More stories

  • in

    Characterization of metapopulation of Ellobium chinense through Pleistocene expansions and four covariate COI guanine-hotspots linked to G-quadruplex conformation

    Genetic diversity of E. chinense based on COIThe partial fragment of COI, 595 bp in length, was sequenced from 113 E. chinense individuals collected from the eleven sites in South Korea (Table 1). The resultant COI sequences were aligned together with 27 COI individual sequences12,13,14 retrieved from the NCBI GenBank (Table 1). The latter consists of 26 from six collection sites in South Korea and one from a Japanese site. Hence, 140 COI sequences of E. chinense were analyzed, representing 18 collection sites at the nine populations in South Korea and Japan (Table 1). Based on the alignment set (no indels) of these 140 COI sequences (Data S1), we obtained a total of 58 COI haplotypes, of which 43 were singleton, appeared in only a single site. The novel 41 out of 58 COI haplotypes obtained were registered under the GenBank accession nos. MW265437–MW265477 (Table S2). According to the sequence alignment of the 58 COI haplotypes (Fig. S2; Data S2), there were 71 polymorphic sites and 31 parsimoniously informative sites (Fig. 1C), among which four adenine/guanine hotspots at 207, 282, 354, and 420 were ascertained to articulately divide the haplotypes of E. chinense into four meaningful phylogenetic groups: (a) A(207)–A(282)–A(354)–A(420), (b) A–A–G–A, (c) G–A–G–A, and (d) G–G–G–G.Table 1 List of collection sites and the number of individuals of Ellobium chinense with genetic markers applied to each of the nine populations in South Korea and Japan.Full size tableBased on the COI haplotype sequence alignment (Fig. S2; Data S2), we reconstructed a ML tree using Ellobium aurisjudae as an outgroup. In the resultant tree topology (Fig. S3), it was confirmed that E. chinense appeared as a monophyletic group, but no distinction between the haplotypes from each geographical population was observed. To define detailed relationships among the COI haplotypes, the outgroup was removed and then an unrooted ML tree (Fig. 1D) was reconstructed. The resultant tree showed two distinctive phylogenetic groups, namely A–A–A–A and the other groups (including at least one G or more in the four positions), regardless of collection localities. The A–A–A–A group included 35 of the 58 COI haplotypes. The others could be divided into the A–A–G–A group (N = 12: ECH11, 12, 15, 16, 18, 23, 27, 28, 32, 33, 36, and 49), the G–A–G–A group (N = 1: ECH35), and the G–G–G–G group (N = 8: ECH01, 07, 19, 29, 41, 45, 48, and 54).As shown in Table S2 and Fig. S3, ECH01 was a dominant member of the G–G–G–G group with the most individuals (27), which appeared across all the South Korean populations examined here. As shown in Fig. 1D, the A–A–A–A group is likely to be an ancestral type because it was most frequently found in the other species within Ellobiidae (unpublished data) and its haplotype diversity was the highest among the four genetic groups. Given that the G–G–G–G group exhibited much lower haplotype diversity than the A–A–A–A group, and was not observed in any other ellobiid species (unpublished data), it is reasonable to suggest that the G–G–G–G group is a derived rather than an ancestral type. Thus, as shown in Fig. 1D, it is conceivable that unidirectional and stepwise A → G transition events from A–A–A–A to G–G–G–G may have been occurred in E. chinense. Within the A–A–A–A and A–A–G–A groups, parsimoniously informative A → G transition events were found at the sites 120 (ECH12, 15, 16, 18, 23, 38, 40, 44, and 49) and 183 (ECH3, 9, 10, 20, 43, 50, and 55), with a few exceptional cases of G → A at the sites 216 (ECH12, 15, 16, 18, and 23), 372 (ECH12, 15, and 23), and 429 (ECH37, 38, 46, and 47; ECH19 found in the G–G–G–G group).As indicated in Table 2, the nucleotide diversity (π) is relatively low among the nine populations of E. chinense, ranging from 0.00749 (population BG) to 0.01042 (SC) with an average of 0.00865, whereas the haplotype diversity was very high across these populations, ranging from 0.924 (YG) to 1.000 (SC and JB) with an average of 0.939). All values of Tajima’s D and Fu’s FS were congruently negative, with averages of − 1.87100 (P  More

  • in

    Vertical and seasonal changes in soil carbon pools to vegetation degradation in a wet meadow on the Qinghai-Tibet Plateau

    1.Hemes, K. S. et al. Assessing the carbon and climate benefit of restoring degraded agricultural peat soils to managed wetlands. Agric. For. Meteorol. 268, 202–214 (2019).ADS 
    Article 

    Google Scholar 
    2.Sun, L. et al. Wetland-atmosphere methane exchange in Northeast China: A comparison of permafrost peatland and freshwater wetlands. Agric. For. Meteorol. 249, 239–249 (2018).ADS 
    Article 

    Google Scholar 
    3.Davidson, N. C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshw. Res. 65(10), 934–941 (2014).Article 

    Google Scholar 
    4.Havril, T., Tóth, Á., Molson, J. W., Galsa, A. & Mádl-Szőnyi, J. Impacts of predicted climate change on groundwater flow systems: Can wetlands disappear due to recharge reduction?. J. Hydrol. 563, 1169–1180 (2018).ADS 
    Article 

    Google Scholar 
    5.Ye, X. C., Meng, Y. K., Xu, L. G. & Xu, C. Y. Net primary productivity dynamics and associated hydrological driving factors in the floodplain wetland of China’s largest freshwater lake. Sci. Total Environ. 659, 302–313 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Shen, G., Yang, X., Jin, Y., Xu, B. & Zhou, Q. Remote sensing and evaluation of the wetland ecological degradation process of the Zoige Plateau Wetland in China. Ecol. Ind. 104, 48–58 (2019).Article 

    Google Scholar 
    7.Jiang, T. T., Pan, J. F., Pu, X. M., Wang, B. & Pan, J. J. Current status of coastal wetlands in China: Degradation, restoration, and future management. Estuar. Coast. Shelf Sci. 164, 265–275 (2015).Article 

    Google Scholar 
    8.Deng, L., Wang, K. B., Chen, M. L., Shangguan, Z. P. & Sweeney, S. Soil organic carbon storage capacity positively related to forest succession on the Loess Plateau, China. CATENA 110, 1–7 (2013).CAS 
    Article 

    Google Scholar 
    9.Fujisaki, K. et al. From forest to cropland and pasture systems: A critical review of soil organic carbon stocks changes in Amazonia. Glob. Change Biol. 21(7), 2773–2786 (2015).ADS 
    Article 

    Google Scholar 
    10.Gregorich, E. G., Beare, M. H., Mckim, U. F. & Skjemstad, J. O. Chemical and biological characteristics of physically uncomplexed organic matter. Soil. Sci. Soc. Am. J. 70, 975–985 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    11.Jones, D. L., Rousk, J., Edwards-Jones, G., DeLuca, T. H. & Murphy, D. V. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem. 45, 113–124 (2012).CAS 
    Article 

    Google Scholar 
    12.Paul, E. A. The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biol. Biochem. 98, 109–126 (2016).CAS 
    Article 

    Google Scholar 
    13.Yuan, G. et al. Effects of straw incorporation and potassium fertilizer on crop yields, soil organic carbon, and active carbon in the rice-wheat system. Soil Tillage Res. 209, 104958 (2021).Article 

    Google Scholar 
    14.Xiao, Y., Huang, Z. & Lu, X. Changes of soil labile organic carbon fractions and their relation to soil microbial characteristics in four typical wetlands of Sanjiang Plain, Northeast China. Ecol. Eng. 82, 381–389 (2015).Article 

    Google Scholar 
    15.Wang, Y., Fu, B., Lü, Y. & Chen, L. Effects of vegetation restoration on soil organic carbon sequestration at multiple scales in semi-arid Loess Plateau, China. CATENA 85(1), 58–66 (2011).CAS 
    Article 

    Google Scholar 
    16.Wang, G. X., Li, Y. S., Wang, Y. B. & Wu, Q. B. Effects of permafrost thawing on vegetation and soil carbon pool losses on the Qinghai-Tibet Plateau, China. Geoderma 143(1–2), 143–152 (2008).CAS 

    Google Scholar 
    17.Guo, J., Wang, B., Wang, G., Wu, Y. & Cao, F. Vertical and seasonal variations of soil carbon pools in ginkgo agroforestry systems in eastern China. CATENA 171, 450–459 (2018).CAS 
    Article 

    Google Scholar 
    18.Cheng, X. et al. Assessing the effects of short-term Spartina alterniflora invasion on labile and recalcitrant C and N pools by means of soil fractionation and stable C and N isotopes. Geoderma 145(3–4), 177–184 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Zhou, L. et al. Spartina alterniflora invasion alters carbon exchange and soil organic carbon in eastern salt marsh of China. Clean-Soil Air Water 43(4), 569–576 (2015).CAS 
    Article 

    Google Scholar 
    20.Yang, W., Zhao, H. & Cheng, X. Consequences of short-term C4 plant Spartina alterniflora invasions for soil organic carbon dynamics in a coastal wetland of eastern China. Ecol. Eng. 61(12), 50–57 (2013).Article 

    Google Scholar 
    21.Shao, X. X., Yang, W. Y. & Wu, M. Seasonal dynamics of soil labile organic carbon and enzyme activities in relation to vegetation types in Hangzhou Bay Tidal Flat Wetland. PLoS ONE 10(11), e0142677 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Zhu, J. et al. Multicriteria decision analysis for monitoring ecosystem service function of the Three-River Headwaters region of the Qinghai-Tibet Plateau, China. Environ. Monit. Assess. 187(6), 355 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Li, Z. et al. Dynamics of soil respiration in alpine wetland meadows exposed to different levels of degradation in the Qinghai-Tibet Plateau, China. Sci. Rep. 9(1), 1–14 (2019).ADS 

    Google Scholar 
    24.Wang, G., Wang, Y., Li, Y. & Cheng, H. Influences of alpine ecosystem responses to climatic change on soil properties on the Qinghai-Tibet Plateau, China. CATENA 70(3), 506–514 (2007).Article 

    Google Scholar 
    25.Wu, P. et al. Impacts of alpine wetland degradation on the composition, diversity and trophic structure of soil nematodes on the Qinghai-Tibetan Plateau. Sci. Rep. 7(1), 837 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Li, B., Dong, S. C., Jiang, X. B. & Li, Z. H. Analysis on the driving factors of grassland desertification in Zoige wetland. J. Soil Water Conserv. 15, 112–115 (2008).
    Google Scholar 
    27.Peng, F., You, Q., Xue, X., Guo, J. & Wang, T. Effects of rodent-induced land degradation on ecosytem carbon fluxes in alpine meadow in the qinghai-tibet plateau, china. Solid Earth 6(1), 303–310 (2015).ADS 
    Article 

    Google Scholar 
    28.Bai, J. et al. Spatial variability of soil carbon, nitrogen, and phosphorus content and storage in an alpine wetland in the Qinghai-Tibet Plateau, China. Soil Res. 48(8), 730–736 (2010).CAS 
    Article 

    Google Scholar 
    29.Jia, B., Niu, Z., Wu, Y., Kuzyakov, Y. & Li, X. G. Waterlogging increases organic carbon decomposition in grassland soils. Soil Biol. Biochem. 148, 107927 (2020).CAS 
    Article 

    Google Scholar 
    30.Liu, W. et al. Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai-Tibetan Plateau. Environ. Res. Lett. 7(3), 035401 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    31.Wu, X. et al. Soil organic carbon and its relationship to vegetation communities and soil properties in permafrost areas of the central western Qinghai-Tibet plateau, China. Permafrost Periglac. Process. 23(2), 162–169 (2012).Article 

    Google Scholar 
    32.Rui, Y. et al. Warming and grazing affect soil labile carbon and nitrogen pools differently in an alpine meadow of the Qinghai-Tibet Plateau in China. J. Soils Sediments 11(6), 903 (2011).CAS 
    Article 

    Google Scholar 
    33.Ma, W., Li, G., Wu, J., Xu, G. & Wu, J. Respiration and CH4 fluxes in Tibetan peatlands are influenced by vegetation degradation. CATENA 195, 104789 (2020).CAS 
    Article 

    Google Scholar 
    34.Ma, W., Li, G., Wu, J., Xu, G. & Wu, J. Response of soil labile organic carbon fractions and carbon-cycle enzyme activities to vegetation degradation in a wet meadow on the Qinghai-Tibet Plateau. Geoderma 377, 114565 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Alhassan, A. R. M., Ma, W. W., Li, G., Wu, J. Q. & Chen, G. P. Response of soil organic carbon to vegetation degradation along a moisture gradient in a wet meadow on the Qinghai-Tibet Plateau. Ecol. Evol. 8(23), 11999–12010 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Wu, J. Q. et al. Vegetation degradation along water gradient leads to soil active organic carbon loss in Gahai wetland. Ecol. Eng. 145, 105666 (2020).Article 

    Google Scholar 
    37.Butenschoen, O., Scheu, S. & Eisenhauer, N. Interactive effects of warming, soil humidity and plant diversity on litter decomposition and microbial activity. Soil Biol. Biochem. 43(9), 1902–1907 (2011).CAS 
    Article 

    Google Scholar 
    38.Fan, J., Cao, Y., Yan, Y., Lu, X. & Wang, X. Freezingthawing cycles effect on the water soluble organic carbon, nitrogen and microbial biomass of alpine grassland soil in Northern Tibet. Afr. J. Microbiol. Res. 6(3), 562–567 (2012).CAS 

    Google Scholar 
    39.Wang, J., Song, C., Wang, X. & Song, Y. Changes in labile soil organic carbon fractions in wetland ecosystems along a latitudinal gradient in Northeast China. CATENA 96, 83–89 (2012).CAS 
    Article 

    Google Scholar 
    40.Wu, J. et al. Responses of CH4 flux and microbial diversity to changes in rainfall amount and frequencies in a wet meadow in the Tibetan Plateau. CATENA 202, 105253 (2021).CAS 
    Article 

    Google Scholar 
    41.Ren, J. et al. Shifts in soil bacterial and archaeal communities during freeze-thaw cycles in a seasonal frozen marsh, Northeast China. Sci. Total Environ. 625, 782–791 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Lu, Y., Si, B., Li, H. & Biswas, A. Elucidating controls of the variability of deep soil bulk density. Geoderma 348, 146–157 (2019).ADS 
    Article 

    Google Scholar 
    43.Mao, J., Nierop, K. G., Rietkerk, M., Damsté, J. S. S. & Dekker, S. C. The influence of vegetation on soil water repellency-markers and soil hydrophobicity. Sci. Total Environ. 566, 608–620 (2016).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    44.Beljkaš, B. et al. Rapid method for determination of protein content in cereals and oilseeds: Validation, measurement uncertainty and comparison with the Kjeldahl method. Accred. Qual. Assur. 15(10), 555–561 (2010).Article 
    CAS 

