More stories

  • in

    Tapping local knowledge to save a Papua New Guinea forest

    Download PDF

    It takes collaboration to get the full picture of a forest. Here, I’m teaming up with Sammy, a local senior-school student, to count and identify ants in a dense fragment of lowland rainforest. It’s November 2019, when I was a research technician with the New Guinea Binatang Research Centre in Madang, and we’re near the village of Boredoa on the southern coast of Papua New Guinea.I’m impressed by the locals’ knowledge of the forest and its inhabitants. It’s important to get more villagers involved in forest surveys and other conservation efforts so that they can work to protect them.Papua New Guinea — a country that makes up the eastern half of the island of New Guinea — is home to one of the world’s largest and most biodiverse rainforests, but mining and timber companies are taking a terrible toll. The areas beyond these trees have been heavily logged, and we’re checking to see how life in this remaining forest is faring, from the ants to the trees.I grew up in the northern city of Lae, a place very different from this forest. I have formal training in forestry and entomology, but, unlike Sammy and other villagers, I don’t have the experiences and insights that come from a lifetime of living on the land.Our ant survey was part of the National Forest Inventory, a project of the United Nations Programme on Reducing Emissions from Deforestation and Forest Degradation. There are many places still waiting to be studied.This forest is a hot, wet, challenging place to work. Villagers helped us to find relatively dry places to set up our tents. We had to wait for a break in the rain to set out our ant traps of tuna and fruit-flavoured drinks. In this particular sample, we identified six species, all native to the area. Introduced species such as fire ants and army ants have been taking over elsewhere in Papua New Guinea, but the local ants here have managed to hold on to their territory. For now.

    Nature 594, 466 (2021)
    doi: https://doi.org/10.1038/d41586-021-01587-7

    Latest on:

    Careers

    The authorship rows that sour scientific collaborations
    Career Feature 14 JUN 21

    Six mentoring tips as we enter year two of COVID
    Career Column 11 JUN 21

    Researchers’ career insecurity needs attention and reform now, says international coalition
    Career News 08 JUN 21

    Ecology

    Indigenous lands: make Brazil stop mining to secure US deal
    Correspondence 08 JUN 21

    Widespread deoxygenation of temperate lakes
    Article 02 JUN 21

    French vote for river barriers defies biodiversity strategy
    Correspondence 01 JUN 21

    Jobs from Nature Careers

    All jobs

    POST-DOCTORAL ASSOCIATE BIOCHEMISTRY/CHEMICAL BIOLOGY
    University of Illinois at Urbana-Champaign (UIUC)
    Urbana, IL, United States

    JOB POST

    Postdoctoral Training Fellow
    Institute of Cancer Research (ICR)
    London, United Kingdom

    JOB POST

    Associate Editor or Senior Editor, BMC Series
    Springer Nature
    London, United Kingdom

    JOB POST

    Director of the Biomedical Computer Vision Facility
    Harvard Medical School (HMS)
    Boston, MA, United States

    JOB POST

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    Social-ecological filters drive the functional diversity of beetles in homegardens of campesinos and migrants in the southern Andes

    1.Berkes, F. & Folke, C. Linking social and ecological systems for resilience and sustainability. in Linking social and ecological systems: management practices and social mechanisms for building resilience (eds. Berkes, F. & Folke, C.) 1–25 (Cambridge University Press, 2002).2.Pretty, J. et al. The intersections of biological diversity and cultural diversity: Towards integration. Conserv. Soc. 7, 100 (2009).Article 

    Google Scholar 
    3.IPBES. The regional assessment report on biodiversity and ecosystem services for the Americas (Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2018).4.Galluzzi, G., Eyzaguirre, P. & Negri, V. Home gardens: Neglected hotspots of agro-biodiversity and cultural diversity. Biodivers. Conserv. 19, 3635–3654 (2010).Article 

    Google Scholar 
    5.Fernandes, E. C. M. & Nair, P. K. R. An evaluation of the structure and function of tropical homegardens. Agric. Syst. 21, 279–310 (1986).Article 

    Google Scholar 
    6.Ibarra, J. T., Caviedes, J., Barreau, A. & Pessa, N. Huertas familiares y comunitarias: cultivando soberanía alimentaria (Ediciones Universidad Católica de Chile, 2019).7.Eyzaguirre, P. B. & Linares, O. F. Home Gardens and Agrobiodiversity (Smithsonian Institution Press, 2010).8.Timsuksai, P. & Rambo, A. T. The influence of culture on agroecosystem structure: a comparison of the spatial patterns of homegardens of different ethnic groups in Thailand and Vietnam. PLoS ONE 11, e0146118 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    9.Lemessa, D., Hambäck, P. A. & Hylander, K. The effect of local and landscape level land-use composition on predatory arthropods in a tropical agricultural landscape. Landsc. Ecol. 30, 167–180 (2015).Article 

    Google Scholar 
    10.Mattsson, E., Ostwald, M., Nissanka, S. P. & Pushpakumara, D. K. N. G. Quantification of carbon stock and tree diversity of homegardens in a dry zone area of Moneragala district, Sri Lanka. Agrofor. Syst. 89, 435–445 (2015).Article 

    Google Scholar 
    11.Mohri, H. et al. Assessment of ecosystem services in homegarden systems in Indonesia, Sri Lanka, and Vietnam. Ecosyst. Serv. 5, 124–136 (2013).Article 

    Google Scholar 
    12.Pakeman, R. J. & Stockan, J. A. Drivers of carabid functional diversity: abiotic environment, plant functional traits, or plant functional diversity?. Ecology 95, 1213–1224 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Altieri, M. A. Agroecology: The Science of Sustainable Agriculture (Westview Press, 1995).14.Ellis, E. C. & Ramankutty, N. Putting people in the map: Anthropogenic biomes of the world. Front. Ecol. Environ. 6, 439–447 (2008).Article 

    Google Scholar 
    15.Piccini, I. et al. Dung beetles as drivers of ecosystem multifunctionality: Are response and effect traits interwoven?. Sci. Total Environ. 616–617, 1440–1448 (2018).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    16.Boonstra, W. J., Björkvik, E., Haider, L. J. & Masterson, V. Human responses to social-ecological traps. Sustain. Sci. 11, 877–889 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).Article 

    Google Scholar 
    18.Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).Article 

    Google Scholar 
    19.Toledo-Hernández, M., Denmead, L. H., Clough, Y., Raffiudin, R. & Tscharntke, T. Cultural homegarden management practices mediate arthropod communities in Indonesia. J. Insect Conserv. 20, 373–382 (2016).Article 

    Google Scholar 
    20.Jaganmohan, M., Vailshery, L. S. & Nagendra, H. Patterns of insect abundance and distribution in urban domestic gardens in Bangalore, India. Diversity 5, 767–778 (2013).Article 

    Google Scholar 
    21.Huerta, E. & Van der Wal, H. Soil macroinvertebrates’ abundance and diversity in home gardens in Tabasco, Mexico, vary with soil texture, organic matter and vegetation cover. Eur. J. Soil Biol. 50, 68–75 (2012).Article 

    Google Scholar 
    22.Pizzolotto, R. et al. Ground beetles in Mediterranean olive agroecosystems: their significance and functional role as bioindicators (Coleoptera, Carabidae). PLoS ONE 13, e0194551 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    23.Grez, A. A., Zaviezo, T., Casanoves, F., Oberti, R. & Pliscoff, P. The positive association between natural vegetation, native coccinellids and functional diversity of aphidophagous coccinellid communities in alfalfa. Insect Conserv. Divers. https://doi.org/10.1111/icad.12473 (2021).Article 

    Google Scholar 
    24.Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Guerrero, I., Carmona, C. P., Morales, M. B., Oñate, J. J. & Peco, B. Non-linear responses of functional diversity and redundancy to agricultural intensification at the field scale in Mediterranean arable plant communities. Agric. Ecosyst. Environ. 195, 36–43 (2014).Article 

    Google Scholar 
    26.Mayfield, M. M. et al. What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Glob. Ecol. Biogeogr. 19, 423–431 (2010).
    Google Scholar 
    27.Upreti, B. R. & Upreti, Y. G. Factors leading to agro-biodiversity loss in developing countries: the case of Nepal. Biodivers. Conserv. 11, 1607–1621 (2002).Article 

    Google Scholar 
    28.Reyes-García, V. et al. Resilience of traditional knowledge systems: The case of agricultural knowledge in home gardens of the Iberian Peninsula. Glob. Environ. Chang. 24, 223–231 (2014).Article 

    Google Scholar 
    29.Kawa, N. C. How religion, race, and the weedy agency of plants shape Amazonian home gardens. Cult. Agric. Food Environ. 38, 84–93 (2016).Article 

    Google Scholar 
    30.Brondizio, E. S. et al. Re-conceptualizing the Anthropocene: A call for collaboration. Glob. Environ. Chang. 39, 318–327 (2016).Article 

    Google Scholar 
    31.Benson, M. & O’Reilly, K. Lifestyle Migration: Expectations, Aspirations, and Experiences (Ashgate Publishing, 2009).32.Marchant, C. Lifestyle migration and the nascent agroecological movement in the Andean Araucanía, Chile: Is it promoting sustainable local development?. Mt. Res. Dev. 37, 406–414 (2017).Article 

