More stories

  • in

    A review and agenda for integrated disease models including social and behavioural factors

    1.Raude, J., McColl, K., Flamand, C. & Apostolidis, T. Understanding health behavior changes in response to outbreaks: findings from a longitudinal study of a large epidemic of mosquito-borne disease. Soc. Sci. Med. 230, 184–193 (2019).PubMed 
    Article 

    Google Scholar 
    2.Kapiriri, L. & Ross, A. The politics of disease epidemics: a comparative analysis of the SARS, Zika, and Ebola outbreaks. Glob. Soc. Welf. 7, 33–45 (2020).PubMed 
    Article 

    Google Scholar 
    3.Lewis, M. The economics of epidemics. Georget. J. Int. Aff. 2, 25–31 (2001).
    Google Scholar 
    4.Gelfand M. J. et al. The relationship between cultural tightness–looseness and COVID-19 cases and deaths: a global analysis. Lancet Planet. Health https://doi.org/10.1016/S2542-5196(20)30301-6 (2021).5.Marston, C., Renedo, A. & Miles, S. Community participation is crucial in a pandemic. Lancet 395, 1676–1678 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Shultz, J. M. et al. The role of fear-related behaviors in the 2013–2016 West Africa Ebola virus disease outbreak. Curr. Psychiatry Rep. 18, 104 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Abramowitz, S. et al. The opposite of denial: social learning at the onset of the Ebola emergency in Liberia. J. Health Commun. 22, 59–65 (2017).PubMed 
    Article 

    Google Scholar 
    8.Lee, C., Ayers, S. L. & Kronenfeld, J. J. The association between perceived provider discrimination, healthcare utilization and health status in racial and ethnic minorities. Ethn. Dis. 19, 330–337 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    9.Fenton, J. J., Jerant, A. F., Bertakis, K. D. & Franks, P. The cost of satisfaction: a national study of patient satisfaction, health care utilization, expenditures, and mortality. Arch. Intern. Med. 172, 405–411 (2012).PubMed 
    Article 

    Google Scholar 
    10.Carter, S. E. et al. Barriers and enablers to treatment-seeking behavior and causes of high-risk practices in Ebola: a case study from Sierra Leone. J. Health Commun. 22, 31–38 (2017).PubMed 
    Article 

    Google Scholar 
    11.Kretzschmar, M. Disease modeling for public health: added value, challenges, and institutional constraints. J. Public Health Policy 41, 39–51 (2020).PubMed 
    Article 

    Google Scholar 
    12.Brauer, F. Mathematical epidemiology: past, present, and future. Infect. Dis. Model 2, 113–127 (2017).PubMed 

    Google Scholar 
    13.Chowell, G., Sattenspiel, L., Bansal, S. & Viboud, C. Mathematical models to characterize early epidemic growth: a review. Phys. Life Rev. 18, 66–97 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Polonsky, J. A. et al. Outbreak analytics: a developing data science for informing the response to emerging pathogens. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180276 (2019).PubMed 
    Article 

    Google Scholar 
    15.Longini, I. M. Jr et al. Containing pandemic influenza at the source. Science 309, 1083–1087 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Zhang, Q. et al. Spread of Zika virus in the Americas. Proc. Natl Acad. Sci. USA. 114, E4334–E4343 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Chretien, J.-P., Riley, S. & George, D. B. Mathematical modeling of the West Africa Ebola epidemic. eLife 4, e09186 (2015).PubMed 
    Article 

    Google Scholar 
    18.Chowell, G. & Nishiura, H. Transmission dynamics and control of Ebola virus disease (EVD): a review. BMC Med. 12, 196 (2014).PubMed 
    Article 

    Google Scholar 
    19.Adam, D. Special report: the simulations driving the world’s response to COVID-19. Nature 580, 316–318 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Siegenfeld, A. F., Taleb, N. N. & Bar-Yam, Y. Opinion: what models can and cannot tell us about COVID-19. Proc. Natl Acad. Sci. USA 117, 16092–16095 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Manfredi, P. & D’Onofrio, A., eds. Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases (Springer-Verlag, 2013).22.Philipson, T. in Handbook of Health Economics (eds Culyer, A. and Newhouse, J.) Vol. 1, Ch. 33, 1761–1799 (Elsevier, 2000).23.Abramowitz, S. A., Hipgrave, D. B., Witchard, A. & Heymann, D. L. Lessons from the West Africa Ebola epidemic: a systematic review of epidemiological and social and behavioral science research priorities. J. Infect. Dis. 218, 1730–1738 (2018).PubMed 

    Google Scholar 
    24.Bedford, J. et al. Application of social science in the response to Ebola, Equateur Province, Democratic Republic of the Congo/Application des sciences sociales dans la riposte a la maladie a virus Ebola, province de l’Equateur, Republique democratique du Congo. Wkly Epidemiological Rec. 94, 19–24 (2019).
    Google Scholar 
    25.Norton, A. et al. A living mapping review for COVID-19 funded research projects: six-month update [version 3; peer review: 2 approved]. Wellcome Open Res. 5, 209 (2021).PubMed 
    Article 

    Google Scholar 
    26.Pedi, D. et al. The development of standard operating procedures for social mobilization and community engagement in sierra leone during the West Africa Ebola outbreak of 2014-2015. J. Health Commun. 22, 39–50 (2017).PubMed 
    Article 

    Google Scholar 
    27.RCCE Collective Service. Operational guide for engaging communities in contact tracing World Health Organization (2021); https://apps.who.int/iris/bitstream/handle/10665/341553/WHO-2019-nCoV-Contact_tracing-Community_engagement-2021.1-eng.pdf?sequence=128.Cellules d’Analyses en Sciences Sociales (CASS). Social Science Support for COVID-19: Lessons Learned Brief 3 7 (2020); https://www.unicef.org/drcongo/media/4131/file/CASS-Brief3-recommendations.pdf29.Xepapadeas, A. The spatial dimension in environmental and resource economics. Environ. Dev. Econ. 15, 747–758 (2010).Article 

    Google Scholar 
    30.Reed, M. S. et al. What is social learning? Ecol. Soc. 15, r1 (2010).Article 

    Google Scholar 
    31.Kermack, W. O., McKendrick, A. G. & Walker, G. T. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A 115, 700–721 (1927).Article 

    Google Scholar 
    32.Influenza in a boarding school. Brit. Med. J. 1, 587–587 (1978).33.Funk, S., Salathé, M. & Jansen, V. A. A. Modelling the influence of human behaviour on the spread of infectious diseases: a review. J. R. Soc. Interface 7, 1247–1256 (2010).PubMed 
    Article 

    Google Scholar 
    34.Eksin, C., Paarporn, K. & Weitz, J. S. Systematic biases in disease forecasting-the role of behavior change. Epidemics 27, 96–105 (2019).PubMed 
    Article 

    Google Scholar 
    35.Bedford, J. et al. A new twenty-first century science for effective epidemic response. Nature 575, 130–136 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Verelst, F., Willem, L. & Beutels, P. Behavioural change models for infectious disease transmission: a systematic review (2010-2015). J. R. Soc. Interface https://doi.org/10.1098/rsif.2016.0820 (2016).37.Weston, D., Hauck, K. & Amlôt, R. Infection prevention behaviour and infectious disease modelling: a review of the literature and recommendations for the future. BMC Public Health 18, 336 (2018).PubMed 
    Article 

    Google Scholar 
    38.Gersovitz, M. The economics of infection control. Annu. Rev. Resour. Econ. 3, 277–296 (2011).Article 

    Google Scholar 
    39.Perrings, C. et al. Merging economics and epidemiology to improve the prediction and management of infectious disease. Ecohealth 11, 464–475 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Althouse, B. M., Bergstrom, T. C. & Bergstrom, C. T. Evolution in health and medicine Sackler colloquium: a public choice framework for controlling transmissible and evolving diseases. Proc. Natl Acad. Sci. USA 107, 1696–1701 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Ward, C. J. Influenza vaccination campaigns: is an ounce of prevention worth a pound of cure? Am. Econ. J. Appl. Econ. 6, 38–72 (2014).Article 

    Google Scholar 
    42.Fenichel, E. P. Economic considerations for social distancing and behavioral based policies during an epidemic. J. Health Econ. 32, 440–451 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Acemoglu, D., Chernozhukov, V., Werning, I. & Whinston, M. D. Optimal Targeted Lockdowns in a Multi-Group SIR Model Working Paper 27102 (National Bureau of Economic Research, 2020); https://doi.org/10.3386/w2710244.Ahituv, A., Hotz, V. J. & Philipson, T. The responsiveness of the demand for condoms to the local prevalence of AIDS. J. Hum. Resour. 31, 869–897 (1996).Article 

    Google Scholar 
    45.Kremer, M. Integrating behavioral choice into epidemiological models of AIDS. Q. J. Econ. 111, 549–573 (1996).Article 

    Google Scholar 
    46.Justwan, F., Baumgaertner, B., Carlisle, J. E., Carson, E. & Kizer, J. The effect of trust and proximity on vaccine propensity. PLoS ONE 14, e0220658 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Chen, F. H. Rational behavioral response and the transmission of STDs. Theor. Popul. Biol. 66, 307–316 (2004).PubMed 
    Article 

    Google Scholar 
    48.Geoffard, P.-Y. & Philipson, T. Rational epidemics and their public control. Int. Econ. Rev. 37, 603–624 (1996).Article 

    Google Scholar 
    49.Fenichel, E. P. et al. Adaptive human behavior in epidemiological models. Proc. Natl Acad. Sci. USA 108, 6306 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Morin, B. R., Fenichel, E. P. & Castillo-Chavez, C. SIR dynamics with economically driven contact rates. Nat. Resour. Model. 26, 505–525 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Fenichel, E. P., Kuminoff, N. V. & Chowell, G. Skip the trip: air travelers’ behavioral responses to pandemic influenza. PLoS ONE 8, e58249 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Hung, Y. W. et al. Impact of a free care policy on the utilisation of health services during an Ebola outbreak in the Democratic Republic of Congo: an interrupted time-series analysis. BMJ Glob. Health 5, e002119 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Modeling Anthropogenic Effects in the Spread of Infectious Diseases (MASpread) Project. EcoServices: Disease Risks. Arizona State University (Accessed 17 April 2021); http://ecoservices.asu.edu/Diseaserisks/DRindex.html54.Morris, M. Network Epidemiology: A Handbook for Survey Design and Data Collection (OUP, 2004).55.Meyers, L. Contact network epidemiology: bond percolation applied to infectious disease prediction and control. Bull. Am. Math. Soc. 44, 63–86 (2007).Article 

    Google Scholar 
    56.Pastor-Satorras, R., Castellano, C., Van Mieghem, P. & Vespignani, A. Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925–979 (2015).Article 

    Google Scholar 
    57.Wang, Z. et al. Statistical physics of vaccination. Phys. Rep. 664, 1–113 (2016).Article 

    Google Scholar 
    58.Cohen, R., Havlin, S. & Ben-Avraham, D. Efficient immunization strategies for computer networks and populations. Phys. Rev. Lett. 91, 247901 (2003).PubMed 
    Article 
    CAS 

    Google Scholar 
    59.Salathé, M. & Jones, J. H. Dynamics and control of diseases in networks with community structure. PLoS Comput. Biol. 6, e1000736 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    60.Hébert-Dufresne, L., Allard, A., Young, J.-G. & Dubé, L. J. Global efficiency of local immunization on complex networks. Sci. Rep. 3, 2171 (2013).PubMed 
    Article 

    Google Scholar 
    61.Rosenblatt, S. F., Smith, J. A., Gauthier, G. R. & Hébert-Dufresne, L. Immunization strategies in networks with missing data. PLoS Comput. Biol. 16, e1007897 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Funk, S., Gilad, E., Watkins, C. & Jansen, V. A. A. The spread of awareness and its impact on epidemic outbreaks. Proc. Natl Acad. Sci. USA 106, 6872–6877 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Funk, S. & Jansen, V. A. A. Interacting epidemics on overlay networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81, 036118 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    64.Hébert-Dufresne, L., Mistry, D. & Althouse, B. M. Spread of infectious disease and social awareness as parasitic contagions on clustered networks. Phys. Rev. Res. 2, 033306 (2020).Article 

    Google Scholar 
    65.Marceau, V., Noël, P.-A., Hébert-Dufresne, L., Allard, A. & Dubé, L. J. Modeling the dynamical interaction between epidemics on overlay networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84, 026105 (2011).PubMed 
    Article 
    CAS 

    Google Scholar 
    66.Fu, F., Christakis, N. A. & Fowler, J. H. Dueling biological and social contagions. Sci. Rep. 7, 43634 (2017).PubMed 
    Article 

    Google Scholar 
    67.Granell, C., Gómez, S. & Arenas, A. Competing spreading processes on multiplex networks: awareness and epidemics. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 90, 012808 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    68.Fan, C.-J. et al. Effect of individual behavior on the interplay between awareness and disease spreading in multiplex networks. Phys. A 461, 523–530 (2016).Article 

    Google Scholar 
    69.Scatà, M., Di Stefano, A., Liò, P. & La Corte, A. The impact of heterogeneity and awareness in modeling epidemic spreading on multiplex networks. Sci. Rep. 6, 37105 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    70.Wang, W. et al. Suppressing disease spreading by using information diffusion on multiplex networks. Sci. Rep. 6, 29259 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Zheng, C., Xia, C., Guo, Q. & Dehmer, M. Interplay between SIR-based disease spreading and awareness diffusion on multiplex networks. J. Parallel Distrib. Comput. 115, 20–28 (2018).Article 

    Google Scholar 
    72.Gross, T. & Blasius, B. Adaptive coevolutionary networks: a review. J. R. Soc. Interface 5, 259–271 (2008).PubMed 
    Article 

    Google Scholar 
    73.Gross, T. & Sayama, H. in Adaptive Networks: Theory, Models and Applications (eds Gross, T. & Sayama, H.) 1–8 (Springer, 2009).74.Wang, Z., Andrews, M. A., Wu, Z.-X., Wang, L. & Bauch, C. T. Coupled disease–behavior dynamics on complex networks: a review. Phys. Life Rev. 15, 1–29 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Valdez, L. D., Macri, P. A. & Braunstein, L. A. Intermittent social distancing strategy for epidemic control. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85, 036108 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Tunc, I., Shkarayev, M. S. & Shaw, L. B. Epidemics in adaptive social networks with temporary link deactivation. J. Stat. Phys. 151, 355–366 (2013).Article 

    Google Scholar 
    77.Epstein, J. M., Parker, J., Cummings, D. & Hammond, R. A. Coupled contagion dynamics of fear and disease: mathematical and computational explorations. PLoS ONE 3, e3955 (2008).PubMed 
    Article 
    CAS 

    Google Scholar 
    78.Kiss, I. Z., Cassell, J., Recker, M. & Simon, P. L. The impact of information transmission on epidemic outbreaks. Math. Biosci. 225, 1–10 (2010).PubMed 
    Article 

    Google Scholar 
    79.Gross, T., D’Lima, C. J. D. & Blasius, B. Epidemic dynamics on an adaptive network. Phys. Rev. Lett. 96, 208701 (2006).PubMed 
    Article 
    CAS 

    Google Scholar 
    80.Zanette, D. H. & Risau-Gusmán, S. Infection spreading in a population with evolving contacts. J. Biol. Phys. 34, 135–148 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Marceau, V., Noël, P.-A., Hébert-Dufresne, L., Allard, A. & Dubé, L. J. Adaptive networks: coevolution of disease and topology. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82, 036116 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    82.Shaw, L. B. & Schwartz, I. B. Enhanced vaccine control of epidemics in adaptive networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81, 046120 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    83.Althouse, B. M. & Hébert-Dufresne, L. Epidemic cycles driven by host behaviour. J. R. Soc. Interface https://doi.org/10.1098/rsif.2014.0575 (2014).84.Scarpino, S. V., Allard, A. & Hébert-Dufresne, L. The effect of a prudent adaptive behaviour on disease transmission. Nat. Phys. 12, 1042–1046 (2016).CAS 
    Article 

    Google Scholar 
    85.Shaw, L. B. & Schwartz, I. B. Fluctuating epidemics on adaptive networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77, 066101 (2008).PubMed 
    Article 
    CAS 

    Google Scholar 
    86.Sayama, H. et al. Modeling complex systems with adaptive networks. Comput. Math. Appl. 65, 1645–1664 (2013).Article 