    Google Scholar 
    45.McKie, V. A. & MccleAry, B. V. A novel and rapid colorimetric method for measuring TP and phytic acid in foods and animal feeds. J. AOAC Int. 99(3), 738–743 (2016).CAS 
    Article 

    Google Scholar 
    46.Wang, H. Y., Wu, J. Q., Li, G. & Yan, L. J. Changes in soil carbon fractions and enzyme activities under different vegetation types of the northern Loess Plateau. Ecol. Evol. 10, 12211–12223 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Li, S. et al. Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain. Soil Tillage Res. 155, 289–297 (2016).Article 

    Google Scholar 
    48.Nie, X. J., Zhang, J. H., Cheng, J. X., Gao, H. & Guan, Z. M. Effect of soil redistribution on various organic carbons in a water-and tillage-eroded soil. Soil Tillage Res. 155, 1–8 (2016).Article 

    Google Scholar 
    49.Xu, C. Y. et al. The interplay of labile organic carbon, enzyme activities and microbial communities of two forest soils across seasons. Sci. Rep. 11(1), 1–12 (2021).Article 
    CAS 

    Google Scholar 
    50.dos Reis Ferreira, C. et al. Dynamics of soil aggregation and organic carbon fractions over 23 years of no-till management. Soil Tillage Res. 198, 104533 (2020).Article 

    Google Scholar 
    51.Luan, J. et al. Different grazing removal exclosures effects on soil C stocks among alpine ecosystems in east Qinghai-Tibet Plateau. Ecol. Eng. 64, 262–268 (2014).Article 

    Google Scholar 
    52.Li, J. et al. Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain. Soil Tillage Res. 175, 281–290 (2018).Article 

    Google Scholar 
    53.Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440(7081), 165–173 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Wang, J., Bai, J., Zhao, Q., Lu, Q. & Xia, Z. Five-year changes in soil organic carbon and total nitrogen in coastal wetlands affected by flow-sediment regulation in a Chinese delta. Sci. Rep. 6(1), 1–8 (2016).Article 
    CAS 

    Google Scholar 
    55.Huo, L. et al. Effect of wetland reclamation on soil organic carbon stability in peat mire soil around Xingkai Lake in Northeast China. Chin. Geogr. Sci. 28(2), 325–336 (2018).Article 

    Google Scholar 
    56.Norton, J. B., Olsen, H. R., Jungst, L. J., Legg, D. E. & Horwath, W. R. Soil carbon and nitrogen storage in alluvial wet meadows of the Southern Sierra Nevada Mountains, USA. J. Soils Sediments 14(1), 34–43 (2014).CAS 
    Article 

    Google Scholar 
    57.Chaudhari, P. R., Ahire, D. V., Ahire, V. D., Chkravarty, M. & Maity, S. Soil bulk density as related to soil texture, organic matter content and available total nutrients of Coimbatore soil. Int. J. Sci. Res. Publ. 3(2), 1–8 (2013).CAS 

    Google Scholar 
    58.Enriquez, A. S., Chimner, R. A., Cremona, M. V., Diehl, P. & Bonvissuto, G. L. Grazing intensity levels influence C reservoirs of wet and mesic meadows along a precipitation gradient in Northern Patagonia. Wetlands Ecol. Manage. 23(3), 439–451 (2015).CAS 
    Article 

    Google Scholar 
    59.Li, X. G., Rengel, Z. & Mapfumo, E. Increase in pH stimulates mineralization of ‘native’ organic carbon and nitrogen in naturally salt-affected sandy soils. Plant Soil 290(1), 269–282 (2007).CAS 
    Article 

    Google Scholar 
    60.Kemmitt, S. J., Wright, D., Goulding, K. W. & Jones, D. L. pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biol. Biochem. 38(5), 898–911 (2006).CAS 
    Article 

    Google Scholar 
    61.Sihi, D., Inglett, P. W., Gerber, S. & Inglett, K. S. Rate of warming affects temperature sensitivity of anaerobic peat decomposition and greenhouse gas production. Glob. Change Biol. 24(1), e259–e274 (2018).ADS 
    Article 

    Google Scholar 
    62.Page, S. E., Rieley, J. O. & Banks, C. J. Global and regional importance of the tropical peatland carbon pool. Glob. Change Biol. 17(2), 798–818 (2011).ADS 
    Article 

    Google Scholar 
    63.Sun, Z. et al. Priming of soil organic carbon decomposition induced by exogenous organic carbon input: a meta-analysis. Plant Soil 443(1–2), 463–471 (2019).CAS 
    Article 

    Google Scholar 
    64.Wang, H. et al. Differential effects of conifer and broadleaf litter inputs on soil organic carbon chemical composition through altered soil microbial community composition. Sci. Rep. 6, 27097 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Fontaine, S. et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450, 277–280 (2007).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Frey, S. D., Lee, J., Melillo, J. M. & Six, J. The temperature response of soil microbial efficiency and its feedback to climate. Nat. Clim. Chang. 3(4), 395–398 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    67.Zhou, Y., Hartemink, A. E., Shi, Z., Liang, Z. & Lu, Y. Land use and climate change effects on soil organic carbon in North and Northeast China. Sci. Total Environ. 647, 1230–1238 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Meier, I. C., Finzi, A. C. & Phillips, R. P. Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools. Soil Biol. Biochem. 106, 119–128 (2017).CAS 
    Article 

    Google Scholar 
    69.Strand, L. T., Abrahamsen, G. & Stuanes, A. O. Leaching from organic matter-rich soils by rain of different qualities: I Concentrations. J. Environ. Qual. 31(2), 547–556 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Liu, S. et al. The role of UV-B radiation and precipitation on straw decomposition and topsoil C turnover. Soil Biol. Biochem. 77, 197–202 (2014).CAS 
    Article 

    Google Scholar 
    71.Liu, C. P. & Sheu, B. H. Dissolved organic carbon in precipitation, throughfall, stemflow, soil solution, and stream water at the Guandaushi subtropical forest in Taiwan. For. Ecol. Manage. 172(2–3), 315–325 (2003).Article 

    Google Scholar 
    72.Biederbeck, V. O., Janzen, H. H., Campbell, C. A. & Zentner, R. P. Labile soil organic matter as influenced by cropping practices in an arid environment. Soil Biol. Biochem. 26(12), 1647–1656 (1994).CAS 
    Article 

    Google Scholar 
    73.García-Díaz, A., Marqués, M. J., Sastre, B. & Bienes, R. Labile and stable soil organic carbon and physical improvements using groundcovers in vineyards from central Spain. Sci. Total Environ. 621, 387–397 (2018).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    74.Yuan, Y., Zhao, Z., Li, X., Wang, Y. & Bai, Z. Characteristics of labile organic carbon fractions in reclaimed mine soils: Evidence from three reclaimed forests in the Pingshuo opencast coal mine, China. Sci. Total Environ. 613, 1196–1206 (2018).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    75.Yang, X. et al. Labile organic carbon fractions and carbon pool management index in a 3-year field study with biochar amendment. J. Soils Sediments 18(4), 1569–1578 (2018).CAS 
    Article 

    Google Scholar 
    76.Soucémarianadin, L. N. et al. Environmental factors controlling soil organic carbon stability in French forest soils. Plant Soil 426(1–2), 267–286 (2018).Article 
    CAS 

    Google Scholar 
    77.Mueller, T., Jensen, L. S., Nielsen, N. E. & Magid, J. Turnover of carbon and nitrogen in a sandy loam soil following incorporation of chopped maize plants, barley straw and blue grass in the field. Soil Biol. Biochem. 30(5), 561–571 (1998).CAS 
    Article 

    Google Scholar 
    78.Oades, J. M., Vassallo, A. M., Waters, A. G. & Wilson, M. A. Characterization of organic matter in particle size and density fractions from a red-brown earth by solid state 13C NMR. Soil Res. 25(1), 71–82 (1987).CAS 
    Article 

    Google Scholar 
    79.Li, Q. et al. Consistent temperature sensitivity of labile soil organic carbon mineralization along an elevation gradient in the Wuyi Mountains, China. Appl. Soil Ecol. 117, 32–37 (2017).ADS 
    Article 

    Google Scholar 
    80.Luo, Z., Feng, W., Luo, Y., Baldock, J. & Wang, E. Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions. Glob. Change Biol. 23(10), 4430–4439 (2017).ADS 
    Article 

    Google Scholar 
    81.Yang, K. & Wang, C. Water storage effect of soil freeze-thaw process and its impacts on soil hydro-thermal regime variations. Agric. For. Meteorol. 265, 280–294 (2019).ADS 
    Article 

    Google Scholar 
    82.Oztas, T. & Fayetorbay, F. Effect of freezing and thawing processes on soil aggregate stability. CATENA 52(1), 1–8 (2003).CAS 
    Article 

    Google Scholar 
    83.Yang, Y. et al. Effects of forest conversion on soil labile organic carbon fractions and aggregate stability in subtropical China. Plant Soil 323(1–2), 153–162 (2009).CAS 
    Article 

    Google Scholar 
    84.Kreyling, J., Beierkuhnlein, C. & Jentsch, A. Effects of soil freeze-thaw cycles differ between experimental plant communities. Basic Appl. Ecol. 11(1), 65–75 (2010).Article 

    Google Scholar 
    85.Guglielmin, M., Evans, C. J. E. & Cannone, N. Active layer thermal regime under different vegetation conditions in permafrost areas: A case study at Signy Island (Maritime Antarctica). Geoderma 144(1–2), 73–85 (2008).ADS 
    Article 

    Google Scholar 
    86.Herrmann, A. & Witter, E. Sources of C and N contributing to the flush in mineralization upon freeze-thaw cycles in soils. Soil Biol. Biochem. 34(10), 1495–1505 (2002).CAS 
    Article 

    Google Scholar 
    87.Zhu, E. et al. Leaching of organic carbon from grassland soils under anaerobiosis. Soil Biol. Biochem. 141, 107684 (2020).CAS 
    Article 

    Google Scholar 
    88.Tian, J., Branfireun, B. A. & Lindo, Z. Global change alters peatland carbon cycling through plant biomass allocation. Plant Soil 455, 1–12 (2020).Article 
    CAS 

    Google Scholar 
    89.Yan, J. et al. Plant litter composition selects different soil microbial structures and in turn drives different litter decomposition pattern and soil carbon sequestration capability. Geoderma 319, 194–203 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    90.Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter: fourteen years on. Soil Biol. Biochem. 105, A3–A8 (2017).Article 
    CAS 

    Google Scholar 
    91.Wiesmeier, M. et al. Soil organic carbon storage as a key function of soils-a review of drivers and indicators at various scales. Geoderma 333, 149–162 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    92.Sun, T., Wang, Y., Hui, D., Jing, X. & Feng, W. Soil properties rather than climate and ecosystem type control the vertical variations of soil organic carbon, microbial carbon, and microbial quotient. Soil Biol. Biochem. 148, 107905 (2020).CAS 
    Article 

    Google Scholar 
    93.Li, X. G., Li, F. M., Zed, R. & Zhan, Z. Y. Soil physical properties and their relations to organic carbon pools as affected by land use in an alpine pastureland. Geoderma 139(1–2), 98–105 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    94.Singh, A. K., Rai, A. & Singh, N. Effect of long term land use systems on fractions of glomalin and soil organic carbon in the Indo-Gangetic plain. Geoderma 277, 41–50 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    95.Ghosh, A. et al. Long-term fertilization effects on soil organic carbon sequestration in an Inceptisol. Soil Tillage Res. 177, 134–144 (2018).Article 

    Google Scholar  More

  • in

    Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs

    1.Agrawal, A. A. A scale-dependent framework for trade-offs, syndromes, and specialization in organismal biology. Ecology 101, e02924 (2020).PubMed 
    Article 

    Google Scholar 
    2.Agrawal, A. A., Conner, J. K. & Rasmann, S. in Evolution After Darwin: The First 150 Years (eds Bell, M. et al.) 243–268 (Sinauer Associates, 2010).3.Futuyma, D. J. & Moreno, G. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19, 207–233 (1988).Article 

    Google Scholar 
    4.Grime, J. P. & Pierce, S. The Evolutionary Strategies that Shape Ecosystems (John Wiley & Sons, 2012).5.Fry, J. D. Detecting ecological trade-offs using selection experiments. Ecology 84, 1672–1678 (2003).Article 

    Google Scholar 
    6.Grubb, P. J. Trade-offs in interspecific comparisons in plant ecology and how plants overcome proposed constraints. Plant Ecol. Divers. 9, 3–33 (2016).Article 

    Google Scholar 
    7.Kneitel, J. M. & Chase, J. M. Trade-offs in community ecology: linking spatial scales and species coexistence. Ecol. Lett. 7, 69–80 (2004).Article 

    Google Scholar 
    8.Tilman, D. Plant Strategies and the Dynamics and Structure of Plant Communities (Princeton Univ. Press, 1988).9.Lusk, C. H. & Jorgensen, M. A. The whole-plant compensation point as a measure of juvenile tree light requirements. Funct. Ecol. 27, 1286–1294 (2013).Article 

    Google Scholar 
    10.Ho, M. D., Rosas, J. C., Brown, K. M. & Lynch, J. P. Root architectural tradeoffs for water and phosphorus acquisition. Funct. Plant Biol. 32, 737–748 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Forister, M. L. & Jenkins, S. H. A neutral model for the evolution of diet breadth. Am. Nat. 190, E40–E54 (2017).PubMed 
    Article 

    Google Scholar 
    12.Laughlin, D. C., Strahan, R. T., Adler, P. B. & Moore, M. M. Survival rates indicate that correlations between community-weighted mean traits and environments can be unreliable estimates of the adaptive value of traits. Ecol. Lett. 21, 411–421 (2018).PubMed 
    Article 

    Google Scholar 
    13.Pollock, L. J., Morris, W. K. & Vesk, P. A. The role of functional traits in species distributions revealed through a hierarchical model. Ecography 35, 716–725 (2012).Article 

    Google Scholar 
    14.Mason, N. W. H. et al. Changes in coexistence mechanisms along a long-term soil chronosequence revealed by functional trait diversity. J. Ecol. 100, 678–689 (2012).CAS 
    Article 

    Google Scholar 
    15.Gompert, Z. et al. The evolution of novel host use is unlikely to be constrained by trade-offs or a lack of genetic variation. Mol. Ecol. 24, 2777–2793 (2015).PubMed 
    Article 

    Google Scholar 
    16.Laliberté, E. Below-ground frontiers in trait-based plant ecology. New Phytol. 213, 1597–1603 (2017).PubMed 
    Article 

    Google Scholar 
    17.Bergmann, J. et al. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6, eaba3756 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Tedersoo, L., Bahram, M. & Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 367, eaba1223 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Kong, D. et al. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytol. 203, 863–872 (2014).PubMed 
    Article 

