporally mapping of the relationship between NO2 pollution and urbanization for a megacity in Southwest China during 2005–2016. Chemosphere 220, 155–162. https://doi.org/10.1016/j.chemosphere.2018.12.095 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Stieb, D. M. et al. A national study of the association between traffic-related air pollution and adverse pregnancy outcomes in Canada, 1999–2008. Environ. Res. 148, 513–526. https://doi.org/10.1016/j.envres.2016.04.025 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hu, Y. et al. Associations between total mortality and personal exposure to outdoor-originated NO2 in 271 Chinese cities. Atmos. Environ. https://doi.org/10.1016/j.atmosenv.2020.118170 (2021).Article 

    Google Scholar 
    Han, K. M. Temporal analysis of OMI-Observed tropospheric NO2 columns over east Asia during 2006–2015. Atmosphere 10, 658 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    EEA. Air quality in Europe—2016 report. European Environment Agency EEA Report No 28/2016. Retrieved 2 Dec 2016 from: http://www.eea.europa.eu/publications/air-quality-in-europe-2016Ahmad, A. et al. A comparative study on capability of different tree species in accumulating heavy metals from soil and ambient air. Chemosphere 172, 459–467. https://doi.org/10.1016/j.chemosphere.2017.01.045 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Erin, R. D., Bryan, K. P., Amy, X. L. & Ronald, C. C. Laboratory measurements of stomatal NO2 deposition to native California trees and the role of forests in the NOx cycle. Atmos. Chem. Phys. 22, 14023–14041. https://doi.org/10.5194/acp-20-14023-2020 (2020).Article 
    CAS 

    Google Scholar 
    Takahashi, M. et al. Differential assimilation of nitrogen dioxide by 70 taxa of roadside trees at an urban pollution level. Chemosphere 61, 633–639. https://doi.org/10.1016/j.chemosphere.2005.03.033 (2005).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Guo, L. L., Li, B. F. & Chen, H. A. A review of urban Micro-climate research on block scale in China. Urban Dev. Stud. 24, 75–81. https://doi.org/10.3969/j.issn.10063862.2017.01.010 (2017).Article 

    Google Scholar 
    Jung, S. & Yoon, S. Analysis of the effects of floor area ratio change in urban street canyons on microclimate and particulate matter. Energies 14, 714. https://doi.org/10.3390/en14030714 (2021).Article 
    CAS 

    Google Scholar 
    Yin, S. et al. Quantifying air pollution attenuation within urban parks: An experimental approach in Shanghai, China. Environ. Pollut. 159, 2155–2163. https://doi.org/10.1016/j.envpol.2011.03.009 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lin, C., Feng, X. F. & Heal, M. R. Temporal persistence of intra-urban spatial contrasts in ambient NO2, O3 and Ox in Edinburgh, UK. Atmos. Pollut. Res. 7, 734–741. https://doi.org/10.1016/j.apr.2016.03.008 (2016).Article 

    Google Scholar 
    Brantley, H. L., Hagler, G. S. W., Deshmukh, P. J. & Baldauf, R. W. Field assessment of the effects of roadside vegetation on near-road black carbon and particulate matter. Sci. Total Environ. 468, 120–129. https://doi.org/10.1016/j.scitotenv.2013.08.001 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Irga, P. J., Burchett, M. D. & Torpy, F. R. Does urban forestry have a quantitative effect on ambient air quality in an urban environment?. Atmos. Environ. 120, 173–181. https://doi.org/10.1016/j.atmosenv.2015.08.050 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Tong, Z. M., Baldauf, R. W., Isakov, V., Deshmunk, P. & Zhang, K. M. Roadside vegetation barrier design to mitigate near-road air pollution impacts. Sci. Total Environ. 541, 920–927. https://doi.org/10.1016/j.scitotenv.2015.09.067 (2016).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Setälä, H., Viippola, V., Rantalainen, A. L., Pennanen, A. & Yli-Pelkonen, V. Does urban vegetation mitigate air pollution in northern conditions?. Environ. Pollut. 183, 104–112. https://doi.org/10.1016/j.envpol.2012.11.010 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Xing, Y. & Brimblecombe, P. Role of vegetation in deposition and dispersion of air pollution in urban parks. Atmos. Environ. 201, 73–83. https://doi.org/10.1016/j.atmosenv.2018.12.027 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Xu, C., Wang, Y. P. & Li, L. L. Study on spatiotemporal distribution of the tropospheric NO2 column concentration in China and its relationship to energy consumption based on the time-series data from 2005 to 2013. Energy Sources Part A 42, 2130–2144. https://doi.org/10.1080/15567036.2019.1607931 (2020).Article 
    CAS 

