More stories

  • in

    A novel system for intensive Diadema antillarum propagation as a step towards population enhancement

    1.Hughes, T. P., Reed, D. C. & Boyle, M. J. Herbivory on coral reefs: community structure following mass mortalities of sea urchins. J. Exp. Mar. Biol. Ecol. 113, 39–59 (1987).Article 

    Google Scholar 
    2.Jackson, J., Donovan, M., Cramer, K. & Lam, V. Status and trends of Caribbean coral reefs (Global Coral Reef Monitoring Network, IUCN, 2014).
    Google Scholar 
    3.Goldberg, J. & Wilkinson, C. Global threats to coral reefs: coral bleaching, global climate change, disease, predator plagues, and invasive species. Status Coral Reefs World 2004(1), 67–92 (2004).
    Google Scholar 
    4.Abelson, A. et al. Upgrading marine ecosystem restoration using ecological-social concepts. Bioscience 66, 156–163 (2016).PubMed 
    Article 

    Google Scholar 
    5.Conservation International. Economic values of coral reefs, mangroves, and seagrasses: A global compilation. Center for Applied Biodiversity Science, Conservation International (2008).6.Rocha, J., Peixe, L., Gomes, N. C. M. & Calado, R. Cnidarians as a source of new marine bioactive compounds—an overview of the last decade and future steps for bioprospecting. Mar. Drugs 9, 1860–1886 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Storlazzi, C. D. et al. Rigorously Valuing the Role of U. S. Coral Reefs in Coastal Hazard Risk Reduction. No. 2019–1027. US Geological Survey (2019).8.Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Possingham, H. P., Bode, M. & Klein, C. J. Optimal conservation outcomes require both restoration and protection. PLoS Biol. 13, e1002052 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    10.Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Greenstein, B. J., Curran, H. A. & Pandolfi, J. M. Shifting ecological baselines and the demise of Acropora cervicornis in the western North Atlantic and Caribbean Province: a pleistocene perspective. Coral Reefs 17, 249–261 (1998).Article 

    Google Scholar 
    12.Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science 301, 958–960 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Osinga, R. et al. The biology and economics of coral growth. Mar. Biotechnol. 13, 658–671 (2011).CAS 
    Article 

    Google Scholar 
    14.Leal, M. C., Ferrier-Pagès, C., Petersen, D. & Osinga, R. Coral aquaculture: applying scientific knowledge to ex situ production. Rev. Aquac. 8, 136–153 (2016).Article 

    Google Scholar 
    15.Lirman, D. & Schopmeyer, S. Ecological solutions to reef degradation: optimizing coral reef restoration in the Caribbean and Western Atlantic. PeerJ 2016, e2597 (2016).Article 

    Google Scholar 
    16.Barton, J. A., Willis, B. L. & Hutson, K. S. Coral propagation: a review of techniques for ornamental trade and reef restoration. Rev. Aquac. 9, 238–256 (2017).Article 

    Google Scholar 
    17.Boström-Einarsson, L. et al. Coral restoration—a systematic review of current methods, successes, failures and future directions. PLoS ONE 15, e0226631 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Rinkevich, B. Restoration strategies for coral reefs damaged by recreational activities: the use of sexual and asexual recruits. Restor. Ecol. 3, 241–251 (1995).Article 

    Google Scholar 
    19.Young, C. N., Schopmeyer, S. A. & Lirman, D. A review of reef restoration and coral propagation using the threatened genus Acropora in the Caribbean and western Atlantic. Bull. Mar. Sci. 88, 1075–1098 (2012).Article 

    Google Scholar 
    20.Rinkevich, B. Rebuilding coral reefs: does active reef restoration lead to sustainable reefs?. Curr. Opin. Environ. Sustain. 7, 28–36 (2014).Article 

    Google Scholar 
    21.Patterson, J. T. The growing role of aquaculture in ecosystem restoration. Restor. Ecol. 27, 938–941 (2019).Article 

    Google Scholar 
    22.Schopmeyer, S. A. et al. In situ coral nurseries serve as genetic repositories for coral reef restoration after an extreme cold-water event. Restor. Ecol. 20, 696–703 (2012).Article 

    Google Scholar 
    23.Miller, M. W., Kerr, K. & Williams, D. E. Reef-scale trends in Florida Acropora spp. abundance and the effects of population enhancement. PeerJ 2016, e2523 (2016).Article 

    Google Scholar 
    24.Ware, M. et al. Survivorship and growth in staghorn coral (Acropora cervicornis) outplanting projects in the Florida Keys National Marine Sanctuary. PLoS ONE 15, e0231817 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Ogden, J. Carbonate-sediment production by parrot fish and sea urchins on Caribbean reefs: reef biota. Stud. Geol. 4, 281–288 (1977).CAS 