    Google Scholar 
    20.Ma, Z. et al. Evolutionary history resolves global organization of root functional traits. Nature 555, 94–97 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Weemstra, M. et al. Towards a multidimensional root trait framework: a tree root review. New Phytol. 211, 1159–1169 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Kramer-Walter, K. R. et al. Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum. J. Ecol. 104, 1299–1310 (2016).Article 

    Google Scholar 
    23.Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    24.Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    25.Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest–tree symbioses. Nature 569, 404–408 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    27.Kytöviita, M.-M. Asymmetric symbiont adaptation to Arctic conditions could explain why high Arctic plants are non-mycorrhizal. FEMS Microbiol. Ecol. 53, 27–32 (2005).PubMed 
    Article 
    CAS 

    Google Scholar 
    28.Augé, R. M., Toler, H. D. & Saxton, A. M. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 25, 13–24 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Gill, R. A. & Jackson, R. B. Global patterns of root turnover for terrestrial ecosystems. New Phytol. 147, 13–31 (2000).Article 

    Google Scholar 
    30.Butterfield, B. J., Bradford, J. B., Munson, S. M. & Gremer, J. R. Aridity increases below-ground niche breadth in grass communities. Plant Ecol. 218, 385–394 (2017).Article 

    Google Scholar 
    31.Bruelheide, H. et al. sPlot—a new tool for global vegetation analyses. J. Veg. Sci. 30, 161–186 (2019).Article 

    Google Scholar 
    32.Guerrero-Ramírez, N. R. et al. Global root traits (GRooT) database. Glob. Ecol. Biogeogr. 30, 25–37 (2021).Article 

    Google Scholar 
    33.Valverde-Barrantes, O. J., Freschet, G. T., Roumet, C. & Blackwood, C. B. A worldview of root traits: the influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants. New Phytol. 215, 1562–1573 (2017).PubMed 
    Article 

    Google Scholar 
    34.Kong, D. et al. Nonlinearity of root trait relationships and the root economics spectrum. Nat. Commun. 10, 2203 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    35.Fort, F. & Freschet, G. T.Plant ecological indicator values as predictors of fine-root trait variations. J. Ecol. 108, 1565–1577 (2020).Article 

    Google Scholar 
    36.Purcell, A. S. T., Lee, W. G., Tanentzap, A. J. & Laughlin, D. C. Fine root traits are correlated with flooding duration while aboveground traits are related to grazing in an ephemeral wetland. Wetlands 39, 291–302 (2019).Article 

    Google Scholar 
    37.Laughlin, D. C., Fulé, P. Z., Huffman, D. W., Crouse, J. & Laliberté, E. Climatic constraints on trait-based forest assembly. J. Ecol. 99, 1489–1499 (2011).Article 

    Google Scholar 
    38.Simpson, A. H., Richardson, S. J. & Laughlin, D. C. Soil–climate interactions explain variation in foliar, stem, root and reproductive traits across temperate forests. Glob. Ecol. Biogeogr. 25, 964–978 (2016).Article 

    Google Scholar 
    39.Chen, W., Zeng, H., Eissenstat, D. M. & Guo, D. Variation of first-order root traits across climatic gradients and evolutionary trends in geological time. Glob. Ecol. Biogeogr. 22, 846–856 (2013).Article 

    Google Scholar 
    40.Freschet, G. T. et al. Climate, soil and plant functional types as drivers of global fine-root trait variation. J. Ecol. 105, 1182–1196 (2017).Article 

    Google Scholar 
    41.Ostonen, I. et al. Adaptive root foraging strategies along a boreal–temperate forest gradient. New Phytol. 215, 977–991 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Wang, R. et al. Different phylogenetic and environmental controls of first-order root morphological and nutrient traits: evidence of multidimensional root traits. Funct. Ecol. 32, 29–39 (2018).Article 

    Google Scholar 
    43.Craine, J. M. & Lee, W. G. Covariation in leaf and root traits for native and non-native grasses along an altitudinal gradient in New Zealand. Oecologia 134, 471–478 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Craine, J. M., Lee, W. G., Bond, W. J., Williams, R. J. & Johnson, L. C. Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology 86, 12–19 (2005).Article 

    Google Scholar 
    45.Zadworny, M. et al. Patterns of structural and defense investments in fine roots of Scots pine (Pinus sylvestris L.) across a strong temperature and latitudinal gradient in Europe. Glob. Change Biol. 23, 1218–1231 (2017).Article 

    Google Scholar 
    46.Oliverio, A. M. et al. The global-scale distributions of soil protists and their contributions to belowground systems. Sci. Adv. 6, eaax8787 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Bennett, A. E., Grussu, D., Kam, J., Caul, S. & Halpin, C. Plant lignin content altered by soil microbial community. New Phytol. 206, 166–174 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Moore, B. D. & Johnson, S. N. Get tough, get toxic, or get a bodyguard: identifying candidate traits conferring belowground resistance to herbivores in grasses. Front. Plant Sci. 7, 1925 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Delgado-Baquerizo, M. et al. The proportion of soil-borne pathogens increases with warming at the global scale. Nat. Clim. Change 10, 550–554 (2020).Article 

    Google Scholar 
    50.De la Riva, E. G. et al. Root traits across environmental gradients in Mediterranean woody communities: are they aligned along the root economics spectrum? Plant Soil 424, 35–48 (2018).CAS 
    Article 

    Google Scholar 
    51.Hacke, U. G., Sperry, J. S. & Pittermann, J. Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah. Basic Appl. Ecol. 1, 31–41 (2000).Article 

    Google Scholar 
    52.Wright, I. J., Reich, P. B. & Westoby, M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct. Ecol. 15, 423–434 (2001).Article 

    Google Scholar 
    53.Wang, B. et al. Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. New Phytol. 186, 514–525 (2010).PubMed 
    Article 

    Google Scholar 
    54.Grubb, P. in Handbook of Vegetation Science Vol. 3 (ed. White, J.) 595–621 (Dr. W. Junk Publishers, 1985).55.Laughlin, D. C. et al. Quantifying multimodal trait distributions improves trait-based predictions of species abundances and functional diversity. J. Veg. Sci. 26, 46–57 (2015).Article 

    Google Scholar 
    56.Pfahl, S., O’Gorman, P. A. & Fischer, E. M. Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Clim. Change 7, 423–427 (2017).Article 

    Google Scholar 
    57.Read, D. J. Mycorrhizas in ecosystems. Experientia 47, 376–391 (1991).Article 

    Google Scholar 
    58.Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).PubMed 
    Article 

    Google Scholar 
    59.Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).CAS 
    Article 

    Google Scholar 
    60.Kumordzi, B. B. et al. Geographic scale and disturbance influence intraspecific trait variability in leaves and roots of North American understorey plants. Funct. Ecol. 33, 1771–1784 (2019).Article 

    Google Scholar 
    61.Velázquez, E., Paine, C. E. T., May, F. & Wiegand, T. Linking trait similarity to interspecific spatial associations in a moist tropical forest. J. Veg. Sci. 26, 1068–1079 (2015).Article 

    Google Scholar 
    62.Butterfield, B. J. Environmental filtering increases in intensity at both ends of climatic gradients, though driven by different factors, across woody vegetation types of the southwest USA. Oikos 124, 1374–1382 (2015).Article 

    Google Scholar 
    63.Iversen, C. M. et al. A global fine-root ecology database to address below-ground challenges in plant ecology. New Phytol. 215, 15–26 (2017).PubMed 
    Article 

    Google Scholar 
    64.Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).Article 

    Google Scholar 
    65.Pakeman, R. J. & Quested, H. M. Sampling plant functional traits: what proportion of the species need to be measured? Appl. Veg. Sci. 10, 91–96 (2007).Article 

    Google Scholar 
    66.Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Zomer, R. J., Trabucco, A., Bossio, D. A. & Verchot, L. V. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ. 126, 67–80 (2008).Article 

    Google Scholar 
    68.Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).Article 

    Google Scholar 
    69.Jamil, T., Ozinga, W. A., Kleyer, M. & Ber Braak, C. J. F. Selecting traits that explain species–environment relationships: a generalized linear mixed model approach. J. Veg. Sci. 24, 988–1000 (2013).Article 

    Google Scholar 
    70.Miller, J. E. D., Damschen, E. I. & Ives, A. R. Functional traits and community composition: a comparison among community-weighted means, weighted correlations, and multilevel models. Methods Ecol. Evol. 10, 415–425 (2018).
    Google Scholar 
    71.R Development Core Team R: A language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).72.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).73.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    74.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    75.Lüdecke, D., Makowski, D. & Waggoner, P. performance: Assessment of regression models performance. R package version 0.4.2 (2019).76.Stefan, V. & Levin, S. plotbiomes: Plot Whittaker biomes with ggplot2. R package version 0.0.0.9001 (2020).77.Roberts, D. W. labdsv: Ordination and multivariate analysis for ecology. R package version 1.8.0 https://CRAN.R-project.org/package=labdsv (2016).78.Anderson, D. R. Model Based Inference in the Life Sciences: a Primer on Evidence (Springer Science & Business Media, 2008). More

  • in

    Protected area networks do not represent unseen biodiversity

    1.Butchart, S. H. M. et al. Global biodiversity: Indicators of recent declines. Science 328, 1164–1168. https://doi.org/10.1126/science.1187512 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    2.Ripple, W. J. et al. Are we eating the world’s megafauna to extinction?. Conserv. Lett. https://doi.org/10.1111/conl.12627 (2019).Article 

    Google Scholar 
    3.IPBES. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Advance Unedited Version. (Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2019).4.Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73. https://doi.org/10.1038/nature13947 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Convention on Biological Diversity. Strategic plan for biodiversity 2011–2020 and the Aichi targets, (2010).6.UNEP-WCMC, IUCN & NGS. (eds UNEP-WCMC, IUCN, & NGS) (Cambridge UK; Gland, Switzerland; and Washington, D.C., USA, 2018).7.Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244. https://doi.org/10.1126/science.1257484 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Butchart, S. H. M. et al. Shortfalls and solutions for meeting national and global conservation area targets. Conserv. Lett. 8, 329–337. https://doi.org/10.1111/conl.12158 (2015).Article 

    Google Scholar 
    9.Visconti, P. et al. Protected area targets post-2020. Science 364, 239–241. https://doi.org/10.1126/science.aav6886 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Erdelen, W. R. Shaping the fate of life on earth: The post-2020 global biodiversity framework. Global Pol. 11, 347–359. https://doi.org/10.1111/1758-5899.12773 (2020).Article 

    Google Scholar 
    11.Possingham, H. P., Wilson, K. A., Andelman, S. J. & Vynne, C. H. in Principles of Conservation Biology (eds M. J. Groom, G. K. Meffe, & C. R. Carroll) Ch. 14, 507 – 549 (2006).12.Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–252 (2000).CAS 
    Article 

    Google Scholar 
    13.Thomassen, H. A. et al. Mapping evolutionary process: A multi-taxa approach to conservation prioritization. Evol. Appl. 4, 397–413. https://doi.org/10.1111/j.1752-4571.2010.00172.x (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Kalamandeen, M. & Gillson, L. Demything, “wilderness”: implications for protected area designation and management. Biodivers. Conserv. 16, 165–182. https://doi.org/10.1007/s10531-006-9122-x (2006).Article 

    Google Scholar 
    15.Joppa, L. N. & Pfaff, A. High and far: Biases in the location of protected areas. PLoS ONE 4, 1–6. https://doi.org/10.1371/journal.pone.0008273 (2009).CAS 
    Article 

    Google Scholar 
    16.Jenkins, C. N., Houtan, K. S. V., Pimm, S. L. & Sexton, J. O. US protected lands mismatch biodiversity priorities. Proc. Natl. Acad. Sci. U.S.A. 112, 5081–5086. https://doi.org/10.1073/pnas.1418034112 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Fajardo, J., Lessmann, J., Bonaccorso, E., Devenish, C. & Muñoz, J. Combined use of systematic conservation planning, species distribution modelling, and connectivity analysis reveals severe conservation gaps in a megadiverse country (Peru). PLoS ONE 9, e114367. https://doi.org/10.1371/journal.pone.0114367 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Rodrigues, A. S. L. & Brooks, T. M. Shortcuts for biodiversity conservation planning: the effectiveness of surrogates. Annu. Rev. Ecol. Evol. Syst. 38, 713–737. https://doi.org/10.1146/annurev.ecolsys.38.091206.095737 (2007).Article 

    Google Scholar 
    19.Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 987. https://doi.org/10.1126/science.1246752 (2014).CAS 
    Article 

    Google Scholar 
    20.Allen, C. R., Pearlstine, L. G., Wojcik, D. P. & Kitchens, W. M. The spatial distribution of diversity between disparate taxa: Spatial correspondence between mammals and ants across South Florida, USA. Landsc. Ecol. 16, 453–464 (2001).Article 

    Google Scholar 
    21.Shokri, M. R., Gladstone, W. & Kepert, A. Annelids, arthropods or molluscs are suitable as surrogate taxa for selecting conservation reserves in estuaries. Biodivers. Conserv. 18, 1117–1130 (2009).Article 

    Google Scholar 
    22.Kremen, C. et al. Terrestrial arthropod assemblages: Their use in conservation planning. Conserv. Biol. 7, 796–808 (1993).Article 

    Google Scholar 
    23.Kohlmann, B., Solís, Á., Elle, O., Soto, X. & Russo, R. Biodiversity, conservation, and hotspot atlas of Costa Rica: A dung beetle perspective (Coleoptera: Scarabaeidae: Scarabaeinae). Zootaxa 1457, 1–34. https://doi.org/10.11646/zootaxa.1457.1.1 (2007).Article 

    Google Scholar 
    24.Chefaoui, R. M., Hortal, J. & Lobo, J. M. Potential distribution modelling, niche characterization and conservation status assessment using GIS tools: a case study of Iberian Copris species. Biol. Conserv. 122, 327–338. https://doi.org/10.1016/j.biocon.2004.08.005 (2005).Article 

    Google Scholar 
    25.Eisenhauer, N., Bonn, A. & Guerra, C. A. Recognizing the quiet extinction of invertebrates. Nat. Commun. 10, 50. https://doi.org/10.1038/s41467-018-07916-1 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Mckinney, M. L. High rates of extinction and threat in poorly studied taxa. Conserv. Biol. 13, 1273–1281. https://doi.org/10.2307/2641951 (1999).Article 

    Google Scholar 
    27.Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conservation 232, 8–27. https://doi.org/10.1016/j.biocon.2019.01.020 (2019).Article 

    Google Scholar 
    28.Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809. https://doi.org/10.1371/journal.pone.0185809 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Losey, J. E. & Vaughan, M. The economic value of ecological services provided by insects. Bioscience 56, 311–323. https://doi.org/10.1641/0006-3568(2006)56[311:TEVOES]2.0.CO;2 (2006).Article 