    Google Scholar 
    Xu, J. H., Lindqvist, H., Liu, Q. F., Wang, K. & Wang, L. Estimating the spatial and temporal variability of the ground-level NO2 concentration in China during 2005–2019 based on satellite remote sensing. Atmos. Pollut. Res. 12, 57–67. https://doi.org/10.1016/j.apr.2020.10.008 (2021).Article 
    CAS 

    Google Scholar 
    Daniel, L. G. et al. TROPOMI NO2 in the United States: A detailed look at the annual averages, weekly cycles, effects of temperature, and correlation with surface NO2 concentrations. Earths Feature 9, 4. https://doi.org/10.1029/2020EF001665 (2021).Article 
    CAS 

    Google Scholar 
    Mavroidis, I. & Chaloulakou, A. Long-term trends of primary and secondary NO2 production in the Athens area. Variation of the NO2/NOx ratio. Atmos. Environ. 45, 6872–6879. https://doi.org/10.1016/j.atmosenv.2010.11.006 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Van der, A. R. J. et al. Detection of the trend and seasonal variation in tropospheric NO2 over China. J. Geophys. Res. Atmos. https://doi.org/10.1029/2005JD006594 (2006).Article 

    Google Scholar 
    Salama, D. S. et al. Satellite observations for monitoring atmospheric NO2 in correlation with the existing pollution sources under arid environment. Model. Earth Syst. Environ. 8, 4103–4121. https://doi.org/10.1007/s40808-022-01352-3 (2022).Article 
    PubMed 

    Google Scholar 
    Ahmad, S. S. & Aziz, N. Spatial and temporal analysis of ground level ozone and nitrogen dioxide concentration across the twin cities of Pakistan. Environ. Monit. Assess. 185, 3133–3147. https://doi.org/10.1007/s10661-012-2778-7 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Khaled, G., Abdulaziz, A., Watheq, A. & Mumin, A. Analysis of NOx, NO and NO2 ambient levels in Dhahran, Saudi Arabia. Urban Clim. 21, 232–242. https://doi.org/10.2495/AIR170081 (2017).Article 

    Google Scholar 
    Casquero-Vera, J. A. et al. Impact of primary NO2 emissions at different urban sites exceeding the European NO2 standard limit. Sci. Total Environ. 646, 1117–1125 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Desyana, R. D., Sulistyantara, B., Nasrullah, N. & Fatimah, I. S. Study of the effectiveness of several tree canopy types on roadside green belt in influencing the distribution of NO2 gas emitted from transportation. EES https://doi.org/10.1088/1755-1315/58/1/012045 (2017).Article 

    Google Scholar 
    Rotach, M. W. Profiles of turbulence statistics in and above an urban street canyon. Atmos. Environ. 29, 1473–1486. https://doi.org/10.1016/1352-2310(95)00084-C (1995).Article 
    ADS 
    CAS 

    Google Scholar 
    Luo, M. Study on Air Pollutants Removal Effects of Green Space with Different Community Structures (Huazhong Agricultural University, 2013).
    Google Scholar 
    Rao, M., George, L. A., Rosenstiel, T. N., Shandas, V. & Dinno, A. Assessing the relationship among urban trees, nitrogen dioxide, and respiratory health. Environ. Pollut. 194, 96–104. https://doi.org/10.1016/j.envpol.2014.07.011 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Yli-Pelkonen, V., Viippola, V., Kotze, D. J. & Setala, H. Greenbelts do not reduce NO2 concentrations in near-road environments. Urban Clim. 21, 306–317. https://doi.org/10.1016/j.uclim.2017.08.005 (2017).Article 