    Google Scholar 
    26.Sammarco, P. W. Echinoid grazing as a structuring force in coral communities: whole reef manipulations. J. Exp. Mar. Biol. Ecol. 61, 31–55 (1982).Article 

    Google Scholar 
    27.Foster, S. A. The relative impacts of grazing by Caribbean coral reef fishes and Diadema: effects of habitat and surge. J. Exp. Mar. Biol. Ecol. 105, 1–20 (1987).Article 

    Google Scholar 
    28.Ogden, J. C. & Lobel, P. S. The role of herbivorous fishes and urchins in coral reef communities. Environ. Biol. Fishes 3, 49–63 (1978).Article 

    Google Scholar 
    29.Perry, C. T. et al. Changing dynamics of Caribbean reef carbonate budgets: emergence of reef bioeroders as critical controls on present and future reef growth potential. Proc. R. Soc. B Biol. Sci. 281, 20142018 (2014).Article 

    Google Scholar 
    30.Precht, L. & Precht, W. The sea urchin Diadema antillarum—keystone herbivore or redundant species?. PeerJ PrePrints 3, e1565v1 (2015).
    Google Scholar 
    31.Hughes, T. P., Graham, N. A. J., Jackson, J. B. C., Mumby, P. J. & Steneck, R. S. Rising to the challenge of sustaining coral reef resilience. Trends Ecol. Evol. 25, 633–642 (2010).PubMed 
    Article 

    Google Scholar 
    32.Lessios, H. A. The Great Diadema antillarum die-off: 30 years later. Ann. Rev. Mar. Sci. 8, 267–283 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Lessios, H. A., Glynn, P. W. & Robertson, D. R. Mass mortalities of coral reef organisms. Science 222, 715 (1983).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Lessios, H. A., Robertson, D. R. & Cubit, J. D. Spread of Diadema mass mortality through the Caribbean. Science 226, 335–337 (1984).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Lessios, H. A. et al. Mass mortality of Diadema antillarum on the Caribbean coast of Panama. Coral Reefs 3, 173–182 (1984).ADS 
    Article 

    Google Scholar 
    36.Bak, R., Carpay, M. & de Ruyter van Steveninck, E. Densities of the sea urchin Diadema antillarum before and after mass mortalities on the coral reefs of Curagao. Mar. Ecol. Prog. Ser. 17, 105–108 (1984).ADS 
    Article 

    Google Scholar 
    37.Hughes, T. P. Mass mortality of the echinoid Diadema antillarum Philippi in Jamaica. Bull. Mar. Sci. 36, 377–384 (1985).
    Google Scholar 
    38.Hunte, W., Côté, I. & Tomascik, T. On the dynamics of the mass mortality of Diadema antillarum in Barbados. Coral Reefs 4, 135–139 (1986).ADS 
    Article 

    Google Scholar 
    39.Lessios, H. A. Mass mortality of Diadema antillarum in the Caribbean: what have we learned?. Annu. Rev. Ecol. Syst. 19, 371–393 (1988).Article 

    Google Scholar 
    40.Carpenter, R. C. Mass mortality of a Caribbean sea urchin: immediate effects on community metabolism and other herbivores. Proc. Natl. Acad. Sci. 85, 511–514 (1988).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Carpenter, R. C. Mass mortality of Diadema antillarum—II. Effects on population densities and grazing intensity of parrotfishes and surgeonfishes. Mar. Biol. 104, 79–86 (1990).Article 

    Google Scholar 
    42.Carpenter, R. C. Mass mortality of Diadema antillarum—I. Long-term effects on sea urchin population-dynamics and coral reef algal communities. Mar. Biol. 104, 67–77 (1990).Article 

    Google Scholar 
    43.Levitan, D. R. Algal-urchin biomass responses following mass mortality of Diadema antillarum Philippi at Saint John, U.S. Virgin Islands. J. Exp. Mar. Biol. Ecol. 119, 167–178 (1988).Article 

    Google Scholar 
    44.Lessios, H. A. Diadema antillarum 10 years after mass mortality: still rare, despite help from a competitor. Proc. R. Soc. B Biol. Sci. 259, 331–337 (1995).ADS 
    Article 

    Google Scholar 
    45.Miller, R. J., Adams, A. J., Ogden, N. B., Ogden, J. C. & Ebersole, J. P. Diadema antillarum 17 years after mass mortality: is recovery beginning on St. Croix?. Coral Reefs 22, 181–187 (2003).Article 

