1.Berkes, F. & Folke, C. Linking social and ecological systems for resilience and sustainability. in Linking social and ecological systems: management practices and social mechanisms for building resilience (eds. Berkes, F. & Folke, C.) 1–25 (Cambridge University Press, 2002).2.Pretty, J. et al. The intersections of biological diversity and cultural diversity: Towards integration. Conserv. Soc. 7, 100 (2009).Article
Google Scholar
3.IPBES. The regional assessment report on biodiversity and ecosystem services for the Americas (Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2018).4.Galluzzi, G., Eyzaguirre, P. & Negri, V. Home gardens: Neglected hotspots of agro-biodiversity and cultural diversity. Biodivers. Conserv. 19, 3635–3654 (2010).Article
Google Scholar
5.Fernandes, E. C. M. & Nair, P. K. R. An evaluation of the structure and function of tropical homegardens. Agric. Syst. 21, 279–310 (1986).Article
Google Scholar
6.Ibarra, J. T., Caviedes, J., Barreau, A. & Pessa, N. Huertas familiares y comunitarias: cultivando soberanía alimentaria (Ediciones Universidad Católica de Chile, 2019).7.Eyzaguirre, P. B. & Linares, O. F. Home Gardens and Agrobiodiversity (Smithsonian Institution Press, 2010).8.Timsuksai, P. & Rambo, A. T. The influence of culture on agroecosystem structure: a comparison of the spatial patterns of homegardens of different ethnic groups in Thailand and Vietnam. PLoS ONE 11, e0146118 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
9.Lemessa, D., Hambäck, P. A. & Hylander, K. The effect of local and landscape level land-use composition on predatory arthropods in a tropical agricultural landscape. Landsc. Ecol. 30, 167–180 (2015).Article
Google Scholar
10.Mattsson, E., Ostwald, M., Nissanka, S. P. & Pushpakumara, D. K. N. G. Quantification of carbon stock and tree diversity of homegardens in a dry zone area of Moneragala district, Sri Lanka. Agrofor. Syst. 89, 435–445 (2015).Article
Google Scholar
11.Mohri, H. et al. Assessment of ecosystem services in homegarden systems in Indonesia, Sri Lanka, and Vietnam. Ecosyst. Serv. 5, 124–136 (2013).Article
Google Scholar
12.Pakeman, R. J. & Stockan, J. A. Drivers of carabid functional diversity: abiotic environment, plant functional traits, or plant functional diversity?. Ecology 95, 1213–1224 (2014).PubMed
Article
PubMed Central
Google Scholar
13.Altieri, M. A. Agroecology: The Science of Sustainable Agriculture (Westview Press, 1995).14.Ellis, E. C. & Ramankutty, N. Putting people in the map: Anthropogenic biomes of the world. Front. Ecol. Environ. 6, 439–447 (2008).Article
Google Scholar
15.Piccini, I. et al. Dung beetles as drivers of ecosystem multifunctionality: Are response and effect traits interwoven?. Sci. Total Environ. 616–617, 1440–1448 (2018).ADS
PubMed
Article
CAS
PubMed Central
Google Scholar
16.Boonstra, W. J., Björkvik, E., Haider, L. J. & Masterson, V. Human responses to social-ecological traps. Sustain. Sci. 11, 877–889 (2016).PubMed
PubMed Central
Article
Google Scholar
17.Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).Article
Google Scholar
18.Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).Article
Google Scholar
19.Toledo-Hernández, M., Denmead, L. H., Clough, Y., Raffiudin, R. & Tscharntke, T. Cultural homegarden management practices mediate arthropod communities in Indonesia. J. Insect Conserv. 20, 373–382 (2016).Article
Google Scholar
20.Jaganmohan, M., Vailshery, L. S. & Nagendra, H. Patterns of insect abundance and distribution in urban domestic gardens in Bangalore, India. Diversity 5, 767–778 (2013).Article
Google Scholar
21.Huerta, E. & Van der Wal, H. Soil macroinvertebrates’ abundance and diversity in home gardens in Tabasco, Mexico, vary with soil texture, organic matter and vegetation cover. Eur. J. Soil Biol. 50, 68–75 (2012).Article
Google Scholar
22.Pizzolotto, R. et al. Ground beetles in Mediterranean olive agroecosystems: their significance and functional role as bioindicators (Coleoptera, Carabidae). PLoS ONE 13, e0194551 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