    Google Scholar 
    33.Ibarra, J. T., Barreau, A., Caviedes, J., Pessa, N. & Urra, R. Huertas familiares tradicionales y emergentes: cultivando biodiversidad, aprendizaje y soberanía desde la interculturalidad. in Huertas familiares y comunitarias: cultivando soberanía alimentaria (eds. Ibarra, J. T., Caviedes, J., Barreau, A. & Pessa, N.) 138–165 (Ediciones Universidad Católica de Chile, 2019).34.Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Arroyo, M. T. K. et al. El hotspot chileno, prioridad mundial para la conservación. in Diversidad de Chile: patrimonios y desafíos (ed. Mnisterio del Medio Ambiente, G. de C.) 90–95 (Ocho Libros Editores, 2006).36.Farias, A. A. & Jaksic, F. M. Low functional richness and redundancy of a predator assemblage in native forest fragments of Chiloe Island Chile. J. Anim. Ecol. 80, 809–817 (2011).PubMed 
    Article 

    Google Scholar 
    37.Ibarra, J. T. & Martin, K. Biotic homogenization: loss of avian functional richness and habitat specialists in disturbed Andean temperate forests. Biol. Conserv. 192, 418–427 (2015).Article 

    Google Scholar 
    38.Lavelle, P. et al. Soil function in a changing world: The role of invertebrate ecosystem engineers. Eur. J. Soil Biol. 33, 159–193 (1997).CAS 

    Google Scholar 
    39.Cole, L. J. et al. Relationships between agricultural management and ecological groups of ground beetles (Coleoptera: Carabidae) on Scottish farmland. Agric. Ecosyst. Environ. 93, 323–336 (2002).Article 

    Google Scholar 
    40.Van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    41.Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27 (2019).Article 

    Google Scholar 
    42.Lencinas, M. V., Sola, F. J., Cellini, J. M., Peri, P. L. & Martínez Pastur, G. Land sharing in South Patagonia: Conservation of above-ground beetle diversity in forests and non-forest ecosystems. Sci. Total Environ. 690, 132–139 (2019).43.Roig-Juñent, S. & Domínguez, M. C. Diversidad de la familia Carabidae (Coleoptera) en Chile. Rev. Chil. Hist. Nat. 74, 549–571 (2001).Article 

    Google Scholar 
    44.Grez, A. A., Moreno, P. & Elgueta, M. Coleópteros (Insecta: Coleoptera) epígeos asociados al bosque maulino y plantaciones de pino aledañas. Rev. Chil. Entomol. 29, 9–18 (2003).
    Google Scholar 
    45.Richardson, B. J. & Arias-Bohart, E. T. Why so many apparently rare beetles in Chilean temperate rainforests?. Rev. Chil. Hist. Nat. 84, 419–432 (2011).Article 

    Google Scholar 
    46.Cifuentes-Croquevielle, C., Stanton, D. E. & Armesto, J. J. Soil invertebrate diversity loss and functional changes in temperate forest soils replaced by exotic pine plantations. Sci. Rep. 10, 7762 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Fonseca, C. R. & Ganade, G. Species functional redundancy, random extinctions and the stability of ecosystems. J. Ecol. 89, 118–125 (2001).Article 

    Google Scholar 
    48.Rosenfeld, J. S. Functional redundancy in ecology and conservation. Oikos 98, 156–162 (2013).Article 

    Google Scholar 
    49.Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).Article 

    Google Scholar 
    50.Mori, A. S. Resilience in the studies of biodiversity-ecosystem functioning. Trends Ecol. Evol. 31, 87–89 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Ibarra, J. T. et al. Nurturing resilient forest biodiversity: nest webs as complex adaptive systems. Ecol. Soc. 25, 27 (2020).Article 

    Google Scholar 
    52.Ibarra, J. T., Martin, M., Cockle, K. L. & Martin, K. Maintaining ecosystem resilience: functional responses of tree cavity nesters to logging in temperate forests of the Americas. Sci. Rep. 7, 4467 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    53.Elgueta, M. & Arriagada, G. Estado actual del conocimiento de los coleópteros de Chile (Insecta: Coleoptera). Rev. Chil. Entomol. 17, 5–60 (1989).
    Google Scholar 
    54.Díaz, S. & Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).Article 

    Google Scholar 
    55.Petchey, O. L., Evans, K. L., Fishburn, I. S. & Gaston, K. J. Low functional diversity and no redundancy in British avian assemblages. J. Anim. Ecol. 76, 977–985 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Villagrán, C. & Hinojosa, L. F. Historia de los bosques del sur de Sudamérica, II : análisis fitogeográfico. Rev. Chil. Hist. Nat. 70, 241–267 (1997).
    Google Scholar 
    57.Vuilleumier, F. & Simpson, B. Pleistocene changes in the fauna and flora of South America. Science 173, 771–780 (1971).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Niemelä, J. Habitat distribution of carabid beetles in Tierra del Fuego South America. Entomol. Fenn. 29, 3–16 (1990).Article 

    Google Scholar 
    59.O’Brien, C. The biogeography of Chile through entomofaunal regions. Entomol. News 82, 197–202 (1971).
    Google Scholar 
    60.Vergara, O. E., Jerez, V. & Parra, L. E. Diversidad y patrones de distribución de coleópteros en la Región del Biobío, Chile : una aproximación preliminar para la conservación de la diversidad. Rev. Chil. Hist. Nat. 79, 369–388 (2006).Article 

    Google Scholar 
    61.Mason, N. W. H., Irz, P., Lanoiselée, C., Mouillot, D. & Argillier, C. Evidence that niche specialization explains species-energy relationships in lake fish communities. J. Anim. Ecol. 77, 285–296 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: toward a global functional homogenization?. Front. Ecol. Environ. 9, 222–228 (2011).Article 

    Google Scholar 
    63.Devictor, V. et al. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecol. Lett. 13, 1030–1040 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    64.Trinh, L. N. et al. Agrobiodiversity conservation and development in Vietnamese home gardens. Agric. Ecosyst. Environ. 97, 317–344 (2003).Article 

    Google Scholar 
    65.MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, 1967).66.Serge, M. M. P., Giovani, E. T. & Mony, R. Household and home garden infesting arthropods (Ants and Myriapods) in the city of Yaoundé, Cameroon. J. Entomol. Zool. Stud. 7, 1030–1037 (2019).
    Google Scholar 
    67.Jacquet, C., Mouillot, D., Kulbicki, M. & Gravel, D. Extensions of island biogeography theory predict the scaling of functional trait composition with habitat area and isolation. Ecol. Lett. 20, 135–146 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Gravel, D., Massol, F., Canard, E., Mouillot, D. & Mouquet, N. Trophic theory of island biogeography. Ecol. Lett. 14, 1010–1016 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Regman, T. P. et al. Species interactions regulate the collapse of biodiversity and ecosystem function in tropical forest fragments. Ecology 96, 2692–2704 (2015).Article 

    Google Scholar 
    70.Bolger, D. T., Suarez, A. V., Crooks, K. R., Morrison, S. A. & Case, T. J. Arthropods in urban habitat fragments in southern California: area, age and edge effects. Ecol. Appl. 10, 1230–1248 (2000).Article 

    Google Scholar 
    71.Barreau, A., Ibarra, J. T., Wyndham, F. S. & Kozak, R. A. Shifts in Mapuche food systems in southern Andean forest landscapes: historical processes and current trends of biocultural homogenization. Mt. Res. Dev. 39, 12–23 (2019).Article 

    Google Scholar 
    72.Caviedes, J. & Ibarra, J. T. Influence of anthropogenic disturbances on stand structural complexity in Andean temperate forests: implications for managing key habitat for biodiversity. PLoS ONE 12, e0169450 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    73.Altieri, M. A. & Nicholls, C. I. The adaptation and mitigation potential of traditional agriculture in a changing climate. Clim. Change 140, 33–45 (2017).ADS 
    Article 

    Google Scholar 
    74.Sánchez-Bayo, F. Impacts of agricultural pesticides on terrestrial ecosystems. in Ecological Impacts of Toxic Chemicals (eds. Sánchez-Bayo, F., Van den Brink, P. J. & Mann, R.) 63–87 (Bentham Science Publishers, 2011).75.Geiger, F. et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 11, 97–105 (2010).CAS 
    Article 

    Google Scholar 
    76.Barreau, A., Ibarra, J. T., Wyndham, F. S., Rojas, A. & Kozak, R. A. How can we teach our children if we cannot access the forest? Generational change in Mapuche knowledge of wild edible plants in Andean temperate ecosystems of Chile. J. Ethnobiol. 36, 412–432 (2016).Article 

    Google Scholar 
    77.Newing, H. Conducting research in conservation: a social science perspective. (Routledge, 2011). https://doi.org/10.1007/s13398-014-0173-7.278.Caballero-Serrano, V. et al. Plant diversity and ecosystem services in Amazonian homegardens of Ecuador. Agric. Ecosyst. Environ. 225, 116–125 (2016).Article 

    Google Scholar 
    79.Schneider, J. Toward an analysis of home-garden cultures: on the use of socio-cultural variables in home garden studies. in Home gardens and agrobiodiversity (eds. Eyzaguirre, P. B. & Linares, O. F.) 41–55 (Smithsonian Books, 2010).80.Rohr, J. R., Mahan, C. G. & Kim, K. C. Developing a monitoring program for invertebrates: guidelines and a case study. Conserv. Biol. 21, 422–433 (2007).PubMed 
    Article 

    Google Scholar 
    81.Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391 (2001).Article 

    Google Scholar 
    82.Iida, T., Soga, M., Hiura, T. & Koike, S. Life history traits predict insect species responses to large herbivore overabundance: a multitaxonomic approach. J. Insect Conserv. 20, 295–304 (2016).Article 

    Google Scholar 
    83.Vanderwel, M. C., Malcolm, J. R., Smith, S. M. & Islam, N. Insect community composition and trophic guild structure in decaying logs from eastern Canadian pine-dominated forests. For. Ecol. Manage. 225, 190–199 (2006).Article 