    Google Scholar 
    Fantozzi, F., Monaci, F., Blanusa, T. & Bargagli, R. Spatio-temporal variations of ozone and nitrogen dioxide concentrations under urban trees and in a nearby open area. Urban Clim. 12, 119–127. https://doi.org/10.1016/j.uclim.2015.02.001 (2015).Article 

    Google Scholar 
    Nie, L., Deng, Z. H. & Chen, Q. B. SO2 and NOx purify-cation ability of forest in Kunming City. J. West China For. Sci. 44, 116–120 (2015).
    Google Scholar 
    Baldauf, R. Roadside vegetation design characteristics that can improve local, near-road air quality. Transp. Res. Part D 52, 354–361. https://doi.org/10.1016/j.trd.2017.03.013 (2017).Article 

    Google Scholar 
    Lai, D. Y., Liu, Y. Q., Liao, M. C. & Yu, B. Q. Effects of different tree layouts on outdoor thermal comfort of green space in summer Shanghai. Urban Clim. 47, 101398 (2023).Article 

    Google Scholar 
    Lai, D., Liu, W., Gan, T., Liu, K. & Chen, Q. A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Sci. Total Environ. 661, 337–353 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Shifts from cooperative to individual-based predation defense determine microbial predator-prey dynamics

    In co-culture with the bacterivorous flagellate Poteriospumella lacustris, the prey bacterium Pseudomonas putida exhibited a characteristic succession of predation defenses. The initial and the final defense differed substantially from one another with regard to their mechanism and their population-level benefits to the bacteria.Our results strongly indicate that the initial bacterial defense falls into the category of chemical defense, and is regulated by phenotypic plasticity. This would require P. putida to be able to sense predator density and to regulate the excretion of inhibitory substances accordingly. Because a considerable proportion of the P. putida genome is known to be involved in regulation and signal transduction allowing for very flexible responses to environmental triggers [41] both conditions are likely to be met. The filtrate exposure tests (Fig. 3) provide specific evidence for the ability of P. putida KT2440 to up- and downregulate the excretion of compounds inhibiting flagellate growth in response to grazing pressure. Previous research [25] corroborated the ability of P. putida to escape grazing from bacterivorous flagellates through induced responses like aggregation or biofilm formation.To provide a possible characterization for the apparent bacterial toxin, the whole-genome sequences of P. putida KT2440 obtained here were aligned against the antiSMASH [42] database. The output suggests the existence of non-ribosomal peptide synthetase clusters mediating the production of pyoverdines, a particular class of siderophores. The latter are molecules released by bacteria into the environment, which enhance the uptake of essential metals like, e.g., iron under deficient conditions. Specific pyoverdines associated with P. putida KT2440 have previously been identified [43]. Recent findings have shown that the benefits from siderophore production are not limited to competitive advantages gained from enhanced resource exploitation [44]. Pyoverdines were also demonstrated to determine the virulence of Pseudomonads via the damage of mitochondria in colonized hosts [45]. Moreover, pyoverdines were shown to be involved in the inducible defense of P. putida against predatory myxobacteria [46]. Such multiple functions have been reported for a number of bacterial metabolites, especially in Pseudomonads [47], and the particular combination of pyoverdin effects would explain the observed simultaneous flagellate inhibition and promoted bacterial growth.In contrast to the initial chemical defense of P. putida, the subsequent filamentation clearly provides an example of rapid evolution. Although the responsible mutation(s) could only be pinpointed in a few isolates so far (Table S1), there is no doubt about the genetic manifestation and heritability of the filamentous phenotype due to its demonstrated non-reversible nature.Only recently, similar observations were made by long-term co-cultivation of Pseudomonas fluorescence with the amoeboid predator Neaglena grubei [48]. In that system, protective adaptations like enhanced biofilm formation and altered motility were traced down to mutations in two particular genes (wspF, amrZ).From the perspective of the bacterial population, filamentation appears to be a much less efficient defense mechanism than toxin production. This is clearly reflected by the ratio of prey to predator biomass, which differed by two orders of magnitude between the initial and final defense (Table 6). It raises the question of why bacteria would abandon a highly effective form of defense in favor of a much less effective one. As demonstrated experimentally, adaptation of predators to the toxin can be excluded as a cause (Fig. 4). Moreover, it was not instantly evident how the small-sized flagellate was ultimately able to persist in large numbers given a very high proportion of completely inedible prey individuals (Fig. 1D and