    Google Scholar 
    46.National Marine Fisheries Service. Recovery plan for elkhorn coral (Acropora palmata) and staghorn corals (A. cervicornis). National Oceanic and Atmospheric Administration (2015).47.Rogers, A. & Lorenzen, K. Does slow and variable recovery of Diadema antillarum on Caribbean fore-reefs reflect density-dependent habitat selection?. Front. Mar. Sci. 3, 63 (2016).Article 

    Google Scholar 
    48.Eckert, G. Larval development, growth and morphology of the sea urchin Diadema antillarum. Bull. Mar. Sci. 63, 443–451 (1998).
    Google Scholar 
    49.Leber, K. et al. Developing restoration methods to aid in recovery of a key herbivore, Diadema antillarum, on Florida coral reefs. Mote Marine Laboratory Technical Report No. 1347 (2009).50.Moe, M. Breeding the West Indian sea egg: Tripneustes ventricosus. CORAL Mag. 11, 80–94 (2014).
    Google Scholar 
    51.Harrold, C., Lisin, S., Light, K. H. & Tudor, S. Isolating settlement from recruitment of sea urchins. J. Exp. Mar. Biol. Ecol. 147, 81–94 (1991).Article 

    Google Scholar 
    52.Lambert, D. M. & Harris, L. G. Larval settlement of the green sea urchin, Strongylocentrotus droebachiensis, in the southern Gulf of Maine. Invertebr. Biol. 119, 403–409 (2005).Article 

    Google Scholar 
    53.McBride, S. C. Sea urchin aquaculture. Am. Fish. Soc. Symp. 2005, 179–208 (2005).
    Google Scholar 
    54.Mos, B., Cowden, K. L., Nielsen, S. J. & Dworjanyn, S. A. Do cues matter? Highly inductive settlement cues don’t ensure high post-settlement survival in sea urchin aquaculture. PLoS ONE 6, e28054 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Bielmyer, G. K., Brix, K. V., Capo, T. R. & Grosell, M. The effects of metals on embryo-larval and adult life stages of the sea urchin, Diadema antillarum. Aquat. Toxicol. 74, 254–263 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Nadella, S. R. et al. Toxicity of lead and zinc to developing mussel and sea urchin embryos: critical tissue residues and effects of dissolved organic matter and salinity. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 158, 72–83 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Dautov, S. S. & Dautova, T. N. The larvae of Diadema setosum (Leske, 1778) (Camarodonta: Diadematidae) from South China Sea. Invertebr. Reprod. Dev. 60, 290–296 (2016).Article 

    Google Scholar 
    58.Huggett, M. J., King, C. K., Williamson, J. E. & Steinberg, P. D. Larval development and metamorphosis of the Australian diadematid sea urchin Centrostephanus rodgersii. Invertebr. Reprod. Dev. 47, 197–204 (2005).Article 

    Google Scholar 
    59.Dautov, S. S. The embryological and larval development of the sea urchin Diadema savignyi (Audouin, 1809) (Diadematoida: Diadematidae) from the South China Sea. Mar. Biol. Res. 16, 166–176 (2020).Article 

    Google Scholar 
    60.Harris, L. G. & Eddy, S. D. Sea urchin ecology and biology. In Echinoderm Aquaculture (eds Brown, N. P. & Eddy, S. D.) 1–24 (Wiley, 2015). https://doi.org/10.1002/9781119005810.ch1.
    Google Scholar 
    61.Westbrook, C. E. et al. Survivorship and feeding preferences among size classes of outplanted sea urchins, Tripneustes gratilla, and possible use as biocontrol for invasive alien algae. PeerJ 2015, e1235 (2015).Article 

    Google Scholar 
    62.Neilson, B. J., Wall, C. B., Mancini, F. T. & Gewecke, C. A. Herbivore biocontrol and manual removal successfully reduce invasive macroalgae on coral reefs. PeerJ 2018, e5332 (2018).Article 

    Google Scholar 
    63.Palmer, L. The shedding reaction in Arbacia punctulata. Physiol. Zool. 10, 352–367 (1937).CAS 
    Article 

    Google Scholar 
    64.Hammer, H., Powell, M. & Watts, S. Species Profile: Sea Urchins of the Southern Region 1–6 (Southern Regional Aquaculture Center, 2013).
    Google Scholar 
    65.Luis, O., Delgado, F. & Gago, J. Year-round captive spawning performance of the sea urchin Paracentrotus lividus: relevance for the use of its larvae as live feed. Aquat. Liv. Resour. 18, 45–54 (2005).Article 

    Google Scholar 
    66.Gago, J. & Luís, O. J. Comparison of spawning induction techniques on Paracentrotus lividus (Echinodermata: Echinoidea) broodstock. Aquacult. Int. 19, 181–191 (2011).Article 