    Google Scholar 
    84.Zarazaga, M. A. Clase Insecta Orden Coleoptera. Rev. IDE-SEA 56, 1–18 (2015).
    Google Scholar 
    85.Lazo, W. Insectos de Chile: atlas entomológico. (Universidad de Chile, 2015).86.Briones, R., Gárate-Flores, F. & Jerez, V. Insectos de Chile. Nativos, introducidos y con problemas de conservacion. (Corporación Chilena de la Madera, 2012).87.Elgueta, M. & Arriagada, G. Estado actual del conocimiento de los coleópteros de Chile (Insecta: Coleoptera). Rev. Chil. Entomol. 17, 05–60 (1989).
    Google Scholar 
    88.Elgueta, M. & Marvaldi, A. E. Lista sistemática de las especies de curculionoidea (insecta: coleoptera) presentes en Chile, con su sinonimia. Boletín del Mus. Nac. Hist. Nat. 55, 113–153 (2006).
    Google Scholar 
    89.Moore, T. & Vidal, P. Los Bupréstidos de Chile. (Ediciones UC, 2013).90.Roig-Juñent, S. & Domínguez, M. C. Diversity of the family Carabidae (Coleoptera) in Chile. Rev. Chil. Hist. Nat. 74, 549–571 (2001).Article 

    Google Scholar 
    91.Arriagada, G. Histéridos chilenos (Coleoptera: Histeridae). Rev. Chil. Entomol. 14, 71–80 (1986).
    Google Scholar 
    92.González, G. Lista y distribución geográfica de especies de Coccinelidae (Insecta: Coleoptera) presentes en Chile. Boletín del Mus. Nac. Hist. Nat. 57, 77–107 (2008).
    Google Scholar 
    93.Lister, B. C. & Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl. Acad. Sci. 115, E10397–E10406 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Johnson, M. D. & Strong, A. M. Length-weight relationships of Jamaican arthropods. Entomol. News 111, 270–281 (2000).
    Google Scholar 
    95.Laliberté, E., Legendre, P. & Shipley, B. FD: measuring functional diversity (FD) from multiple traits, and other tools for functional ecology. (2011).96.Zuur, A., Leno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. Statistics for Biology and Health 36, (Springer, 2009).97.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1:48 (2015).98.Mazerolle, M. J. AICcmodavg: model selection and multimodel inference based on (Q)AIC(c). R Packag. version 2.1–1 (2017).99.R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (2021).100.Burnham, K. P. & Anderson, D. R. Model selection and inference: a practical information-theoretic approach. (Springer-Verlag, 2002).101.Oliver, M. A. & Webster, R. Kriging: a method of interpolation for geographical information systems. Int. J. Geogr. Inf. Syst. 4, 313–332 (1990).Article 

    Google Scholar  More

  • in

    Fungal phytopathogen modulates plant and insect responses to promote its dissemination

    Fungal culture and insect rearingThe fungus F. verticillioides was isolated from sugarcane plants and cultivated in potato dextrose (PD) medium (Difco, Sparks, NV, USA) at 25 °C with a 12 h photoperiod in climatic chambers. A. nidulans (A4 strain) was used as a control because it is not involved in red rot disease. It was cultivated in minimal medium (MM) [24] and maintained in climatic chambers at 37 °C in the dark.The D. saccharalis was provided by Prof. Dr. José R. P. Parra from the University of São Paulo, Piracicaba. The caterpillars were fed an artificial diet [25] and maintained in a room under controlled conditions (temperature 25 ± 4 °C, relative humidity 60 ± 10% and 14 h of light). Adults were kept in cages covered with white paper sheets, where the eggs were deposited, collected and sanitized with 1% copper sulfate solution daily. Newly hatched caterpillars were transferred to the artificial diet [25].Olfactory preference assayFive days before the experiment, a total of 105 fungal conidia of F. verticillioides or A. nidulans were inoculated in a Falcon tube (15 mL) containing 7 mL of MM. The negative control was sterile MM. Tubes containing fungus-colonized medium and control medium were placed at opposite ends of the Petri dish (15 cm diameter) bottom, lined with moistened filter paper. A group of ten third-instar D. saccharalis caterpillars was released in the central region of the arena. The choice was quantified in the end of the experiment when the caterpillar remained in the Falcon tube to feed. The medium in the tubes represents a food source, once the caterpillars find it, they remain in the chosen tube. The Petri dishes were closed, sealed and kept in a dark room for 5 h at 25 °C; then, the number of caterpillars inside each tube was recorded. The assay was also performed using third-instar Spodoptera frugiperda, to detect specific attractiveness, and with fifth-instar D. saccharalis, to find changes in insect behavior during different immature stages.To confirm insect attraction to fungal volatiles, VOCs collected from F. verticillioides were used to attract D. saccharalis. This assay was performed as described; however, only the control medium was added to the tubes. The hexane solvent was removed from the samples using nitrogen gas and the fungal VOCs were eluted in mineral oil. In addition to the control medium, each tube contained a piece of cotton loaded with either 50 µL of an aerated sample of F. verticillioides VOCs or solvent control (mineral oil). The dishes were placed in the dark for 7 h at 25 °C. All assays were repeated 10 times. Statistical analyses were performed using t-test (p  More

  • in

    Cyclotide host-defense tailored for species and environments in violets from the Canary Islands

    1.Craik, D. J., Daly, N. L., Bond, T. & Waine, C. Plant cyclotides: A unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J. Mol. Biol. 294, 1327–1336 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Gran, L. On the effect of a polypeptide isolated from “Kalata-Kalata” (Oldenlandia affinis DC) on the oestrogen dominated uterus. Acta Pharmacol. Toxicol. (Copenh) 33, 400–408 (1973).CAS 
    Article 

    Google Scholar 
    3.Schoepke, T., Hasan Agha, M. I., Kraft, R., Otto, A. & Hiller, K. Haemolytisch aktive Komponenten aus Viola tricolor L. und Viola arvensis murray. Sci. Pharm. 61, 145–153 (1993).CAS 

    Google Scholar 
    4.Claeson, P., Göransson, U., Johansson, S., Luijendijk, T. & Bohlin, L. Fractionation protocol for the isolation of polypeptides from plant biomass. J. Nat. Prod. 61, 77–81 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Göransson, U., Luijendijk, T., Johansson, S., Bohlin, L. & Claeson, P. Seven novel macrocyclic polypeptides from Viola arvensis. J. Nat. Prod. 62, 283–286 (1999).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Poth, A. G. et al. Discovery of cyclotides in the Fabaceae plant family provides new insights into the cyclization, evolution, and distribution of circular proteins. ACS Chem. Biol. 6, 345–355 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Poth, A. G. et al. Cyclotides associate with leaf vasculature and are the products of a novel precursor in Petunia (Solanaceae). J. Biol. Chem. 287, 27033–27046 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Burman, R. et al. Distribution of circular proteins in plants: Large-scale mapping of cyclotides in the Violaceae. Front. Plant Sci. 6, 20 (2015).ADS 
    Article 

    Google Scholar 
    9.Hernandez, J. F. et al. Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocyclic structure. Biochemistry 39, 5722–5730 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Nguyen, G. K. T. et al. Discovery of linear cyclotides in monocot plant Panicum laxum of Poaceae family provides new insights into evolution and distribution of cyclotides in plants. J. Biol. Chem. 288, 3370–3380 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Saether, O. et al. Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1. Biochemistry 34, 4147–4158 (1995).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Ravipati, A. S. et al. Understanding the diversity and distribution of cyclotides from plants of varied genetic origin. J. Nat. Prod. 80, 1522–1530 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Gruber, C. W. et al. Distribution and evolution of circular miniproteins in flowering plants. Plant Cell 20, 2471–2483 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Simonsen, S. M. et al. A continent of plant defense peptide diversity: Cyclotides in Australian Hybanthus (Violaceae). Plant Cell 17, 3176–3189 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Slazak, B., Jacobsson, E., Kuta, E. & Göransson, U. Exogenous plant hormones and cyclotide expression in Viola uliginosa (Violaceae). Phytochemistry 117, 527–536 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Lindholm, P. et al. Cyclotides: A novel type of cytotoxic agents. Mol. Cancer Ther. 1, 365–369 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Ovesen, R. G. et al. Biomedicine in the environment: Cyclotides constitute potent natural toxins in plants and soil bacteria. Environ. Toxicol. Chem. 30, 1190–1196 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Pränting, M., Lööv, C., Burman, R., Göransson, U. & Andersson, D. I. The cyclotide cycloviolacin O2 from Viola odorata has potent bactericidal activity against Gram-negative bacteria. J. Antimicrob. Chemother. 65, 1964–1971 (2010).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    19.Tam, J. P., Lu, Y. A., Yang, J. L. & Chiu, K. W. An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides. Proc. Natl. Acad. Sci. USA 96, 8913–8918 (1999).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Slazak, B. et al. How Does the sweet violet (Viola odorata L.) fight pathogens and pests—cyclotides as a comprehensive plant host defense system. Front. Plant Sci. 9, 20 (2018).Article 