    Google Scholar 
    30.Hein, L. The economic value of the Pollination service, a review across scales. Open Ecol. J. 2, 74–82 (2009).Article 

    Google Scholar 
    31.Briones, M. J. I. Soil fauna and soil functions: A jigsaw puzzle. Front. Environ. Sci. 2, 7. https://doi.org/10.3389/fenvs.2014.00007 (2014).Article 

    Google Scholar 
    32.Cardoso, P., Erwin, T. L., Borges, P. A. V. & New, T. R. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 144, 2647–2655. https://doi.org/10.1016/j.biocon.2011.07.024 (2011).Article 

    Google Scholar 
    33.Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186 (2000).Article 

    Google Scholar 
    34.Mammola, S. et al. Towards a taxonomically unbiased European Union biodiversity strategy for 2030. Proc. R. Soc. B Biol. Sci. 287, 20202166. https://doi.org/10.1098/rspb.2020.2166 (2020).Article 

    Google Scholar 
    35.D’Amen, M. et al. Protected areas and insect conservation: Questioning the effectiveness of Natura 2000 network for saproxylic beetles in Italy. Anim. Conserv. 16, 370–378. https://doi.org/10.1111/acv.12016 (2013).Article 

    Google Scholar 
    36.Martín-Piera, F. Area networks for conserving Iberian insects: A case study of dung beetles (col., Scarabaeoidea). J. Insect Conserv. 5, 233–252 (2001).Article 

    Google Scholar 
    37.Gonzalez-Maya, J. F., Viquez, R. L., Belant, J. L. & Ceballos, G. Effectiveness of protected areas for representing species and populations of terrestrial mammals in Costa Rica. PLoS ONE 10, e0124480. https://doi.org/10.1371/journal.pone.0124480 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Ceballos, G. Conservation priorities for mammals in megadiverse Mexico: The efficiency of reserve networks. Ecol. Appl. 17, 569–578 (2007).Article 

    Google Scholar 
    39.Linke, S., Turak, E. & Nel, J. Freshwater conservation planning: The case for systematic approaches. Freshw. Biol. 56, 6–20. https://doi.org/10.1111/j.1365-2427.2010.02456.x (2011).Article 

    Google Scholar 
    40.Escalante, T. et al. Evaluation of five taxa as surrogates for conservation prioritization in the Transmexican Volcanic Belt Mexico. J. Nat. Conserv. 54, 125800. https://doi.org/10.1016/j.jnc.2020.125800 (2020).Article 

    Google Scholar 
    41.Mateo, R. G. et al. The mossy north: An inverse latitudinal diversity gradient in European bryophytes. Sci. Rep. 6, 25546. https://doi.org/10.1038/srep25546 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Lessmann, J. et al. Freshwater vertebrate and invertebrate diversity patterns in an Andean-Amazon basin: Implications for conservation efforts. Neotrop. Biodivers. 2, 99–114. https://doi.org/10.1080/23766808.2016.1222189 (2016).Article 

    Google Scholar 
    43.Similä, M., Kouki, J., Mönkkönen, M., Sippola, A.-L. & Huhta, E. Co-variation and indicators of species diversity: Can richness of forest-dwelling species be predicted in northern boreal forests?. Ecol. Ind. 6, 686–700. https://doi.org/10.1016/j.ecolind.2005.08.028 (2006).Article 

    Google Scholar 
    44.Báldi, A. Using higher taxa as surrogates of species richness: a study based on 3700 Coleoptera, Diptera, and Acari species in Central-Hungarian reserves. Basic Appl. Ecol. 4, 589–593. https://doi.org/10.1078/1439-1791-00193 (2003).Article 

    Google Scholar 
    45.Lessmann, J., Fajardo, J., Bonaccorso, E. & Bruner, A. Cost-effective protection of biodiversity in the western Amazon. Biol. Conserv. 235, 250–259. https://doi.org/10.1016/j.biocon.2019.04.022 (2019).Article 

    Google Scholar 
    46.Rodrigues, A. S. L. & Gaston, K. J. How large do reserve networks need to be?. Ecol. Lett. 4, 602–609 (2001).Article 

    Google Scholar 
    47.Bax, V. & Francesconi, W. Conservation gaps and priorities in the Tropical Andes biodiversity hotspot: Implications for the expansion of protected areas. J. Environ. Manag. 232, 387–396. https://doi.org/10.1016/j.jenvman.2018.11.086 (2018).Article 

    Google Scholar 
    48.Cuesta, F. et al. Priority areas for biodiversity conservation in mainland Ecuador. Neotrop. Biodivers. 3, 93–106. https://doi.org/10.1080/23766808.2017.1295705 (2017).Article 

    Google Scholar 
    49.Klein, A.-M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B: Biol. Sci. 274, 303–313. https://doi.org/10.1098/rspb.2006.3721 (2006).Article 

    Google Scholar 
    50.Bauer, D. M. & Wing, I. S. Economic consequences of pollinator declines: A synthesis. Agric. Resour. Econ. Rev. 39, 368–383. https://doi.org/10.1017/S1068280500007371 (2010).Article 

    Google Scholar 
    51.Kevan, P. G. & Phillips, T. P. The economic impacts of pollinator declines: An approach to assessing the consequences. Conserv. Ecol. 5, 8. https://doi.org/10.5751/ES-00272-050108 (2001).Article 

    Google Scholar 
    52.Hérivaux, C. & Grémont, M. Valuing a diversity of ecosystem services: The way forward to protect strategic groundwater resources for the future?. Ecosyst. Serv. 35, 184–193. https://doi.org/10.1016/j.ecoser.2018.12.011 (2019).Article 

    Google Scholar 
    53.Haefele, M., Loomis, J. & Bilmes, L. J. in Valuing U.S. National Parks and Programs. America’s Best Investment (eds Linda J. Bilmes & John B. Loomis) 16–44 (Earthscan from Routledge, 2019).54.Kramer-Schadt, S. et al. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers. Distrib. 19, 1366–1379. https://doi.org/10.1111/ddi.12096 (2013).Article 

    Google Scholar 
    55.Cayuela, L. et al. Species distribution modeling in the tropics: Problems, potentialities, and the role of biological data for effective species conservation. Trop. Conserv. Sci. 2, 319–352 (2009).Article 

    Google Scholar 
    56.Guisan, A. & Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 8, 993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x (2005).Article 

    Google Scholar 
    57.Thornhill, A. H. et al. Spatial phylogenetics of the native California flora. BMC Biol. 15, 96. https://doi.org/10.1186/s12915-017-0435-x (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Stork, N. E., McBroom, J., Gely, C. & Hamilton, A. J. New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. Proc. Natl. Acad. Sci. U.S.A. 112, 7519–7523. https://doi.org/10.1073/pnas.1502408112 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.SINAC. IV Informe de Pais al Convenio sobre la Diversidad Biológica. Vol. 4 (GEF-PNUD, 2009).60.Llorente Bousquets, J. & Ocegueda, S. in Conocimiento actual de la biodiversidad Vol. 1 (eds Jorge Llorente Bousquets & Susana Ocegueda) Ch. 11, 283–322 (CONABIO, 2008).61.Sabrosky, C. W. in The Yearbook of Agriculture Vol. 2 Ch. 1, 1–37 (United States Department of Agriculture, 1952).62.Hanson, P. Los insectos invasores de Costa Rica. Revista Biocenosis 22, 51–60 (2009).
    Google Scholar 
    63.March, I. J. & Martínez, M. (eds Instituto Mexicano de Tecnología del Agua et al.) 1–73 (México, Jiutepec, Morelos, 2007).64.van Proosdij, A. S. J., Sosef, M. S. M., Wieringa, J. J. & Raes, N. Minimum required number of specimen records to develop accurate Species Distribution Models. Ecography 39, 542–552. https://doi.org/10.1111/ecog.01509 (2016).Article 

    Google Scholar 
    65.Boria, R. A., Olson, L. E., Goodman, S. M. & Anderson, R. P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 275, 73–77. https://doi.org/10.1016/j.ecolmodel.2013.12.012 (2014).Article 

    Google Scholar 
    66.Velazco, S. J. E., Svenning, J. C., Ribeiro, B. R. & Laureto, L. M. O. On opportunities and threats to conserve the phylogenetic diversity of Neotropical palms. Divers. Distrib. 27, 512–523. https://doi.org/10.1111/ddi.13215 (2020).Article 

    Google Scholar 
    67.Frederico, R. G., Zuanon, J. & De Marco, P. Amazon protected areas and its ability to protect stream-dwelling fish fauna. Biol. Conserv. 219, 12–19. https://doi.org/10.1016/j.biocon.2017.12.032 (2018).Article 

    Google Scholar 
    68.Rosser, N., Phillimore, A. B., Huertas, B., Willmott, K. R. & Mallet, J. Testing historical explanations for gradients in species richness in heliconiine butterflies of tropical America. Biol. J. Lin. Soc. 105, 479–497 (2012).Article 

    Google Scholar 
    69.Camero, E. R. & Lobo, J. M. The distribution of the species of Eurysternus Dalman, 1824 (Coleoptera: Scarabaeidae) in America: potential distributions and the locations of areas to be surveyed. Trop. Conserv. Sci. 5, 225–244 (2012).Article 

    Google Scholar 
    70.Soberón, J. & Peterson, A. T. Biodiversity informatics: Managing and applying primary biodiversity data. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 359, 689–698 (2004).Article 

    Google Scholar 
    71.Zizka, A. et al. CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 10, 744–751. https://doi.org/10.1111/2041-210X.13152 (2019).Article 

    Google Scholar 
    72.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2019).73.Thuiller, W., Georges, D. & Engler, R. biomod2: Ensemble platform for species distribution modeling. Version 3.3–7, (2016).74.Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat suitability and distribution models. With applications in R. (Cambridge University Press, 2017).75.Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).MathSciNet 
    Article 

    Google Scholar 
    76.Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article 

    Google Scholar 
    77.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).Article 

    Google Scholar 
    78.Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47. https://doi.org/10.1016/j.tree.2006.09.010 (2007).Article 
    PubMed 

    Google Scholar 
    79.Fick, S. E. & Hijmans, R. J. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. https://doi.org/10.1002/joc.5086 (2017).Article 

    Google Scholar 
    80.Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. 116, G04021. https://doi.org/10.1029/2011JG001708 (2011).ADS 
    Article 

    Google Scholar 
    81.Lin, D., Foster, D. P. & Ungar, L. H. VIF regression: A fast regression algorithm for large data. J. Am. Stat. Assoc. 106, 232–247. https://doi.org/10.1198/jasa.2011.tm10113 (2011).MathSciNet 
    CAS 
    Article 
    MATH 

    Google Scholar 
    82.Phillips, S. J. et al. Sample selection bias and presence-only species distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).Article 

    Google Scholar 
    83.Collevatti, R. G. et al. A coupled phylogeographical and species distribution modelling approach recovers the demographical history of a Neotropical seasonally dry forest tree species. Mol. Ecol. Notes 21, 5845–5863. https://doi.org/10.1111/mec.12071 (2012).Article 

    Google Scholar 
    84.Rodrigues, A. S. L. et al. Effectiveness of the global protected area network in the representing species diversity. Nature 428, 640–643. https://doi.org/10.1038/nature02422 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    85.IUCN. The IUCN Red List of Threatened Species. Version 2019.2, (2019).86.Ardron, J. A., Possingham, H. P. & Klein, C. J. Marxan Good Practices Handbook. 155 (Pacific Marine Analysis and Research Association, 2008).87.Prioritizr: Systematic Conservation Prioritization in R. Version 4.1.1. Available at https://github.com/prioritizr/prioritizr (2019).88.gurobi: Gurobi Optimizer 8.0 interface. R package version 80–1 v. 8.1 (2018). More

  • in

    Irradiation-induced sterility in an egg parasitoid and possible implications for the use of biological control in insect eradication

    1.DeBach, P. & Rosen, D. Biological Control by Natural Enemies (Cambridge University Press, 1991).
    Google Scholar 
    2.Naranjo, S. E., Ellsworth, P. C. & Frisvold, G. B. Economic value of biological control in integrated pest management of managed plant systems. Annu. Rev. Entomol. 60, 621–645 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    3.Walker, J. T. S., Suckling, D. M. & Wearing, C. H. Past, present, and future of integrated control of apple pests: The New Zealand experience. Annu. Rev. Entomol. 62, 231–248 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    4.van Lenteren, J. C., Bale, J., Bigler, F., Hokkanen, H. M. T. & Loomans, A. J. M. Assessing risks of releasing exotic biological control agents of arthropod pests. Annu. Rev. Entomol. 51, 609–634 (2006).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    5.Bale, J. S., van Lenteren, J. C. & Bigler, F. Biological control and sustainable food production. Phil. Trans. R. Soc. Lond. B 363, 761–776 (2008).Article 
    CAS 

    Google Scholar 
    6.Sheppard, A. W. et al. A global review of risk-benefit-cost analysis for the introduction of classical biological control agents against weeds: A crisis in the making?. Biocontrol News Inf. 24, 91N-108N (2003).
    Google Scholar 
    7.Barratt, B. I. P., Blossey, B. & Hokkanen, H. M. Post-release evaluation of non-target effects of biological control agents. In Environmental Impact of Invertebrates for Biological Control of Arthropods: Methods and Risk Assessment (eds Bigler, F. et al.) 166–186 (CABI Publishing, 2006).Chapter 

    Google Scholar 
    8.Barratt, B. I. P., Moeed, A. & Malone, L. A. Biosafety assessment protocols for new organisms in New Zealand: Can they apply internationally to emerging technologies?. Environ. Impact Assess. Rev. 26, 339–358 (2006).Article 

    Google Scholar 
    9.Klassen, W. & Curtis, C. F. History of the sterile insect technique. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds Dyck, V. A. et al.) 3–38 (Springer, 2021).
    Google Scholar 
    10.Hendrichs, J., Kenmore, P., Robinson, A. S. & Vreyson, M. J. B. Area-wide integrated pest management (AW-IPM): principles, practice and prospects. In Area-Wide Control of Insect Pests (eds Vreysen, M. J. B. et al.) 3–34 (Springer, 2007).
    Google Scholar 
    11.Knipling, E. F. Possibilities of insect control or eradication through the use of sexually sterile males. J. Econ. Entomol. 48, 459–462 (1955).Article 

    Google Scholar 
    12.Brockerhoff, E. G., Liebhold, A. M., Richardson, B. & Suckling, D. M. Eradication of invasive forest insects: Concepts, methods, costs and benefits. NZ J. For. Sci. 40, S117–S135 (2010).
    Google Scholar 
    13.Suckling, D. M., Tobin, P. C., McCullough, D. G. & Herms, D. A. Combining tactics to exploit Allee effects for eradication of alien insect populations. J. Econ. Entomol. 105, 1–13 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Hendrichs, J., Enkerlin, W. R. & Pereira, R. Invasive insect pests: challenges and the role of the sterile insect technique in their prevention, containment, and eradication. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management 885–922 (Springer, 2021).Chapter 