23.Grez, A. A., Zaviezo, T., Casanoves, F., Oberti, R. & Pliscoff, P. The positive association between natural vegetation, native coccinellids and functional diversity of aphidophagous coccinellid communities in alfalfa. Insect Conserv. Divers. https://doi.org/10.1111/icad.12473 (2021).Article
Google Scholar
24.Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).PubMed
Article
PubMed Central
Google Scholar
25.Guerrero, I., Carmona, C. P., Morales, M. B., Oñate, J. J. & Peco, B. Non-linear responses of functional diversity and redundancy to agricultural intensification at the field scale in Mediterranean arable plant communities. Agric. Ecosyst. Environ. 195, 36–43 (2014).Article
Google Scholar
26.Mayfield, M. M. et al. What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Glob. Ecol. Biogeogr. 19, 423–431 (2010).
Google Scholar
27.Upreti, B. R. & Upreti, Y. G. Factors leading to agro-biodiversity loss in developing countries: the case of Nepal. Biodivers. Conserv. 11, 1607–1621 (2002).Article
Google Scholar
28.Reyes-García, V. et al. Resilience of traditional knowledge systems: The case of agricultural knowledge in home gardens of the Iberian Peninsula. Glob. Environ. Chang. 24, 223–231 (2014).Article
Google Scholar
29.Kawa, N. C. How religion, race, and the weedy agency of plants shape Amazonian home gardens. Cult. Agric. Food Environ. 38, 84–93 (2016).Article
Google Scholar
30.Brondizio, E. S. et al. Re-conceptualizing the Anthropocene: A call for collaboration. Glob. Environ. Chang. 39, 318–327 (2016).Article
Google Scholar
31.Benson, M. & O’Reilly, K. Lifestyle Migration: Expectations, Aspirations, and Experiences (Ashgate Publishing, 2009).32.Marchant, C. Lifestyle migration and the nascent agroecological movement in the Andean Araucanía, Chile: Is it promoting sustainable local development?. Mt. Res. Dev. 37, 406–414 (2017).Article
Google Scholar
33.Ibarra, J. T., Barreau, A., Caviedes, J., Pessa, N. & Urra, R. Huertas familiares tradicionales y emergentes: cultivando biodiversidad, aprendizaje y soberanía desde la interculturalidad. in Huertas familiares y comunitarias: cultivando soberanía alimentaria (eds. Ibarra, J. T., Caviedes, J., Barreau, A. & Pessa, N.) 138–165 (Ediciones Universidad Católica de Chile, 2019).34.Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
35.Arroyo, M. T. K. et al. El hotspot chileno, prioridad mundial para la conservación. in Diversidad de Chile: patrimonios y desafíos (ed. Mnisterio del Medio Ambiente, G. de C.) 90–95 (Ocho Libros Editores, 2006).36.Farias, A. A. & Jaksic, F. M. Low functional richness and redundancy of a predator assemblage in native forest fragments of Chiloe Island Chile. J. Anim. Ecol. 80, 809–817 (2011).PubMed
Article
Google Scholar
37.Ibarra, J. T. & Martin, K. Biotic homogenization: loss of avian functional richness and habitat specialists in disturbed Andean temperate forests. Biol. Conserv. 192, 418–427 (2015).Article
Google Scholar
38.Lavelle, P. et al. Soil function in a changing world: The role of invertebrate ecosystem engineers. Eur. J. Soil Biol. 33, 159–193 (1997).CAS
Google Scholar
39.Cole, L. J. et al. Relationships between agricultural management and ecological groups of ground beetles (Coleoptera: Carabidae) on Scottish farmland. Agric. Ecosyst. Environ. 93, 323–336 (2002).Article
Google Scholar
40.Van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).ADS
PubMed
Article
CAS
Google Scholar
41.Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27 (2019).Article
Google Scholar
42.Lencinas, M. V., Sola, F. J., Cellini, J. M., Peri, P. L. & Martínez Pastur, G. Land sharing in South Patagonia: Conservation of above-ground beetle diversity in forests and non-forest ecosystems. Sci. Total Environ. 690, 132–139 (2019).43.Roig-Juñent, S. & Domínguez, M. C. Diversidad de la familia Carabidae (Coleoptera) en Chile. Rev. Chil. Hist. Nat. 74, 549–571 (2001).Article
Google Scholar
44.Grez, A. A., Moreno, P. & Elgueta, M. Coleópteros (Insecta: Coleoptera) epígeos asociados al bosque maulino y plantaciones de pino aledañas. Rev. Chil. Entomol. 29, 9–18 (2003).