    Google Scholar 
    21.Colgrave, M. L. et al. Anthelmintic activity of cyclotides: In vitro studies with canine and human hookworms. Acta Trop. 109, 163–166 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Jennings, C., West, J., Waine, C., Craik, D. & Anderson, M. A. Biosynthesis and insecticidal properties of plant cyclotides: The cyclic knotted proteins from Oldenlandia affinis. Proc. Natl. Acad. Sci. USA. 98, 10614–10619 (2001).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Gilding, E. K. et al. Gene coevolution and regulation lock cyclic plant defence peptides to their targets. New Phytol. 210, 717–730 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Mylne, J. S., Wang, C. K., van der Weerden, N. L. & Craik, D. J. Cyclotides are a component of the innate defense of Oldenlandia affinis. Biopolymers 94, 635–646 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Dörnenburg, H. Cyclotide synthesis and supply: From plant to bioprocess. Biopolymers 94, 602–610 (2010).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    26.Trabi, M. et al. Variations in cyclotide expression in Viola species. J. Nat. Prod. 67, 806–810 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Lista de especies silvestres de Canarias (hongos, plantas y animales terrestres). (Consejería de Política Territorial y Medio Ambiente. Gobierno de Canarias., 2001).28.Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Gómez, M. V. M., Esquivel, J. L. M., Díaz, J. R. D. & Izquierdo, M. S. Viola guaxarensis (Violaceae): A new Viola from Tenerife, Canary Islands, Spain. Willdenowia 50, 13–21 (2020).Article 

    Google Scholar 
    30.Rodríguez-Rodríguez, P., De Castro, A. G. F., Seguí, J., Traveset, A. & Sosa, P. A. Alpine species in dynamic insular ecosystems through time: Conservation genetics and niche shift estimates of the endemic and vulnerable Viola cheiranthifolia. Ann. Bot. 123, 505–519 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Ireland, D. C., Colgrave, M. L. & Craik, D. J. A novel suite of cyclotides from Viola odorata: Sequence variation and the implications for structure, function and stability. Biochem. J. 400, 1–12 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Burman, R., Gunasekera, S., Strömstedt, A. A. & Göransson, U. Chemistry and biology of cyclotides: Circular plant peptides outside the box. J. Nat. Prod. 77, 724–736 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Trabi, M. & Craik, D. J. Tissue-specific expression of head-to-tail cyclized miniproteins in Violaceae and structure determination of the root cyclotide Viola hederacea root cyclotide1. Plant Cell 16, 2204–2216 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Ballard, H. E., Sytsma, K. J. & Kowal, R. R. Shrinking the violets: Phylogenetic relationships of infrageneric groups in Viola (Violaceae) based on internal transcribed spacer DNA sequences. Syst. Bot. 23, 439 (1998).Article 

    Google Scholar 
    35.Batista, F. & Sosa, P. A. Allozyme diversity in natural populations of Viola palmensis. Webb & Berth (Violaceae) from La Palma (Canary Islands): Implications for conservation genetics. Ann. Bot. 90, 725–733 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Marcussen, T., Heier, L., Brysting, A. K., Oxelman, B. & Jakobsen, K. S. From gene trees to a dated allopolyploid network: Insights from the angiosperm genus Viola (Violaceae). Syst. Biol. 64, 84–101 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Marcussen, T., Oxelman, B., Skog, A. & Jakobsen, K. S. Evolution of plant RNA polymerase IV/V genes: Evidence of subneofunctionalization of duplicated NRPD2/NRPE2-like paralogs in Viola (Violaceae). BMC Evol. Biol. 10, 45 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Gilli, A. Viola anagae Gilli sp. Nov.. Feddes Repert. 89, 595–596 (1979).Article 

    Google Scholar 
    39.Moreno-Saiz, J. Lista Roja 2008 de la Flora Vascular Española (Dirección General de Medio Natural y Política Forestal, Ministerio de Medio Ambiente, y Medio Rural y Marino, y Sociedad Española de Biología de la Conservación de Plantas, 2008).
    Google Scholar 
    40.Broussalis, A. M. et al. First cyclotide from Hybanthus (Violaceae). Phytochemistry 58, 47–51 (2001).41.Mulvenna, J. P., Wang, C. & Craik, D. J. CyBase: A database of cyclic protein sequence and structure. Nucleic Acids Res. 34, D192–D194 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Hellinger, R. et al. Peptidomics of circular cysteine-rich plant peptides—analysis of the diversity of cyclotides from Viola tricolor by transcriptome- and proteome-mining. J. Proteome Res. https://doi.org/10.1021/acs.jproteome.5b00681 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Slazak, B., Haugmo, T., Badyra, B. & Göransson, U. The life cycle of cyclotides: Biosynthesis and turnover in plant cells. Plant Cell Rep. 39, 1359–1367 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Colgrave, M. L., Jones, A. & Craik, D. J. Peptide quantification by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry: Investigations of the cyclotide kalata B1 in biological fluids. J. Chromatogr. A 1091, 187–193 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Marcussen, T. Allozymic variation in the widespread and cultivated Viola odorata (Violaceae) in western Eurasia. Bot. J. Linn. Soc. 151, 563–571 (2006).Article 

    Google Scholar 
    46.Källback, P., Nilsson, A., Shariatgorji, M. & Andrén, P. E. msIQuant—quantitation software for mass spectrometry imaging enabling fast access, visualization, and analysis of large data sets. Anal. Chem. 88, 4346–4353 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    47.Pohlert, T. PMCMRplus: Calculate Pairwise Multiple Comparisons of Mean Rank Sums Extended.48.Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Media (Springer, 2009). https://doi.org/10.1007/978-0-387-98141-3.Book 
    MATH 

    Google Scholar 
    49.R Development Core Team, R. R A Language and Environment for Statistical Computing, Vol 1 409 (R Foundation for Statistical Computing, 2011).
    Google Scholar 
    50.Package, T. Package ‘ PMCMRplus ’ R topics documented (2019).51.Kolde, R. pheatmap: Pretty Heatmaps. R package version 1.0.12. (2019). https://cran.r-project.org/package=pheatmap.52.Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Sigrist, C. J. A. et al. PROSITE: A documented database using patterns and profiles as motif descriptors. Brief. Bioinform. 3, 265–274 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Rice, P., Longden, I. & Bleasby, A. EMBOSS: The European molecular biology open software suite. Trends Genet. 16, 276–277 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Burman, R. et al. Cyclotide proteins and precursors from the genus Gloeospermum: Filling a blank spot in the cyclotide map of Violaceae. Phytochemistry 71, 13–20 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Levenfors, J. J., Hedman, R., Thaning, C., Gerhardson, B. & Welch, C. J. Broad-spectrum antifungal metabolites produced by the soil bacterium Serratia plymuthica A 153. Soil Biol. Biochem. 36, 677–685 (2004).CAS 
    Article 

    Google Scholar 
    58.Broekaert, W. F., Terras, R. F. G., Cammue, B. P. A. & Vandedeyden, J. An automated quantitative assay for fungal growth inhibition. Most 69, 20 (1990).
    Google Scholar 
    59.CLSI. M38–A2 reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard—second edition. Clin. Lab. Stand. Inst. 20, 20 (2008).
    Google Scholar  More

  • in

    Role of meteorological factors in the transmission of SARS-CoV-2 in the United States