Fig. S2).Table 6 Average abundance of predator and prey during the temporary steady state following the initial bacterial defense (day 13–16) and during the final steady state (beyond day 30).Full size tableTo develop a comprehensive understanding of the system addressing the questions raised above, we set up a semi-continuous differential equation model to simulate the dynamics of predator and prey phenotypes. The model considers seven state variables (carbon, densities of four bacterial phenotypes, flagellate density, and toxin concentration) whose dynamics are controlled by nine processes (Table 3, Fig. 2). In addition to microbial growth and grazing, the model implements a phenotypically plastic predation defense (toxin production) as well as a genetic defense (filamentation) which arises via mutation. The particular assumptions implemented in the model are as follows:Dual effect of bacterial metabolitesIn line with the above discussion on siderophore-like compounds, secondary metabolites excreted by P. putida were assumed to exhibit a dual function, both inhibiting the growth of flagellates and allowing for a more efficient exploitation of the resources by bacteria. The inhibition of predators was demonstrated directly (Figs. 3 and 4) while enhanced resource exploitation was inferred from bacterial abundances in co-cultures exceeding the carrying capacity observed in predator-free controls (Fig. 1A, day 11–18).Metabolite production is costlyThe production of bacterial metabolites was assumed to be associated with a slight fitness cost [49] since resources are diverted from reproduction, thus resulting in a lowered growth rate of toxin-producing bacteria. The assumed fitness cost of 11% (parameter cBx in Table 5) allowed for the best agreement between simulated and observed data and is in agreement with data on the cost of pyoverdine production by P. aeruginosa [50]. The cost only manifests when toxin production is upregulated.Predator recognition and quorum sensing interactIn the model, the production of bacterial metabolites is upregulated when the two conditions of high flagellate abundance and high bacterial abundance coincide. That is, the expression of the toxin-based bacterial defense is assumed to be jointly controlled by predator recognition and quorum sensing (QS). Examples for such joint control of bacterial defenses have been reported previously [8, 26, 51]. The involvement of QS in chemical defense strategies is particularly likely as effective toxin concentrations can only be reached when producers are highly abundant. While multiple QS systems have been described for other Pseudomonads, only a single system has been identified in P. putida KT2440 so far [52, 53].Mutation rates are conditional on stressThe emergence of mutations resulting in the filamentation of P. putida was assumed to be conditional on a high ambient concentration of bacterial metabolites. The latter was considered as a proxy for bacterial stress which can affect mutagenesis either directly or indirectly by a variety of mechanisms [54,55,56]. Without this assumption, the almost synchronous appearance of filaments in all replicates at a late point in time would be very difficult to explain. Specifically, if mutation frequencies were high, filaments would become the predominant phenotype early (Fig. S3) which contradicts observations. On the other hand, if frequencies were low but unconditional, the timing of filament appearance should vary between replicates, which is in contrast to observations either (Fig. 1B).Filamentation is associated with a fitness costMeasurements of growth rate constants revealed a significant fitness disadvantage of filamentous isolates in comparison to single-celled, undefended isolates (p  More

  • in

    Astragalus-cultivated soil was a suitable bed soil for nurturing Angelica sinensis seedlings from the rhizosphere microbiome perspective

    An, Z., Guo, F., Chen, Y., Bai, G. & Chen, Z. Rhizosphere bacterial and fungal communities during the growth of Angelica sinensis seedlings cultivated in an Alpine uncultivated meadow soil. PeerJ 8, e8541. https://doi.org/10.7717/peerj.8541 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Munkholm, L. J., Heck, R. J. & Deen, B. Long-term rotation and tillage effects on soil structure and crop yield. Soil Tillage Res. 127, 85–91. https://doi.org/10.1016/j.still.2012.02.007 (2013).Article 

    Google Scholar 
    Jiao, X. L. et al. Effects of maize rotation on the physicochemical properties and microbial communities of American ginseng cultivated soil. Sci. Rep. 9, 8615. https://doi.org/10.1038/s41598-019-44530-7 (2019).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, X., Chen, Y., Guo, F., Yuan, H. & Guo, Y. Effects of medicinal crop stubbles on physiological and biochemical characteristics of Angelica sinensis seedings. J. Chin. Med. Mater. 40, 2002–2006 (2017).
    Google Scholar 
    Jin, Y. et al. Effect of various crop residues on growth and disease resisitance of Angelica sinensis seedlings in Min County. Acta Pratacul. Sin. 27, 69–78 (2018).MathSciNet 