Google Scholar
45.Richardson, B. J. & Arias-Bohart, E. T. Why so many apparently rare beetles in Chilean temperate rainforests?. Rev. Chil. Hist. Nat. 84, 419–432 (2011).Article
Google Scholar
46.Cifuentes-Croquevielle, C., Stanton, D. E. & Armesto, J. J. Soil invertebrate diversity loss and functional changes in temperate forest soils replaced by exotic pine plantations. Sci. Rep. 10, 7762 (2020).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
47.Fonseca, C. R. & Ganade, G. Species functional redundancy, random extinctions and the stability of ecosystems. J. Ecol. 89, 118–125 (2001).Article
Google Scholar
48.Rosenfeld, J. S. Functional redundancy in ecology and conservation. Oikos 98, 156–162 (2013).Article
Google Scholar
49.Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).Article
Google Scholar
50.Mori, A. S. Resilience in the studies of biodiversity-ecosystem functioning. Trends Ecol. Evol. 31, 87–89 (2016).PubMed
Article
PubMed Central
Google Scholar
51.Ibarra, J. T. et al. Nurturing resilient forest biodiversity: nest webs as complex adaptive systems. Ecol. Soc. 25, 27 (2020).Article
Google Scholar
52.Ibarra, J. T., Martin, M., Cockle, K. L. & Martin, K. Maintaining ecosystem resilience: functional responses of tree cavity nesters to logging in temperate forests of the Americas. Sci. Rep. 7, 4467 (2017).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
53.Elgueta, M. & Arriagada, G. Estado actual del conocimiento de los coleópteros de Chile (Insecta: Coleoptera). Rev. Chil. Entomol. 17, 5–60 (1989).
Google Scholar
54.Díaz, S. & Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).Article
Google Scholar
55.Petchey, O. L., Evans, K. L., Fishburn, I. S. & Gaston, K. J. Low functional diversity and no redundancy in British avian assemblages. J. Anim. Ecol. 76, 977–985 (2007).PubMed
Article
PubMed Central
Google Scholar
56.Villagrán, C. & Hinojosa, L. F. Historia de los bosques del sur de Sudamérica, II : análisis fitogeográfico. Rev. Chil. Hist. Nat. 70, 241–267 (1997).
Google Scholar
57.Vuilleumier, F. & Simpson, B. Pleistocene changes in the fauna and flora of South America. Science 173, 771–780 (1971).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
58.Niemelä, J. Habitat distribution of carabid beetles in Tierra del Fuego South America. Entomol. Fenn. 29, 3–16 (1990).Article
Google Scholar
59.O’Brien, C. The biogeography of Chile through entomofaunal regions. Entomol. News 82, 197–202 (1971).