    Google Scholar 
    67.Watts, S. A., Lawrence, A. L. & Lawrence, J. M. Nutrition. In Sea Urchins: Biology and Ecology Vol. 38 (ed. Lawrence, J. M.) 155–169 (Elsevier, 2013).
    Google Scholar 
    68.Walker, C. W. & Lesser, M. P. Manipulation of food and photoperiod promotes out-of-season gametogenesis in the green sea urchin, Strongylocentrotus droebachiensis implications for aquaculture. Mar. Biol. 132, 663–676 (1998).Article 

    Google Scholar 
    69.Pearse, J. S., Eernisse, D. J., Pearse, V. B. & Beauchamp, K. A. Photoperiodic regulation of gametogenesis in sea stars, with evidence for an annual calendar independent of fixed daylength. Integr. Comp. Biol. 26, 417–431 (1986).
    Google Scholar 
    70.Lorenzen, K., Leber, K. M. & Blankenship, H. L. Responsible approach to marine stock enhancement: an update. Rev. Fish. Sci. 18, 189–210 (2010).Article 

    Google Scholar 
    71.Chandler, L. M., Walters, L. J., Sharp, W. C. & Hoffman, E. A. Genetic structure of natural and broodstock populations of the long-spined sea urchin, Diadema antillarum, throughout the Florida Keys. Bull. Mar. Sci. 93, 881–889 (2017).Article 

    Google Scholar 
    72.Tringali, M. D. et al. Genetic Policy for the Release of Finfishes in Florida. Florida Fish and Wildlife Conservation Commission (2007).73.Lorenzen, K. Understanding and managing enhancements: why fisheries scientists should care. J. Fish Biol. 85, 1807–1829 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Pearce, C. M., Daggett, T. L. & Robinson, S. M. C. Optimizing prepared feed ration for gonad production of the green sea urchin Strongylocentrotus droebachiensis. J. World Aquac. Soc. 33, 268–277 (2002).Article 

    Google Scholar 
    75.Hammer, H. S. et al. Effect of feed protein and carbohydrate levels on feed intake, growth, and gonad production of the sea urchin, Lytechinus variegatus. J. World Aquac. Soc. 43, 145–158 (2012).Article 

    Google Scholar 
    76.Carboni, S., Hughes, A. D., Atack, T., Tocher, D. R. & Migaud, H. Influence of broodstock diet on somatic growth, fecundity, gonad carotenoids and larval survival of sea urchin. Aquac. Res. 46, 969–976 (2015).CAS 
    Article 

    Google Scholar 
    77.Liu, H. et al. The effect of diet type on growth and fatty acid composition of the sea urchin larvae, II. Psammechinus miliaris (Gmelin). Aquaculture 264, 263–278 (2007).CAS 
    Article 

    Google Scholar 
    78.Brundu, G. et al. Effects of on-demand feeding on sea urchin larvae (Paracentrotus lividus; Lamarck, 1816), development, survival and microalgae utilization. Aquac. Res. 48, 1550–1560 (2017).Article 

    Google Scholar 
    79.Capo, T., Boyd, A. E., Miller, M. W., Sukrhaj, N. C. & Szmant, A. Non-invasive Spawning of Captive Diadema antillarum (Philippi) Under Photo-Thermal Control (CRC Press, 2003).
    Google Scholar 
    80.Reuter, K. E. & Levitan, D. R. Influence of sperm and phytoplankton on spawning in the echinoid Lytechinus variegatus. Biol. Bull. 219, 198–206 (2010).PubMed 
    Article 

    Google Scholar 
    81.Muthiga, N. A. & McClanahan, T. R. Diadema. In Sea Urchins: Biology and Ecology Vol. 38 (ed. Lawrence, J. M.) 257–274 (Elsevier, 2013).
    Google Scholar 
    82.Lewis, J. B. Growth and breeding in the tropical echinoid Diadema antillarum Philippi. Bull. Mar. Sci. 16, 151–158 (1966).
    Google Scholar 
    83.Bauer, J. C. Growth, aggregation, and maturation in the echinoid, Diadema antillarum. Bull. Mar. Sci. 26, 273–277 (1976).ADS 

    Google Scholar 
    84.Iliffe, T. M. & Pearse, J. S. Annual and lunar reproductive rhythms of the sea urchin, Diadema antillarum (Philippi) in Bermuda. Int. J. Invertebr. Reprod. 5, 139–148 (1982).Article 