    Google Scholar 
    Bai, G., Guo, F., Chen, Y., Yuan, H. & Xiao, W. Differences in physiological resistance traits of Angelica sinensis seedlings from uncultivated and cultivated fields in Min County. Acta Pratacul. Sin. 28, 86–95 (2019).
    Google Scholar 
    Bai, G. et al. Regulated effects of preceding crop on soil property and cultivating seedlings for Angelica sinensis on cultivated farmland. Chin. J. Eco-Agric. 28, 701–712. https://doi.org/10.13930/j.cnki.cjea.190719 (2020).Article 
    CAS 

    Google Scholar 
    Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tkacz, A., Cheema, J., Chandra, G., Grant, A. & Poole, P. S. Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. Int. Soc. Microb. Ecol. 9, 2349–2359. https://doi.org/10.1038/ismej.2015.41 (2015).Article 
    CAS 

    Google Scholar 
    Berg, G. et al. Microbiome definition re-visited: Old concepts and new challenges. Microbiome 8, 103. https://doi.org/10.1186/s40168-020-00875-0 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chaparro, J. M., Badri, D. V. & Vivanco, J. M. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 8, 790–803. https://doi.org/10.1038/ismej.2013.196 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Uroz, S. et al. Specific impacts of beech and Norway spruce on the structure and diversity of the rhizosphere and soil microbial communities. Sci. Rep. 6, 27756. https://doi.org/10.1038/srep27756 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chamberlain, L. A. et al. Crop rotation, but not cover crops, influenced soil bacterial community composition in a corn-soybean system in southern Wisconsin. Appl. Soil Ecol. 154, 103603. https://doi.org/10.1016/j.apsoil.2020.103603 (2020).Article 

    Google Scholar 
    Classen, A. T. et al. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead?. Ecosphere 6, 130. https://doi.org/10.1890/es15-00217.1 (2015).Article 

    Google Scholar 
    Tiemann, L. K. et al. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol. Lett. 18, 761–771. https://doi.org/10.1111/ele.12453 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Maldonado, S. et al. Enhanced crop productivity and sustainability by using native phosphate solubilizing rhizobacteria in the agriculture of arid zones. Front. Sustain. Food Syst. 4, 607355. https://doi.org/10.3389/fsufs.2020.607355 (2020).Article 

    Google Scholar 
    Gómez Expósito, R., de Bruijn, I., Postma, J. & Raaijmakers, J. M. Current insights into the role of rhizosphere bacteria in disease suppressive soils. Front. Microbiol.y 8, 2529. https://doi.org/10.3389/fmicb.2017.02529 (2017).Article 

    Google Scholar 
    Li, X., Rui, J., Mao, Y., Yannarell, A. & Mackie, R. Dynamics of the bacterial community structure in the rhizosphere of a maize cultivar. Soil Biol. Biochem. 68, 392–401. https://doi.org/10.1016/j.soilbio.2013.10.017 (2014).Article 
    CAS 

    Google Scholar 
    Fierer, N. et al. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. Int. Soc. Microb. Ecol. 6, 1007–1017. https://doi.org/10.1038/ismej.2011.159 (2012).Article 
    CAS 

    Google Scholar 
    Kuffner, M. et al. Culturable bacteria from Zn- and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. J. Appl. Microbiol. 108, 1471–1484. https://doi.org/10.1111/j.1365-2672.2010.04670.x (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    De Corato, U. Disease-suppressive compost enhances natural soil suppressiveness against soil-borne plant pathogens: A critical review. Rhizosphere 13, 100192. https://doi.org/10.1016/j.rhisph.2020.100192 (2020).Article 

    Google Scholar 
    Brookes, P. C., Landman, A., Pruden, G. & Jenkinson, D. S. Chloroform fumigation chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17, 837–842 (1985).Article 
    CAS 