    Google Scholar 
    15.Nagel, P. & Peveling, R. Environment and the sterile insect technique. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds Dyck, V. A. et al.) 499–519 (Springer, 2021).
    Google Scholar 
    16.Knipling, E. F. The Basic Principles of Insect Population Suppression and Management (U.S. Department of Agriculture, 1979).
    Google Scholar 
    17.Barclay, H. J. Models for pest control: Complementary effects of periodic releases of sterile pests and parasitoids. Theor. Popul. Biol. 32, 76–89 (1987).Article 

    Google Scholar 
    18.Soller, M. & Lanzrein, B. Polydnavirus and venom of the egg-larval parasitoid Chelonus inanitus (Braconidae) induce developmental arrest in the prepupa of its host Spodoptera littoralis (Noctuidae). J. Insect Physiol. 42, 471–481 (1996).Article 
    CAS 

    Google Scholar 
    19.Tillinger, N. A., Hoch, G. & Schopf, A. Effects of parasitoid associated factors of the endoparasitoid Glyptapanteles liparidis (Hymenoptera: Braconidae). Eur. J. Entomol. 101, 243–249 (2004).Article 

    Google Scholar 
    20.Tunçbilek, A. S., Canpolat, U. & Ayvaz, A. Effects of gamma radiation on suitability of stored cereal pest eggs and the reproductive capability of the egg parasitoid Trichogramma evanescens (Trichogrammatidae: Hymenoptera). Biocontrol Sci. Techn. 19, 179–191 (2009).Article 

    Google Scholar 
    21.Lynch, L. D. et al. Insect biological control and non-target effects: a European perspective. In Evaluating Indirect Ecological Effects of Biological Control (eds Wajnberg, E. et al.) 99–126 (Springer, 2001).
    Google Scholar 
    22.van Lenteren, J. C. V. et al. Environmental risk assessment of exotic natural enemies used in inundative biological control. Biocontrol 48, 3–38 (2003).Article 

    Google Scholar 
    23.Horrocks, K. J., Avila, G. A., Holwell, G. I. & Suckling, D. M. Integrating sterile insect technique with the release of sterile classical biocontrol agents for eradication: Is the Kamikaze Wasp Technique feasible?. Biocontrol 65, 257–271 (2020).Article 

    Google Scholar 
    24.Welsh, T. J., Stringer, L. D., Caldwell, R., Carpenter, J. E. & Suckling, D. M. Irradiation biology of male brown marmorated stink bugs: Is there scope for the sterile insect technique?. Int. J. Radiat. Biol. 93, 1357–1363 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    25.Suckling, D. M. et al. The competitive mating of irradiated brown marmorated stink bugs, Halyomorpha halys, for the sterile insect technique. Insects 10, 411 (2019).PubMed Central 
    Article 

    Google Scholar 
    26.Larivière, M.-C. Fauna of New Zealand (Manaaki Whenua Press, 1995).
    Google Scholar 
    27.Martin, N. A. Green vegetable bug – Nezara viridula. Interesting insects and other invertebrates. New Zealand arthropod factsheet number 47 https://nzacfactsheets.landcareresearch.co.nz/factsheet/InterestingInsects/Green-vegetable-bug—Nezara-viridula.html (2018). Accessed 16 Sept 2020.28.Powell, J. E. & Shepard, M. Biology of Australian and United States strains of Trissolcus basalis, a parasitoid of the green vegetable bug Nezara viridula. Austr. Ecol. 7, 181–186 (1982).Article 

    Google Scholar 
    29.Cantón-Ramos, J. M. & Callejón-Ferre, Á. J. Raising Trissolcus basalis for the biological control of Nezara viridula in greenhouses of Almería (Spain). Afr. J. Agric. Res. 5, 3207–3212 (2010).
    Google Scholar 
    30.Loch, A. D. & Walter, G. H. Mating behavior of Trissolcus basalis (Wollaston) (Hymenoptera: Scelionidae): Potential for outbreeding in a predominantly inbreeding species. J. Insect Behav. 11, 2 (2002).
    Google Scholar 
    31.Johns, H. F. & Cunningham, J. R. The interaction of single beams of x and gamma rays with a scattering medium. In The Physics of Radiology 349–350 (Charles C Thomas, 1983).
    Google Scholar 
    32.Bin, F., Vinson, S. B., Strand, M. R., Colazza, S. & Jones, W. A. Source of an egg kairomone for Trissolcus basalis, a parasitoid of Nezara viridula. Physiol. Entomol. 18, 7–15 (1993).Article 

    Google Scholar 
    33.Mahmoud, A. M. A. & Lim, U. T. Evaluation of cold-stored eggs of Dolycoris baccarum (Hemiptera: Pentatomidae) for parasitization by Trissolcus nigripedius (Hymenoptera: Scelionidae). Biol. Control 43, 287–293 (2007).Article 

    Google Scholar 
    34.Haye, T. et al. Fundamental host range of Trissolcus japonicus in Europe. J. Pest Sci. 93, 171–182 (2020).Article 

    Google Scholar 
    35.Cusumano, A. et al. First extensive characterization of the venom gland from an egg parasitoid: Structure, transcriptome and functional role. J. Insect Physiol. 107, 68–80 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    36.Bundy, C. S. & McPherson, R. M. Morphological examination of stink bug (Heteroptera: Pentatomidae) eggs on cotton and soybeans, with a key to genera. Ann. Entomol. Soc. Am. 93, 616–624 (2000).Article 

    Google Scholar 
    37.Favetti, B. M., Butnariu, A. R. & Doetzer, A. K. Storage of Euschistus heros eggs (Fabricius) (Hemiptera: Pentatomidae) in liquid nitrogen for parasitization by Telenomus podisi Ashmead (Hymenoptera: Platygastridae). Neotrop. Entomol. 43, 291–293 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    38.Kazmer, D. J. & Luck, R. F. Field tests of the size-fitness hypothesis in the egg parasitoid Trichogramma pretiosum. Ecology 76, 412–425 (1995).Article 

    Google Scholar 
    39.Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar 
    40.Bates, D., Machler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    41.Chapman, T., Miyatake, T., Smith, H. K. & Partridge, L. Interactions of mating, egg production and death rates in females of the Mediterranean fruit fly, Ceratitis capitata. Proc. R. Soc. Lond. B 265, 1879–1894 (1998).Article 
    CAS 

    Google Scholar 
    42.Grosch, D. S. & Sullivan, R. L. The quantitative aspects of permanent and temporary sterility induced in female Habrobracon by x-rays and β radiation. Radiat. Res. 1, 294–320 (1954).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    43.Colazza, S. & Wajnberg, E. Effects of host egg mass size on sex ratio and oviposition sequence of Trissolcus basalis (Hymenoptera: Scelionidae). Environ. Entomol. 27, 329–336 (1998).Article 

    Google Scholar 
    44.Rosi, M. C., Isidoro, N., Colazza, S. & Bin, F. Source of the host marking pheromone in the egg parasitoid Trissolcus basalis (Hymenoptera: Scelionidae). J. Insect Physiol. 47, 989–995 (2001).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    45.Abram, P. K., Brodeur, J., Burte, V. & Boivin, G. Parasitoid-induced host egg abortion: An underappreciated component of biological control services provided by egg parasitoids. Biol. Control 98, 52–60 (2016).Article 

    Google Scholar 
    46.Kuske, S. et al. Dispersal and persistence of mass released Trichogramma brassicae (Hymenoptera: Trichogrammatidae) in non-target habitats. Biol. Control 27, 181–193 (2003).Article 

    Google Scholar 
    47.Draz, K. A., Tabikha, R. M., El-Aw, M. A. & Darwish, H. F. Impact of gamma radiation doses on sperm competitiveness, fecundity and morphometric characters of peach fruit fly Bactrocera zonata (Saunders) (Diptera: Tephiritidae). J. Radiat. Res. Appl. Sci. 9, 352–362 (2016).Article 
    CAS 

    Google Scholar 
    48.Ali, A., Rashid, M. A., Huang, Q. Y. & Lei, C.-L. Effect of UV-A radiation as an environmental stress on the development, longevity, and reproduction of the oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae). Environ. Sci. Pollut. Res. 23, 17002–17007 (2016).Article 
    CAS 

    Google Scholar 
    49.Liebhold, A. M. et al. Eradication of invading insect populations: From concepts to applications. Annu. Rev. Entomol. 61, 335–352 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    50.Tobin, P. C. et al. Determinants of successful arthropod eradication programs. Biol. Invasions 16, 401–414 (2014).Article 

    Google Scholar 
    51.Pluess, T. et al. Which factors affect the success or failure of eradication campaigns against alien species?. PLoS ONE 7, e48157 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    52.Colunga-Garcia, M., Magarey, R. A., Haack, R. A., Gage, S. H. & Qi, J. Enhancing early detection of exotic pests in agricultural and forest ecosystems using an urban-gradient framework. Ecol. Appl. 20, 303–310 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Myers, J. H., Savoie, A. & van Randen, E. Eradication and pest management. Annu. Rev. Entomol. 43, 471–491 (1998).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    54.Lance, D. R. & McInnis, D. O. Biological basis of the sterile insect technique. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds Dyck, V. A. et al.) 69–94 (Springer, 2021).
    Google Scholar 
    55.Godfray, H. C. J. Oviposition behaviour. In Parasitoids: Behavioural and Evolutionary Ecology Vol. 67 83–150 (Princeton University Press, 1994).Chapter 

    Google Scholar 
    56.Ravuiwasa, K. T., Lu, K.-H., Shen, T.-C. & Hwang, S.-Y. Effects of irradiation on Planococcus minor (Hemiptera: Pseudococcidae). J. Econ. Entomol. 102, 1774–1780 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Bloem, S., Bloem, K. A. & Knight, A. L. Oviposition by sterile codling moths, Cydia pomonella (Lepidoptera: Tortricidae) and control of wild populations with combined releases of sterile moths and egg parasitoids. J. Entomol. Soc. 95, 99–109 (1998).
    Google Scholar 
    58.Hasaballah, A. I. Impact of gamma irradiation on the development and reproduction of Culex pipiens (Diptera; Culicidae). Int. J. Radiat. Biol. 94, 844–849 (2018).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    59.Sagarra, L. A., Vincent, C. & Stewart, R. K. Body size as an indicator of parasitoid quality in male and female Anagyrus kamali (Hymenoptera: Encyrtidae). Bull. Entomol. Res. 91, 363–367 (2001).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    60.Bertin, A., Pavinato, V. A. C. & Parra, J. R. P. Effects of intraspecific hybridization on the fitness of the egg parasitoid Trichogramma galloi. Biocontrol 63, 555–563 (2018).Article 

    Google Scholar 
    61.Bloem, S., Bloem, K. A., Carpenter, J. E. & Calkins, C. O. Inherited sterility in codling moth (Lepidoptera: Tortricidae): Effect of substerilizing doses of radiation on insect fecundity, fertility, and control. Ann. Entomol. Soc. Am. 92, 222–229 (1999).Article 

    Google Scholar 
    62.Bloem, S., Carpenter, J. E. & Hofmeyr, J. H. Radiation biology and inherited sterility in false codling moth (Lepidoptera:Tortricidae). J. Econ. Entomol. 96, 1724–1731 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.El-Kholy, E. M. S. Biological and biochemical effects of vitamin ‘c’ on the normal and irradiated mediterranean fruit fly, Ceratitis capitata (wied). J. Radiat. Res. Appl. Sci. 2, 197–212 (2009).
    Google Scholar 
    64.Rempoulakis, P., Castro, R., Nemny-Lavy, E. & Nestel, D. Effects of radiation on the fertility of the Ethiopian fruit fly, Dacus ciliatus. Entomol. Exp. Appl. 155, 117–122 (2015).Article 

    Google Scholar 
    65.Würgler, F. E. & Lütolf, H.-U. Radiosensitivity of oocytes of Drosophila I. sensitivity of class-a oocytes of triploid and diploid females. Int. J. Radiat. Biol. 21, 455–463 (1972).
    Google Scholar 
    66.Field, S. A. Patch exploitation, patch-leaving and pre-emptive patch defence in the parasitoid wasp Trissolcus basalis (Insecta: Scelionidae). Ethology 104, 323–338 (1998).Article 

    Google Scholar 
    67.Sked, S. L. & Calvin, D. D. Temporal synchrony between Macrocentrus cingulum (Hymenoptera: Braconidae) with its preferred host, Ostrinia nubilalis (Lepidoptera: Crambidae). Environ. Entomol. 34, 344–352 (2005).Article 

    Google Scholar 
    68.Jiang, N., Zhou, G., Overholt, W. A., Muchugu, E. & Schulthess, F. The temporal correlation and spatial synchrony in the stemborer and parasitoid system of Coast Kenya with climate effects. Ann. Soc. Entomol. Fr. 42, 381–387 (2006).Article 

    Google Scholar 
    69.Whitten, M. & Mahon, R. Misconceptions and constraints. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds Dyck, V. A. et al.) 601–626 (Springer, 2021).
    Google Scholar 
    70.Lee, Y. J. & Ducoff, H. S. Radiation-enhanced resistance to oxygen: A possible relationship to radiation-enhanced longevity. Mech. Ageing Dev. 27, 101–109 (1984).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    71.Suckling, D. M., Wee, S. L. & Pedley, R. Assessing competitive fitness of irradiated painted apple moth Teia anartoides (Lepidoptera: Lymantriidae). N.Z. Plant Prot. 57, 171–176 (2004).
    Google Scholar 
    72.Wee, S. L. et al. Effects of substerilizing doses of gamma radiation on adult longevity and level of inherited sterility in Teia anartoides (Lepidoptera: Lymantriidae). J. Econ. Entomol. 98, 732–738 (2005).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    73.Vilca Mallqui, K. S., Vieira, J. L., Guedes, R. N. C. & Gontijo, L. M. Azadirachtin-induced hormesis mediating shift in fecundity-longevity trade-off in the Mexican bean weevil (Chrysomelidae: Bruchinae). J. Econ. Entomol. 107, 860–866 (2014).Article 

    Google Scholar 
    74.Monroy Kuhn, J. M. & Korb, J. Editorial overview: Social insects: Aging and the re-shaping of the fecundity/longevity trade-off with sociality. Curr. Opin. Insect Sci. 16, 7–10 (2016).
    Google Scholar 
    75.Blacher, P., Huggins, T. J. & Bourke, A. F. G. Evolution of ageing, costs of reproduction and the fecundity–longevity trade-off in eusocial insects. Proc. R. Soc. B-Biol. Sci. 284, 20170380 (2017).Article 