    Google Scholar 
    87.Do, A.-L., Rudolf, L. & Gross, T. Patterns of cooperation: fairness and coordination in networks of interacting agents. N. J. Phys. 12, 063023 (2010).Article 

    Google Scholar 
    88.Van Segbroeck, S., Santos, F. C., Lenaerts, T. & Pacheco, J. M. Selection pressure transforms the nature of social dilemmas in adaptive networks. N. J. Phys. 13, 013007 (2011).Article 

    Google Scholar 
    89.Zhan, X.-X. et al. Coupling dynamics of epidemic spreading and information diffusion on complex networks. Appl. Math. Comput. 332, 437–448 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    90.Hatfield, E., Cacioppo, J. T. & Rapson, R. L. Emotional contagion. Curr. Dir. Psychol. Sci. 2, 96–100 (1993).Article 

    Google Scholar 
    91.Epstein, J. M. Agent_Zero: Toward Neurocognitive Foundations for Generative Social Science (Princeton Univ. Press, 2014).92.Barton, C. M. et al. Call for transparency of COVID-19 models. Science 368, 482–483 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    93.Hammond, R., Ornstein, J. T., Purcell, R., Haslam, M. D., & Kasman, M. Modeling robustness of COVID-19 containment policies. Preprint at OSF https://doi.org/10.31219/osf.io/h5ua7 (2021).94.Cooley, P. C. et al. The model repository of the models of infectious disease agent study. IEEE Trans. Inf. Technol. Biomed. 12, 513–522 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    95.Eubank, S. et al. Modelling disease outbreaks in realistic urban social networks. Nature 429, 180–184 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    96.Burke, D. S. et al. Individual-based computational modeling of smallpox epidemic control strategies. Acad. Emerg. Med. 13, 1142–1149 (2006).PubMed 
    Article 

    Google Scholar 
    97.Ferguson, N. M. et al. Strategies for mitigating an influenza pandemic. Nature 442, 448–452 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    98.Germann, T. C., Kadau, K., Longini, I. M. Jr & Macken, C. A. Mitigation strategies for pandemic influenza in the United States. Proc. Natl Acad. Sci. USA 103, 5935–5940 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    99.Longini, I. M. Jr et al. Containing a large bioterrorist smallpox attack: a computer simulation approach. Int. J. Infect. Dis. 11, 98–108 (2007).PubMed 
    Article 

    Google Scholar 
    100.Hammond, R. A. Considerations and Best Practices in Agent-Based Modeling to Inform Policy (National Academies Press, 2015).101.Wallace, R et al. Assessing the Use of Agent-Based Models for Tobacco Regulation (National Academies Press, 2015).102.Pedro, S. A. et al. Conditions for a second wave of COVID-19 due to interactions between disease dynamics and social processes. Front. Phys. 8, 574514 (2020).Article 

    Google Scholar 
    103.Walters, C. E., Meslé, M. M. I. & Hall, I. M. Modelling the global spread of diseases: a review of current practice and capability. Epidemics 25, 1–8 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    104.Li, Y., Lawley, M. A., Siscovick, D. S., Zhang, D. & Pagán, J. A. Agent-based modeling of chronic diseases: a narrative review and future research directions. Prev. Chronic Dis. 13, E69 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    105.Weston, D., Ip, A. & Amlôt, R. Examining the application of behaviour change theories in the context of infectious disease outbreaks and emergency response: a review of reviews. BMC Public Health 20, 1483 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    106.Ripoll, S., Gercama, I., Jones, T. & Wilkinson, A. Social Science in Epidemics: Ebola Virus Disease Lessons Learned Background Report, UNICEF, IDS & Anthrologica https://opendocs.ids.ac.uk/opendocs/handle/20.500.12413/14160 (Institute of Development Studies, 2018).107.DuBois, M., Wake, C., Sturridge, S. & Bennett, C. The Ebola Response in West Africa: Exposing the Politics and Culture of International Aid (Overseas Development Institute, 2015).108.Hird, T. et al. Lessons From Ebola Affected Communities: Being Prepared for Future Health Crises (Africa All Party Parliamentary Group, 2016).109.WHO. Report of the Ebola Interim Assessment Panel—July 2015 (2020).110.Ashworth, H. C., Dada, S., Buggy, C. & Lees, S. The importance of developing rigorous social science methods for community engagement and behavior change during outbreak response. Disaster Med. Public Health Prep. 1–6 (2020).111.Wenham, C. et al. Women are most affected by pandemics—lessons from past outbreaks. Nature 583, 194–198 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    112.Schwartz, D. A., Anoko, J. N. & Abramowitz, S. A. Pregnant in the Time of Ebola: Women and Their Children in the 2013-2015 West African Epidemic (Springer International Publishing, 2019).113.Moore, M. D. Historicising ‘containment and delay’: COVID-19, the NHS and high-risk patients. Wellcome Open Res. 5, 130 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    114.Marcis, F. L., Enria, L., Abramowitz, S., Saez, A.-M. & Faye, S. L. B. Three acts of resistance during the 2014–16 West Africa Ebola epidemic. J. Humanitarian Aff. 1, 23–31 (2019).Article 

    Google Scholar 
    115.Parker, M., Hanson, T. M., Vandi, A., Babawo, L. S. & Allen, T. Ebola and public authority: saving loved ones in Sierra Leone. Med. Anthropol. 38, 440–454 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    116.Vinck, P., Pham, P. N., Bindu, K. K., Bedford, J. & Nilles, E. J. Institutional trust and misinformation in the response to the 2018–19 Ebola outbreak in North Kivu, DR Congo: a population-based survey. Lancet Infect. Dis. 19, 529–536 (2019).PubMed 
    Article 

    Google Scholar 
    117.Ripoll, S., Gercama, I. & Jones, T. Rapid Appraisal of Key Health-Seeking Behaviours in Epidemics. SSHAP Practical Approaches brief 5, UNICEF, IDS & Anthrologica https://opendocs.ids.ac.uk/opendocs/handle/20.500.12413/15430 (Institute of Development Studies, 2020).118.Bielicki, J. A. et al. Monitoring approaches for health-care workers during the COVID-19 pandemic. Lancet Infect. Dis. 20, e261–e267 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    119.Chu, I. Y.-H., Alam, P., Larson, H. J. & Lin, L. Social consequences of mass quarantine during epidemics: a systematic review with implications for the COVID-19 response. J. Travel Med. 27, taaa192 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    120.R&D Good Participatory Practice for COVID-19 Clinical Trials: a Toolbox (World Health Organization, 2020); https://www.who.int/publications/m/item/r-d-good-participatory-practice-for-covid-19-clinical-trials-a-toolbox121.Hankins, C. Good Participatory Practice Guidelines for Trials of Emerging (and Re-emerging) Pathogens That are Likely to Cause Severe Outbreaks in the Near Future and For Which Few or No Medical Countermeasures Exist (GPP-EP) (WHO, 2016).122.Sigfrid, L. et al. Addressing challenges for clinical research responses to emerging epidemics and pandemics: a scoping review. BMC Med. 18, 190 (2020).PubMed 
    Article 

    Google Scholar 
    123.Gobat, N. H. et al. Talking to the people that really matter about their participation in pandemic clinical research: a qualitative study in four European countries. Health Expect. 21, 387–395 (2018).PubMed 
    Article 

    Google Scholar 
    124.Richards, P. et al. Social pathways for ebola virus disease in rural Sierra Leone, and some implications for containment. PLoS Negl. Trop. Dis. 9, e0003567 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    125.Jalloh, M. F. et al. National survey of Ebola-related knowledge, attitudes and practices before the outbreak peak in Sierra Leone: August 2014. BMJ Glob. Health 2, e000285 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    126.Bedford, J. Social science and behavioral data compilation, DRC Ebola outbreak, November 2018 – February 2019. Social Science in Humanitarian Action and GOARN Research Social Science Group (2019); https://opendocs.ids.ac.uk/opendocs/bitstream/handle/20.500.12413/14144/SSHAP_data_compilation_brief_November_2018_updated.pdf127.Pinchoff, J. et al. Evidence-based process for prioritizing positive behaviors for promotion: Zika prevention in Latin America and the Caribbean and applicability to future health emergency responses. Glob. Health Sci. Pr. 7, 404–417 (2019).Article 

    Google Scholar 
    128.Guirguis, S., Obregon, R., Coleman, M., Hickler, B. & SteelFisher, G. Placing human behavior at the center of the fight to eradicate polio: lessons learned and their application to other life-saving interventions. J. Infect. Dis. 216, S331–S336 (2017).PubMed 
    Article 

    Google Scholar 
    129.Research Guides: Social Science Data Resources: COVID-19 https://guides.library.yale.edu/covid19impacts (Accessed 17 April 2021).130.Rohan, H., Bausch, D. G. & Blanchet, K. Action not justification: how to use social science to improve outbreak response. PLoS Blogs (2018); https://collectionsblog.plos.org/action-not-justification-how-to-use-social-science-to-improve-outbreak-response/131.Bardosh, K. et al. Towards People-Centred Epidemic Preparedness and Response: From Knowledge to Action (Wellcome/DFID, 2019).132.UNICEF Minimum Quality Standards and Indicators for Community Engagement. Guidance Towards High Quality, Evidence-Based Community Engagement in The Development and Humanitarian Contexts. (2020); https://www.unicef.org/mena/reports/community-engagement-standards133.Hennessey Lavery, S. et al. The community action model: a community-driven model designed to address disparities in health. Am. J. Public Health 95, 611–616 (2005).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    134.Boyce, M. R. & Katz, R. Community health workers and pandemic preparedness: current and prospective roles. Front. Public Health 7, 62 (2019).PubMed 
    Article 

    Google Scholar 
    135.Baggio, O. Real-Time Ebola Community Feedback Mechanism (SSHAP Case Study 10, UNICEF, IDS and Anthrologica, 2020).136.Collective Communication and Community Engagement in Humanitarian Action: How to Guide for Leaders and Responders (CDAC Network, 2019).137.Ackerman Gulaid, L. & Kiragu, K. Lessons learnt from promising practices in community engagement for the elimination of new HIV infections in children by 2015 and keeping their mothers alive: summary of a desk review. J. Int. AIDS Soc. 15, 17390 (2012).PubMed 

    Google Scholar 
    138.Gilmore, B. et al. Community engagement for COVID-19 prevention and control: a rapid evidence synthesis. BMJ Glob. Health 5, e003188 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    139.O’Mara-Eves, A. et al. The effectiveness of community engagement in public health interventions for disadvantaged groups: a meta-analysis. BMC Public Health 15, 129 (2015).PubMed 
    Article 

    Google Scholar 
    140.Milton, B., Attree, P., French, B., Povall, S. L. & Popay, J. The impact of community engagement on health and social outcomes: a systematic review. 47, 316–334 (2011).141.Abramowitz, S. et al. Data Sharing in Public Health Emergencies: Anthropological and Historical Perspectives on Data Sharing During the 2014-2016 Ebola Epidemic and the 2016 Yellow Fever Epidemic (Wellcome Trust, 2018); https://www.glopid-r.org/wp-content/uploads/2019/07/data-sharing-in-public-health-emergencies-yellow-fever-and-ebola.pdf142.Bedson, J. et al. Community engagement in outbreak response: lessons from the 2014-2016 Ebola outbreak in Sierra Leone. BMJ Glob. Health 5, e002145 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    143.Jalloh, M. Design and implementation of an integrated digital system for community engagement and community-based surveillance during the 2014-2016 Ebola outbreak in Sierra Leone. BMJ Global Health 5, e003936 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    144.McComas, K. A. Defining moments in risk communication research: 1996-2005. J. Health Commun. 11, 75–91 (2006).PubMed 
    Article 

    Google Scholar 
    145.Glik, D. C. Risk communication for public health emergencies. Annu. Rev. Public Health 28, 33–54 (2007).PubMed 
    Article 

    Google Scholar 
    146.WHO General Information on Risk Communication (2015).147.Tworek, H., Beacock, I. & Ojo, E. Democratic health communications during Covid-19: a RAPID response (UBC Centre for the Study of Democratic Institutions, 2020); https://democracy.arts.ubc.ca/2020/09/14/covid-19/148.Winters, M. et al. Risk communication and ebola-specific knowledge and behavior during 2014-2015 outbreak, Sierra Leone. Emerg. Infect. Dis. 24, 336–344 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    149.Novetta. Social Media Analysis of ‘Tu vois Les Retombées’ Facebook Page (Insecurity Insight, 2020); http://insecurityinsight.org/wp-content/uploads/2020/06/Social-Media-Analysis-Novetta-June-2020.pdf150.Ghenai, A. & Mejova, Y. Catching Zika Fever: Application of Crowdsourcing and Machine Learning for Tracking Health Misinformation on Twitter. Preprint at arXiv https://arxiv.org/abs/1707.03778 (2017).151.Taggart, T., Grewe, M. E., Conserve, D. F., Gliwa, C. & Roman Isler, M. Social media and HIV: a systematic review of uses of social media in HIV communication. J. Med. Internet Res. 17, e248 (2015).PubMed 
    Article 

    Google Scholar 
    152.Smith, R. D. Responding to global infectious disease outbreaks: lessons from SARS on the role of risk perception, communication and management. Soc. Sci. Med. 63, 3113–3123 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    153.Li, C. et al. Retrospective analysis of the possibility of predicting the COVID-19 outbreak from Internet searches and social media data, China, 2020. Euro Surveill. 25, 2000199 (2020).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    154.Lu, Y. & Zhang, L. Social media WeChat infers the development trend of COVID-19. J. Infect. 81, e82–e83 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    155.Effenberger, M. et al. Association of the COVID-19 pandemic with Internet search volumes: a Google TrendsTM Analysis. Int. J. Infect. Dis. 95, 192–197 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    156.Gallotti, R., Valle, F., Castaldo, N., Sacco, P. & De Domenico, M. Assessing the risks of ‘infodemics’ in response to COVID-19 epidemics. Nat. Hum. Behav. 4, 1285–1293 (2020).PubMed 
    Article 

    Google Scholar 
    157.Bhattacharjee, S. & Dotto, C. Case study: understanding the impact of polio vaccine disinformation in Pakistan. First Draft (20 February 2020); https://firstdraftnews.org/long-form-article/first-draft-case-study-understanding-the-impact-of-polio-vaccine-disinformation-in-pakistan/158.Krause, N. M., Freiling, I., Beets, B. & Brossard, D. Fact-checking as risk communication: the multi-layered risk of misinformation in times of COVID-19. J. Risk Res. 23, 1052–1059 (2020).Article 

    Google Scholar 
    159.Eysenbach, G. Infodemiology and infoveillance: framework for an emerging set of public health informatics methods to analyze search, communication and publication behavior on the Internet. J. Med. Internet Res. 11, e11 (2009).PubMed 
    Article 

    Google Scholar 
    160.Eysenbach, G. Infodemiology: the epidemiology of (mis)information. Am. J. Med. 113, 763–765 (2002).PubMed 
    Article 

    Google Scholar 
    161.Islam, M. S. et al. COVID-19-related infodemic and its impact on public health: a global social media analysis. Am. J. Trop. Med. Hyg. 103, 1621–1629 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    162.Funk, S. et al. Nine challenges in incorporating the dynamics of behaviour in infectious diseases models. Epidemics 10, 21–25 (2015).PubMed 
    Article 

    Google Scholar 
    163.Davis, P. K., O’Mahony, A., Gulden, T. R., Sieck, K. & Osoba, O. A. Priority Challenges for Social and Behavioral Research and Its Modeling (RAND, 2018).164.WHO Guidance For Managing Ethical Issues In Infectious Disease Outbreaks (2016).165.Bruine de Bruin, W., Parker, A. M., Galesic, M. & Vardavas, R. Reports of social circles’ and own vaccination behavior: a national longitudinal survey. Health Psychol. 38, 975–983 (2019).PubMed 
    Article 

    Google Scholar 
    166.Facebook. COVID-19 Interactive Map & Dashboard (Accessed 14 April 2020); https://dataforgood.facebook.com/covid-survey/?region=WORLD167.Pruyt, E., Auping, W. L. & Kwakkel, J. H. Ebola in west Africa: model-based exploration of social psychological effects and interventions: Ebola in West Africa. Syst. Res. Behav. Sci. 32, 2–14 (2015).Article 