    Google Scholar 
    Arnebrant, K. & Schnürer, J. Changes in atp content during and after chloroform fumigation. Soil Biol. Biochem. 22, 875–877 (1990).Article 
    CAS 

    Google Scholar 
    Toju, H. et al. Community composition of root-associated fungi in a Quercus-dominated temperate forest: “codominance” of mycorrhizal and root-endophytic fungi. Ecol. Evol. 3, 1281–1293. https://doi.org/10.1002/ece3.546 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Magoč, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59. https://doi.org/10.1038/nmeth.2276 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haas, B. J. et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21, 494–504. https://doi.org/10.1101/gr.112730.110 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998. https://doi.org/10.1038/nmeth.2604 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267. https://doi.org/10.1128/AEM.00062-07 (2007).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. https://doi.org/10.1093/nar/gks1219 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272 (2016).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Nguyen, N. H. et al. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248. https://doi.org/10.1016/j.funeco.2015.06.006 (2016).Article 

    Google Scholar 
    Sisk-Hackworth, L., Ortiz-Velez, A., Reed, M. B. & Kelley, S. T. Compositional data analysis of periodontal disease microbial communities. Front. Microbiol. 12, 617949. https://doi.org/10.3389/fmicb.2021.617949 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Khan, M. A. W. et al. Deforestation impacts network co-occurrence patterns of microbial communities in Amazon soils. FEMS Microbiol. Ecol. 95, fiy230. https://doi.org/10.1093/femsec/fiy230 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhang, B., Zhang, J., Liu, Y., Shi, P. & Wei, G. Co-occurrence patterns of soybean rhizosphere microbiome at a continental scale. Soil Biol. Biochem. 118, 178–186. https://doi.org/10.1016/j.soilbio.2017.12.011 (2018).Article 
    CAS 

    Google Scholar 
    Huang, M., Jiang, L., Zou, Y., Xu, S. & Deng, G. Changes in soil microbial properties with no-tillage in Chinese cropping systems. Biol. Fertil. Soils 49, 373–377. https://doi.org/10.1007/s00374-013-0778-6 (2013).Article 

    Google Scholar 
    Unger, P. W. & Cassel, D. K. Tillage implement disturbance effects on soil properties related to soil and water conservation: A literature review. Soil Tillage Res. 19, 363–382 (1991).Article 

    Google Scholar 
    Alvarez, R. & Steinbach, H. S. A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil Tillage Res. 104, 1–15. https://doi.org/10.1016/j.still.2009.02.005 (2009).Article 

    Google Scholar 
    Essel, E. et al. Bacterial and fungal diversity in rhizosphere and bulk soil under different long-term tillage and cereal/legume rotation. Soil Tillage Res. 194, 104302. https://doi.org/10.1016/j.still.2019.104302 (2019).Article 

    Google Scholar 
    Zhu, Q., Wang, N., Duan, B., Wang, Q. & Wang, Y. Rhizosphere bacterial and fungal communities succession patterns related to growth of poplar fine roots. Sci. Total Environ. 756, 143839. https://doi.org/10.1016/j.scitotenv.2020.143839 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Guseva, K. et al. From diversity to complexity: Microbial networks in soils. Soil Biol. Biochem. 169, 108604. https://doi.org/10.1016/j.soilbio.2022.108604 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jiang, B. et al. Analysis of microbial community structure and diversity in surrounding rock soil of different waste dump sites in fushun western opencast mine. Chemosphere 269, 128777. https://doi.org/10.1016/j.chemosphere.2020.128777 (2020).Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 
    Liu, J. et al. Pecan plantation age influences the structures, ecological networks, and functions of soil microbial communities. Land Degrad. Dev. 33, 3294–3309. https://doi.org/10.1002/ldr.4389 (2022).Article 