    Google Scholar 
    85.Randall, J. E., Schroeder, R. E. & Starck, W. A. I. Notes on the biology of the echinoid Diadema antillarum. Caribb. J. Sci. 1, 421–433. https://doi.org/10.1126/science.1.10.263 (1964).Article 

    Google Scholar 
    86.Lessios, H. A. Reproductive periodicity of the echinoids Diadema and Echinometra on the two coasts of Panama. J. Exp. Mar. Biol. Ecol. 50, 47–61 (1981).Article 

    Google Scholar 
    87.Levitan, D. R. Asynchronous spawning and aggregative behavior in the sea urchin Diadema antillarum (Philippi). Direct 76, 181–186 (1988).
    Google Scholar 
    88.Hodin, J. et al. Culturing echinoderm larvae through metamorphosis. Methods Cell Biol. 150, 125–169 (2019).PubMed 
    Article 

    Google Scholar 
    89.Metaxas, A. Larval ecology of echinoids. In Sea Urchins: Biology and Ecology Vol. 38 (ed. Lawrence, J. M.) 69–81 (Elsevier, 2013).
    Google Scholar 
    90.Grünbaum, D. & Strathmann, R. R. Form, performance and trade-offs in swimming and stability of armed larvae. J. Mar. Res. 61, 659–691 (2003).Article 

    Google Scholar 
    91.Williamson, J. E. Sea urchin aquaculture in Australia. In Echinoderm Aquaculture (eds Brown, N. P. & Eddy, S. D.) 225–243 (Wiley, 2015). https://doi.org/10.1002/9781119005810.ch10.
    Google Scholar 
    92.Swanson, R. L. et al. Dissolved histamine: a potential habitat marker promoting settlement and metamorphosis in sea urchin larvae. Mar. Biol. 159, 915–925 (2012).CAS 
    Article 

    Google Scholar 
    93.Mos, B., Byrne, M. & Dworjanyn, S. A. Effects of low and high pH on sea urchin settlement, implications for the use of alkali to counter the impacts of acidification. Aquaculture 528, 735618 (2020).CAS 
    Article 

    Google Scholar 
    94.Radenac, G., Fichet, D. & Miramand, P. Bioaccumulation and toxicity of four dissolved metals in Paracentrotus lividus sea-urchin embryo. Mar. Environ. Res. 51, 151–166 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    95.Phillips, B. M. et al. Toxicity of cadmium–copper–nickel–zinc mixtures to larval purple sea urchins (Strongylocentrotus purpuratus). Bull. Environ. Contam. Toxicol. 70, 592–599 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    96.USEPA. Ambient Water Quality Criteria for Silver. U.S. Environmental Protection Agency (1980).97.USEPA. Draft Update of Ambient Water Quality Criteria for Copper. U.S. Environmental Protection Agency (2003).98.Martins, C. I. M., Pistrin, M. G., Ende, S. S. W., Eding, E. H. & Verreth, J. A. J. The accumulation of substances in recirculating aquaculture systems (RAS) affects embryonic and larval development in common carp Cyprinus carpio. Aquaculture 291, 65–73 (2009).Article 

    Google Scholar 
    99.Downs, C. A. et al. Toxicopathological effects of the sunscreen UV filter, oxybenzone (benzophenone-3), on coral planulae and cultured primary cells and its environmental contamination in hawaii and the U.S. Virgin Islands. Arch. Environ. Contam. Toxicol. 70, 265–288 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    100.Seixas, P., Coutinho, P., Ferreira, M. & Otero, A. Nutritional value of the cryptophyte Rhodomonas lens for Artemia sp. J. Exp. Mar. Biol. Ecol. 381, 1–9 (2009).Article 

    Google Scholar 
    101.Bendich, A. Recent advances in clinical research involving carotenoids. Pure Appl. Chem. 66, 1017–1024 (1994).CAS 
    Article 

    Google Scholar 
    102.Krinsky, N. I. The antioxidant and biological properties of the carotenoids. Ann. N. Y. Acad. Sci. 854, 443–447 (1998).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    103.Kelly, M. S. & Symonds, R. C. Carotenoids in sea urchins. In Sea Urchins: Biology and Ecology Vol. 38 (ed. Lawrence, J. M.) 171–177 (Elsevier, 2013).
    Google Scholar 
    104.Cárcamo, P. F., Candia, A. I. & Chaparro, O. R. Larval development and metamorphosis in the sea urchin Loxechinus albus (Echinodermata: Echinoidea): effects of diet type and feeding frequency. Aquaculture 249, 375–386 (2005).Article 

    Google Scholar 
    105.Carboni, S. et al. Evaluation of flow through culture technique for commercial production of sea urchin (Paracentrotus lividus) larvae. Aquac. Res. 45, 768–772 (2014).Article 