    Google Scholar 
    168.Schmidt-Hellerau, K. et al. Homecare for sick family members while waiting for medical help during the 2014-2015 Ebola outbreak in Sierra Leone: a mixed methods study. BMJ Glob. Health 5, e002732 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    169.Baggio, O. Case Study, Real-Time Ebola Community Feedback Mechanism (Social Science in Humanitarian Action, 2020); https://core.ac.uk/download/pdf/326024204.pdf170.WHO, UNICEF and IFRC. The Collective Service (2020); https://www.who.int/teams/risk-communication/the-collective-service171.WHO. COVID-19 Knowledge Hub (2020); https://extranet.who.int/goarn/COVID19Hub172.Giles-Vernick, T. et al. A new social sciences network for infectious threats. Lancet Infect. Dis. 19, 461–463 (2019).PubMed 
    Article 

    Google Scholar 
    173.Preventive Health Survey (Facebook, 2020); https://dataforgood.fb.com/tools/preventive-health-survey/174.COVID-19 Community Mobility Reports (Google, 2020).175.Badr, H. S. et al. Association between mobility patterns and COVID-19 transmission in the USA: a mathematical modelling study. Lancet Infect. Dis. 20, 1247–1254 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    176.WHO. Early AI-supported Response with Social Listening (2020); https://whoinfodemic.citibeats.com/?cat=fYJ1oBNEUQtfbExrkGvsyr177.WHO. Ebola or Marburg Case Investigation and Recording Sheet (16 June 2020); https://www.who.int/publications/m/item/ebola-or-marburg-case-investigation-and-recording-sheet178.CDC. Investigating a COVID-19 Case (2020); https://www.cdc.gov/coronavirus/2019-ncov/php/contact-tracing/contact-tracing-plan/investigating-covid-19-case.html179.WHO. Disease Case Investigation Forms (Accessed 14 April 2021); https://www.who.int/emergencies/outbreak-toolkit/data-collection-standards/disease-case-investigation-forms180.Social Science Support for COVID-19: Lessons Learned Brief 1 (Cellule D’analyse en Sciences Sociales, 2020).181.Rivers, C., Pollett, S. & Viboud, C. The opportunities and challenges of an Ebola modeling research coordination group. PLoS Negl. Trop. Dis. 14, e0008158 (2020).PubMed 
    Article 

    Google Scholar 
    182.WHO. Global Health Observatory (Accessed 14 April 2021); https://www.who.int/data/gho183.Data Portal (RCCE Collective Service: Risk Communication and Community Engagement, 2020); https://www.rcce-collective.net/data/184.Richards, P. Ebola: How a People’s Science Helped End an Epidemic (Zed Books, 2016).185.Social Science in Humanitarian Action Platform Social Science in Humanitarian Action, Key Considerations: Engaging Twa communities in Equateur Province (2018).186.Heesterbeek, H. et al. Modeling infectious disease dynamics in the complex landscape of global health. Science 347, aaa4339 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    187.Skrip, L., Fallah, M. P., Bedson, J., Hébert-Dufresne, L. & Althouse, B. M. Coordinated support for local action: a modeling study of strategies to facilitate behavior adoption in urban poor communities of Liberia for sustained COVID-19 suppression. Preprint at medRxiv https://doi.org/10.1101/2020.08.11.20172031 (2020).188.Online Database of Training on Social Dimensions of Infectious Threats (Sonar Global, Accessed 14 April 2021); https://www.sonar-global.eu/trainings/189.OpenWHO. https://openwho.org (Accessed 14 April 2021).190.Gwynn, S. Access to Research in the Global South: Reviewing the Evidence (International Network for the Availability of Scientific Publications, 2019).191.Urassa, M. et al. Cross-cultural research must prioritize equitable collaboration. Nat. Hum. Behav. https://doi.org/10.1038/s41562-021-01076-x (2021).192.Bonino, F., Jean, I. & Knox-Clarke, P. Closing the Loop: Effective Feedback in Humanitarian Contexts (ALNAP/ODI, 2014).193.Metcalf, C. J. E., Edmunds, W. J. & Lessler, J. Six challenges in modelling for public health policy. Epidemics 10, 93–96 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    194.Cobey, S. Modeling infectious disease dynamics. Science 368, 713–714 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    195.Ordway, D.-M. Epidemiological Models: 10 Things to Know About Coronavirus Research (Harvard Kennedy School, 2020); https://journalistsresource.org/tip-sheets/research/epidemiological-models-coronavirus/196.Knight, G. M. et al. Bridging the gap between evidence and policy for infectious diseases: how models can aid public health decision-making. Int. J. Infect. Dis. 42, 17–23 (2016).PubMed 
    Article 

    Google Scholar  More

  • in

    Upward expansion and acceleration of forest clearance in the mountains of Southeast Asia

    1.Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).CAS 
    Article 

    Google Scholar 
    2.Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).CAS 
    Article 

    Google Scholar 
    3.Veldkamp, E., Schmidt, M., Powers, J. S. & Corre, M. D. Deforestation and reforestation impacts on soils in the tropics. Nat. Rev. Earth Environ. 1, 590–605 (2020).Article 

    Google Scholar 
    4.Ceccherini, G. et al. Abrupt increase in harvested forest area over Europe after 2015. Nature 583, 72–77 (2020).CAS 
    Article 

    Google Scholar 
    5.Mitchard, E. T. A. The tropical forest carbon cycle and climate change. Nature 559, 527–534 (2018).CAS 
    Article 

    Google Scholar 
    6.Curran, L. M. et al. Lowland forest loss in protected areas of Indonesian Borneo. Science 303, 1000–1003 (2004).CAS 
    Article 

    Google Scholar 
    7.Friedl, A. et al. MODIS Collection 5 Global Land Cover: Algorithm Refinements and Characterization of New Datasets, 2001–2012 Collection 5.1 (Boston University, 2010).8.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).CAS 
    Article 

    Google Scholar 
    9.Margono, B. A., Potapov, P. V., Turubanova, S., Stolle, F. & Hansen, M. C. Primary forest cover loss in Indonesia over 2000–2012. Nat. Clim. Change 4, 730–735 (2014).Article 

    Google Scholar 
    10.Turubanova, S. et al. Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 13, 074028 (2018).Article 

    Google Scholar 
    11.Searchinger, T. et al. Creating a Sustainable Food Future: A Menu of Solutions to Feed Nearly 10 Billion People by 2050 (World Resources Institute, 2019).12.Gibbs, H. K. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl Acad. Sci. USA 107, 16732–16737 (2010).CAS 
    Article 

    Google Scholar 
    13.Tyukavina, A. et al. Congo Basin forest loss dominated by increasing smallholder clearing. Sci. Adv. 4, eaat2993 (2018).Article 

    Google Scholar 
    14.Achard, F. et al. Determination of tropical deforestation rates and related carbon losses from 1990 to 2010. Glob. Change Biol. 20, 2540–2554 (2014).Article 

    Google Scholar 
    15.Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).CAS 
    Article 

    Google Scholar 
    16.Aide, T. M. et al. Woody vegetation dynamics in the tropical and subtropical Andes from 2001 to 2014: satellite image interpretation and expert validation. Glob. Change Biol. 25, 2112–2126 (2019).Article 

    Google Scholar 
    17.Song, X. P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).CAS 
    Article 

    Google Scholar 
    18.Körner, C. et al. A global inventory of mountains for bio-geographical applications. Alp. Bot. 127, 1–15 (2017).Article 

    Google Scholar 
    19.Zeng, Z. et al. Highland cropland expansion and forest loss in Southeast Asia in the twenty-first century. Nat. Geosci. 11, 556–562 (2018).CAS 
    Article 

    Google Scholar 
    20.Zeng, Z., Gower, D. B. & Wood, E. F. Accelerating forest loss in Southeast Asian Massif in the 21st century: a case study in Nan Province, Thailand. Glob. Change Biol. 24, 4682–4695 (2018).Article 

    Google Scholar 
    21.Zarin, D. J. et al. Can carbon emissions from tropical deforestation drop by 50% in 5 years? Glob. Change Biol. 22, 1336–1347 (2016).Article 

    Google Scholar 
    22.Spracklen, D. & Righelato, R. Tropical montane forests are a larger than expected global carbon store. Biogeosciences 11, 2741–2754 (2014).CAS 
    Article 

    Google Scholar 
    23.Miettinen, J., Shi, C. & Liew, S. C. Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob. Change Biol. 17, 2261–2270 (2011).Article 

    Google Scholar 
    24.Austin, K. G. et al. What causes deforestation in Indonesia? Environ. Res. Lett. 14, 024007 (2019).Article 

    Google Scholar 
    25.Hansen, M. et al. Response to comment on ‘high-resolution global maps of 21st-century forest cover change’. Science 344, 981–981 (2014).CAS 
    Article 

    Google Scholar 
    26.Chan, N., Xayvongsa, L. & Takeda, S. in Environmental Resources Use and Challenges in Contemporary Southeast Asia (eds Lopez, M. I. & Suryomenggolo, J.) 231–246 (Springer, 2018).27.Thompson, J. R., Carpenter, D. N., Cogbill, C. V. & Foster, D. R. Four centuries of change in northeastern United States forests. PLoS ONE 8, e72540 (2013).CAS 
    Article 

    Google Scholar 
    28.Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5, 27–36 (2015).Article 

    Google Scholar 
    29.Zeng, Z. et al. Deforestation-induced warming over tropical mountain regions regulated by elevation. Nat. Geosci. 14, 23–29 (2021).CAS 
    Article 

    Google Scholar 
    30.Senior, R. A., Hill, J. K., Benedick, S. & Edwards, D. P. Tropical forests are thermally buffered despite intensive selective logging. Glob. Change Biol. 24, 1267–1278 (2018).Article 

    Google Scholar 
    31.Senior, R. A., Hill, J. K., González del Pliego, P., Goode, L. K. & Edwards, D. P. A pantropical analysis of the impacts of forest degradation and conversion on local temperature. Ecol. Evol. 7, 7897–7908 (2017).Article 

    Google Scholar 
    32.Sodhi, N. S. et al. The state and conservation of Southeast Asian biodiversity. Biodivers. Conserv. 19, 317–328 (2010).Article 

    Google Scholar 
    33.Ahrends, A. et al. Current trends of rubber plantation expansion may threaten biodiversity and livelihoods. Glob. Environ. Change 34, 48–58 (2015).Article 

    Google Scholar 
    34.Edwards, D. P. et al. Degraded lands worth protecting: the biological importance of Southeast Asia’s repeatedly logged forests. Proc. R. Soc. B 278, 82–90 (2011).Article 

    Google Scholar 
    35.Srinivasan, U., Elsen, P. R. & Wilcove, D. S. Annual temperature variation influences the vulnerability of montane bird communities to land-use change. Ecography 42, 2084–2094 (2019).Article 

    Google Scholar 
    36.Rahbek, C. et al. Humboldt’s enigma: what causes global patterns of mountain biodiversity? Science 365, 1108–1113 (2019).CAS 
    Article 

    Google Scholar 
    37.Guo, F., Lenoir, J. & Bonebrake, T. C. Land-use change interacts with climate to determine elevational species redistribution. Nat. Commun. 9, 1315 (2018).Article 
    CAS 

    Google Scholar 
    38.Elsen, P. R., Monahan, W. B. & Merenlender, A. M. Topography and human pressure in mountain ranges alter expected species responses to climate change. Nat. Commun. 11, 1974 (2020).CAS 
    Article 

    Google Scholar 
    39.Spracklen, D. V., Arnold, S. R. & Taylor, C. M. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489, 282–285 (2012).CAS 
    Article 

    Google Scholar 
    40.Spracklen, D. V. & Garcia-Carreras, L. The impact of Amazonian deforestation on Amazon Basin rainfall. Geophys. Res. Lett. 42, 9546–9552 (2015).Article 

    Google Scholar 
    41.Cheng, L. et al. Quantifying the impacts of vegetation changes on catchment storage–discharge dynamics using paired-catchment data. Water Resour. Res. 53, 5963–5979 (2017).Article 

    Google Scholar 
    42.Chappell, A., Baldock, J. & Sanderman, J. The global significance of omitting soil erosion from soil organic carbon cycling schemes. Nat. Clim. Change 6, 187–191 (2015).Article 
    CAS 

    Google Scholar 
    43.Yue, Y. et al. Lateral transport of soil carbon and land–atmosphere CO2 flux induced by water erosion in China. Proc. Natl Acad. Sci. USA 113, 6617–6622 (2016).CAS 
    Article 

    Google Scholar 
    44.Ziegler, A. D. et al. Carbon outcomes of major land-cover transitions in SE Asia: great uncertainties and REDD+ policy implications. Glob. Change Biol. 18, 3087–3099 (2012).Article 

    Google Scholar 
    45.Brinck, K. et al. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat. Commun. 8, 14855 (2017).CAS 
    Article 

    Google Scholar 
    46.Fox, J., Castella, J. C. & Ziegler, A. D. Swidden, rubber and carbon: can REDD+ work for people and the environment in montane mainland Southeast Asia? Glob. Environ. Change 29, 318–326 (2014).Article 

    Google Scholar 
    47.Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change https://doi.org/10.1038/s41558-020-00976-6 (2021).48.Tachikawa, T., Hato, M., Kaku, M. & Iwasaki, A. Characteristics of ASTER GDEM version 2. In Proc. IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 3657–3660 (IEEE, 2011).49.Burrough, P. A., McDonnell, R., McDonnell, R. A. & Lloyd, C. D. Principles of Geographical Information Systems (Oxford Univ. Press, 2015).50.Mokany, K., Raison, R. J. & Prokushkin, A. S. Critical analysis of root : shoot ratios in terrestrial biomes. Glob. Change Biol. 12, 84–96 (2006).Article 

    Google Scholar 
    51.Tyukavina, A. et al. Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012. Environ. Res. Lett. 10, 074002 (2015).Article 
    CAS 

    Google Scholar 
    52.Ryan, S. E. & Porth, L. S. A Tutorial on the Piecewise Regression Approach Applied to Bedload Transport Data (CreateSpace, 2015).53.Toms, J. D. & Lesperance, M. L. Piecewise regression: a tool for identifying ecological thresholds. Ecology 84, 2034–2041 (2003).Article 

    Google Scholar 
    54.Zeng, Z. et al. A reversal in global terrestrial stilling and its implications for wind energy production. Nat. Clim. Change 9, 979–985 (2019).Article 

    Google Scholar 
    55.Zaiontz, C. Real Statistics Using Excel (accessed 16 June 2021); http://www.real-statistics.com/ More

  • in

    Storm surge and ponding explain mangrove dieback in southwest Florida following Hurricane Irma