    Data collectionWe extracted hourly air temperature and SH from the North America Land Data Assimilation System project46, a near real-time dataset with a 0.125° × 0.125° grid resolution. We spatially and temporally averaged these data into daily county-level records. SH is the mass of water vapor in a unit mass of moist air (g kg−1). Daily downward UV radiation at the surface, with a wavelength of 0.20–0.44 µm, was extracted from the European Centre for Medium-Range Weather Forecasts ERA5 climate reanalysis47.Other characteristics of each county, including geographic location, population density, demographic structure of the population, socioeconomic factors, proportion of healthcare workers, intensive care unit (ICU) bed capacity, health risk factors, long-term and short-term air pollution, and climate zone were collected from multiple sources. Geographic coordinates, population density, median household income, percent of people older than 60 years, percent Black residents, percent Hispanic residents, percent owner-occupied housing, percent residents aged 25 years and over without a high school diploma, and percent healthcare practitioners or support staff were collected from the U.S. Census Bureau48. Total ICU beds in each county were derived from Kaiser Health News49. The prevalence of smoking and obesity among adults in each county was obtained from the Robert Wood Johnson Foundation’s 2020 County Health Rankings50. We extracted annual PM2.5 concentrations in the U.S. from 2014 to 2018 from the 0.01° × 0.01° grid resolution PM2.5 estimation provided by the Atmospheric Composition Analysis Group51, and calculated average PM2.5 levels during this 5-year period for each county to represent long-term PM2.5 exposure (Supplementary Fig. 5). Short-term air quality data during the study period, including daily mean PM2.5 and daily maximum 8-h O3, were obtained from the United States Environmental Protection Agency52. We categorized study counties into one of five climate zones based on the guide released by U.S. Department of Energy53 (Supplementary Fig. 6).The county-level COVID-19 case and death data were downloaded from the John Hopkins University Coronavirus Resource Center1. The U.S. county-to-county commuting data were available from the U.S. Census Bureau48. Daily numbers of inter-county visitors to points of interest (POI) were provided by SafeGraph54.Data ethicsSafeGraph utilizes data from mobile applications of which users optionally consent to provide their anonymous location data.Estimation of reproduction numberWe estimated the daily reproduction number (Rt) in all 3142 U.S. counties using a dynamic metapopulation model informed by human mobility data31,55. Rt is the mean number of new infections caused by a single infected person, given the public health measures in place, in a population in which everyone is assumed to be susceptible. In the metapopulation model, two types of movement were considered: daily work commuting and random movement. During the daytime, some commuters travel to a county other than their county of residence, where they work and mix with the populations of that county; after work, they return home and mix with individuals in their home, residential county. Apart from regular commuting, a fraction of the population in each county, assumed to be proportional to the number of inter-county commuters, travels for purposes other than work. As the population present in each county is different during daytime and night-time, we modelled the transmission dynamics of COVID-19 separately for these two time periods, each depicted by a set of ordinary differential equations (Supplementary Notes).To account for case underreporting, we explicitly simulated reported and unreported infections, for which separate transmission rates were defined. Recent studies from several countries indicate that asymptomatic cases of COVID-19, which are typically unreported, are less contagious than symptomatic cases56,57,58,59. Studies on the early transmission of SARS-CoV-2 in China18 and the U.S.60 also showed that undocumented infections are less transmissible than documented infections.In order to reflect the spatiotemporal variation of disease transmission rate and reporting, we allowed transmission rates and ascertainment rates to vary across counties and to change over time. The transmission model simulated daily confirmed cases and deaths for each county. To map infections to deaths, we used an age-stratified infection fatality rate (IFR)61 and computed the weekly IFR for each county as a weighted average using state-level age structure of confirmed cases reported by the U.S. Centers for Disease Control and Prevention. We further adjusted for reporting lags using an observational delay model informed by a U.S. line-list COVID-19 data record62.For the period prior to March 15, 2020, we used commuting data from the U.S. census survey to prescribe the inter-county movement in the transmission model48. Starting March 15, the census survey data are no longer representative due to changes in mobility behavior following the implementation of non-pharmaceutical interventions. We, therefore, used estimates of the reduction of inter-county visitors to POI (e.g., restaurants, stores, etc.) from SafeGraph54 to account for the change in inter-county movement on a county-by-county basis. Because there is no direct relationship between population-level mobility patterns and COVID-19 transmission rates63, we did not model local transmission rate as a function of inter-county mobility. Instead, the SafeGraph data were only used to inform the change of population mixing across counties.To infer key epidemiological parameters, we fitted the transmission model to county-level daily cases and deaths reported from March 15, 2020 to December 31, 2020. The estimated reproduction number was computed as follows:$${R}_{t}=beta Dleft[alpha +left(1-alpha right)mu right],$$
    (1)
    where β is the county-specific transmission rate, μ is the relative transmissibility of unreported infections, α is the county-specific ascertainment rate, and D is the average duration of infectiousness. Note (beta) and (alpha) were defined for each county separately and were allowed to vary over time. Unlike previous studies using effective reproduction number$${R}_{e}=beta Dleft[alpha +left(1-alpha right)mu right]s,$$
    (2)
    where s is the estimated local population susceptibility, we used reproduction number Rt to exclude the influence of population susceptibility on disease transmission rate.D, (mu), (Z) (the average latency period from infection to contagiousness), and a multiplicative factor adjusting random movement ((theta)) were randomly drawn from the posterior distributions inferred from case data through March 13, 202060: (D=3.56) (3.21–3.83), (mu =0.64) (0.56–0.70), (Z=3.59) (95% CI: 3.28–3.99), and (theta =0.15) (0.12–0.17). (Z) and (theta) are used in ordinary differential equations used to model transmission dynamics (Supplementary Notes).The daily transmission rate (beta) and ascertainment rate (alpha) were estimated sequentially for each county using the ensemble adjustment Kalman filter (EAKF)64. Specifically, parameters ({beta }_{i}) and ({alpha }_{i}) for county (i) were updated each day using incidence and death data. We used the estimates on day (t-1) as the prior parameters on day (t), and then updated the priors to posteriors using the EAKF and observations. The posteriors are the estimated parameter values on day (t). To ensure a smooth parameter estimation, we imposed a (pm 30 %) limit on the daily change of parameters ({beta }_{i}) and ({alpha }_{i}). Other smoothing constraints were tested and the results were similar. To avoid possible inaccurate estimation for counties with few cases, we inferred Rt in the 2669 U.S. counties with at least 400 cumulative confirmed cases as of December 31, 2020 (Supplementary Fig. 7).Statistical analysisAll statistical analyses were conducted with R software (version 3.6.1) using the mgcv and dlnm packages.Association between meteorological factors and R
    t
    Given the potential non-linear and temporally delayed effects of meteorological factors, a distributed lag non-linear model65 combined with generalized additive mixed models66 was applied to estimate the associations of daily mean temperature, daily mean SH, and daily mean UV radiation with SARS-CoV-2 Rt. To quantify the total contribution, independent effects, and relative importance of meteorological factors (i.e., temperature, SH, and UV radiation), we included all three variables in the same model. To reduce collinearity, we used cross-basis terms rather than the raw variables (Supplementary Tables 5–6). The full model can be expressed as:$$log (E({{{R}}}_{i,j,t}))= alpha +te(s({{rm{latitude}}}_{i}{,{rm{longitude}}}_{i},{rm{k}}=200),s({{rm{time}}}_{t},{rm{k}}=30))+{rm{cb}}.{rm{temperature}}+{rm{cb}}.{rm{SH}}+ {rm{cb}}.{rm{UV}}\ +{beta }_{1}({rm{population}},{rm{density}}_{i})+{beta }_{2}({rm{percent}},{rm{Black}},{rm{residents}}_{i})+{beta }_{3}({rm{percent}},{rm{Hispanic}},{rm{residents}}_{i})\ +{beta }_{4}({rm{percent}},{rm{people}},{rm{older}},{rm{than}},60,{rm{years}}_{i})+{beta }_{5}({rm{median}},{rm{household}},{rm{income}}_{i})\ +{beta }_{6}({rm{percent}},{rm{owner}}-{rm{occupied}},{rm{housing}}_{i})\ +{beta }_{7}({rm{percent}},{rm{residents}},{rm{older}},{rm{than}},25,{rm{years}},{rm{without}},{rm{a}},{rm{high}},{rm{school}},{rm{diploma}}_{i})\ +{beta }_{8}({rm{number}},{rm{of}},{rm{ICU}},{rm{beds}},{rm{per}},10,000,{rm{people}}_{i})+{beta }_{9}({rm{percent}},{rm{healthcare}},{rm{workers}}_{i})\ quad , {beta }_{10}({rm{day}},{rm{when}},100,{rm{cumulative}},{rm{cases}},{rm{per}},100,000,{rm{people}},{rm{was}},{rm{reached}}_{i})+{re}({rm{county}}_{i})+{re}({rm{state}}_{j})$$
    (3)
    where E(Ri,j,t) refers to the expected Rt in county i, state j, on day t, and α is the intercept. Given the distribution of Rt in our data close to a lognormal distribution (Supplementary Fig. 8), we used log-transformed Rt as the outcome variable, and the Gaussian family in the model. A thin plate spline with a maximum of 200 knots was used to control the coordinates of the centroid of each county; the time trend was controlled by a flexible natural cubic spline over the range of study dates with a maximum of 30 knots; due to the unique pattern of the non-linear time trend of Rt in each county (Supplementary Fig. 4), we constructed tensor product smooths (te) of the splines of geographical coordinates and time, to better control for the temporal and spatial variations (Supplementary Fig. 3).Cb.temperature, cb.SH, and cb.UV are cross-basis terms for the mean air temperature, mean SH and mean UV radiation, respectively. We modeled exposure-response associations (meteorological factors vs. percent change in Rt) using a natural cubic spline with 3 degrees of freedom (df) and modeled the lag-response association using a natural cubic spline with an intercept and 3 df with a maximum lag of 13 days. We adjusted for county-level characteristics, including population density, percent Black residents, percent Hispanic residents, percent people older than 60 years, median household income, percent owner-occupied housing, percent residents older than 25 years without a high school diploma, number of ICU beds per 10,000 people, and percent healthcare workers, given their potential relationship with SARS-CoV-2 transmission67,68,69,70. Day when 100 cumulative cases per 100,000 people was reached in each county was used to approximate local epidemic stage45 (Supplementary Fig. 9). The random effects of state and county were modeled by parametric terms penalized by a ridge penalty (re), to further control for unmeasured state- and county-level confounding. Residual plots were used to diagnose the model (Supplementary Fig. 10). In additional analyses, we included air temperature, SH, and UV radiation in separate models (Supplementary Fig. 2).Based on the estimated exposure-response curves, between the 1st and the 99th percentiles of the distribution of air temperature, SH, and UV radiation, we determined the value of exposure associated with the lowest relative risk of Rt to be the optimum temperature, the optimum SH, or the optimum UV radiation, respectively. The natural cubic spline functions of the exposure-response relationship were then re-centered with the optimum values of meteorological factors as reference values. We report the cumulative relative risk of Rt associated with daily temperature, SH, or UV radiation exposure in the previous two weeks (0– 13 lag days) as the percent changes in Rt when comparing the daily exposure with the optimum reference values (i.e., the cumulative relative risk of Rt equals one and the percent change in Rt equals zero when the temperature, SH, or UV radiation exposure is at its optimum value).Attribution of R
    t to meteorological factorsWe used the optimum value of temperature, SH, or UV radiation as the reference value for calculating the fraction of Rt attributable to each meteorological factor; i.e., the attributable fraction (AF). For these calculations, we assumed that the associations of meteorological factors with Rt were consistent across the counties. For each day in each county, based on the cumulative lagged effect (cumulative relative risk) corresponding to the temperature, SH, or UV radiation of that day, we calculated the attributable Rt in the current and next 13 days, using a previously established method71. Specifically, in a given county, the Rt attributable to a meteorological factor (xt) for a given day t was defined as the attributable absolute excess of Rt (AEx,t, the excess reproduction number on day t attributable to the deviation of temperature or SH from the optimum value) and the attributable fraction of Rt (AFx,, the fraction of Rt attributable to the deviation of the meteorological factor from its optimum value), each accumulated over the current and next 13 days. The formulas can be expressed as:$${{AF}}_{x,t}=1-{rm{exp }}left(-mathop{sum }limits_{l=0}^{13}{beta }_{{x}_{t},l}right)$$
    (4)
    $${{AE}}_{x,t}={{AF}}_{x,t}times mathop{sum }limits_{l=0}^{13}frac{{n}_{t+1}}{13+1},$$
    (5)
    where nt is the Rt on day t, and ({sum }_{l=0}^{13}{beta }_{{x}_{t},l}) is the overall cumulative log-relative risk for exposure xt on day t obtained by the exposure-response curves re-centered on the optimum values. Then, the total absolute excess of Rt attributable to temperature, SH, or UV radiation in each county was calculated by summing the absolute excesses of all days during the study period, and the attributable fraction was calculated by dividing the total absolute excess of Rt for the county by the sum of the Rt of all days during the study period for the county. The attributable fraction for the 2669 counties combined was calculated in a similar manner at the national level. We derived the 95% eCI for the attributable absolute excess and attributable fraction by 1000 Monte Carlo simulations71. The total fraction of Rt attributable to meteorological factors was the sum of the attributable fraction for temperature, SH, and UV radiation. We also calculated the attributable fractions by month in the study period.Sensitivity analysesWe conducted several sensitivity analyses to test the robustness of our results: (a) the lag dimension was redefined using a natural cubic spline and three equally placed internal knots in the log scale; (b) an alternative four df was used in the cross-basis term for meteorological factors in the exposure-response function; (c) the maximum number of knots was reduced to 25 in the flexible natural cubic spline to control time trend in the tensor product smooths; (d) all demographic and socioeconomic variables were excluded from the model; (e) adjustment for the prevalence of smoking and obesity among adults was included in the model; (f) adjustment for climate zone was included in the model; (g) additional adjustment was made for the average PM2.5 concentration in each county during 2014–201845; (h) additional adjustment was made for daily mean PM2.5, and daily maximum 8-h O3. For daily covariates with available data in only some of the counties or study period, the results of sensitivity analyses were compared to the main model re-run on the same partial dataset.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Community context matters for bacteria-phage ecology and evolution