    Google Scholar 
    106.Takahashi, Y., Itoh, K., Ishii, M., Suzuki, M. & Itabashi, Y. Induction of larval settlement and metamorphosis of the sea urchin Strongylocentrotus intermedius by glycoglycerolipids from the green alga Ulvella lens. Mar. Biol. 140, 763–771 (2002).CAS 
    Article 

    Google Scholar 
    107.Gaylord, B., Hodin, J. & Ferner, M. C. Turbulent shear spurs settlement in larval sea urchins. Proc. Natl. Acad. Sci. U. S. A. 110, 6901–6906 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    108.Gosselin, L. A. & Qian, P. Y. Juvenile mortality in benthic marine invertebrates. Mar. Ecol. Prog. Ser. 146, 265–282 (1997).ADS 
    Article 

    Google Scholar 
    109.Miller, B. A. & Emlet, R. B. Development of newly metamorphosed juvenile sea urchins (Strongylocentrotus franciscanus and S. purpuratus): morphology, the effects of temperature and larval food ration, and a method for determining age. J. Exp. Mar. Biol. Ecol. 235, 67–90 (1999).Article 

    Google Scholar 
    110.Byrne, M., Sewell, M. A. & Prowse, T. A. A. Nutritional ecology of sea urchin larvae: influence of endogenous and exogenous nutrition on echinopluteal growth and phenotypic plasticity in Tripneustes gratilla. Funct. Ecol. 22, 643–648 (2008).Article 

    Google Scholar 
    111.Feehan, C. J., Brown, M. S., Sharp, W. C., Lauzon-Guay, J.-S. & Adams, D. K. Fertilization limitation of Diadema antillarum on coral reefs in the Florida Keys. Ecology 97, 1897–1904 (2016).PubMed 
    Article 

    Google Scholar 
    112.Miller, M. W., Kramer, K. L., Williams, S. M., Johnston, L. & Szmant, A. M. Assessment of current rates of Diadema antillarum larval settlement. Coral Reefs 28, 511–515 (2009).ADS 
    Article 

    Google Scholar 
    113.Vermeij, M. J. A., Debrot, A. O., van der Hal, N., Bakker, J. & Bak, R. P. M. Increased recruitment rates indicate recovering populations of the sea urchin Diadema antillarum on Curaçao. Bull. Mar. Sci. 86, 719–725 (2010).
    Google Scholar 
    114.Miller, R. J., Adams, A. J., Ebersole, J. P. & Ruiz, E. Evidence for positive density-dependent effects in recovering Diadema antillarum populations. J. Exp. Mar. Biol. Ecol. 349, 215–222 (2007).Article 

    Google Scholar 
    115.Hunte, W. & Younglao, D. Recruitment and population recovery of Diadema antillarum (Echinodermata; Echinoidea) in Barbados. Mar. Ecol. Prog. Ser. 45, 109–119 (1988).ADS 
    Article 

    Google Scholar 
    116.Weil, E., Losada, F. & Bone, D. Spatial variations in density and size of the echinoid Diadema antillarum Philippi on some Venezuelan coral reefs. Bijdragen tot de Dierkunde 54, 73–82 (1984).Article 

    Google Scholar 
    117.Lee, S. C. Habitat complexity and consumer-mediated positive feedbacks on a Caribbean coral reef. Oikos 112, 442–447 (2006).Article 

    Google Scholar 
    118.Feehan, C. J. & Scheibling, R. E. Effects of sea urchin disease on coastal marine ecosystems. Mar. Biol. 161, 1467–1485 (2014).CAS 
    Article 

    Google Scholar 
    119.Dame, E. A. Assessing the effect of artificial habitat structure on translocation of the long-spined sea urchin, Diadema antillarum, in Curaçao (Netherlands Antilles). Bull. Mar. Sci. 82, 247–254 (2008).ADS 

    Google Scholar 
    120.Sharp, W. Assessing the use of artificial structures to enhance the survival rates of long-spined sea uchins on the reef tract of the Florida Keys. Florida Fish and Wildlife Conservation Commission (2014).121.Rogers, A. & Lorenzen, K. Recovery of Diadema antillarum and the potential for active rebuilding measures: modelling population dynamics. In Proceedings of the 11th International Coral Reef Symposium 7–11 (2008).122.Creswell, R. L. Developing echinoderm culture for consumption and stock enhancement in the Caribbean. FAO Fish. Aquac. Proc. 19, 141–145 (2011).
    Google Scholar  More

  • in

    Poor prey quality is compensated by higher provisioning effort in passerine birds