    A combination of airborne and satellite remote sensing data were used to quantify changes in mangrove forest structure and function from Hurricane Irma (Supplementary Fig. 1). Findings based on multi-sensor airborne data were scaled to the entire study area using estimates of forest structure and vegetation phenology derived from satellite data.G-LiHT Airborne campaignDuring April 2017, NASA Goddard’s Lidar, Hyperspectral, and Thermal (G-LiHT) airborne imager conducted an extensive airborne campaign in South Florida covering >130,000 ha. The same flight lines were resurveyed with G-LiHT eight months later, during November and December of 2017, to quantify structural changes in coastal forests of South Florida and Everglades National Park (ENP) following Hurricane Irma (Fig. 1). Lidar data was collected with two VQ-280i (Riegl USA) and synced during flight using RiACQUIRE version 2.3.7. The plane flew at a nominal height of 335 m above ground level at a pulse repetition frequency of 300 kHz to collect ~12 laser pulses per square meter. The analysis of pre- and post-hurricane conditions used 1-m resolution lidar data products (Supplementary Fig. 2) and 3-cm resolution stereo aerial and ground photos to estimate changes in vegetation structure, fractional cover, and terrain heights across the study domain. G-LiHT lidar canopy height models, digital terrain models, and estimates of fractional vegetation canopy cover (FVC) were produced using standard processing methodology21. All Level 1 through 3 lidar data products and fine-resolution imagery are openly shared through the G-LiHT webpage (https://gliht.gsfc.nasa.gov/).High resolution stereo maps of canopy heightStereo imagery from high-resolution commercial satellites can be used to estimate canopy and terrain surfaces42,43. Here, we derived digital surface models (DSMs) from DigitalGlobe’s WorldView 2 Level 1B imagery. DigitalGlobe provides these data to U.S. Government agencies and non-profit organizations that support U.S. interests via the NextView license agreement44. The spatial resolution of these data depends on the degree of off-nadir pointing for each acquisition. In this study, image resolution ranged from 0.5 to 0.7 m. We selected along-track stereopairs within the study domain to identify stereo image strips (each ~17 km × 110 km) that were nominally cloud-free over the forested domain of interest for years 2012–2013, the most recent cloud-free stereo data available for the study region prior to Hurricane Irma. The DSMs were produced using the Ames Stereo Pipeline (ASP) v. 2.5.1 on the NASA Center for Climate Simulation’s Advanced Data Analytics Platform at Goddard Space Flight Center (ADAPT, https://www.nccs.nasa.gov/services/adapt). The Worldview DSMs have been shown to accurately estimate mangrove canopy height when compared to airborne lidar and radar interferometry42,43. The processing workflow was adapted from ref. 45, and was implemented semi-global matching algorithms with a 5 × 5 correlation kernel, and a 3 × 3 median-filter applied to the output point cloud prior to producing a 1 m DSM using a weighted average gridding rule46. The ASP processing yielded five DSMs at 1-m resolution that were used to capture pre-storm canopy surface elevations.Each of the five Worldview DSMs were individually calibrated using overlapping pre-storm G-LiHT lidar data to estimate mangrove canopy heights across the study region (Supplementary Fig. 1). We sampled 1000 points within the mangrove forest cover (see mangrove classification, below) to develop a bias-correction equation between G-LiHT lidar-derived canopy heights and stereo DSM elevations (Supplementary Fig. 6). The bias-corrected canopy height models from high-resolution stereo imagery were mosaicked together to generate a 1-m resolution CHM for the entire study region (Supplementary Fig. 7). A pre-storm canopy volume was calculated by summing the 1 m × 1 m WorldView CHM for the entire region of interest. Similarly, a post-storm canopy volume was derived using the canopy damage model (see the section below), the relationship between the pre-storm CHM and the max wind speed. This analysis was conducted in ArcMap 10.7.1.Landsat mangrove forest classificationLandsat 8 Operational Land Imager (OLI) imagery was used to map mangrove cover for the southern Florida study region. The imagery was preprocessed to surface reflectance47 and clouds were masked following methods outlined in ref. 48. The Surface Reflectance Tier 1 product in Google Earth Engine was used to create a cloud-free image mosaic for 2016 based on the median values of all cloud-free images for the year for all bands (Supplementary Fig. 1).Training points were hand-selected using contemporary Google Earth imagery, field photos, and expert knowledge of the region. Twenty-four polygons covering a mangrove area of 1243 ha and 17 polygons covering a non-mangrove area of 2759 ha were identified for training regions. Within each of the two classes (i.e., mangrove and non-mangrove), 100,00 points were sampled and used for the training data in a Random Forest Classification implemented in Google Earth Engine49. The Random Forest model used 20 trees and a bag fraction of 0.5. The Landsat-based mangrove map was validated using the Region 3 species land cover map developed by the National Park Service for Everglades National Park50. The National Park species map was reclassified into mangrove and non-mangrove land cover, and 500 randomly generated points were sampled within each of the two land cover classes. The resulting error matrix indicated an overall accuracy of 90.6%.Post-storm canopy coverTime series of Landsat data were used to estimate hurricane damages of mangrove forest cover through December 31, 2017. We combined data from Landsat 7 ETM+ and Landsat 8 OLI to create a dense time series of cloud-free observations. All images were pre-processed to surface reflectance and masked for clouds using the same methods as the mangrove classification. Landsat 7 and Landsat 8 data were then harmonized to account for differences in the sensor specifications following51. We calculated the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) for each image in the collection. We calculated two reference maps from the time series of Landsat imagery (Supplementary Fig. 1). A pre-storm reference was calculated as the median value for each reflectance and index band for all cloud-free imagery in the two years prior Hurricane Irma, August 31, 2015 through August 31, 2017. Similarly, a post-storm median mosaic image was made using Landsat data between October 1, 2017 and December 31, 2017.Pre- and post-storm wall-to-wall Fractional Vegetation Cover (FVC) maps were generated using a combination of lidar-based FVC metrics and Landsat imagery (Supplementary Fig. 1). First, lidar-based FVC was binned into five classes; 0–20%, 20–40%, 40–60%, 60–80%, and 80–100% (Supplementary Fig. 7). We then collected 1000 randomly generated points in each of the five FVC classes, a total of 5000 points, to be used as training data in the Landsat classification. Here, we implemented a Random Forest Classifier using 100 trees and a bag fraction of 0.5. These steps were applied to both the pre-storm and post-storm lidar-derived FVC and Landsat mosaic image metrics. Changes between the pre- and post-storm FVC were then calculated based on the five different FVC classes (Supplementary Fig. 7). For example, a pixel with pre-storm FVC of 80–100% and a post-storm FVC of 20–40%, a reduction of three FVC classes, was assigned a drop in FVC of 40–60% (Fig. 1).Recovery times and resilienceWe estimated the time to full recovery of pre-storm mangrove green canopy cover using the time series of Landsat NDVI during the first 15-months following Hurricane Irma. The pre-storm mean NDVI layer was used as a reference, as described in the previous section. Next we calculated the NDVI anomaly for each image during the post-storm period, September 17, 2017 through December 31, 2018 (Supplementary Fig. 1). We then summed the individual anomaly values from each Landsat image and normalized by the total number of valid pixels (i.e., pixels meeting quality control measures) to estimate the average change in NDVI within the 15 months after the storm. We used anomaly values to identify mangrove forests with large decreases in the 15 months after the storm using a threshold of 0.2 for the 15-month NDVI average anomaly19,52. These areas suffered large losses of canopy material and limited new growth during the post-storm period. We used the slope in NDVI values for each pixel during 2018 to estimate the time in years to full recovery to pre-storm NDVI values, excluding data from October to December 2017 to remove delayed browning of damaged vegetation and spurious NDVI values from surface water features following the storm. Areas with a negative NDVI slope were not assigned a recovery time.We used a combination of the NDVI slope, estimated time to full NDVI recovery, and the average change in NDVI between the pre- and post-storm periods to categorize mangrove forest resilience, the potential for mangroves to rebound to pre-disturbance conditions. The specific criteria for mangrove recovery rates and mangrove damage thresholds were adapted from field and remote sensing studies, respectively6,19,25. Regions of high resilience (a combination of high resistance and resilience) were identified based on rapid recovery and/or little to no immediate impact from the storm: (1) areas that were observed to recover to pre-disturbance conditions during 2018, (2) areas that were predicted to recover within 5 years regardless of the post-storm drop in NDVI6, and (3) regions with a post-storm change in NDVI 15 years or a negative NDVI slope that occurred in regions with the largest ( >0.2) post-storm drop in average NDVI25 (Supplementary Fig. 9). The resilience class map is available online for download53.Mangrove species and elevationWe used species level maps developed by the National Park Service for Everglades National Park50 to characterize the impact of Hurricane Irma on different mangrove species. For that study, dominant species were identified through photo-interpretation of stereoscopic, color-infrared aerial imagery. Grid cells of 50 m × 50 m covering an area (Region 3) of ~100,000 ha in southwest Florida were interpreted based on the majority cover type and validated using field observations. A total of 169 vegetation cover classes were identified in this region, however, only five mangrove cover classes were considered for these analyses: Avicennia germinans (Black Mangrove), Laguncularia racemosa (White Mangrove), Rhizophora mangle (Red Mangrove), Conocarpus erectus (Buttonwood), and a single mixed species mangrove class. Mangrove forest communities were defined as the dominant diagnostic species in the upper-most stratum50. The mangrove species data were reprojected to match the Landsat resolution and the resilience maps. We used the intersection of the resilience and species extent maps to estimate the proportion of each resilience class by dominant species.The USGS National Elevation Dataset (NED) was used to estimate the soil elevation across southwest Florida. The 1/9 arc second (~3 m × 3 m) products were acquired from NED, and reprojected to Landsat resolution to estimate the proportion of each resilience class by soil elevation.Additional data and analysisModeled maximum storm surge data for Hurricane Irma were acquired from Coastal Emergency Risks Assessment data portal. Storm surge is derived from the ADCIRC Prediction System that solves for time dependent, circulation, and transport in multiple dimensions54. Maximum sustained hurricane wind speed was modeled hourly at a 5 km × 5 km resolution for 2017 by NASA’s Global Modeling and Assimilation Office (GMAO)55. The storm maximum wind speed for each 5 km × 5 km grid cell was calculated and binned into six discrete classes of wind speeds at 5 m s−1 increments: 26–30, 31–35, 36–40, 41–45, 46–50, and >50.Statistical analysesCanopy height losses measured from NASA G-LiHT data were grouped by five pre-storm canopy height classes (0–5 m, 5–10 m, 10–15 m, 15–20 m, and >20 m). All valid pixels within the lidar footprint was used to calculate the mean, standard error, and area (sum of 1 m × 1 m pixels) for each class (Supplementary Table 1). These results were then tested for significant differences between canopy height losses and pre-storm canopy height classes between using a one-way ANOVA analysis with a post-hoc Tukey test in R (version 4.0.3). For testing the significance between environmental variables (i.e., pre-storm canopy height, canopy height loss, percent canopy height loss, surface elevation, and storm surge water level above ground) we employed a two-sided Kolmogorov–Smirnov test56 implemented in R (version 4.0.3). First, we created a multi-band stacked image which included each of the variable layers. Within each resilience class (i.e., Low, Intermediate, and High) with randomly selected 10,000–20,000 points using Google Earth Engine to sample from the environmental variables images. From that sample set we then randomly selected 500 samples within each of the resilience classes. Each class combination (1) Low-Intermediate, (2) Low-High, and (3) Intermediate-High were compared using the Kolmogorov–Smirnov test. We repeated this procedure using 5000 iterations in order to provide a robust estimate of the Kolmogorow–Smirnov statistic, including the mean and first and third quartiles, which were then compared to the critical value (Supplementary Table 2).Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Genetic diversity, population structure and historical demography of the two-spined yellowtail stargazer (Uranoscopus cognatus)

    1.Cámara, A. & Santero-Sánchez, R. Economic, social, and environmental impact of a sustainable fishereis model in Spain. Sustainability 11, 6311 (2019).Article 

    Google Scholar 
    2.Department of Fisheries Malaysia. Annual Fisheries statistics 2010–2019. https://www.dof.gov.my/index.php/pages/view/82 (2020).3.Department of Fisheries, Thailand. The annual marine fisheries statistics (2010–2019) based on the sample survey. https://elibonline.fisheries.go.th/elib/cgi-bin/opacexe.exe?op=dsp&bid=10498&lang=0&db=Main&pat=&cat=sub&skin=s&lpp=20&catop=edit&scid=zzz (2020).4.Jha, S., Deepti, V., Ravali, V. & Sujatha, K. Studies on some aspects of biology of Uranoscopus cognatus Cantor, 1849 (Pisces: Uranoscopidae) off Visakhapatnam, central eastern coast of India. Indian J. Mar. Sci. 48, 85–92 (2019).
    Google Scholar 
    5.Clark, M. R. et al. The impacts of deep-sea fisheries on benthic communities: A review. ICES J. Mar. Sci. 73(1), 51–69 (2016).Article 

    Google Scholar 
    6.Van Denderen, P. D. et al. Evaluating impacts of bottom trawling and hypoxia on benthic communities at the local, habitat, and regional scale using a modelling approach. ICES J. Mar. Sci. 77(1), 578–589 (2019).
    Google Scholar 
    7.Erdoğan Sağlam, N. & Sağlam, C. Population parameters of stargazer (Uranoscopus scaber Linnaeus, 1758) in the southeastern Black Sea region during the 2011–2012 fishing season. J. Appl. Ichthyol. 29, 1313–1317 (2013).Article 

    Google Scholar 
    8.Matsunuma, M. et al. Fishes of Terengganu: East Coast of Malay Peninsula, Malaysia (National Museum of Nature and Science, 2011).
    Google Scholar 
    9.Vilasri, V. Family Uranoscopidae. In Fishes of Southern Taiwan (eds Koeda, K. & Ho, H. S.) 1097–1105 (National Museum of Marine Biology & Aquarium, 2019).
    Google Scholar 
    10.Starks, E. C. The Osteology and Relationships of the Uranoscopoid Fishes (Stanford University Press, 1923).
    Google Scholar 
    11.Pietsch, T. W. Phylogenetic relationships of trachinoid fishes of the family Uranoscopidae. Copeia 1989, 253–303 (1989).Article 

    Google Scholar 
    12.Kishimoto, H. Uranoscopidae. In FAO Species Identification Guide for Fisheries Purposes (eds Carpenter, K. E. & Niem, V. H.) 3519–3531 (FAO, 2001).
    Google Scholar 
    13.Randall, J. E. & Arnold, R. J. Uranoscopus rosette, a new species of stargazer (Uranoscopidae: Trachinoidei) from the Red Sea. Aqua. Int. J. Ichthyol. 18, 209–219 (2012).
    Google Scholar 
    14.Jung-chen, H. & Hin-Kiu, M. Stargazers (Uranoscopidae) have exceptionally more bile. Kuroshio Sci. 9–1, 17–26 (2015).
    Google Scholar 
    15.Vilasri, V. Comparative anatomy and phylogenetic systematics of the family Uranoscopidae (Actinopterygii: Perciformes). Mem. Fac. Fish. Hokkaido Univ. 55, 1–106 (2013).
    Google Scholar 
    16.Fricke, R., Eschmeyer, W. N. & Van der Laan, R. (eds). Eschmeyer’s catalog of fishes: genera, species, references. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (2020).17.Froese, R. & Pauly, D. Uranoscopidae. Fishbase https://www.fishbase.se/Summary/FamilySummary.php?ID=378 (2019).18.Fricke, R. Two new species of stargazers of the genus Uranoscopus (Teleostei: Uranoscopidae) from the western Pacific Ocean. Zootaxa 4476, 157–167 (2018).PubMed 
    Article 

    Google Scholar 
    19.Fricke, R., Jawad, L. A., Al-Kharusi, L. H. & Al-Mamry, J. M. New record and redescription of Uranoscopus crassiceps Alcock, 1890 (Uranoscopidae) From Oman, Arabian Sea, Northwestern Indian Ocean, based on adult specimens. Cybium 37, 143–147 (2013).
    Google Scholar 
    20.Department of Fisheries Malaysia. Valid Local Name of Malaysian Marine Fishes (Department of Fisheries Malaysia, 2009).
    Google Scholar 
    21.Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).Article 

    Google Scholar 
    22.Voris, H. K. Maps of Pleistocene sea levels in Southeast Asia: Shorelines, river systems and time durations. J. Biogeogr. 27, 1153–1167 (2000).Article 

    Google Scholar 
    23.Rohfritsch, A. & Borsa, P. Genetic structure of Indian scad mackerel Decapterus russelli: Pleistocene vicariance and secondary contact in the Central Indo-West Pacific Seas. Heredity 95, 315 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Lohman, D. J. et al. Biogeography of the Indo-Australian archipelago. Annu. Rev. Ecol. Evol. Syst. 42, 205–226 (2011).Article 

    Google Scholar 
    25.Crandall, E. D. et al. The molecular biogeography of the Indo-Pacific: Testing hypotheses with multispecies genetic patterns. Glob. Ecol. Biogeogr. 28, 943–960 (2019).Article 

    Google Scholar 
    26.Reece, J. S., Bowen, B. W., Joshi, K., Goz, V. & Larson, A. Phylogeography of two moray eels indicates high dispersal throughout the Indo-Pacific. J. Hered. 101, 391–402 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Akib, N. A. M. et al. High connectivity in Rastrelliger kanagurta: influence of historical signatures and migratory behaviour inferred from mtDNA cytochrome b. PLoS ONE 10, e0119749 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    28.Jamaludin, N. A. et al. Phylogeography of the Japanese scad, Decapterus maruadsi (Teleostei; Carangidae) across the Central Indo-West Pacific: evidence of strong regional structure and cryptic diversity. Mitochondrial DNA A 2, 1–13 (2020).
    Google Scholar 
    29.Gaither, M. R., Toonen, R. J., Robertson, D. R., Planes, S. & Bowen, B. W. Genetic evaluation of marine biogeographical barriers: perspectives from two widespread Indo-Pacific snappers (Lutjanus kasmira and Lutjanus fulvus). J. Biogeogr. 37, 133–147 (2010).Article 

    Google Scholar 
    30.Gaither, M. R. et al. Phylogeography of the reef fish Cephalopholis argus (Epinephelidae) indicates Pleistocene isolation across the Indo-Pacific Barrier with contemporary overlap in the Coral Triangle. BMC Evol. Biol. 11, 189 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Timm, J. & Kochzius, M. Geological history and oceanography of the Indo-Malay Archipelago shape the genetic population structure in the false clown anemonefish (Amphiprion ocellaris). Mol. Ecol. 17, 3999–4014 (2008).PubMed 
    Article 