Google Scholar
60.Vergara, O. E., Jerez, V. & Parra, L. E. Diversidad y patrones de distribución de coleópteros en la Región del Biobío, Chile : una aproximación preliminar para la conservación de la diversidad. Rev. Chil. Hist. Nat. 79, 369–388 (2006).Article
Google Scholar
61.Mason, N. W. H., Irz, P., Lanoiselée, C., Mouillot, D. & Argillier, C. Evidence that niche specialization explains species-energy relationships in lake fish communities. J. Anim. Ecol. 77, 285–296 (2008).PubMed
Article
PubMed Central
Google Scholar
62.Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: toward a global functional homogenization?. Front. Ecol. Environ. 9, 222–228 (2011).Article
Google Scholar
63.Devictor, V. et al. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecol. Lett. 13, 1030–1040 (2010).PubMed
PubMed Central
Google Scholar
64.Trinh, L. N. et al. Agrobiodiversity conservation and development in Vietnamese home gardens. Agric. Ecosyst. Environ. 97, 317–344 (2003).Article
Google Scholar
65.MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, 1967).66.Serge, M. M. P., Giovani, E. T. & Mony, R. Household and home garden infesting arthropods (Ants and Myriapods) in the city of Yaoundé, Cameroon. J. Entomol. Zool. Stud. 7, 1030–1037 (2019).
Google Scholar
67.Jacquet, C., Mouillot, D., Kulbicki, M. & Gravel, D. Extensions of island biogeography theory predict the scaling of functional trait composition with habitat area and isolation. Ecol. Lett. 20, 135–146 (2017).PubMed
Article
PubMed Central
Google Scholar
68.Gravel, D., Massol, F., Canard, E., Mouillot, D. & Mouquet, N. Trophic theory of island biogeography. Ecol. Lett. 14, 1010–1016 (2011).PubMed
Article
PubMed Central
Google Scholar
69.Regman, T. P. et al. Species interactions regulate the collapse of biodiversity and ecosystem function in tropical forest fragments. Ecology 96, 2692–2704 (2015).Article
Google Scholar
70.Bolger, D. T., Suarez, A. V., Crooks, K. R., Morrison, S. A. & Case, T. J. Arthropods in urban habitat fragments in southern California: area, age and edge effects. Ecol. Appl. 10, 1230–1248 (2000).Article
Google Scholar
71.Barreau, A., Ibarra, J. T., Wyndham, F. S. & Kozak, R. A. Shifts in Mapuche food systems in southern Andean forest landscapes: historical processes and current trends of biocultural homogenization. Mt. Res. Dev. 39, 12–23 (2019).Article
Google Scholar
72.Caviedes, J. & Ibarra, J. T. Influence of anthropogenic disturbances on stand structural complexity in Andean temperate forests: implications for managing key habitat for biodiversity. PLoS ONE 12, e0169450 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
73.Altieri, M. A. & Nicholls, C. I. The adaptation and mitigation potential of traditional agriculture in a changing climate. Clim. Change 140, 33–45 (2017).ADS
Article
Google Scholar
74.Sánchez-Bayo, F. Impacts of agricultural pesticides on terrestrial ecosystems. in Ecological Impacts of Toxic Chemicals (eds. Sánchez-Bayo, F., Van den Brink, P. J. & Mann, R.) 63–87 (Bentham Science Publishers, 2011).75.Geiger, F. et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 11, 97–105 (2010).CAS
Article
Google Scholar
76.Barreau, A., Ibarra, J. T., Wyndham, F. S., Rojas, A. & Kozak, R. A. How can we teach our children if we cannot access the forest? Generational change in Mapuche knowledge of wild edible plants in Andean temperate ecosystems of Chile. J. Ethnobiol. 36, 412–432 (2016).Article
Google Scholar