    1.Wright, J., Both, C., Cotton, P. A. & Bryant, D. Quality vs. quantity: energetic and nutritional trade-offs in parental provisioning. J. Anim. Ecol. 67, 620–634 (1998).Article 

    Google Scholar 
    2.Naef-Daenzer, B. & Keller, L. F. The foraging performance of great and blue tits (Parus major and P. caeruleus) in relation to caterpillar development, and its consequences for nestling growth and fledging weight. J. Anim. Ecol. 68, 708–718 (1999).Article 

    Google Scholar 
    3.Perrins, C. M. & McCleery, R. H. The effect of fledging mass on the lives of Great Tits Parus major. Ardea 89, 142 (2001).
    Google Scholar 
    4.van Oort, H. & Otter, K. A. Natal nutrition and the habitat distributions of male and female black-capped chickadees. Can. J. Zool. 83, 1495–1501 (2005).Article 

    Google Scholar 
    5.Metcalfe, N. B. & Monaghan, P. Growth versus lifespan: Perspectives from evolutionary ecology. Exp. Gerontol. 38, 935–940 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Tinbergen, J. M. & Boerlijst, M. C. Nestling weight and survival in individual great tits (Parus major). J. Anim. Ecol. 59, 1113 (1990).Article 

    Google Scholar 
    7.Perrins, C. M. Tits and their caterpillar food supply. Ibis (Lond. 1859). 133, 49–54 (1991).Article 

    Google Scholar 
    8.Schwagmeyer, P. L. & Mock, D. W. Parental provisioning and offspring fitness: size matters. Anim. Behav. 75, 291–298 (2008).Article 

    Google Scholar 
    9.Naef-Daenzer, L., Naef-Daenzer, B. & Nager, R. G. Prey selection and foraging performance of breeding Great Tits Parus major in relation to food availability. J. Avian Biol. 31, 206–214 (2000).Article 

    Google Scholar 
    10.Williams, T. D. Physiological Adaptations for Breeding in Birds (Princeton University Press, Princeton, 2012).Book 

    Google Scholar 
    11.Williams, T. D. & Fowler, M. A. Individual variation in workload during parental care: can we detect a physiological signature of quality or cost of reproduction?. J. Ornithol. 156, 441–451 (2015).Article 

    Google Scholar 
    12.Dawson, R. D. & Bortolotti, G. R. Parental effort of American kestrels: the role of variation in brood size. Can. J. Zool. 81, 852–860 (2003).Article 

    Google Scholar 
    13.Ringsby, T. H., Berge, T., Saether, B. E. & Jensen, H. Reproductive success and individual variation in feeding frequency of House Sparrows (Passer domesticus). J. Ornithol. 150, 469–481 (2009).Article 

    Google Scholar 
    14.Mariette, M. M. et al. Using an Electronic Monitoring System to Link Offspring Provisioning and Foraging Behavior of a Wild Passerine. Auk 128, 26–35 (2011).Article 

    Google Scholar 
    15.García-Navas, V., Ferrer, E. S. & Sanz, J. J. Prey selectivity and parental feeding rates of Blue Tits Cyanistes caeruleus in relation to nestling age. Bird Study 59, 236–242 (2012).Article 

    Google Scholar 
    16.Lifjeld, J. T. et al. Effects of energy costs on the optimal diet: an experiment with pied flycatchers Ficedula hypoleuca feeding nestlings. Ornis Scand. 19, 111–118 (1988).Article 

    Google Scholar 
    17.Love, O. P. & Williams, T. D. The adaptive value of stress-induced phenotypes: effects of maternally derived corticosterone on sex-biased investment, cost of reproduction, and maternal fitness. Am. Nat. 172, 135–149 (2008).Article 

    Google Scholar 
    18.Stodola, K. W. et al. Relative influence of male and female care in determining nestling mass in a migratory songbird. J. Avian Biol. 41, 515–522 (2010).Article 

    Google Scholar 
    19.Mägi, M. et al. Low reproductive success of great tits in the preferred habitat: a role of food low reproductive success of great tits in the preferred habitat: a role of food availability. Ecoscience 16, 145–157 (2009).Article 

    Google Scholar 
    20.Fowler, M. A. & Williams, T. D. Individual variation in parental workload and breeding productivity in female European starlings: Is the effort worth it?. Ecol. Evol. 5, 3585–3599 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Cornelius Ruhs, E., Vézina, F., Walker, M. A. & Karasov, W. H. Who pays the bill? The effects of altered brood size on parental and nestling physiology. J. Ornithol. 161, 275–288 (2019).Article 