    Google Scholar 
    32.Otwoma, L. M. & Kochzius, M. Genetic population structure of the coral reef sea star Linckia laevigata in the Western Indian Ocean and Indo-West Pacific. PLoS ONE 11, 10 (2016).Article 
    CAS 

    Google Scholar 
    33.Williams, S. T., Jara, J., Gomez, E. & Knowlton, N. The marine Indo-West Pacific break: Contrasting the resolving power of mitochondrial and nuclear genes. Integr. Comp. Biol. 42, 941–952 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Supmee, V., Sangthong, P., Songrak, A. & Suppapan, J. Population genetic structure of Asiatic Hard Clam (Meretrix meretrix) in Thailand based on Cytochrome Oxidase subunit I gene sequence. Biodiversitas 21, 2702–2709 (2020).Article 

    Google Scholar 
    35.Hui, M. et al. Comparative genetic population structure of three endangered giant clams (Cardiidae: Tridacna species) throughout the Indo-West Pacific: Implications for divergence, connectivity and conservation. J. Molluscan Stud. 82, 403–414 (2016).Article 

    Google Scholar 
    36.Panithanarak, T., Karuwancharoen, R., Na-Nakorn, U. & Nguyen, T. T. Population genetics of the spotted seahorse (Hippocampus kuda) in Thai waters: Implications for conservation. Zool. Stud. 49, 564–576 (2010).CAS 

    Google Scholar 
    37.Kasim, N. S. et al. Recent population expansion of longtail tuna Thunnus tonggol (Bleeker, 1851) inferred from the mitochondrial DNA markers. PeerJ 8, 9679 (2020).Article 

    Google Scholar 
    38.Canales-Aguirre, C. B., Ferrada-Fuentes, S., Galleguillos, R., Oyarzun, F. X. & Hernández, C. E. Population genetic structure of Patagonian toothfish (Dissostichus eleginoides) in the Southeast Pacific and Southwest Atlantic Ocean. PeerJ 6, e4173 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Sato, M. et al. Genetic structure and demographic connectivity of marbled flounder (Pseudopleuronectes yokohamae) populations of Tokyo Bay. J. Sea Res. 142, 79–90 (2018).ADS 
    Article 

    Google Scholar 
    40.Borsa, P. Genetic structure of round scad mackerel Decapterus macrosoma (Carangidae) in the Indo-Malay archipelago. Mar. Biol. 142, 575–581 (2003).CAS 
    Article 

    Google Scholar 
    41.Eytan, R. I. & Hellberg, M. E. Nuclear and mitochondrial sequence data reveal and conceal different demographic histories and population genetic processes in Caribbean reef fishes. Evolution 64, 3380–3397 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Tan, M. P., Jamsari, A. F. J. & Siti Azizah, M. N. Genotyping of microsatellite markers to study genetic structure of the wild striped snakehead Channa striata in Malaysia. J. Fish. Biol. 88, 1932–1948 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Tan, M. P., Jamsari, A. F. J. & Siti Azizah, M. N. Phylogeographic pattern of the striped snakehead, Channa striata in Sundaland: Ancient river connectivity, geographical and anthropogenic signatures. PLoS ONE 7, 1–11 (2012).
    Google Scholar 
    44.Tan, M. P., Jamsari, A. F. J., Muhlisin, Z. A. & Siti Azizah, M. N. Mitochondrial genetic variation and population structure of the striped snakehead, Channa striata in Malaysia and Sumatra. Indonesia. Biochem. Syst. Ecol. 60, 99–105 (2015).CAS 
    Article 

    Google Scholar 
    45.Haponski, A. E. & Stepien, C. A. Phylogenetic and biogeographical relationships of the Sander pikeperches (Percidae: Perciformes): Patterns across North America and Eurasia. Biol. J. Linn. Soc. Lond. 110, 156–179 (2013).Article 

    Google Scholar 
    46.Milá, B., Van Tassell, J. L., Calderón, J. A., Rüber, L. & Zardoya, R. Cryptic lineage divergence in marine environments: Genetic differentiation at multiple spatial and temporal scales in the widespread intertidal goby Gobiosoma bosc. Ecol. Evol. 7, 5514–5523 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Piganeau, G., Gardner, M. & Eyre-Walker, A. A broad survey of recombination in animal mitochondria. Mol. Biol. Evol. 21, 2319–2325 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Avise, J. C. Molecular Markers, Natural History, and Evolution (Sinauer Associates Inc, 2004).
    Google Scholar 
    49.De Mandal, S., Chhakchhuak, L., Gurusubramanian, G. & Kumar, N. S. Mitochondrial markers for identification and phylogenetic studies in insects–A Review. DNA Barcodes 2, 1–9 (2014).CAS 
    Article 

    Google Scholar 
    50.Simon, C. et al. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87, 651–701 (1994).CAS 
    Article 

    Google Scholar 
    51.Hoofer, S. R., Reeder, S. A., Hansen, E. W. & Van Den Bussche, R. A. Molecular phylogenetics and taxonomic review of noctilionoid and vespertilionoid bats (Chiroptera: Yangochiroptera). J. Mammal. 84, 809–821 (2003).Article 

    Google Scholar 
    52.Hewitt, G. M. Speciation, hybrid zones and phylogeography or seeing genes in space and time. Mol. Ecol. 10, 537–549 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Surya, S. et al. Morphometry and length-weight relationship of Uranoscopus marmoratus Cuvier, 1829 (Family: Uranoscopidae) from Palk Bay, India. Int. J. Biol. Sci. 5, 1–10 (2016).ADS 

    Google Scholar 
    54.Narejo, N. T. Morphometric characters and their relationships in Gudusia chapra (Hamilton) from Keenjhar Lake (Distt: Thatta), Sindh, Pakistan. Pak. J. Zool. 42, 101–104 (2010).
    Google Scholar 
    55.Gan, H. M., Nur Ilham Syahadah, M. Y., Vilasri, V., Tun Nurul Aimi, M. J. & Tan, M. P. Four whole mitogenome sequences of yellowtail stargazers (Uranoscopus cognatus cantor 1849) from East Peninsular Malaysia and West Coast of Thailand. Mitochondrial DNA B 4, 256–258 (2019).Article 

    Google Scholar 
    56.Panjarat, S. Sustainable fisheries in the Andaman Sea coast of Thailand. Division for Ocean Affairs and the Law of the Sea Office of Legal Affairs. (The United Nations, 2008).57.Derrick, B., Noranarttragoon, P., Zeller, D., Teh, L. C. & Pauly, D. Thailand’s missing marine fisheries catch (1950–2014). Front. Mar. Sci. 4, 402 (2017).Article 

    Google Scholar 
    58.Sampantamit, T., Ho, L., Van Echelpoel, W., Lachat, C. & Goethals, P. Links and trade-offs between fisheries and environmental protection in relation to the sustainable development goals in Thailand. Water 12, 399 (2020).Article 

    Google Scholar 
    59.Chong, V., Lee, P. & Lau, C. Diversity, extinction risk and conservation of Malaysian fishes. J. Fish Biol. 76, 2009–2066 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Lim, H. C., Ahmad, A. T., Nuruddin, A. A. & Mohd Nor, S. A. Cytochrome b gene reveals panmixia among Japanese Threadfin Bream, Nemipterus japonicus (Bloch, 1791) populations along the coasts of Peninsular Malaysia and provides evidence of a cryptic species. Mitochondrial DNA A 27, 575–584 (2016).CAS 
    Article 

    Google Scholar 
    61.Nabilsyafiq, M. H. et al. ND5 gene marker reveals recent population expansion of wild pearse’s mudskipper (Periophthalmus novemradiatus Hamilton) inhabits Setiu wetlands in east Peninsular Malaysia. Malays. Appl. Biol. 48, 87–93 (2019).
    Google Scholar 
    62.Zhou, Y. et al. Importance of incomplete lineage sorting and introgression in the origin of shared genetic variation between two closely related pines with overlapping distributions. Heredity 118, 211–220 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Lessios, H. A. The great American schism: divergence of marine organisms after the rise of the Central American Isthmus. Annu. Rev. Ecol. Evol. Syst. 39, 63–91 (2008).Article 

    Google Scholar 
    64.Avise, J. Molecular Markers, Natural History and Evolution (Chapman and Hall, 1994).Book 

    Google Scholar 
    65.Nelson, J. S., Grande, T. C. & Wilson, M. V. Fishes of the World (John Wiley and Sons, 2016).Book 

    Google Scholar 
    66.Young, J. Z. Memoirs: On the autonomic nervous system of the Teleostean Fish Uranoscopus scaber. J. Cell Sci. 2, 491–536 (1931).Article 

    Google Scholar 
    67.Day, J., Clark, J. A., Williamson, J. E., Brown, C. & Gillings, M. Population genetic analyses reveal female reproductive philopatry in the oviparous Port Jackson shark. Mar. Freshw. Res. 70, 986–994 (2019).Article 

    Google Scholar 
    68.Roycroft, E. J., Le Port, A. & Lavery, S. D. Population structure and male-biased dispersal in the short-tail stingray Bathytoshia brevicaudata (Myliobatoidei: Dasyatidae). Conserv. Genet. 20, 717–728 (2019).CAS 
    Article 

    Google Scholar 
    69.King, T. L., Eackles, M. S., Spidle, A. P. & Brockmann, H. J. Regional differentiation and sex-biased dispersal among populations of the horseshoe crab Limulus polyphemus. Trans. Am. Fish. Soc. 134, 441–465 (2005).Article 

    Google Scholar 
    70.Lane, A. & Shine, R. Intraspecific variation in the direction and degree of sex-biased dispersal among sea-snake populations. Mol. Ecol. 20, 1870–1876 (2011).PubMed 
    Article 

    Google Scholar 
    71.Casale, P., Laurent, L., Gerosa, G. & Argano, R. Molecular evidence of male-biased dispersal in loggerhead turtle juveniles. J. Exp. Mar. Biol. Ecol. 267, 139–145 (2002).CAS 
    Article 

    Google Scholar 
    72.Wyrtki, K. Physical Oceanography of the Southeast Asian Waters (University of California, 1961).
    Google Scholar 
    73.Barber, P., Palumbi, S., Erdmann, M. & Moosa, M. Sharp genetic breaks among populations of Haptosquilla pulchella (Stomatopoda) indicate limits to larval transport: patterns, causes, and consequences. Mol. Ecol. 11, 659–674 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Kamarudin, K. R. & Esa, Y. Phylogeny and phylogeography of Barbonymus schwanenfeldii (Cyprinidae) from Malaysia inferred using partial cytochrome b mtDNA gene. J. Trop. Biol. Conserv. 5, 1–13 (2009).
    Google Scholar 
    75.Tan, M. P. et al. Genetic diversity of the Pearse’s Mudskipper Periophthalmus novemradiatus (Perciformes: Gobiidae) and characterization of its complete mitochondrial genome. Thalassas 36, 103–113 (2020).Article 

    Google Scholar 
    76.Roberts, T. R. & Khaironizam, M. Z. Trophic polymorphism in the Malaysian fish Neolissochilus soroides and other old world barbs (Teleostei, Cyprinidae). Nat. Hist. Bull. Siam Soc. 56, 25–53 (2008).
    Google Scholar 
    77.Forsman, A. Rethinking phenotypic plasticity and its consequences for individuals, populations and species. Heredity 115, 276 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Vasileva, E. Morphokaryological variability and divergence of stargazers (Uranoscopus, perciformes) from the Mediterranean Sea basin: I. Divergence and taxonomic state of the Black Sea Stargazer. J. Ichthyol. 52, 476–484 (2012).Article 

    Google Scholar 
    79.Aljanabi, S. M. & Martinez, I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Ress 25, 4692–4693 (1997).CAS 
    Article 

    Google Scholar 
    80.Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R. & Hebert, P. D. DNA barcoding Australia’s fish species. Philos. Trans. R. Soc. Lond., B Biol. Sci. 360, 1847–1857 (2005).CAS 
    Article 

    Google Scholar 
    81.López, J. A., Chen, W. J. & Ortí, G. Esociform phylogeny. Copeia 2004, 449–464 (2004).Article 

    Google Scholar 
    82.Mat Jaafar, T. N., Taylor, M. I., Mohd Nor, S. A., Bruyn, M. D. & Carvalho, G. R. Comparative genetic stock structure in three species of commercially exploited Indo-Malay Carangidae (Teleosteii, Perciformes). J. Fish Biol. 96, 337–349 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    83.Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Farris, J. S., Källersjö, M., Kluge, A. G. & Bult, C. Testing significance of incongruence. Cladistics 10, 315–319 (1994).Article 

    Google Scholar 
    85.Swofford, D. L. PAUP: Phylogenetic Analysis Using Parsimony (and Other Methods), Version 4.0 Beta 10 (Sinauer Associates, 2002).
    Google Scholar 
    86.Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    87.Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed 
    Article 

    Google Scholar 
    88.Hasegawa, M., Kishino, H. & Yano, T. A. Dating of the huma-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22, 160–174 (1985).CAS 
    PubMed 
    Article 

    Google Scholar 
    89.Kimura, M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucletide sequences. J. Mol. Evol. 16, 111–120 (1980).ADS 
    CAS 
    Article 

    Google Scholar 
    90.Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783–791 (1985).PubMed 
    Article 

    Google Scholar 
    91.Bandelt, H. J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    92.Dupanloup, I., Schneider, S. & Excoffier, L. A simulated annealing approach to define the genetic structure of populations. Mol. Ecol. 11, 2571–2581 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    93.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar 
    94.Nei, M. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U.S.A. 70, 3321–3323 (1973).ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 
    Article 

    Google Scholar 
    95.Lynch, M. & Crease, T. The analysis of population survey data on DNA sequence variation. Mol. Biol. Evol. 7, 377–394 (1990).CAS 
    PubMed 

    Google Scholar 
    96.Hudson, R. R., Slatkin, M. & Maddison, W. P. Estimation of levels of gene flow from DNA sequence data. Genetics 132, 583–589 (1992).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    98.Fu, Y.-X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    99.Harpending, H. Infertility and forager demography. Am. J. Phys. Anthropol. 93, 385–390 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    100.Slatkin, M. & Hudson, R. R. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129, 555–562 (1991).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Rogers, A. R. & Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552–569 (1992).CAS 
    PubMed 

    Google Scholar 
    102.Schneider, S. & Excoffier, L. Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: Application to human mitochondrial DNA. Genetics 152, 1079–1089 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    103.Yildirim, Y. Genetic structure of Pleurobranchaea maculata in New Zealand (Massey University, 2016).
    Google Scholar 
    104.Hubbs, C. & Lagler, K. The fishes of the Great Lakes region 213 (The University of Michigan Press, 1958).
    Google Scholar 
    105.Kishimoto, H. A new stargazer, Uranoscopus flavipinnis, from Japan and Taiwan with redescription and neotype designation of U. japonicus. Japan. J. Ichthyol. 34, 1–14 (1987).
    Google Scholar 
    106.Kishimoto, H. Redescription and lectotype designation of the stargazer Uranoscopus kaianus Günther. Copeia 1984, 1009–1011 (1984).Article 

    Google Scholar 
    107.Gomon, M. F. & Johnson, J. A new fringed stargazer (Uranoscopidae: Ichthyscopus) with descriptions of the other Australian species of the genus. Mem. Queensl. Mus. 43, 597–619 (1999).
    Google Scholar 
    108.Rainboth, W. J. Fishes of the Cambodian Mekong (Food and Agriculture Org, 1996).
    Google Scholar 
    109.Imamura, H. & Matsuura, K. Redefinition and phylogenetic relationships of the family Pinguipedidae (Teleostei: Perciformes). Ichthyol. Res. 50, 259–269 (2003).Article 

    Google Scholar 
    110.Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
    Google Scholar 
    111.Seah, Y. G., Nabilsyafiq, M. & Mazlan, A. G. Preliminary study on the morphology and biology of coexist Nemipterus furcosus and Nemipterus tambuloides from Terengganu Waters Peninsular Malaysia. J. Fish. Aquat. Sci. 11, 418–424 (2016).Article 

    Google Scholar 
    112.Johnson, R. A. & Wichern, D. W. Multivariate statistical analysis (Prentice Hall Upper Saddle River, 1998).MATH 

    Google Scholar  More

  • in

    The impact of large and small dams on malaria transmission in four basins in Africa