    1.Crick FHC, Barnett FRSL, Brenner S, Watts-Tobin RJ. General Nature of the Genetic Code for Proteins. Nature. 1961;192:1227–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Hershey AD, Chase M. Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol. 1952;36:39–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Luria S, Delbrück M. Mutations of Bacteria from Virus Sensitivity to Virus Resistance. Genetics. 1943;28:491–511.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Kortright KE, Chan BK, Koff JL, Turner PE. Phage Therapy: a Renewed Approach to Combat Antibiotic-Resistant Bacteria. Cell Host Microbe. 2019;25:219–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Mushegian AR. Are there 10^31 virus particles on Earth, or more, or less? J Bacteriol. 2020;202:e00052–20.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Dennehy JJ. What Can Phages Tell Us about Host-Pathogen Coevolution? Int J Evol Biol. 2012;2012:1–12.Article 

    Google Scholar 
    7.Jessup CM, Kassen R, Forde SE, Kerr B, Buckling A, Rainey PB, et al. Big questions, small worlds: microbial model systems in ecology. Trends Ecol Evol. 2004;19:189–97.PubMed 
    Article 

    Google Scholar 
    8.Tecon R, Mitri S, Ciccarese D, Or D, Meer JR, van der, Johnson DR. Bridging the Holistic-Reductionist Divide in Microbial Ecology. MSystems. 2019;4:e00265–18.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Bohannan BJM, Lenski RE. Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol Lett. 2000;3:362–77.Article 

    Google Scholar 
    10.Buckling A, Brockhurst MA. Bacteria-Virus Coevolution. In: Orkun S Soyer, editor. Evolutionary Systems Biology. 2012. New York, NY: Springer; 2012. p. 347–70.11.Koskella B, Brockhurst MA. Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol Rev. 2014;38:1–16.Article 
    CAS 

    Google Scholar 
    12.De Sordi L, Lourenço M, Debarbieux L. The Battle Within: interactions of Bacteriophages and Bacteria in the Gastrointestinal Tract. Cell Host Microbe. 2019;25:210–8.PubMed 
    Article 
    CAS 

    Google Scholar 
    13.Scanlan PD. Bacteria–Bacteriophage Coevolution in the Human Gut: implications for Microbial Diversity and Functionality. Trends Microbiol. 2017;25:614–23.CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Breitbart M. Marine viruses: truth or dare. Annu Rev Mar Sci. 2012;4:425–48.Article 

    Google Scholar 
    15.Pratama AA, van Elsas JD. The ‘neglected’ soil virome–potential role and impact. Trends Microbiol. 2018;26:649–62.CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Lourenço M, De Sordi L, Debarbieux L. The diversity of bacterial lifestyles hampers bacteriophage tenacity. Viruses. 2018;10:1–11.Article 
    CAS 

    Google Scholar 
    17.Martiny JBH, Riemann L, Marston MF, Middelboe M. Antagonistic Coevolution of Marine Planktonic Viruses and Their Hosts. Annu Rev Mar Sci. 2014;6:393–414.Article 

    Google Scholar 
    18.Díaz-Muñoz SL, Koskella B. Bacteria–Phage Interactions in Natural Environments. In: Sariaslani S, Gadd GM, editors. Advances in Applied Microbiology. Cambridge, MA:Academic Press; 2014. p.135–83.19.Avrani S, Schwartz DA, Lindell D. Virus-host swinging party in the oceans. Mob Genet Elem. 2012;2:88–95.Article 

    Google Scholar 
    20.Winter C, Bouvier T, Weinbauer MG, Thingstad TF. Trade-Offs between Competition and Defense Specialists among Unicellular Planktonic Organisms: the “Killing the Winner” Hypothesis Revisited. Microbiol Mol Biol Rev. 2010;74:42–57.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Hansen MF, Svenningsen SL, Røder HL, Middelboe M, Burmølle M. Big Impact of the Tiny: bacteriophage–bacteria Interactions in Biofilms. Trends Microbiol. 2019;27:739–52.CAS 
    PubMed 
    Article 

    Google Scholar 
    22.O’Brien S, Hodgson DJ, Buckling A. The interplay between microevolution and community structure in microbial populations. Curr Opin Biotechnol. 2013;24:821–5.PubMed 
    Article 
    CAS 

    Google Scholar 
    23.Brockhurst MA, Koskella B. Experimental coevolution of species interactions. Trends Ecol Evol. 2013;28:367–75.PubMed 
    Article 

    Google Scholar 
    24.Geredew Kifelew L, Mitchell JG, Speck P. Mini-review: efficacy of lytic bacteriophages on multispecies biofilms. Biofouling. 2019;35:472–81.CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Miki T, Jacquet S. Complex interactions in the microbial world: Underexplored key links between viruses, bacteria and protozoan grazers in aquatic environments. Aquat Micro Ecol. 2008;51:195–208.Article 

    Google Scholar 
    26.Johnke J, Cohen Y, de Leeuw M, Kushmaro A, Jurkevitch E, Chatzinotas A. Multiple micro-predators controlling bacterial communities in the environment. Curr Opin Biotechnol. 2014;27:185–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Hall AR, Ashby B, Bascompte J, King KC. Measuring Coevolutionary Dynamics in Species-Rich Communities. Trends Ecol Evol. 2020;35:539–50.PubMed 
    Article 

    Google Scholar 
    28.Strauss SY. Ecological and evolutionary responses in complex communities: implications for invasions and eco-evolutionary feedbacks. Oikos. 2014;123:257–66.Article 

    Google Scholar 
    29.Strauss SY, Irwin RE. Ecological and evolutionary consequences of multispecies plant-animal interactions. Annu Rev Ecol Evol Syst. 2004;35:435–66.Article 

    Google Scholar 
    30.Inouye B, Stinchcombe JR. Relationships between ecological interaction modifications and diffuse coevolution: similarities, differences, and causal links. Oikos. 2011;95:353–60.Article 

    Google Scholar 
    31.Barraclough TG. How Do Species Interactions Affect Evolutionary Dynamics Across Whole Communities? Annu Rev Ecol Evol Syst. 2015;46:25–48.Article 

    Google Scholar 
    32.Bottery MJ, Pitchford JW, Friman V-P. Ecology and evolution of antimicrobial resistance in bacterial communities. ISME J. 2021;15:939–48.PubMed 
    Article 

    Google Scholar 
    33.Gómez P, Bennie J, Gaston KJ, Buckling A. The Impact of Resource Availability on Bacterial Resistance to Phages in Soil. PLoS ONE. 2015;10:e0123752.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    34.Gorter FA, Scanlan PD, Buckling A. Adaptation to abiotic conditions drives local adaptation in bacteria and viruses coevolving in heterogeneous environments. Biol Lett. 2016;12:20150879.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    35.Scanlan JG, Hall AR, Scanlan PD. Impact of bile salts on coevolutionary dynamics between the gut bacterium Escherichia coli and its lytic phage PP01. Infect Genet Evol. 2019;73:425–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Gómez P, Buckling A. Bacteria-phage antagonistic coevolution in soil. Science. 2011;332:106–9.PubMed 
    Article 
    CAS 

    Google Scholar 
    37.Weinbauer MG, Rassoulzadegan F. Are viruses driving microbial diversification and diversity? Environ Microbiol. 2004;6:1–11.PubMed 
    Article 

    Google Scholar 
    38.Johnke J, Baron M, de Leeuw M, Kushmaro A, Jurkevitch E, Harms H, et al. A generalist protist predator enables coexistence in multitrophic predator-prey systems containing a phage and the bacterial predator Bdellovibrio. Front Ecol Evol. 2017;5:1–12.Article 