    Google Scholar 
    76.Flatt, T. Survival costs of reproduction in Drosophila. Exp. Gerontol. 46, 369–375 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Vogt, E. & Nechols, J. R. The influence of host deprivation and host source on the reproductive biology and longevity of the squash bug egg parasitoid Gryon penssylvanicum (Ashmead) (Hymenoptera: Scelionidae). Biol. Control 3, 148–154 (1993).Article 

    Google Scholar 
    78.Ramesh, B. & Manickavasagam, S. Tradeoff between longevity and fecundity in relation to host availability in a thelytokous oophagous parasitoid, Trichogramma brasiliensis Ashmead (Trichogrammatidae: Hymenoptera). Int. J. Trop. Insect Sci. 23, 207–210 (2003).Article 

    Google Scholar 
    79.Gurr, G. M. & Kvedaras, O. L. Synergizing biological control: scope for sterile insect technique, induced plant defences and cultural techniques to enhance natural enemy impact. Biol. Control 52, 198–207 (2010).Article 

    Google Scholar 
    80.Knipling, E. F. Principles of Insect Parasitism Analyzed from New Perspectives: Practical Implications for Regulating Insect Populations by Biological Means (United States Department of Agriculture, 1992).
    Google Scholar 
    81.Orozco, D., Domínguez, J., Reyes, J., Villaseñor, A. & Gutiérrez, J. M. SIT and biological control of Anastrepha fruit flies in Mexico. in Proceedings of the 6th International Fruit Fly Symposium 245–249 (Isteg Scientific Publications, 2002).82.Wong, T. T. Y., Ramadan, M. M., Herr, J. C. & McInnis, D. O. Suppression of a Mediterranean fruit fly (Diptera: Tephritidae) population with concurrent parasitoid and sterile fly releases in Kula, Maui, Hawaii. J. Econ. Entomol. 85, 1671–1681 (1992).Article 

    Google Scholar 
    83.Cossentine, J. E. & Jensen, L. B. M. Releases of Trichogramma platneri (Hymenoptera: Trichogrammatidae) in apple orchards under a sterile codling moth release program. Biol. Control 18, 179–186 (2000).Article 

    Google Scholar 
    84.Carpenter, J. E., Bloem, S. & Hofmeyr, J. H. Acceptability and suitability of eggs of false codling moth (Lepidoptera: Tortricidae) from irradiated parents to parasitism by Trichogrammatoidea cryptophlebiae (Hymenoptera: Trichogrammatidae). Biol. Control 30, 351–359 (2004).Article 

    Google Scholar 
    85.Carpenter, J. E., Bloem, S. & Hofmeyr, J. H. Area-wide control tactics for the false codling moth Thaumatotibia leucotreta in South Africa: a potential invasive species. In Area-Wide Control of Insect Pests (eds Vreysen, M. J. B. et al.) 351–359 (Springer, 2007).
    Google Scholar 
    86.Faúndez, E. I. & Rider, D. A. The brown marmorated stink bug Halyomorpha halys (Stål, 1855) (Heteroptera: Pentatomidae) in Chile. Arquivos Entomol. 17, 305–307 (2017).
    Google Scholar 
    87.Kriticos, D. J. et al. The potential global distribution of the brown marmorated stink bug, Halyomorpha halys, a critical threat to plant biosecurity. J. Pest Sci. 90, 1033–1043 (2017).Article 

    Google Scholar 
    88.Kiwifruit Vine Health. KVH information sheet: BMSB risk update January 2019 (Kiwifruit Vine Health, 2019).89.Vandervoet, T. F., Bellamy, D. E., Anderson, D. & MacLellan, R. Trapping for early detection of the brown marmorated stink bug, Halyomorpha halys New Zealand. N.Z. Plant Prot. 72, 36–43 (2019).
    Google Scholar 
    90.Laing, K., Belton, D. & Taylor, J. Decision on releasing Trissolcus japonicus from containment. (Environmental Protection Authority, 2018).91.Charles, J. G. et al. Experimental assessment of the biosafety of Trissolcus japonicus in New Zealand, prior to the anticipated arrival of the invasive pest Halyomorpha halys. Biocontrol 64, 367–379 (2019).Article 
    CAS 

    Google Scholar  More

  • in

    Population structure and genetic diversity of non-native aoudad populations

    1.Blackburn, T. M. & Duncan, R. P. Establishment patterns of exotic birds are constrained by non-random patterns in introduction. J. Biogeogr. 28, 927–939 (2001).Article 

    Google Scholar 
    2.Long, J. L. Introduced Mammals of the World: Their History, Distribution and Abundance (CABI Publishing, 2003).Book 

    Google Scholar 
    3.Stuwe, M. & Scribner, K. T. Low genetic variability in reintroduced alpine ibex (Capra ibex ibex) populations. J. Mammal. 70, 370–373 (1989).Article 

    Google Scholar 
    4.Allendorf, F. W. & Lundquist, L. L. Introduction: Population biology, evolution, and control of invasive species. Conserv. Biol. 17, 24–30 (2003).Article 

    Google Scholar 
    5.Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140 (2005).Article 

    Google Scholar 
    6.Michael Reed, J. et al. Emerging issues in population viability analysis. Conserv. Biol. 16, 7–19 (2002).Article 

    Google Scholar 
    7.Carpio, A. J. et al. Hunting as a source of alien species: A European review. Biol. Invasions 19, 1197–1211 (2017).Article 

    Google Scholar 
    8.Linnell, J. D. C. & Zachos, F. E. Status and distribution patterns of European ungulates: genetics, population history and conservation. In Ungulate Management in Europe: Problems and Practices (eds Putman, R. et al.) 12–53 (Cambridge University Press, 2011).Chapter 

    Google Scholar 
    9.Šprem, N., Gančević, P., Safner, T., Jerina, K. & Cassinello, J. Barbary sheep (Ammotragus lervia, Pallas 1777). In Handbook of the Mammals of Europe (eds Hackländer, K. & Zachos, F. E.) (Springer, 2021).
    Google Scholar 
    10.Cassinello, J. Ammotragus lervia: A review on systematics, biology, ecology and distribution. Ann. Zool. Fennici 35, 149–162 (1998).
    Google Scholar 
    11.Cassinello, J. Ammotragus lervia (aoudad). Invasive species compendium. http://www.cabi.org/isc (2015).12.Bounaceur, F., Benamor, N., Bissaad, F. Z., Abdi, A. & Aulagnier, S. Is there a future for the last populations of aoudad (Ammotragus lervia) in northern Algeria?. Pak. J. Zool. 48, 1727–1731 (2016).
    Google Scholar 
    13.Cassinello, J. et al. Ammotragus lervia. The IUCN Red List of Threatened Species. www.iucnredlist.org (2008).14.Lazarus, M. et al. Barbary sheep tissues as bioindicators of radionuclide and stabile element contamination in Croatia: Exposure assessment for consumers. Environ. Sci. Pollut. Res. 26, 14521–14533 (2019).CAS 
    Article 

    Google Scholar 
    15.Mori, E., Mazza, G., Saggiomo, L., Sommese, A. & Esattore, B. Strangers coming from the Sahara: An update of the worldwide distribution, potential impacts and conservation opportunities of alien aoudad. Ann. Zool. Fennici 54, 373–386 (2017).Article 

    Google Scholar 
    16.Gančević, P., Šprem, N. & Jerina, K. Space use and activity patterns of introduced Barbary sheep (Ammotragus lervia) in Southern Dinarides, Croatia in Abstract book of 6th World Congress on Mountain Ungulates and 5th International Symposium on Mouflon (ed. Hadjisterkotis, E.) 41 (2016).17.Bartoš, L., Kotrba, R. & Pintíř, J. Ungulates and their management in the Czech Republic. In European Ungulates and their Management in the 21st Century (eds Apollonio, M. et al.) 243–261 (Cambridge University Press, 2010).
    Google Scholar 
    18.Cassinello, J., Serrano, E., Calabuig, G. & Pérez, J. M. Range expansion of an exotic ungulate (Ammotragus lervia) in southern Spain: Ecological and conservation concerns. Biodivers. Conserv. 13, 851–866 (2004).Article 

    Google Scholar 
    19.Anadón, J. D., Pérez-García, J. M., Pérez, I., Royo, J. & Sánchez-Zapata, J. A. Disentangling the effects of habitat, connectivity and interspecific competition in the range expansion of exotic and native ungulates. Landsc. Ecol. 33, 597–608 (2018).Article 

    Google Scholar 
    20.Cassinello, J. Misconception and mismanagement of invasive species: The paradoxical case of an alien ungulate in Spain. Conserv. Lett. 11, e12440. https://doi.org/10.1111/conl.12440 (2018).Article 

    Google Scholar 
    21.Prentis, P. J., Wilson, J. R. U., Dormontt, E. E., Richardson, D. M. & Lowe, A. J. Adaptive evolution in invasive species. Trends Plant Sci. 13, 288–294 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Derouiche, L. et al. Deep mitochondrial DNA phylogeographic divergence in the threatened aoudad Ammotragus lervia (Bovidae, Caprini). Gene 739, 144510. https://doi.org/10.1016/j.gene.2020.144510 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Selkoe, K. A. & Toonen, R. J. Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9, 615–629 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Fernando, P., Vidya, T. N. C., Rajapakse, C., Dangolla, A. & Melnick, D. J. Reliable noninvasive genotyping: Fantasy or reality?. J. Hered. 94, 115–123 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Cassinello, J. Ammotragus free-ranging population in the south-east of Spain: A necessary first account. Biodivers. Conserv. 9, 887–900 (2000).Article 

    Google Scholar 
    26.Moravčíková, N. et al. Identification of genetic families based on mitochondrial D-loop sequence in population of the Tatra chamois (Rupicapra rupicapra tatrica). Biologia 75, 121–128 (2019).Article 
    CAS 

    Google Scholar 
    27.Cassinello, J. Ammotragus lervia Aoudad (Barbary Sheep, Arui). In Mammals of Africa. Volume VI: Pigs, Hippopotamuses, Chevrotain, Giraffes, Deer and Bovids (eds Kingdon, J. & Hoffmann, M.) 595–599 (Bloomsbury Publishing, 2013).
    Google Scholar 
    28.Nei, M., Maruyama, T. & Chakraborty, R. The bottleneck effect and genetic variability in populations. Evolution 29, 1–10 (1975).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Šprem, N. & Buzan, E. The genetic impact of chamois management in the dinarides. J. Wildl. Manag. 80, 783–793 (2016).Article 

    Google Scholar 
    30.Pascual-Rico, R. et al. Ecological niche overlap between co-occurring native and exotic ungulates: Insights for a conservation conflict. Biol. Invasions 22, 2497–2508 (2020).Article 

    Google Scholar 
    31.Dlugosch, K. M. & Parker, I. M. Founding events in species invasions: Genetic variation, adaptive evolution, and the role of multiple introductions. Mol. Ecol. 17, 431–449 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Beja-Pereira, A. et al. Twenty polymorphic microsatellites in two of North Africa’s most threatened ungulates: Gazella dorcas and Ammotragus lervia (Bovidae; Artiodactyla). Mol. Ecol. Notes 4, 452–455 (2004).CAS 
    Article 

    Google Scholar 
    33.Schuelke, M. An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 18, 233–234 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Mereu, P., Palici di Suni, M., Manca, L. & Masala, B. Complete nucleotide mtDNA sequence of Barbary sheep (Ammotragus lervia). DNA Seq. 19, 241–245 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Bandelt, H.-J., Forster, P. & Rohl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).CAS 
    Article 

    Google Scholar 
    38.Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).Article 

    Google Scholar 
    39.van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICROCHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).Article 
    CAS 

    Google Scholar 
    40.Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39, 1–22 (1977).MathSciNet 
    MATH 

    Google Scholar 
    41.Chapuis, M.-P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Belkhir K, Borsa P, Goudet, J., Chikhi, L. & Bonhomme, F. Genetix 4.05, logiciel sous Windows TM pour la genetique des populations. Available at: http://www.genetix.univ-montp2.fr/genetix/genetix.htm (2004)44.Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).CAS 

    Google Scholar 
    45.Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Kalinowski, S. T. Counting alleles with rarefaction: Private alleles and hierarchical sampling designs. Conserv. Genet. 5, 539–543 (2004).CAS 
    Article 

    Google Scholar 
    47.Waples, R. S. A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv. Genet. 7, 167–184 (2006).Article 

    Google Scholar 
    48.Do, C. et al. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Waples, R. S. & Do, C. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: A largely untapped resource for applied conservation and evolution. Evol. Appl. 3, 244–262 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Earl, D. A. & vonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).Article 

    Google Scholar 
    52.Jakobsson, M. & Rosenberg, N. A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Rosenberg, N. A. DISTRUCT: A program for the graphical display of population structure. Mol. Ecol. Notes 4, 137–138 (2004).Article 