    Study areaFour major river basins, located across different sub-regions of SSA, were selected for this study: Limpopo, Omo-Turkana, Volta, and Zambezi (Fig. 1). These basins were selected to (i) foster inclusion of enable different African regions and (ii) ensure focus on basins with sufficient data availability.Figure 1source malaria data23 on ArcGIS software (version 10.5. 1, Environmental Systems Research Institute Inc, Redlands, CA, USA, 2016)].Distribution of large and small dams in Limpopo, Volta, Zambezi and Omo-Turkana basins by malaria stability zone. [The figure was made using open-Full size imageThe Limpopo River basin is located in southern Africa. Draining an area of approximately 408,000 km2, the Limpopo River basin is distributed among South Africa (45%), Botswana (20%), Zimbabwe (15%) and Mozambique (20%). About 14 million people live in this basin. The climate of the Limpopo River basin varies along the path of the river from a temperate climate in the west to a subtropical climate at the river mouth in Mozambique. The hydrology of the Limpopo River basin is influenced by the highly seasonal distribution of rainfall over the catchment. About 95% of rain falls between October and April with a peak normally in February. Temperature varies from 30 to 34 °C in summer and 22–26 °C in winter15.The Volta River basin is located in West Africa with a population of over 23 million. Draining an area of 409,000 km2 the basin is spread across six countries: Benin (4%), Burkina Faso (42%), Cote d’Ivoire (3%), Ghana (41%), Mali (4%) and Togo (6%). Average annual rainfall varies across the basin from approximately 1600 mm in the southeast, to about 360 mm in the north. Annual mean temperatures in the basin vary from 27 to 30 °C16. The main rainy season is between March and October.The Zambezi River basin is located in southern Africa. Draining an area of 1.34 million km2, the basin is spread across eight countries: Angola (19%), Botswana (1%), Namibia (1%) Benin (4%), Zimbabwe (16%), Zambia (42%), Tanzania (2%), Malawi (8%) and Mozambique (12%). The population of the Zambezi basin is estimated to be about 32 million. Annual rainfall in the basin ranges from 550 mm in the south to 1800 mm in the north. The annual mean temperatures ranges from 18 °C at higher elevations in the south of the basin to 26 °C for low elevations in the delta in Mozambique17.The Omo-Turkana Basin covers approximately 131,000 km2, stretching from southern Ethiopia to northern Kenya. Hydrologically, the basin is dominated by Lake Turkana, with the Omo River, which drains the Ethiopian portion of the basin, supplying 90% of the inflow to the lake. The basin is home to approximately 15 million people, the majority of whom live in the Ethiopian highlands, in the north. The annual mean temperature ranges from 24 °C in the north to 29 °C in the south. The mean annual rainfall ranges from 250 mm in the south to 500 mm in the north18.Data sourcesDam dataSmall damsData on location and size of small dams are not readily available in either global or regional data sets. The European Commission’s Joint Research Center (JRC) Yearly Water Classification History v1.0 data set was used to identify water bodies in each of the four basins19. Water bodies less than 100 ha and greater than 2 ha were identified. All were checked with Google Earth images to distinguish between reservoirs and natural water bodies (Supplementary Fig. S1). Ultimately, a total of 4907 small dams located in the four basins were identified and included in the analyses.Large damsFor large dams, the FAO African Dams Database20, International Commission for Large dams (ICOLD)21 and the International Rivers Database22, which together contain 1286 georeferenced African large dams, were utilized. The accuracy of dam locations was first verified with Google Earth. When the location of a dam did not precisely match the coordinates stipulated in either of the two databases, manual corrections were made by adjusting the coordinates of a dam to its location as shown in Google Earth (see Supplementary Information). Dams for which precise locations could not be determined, as well as dams without reservoirs (i.e., run-of-river schemes), were removed. Ultimately, across the four basins, a total of 258 large dams with confirmed georeferenced locations were identified and included in the analyses.Perimeters of large and small dam reservoirsReservoir perimeters of both large and small dams were extracted from the European Commission’s Joint Research Center (JRC) global surface water datasets19, published through the Google Earth Engine. This dataset includes maps of the location and temporal variability in maximum perimeter records of the global surface water coverage from 1984 to 2015. In this study, the maximum perimeter records were used in each year of 2000, 2005, 2010 and 2015. The data were exported to ArcGIS.Data on anopheles mosquito distributionData for vector distribution were obtained from the Malaria Atlas Project (MAP) database23. The MAP database contains a georeferenced illustration of the major malaria vector species in different malaria-endemic areas in Africa.Malaria dataAnnual malaria incidence data were obtained from the MAP database. We acquired data for the years 2000, 2005, 2010 and 2015. These years were selected to align with updates to Worldpop population data24, which are recomputed every five years. MAP produced a 1 km resolution continuous map of annual malaria incidence for Africa based on 33,761 studies across the region. We imported these data to ArcGIS for analyses. Annual malaria incidence was determined as the number of cases per 1000 population. To ascertain the impact of dams on malaria incidence rates as a function of distance from the reservoir perimeter, we created two distance zones: 0–5 km (at risk) and 5–10 km (control). When distance zones were overlapping for two or more nearby dams, areas were assigned to the closest distance cohort. Populations residing more than 5 km from a reservoir perimeter (large or small) were considered to be free of risk from dam induced malaria transmission because the maximum mosquitoes’ flight range is considered to be  0.1 malaria cases per 1000 population), unstable (≤ 0.1 malaria cases per 1000 population) and no malaria (zero malaria incidence) based on the level of malaria incidence in each of the four years: 2000, 2005, 2010, and 2015. The number of dams in each of the three stability categories for each of the four years was determined, as well as the population at-risk of dam-related malaria (i.e.,  More

  • in

    Seasonal influence on the bathymetric distribution of an endangered fish within a marine protected area

    1.Lejeusne, C., Chevaldonné, P., Pergent-Martini, C., Boudouresque, C. F. & Pérez, T. Climate change effects on a miniature ocean: The highly diverse, highly impacted Mediterranean Sea. Trends Ecol. Evol. 25, 250–260 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Fulton, E. A. et al. Modelling marine protected areas: Insights and hurdles. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140278 (2015).Article 

    Google Scholar 
    3.Roff, J. & Zacharias, M. Marine Conservation Ecology (Earthscan, 2011).
    Google Scholar 
    4.Mitcheson, Y. S. D. et al. A global baseline for spawning aggregations of reef fishes. Conserv. Biol. 22, 1233–1244 (2008).Article 

    Google Scholar 
    5.Salinas-de-León, P., Rastoin, E. & Acuña-Marrero, D. First record of a spawning aggregation for the tropical eastern Pacific endemic grouper Mycteroperca olfax in the Galapagos Marine Reserve. J. Fish Biol. 87, 179–186 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Bueno, L. S. et al. Evidence for spawning aggregations of the endangered Atlantic goliath grouper Epinephelus itajara in southern Brazil. J. Fish Biol. 89, 876–889 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Kumar, V. et al. Biological clocks and regulation of seasonal reproduction and migration in birds. Physiol. Biochem. Zool. 83, 827–835 (2010).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.van Haren, H. & Compton, T. J. Diel vertical migration in deep sea plankton is finely tuned to latitudinal and seasonal day length. PLoS ONE 8, e64435 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Horký, P. & Slavík, O. Diel and seasonal rhythms of asp Leuciscus aspius (L.) in a riverine environment. Ethol. Ecol. Evol. 29, 449–459 (2017).Article 

    Google Scholar 
    10.Falcón, J., Besseau, L., Sauzet, S. & Boeuf, G. Melatonin effects on the hypothalamo–pituitary axis in fish. Trends Endocrinol. Metab. 18, 81–88 (2007).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    11.Oliveira, C. et al. Monthly day/night changes and seasonal daily rhythms of sexual steroids in Senegal sole (Solea senegalensis) under natural fluctuating or controlled environmental conditions. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 152, 168–175 (2009).ADS 
    Article 
    CAS 

    Google Scholar 
    12.Wuitchik, D. M. et al. Seasonal temperature, the lunar cycle and diurnal rhythms interact in a combinatorial manner to modulate genomic responses to the environment in a reef-building coral. Mol. Ecol. 28, 3629–3641 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Sanchez-Cardenas, C. et al. Pituitary growth hormone network responses are sexually dimorphic and regulated by gonadal steroids in adulthood. PNAS 107, 21878–21883 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Stock, C. A. et al. Seasonal sea surface temperature anomaly prediction for coastal ecosystems. Prog. Oceanogr. 137, 219–236 (2015).ADS 
    Article 

    Google Scholar 
    15.Bisagni, J. J. Salinity variability along the eastern continental shelf of Canada and the United States, 1973–2013. Cont. Shelf Res. 126, 89–109 (2016).ADS 
    Article 

    Google Scholar 
    16.Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    17.Dorts, J. et al. Evidence that elevated water temperature affects the reproductive physiology of the European bullhead Cottus gobio. Fish Physiol. Biochem. 38, 389–399 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Arfuso, F. et al. Water temperature influences growth and gonad differentiation in European sea bass (Dicentrarchus labrax, L. 1758). Theriogenology 88, 145–151 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Aspillaga, E. et al. Thermal stratification drives movement of a coastal apex predator. Sci. Rep. 7, 526 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    20.Martin, T. L. & Huey, R. B. Why, “suboptimal” is optimal: Jensen’s inequality and ectotherm thermal preferences. Am. Nat. 171, E102–E118 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Freitas, C., Olsen, E. M., Moland, E., Ciannelli, L. & Knutsen, H. Behavioral responses of Atlantic cod to sea temperature changes. Ecol. Evol. 5, 2070–2083 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Harmelin, J.-G. & Marinopoulos, J. Recensementde la Population de corbs (Sciaena umbra, Linneaus1758: Pisces) du Parc National de Port-Cros (Méditerrannée, France) par Inventaires Visuels 265–275 (1993).23.Coll, J., Linde, M., García-Rubies, A., Riera, F. & Grau, A. M. Spear fishing in the Balearic Islands (west central Mediterranean): Species affected and catch evolution during the period 1975–2001. Fish. Res. 70, 97–111 (2004).Article 

    Google Scholar 
    24.Lloret, J. et al. Spearfishing pressure on fish communities in rocky coastal habitats in a Mediterranean marine protected area. Fish. Res. 94, 84–91 (2008).Article 

    Google Scholar 
    25.Harmelin, J.-G. Statut du corb (Sciaena umbra) en méditerranée. In Les Espèces Marines à Protéger en Méditerranée (eds Boudouresque, C. F. et al.) 219–227 (GiS Posidonie Publ., 1991).
    Google Scholar 
    26.Mayol, J., Grau, A. M., Riera, F. & Oliver, J. Llista Ver-mella dels Peixos de les Balears (2000).
    Google Scholar 
    27.Chao, L. The IUCN Red List of Threatened Species 2020: e.T198707A130230194Sciaena umbra (2020). https://doi.org/10.2305/IUCN.UK.2020-2.RLTS.T198707A130230194.en.28.Forcada, A. et al. Effects of habitat on spillover from marine protected areas to artisanal fisheries. Mar. Ecol. Prog. Ser. 379, 197–211 (2009).ADS 
    Article 

    Google Scholar 
    29.Franco, A. D., Bussotti, S., Navone, A., Panzalis, P. & Guidetti, P. Evaluating effects of total and partial restrictions to fishing on Mediterranean rocky-reef fish assemblages. Mar. Ecol. Prog. Ser. 387, 275–285 (2009).ADS 
    Article 

    Google Scholar 
    30.Le Préfet de la region Provence-Alpes-Côte d’Azur, Préfet de la zone de défense et de sécurité Sud, Préfet des Bouches-du-Rhône. http://www.dirm.mediterranee.developpement-durable.gouv.fr/IMG/pdf/ap_corb_med_continentale_20_dec_2018-2.pdf (Accessed 20 December 2018).31.Harmelin-Vivien, M. et al. Effects of reserve protection level on the vulnerable fish species Sciaena umbra and implications for fishing management and policy. Glob. Ecol. Conserv. 3, 279–287 (2015).Article 

    Google Scholar 
    32.Chakroun-Marzouk, N. & Ktari, M.-H. Le Corb des côtes Tunisiennes, Sciaena umbra (Sciaenidae): Cycle Sexuel, Age et Croissance 15 (2003).33.Derbal, F. & Kara, M. H. Régime Alimentaire du corb Sciaena umbra (Sciaenidae) des côtes de l’est Algérien 9 (2007).34.Engin, S. & Seyhan, K. Age, growth, sexual maturity and food composition of Sciaena umbra in the south-eastern Black Sea, Turkey. J. Appl. Ichthyol. 25, 96–99 (2009).Article 

    Google Scholar 
    35.Botsford, L. W. et al. Connectivity, sustainability, and yield: Bridging the gap between conventional fisheries management and marine protected areas. Rev. Fish Biol. Fish. 19, 69–95 (2009).Article 

    Google Scholar 
    36.Alós, J. & Cabanellas-Reboredo, M. Experimental acoustic telemetry experiment reveals strong site fidelity during the sexual resting period of wild brown meagre, Sciaena umbra. J. Appl. Ichthyol. 28, 606–611 (2012).Article 

    Google Scholar 
    37.Jadot, C., Donnay, A., Acolas, M. L., Cornet, Y. & Bégout Anras, M. L. Activity patterns, home-range size, and habitat utilization of Sarpa salpa (Teleostei: Sparidae) in the Mediterranean Sea. ICES J. Mar. Sci. 63, 128–139 (2006).Article 

    Google Scholar 
    38.Jorgensen, S. J. et al. Limited movement in blue rockfish Sebastes mystinus: Internal structure of home range. Mar. Ecol. Prog. Ser. 327, 157–170 (2006).ADS 
    Article 

    Google Scholar 
    39.Kerwath, S. E., Götz, A., Attwood, C. G., Sauer, W. H. H. & Wilke, C. G. Area utilisation and activity patterns of roman Chrysoblephus laticeps (Sparidae) in a small marine protected area. Afr. J. Mar. Sci. 29, 259–270 (2007).Article 

    Google Scholar 
    40.Collins, A. B., Heupel, M. R. & Motta, P. J. Residence and movement patterns of cownose rays Rhinoptera bonasus within a south-west Florida estuary. J. Fish Biol. 71, 1159–1178 (2007).Article 

    Google Scholar 
    41.Abecasis, D. & Erzini, K. Site fidelity and movements of gilthead sea bream (Sparus aurata) in a coastal lagoon (Ria Formosa, Portugal). Estuar. Coast. Shelf Sci. 79, 758–763 (2008).ADS 
    Article 

    Google Scholar 
    42.Afonso, P. et al. A multi-scale study of red porgy movements and habitat use, and its application to the design of marine reserve networks. In Tagging and Tracking of Marine Animals with Electronic Devices (eds Nielsen, J. L. et al.) 423–443 (Springer, 2009).Chapter 

    Google Scholar 
    43.March, D., Palmer, M., Alós, J., Grau, A. & Cardona, F. Short-term residence, home range size and diel patterns of the painted comber Serranus scriba in a temperate marine reserve. Mar. Ecol. Prog. Ser. 400, 195–206 (2010).ADS 
    Article 

    Google Scholar 
    44.Zeller, D. C. Ultrasonic telemetry: Its application to coral reef fisheries research. Fish. Bull. 97, 1058–1065 (1999).
    Google Scholar 
    45.Heupel, M. R., Semmens, J. M. & Hobday, A. J. Automated acoustic tracking of aquatic animals: Scales, design and deployment of listening station arrays. Mar. Freshw. Res. 57, 1–13 (2006).Article 

    Google Scholar 
    46.Lowe, C. G., Topping, D. T., Cartamil, D. P. & Papastamatiou, Y. P. Movement patterns, home range, and habitat utilization of adult kelp bass Paralabrax clathratus in a temperate no-take marine reserve. Mar. Ecol. Prog. Ser. 256, 205–216 (2003).ADS 
    Article 

    Google Scholar 
    47.Kaunda-Arara, B. & Rose, G. A. Homing and site fidelity in the greasy grouper Epinephelus tauvina (Serranidae) within a marine protected area in coastal Kenya. Mar. Ecol. Prog. Ser. 277, 245–251 (2004).ADS 
    Article 

    Google Scholar 
    48.Parsons, D. & Egli, D. Fish movement in a temperate marine reserve: New insights through application of acoustic tracking. Mar. Technol. Soc. J. 39, 56–63 (2005).Article 

    Google Scholar 
    49.Topping, D. T., Lowe, C. G. & Caselle, J. E. Home range and habitat utilization of adult California sheephead, Semicossyphus pulcher (Labridae), in a temperate no-take marine reserve. Mar. Biol. 147, 301–311 (2005).Article 