    Google Scholar 
    39.R Core Team. R: a Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2020.40.Mumford R, Friman VP. Bacterial competition and quorum-sensing signalling shape the eco-evolutionary outcomes of model in vitro phage therapy. Evol Appl. 2017;10:161–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Connell JH. The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology. 1961;42:710–23.Article 

    Google Scholar 
    42.Vellend M. Conceptual Synthesis in Community Ecology. Q Rev Biol. 2010;85:183–206.PubMed 
    Article 

    Google Scholar 
    43.Alseth EO, Pursey E, Lujan AM, McLeod I, Rollie C, Westra ER. Bacterial biodiversity drives the evolution of CRISPR-based phage resistance in Pseudomonas aeruginosa. Nature. 2019;574:549–74.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Goldhill DH, Turner PE. The evolution of life history trade-offs in viruses. Curr Opin Virol. 2014;8:79–84.PubMed 
    Article 

    Google Scholar 
    45.Keen EC. Tradeoffs in bacteriophage life histories. Bacteriophage. 2014;4:e28365.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Gómez P, Buckling A. Real-time microbial adaptive diversification in soil. Ecol Lett. 2013;16:650–5.PubMed 
    Article 

    Google Scholar 
    47.Houte S, van, Buckling A, Westra ER. Evolutionary Ecology of Prokaryotic Immune Mechanisms. Microbiol Mol Biol Rev. 2016;80:745–63.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Middelboe M, Hagström A, Blackburn N, Sinn B, Fischer U, Borch NH, et al. Effects of bacteriophages on the population dynamics of four strains of pelagic marine bacteria. Micro Ecol. 2001;42:395–406.CAS 
    Article 

    Google Scholar 
    49.Gómez P, Buckling A. Coevolution with phages does not influence the evolution of bacterial mutation rates in soil. ISME J. 2013;7:2242–4.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    50.De Sordi L, Khanna V, Debarbieux L. The Gut Microbiota Facilitates Drifts in the Genetic Diversity and Infectivity of Bacterial Viruses. Cell Host Microbe. 2017;22:801–8.e3.CAS 
    PubMed 
    Article 

    Google Scholar 
    51.De Sordi L, Lourenço M, Debarbieux L. “I will survive”: A tale of bacteriophage-bacteria coevolution in the gut. Gut Microbes. 2019;10:92–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Landsberger M, Gandon S, Meaden S, Chabas H, Buckling A, Westra ER, et al. Anti-CRISPR phages cooperate to overcome CRISPR-Cas immunity. Cell. 2018;174:908–16.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Westra ER, van Houte S, Oyesiku-Blakemore S, Makin B, Broniewski JM, Best A, et al. Parasite exposure drives selective evolution of constitutive versus inducible defense. Curr Biol. 2015;25:1043–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Dy RL, Richter C, Salmond GP, Fineran PC. Remarkable mechanisms in microbes to resist phage infections. Annu Rev Virol. 2014;1:307–31.PubMed 
    Article 
    CAS 

    Google Scholar 
    55.Rostøl JT, Marraffini L. (Ph)ighting phages: how bacteria resist their parasites. Cell Host Microbe. 2019;25:184–94.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    56.Burmeister AR, Turner PE. Trading-off and trading-up in the world of bacteria–phage evolution. Curr Biol. 2020;30:R1120–R1124.CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Plummer M. JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. Vienna, Austria: Proc. 3rd Int. Workshop Distrib. Stat. Comput; 2003. p. 1–10.58.Wickham H. ggplot2: elegant Graphics for Data Analysis. Verlag New York: Springer; 2016.59.Wickham H. tidyr: Tidy Messy Data. 2020.60.Plummer M. rjags: Bayesian Graphical Models using MCMC. 2019.61.Wickham H, François R, Henry L, Müller K. dplyr: A Grammar of Data Manipulation. 2020.62.Gandon S, Buckling A, Decaestecker E, Day T. Host-parasite coevolution and patterns of adaptation across time and space. J Evol Biol. 2008;21:1861–6.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Publisher Correction: Reflections and projections on a decade of climate science

    Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyVeronika EyringInstitute of Environmental Physics (IUP), University of Bremen, Bremen, GermanyVeronika EyringCivil Engineering and Earth Sciences, Indian Institute of Technology (IIT) Gandhinagar, Gandhinagar, IndiaVimal MishraNorwegian Polar Institute, FRAM – High North Research Centre on Climate and the Environment, Tromsø, NorwayGary P. GriffithLevin Lab, Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USAGary P. GriffithKey Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, ChinaLei ChenDepartment of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USATrevor KeenanEcology and Evolutionary Biology Department, University of Colorado, Boulder, CO, USAMerritt R. TuretskyDepartment of Life and Environmental Sciences, Bournemouth University, Poole, UKSally BrownAustralian National University, Crawford School of Public Policy, Canberra, Australian Capital Territory, AustraliaFrank JotzoEnvironmental Science and Policy, University of California, Davis, Davis, CA, USAFrances C. MooreDepartment of Psychology, School of Biological Sciences, University of Cambridge, Cambridge, UKSander van der Linden More

  • in

    Novel clades of soil biphenyl degraders revealed by integrating isotope probing, multi-omics, and single-cell analyses

    1.Singer E, Wagner M, Woyke T. Capturing the genetic makeup of the active microbiome in situ. ISME J. 2017;11:1949–63.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Hall EK, Bernhardt ES, Bier RL, Bradford MA, Boot CM, Cotner JB, et al. Understanding how microbiomes influence the systems they inhabit. Nat Microbiol. 2018;3:977–82.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Lloyd KG, Steen AD, Ladau J, Yin J, Crosby L. Phylogenetically novel uncultured microbial cells dominate earth microbiomes. mSystems 2018;3:e00055–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Lewis WH, Tahon G, Geesink P, Sousa DZ, Ettema TJG. Innovations to culturing the uncultured microbial majority. Nat Rev Microbiol. 2021;19:225–40.CAS 
    Article 

    Google Scholar 
    5.Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, et al. A new view of the tree of life. Nat Microbiol. 2016;1:16048.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Spang A, Caceres EF, Ettema TJG. Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life. Science. 2017;357:eaaf3883.7.Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.CAS 
    Article 

    Google Scholar 
    8.Chen S-C, Musat N, Lechtenfeld OJ, Paschke H, Schmidt M, Said N, et al. Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep. Nature 2019;568:108–11.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Nayfach S, Roux S, Seshadri R, Udwary D, Varghese N, Schulz F, et al. A genomic catalog of Earth’s microbiomes. Nat Biotechnol. 2021;39:499–509.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Hatzenpichler R, Krukenberg V, Spietz RL, Jay ZJ. Next-generation physiology approaches to study microbiome function at single cell level. Nat Rev Microbiol. 2020;18:241–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Baker BJ, De Anda V, Seitz KW, Dombrowski N, Santoro AE, Lloyd KG. Diversity, ecology and evolution of Archaea. Nat Microbiol. 2020;5:887–900.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    12.Abraham WR, Nogales B, Golyshin PN, Pieper DH, Timmis KN. Polychlorinated biphenyl-degrading microbial communities in soils and sediments. Curr Opin Microbiol. 2002;5:246–53.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Galbán-Malagón C, Berrojalbiz N, Ojeda M-J, Dachs J. The oceanic biological pump modulates the atmospheric transport of persistent organic pollutants to the Arctic. Nat Commun 2012;3:862.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    14.Pieper DH. Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol. 2005;67:170–91.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Chain PSG, Denef VJ, Konstantinidis KT, Vergez LM, Agulló L, Reyes VL, et al. Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proc Natl Acad Sci USA. 2006;103:15280.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Furukawa K, Suenaga H, Goto M. Biphenyl dioxygenases: functional versatilities and directed evolution. J Bacteriol. 2004;186:5189–96.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.McLeod MP, Warren RL, Hsiao WWL, Araki N, Myhre M, Fernandes C, et al. The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci USA. 2006;103:15582.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Lee TK, Lee J, Sul WJ, Iwai S, Chai BC, Tiedje JM, et al. Novel biphenyl-oxidizing bacteria and dioxygenase genes from a Korean tidal mudflat. Appl Environ Microbiol. 2011;77:3888–91.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Sul WJ, Park J, Quensen JF, Rodrigues JLM, Seliger L, Tsoi TV, et al. DNA-stable isotope probing integrated with metagenomics for retrieval of biphenyl dioxygenase genes from polychlorinated biphenyl-contaminated river sediment. Appl Environ Microbiol. 2009;75:5501–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Uhlik O, Jecna K, Mackova M, Vlcek C, Hroudova M, Demnerova K, et al. Biphenyl-metabolizing bacteria in the rhizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing. Appl Environ Microbiol. 2009;75:6471.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Jiang LF, Luo CL, Zhang DY, Song MK, Sun YT, Zhang G. Biphenyl-Metabolizing microbial community and a functional operon revealed in e-waste-contaminated soil. Environ Sci Technol. 2018;52:8558–67.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Tillmann S, Strompl C, Timmis KN, Abraham WR. Stable isotope probing reveals the dominant role of Burkholderia species in aerobic degradation of PCBs. FEMS Microbiol Ecol. 2005;52:207–17.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Leigh MB, Pellizari VH, Uhlik O, Sutka R, Rodrigues J, Ostrom NE, et al. Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs). ISME J. 2007;1:134–48.CAS 
    Article 