    Google Scholar  More

  • in

    Redefining the oceanic distribution of Atlantic salmon

    Our study extends the known geographic area used by salmon during their migration in the North Atlantic Ocean and Barents Sea as reported by earlier studies based on conventional tagging and sampling surveys15,16,20. An extended use of the North Atlantic Ocean and Barents Sea was also suggested in recent studies using archival tags12,23,24,25,26,28, but these studies have concentrated on single populations or been restricted by low sample sizes. The present study indicated that multiple individuals from the Norwegian and Danish populations survived to migrate northward from their home river and reached latitudes as high as 80° N. This is to our knowledge the furthest north any Atlantic salmon has ever been recorded, extending previously assumed northern limits8,30. These results confirm that the foraging areas of Atlantic salmon currently extend to more northerly latitudes than previously thought. For populations in Denmark and Norway, the marine distribution is probably limited by the northern boundary of Atlantic currents. In contrast, the populations from Iceland, Ireland and Spain did not travel as far north, but instead crossed the main North Atlantic current and migrated towards southern Greenland, indicating a difference in ocean distribution for these populations. The less directed migration displayed by most of the North American salmon tagged at Greenland was likely due to these fish already being present at their assumed main ocean feeding grounds at the west coast of Greenland15 when tagged.Despite the fact that salmon from different areas used different migration routes and ocean areas, they consistently migrated to and aggregated in assumed highly productive areas at the boundaries between large-scale frontal water masses where branches of the North Atlantic current lie adjacent to cold polar waters31. In these areas, previous analyses demonstrated frequent diving activity by tagged individuals28. The duration and diving profile of these dives suggested foraging behaviour, rather than predator escape, because the dives were U-shaped, typically lasted a few hours, and diving depths were related to the depth of the mixed layer during the different seasons28. Thus, the increased diving frequency is most likely an indication of increased feeding activity, emphasizing the importance of these productive regions as feeding areas for Atlantic salmon. In contrast to Atlantic salmon from the other areas, the two northernmost populations displayed a high diving frequency close to the shore immediately after sea entrance, as also shown by Hedger et al.28. These rivers are located closer to the frontal water masses, and these fish may have started extensive feeding earlier in their sea migration. This assumption is further supported by a study of Norwegian post-smolts, where the northernmost populations were feeding more extensively just after leaving their rivers than fish from southern populations32. Thus, the northern populations may benefit from a shorter migration route to the main feeding areas for salmon. However, given that many kelts are in poor condition when they enter the sea, it is likely that tagged fish from all populations were feeding pelagically in the first weeks at sea during the transit away from the coast when prey were available.Migration from the rivers to the assumed foraging areas (i.e., the most distant areas they migrated to) was fast and direct for individuals from southern populations, while salmon from the northern Norway did not display similar direct migration routes. Our results are similar to those reported by an earlier study26 on the same North-Western Norwegian population as in the present study, and are likely related to the greater proximity to ocean frontal areas and rich food resources.The results in the present study may have been influenced by the relatively large size of the tag compared to the size of the fish. Hedger et al.33 assessed tagging effects of PSATs on post-spawned Atlantic salmon by comparing their behaviour with salmon tagged with much smaller archival tags. They found that the overall depth distribution, ocean migration routes based on temperature recordings and return rates did not differ between salmon tagged with PSATs and smaller archival tags and concluded that PSATs are suitable for use in researching large-scale migratory behaviour of adult salmon at sea. However, salmon with PSATs dived less frequently and to slightly shallower depths33. Based on this, we believe the conclusions of the present study are valid despite potential tagging effects, but the diving depths and frequencies might be underestimated compared to non-tagged fish.Diet data from adult salmon in the ocean are limited but show that salmon feed on a variety of prey taxa. Typically, herring (Clupea harengus), sand eels (Ammodytes spp.), capelin (Mallotus villosus) and myctophids dominate as fish prey, while euphausiids and amphipods often dominate as crustacean prey34,35,36. Although there exist some data of adult herring and capelin during parts of the year, there is limited information on the spatial and temporal distribution of crustaceans in these ocean areas, and it is therefore difficult to relate the salmon diving behaviour to availability of all their main prey items. However, salmon appeared to be able to forage on prey far below the surface, indicated by the frequent dives, and salmon at sea have also previously been shown to feed on the mesopelagic community37,38. Hedger et al.28 found that the diving depth increased with the depth of the mixed layer and hypothesised that stratification affected the aggregation of prey and thereby the salmon diving behaviour. They also showed that when the stratification disappeared during the dark winter months, the salmon dived less but their dives were deeper. Nevertheless, the possibilities to feed at different depths28, expand the foraging niche of salmon compared to feeding merely near the surface.Dadswell et al.11 published the “merry-go-round hypothesis”, which implies that both first-time migrants and previous spawners from all salmon populations enter the North Atlantic Subpolar Gyres and move counter clockwise within these gyres until returning to their natal rivers. Although the full migration from river outrun to return was not followed in the present study (most tags popped off half-way into the migration), and some individuals indicated a counter clockwise migration pattern, most of the populations and individuals in this study clearly did not follow the North Atlantic Subpolar Gyres during the first months at sea. Therefore, most of our data did not support the merry-go-round hypothesis. However, some individuals from northern Norway seemed to follow the currents to a larger extent than individuals from other populations during the first months at sea. Previous studies on Atlantic salmon from Canada also documented that adults migrated either independently or against prevailing currents while at sea, indicating that the horizontal movement of adults are primarily governed by other factors12,24.Due to the size limit of the pop-up-tags, we primarily tracked large post-spawned individuals that are more mobile than smaller first-time migrants. Although some studies have shown that first-time migrants can be found in the same areas as post-spawners from the same populations8,30 is not known to which extent the migration pattern and distribution of post-spawners represent the same migration pattern of first-time migrants. Due to a larger body size, it is possible that the migration of post-spawners depends to a lesser degree on ocean currents and gyres than do the movements of first-time migrants, especially in the first part of the migration. For example, we observed that the Irish and Spanish post-spawned individuals all crossed the main North Atlantic current towards Greenlandic waters. However, Irish and other southern European post-smolts have frequently been captured in the Norwegian Sea20, indicating that some of these individuals migrate and follow the main ocean current in a northward direction. It is possible that many of these post-smolts later migrate southwest towards Greenland and feed in these waters as maiden salmon before they return to rivers. This corresponds to the observation that it is mostly large (two sea-winter) southern European salmon (including Irish individuals) that are found in the southern Greenland feeding areas20. Therefore, it might be that the post-spawned salmon from these populations return to their primary feeding areas where they were feeding as maiden salmon from their first sea migration, and not necessarily to the same area as they started their feeding migration as post-smolts.Populations differed in their ocean distribution, but the distribution also overlapped to some degree between or among populations, with more overlap between geographically proximate than distant populations. Some populations never overlapped in geographical distribution during the study. The populations from Ireland and Spain did not overlap with the Norwegian and Danish salmon, but there was a small spatial overlap between the Irish salmon and the North American salmon tagged at Greenland, although area use by these populations did not overlap in time. It is known that populations from North America and Europe largely use different parts of the North Atlantic, with more North American salmon in the western part and more European salmon in the eastern part of the ocean although they have been shown to mix at the feeding grounds at the Faroes and at Greenland12,15,16,18,20. For the Spanish population, it should be noted that tagged individuals were followed for a relatively short period, and a larger sample size over a longer period might have shown some overlap with the northern European populations, based on the initial northward direction of two individuals. At the same time as populations differed in their ocean distribution, there were also relatively large within-population differences in migration routes and geographic distribution. Individual differences in migration routes and ocean distribution of salmon from the same population, even within the same year, were also shown by Strøm et al.12,26. Collectively, these results imply that salmon from different populations will experience highly different ecological conditions, potentially contributing to between-and within-population variation in growth and survival. Since our data are limited by a varying number of individuals among the studied populations, and restricted mainly to post-spawned salmon, our results represent a minimum overlap among the populations so the actual overlap may be larger. Nevertheless, this strongly indicates a varying degree of geographical separation in ocean feeding areas. Thus, geographically close populations will to a larger extent be influenced by similar conditions in the ocean than more distant populations.The study was carried out over several years, with not all sites having tagging undertaken in the same years. There is a possibility that geographic area use and overlap among populations may vary among years, according to variation in environmental conditions among years29. However, data from multiple years for some populations suggest consistent population specific migration routes and area use among years, indicating that the principal patterns are stable over time for particular salmon populations.The differing distributions of salmon from particular populations in different oceanic regions might simply be a function of distance to appropriate feeding grounds from the different home rivers, with individuals from the different rivers mainly adapted to seek the closest feeding areas. The route selection during the migration might in addition be a result of each individuals’ opportunistic behaviour and which food resources and environmental conditions they encounter along the journey. As discussed above, the experience and learning during the first ocean migration might also impact individuals’ route choice and area use. Salmon from southern populations used more southern ocean areas, and hence stayed in warmer water, than salmon from the northern populations. We cannot rule out that salmon from different populations have different temperature preferences due to different thermal selection regimes in their home rivers, but similar to a previous study29, we suggest that the differences in thermal habitat among populations utilising different areas at sea are mainly driven by availability of prey fields. There is generally little support for the hypothesis that variation in salmonid growth rates reflects thermal adaptations to their home stream39.Despite the variation in migration patterns among and within populations, most individuals seemed to migrate to distant ocean frontal areas. This suggests that climate change may have greater impact on populations originating further south, because the distances and time required to travel to feeding areas will increase if the boundary between Atlantic and Arctic waters move northward because of ocean warming. Our study has shown that several populations are able to migrate over large distances, but the capacity for populations to adapt to an increased migration distance is unknown. Given increased migration time, especially for southern populations, the time available for accumulating important energy reserves will likely be reduced. In addition, increased water temperatures in the North Atlantic may also increase the energy expenditure that the individual fish spend per unit of distance when migrating from their home rivers towards the feeding areas. This may affect all populations to some degree, and may contribute to an additional burden for Atlantic salmon populations that are already in a poor state. This will also add to the hypothesized negative effect of climate change in freshwater for the southern populations, where temperatures will have a greater likelihood of reaching to growth inhibiting levels compared to more northern populations39.Taking advantage of the development of electronic tags, we have shown an extended use of the North Atlantic Ocean by Atlantic salmon, including the Barents Sea, which contrasts to the earlier strong focus on feeding areas at the Faroes, West Greenland and in the Norwegian Sea in previous studies. These results expand the knowledge on the marine foraging and habitat niche of Atlantic salmon, in terms of geography, migration behaviour and thermal niche. The existence of feeding areas at the boundaries between Atlantic and Arctic surface currents suggests that salmon have a strong link to Arctic oceanic frontal systems. We have further shown that salmon from different populations may migrate to different ocean frontal areas in the North Atlantic Ocean and Barents Sea and therefore be impacted by different ecological conditions that may contribute to within-population variation in growth and survival. We also conclude that climate induced changes in oceanographic conditions, which will likely alter the location of and distance to polar frontal feeding areas, may have region-specific influences on the length and cost of the Atlantic feeding migrations, particularly affecting the southern populations most. As the polar oceans get warmer and current patterns shift, changes in the location and productivity of high latitude fronts will become evident. As migration distances become longer, or more variable, and the time accumulating energy is reduced, the variation in the marine survival and productivity of different populations are likely to become more marked. Combined, our results help to shed light on important ecological process that shape Atlantic salmon population dynamics within most of its distribution area. More

  • in

    Diversity and interactions among triatomine bugs, their blood feeding sources, gut microbiota and Trypanosoma cruzi in the Sierra Nevada de Santa Marta in Colombia

    1.Hotez, P. J. et al. An unfolding tragedy of chagas disease in North America. PLoS Negl. Trop. Dis. 7(10), e2300. https://doi.org/10.1371/journal.pntd.0002300 (2013) (PMID: 24205411).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Hotez, P. J., Bottazzi, M. E., Franco-Paredes, C., Ault, S. K. & Periago, M. R. The neglected tropical diseases of Latin America and the Caribbean: A review of disease burden and distribution and a roadmap for control and elimination. PLoS Negl. Trop. Dis. 2(9), e300. https://doi.org/10.1371/journal.pntd.0000300 (2008) (PMID: 18820747).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Lee, B. Y., Bacon, K. M., Bottazzi, M. E. & Hotez, P. J. Global economic burden of Chagas disease: A computational simulation model. Lancet Infect. Dis. 13(4), 342–348. https://doi.org/10.1016/S1473-3099(13)70002-1 (2013) (PMID: 23395248).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.WHO. Chagas disease in Latin America: An epidemiological update based on 2010 estimates. Wkly. Epidemiol. Rec. 90(6), 33–43 (2015) (PMID: 25671846).
    Google Scholar 
    5.Pena-Garcia, V. H., Gomez-Palacio, A. M., Triana-Chavez, O. & Mejia-Jaramillo, A. M. Eco-epidemiology of Chagas disease in an endemic area of Colombia: Risk factor estimation, Trypanosoma cruzi characterization and identification of blood-meal sources in bugs. Am. J. Trop. Med. Hyg. 91(6), 1116–1124. https://doi.org/10.4269/ajtmh.14-0112 (2014) (PMID: 25331808).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Mejia-Jaramillo, A. M. et al. Genotyping of Trypanosoma cruzi in a hyper-endemic area of Colombia reveals an overlap among domestic and sylvatic cycles of Chagas disease. Parasit. Vectors. 7, 108. https://doi.org/10.1186/1756-3305-7-108 (2014) (PMID: 24656115).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Dib, J. C., Agudelo, L. A. & Velez, I. D. Prevalencia de patologías tropicales y factores de riesgo en la comunidad indígena de Bunkwimake, Sierra Nevada de Santa Marta. DUAZARY. 3(1), 38–44 (2006).
    Google Scholar 
    8.Parra-Henao, G. et al. In search of congenital Chagas disease in the Sierra Nevada de Santa Marta, Colombia. Am. J. Trop. Med. Hyg. 101(3), 482–483. https://doi.org/10.4269/ajtmh.19-0110 (2019) (PMID: 31264558).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Guhl, F., Aguilera, G., Pinto, N. & Vergara, D. Actualización de la distribución geográfica y ecoepidemiología de la fauna de triatominos (Reduviidae: Triatominae) en Colombia. Biomedica. 27(Suppl 1), 143–162 (2007) (PMID: 18154255).Article 

    Google Scholar 
    10.Parra-Henao, G., Suarez-Escudero, L. C. & Gonzalez-Caro, S. Potential distribution of Chagas disease vectors (Hemiptera, Reduviidae, Triatominae) in Colombia, based on Ecological Niche Modeling. J. Trop. Med. 2016, 1439090. https://doi.org/10.1155/2016/1439090 (2016) (PMID: 28115946).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Rodriguez-Mongui, E., Cantillo-Barraza, O., Prieto-Alvarado, F. E. & Cucunuba, Z. M. Heterogeneity of Trypanosoma cruzi infection rates in vectors and animal reservoirs in Colombia: A systematic review and meta-analysis. Parasit. Vectors. 12(1), 308. https://doi.org/10.1186/s13071-019-3541-5 (2019) (PMID: 31221188).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Dib, J., Barnabe, C., Tibayrenc, M. & Triana, O. Incrimination of Eratyrus cuspidatus (Stal) in the transmission of Chagas’ disease by molecular epidemiology analysis of Trypanosoma cruzi isolates from a geographically restricted area in the north of Colombia. Acta Trop. 111(3), 237–242. https://doi.org/10.1016/j.actatropica.2009.05.004 (2009) (PMID: 19442641).Article 
    PubMed 

    Google Scholar 
    13.Parra Henao, G., Angulo, V., Jaramillo, N. & Restrepo, M. Triatominos (Hemiptera: Reduviidae) de ka Sierra Nevada de Santa Marta, Colombia. Aspectos epidemiológicos, entomológicos y de distribución. Rev. CES Med. 23(1), 17–26 (2009).
    Google Scholar 
    14.Hernandez, C. et al. Untangling the transmission dynamics of primary and secondary vectors of Trypanosoma cruzi in Colombia: Parasite infection, feeding sources and discrete typing units. Parasit. Vectors. 9(1), 620. https://doi.org/10.1186/s13071-016-1907-5 (2016) (PMID: 27903288).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Cantillo-Barraza, O., Chaverra, D., Marcet, P., Arboleda-Sanchez, S. & Triana-Chavez, O. Trypanosoma cruzi transmission in a Colombian Caribbean region suggests that secondary vectors play an important epidemiological role. Parasit. Vectors. 7, 381. https://doi.org/10.1186/1756-3305-7-381 (2014) (PMID: 25141852).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Weiss, B. & Aksoy, S. Microbiome influences on insect host vector competence. Trends Parasitol. 27(11), 514–522. https://doi.org/10.1016/j.pt.2011.05.001 (2011) (PMID: 21697014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Azambuja, P., Garcia, E. S. & Ratcliffe, N. A. Gut microbiota and parasite transmission by insect vectors. Trends Parasitol. 21(12), 568–572 (2005) (PMID: 16226491).Article 