    Google Scholar 
    50.Pastor, J. et al. Acoustic telemetry survey of the dusky grouper (Epinephelus marginatus) in the Marine Reserve of Cerbère-Banyuls: Informations on the territoriality of this emblematic species. C.R. Biol. 332, 732–740 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.D’Anna, G., Giacalone, V. M., Pipitone, C. & Badalamenti, F. Movement pattern of white seabream, Diplodus sargus (L., 1758) (Osteichthyes, Sparidae) acoustically tracked in an artificial reef area. Ital. J. Zool. 78, 255–263 (2011).Article 

    Google Scholar 
    52.La Mesa, G., Consalvo, I., Annunziatellis, A. & Canese, S. Movement patterns of the parrotfish Sparisoma cretense in a Mediterranean marine protected area. Mar. Environ. Res. 82, 59–68 (2012).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    53.Picciulin, M. et al. Passive acoustic monitoring of Sciaena umbra on rocky habitats in the Venetian littoral zone. Fish. Res. 145, 76–81 (2013).Article 

    Google Scholar 
    54.Lenfant, P., Louisy, P. & Licari, M.-L. Recensement des Mérous bruns (Epinephelus marginatus) de la Réserve Naturelle de Cerbère-Banyuls (France, Méditerranée) Effectué en Septembre 2001, aprés 17 Années de Protection 10 (2003).55.Koeck, B., Gudefin, A., Romans, P., Loubet, J. & Lenfant, P. Effects of intracoelomic tagging procedure on white seabream (Diplodus sargus) behavior and survival. J. Exp. Mar. Biol. Ecol. 440, 1–7 (2013).Article 

    Google Scholar 
    56.Garcia, J., Mourier, J. & Lenfant, P. Spatial behavior of two coral reef fishes within a Caribbean marine protected area. Mar. Environ. Res. 109, 41–51 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Percie du Sert, N. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 18(7), e3000410. https://doi.org/10.1371/journal.pbio.3000410 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Grau, A., Linde, M. & Grau, A. M. Reproductive biology of the vulnerable species Sciaena umbra Linnaeus, 1758 (Pisces: Sciaenidae). Sci. Mar. 73, 67–81 (2009).Article 

    Google Scholar 
    59.McKinzie, M. K., Jarvis, E. T. & Lowe, C. G. Fine-scale horizontal and vertical movement of barred sand bass, Paralabrax nebulifer, during spawning and non-spawning seasons. Fish. Res. 150, 66–75 (2014).Article 

    Google Scholar 
    60.Kassambara, A. & Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses (2017).61.Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).MATH 
    Book 

    Google Scholar 
    62.Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models (2018).63.Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (Chapman and Hall/CRC, 2017).MATH 
    Book 

    Google Scholar 
    64.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2018).65.Wearmouth, V. J. & Sims, D. W. Chapter 2 sexual segregation in marine fish, reptiles, birds and mammals: Behaviour patterns, mechanisms and conservation implications. Adv. Mar. Biol. 54, 107–170 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Haraldstad, Ø. & Jonsson, B. Age and sex segregation in habitat utilization by brown trout in a Norwegian Lake. Trans. Am. Fish. Soc. 112, 27–37 (1983).Article 

    Google Scholar 
    67.L’Abée-Lund, J. H., Langeland, A., Jonsson, B. & Ugedal, O. Spatial segregation by age and size in Arctic Charr: A trade-off between feeding possibility and risk of predation. J. Anim. Ecol. 62, 160–168 (1993).Article 

    Google Scholar 
    68.Oxenford, H. A. & Hunte, W. Feeding habits of the dolphinfish (Coryphaena hippurus) in the eastern Caribbean. Sci. Mar. 63, 303–315 (1999).Article 

    Google Scholar 
    69.Sarà, G. et al. Effect of boat noise on the behaviour of bluefin tuna Thunnus thynnus in the Mediterranean Sea. Mar. Ecol. Prog. Ser. 331, 243–253 (2007).ADS 
    Article 

    Google Scholar 
    70.Codarin, A., Wysocki, L. E., Ladich, F. & Picciulin, M. Effects of ambient and boat noise on hearing and communication in three fish species living in a marine protected area (Miramare, Italy). Mar. Pollut. Bull. 58, 1880–1887 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Picciulin, M., Sebastianutto, L., Codarin, A., Calcagno, G. & Ferrero, E. A. Brown meagre vocalization rate increases during repetitive boat noise exposures: A possible case of vocal compensation. J. Acoust. Soc. Am. 132, 3118–3124 (2012).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.McCormick, M. I., Allan, B. J. M., Harding, H. & Simpson, S. D. Boat noise impacts risk assessment in a coral reef fish but effects depend on engine type. Sci. Rep. 8, 3847 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    73.Robichaud, D. & Rose, G. A. Sex differences in cod residency on a spawning ground. Fish. Res. 60, 33–43 (2003).Article 

    Google Scholar 
    74.Fiorentino, F. et al. On a spawning aggregation of the brown meagre Sciaena umbra L. 1758 (Sciaenidae, Osteichthyes) in the Maltese waters (Sicilian Channel—Central Mediterranean). Rapp. Commun. Int. Mer Médit. 36, 266 (2001).
    Google Scholar 
    75.Furukawa, S. et al. Vertical movements of Pacific bluefin tuna (Thunnus orientalis) and dolphinfish (Coryphaena hippurus) relative to the thermocline in the northern East China Sea. Fish. Res. 149, 86–91 (2014).Article 

    Google Scholar 
    76.Claireaux, G., Webber, D., Kerr, S. & Boutilier, R. Physiology and behaviour of free-swimming Atlantic cod (Gadus morhua) facing fluctuating temperature conditions. J. Exp. Biol. 198, 49–60 (1995).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Armstrong, J. B. et al. Diel horizontal migration in streams: Juvenile fish exploit spatial heterogeneity in thermal and trophic resources. Ecology 94, 2066–2075 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Bobe, J. & Labbé, C. Egg and sperm quality in fish. Gen. Comp. Endocrinol. 165, 535–548 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Pepin, P. Effect of temperature and size on development, mortality, and survival rates of the pelagic early life history stages of marine fish. Can. J. Fish. Aquat. Sci. 48, 503–518 (1991).Article 

    Google Scholar 
    80.Guevara-Fletcher, C., Alvarez, P., Sanchez, J. & Iglesias, J. Effect of temperature on the development and mortality of European hake (Merluccius merluccius L.) eggs from southern stock under laboratory conditions. J. Exp. Mar. Biol. Ecol. 476, 50–57 (2016).Article 

    Google Scholar 
    81.Dubrovský, M. et al. Multi-GCM projections of future drought and climate variability indicators for the Mediterranean region. Reg. Environ Change 14, 1907–1919 (2014).Article 

    Google Scholar 
    82.Pankhurst, N. W. & Munday, P. L. Effects of climate change on fish reproduction and early life history stages. Mar. Freshw. Res. 62, 1015–1026 (2011).CAS 
    Article 

    Google Scholar 
    83.McKenzie, D. J. et al. Conservation physiology of marine fishes: State of the art and prospects for policy. Conserv. Physiol. 4, 046 (2016).Article 

    Google Scholar 
    84.Fabi, G., Panfili, M. & Spagnolo, A. Note on feeding of Sciaena umbra L. (Asteichthyes:Sciaenidae) in the central Adriatic Sea. Rapp. Comm. Int. Mer Médit. 35, 426 (1998).
    Google Scholar 
    85.Fabi, G., Manoukian, S. & Spagnolo, A. Feeding behavior of three common fishes at an artificial reef in the northern Adriatic Sea. Bull. Mar. Sci. 78, 39–56 (2006).
    Google Scholar 
    86.Ramcharitar, J., Gannon, D. P. & Popper, A. N. Bioacoustics of fishes of the family Sciaenidae (croakers and drums). Trans. Am. Fish. Soc. 135, 1409–1431 (2006).Article 

    Google Scholar 
    87.Mesa, M. L., Colella, S., Giannetti, G. & Arneri, E. Age and growth of brown meagre Sciaena umbra (Sciaenidae) in the Adriatic Sea. Aquat. Living Resour. 21, 153–161 (2008).Article 

    Google Scholar 
    88.Picciulin, M. et al. Diagnostics of nocturnal calls of Sciaena umbra (L., fam. Sciaenidae) in a nearshore Mediterranean marine reserve. Bioacoustics 22, 109–120 (2013).Article 

    Google Scholar 
    89.Schmidt, M. B. & Gassner, H. Influence of scuba divers on the avoidance reaction of a dense vendace (Coregonus albula L.) population monitored by hydroacoustics. Fish. Res. 82, 131–139 (2006).Article 

    Google Scholar 
    90.Moffitt, E. A., Botsford, L. W., Kaplan, D. M. & O’Farrell, M. R. Marine reserve networks for species that move within a home range. Ecol. Appl. 19, 1835–1847 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Plant-soil feedbacks help explain biodiversity-productivity relationships

    1.Tilman, D. et al. The influence of functional diversity and composition on ecosystem processes. Science 277, 1300–1302 (1997).CAS 
    Article 

    Google Scholar 
    2.Cardinale, B. J. et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl Acad. Sci. USA 104, 18123–18128 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Van Ruijven, J. & Berendse, F. Diversity-productivity relationships: Initial effects, long-term patterns, and underlying mechanisms. Proc. Natl Acad. Sci. USA 102, 695–700 (2005).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    4.Jochum, M. et al. The results of biodiversity–ecosystem functioning experiments are realistic. Nat. Ecol. Evol. 4, 1485–1494 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Jing, J., Bezemer, T. M. & van der Putten, W. H. Complementarity and selection effects in early and mid-successional plant communities are differentially affected by plant-soil feedback. J. Ecol. 103, 641–647 (2015).Article 

    Google Scholar 
    6.Tilman, D., Hill, J. & Lehman, C. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314, 1598–1600 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Mueller, K. E., Tilman, D., Fornara, D. A. & Hobbie, S. E. Root depth distribution and the diversity–productivity relationship in a long-term grassland experiment. Ecology 94, 787–793 (2013).Article 

    Google Scholar 
    8.Hector, A., Bazeley-White, E., Loreau, M., Otway, S. & Schmid, B. Overyielding in grassland communities: testing the sampling effect hypothesis with replicated biodiversity experiments. Ecol. Lett. 5, 502–511 (2002).Article 

    Google Scholar 
    9.Barry, K. E. et al. The future of complementarity: disentangling causes from consequences. Trends Ecol. Evol. 34, 167–180 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Kulmatiski, A., Beard, K. H. & Heavilin, J. Plant-soil feedbacks provide an additional explanation for diversity-productivity relationships. Proc. R. Soc. B Biol. Sci. 279, 3020–3026 (2012).Article 

    Google Scholar 
    11.Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Tedersoo, L., Bahram, M. & Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 367, 6480 (2020).Article 
    CAS 

    Google Scholar 
    13.Maron, J. L., Marler, M., Klironomos, J. N. & Cleveland, C. C. Soil fungal pathogens and the relationship between plant diversity and productivity. Ecol. Lett. 14, 36–41 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Wang, G. et al. Soil microbiome mediates positive plant diversity‐productivity relationships in late successional grassland species. Ecol. Lett. 22, 13273 (2019).Article 

    Google Scholar 
    15.Wright, A. J., Wardle, D. A., Callaway, R. & Gaxiola, A. The overlooked role of facilitation in biodiversity experiments. Trends Ecol. Evol. 32, 383–390 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Bever, J. D., Platt, T. G. & Morton, E. R. Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu. Rev. Microbiol. 66, 265–283 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Bauer, J. T., Koziol, L. & Bever, J. D. Local adaptation of mycorrhizae communities changes plant community composition and increases aboveground productivity. Oecologia 192, 735–744 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Bever, J. D. Feeback between plants and their soil communities in an old field community. Ecology 75, 1965–1977 (1994).Article 

    Google Scholar 
    19.Hendriks, M. et al. Independent variations of plant and soil mixtures reveal soil feedback effects on plant community overyielding. J. Ecol. 101, 287–297 (2013).Article 

    Google Scholar 
    20.Zuppinger-Dingley, D. L., Flynn, D. F. B., De Deyn, G. B., Petermann, J. S. & Schmid, B. Plant selection and soil legacy enhance long-term biodiversity effects. Ecology 97, 15–0599.1 (2015).
    Google Scholar 
    21.Mommer, L. et al. Lost in diversity: the interactions between soil-borne fungi, biodiversity and plant productivity. N. Phytol. 218, 542–553 (2018).Article 

    Google Scholar 
    22.Guerrero‐Ramírez, N. R., Reich, P. B., Wagg, C., Ciobanu, M. & Eisenhauer, N. Diversity‐dependent plant–soil feedbacks underlie long‐term plant diversity effects on primary productivity. Ecosphere 10, e02704 (2019).Article 

    Google Scholar 
    23.van Ruijven, J., Ampt, E., Francioli, D. & Mommer, L. Do soil-borne fungal pathogens mediate plant diversity–productivity relationships? Evidence and future opportunities. J. Ecol. 108, 1810–1821 (2020).Article 

    Google Scholar 
    24.Schnitzer, S. A. et al. Soil microbes drive the classic plant diversity–productivity pattern. Ecology 92, 296–303 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Lekberg, Y. et al. Relative importance of competition and plant-soil feedback, their synergy, context dependency and implications for coexistence. Ecol. Lett. 21, 1268–1281 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Cowles, J. Mechanisms of Coexistence: Implications for Biodiversity-Ecosystem Functioning Relationships in a Changing World. Dissertation, The University of Minnesota (2015).27.Forero, L. E., Grenzer, J., Heinze, J., Schittko, C. & Kulmatiski, A. Greenhouse- and field-measured plant-soil feedbacks are not correlated. Front. Environ. Sci. 7, 184 (2019).Article 

    Google Scholar 
    28.Kulmatiski, A. & Kardol, P. in Getting Plant—Soil Feedbacks out of the Greenhouse: Experimental and Conceptual Approaches 449–472 (Springer, 2008).29.Pernilla Brinkman, E., Van der Putten, W. H., Bakker, E. J. & Verhoeven, K. J. F. Plant-soil feedback: experimental approaches, statistical analyses and ecological interpretations. J. Ecol. 98, 1063–1073 (2010).Article 

    Google Scholar 
    30.van der Putten, W. H. et al. Plant-soil feedbacks: the past, the present and future challenges. J. Ecol. 101, 265–276 (2013).Article 

    Google Scholar 
    31.Rinella, M. J. & Reinhart, K. O. Toward more robust plant-soil feedback research. Ecology 99, 550–556 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Crawford, K. M. et al. When and where plant‐soil feedback may promote plant coexistence: a meta‐analysis. Ecol. Lett. 22, 13278 (2019).Article 

    Google Scholar 
    33.Clark, A. T. et al. How to estimate complementarity and selection effects from an incomplete sample of species. Methods Ecol. Evol. 10, 2141–2152 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Anacker, B. L., Klironomos, J. N., Maherali, H., Reinhart, K. O. & Strauss, S. Y. Phylogenetic conservatism in plant-soil feedback and its implications for plant abundance. Ecol. Lett. 17, 1613–1621 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Mehrabi, Z. & Tuck, S. L. Relatedness is a poor predictor of negative plant–soil feedbacks. N. Phytol. 205, 1071–1075 (2015).Article 

    Google Scholar 
    36.Kulmatiski, A., Beard, K. H., Stevens, J. R. & Cobbold, S. M. Plant-soil feedbacks: a meta-analytical review. Ecol. Lett. 11, 980–992 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Beals, K. K. et al. Predicting plant-soil feedback in the field: meta-analysis reveals that competition and environmental stress differentially influence psf. Front. Ecol. Evol. 8, 191 (2020).Article 

    Google Scholar 
    38.Kos, M., Tuijl, M. A. B., de Roo, J., Mulder, P. P. J. & Bezemer, T. M. Species-specific plant-soil feedback effects on above-ground plant-insect interactions. J. Ecol. 103, 904–914 (2015).CAS 
    Article 

    Google Scholar 
    39.Bukowski, A. R. & Petermann, J. S. Intraspecific plant-soil feedback and intraspecific overyielding in Arabidopsis thaliana. Ecol. Evol. 4, 2533–2545 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Tilman, D., Wedin, D. & Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720 (1996).CAS 
    Article 