    Google Scholar 
    24.Chen S-C, Duan G-L, Ding K, Huang F-Y, Zhu Y-G. DNA stable-isotope probing identifies uncultivated members of Pseudonocardia associated with biodegradation of pyrene in agricultural soil. FEMS Microbiol Ecol. 2018;94:fiy026.25.Neufeld JD, Dumont MG, Vohra J, Murrell JC. Methodological considerations for the use of stable isotope probing in microbial ecology. Micro Ecol. 2007;53:435–42.CAS 
    Article 

    Google Scholar 
    26.Neufeld JD, Vohra J, Dumont MG, Lueders T, Manefield M, Friedrich MW, et al. DNA stable-isotope probing. Nat Protoc. 2007;2:860–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Mohn WW, Westerberg K, Cullen WR, Reimer KJ. Aerobic biodegradation of biphenyl and polychlorinated biphenyls by Arctic soil microorganisms. Appl Environ Microbiol. 1997;63:3378–84.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Wagner-Dobler I, Bennasar A, Vancanneyt M, Strompl C, Brummer I, Eichner C, et al. Microcosm enrichment of biphenyl-degrading microbial communities from soils and sediments. Appl Environ Microbiol. 1998;64:3014–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Allen MB. Studies with cyanidium caldarium, an anomalously pigmented chlorophyte. Arch Mikrobiol. 1959;32:270–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Rabus R, Widdel F. Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch Microbiol. 1995;163:96–103.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Zhou J, Bruns MA, Tiedje JM. DNA recovery from soils of diverse composition. Appl Environ Microbiol. 1996;62:316.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013;41:D590–D6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Ouyang WY, Su JQ, Richnow HH, Adrian L. Identification of dominant sulfamethoxazole-degraders in pig farm-impacted soil by DNA and protein stable isotope probing. Environ Int. 2019;126:118–26.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Tischer K, Zeder M, Klug R, Pernthaler J, Schattenhofer M, Harms H, et al. Fluorescence in situ hybridization (CARD-FISH) of microorganisms in hydrocarbon contaminated aquifer sediment samples. Syst Appl Microbiol. 2012;35:526–32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Polerecky L, Adam B, Milucka J, Musat N, Vagner T, Kuypers MMM. Look@NanoSIMS–a tool for the analysis of nanoSIMS data in environmental microbiology. Environ Microbiol. 2012;14:1009–23.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Stryhanyuk H, Calabrese F, Kümmel S, Musat F, Richnow HH, Musat N. Calculation of single cell assimilation rates from SIP-NanoSIMS-derived isotope ratios: a comprehensive approach. Front Microbiol. 2018;9:2342.38.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 2019;7:e7359–e.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2020;36:1925–7.CAS 

    Google Scholar 
    43.Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.Article 
    CAS 

    Google Scholar 
    45.Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42:D222–D30.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309–D14. (D1)CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinforma. 2009;10:421.Article 
    CAS 

    Google Scholar 
    49.Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Budhraja R, Karande S, Ding C, Ullrich MK, Wagner S, Reemtsma T, et al. Characterization of membrane-bound metalloproteins in the anaerobic ammonium-oxidizing bacterium “Candidatus Kuenenia stuttgartiensis” strain CSTR1. Talanta. 2021;223:121711.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Craig R, Beavis RC. TANDEM: matching proteins with tandem mass spectra. Bioinformatics. 2004;20:1466–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Röst HL, Sachsenberg T, Aiche S, Bielow C, Weisser H, Aicheler F, et al. OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat Methods. 2016;13:741–8.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    54.Sachsenberg T, Herbst F-A, Taubert M, Kermer R, Jehmlich N, von Bergen M, et al. MetaProSIP: automated inference of stable isotope incorporation rates in proteins for functional metaproteomics. J Proteome Res. 2015;14:619–27.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Liu J, He XX, Lin XR, Chen WC, Zhou QX, Shu WS, et al. Ecological effects of combined pollution associated with e-waste recycling on the composition and diversity of soil microbial communities. Environ Sci Technol. 2015;49:6438–47.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Kumamaru T, Suenaga H, Mitsuoka M, Watanabe T, Furukawa K. Enhanced degradation of polychlorinated biphenyls by directed evolution of biphenyl dioxygenase. Nat Biotechnol. 1998;16:663–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Garrido-Sanz D, Manzano J, Martín M, Redondo-Nieto M, Rivilla R. Metagenomic analysis of a biphenyl-degrading soil bacterial consortium reveals the metabolic roles of specific populations. Front Microbiol. 2018;9:232.58.Kikuchi Y, Nagata Y, Ohtsubo Y, Koana T, Takagi M. Pseudomonas fluorescens KKL101, a benzoic acid degrader in a mixed culture that degrades biphenyl and polychlorinated biphenyls. Biosci Biotechnol Biochem. 1995;59:2303–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Musat N, Halm H, Winterholler B, Hoppe P, Peduzzi S, Hillion F, et al. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc Natl Acad Sci USA. 2008;105:17861.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Calabrese F, Voloshynovska I, Musat F, Thullner M, Schlömann M, Richnow HH, et al. Quantitation and comparison of phenotypic heterogeneity among single cells of monoclonal microbial populations. Front Microbiol. 2019;10:2814.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Robertson BR, Button DK, Koch AL. Determination of the biomasses of small bacteria at low concentrations in a mixture of species with forward light scatter measurements by flow cytometry. Appl Environ Microbiol. 1998;64:3900–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Troussellier M, Bouvy M, Courties C, Dupuy C. Variation of carbon content among bacterial species under starvation condition. Aquat Micro Ecol. 1997;13:113–9.Article 

    Google Scholar 
    63.Furukawa K, Miyazaki T. Cloning of a gene cluster encoding biphenyl and chlorobiphenyl degradation in Pseudomonas pseudoalcaligenes. J Bacteriol. 1986;166:392–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Seeger M, Timmis KN, Hofer B. Conversion of chlorobiphenyls into phenylhexadienoates and benzoates by the enzymes of the upper pathway for polychlorobiphenyl degradation encoded by the bph locus of Pseudomonas sp. strain LB400. Appl Environ Microbiol. 1995;61:2654–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Chadhain SM, Moritz EM, Kim E, Zylstra GJ. Identification, cloning, and characterization of a multicomponent biphenyl dioxygenase from Sphingobium yanoikuyae B1. J Ind Microbiol Biotechnol. 2007;34:605–13.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Hofer B, Backhaus S, Timmis KN. The biphenyl/polychlorinated biphenyl-degradation locus (bph) of Pseudomonas sp. LB400 encodes four additional metabolic enzymes. Gene 1994;144:9–16.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Harwood CS, Parales RE. The beta-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol. 1996;50:553–90.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Rather LJ, Knapp B, Haehnel W, Fuchs G. Coenzyme A-dependent aerobic metabolism of benzoate via epoxide formation. J Biol Chem. 2010;285:20615–24.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Stegen JC, Fredrickson JK, Wilkins MJ, Konopka AE, Nelson WC, Arntzen EV, et al. Groundwater-surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover. Nat Commun. 2016;7:1–12.70.Corteselli EM, Aitken MD, Singleton DR. Rugosibacter aromaticivorans gen. nov., sp. nov., a bacterium within the family Rhodocyclaceae, isolated from contaminated soil, capable of degrading aromatic compounds. Int J Syst Evol Microbiol 2017;67:311–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Fernandez H, Prandoni N, Fernandez-Pascual M, Fajardo S, Morcillo C, Diaz E, et al. Azoarcus sp. CIB, an anaerobic biodegrader of aromatic compounds shows an endophytic lifestyle. PLoS ONE. 2014;9:e110771.72.Iwai S, Johnson TA, Chai BL, Hashsham SA, Tiedje JM. Comparison of the specificities and efficacies of primers for aromatic dioxygenase gene analysis of environmental samples. Appl Environ Microbiol. 2011;77:3551–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Top EM, Springael D. The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol. 2003;14:262–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Dombrowski N, Donaho JA, Gutierrez T, Seitz KW, Teske AP, Baker BJ. Reconstructing metabolic pathways of hydrocarbon-degrading bacteria from the Deepwater Horizon oil spill. Nat Microbiol. 2016;1:1–7.75.de Lorenzo V. Systems biology approaches to bioremediation. Curr Opin Biotechnol. 2008;19:579–89.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    76.Rabus R, Wöhlbrand L, Thies D, Meyer M, Reinhold-Hurek B, Kämpfer P. Aromatoleum gen. nov., a novel genus accommodating the phylogenetic lineage including Azoarcus evansii and related species, and proposal of Aromatoleum aromaticum sp. nov., Aromatoleum petrolei sp. nov., Aromatoleum bremense sp. nov., Aromatoleum toluolicum sp. nov. and Aromatoleum diolicum sp. nov. Int J Syst Evol Microbiol. 2019;69:982–97.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Vogt C, Richnow HH. Bioremediation via in situ microbial degradation of organic pollutants. Adv Biochem Engin/Biotechnol. 2014;142:123–46.
    Google Scholar 
    78.Cunningham JA, Rahme H, Hopkins GD, Lebron C, Reinhard M. Enhanced in situ bioremediation of BTEX-contaminated groundwater by combined injection of nitrate and sulfate. Environ Sci Technol. 2001;35:1663–70.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Mondello FJ, Turcich MP, Lobos JH, Erickson BD. Identification and modification of biphenyl dioxygenase sequences that determine the specificity of polychlorinated biphenyl degradation. Appl Environ Microbiol. 1997;63:3096–103.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Gomez-Gil L, Kumar P, Barriault D, Bolin JT, Sylvestre M, Eltis LD. Characterization of biphenyl dioxygenase of Pandoraea pnomenusa B-356 as a potent polychlorinated biphenyl-degrading enzyme. J Bacteriol. 2007;189:5705–15.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More