    Google Scholar 
    18.Dumonteil, E. et al. Interactions among Triatoma sanguisuga blood feeding sources, gut microbiota and Trypanosoma cruzi diversity in southern Louisiana. Mol Ecol. 29(19), 3747–3761 (2020).Article 

    Google Scholar 
    19.Zingales, B. et al. A new consensus for Trypanosoma cruzi intraspecific nomenclature: Second revision meeting recommends TcI to TcVI. Mem. Inst. Oswaldo Cruz. 104(7), 1051–1054 (2009) (PMID: 20027478).CAS 
    Article 

    Google Scholar 
    20.Zingales, B. et al. The revised Trypanosoma cruzi subspecific nomenclature: Rationale, epidemiological relevance and research applications. Infect. Genet. Evol. 12(2), 240–253. https://doi.org/10.1016/j.meegid.2011.12.009 (2012) (PMID: 22226704).Article 
    PubMed 

    Google Scholar 
    21.Tibayrenc, M. & Ayala, F. J. The population genetics of Trypanosoma cruzi revisited in the light of the predominant clonal evolution model. Acta Trop. 151, 156–165. https://doi.org/10.1016/j.actatropica.2015.05.006 (2015) (PMID: 26188332).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Majeau, A., Murphy, L., Herrera, C. & Dumonteil, E. Assessing Trypanosoma cruzi parasite diversity through comparative genomics: Implications for disease epidemiology and diagnostics. Pathogens. 10, 212. https://doi.org/10.3390/pathogens10020212 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Flores-Ferrer, A., Marcou, O., Waleckx, E., Dumonteil, E. & Gourbière, S. Evolutionary ecology of Chagas disease; what do we know and what do we need?. Evol. Appl. 11(4), 470–487. https://doi.org/10.1111/eva.12582 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Tibayrenc, M., Kjellberg, F. & Ayala, F. J. A clonal theory of parasitic protozoa: The population structures of Entamoeba, Giardia, Leishmania, Naegleria, Plasmodium, Trichomonas, and Trypanosoma and their medical and taxonomical consequences. Proc. Natl. Acad. Sci. USA 87, 2414–2418 (1990).ADS 
    CAS 
    Article 

    Google Scholar 
    25.Berry, A. S. F. et al. Sexual reproduction in a natural Trypanosoma cruzi population. PLoS Negl. Trop. Dis. 13(5), e0007392. https://doi.org/10.1371/journal.pntd.0007392 (2019) (PMID: 31107905).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Schwabl, P. et al. Meiotic sex in Chagas disease parasite Trypanosoma cruzi. Nat. Commun. 10(1), 3972. https://doi.org/10.1038/s41467-019-11771-z (2019) (PMID: 31481692).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Falla, A. et al. Haplotype identification within Trypanosoma cruzi I in Colombian isolates from several reservoirs, vectors and humans. Acta Trop. 110(1), 15–21 (2009) (PMID: 19135020).CAS 
    Article 

    Google Scholar 
    28.Cura, C. I. et al. Trypanosoma cruzi I genotypes in different geographical regions and transmission cycles based on a microsatellite motif of the intergenic spacer of spliced-leader genes. Int. J. Parasitol. 40(14), 1599–1607. https://doi.org/10.1016/j.ijpara.2010.06.006 (2010) (PMID: 20670628).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Rodriguez, I. B. et al. Transmission dynamics of Trypanosoma cruzi determined by low-stringency single primer polymerase chain reaction and southern blot analyses in four indigenous communities of the Sierra Nevada de Santa Marta, Colombia. Am. J. Trop. Med. Hyg. 81(3), 396–403 (2009) (PMID: 19706903).CAS 
    Article 

    Google Scholar 
    30.Waleckx, E., Gourbière, S. & Dumonteil, E. Intrusive triatomines and the challenge of adapting vector control practices. Mem. Inst. Oswaldo Cruz. 110(3), 324–338 (2015).CAS 
    Article 

    Google Scholar 
    31.Dumonteil, E. et al. Detailed ecological associations of triatomines revealed by metabarcoding and next-generation sequencing: Implications for triatomine behavior and Trypanosoma cruzi transmission cycles. Sci. Rep. 8(1), 4140. https://doi.org/10.1038/s41598-018-22455-x (2018) (PMID: 29515202).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Dumonteil, E. et al. Interactions among Triatoma sanguisuga blood feeding sources, gut microbiota and Trypanosoma cruzi diversity in southern Louisiana. Mol. Ecol. https://doi.org/10.1111/mec.15582 (2020) (PMID: 32749727).Article 
    PubMed 

    Google Scholar 
    33.O’Connor, O., Bosseno, M. F., Barnabe, C., Douzery, E. J. & Breniere, S. F. Genetic clustering of Trypanosoma cruzi I lineage evidenced by intergenic miniexon gene sequencing. Infect. Genet. Evol. 7(5), 587–593. https://doi.org/10.1016/j.meegid.2007.05.003 (2007) (PMID: 17553755).CAS 
    Article 
    PubMed 

    Google Scholar 
    34.Villanueva-Lizama, L., Teh-Poot, C., Majeau, A., Herrera, C. & Dumonteil, E. Molecular genotyping of Trypanosoma cruzi by next-generation sequencing of the mini-exon gene reveals infections with multiple parasite DTUs in Chagasic patients from Yucatan, Mexico. J. Inf. Dis. 219(12), 1980–1988 (2019).CAS 
    Article 

    Google Scholar 
    35.Parra-Henao, G., Angulo, V. M., Osorio, L. & Jaramillo, O. N. Geographic distribution and ecology of Triatoma dimidiata (Hemiptera: Reduviidae) in Colombia. J. Med. Entomol. 53(1), 122–129. https://doi.org/10.1093/jme/tjv163 (2016) (PMID: 26487247).Article 
    PubMed 

    Google Scholar 
    36.Angulo, V. M., Esteban, L. & Luna, K. P. Attalea butyracea proximas a las viviendas como posible fuente de infestacion domiciliaria por Rhodnius prolixus (Hemiptera: Reduviidae) en los Llanos Orientales de Colombia. Biomedica. 32(2), 277–285. https://doi.org/10.1590/S0120-41572012000300016 (2012) (PMID: 23242302).Article 
    PubMed 

    Google Scholar 
    37.Feliciangeli, M. D., Sanchez-Martin, M., Marrero, R., Davies, C. & Dujardin, J. P. Morphometric evidence for a possible role of Rhodnius prolixus from palm trees in house re-infestation in the State of Barinas (Venezuela). Acta Trop. 101(2), 169–177. https://doi.org/10.1016/j.actatropica.2006.12.010 (2007) (PMID: 17306204).Article 
    PubMed 

    Google Scholar 
    38.Fitzpatrick, S., Feliciangeli, M. D., Sanchez-Martin, M. J., Monteiro, F. A. & Miles, M. A. Molecular genetics reveal that silvatic Rhodnius prolixus do colonise rural houses. PLoS Negl. Trop. Dis. 2(4), e210. https://doi.org/10.1371/journal.pntd.0000210 (2008) (PMID: 18382605).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Lopez, G. & Moreno, J. Genetic variability and differentiation between populations of Rhodnius prolixus and R. pallescens, vectors of Chagas’ disease in Colombia. Mem. Inst. Oswaldo Cruz. 90, 353–357 (1995).CAS 
    Article 

    Google Scholar 
    40.Dumonteil, E. et al. Detailed ecological associations of triatomines revealed by metabarcoding based on next-generation sequencing: linking triatomine behavioral ecology and Trypanosoma cruzi transmission cycles. Sci. Rep. 8(1), 4140. https://doi.org/10.1038/s41598-018-22455-x (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Hernández-Andrade, A., Moo-Millan, J., Cigarroa-Toledo, N., Ramos-Ligonio, A., Herrera, C., Bucheton, B., et al. Metabarcoding: A powerful yet still underestimated approach for the comprehensive study of vector-borne pathogen transmission cycles and their dynamics. in Vector-Borne Diseases: Recent Developments in Epidemiology and Control (ed. Claborn, D.) 1–6. (Intechopen, 2020). https://doi.org/10.5772/intechopen.8311042.Flores-Ferrer, A., Waleckx, E., Rascalou, G., Dumonteil, E. & Gourbière, S. Trypanosoma cruzi transmission dynamics in a synanthropic and domesticated host community. PLoS Negl. Trop. Dis. 13(12), e0007902. https://doi.org/10.1371/journal.pntd.0007902 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Llewellyn, M. S. et al. Genome-scale multilocus microsatellite typing of Trypanosoma cruzi discrete typing unit I reveals phylogeographic structure and specific genotypes linked to human infection. PLoS Pathog. 5(5), e1000410. https://doi.org/10.1371/journal.ppat.1000410 (2009) (PMID: 19412340).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Herrera, C. et al. Genetic variability and phylogenetic relationships within Trypanosoma cruzi I isolated in Colombia based on Miniexon Gene Sequences. J. Parasitol. Res. https://doi.org/10.1155/2009/897364 (2009) (PMID: 20798881).Article 
    PubMed 

    Google Scholar 
    45.Zumaya-Estrada, F. A. et al. North American import? Charting the origins of an enigmatic Trypanosoma cruzi domestic genotype. Parasit. Vectors. 5, 226. https://doi.org/10.1186/1756-3305-5-226 (2012) (PMID: 23050833).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Montoya-Porras, L. M., Omar, T. C., Alzate, J. F., Moreno-Herrera, C. X. & Cadavid-Restrepo, G. E. 16S rRNA gene amplicon sequencing reveals dominance of Actinobacteria in Rhodnius pallescens compared to Triatoma maculata midgut microbiota in natural populations of vector insects from Colombia. Acta Trop. 178, 327–332. https://doi.org/10.1016/j.actatropica.2017.11.004 (2018) (PMID: 29154947).CAS 
    Article 
    PubMed 

    Google Scholar 
    47.Kieran, T. J. et al. Regional biogeography of microbiota composition in the Chagas disease vector Rhodnius pallescens. Parasit. Vectors. 12(1), 504. https://doi.org/10.1186/s13071-019-3761-8 (2019) (PMID: 31665056).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Rodriguez-Ruano, S. M. et al. Microbiomes of North American Triatominae: The grounds for Chagas Disease epidemiology. Front. Microbiol. 9, 1167. https://doi.org/10.3389/fmicb.2018.01167 (2018) (PMID: 29951039).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Eichler, S. & Schaub, G. A. Development of symbionts in triatomine bugs and the effects of infections with trypanosomatids. Exp. Parasitol. 100(1), 17–27 (2002).CAS 
    Article 

    Google Scholar 
    50.Waltmann, A. et al. Hindgut microbiota in laboratory-reared and wild Triatoma infestans. PLoS Negl. Trop. Dis. 13(5), e0007383. https://doi.org/10.1371/journal.pntd.0007383 (2019) (PMID: 31059501).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Herren, J. K. et al. A microsporidian impairs Plasmodium falciparum transmission in Anopheles arabiensis mosquitoes. Nat. Commun. 11(1), 2187. https://doi.org/10.1038/s41467-020-16121-y (2020) (PMID: 32366903).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Moreira, L. A. et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139(7), 1268–1278. https://doi.org/10.1016/j.cell.2009.11.042 (2009) (PMID: 20064373).Article 
    PubMed 

    Google Scholar 
    53.Angulo, V. M. & Esteban, L. Nueva trampa para la captura de triatominos en habitats silvestres y peridomesticos. Biomedica. 31(2), 264–268. https://doi.org/10.1590/S0120-41572011000200015 (2011) (PMID: 22159544).Article 
    PubMed 

    Google Scholar 
    54.Lent, H. & Wygodzinsky, P. Revision of Triatominae (Hemiptera: Reduviidae), and their significance as vectors of Chagas’ disease. Bull. Am. Mus. Nat. His. 163, 123–520 (1979).
    Google Scholar 
    55.Monteiro, F. A. et al. Molecular phylogeography of the Amazonian Chagas disease vectors Rhodnius prolixus and R. robustus. Mol. Ecol. 12(4), 997–1006. https://doi.org/10.1046/j.1365-294x.2003.01802.x (2003) (PMID: 12753218).CAS 
    Article 
    PubMed 

    Google Scholar 
    56.Baker, G. C., Smith, J. J. & Cowan, D. A. Review and reanalysis of domain-specific 16s primers. J. Microbiol. Meth. 55, 541–555 (2003).CAS 
    Article 

    Google Scholar 
    57.Heuer, H., Krsek, M., Baker, P., Smalla, K. & Wellington, E. M. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63(8), 3233–3241 (1997).CAS 
    Article 

    Google Scholar 
    58.Souto, R. P., Fernandes, O., Macedo, A. M., Campbell, D. A. & Zingales, B. DNA markers define two major phylogenetic lineages of Trypanosoma cruzi. Mol. Biochem. Parasitol. 83(2), 141–152 (1996) (PMID: 9027747).CAS 
    Article 

    Google Scholar 
    59.Majeau, A., Herrera, C. & Dumonteil, E. An improved approach to Trypanosoma cruzi molecular genotyping by next-generation sequencing of the mini-exon gene. Methods Mol. Biol. 1955, 47–60 (2019).CAS 
    Article 

    Google Scholar 
    60.Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16), 2194–2200. https://doi.org/10.1093/bioinformatics/btr381 (2011) (PMID: 21700674).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv preprint. (arXiv:1207.3907 [q-bio.GN]), 1–9. https://arxiv.org/abs/1207.3907v2 (2012).62.Dhariwal, A. et al. MicrobiomeAnalyst: A web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 45(W1), W180–W188. https://doi.org/10.1093/nar/gkx295 (2017) (PMID: 28449106).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS ONE 5(3), e9490. https://doi.org/10.1371/journal.pone.0009490 (2010) (PMID: 20224823).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 15(4), e1006650. https://doi.org/10.1371/journal.pcbi.1006650 (2019) (PMID: 30958812).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Torres-Silva, C. F. et al. Assessment of genetic mutation frequency induced by oxidative stress in Trypanosoma cruzi. Genet Mol Biol. 41(2), 466–474. https://doi.org/10.1590/1678-4685-GMB-2017-0281 (2018) (PMID: 30088612).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4(1), 9 (2001).
    Google Scholar 
    67.Cole, J. R. et al. Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42(Database issue), D633–D642. https://doi.org/10.1093/nar/gkt1244 (2014) (PMID: 24288368).CAS 
    Article 
    PubMed 

    Google Scholar  More