    Google Scholar 
    41.Fornara, D. A. & Tilman, D. Ecological mechanisms associated with the positive diversity–productivity relationship in an N-limited grassland. Ecology 90, 408–418 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Laughlin, D. C. et al. The hierarchy of predictability in ecological restoration: are vegetation structure and functional diversity more predictable than community composition? J. Appl. Ecol. 54, 1058–1069 (2017).Article 

    Google Scholar 
    43.Metcalfe, H., Milne, A. E., Deledalle, F. & Storkey, J. Using functional traits to model annual plant community dynamics. Ecology 101, e03167 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Moulin, T., Perasso, A., Calanca, P. & Gillet, F. DynaGraM: a process-based model to simulate multi-species plant community dynamics in managed grasslands. Ecol. Modell. 439, 109345 (2021).Article 

    Google Scholar 
    45.Putten, W. H., Bradford, M. A., Pernilla Brinkman, E., Voorde, T. F. J. & Veen, G. F. Where, when and how plant–soil feedback matters in a changing world. Funct. Ecol. 30, 1109–1121 (2016).Article 

    Google Scholar 
    46.Eisenhauer, N., Reich, P. B. & Scheu, S. Increasing plant diversity effects on productivity with time due to delayed soil biota effects on plants. Basic Appl. Ecol. 13, 571–578 (2012).Article 

    Google Scholar 
    47.Hawkes, C. V., Kivlin, S. N., Du, J. & Eviner, V. T. The temporal development and additivity of plant-soil feedback in perennial grasses. Plant Soil 369, 141–150 (2013).CAS 
    Article 

    Google Scholar 
    48.Latz, E., Eisenhauer, N., Rall, B. C., Scheu, S. & Jousset, A. Unravelling linkages between plant community composition and the pathogen-suppressive potential of soils. Sci. Rep. 6, 1–10 (2016).Article 
    CAS 

    Google Scholar 
    49.Chung, Y. A. & Rudgers, J. A. Plant–soil feedbacks promote negative frequency dependence in the coexistence of two aridland grasses. Proc. R. Soc. B Biol. Sci. 283 (2016).50.Mahaut, L., Fort, F., Violle, C. & Freschet, G. T. Multiple facets of diversity effects on plant productivity: species richness, functional diversity, species identity and intraspecific competition. Funct. Ecol. 34, 287–298 (2020).Article 

    Google Scholar 
    51.Barry, K. E. et al. Limited evidence for spatial resource partitioning across temperate grassland biodiversity experiments. Ecology 101, 2905 (2020).Article 

    Google Scholar 
    52.Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).Article 

    Google Scholar 
    53.Pillai, P. & Gouhier, T. C. Not even wrong: the spurious measurement of biodiversity’s effects on ecosystem functioning. Ecology 100, e02645 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Manning, P. et al. Transferring biodiversity-ecosystem function research to the management of ‘real-world’ ecosystems. Adv. Ecol. Res. 61, 323–356 (2019).Article 

    Google Scholar 
    55.Fargione, J. et al. From selection to complementarity: Shifts in the causes of biodiversity-productivity relationships in a long-term biodiversity experiment. Proc. R. Soc. B Biol. Sci. 274, 871–876 (2007).Article 

    Google Scholar 
    56.Helander, M. et al. Decreases mycorrhizal colonization and affects plant-soil feedback. Sci. Total Environ. 642, 285–291 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–845 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Cadotte, M. W., Cavender-Bares, J., Tilman, D. & Oakley, T. H. Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS ONE 4, e5695 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Kulmatiski, A., Heavilin, J. & Beard, K. H. Testing predictions of a three-species plant-soil feedback model. J. Ecol. 99, 542–550 (2011).
    Google Scholar 
    60.Kulmatiski, A., Beard, K. H., Grenzer, J., Forero, L. & Heavilin, J. Using plant-soil feedbacks to predict plant biomass in diverse communities. Ecology 97, 2064–2073 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Invasive Lactuca serriola seeds contain endophytic bacteria that contribute to drought tolerance

    1.Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E. V. L. & Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64, 807–838 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Reinhold-Hurek, B. & Hurek, T. Living inside plants: bacterial endophytes. Curr. Opin. Plant Biol. 14, 435–443 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Naveed, M., Mitter, B., Reichenauer, T. G., Wieczorek, K. & Sessitsch, A. Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp FD17. Environ. Exp. Bot. 97, 30–39 (2014).CAS 
    Article 

    Google Scholar 
    4.Santoyo, G., Moreno-Hagelsieb, G., del Carmen Orozco-Mosqueda, M. & Glick, B. R. Plant growth-promoting bacterial endophytes. Microbiol. Res. 183, 92–99 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Ali, S., Charles, T. C. & Glick, B. R. Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol. Biochem. 80, 160–167 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Weyens, N., van der Lelie, D., Taghavi, S. & Vangronsveld, J. Phytoremediation: plant–endophyte partnerships take the challenge. Curr. Opin. Biotechnol. 20, 248–254 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A. & Dufresne, A. The importance of the microbiome of the plant holobiont. New Phytol. 206, 1196–1206 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Card, S. D. et al. Beneficial endophytic microorganisms of Brassica—A review. Biol. Control 90, 102–112 (2015).Article 

    Google Scholar 
    9.Shahzad, R., Khan, A. L., Bilal, S., Asaf, S. & Lee, I. J. What Is there in seeds? Vertically transmitted endophytic resources for sustainable improvement in plant growth. Front. Plant Sci. 9, 24. https://doi.org/10.3389/fpls.2018.00024 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Truyens, S., Weyens, N., Cuypers, A. & Vangronsveld, J. Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ. Microbiol. Rep. 7, 40–50 (2015).Article 

    Google Scholar 
    11.Catford, J. A., Jansson, R. & Nilsson, C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers. Distrib. 15, 22–40 (2009).Article 

    Google Scholar 
    12.van Kleunen, M., Dawson, W. & Maurel, N. Characteristics of successful alien plants. Mol. Ecol. 24, 1954–1968 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Coats, V. C. & Rumpho, M. E. The rhizosphere microbiota of plant invaders: an overview of recent advances in the microbiomics of invasive plants. Front. Microbiol. 5, 368. https://doi.org/10.3389/fmicb.2014.00368 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Richardson, D. M., Allsopp, N., D’antonio, C. M., Milton, S. J. & Rejmánek, M. Plant invasions—the role of mutualisms. Biol. Rev. 75, 65–93 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Pringle, A. et al. Mycorrhizal symbioses and plant invasions. Annu. Rev. Ecol. Evol. Syst. 40, 699–715 (2009).Article 

    Google Scholar 
    16.Sun, Z.-K. & He, W.-M. Evidence for enhanced mutualism hypothesis: Solidago canadensis plants from regular soils perform better. PLoS ONE 5, e15418. https://doi.org/10.1371/journal.pone.0015418 (2010).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Kowalski, K. P. et al. Advancing the science of microbial symbiosis to support invasive species management: a case study on Phragmites in the Great Lakes. Front. Microbiol. 6, 95. https://doi.org/10.3389/fmicb.2015.00095 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Dai, Z. C. et al. Different growth promoting effects of endophytic bacteria on invasive and native clonal plants. Front. Plant Sci. 7, 706. https://doi.org/10.3389/fpls.2016.00706 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Rout, M. E. et al. Bacterial endophytes enhance competition by invasive plants. Am. J. Bot. 100, 1726–1737 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Soares, M. A. et al. Functional role of bacteria from invasive Phragmites australis in promotion of host growth. Microb. Ecol. 72, 407–417 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Kim, Y.-H., Kil, J.-H., Hwang, S.-M. & Lee, C.-W. Spreading and distribution of Lactuca scariola, invasive alien plant, by habitat types in Korea. Weed Turfgrass Sci. 2, 138–151 (2013).Article 

    Google Scholar 
    22.Moon, S.-I. et al. Isolation and characterization of bio-active materials from prickly lettuce (Lactuca serriola). J. Life Sci. 19, 206–212 (2009).Article 

    Google Scholar 
    23.Lebeda, A. et al. Acquisition and ecological characterization of Lactuca serriola L germplasm collected in the Czech Republic, Germany, the Netherlands and United Kingdom. Genet. Resour. Crop Evol. 54, 555–562 (2007).Article 

    Google Scholar 
    24.Mallory-Smith, C. A., Thill, D. C. & Dial, M. J. Identification of sulfonylurea herbicide-resistant prickly lettuce (Lactuca serriola). Weed Technol. 4, 163–168 (1990).Article 

    Google Scholar 
    25.Glick, B. R. Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012, 963401. https://doi.org/10.6064/2012/963401 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Costa, O. Y. A., Raaijmakers, J. M. & Kuramae, E. E. Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front. Microbiol. 9, 1636. https://doi.org/10.3389/fmicb.2018.01636 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Alami, Y., Achouak, W., Marol, C. & Heulin, T. Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobiums strain isolated from sunflower roots. Appl. Environ. Microbiol. 66, 3393–3398 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Sandhya, V., Grover, M., Reddy, G. & Venkateswarlu, B. Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol. Fertility Soils 46, 17–26 (2009).CAS 
    Article 

    Google Scholar 
    29.Vardharajula, S. Exopolysaccharide production by drought tolerant Bacillus spp and effect on soil aggregation under drought stress. J. Microbiol. Biotechnol. Food Sci. 9, 51–57 (2020).
    Google Scholar 
    30.Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 70 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Kang, S. H. et al. Two bacterial entophytes eliciting both plant growth promotion and plant defense on pepper (Capsicum annuum L). J. Microbiol. Biotechnol. 17, 96–103 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Panwar, M., Tewari, R. & Nayyar, H. Native halo-tolerant plant growth promoting rhizobacteria Enterococcus and Pantoea sp. improve seed yield of Mungbean (Vigna radiata L) under soil salinity by reducing sodium uptake and stress injury. Physiol. Mol. Biol. Plants 22, 445–459 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Selvakumar, G. et al. Characterization of a cold-tolerant plant growth-promoting bacterium Pantoea dispersa 1A isolated from a sub-alpine soil in the North Western Indian Himalayas. World J. Microbiol. Biotechnol. 24, 955–960 (2008).CAS 
    Article 

    Google Scholar 
    34.Egamberdieva, D. et al. High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ. Microbiol. 10, 1–9 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Pereira, S., Castro, P. & Research, P. Diversity and characterization of culturable bacterial endophytes from Zea mays and their potential as plant growth-promoting agents in metal-degraded soils. Environ. Sci. Pollut. Res. 21, 14110–14123 (2014).CAS 
    Article 

    Google Scholar 
    36.Sun, Z. et al. IAA producing Bacillus altitudinis alleviates iron stress in Triticum aestivum L seedling by both bioleaching of iron and up-regulation of genes encoding ferritins. Plant Soil 419, 1–11 (2017).CAS 
    Article 

    Google Scholar 
    37.Pierik, R., Tholen, D., Poorter, H., Visser, E. J. W. & Voesenek, L. A. C. J. The Janus face of ethylene: growth inhibition and stimulation. Trends Plant Sci. 11, 176–183 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Glick, B. R. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 169, 30–39 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Cardinale, M., Grube, M., Erlacher, A., Quehenberger, J. & Berg, G. Bacterial networks and co-occurrence relationships in the lettuce root microbiota. Environ. Microbiol. 17, 239–252 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Yu, Y.-C., Yum, S.-J., Jeon, D.-Y. & Jeong, H.-G. Analysis of the microbiota on lettuce (Lactuca sativa L.) cultivated in South Korea to identify foodborne pathogens. J. Microbiol. Biotechnol. 28, 1318–1331 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Brady, C. et al. Isolation of Enterobacter cowanii from Eucalyptus showing symptoms of bacterial blight and dieback in Uruguay. Lett. Appl. Microbiol. 49, 461–465 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Chimwamurombe, P. M., Grönemeyer, J. L. & Reinhold-Hurek, B. Isolation and characterization of culturable seed-associated bacterial endophytes from gnotobiotically grown Marama bean seedlings. FEMS Microbiol. Ecol. 92, fiw083. https://doi.org/10.1093/femsec/fiw083 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Gao, H. et al. Production exopolysaccharide from Kosakonia cowanii LT-1 through solid-state fermentation and its application as a plant growth promoter. Int. J. Biol. Macromol. 150, 955–964 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Wang, L. et al. Development of sugarcane resource for efficient fermentation of exopolysaccharide by using a novel strain of Kosakonia cowanii LT-1. Bioresour. Technol. 280, 247–254 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Borlee, B. R. et al. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol. Microbiol. 75, 827–842 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Huang, X.-F. et al. Mitsuaria sp. and Burkholderia sp. from Arabidopsis rhizosphere enhance drought tolerance in Arabidopsis thaliana and maize (Zea mays L.). Plant Soil 419, 523–539 (2017).CAS 
    Article 

    Google Scholar 
    47.Marulanda, A., Barea, J.-M. & Azcón, R. Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J. Plant Growth Regul. 28, 115–124 (2009).CAS 
    Article 

    Google Scholar 
    48.Niu, X., Song, L., Xiao, Y. & Ge, W. Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Front. Microbiol. 8, 2580. https://doi.org/10.3389/fmicb.2017.02580 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Sandhya, V., Ali, S. Z., Grover, M., Reddy, G. & Venkateswarlu, B. Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regulat. 62, 21–30 (2010).CAS 
    Article 

    Google Scholar 
    50.Chen, C. et al. Pantoea alhagi, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat. Sci. Rep. 7, 41564. https://doi.org/10.1038/srep41564 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Mönchgesang, S. et al. Natural variation of root exudates in Arabidopsis thaliana-linking metabolomic and genomic data. Sci. Rep. 6, 1–11 (2016).Article 
    CAS 

    Google Scholar 
    52.Zhang, N. et al. Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant Soil 374, 689–700 (2014).CAS 
    Article 

    Google Scholar 
    53.Johnston-Monje, D. & Raizada, M. N. Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS ONE 6, e20396. https://doi.org/10.1371/journal.pone.0020396 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Coombs, J. T. & Franco, C. M. M. Isolation and identification of Actinobacteria from surface-sterilized wheat roots. Appl. Environ. Microbiol. 69, 5603–5608. https://doi.org/10.1128/aem.69.9.5603-5608.2003 (2003).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Mehta, S. & Nautiyal, C. S. An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr. Microbiol. 43, 51–56 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Milagres, A. M., Machuca, A. & Napoleao, D. Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. J. Microbiol. Methods 37, 1–6 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Dworkin, M. & Foster, J. Experiments with some microorganisms which utilize ethane and hydrogen. J. Bacteriol. 75, 592–603 (1958).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Singh, J. K., Adams, F. G. & Brown, M. H. Diversity and function of capsular polysaccharide in Acinetobacter baumannii. Front. Microbiol. 9, 3301 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Polak-Berecka, M., Waśko, A., Skrzypek, H. & Kreft, A. Production of exopolysaccharides by a probiotic strain of Lactobacillus rhamnosus: biosynthesis and purification methods. Acta Aliment. 42, 220–228 (2013).CAS 
    Article 

    Google Scholar 
    62.Tschaplinski, T. J. et al. The nature of the progression of drought stress drives differential metabolomic responses in Populus deltoides. Ann. Bot. 124, 617–626 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Michel, B. E. & Kaufmann, M. R. The osmotic potential of polyethylene glycol 6000. Plant Physiol. 51, 914–916 (1973).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Hanna, A., Berg, M., Stout, V. & Razatos, A. Role of capsular colanic acid in adhesion of uropathogenic Escherichia coli. Appl. Environ. Microbiol. 69, 4474–4481 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Liu, S.-B. et al. Structure and ecological roles of a novel exopolysaccharide from the Arctic sea ice bacterium Pseudoalteromonas sp. strain SM20310. Appl. Environ. Microbiol. 79, 224–230 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. & Smith, F. Colorimetric method for determination of sugars and related substances. Analyt. Chem. 28, 350–356 (1956).CAS 
    Article 

    Google Scholar 
    67.Yahaghi, Z., Shirvani, M., Nourbakhsh, F. & Pueyo, J. J. Uptake and effects of lead and zinc on alfalfa (Medicago sativa L.) seed germination and seedling growth: Role of plant growth promoting bacteria. S. Afr. J. Bot. 124, 573–582 (2019).CAS 
    Article 

    Google Scholar 
    68.Zhang, Z. & Huang, R. Analysis of malondialdehyde, chlorophyll proline, soluble sugar, and glutathione content in Arabidopsis seedling. Bio-Protoc. 3, e817 (2013).
    Google Scholar 
    69.Türkan, I., Bor, M., Özdemir, F. & Koca, H. Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Sci. 168, 223–231 (2005).Article 
    CAS 

    Google Scholar  More