    Google Scholar 
    Lv, X. et al. Strengthening insights in microbial ecological networks from theory to applications. mSystems 4, e00124-19. https://doi.org/10.1128/mSystems.00124-19 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Toju, H., Kishida, O., Katayama, N. & Takagi, K. Networks depicting the fine-scale co-occurrences of fungi in soil Horizons. PLoS ONE 11, e0165987. https://doi.org/10.1371/journal.pone.0165987 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chun, S. J., Cui, Y., Baek, S. H., Ahn, C. Y. & Oh, H. M. Seasonal succession of microbes in different size-fractions and their modular structures determined by both macro- and micro-environmental filtering in dynamic coastal waters. Sci. Total Environ. 784, 147046. https://doi.org/10.1016/j.scitotenv.2021.147046 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cardinale, M., Grube, M., Erlacher, A., Quehenberger, J. & Berg, G. Bacterial networks and co-occurrence relationships in the lettuce root microbiota. Environ. Microbiol. 17, 239–252. https://doi.org/10.1111/1462-2920.12686 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhou, Z. et al. Increases in bacterial community network complexity induced by biochar-based fertilizer amendments to karst calcareous soil. Geoderma 337, 691–700. https://doi.org/10.1016/j.geoderma.2018.10.013 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl. Acad. Sci. U.S.A. 104, 19891–19896. https://doi.org/10.1073/pnas.0706375104 (2007).Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    Eisenhauer, N. et al. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Sci. Rep. 7, 44641. https://doi.org/10.1038/srep44641 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hassan, M. K., McInroy, J. A. & Kloepper, J. W. The interactions of rhizodeposits with plant growth-promoting Rhizobacteria in the rhizosphere: A review. Agriculture 9, 142. https://doi.org/10.3390/agriculture9070142 (2019).Article 
    CAS 

    Google Scholar 
    Sasse, J., Martinoia, E. & Northen, T. Feed your friends: Do plant exudates shape the root microbiome?. Trends Plant Sci. 23, 25–41. https://doi.org/10.1016/j.tplants.2017.09.003 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhang, F., Xu, X., Wang, G., Wu, B. & Xiao, Y. Medicago sativa and soil microbiome responses to Trichoderma as a biofertilizer in alkaline-saline soils. Appl. Soil Ecol. 153, 103573. https://doi.org/10.1016/j.apsoil.2020.103573 (2020).Article 

    Google Scholar 
    Woźniak, A. Chemical properties and enzyme activity of soil as affected by tillage system and previous crop. Agriculture 9, 262. https://doi.org/10.3390/agriculture9120262 (2019).Article 
    CAS 

    Google Scholar 
    Choudhary, M. et al. Changes in soil biology under conservation agriculture based sustainable intensification of cereal systems in Indo-Gangetic Plains. Geoderma 313, 193–204. https://doi.org/10.1016/j.geoderma.2017.10.041 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Ai, C. et al. Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation. Geoderma 319, 156–166. https://doi.org/10.1016/j.geoderma.2018.01.010 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Gałązka, A., Gawyjołek, K., Perzyński, A., Gałązka, R. & Jerzy, K. Changes in enzymatic activities and microbial communities in soil under long-term maize monoculture and crop rotation. Pol. J. Environ. Stud. 26, 39–46. https://doi.org/10.15244/pjoes/64745 (2017).Article 
    CAS 

    Google Scholar 
    Tremblay, C., Deslauriers, A., Lafond, J., Lajeunesse, J. & Paré, M. Effects of soil pH and fertilizers on haskap (Lonicera caerulea L) vegetative growth. Agriculture 9, 56. https://doi.org/10.3390/agriculture9030056 (2019).Article 
    CAS 

    Google Scholar 
    Sirisuntornlak, N. et al. Interactive effects of silicon and soil pH on growth, yield and nutrient uptake of maize. SILICON 13, 289–299. https://doi.org/10.1007/s12633-020-00427-z (2021).Article 
    CAS 

    Google Scholar 
    Xu, Y., Ge, Y., Song, J. & Rensing, C. Assembly of root-associated microbial community of typical rice cultivars in different soil types. Biol. Fertil. Soils 56, 249–260. https://doi.org/10.1007/s00374-019-01406-2 (2019).Article 
    CAS 

    Google Scholar 
    Putranta, H., Permatasari, A. K., Sukma, T. A. & Dwandaru, W. S. B. The effect of pH, electrical conductivity, and nitrogen (N) in the soil at yogyakarta special region on tomato plant growth. TEM J.-Technol. Educ. Manag. Inform. 8, 860–865. https://doi.org/10.18421/TEM83-24 (2019).Article 

    Google Scholar 
    Wang, J. et al. Effects of alternate partial root-zone irrigation on soil microorganism and maize growth. Plant Soil 302, 45–52. https://doi.org/10.1007/s11104-007-9453-8 (2007).Article 
    CAS 