77.Newing, H. Conducting research in conservation: a social science perspective. (Routledge, 2011). https://doi.org/10.1007/s13398-014-0173-7.278.Caballero-Serrano, V. et al. Plant diversity and ecosystem services in Amazonian homegardens of Ecuador. Agric. Ecosyst. Environ. 225, 116–125 (2016).Article
Google Scholar
79.Schneider, J. Toward an analysis of home-garden cultures: on the use of socio-cultural variables in home garden studies. in Home gardens and agrobiodiversity (eds. Eyzaguirre, P. B. & Linares, O. F.) 41–55 (Smithsonian Books, 2010).80.Rohr, J. R., Mahan, C. G. & Kim, K. C. Developing a monitoring program for invertebrates: guidelines and a case study. Conserv. Biol. 21, 422–433 (2007).PubMed
Article
Google Scholar
81.Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391 (2001).Article
Google Scholar
82.Iida, T., Soga, M., Hiura, T. & Koike, S. Life history traits predict insect species responses to large herbivore overabundance: a multitaxonomic approach. J. Insect Conserv. 20, 295–304 (2016).Article
Google Scholar
83.Vanderwel, M. C., Malcolm, J. R., Smith, S. M. & Islam, N. Insect community composition and trophic guild structure in decaying logs from eastern Canadian pine-dominated forests. For. Ecol. Manage. 225, 190–199 (2006).Article
Google Scholar
84.Zarazaga, M. A. Clase Insecta Orden Coleoptera. Rev. IDE-SEA 56, 1–18 (2015).
Google Scholar
85.Lazo, W. Insectos de Chile: atlas entomológico. (Universidad de Chile, 2015).86.Briones, R., Gárate-Flores, F. & Jerez, V. Insectos de Chile. Nativos, introducidos y con problemas de conservacion. (Corporación Chilena de la Madera, 2012).87.Elgueta, M. & Arriagada, G. Estado actual del conocimiento de los coleópteros de Chile (Insecta: Coleoptera). Rev. Chil. Entomol. 17, 05–60 (1989).
Google Scholar
88.Elgueta, M. & Marvaldi, A. E. Lista sistemática de las especies de curculionoidea (insecta: coleoptera) presentes en Chile, con su sinonimia. Boletín del Mus. Nac. Hist. Nat. 55, 113–153 (2006).
Google Scholar
89.Moore, T. & Vidal, P. Los Bupréstidos de Chile. (Ediciones UC, 2013).90.Roig-Juñent, S. & Domínguez, M. C. Diversity of the family Carabidae (Coleoptera) in Chile. Rev. Chil. Hist. Nat. 74, 549–571 (2001).Article
Google Scholar
91.Arriagada, G. Histéridos chilenos (Coleoptera: Histeridae). Rev. Chil. Entomol. 14, 71–80 (1986).
Google Scholar
92.González, G. Lista y distribución geográfica de especies de Coccinelidae (Insecta: Coleoptera) presentes en Chile. Boletín del Mus. Nac. Hist. Nat. 57, 77–107 (2008).
Google Scholar
93.Lister, B. C. & Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl. Acad. Sci. 115, E10397–E10406 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
94.Johnson, M. D. & Strong, A. M. Length-weight relationships of Jamaican arthropods. Entomol. News 111, 270–281 (2000).
Google Scholar
95.Laliberté, E., Legendre, P. & Shipley, B. FD: measuring functional diversity (FD) from multiple traits, and other tools for functional ecology. (2011).96.Zuur, A., Leno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. Statistics for Biology and Health 36, (Springer, 2009).97.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1:48 (2015).98.Mazerolle, M. J. AICcmodavg: model selection and multimodel inference based on (Q)AIC(c). R Packag. version 2.1–1 (2017).99.R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (2021).100.Burnham, K. P. & Anderson, D. R. Model selection and inference: a practical information-theoretic approach. (Springer-Verlag, 2002).101.Oliver, M. A. & Webster, R. Kriging: a method of interpolation for geographical information systems. Int. J. Geogr. Inf. Syst. 4, 313–332 (1990).Article
Google Scholar More