    Google Scholar 
    Yang, X., Zhu, K., Loik, M. E. & Sun, W. Differential responses of soil bacteria and fungi to altered precipitation in a meadow steppe. Geoderma 384, 114812. https://doi.org/10.1016/j.geoderma.2020.114812 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Balota, E. L., Colozzi Filho, A., Andrade, D. S. & Dick, R. P. Long-term tillage and crop rotation effects on microbial biomass and C and N mineralization in a Brazilian Oxisol. Soil Tillage Res. 77, 137–145. https://doi.org/10.1016/j.still.2003.12.003 (2004).Article 

    Google Scholar 
    Franchini, J., Crispino, C., Souza, R., Torres, E. & Hungria, M. Microbiological parameters as indicators of soil quality under various soil management and crop rotation systems in southern Brazil. Soil Tillage Res. 92, 18–29. https://doi.org/10.1016/j.still.2005.12.010 (2007).Article 

    Google Scholar 
    Li, X., Wang, T., Chang, S. X., Jiang, X. & Song, Y. Biochar increases soil microbial biomass but has variable effects on microbial diversity: A meta-analysis. Sci. Total Environ. 749, 141593. https://doi.org/10.1016/j.scitotenv.2020.141593 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lynch, J. M. & Panting, L. M. Effects of season, cultivation and nitrogen fertiliser on the size of the soil microbial biomass. J. Sci. Food Agric. 33, 249–252 (1982).Article 
    CAS 

    Google Scholar 
    Tan, G. et al. Effects of biochar application with fertilizer on soil microbial biomass and greenhouse gas emissions in a peanut cropping system. Environ. Technol. 42, 9–19. https://doi.org/10.1080/09593330.2019.1620344 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Liu, C. et al. Linkages between nutrient ratio and the microbial community in rhizosphere soil following fertilizer management. Environ. Res. 184, 109261. https://doi.org/10.1016/j.envres.2020.109261 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Li, H. et al. Film mulching, residue retention and N fertilization affect ammonia volatilization through soil labile N and C pools. Agric. Ecosyst. Environ. 308, 107272. https://doi.org/10.1016/j.agee.2020.107272 (2021).Article 
    CAS 

    Google Scholar 
    Jiao, P. et al. Bacteria are more sensitive than fungi to moisture in eroded soil by natural grass vegetation restoration on the Loess Plateau. Sci. Total Environ. 756, 143899. https://doi.org/10.1016/j.scitotenv.2020.143899 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sommer, J. et al. The tree species matters: Belowground carbon input and utilization in the myco-rhizosphere. Eur. J. Soil Biol. 81, 100–107. https://doi.org/10.1016/j.ejsobi.2017.07.001 (2017).Article 
    CAS 

    Google Scholar 
    Yu, K., Pieterse, C. M. J., Bakker, P. A. H. M. & Berendsen, R. L. Beneficial microbes going underground of root immunity. Plant Cell Environ. 42, 2860–2870. https://doi.org/10.1111/pce.13632 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    de Varennes, A. & Goss, M. J. The tripartite symbiosis between legumes, rhizobia and indigenous mycorrhizal fungi is more efficient in undisturbed soil. Soil Biol. Biochem. 39, 2603–2607. https://doi.org/10.1016/j.soilbio.2007.05.007 (2007).Article 
    CAS 

    Google Scholar 
    Wang, X. et al. Mycorrhizal symbiosis modulates the rhizosphere microbiota to promote rhizobia-legume symbiosis. Mol. Plant 14, 503–516. https://doi.org/10.1016/j.molp.2020.12.002 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhang, R., Vivanco, J. M. & Shen, Q. The unseen rhizosphere root-soil-microbe interactions for crop production. Curr. Opin. Microbiol. 37, 8–14. https://doi.org/10.1016/j.mib.2017.03.008 (2017).Article 
    PubMed 

    Google Scholar 
    Berendsen, R. L., Pieterse, C. M. & Bakker, P. A. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486. https://doi.org/10.1016/j.tplants.2012.04.001 (2012).Article 
    CAS 
    PubMed 

    Google Scholar  More