    Google Scholar 
    22.Bridge, E. S. & Bonter, D. N. A low-cost radio frequency identification device for ornithological research. J. Field. Ornithol. 82, 52–59 (2011).Article 

    Google Scholar 
    23.Major, R. E. Stomach flushing of an insectivorous bird: an assessment of differential digestibility of prey and the risk to birds. Aust. Wildl. Res. 17, 647–657 (1990).ADS 
    Article 

    Google Scholar 
    24.Harris, M. P. & Wanless, S. The diet of shags phalacrocorax aristotelis during the chick-rearing period assessed by three methods. Bird Study 40, 135–139 (1993).Article 

    Google Scholar 
    25.Sánchez-Bayo, F., Ward, R. & Beasley, H. A new technique to measure bird’s dietary exposure to pesticides. Anal. Chim. Acta 399, 173–183 (1999).Article 

    Google Scholar 
    26.Tsipoura, N. & Burger, J. Shorebird diet during spring migration stopover on Delaware Bay. Condor 101, 635–644 (1999).Article 

    Google Scholar 
    27.Neves, V. C., Bolton, M. & Monteiro, L. R. Validation of the water offloading technique for diet assessment: an experimental study with Cory’s shearwaters (Calonectris diomedea). J. Ornithol. 147, 474–478 (2006).Article 

    Google Scholar 
    28.Goldsworthy, B., Young, M. J., Seddon, P. J. & van Heezik, Y. Stomach flushing does not affect apparent adult survival, chick hatching, or fledging success in yellow-eyed penguins (Megadyptes antipodes). Biol. Conserv. 196, 115–123 (2016).Article 

    Google Scholar 
    29.Vézina, F., Love, O. P., Lessard, M. & Williams, T. D. Shifts in metabolic demands in growing altricial nestlings illustrate context-specific relationships between basal metabolic rate and body composition. Physiol. Biochem. Zool. 82, 248–257 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Malmqvist, B. & Sjöström, P. The microdistribution of some lotic insect predators in relation to their prey and to abiotic factors. Freshw. Biol. 14, 649–656 (1984).Article 

    Google Scholar 
    31.van Noordwijk, A. J., McCleery, R. H. & Perrins, C. M. Selection for the timing of great tit breeding in relation to caterpillar growth and temperature. J. Anim. Ecol. 64, 451 (1995).Article 

    Google Scholar 
    32.Bale, J. S. Insects and low temperatures: From molecular biology to distributions and abundance. Philos. Trans. R. Soc. B Biol. Sci. 357, 849–862 (2002).CAS 
    Article 

    Google Scholar 
    33.Hansson, L. A. et al. Experimental evidence for a mismatch between insect emergence and waterfowl hatching under increased spring temperatures. Ecosphere 5, 1–9 (2014).Article 

    Google Scholar 
    34.Bates, D., Maechler, M., Bolker, B., & Walker, S. Lme4: Linear Mixed-Effects Models Using Eigen and S4. R package version 1.1–21. http://CRAN.R-project.org/package=lme4 (2019)35.Hothorn, T., Zeilis, A., Farebrother, R.W., Cummins, C., Millo, G. & Mitchell, D. lmtest: Testing linear regression models. R package version 0.9–37. http://CRAN.R-project.org/package=lmtest (2019)36.Kuznetsova, A., Brockoff, P.B., & R. H. Christensen. LmerTest: Tests for Random and Fixed Effects for Linear Mixed Effect Models (lmer objects of lme4 package). R package version 2.0-3. https://CRANR-projectorg/package=lmerTest (2019)37.Lenth, R. V., Singmann, H., Love, J., Buerkner. P. & Herve, M. emmeans: Estimated marginal means. R package version 1.4.6. https://cran.r-project.org/web/packages/emmeans/index.html (2019)38.Ricklefs, R. E. Preliminary models for growth rates in altricial birds. Ecology 50, 1031–1039 (1969).Article 

    Google Scholar 
    39.Drent, R. H. & Daan, S. The prudent parent: energetic adjustments in avian breeding. Ardea 68, 225–252 (1980).
    Google Scholar 
    40.Killpack, T. L. & Karasov, W. H. Growth and development of house sparrows (Passer domesticus) in response to chronic food restriction throughout the nestling period. J. Exp. Biol. 215, 1806–1815 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Verboven, N. & Visser, M. E. Seasonal variation in local recruitment of great tits: the importance of being early. Oikos 81, 511 (1998).Article 

    Google Scholar 
    42.Visser, M. E. et al. Variable responses to large-scale climate change in European Parus populations. Proc. R. Soc. B Biol. Sci. 270, 367–372 (2003).Article 

    Google Scholar 
    43.Visser, M. E., Holleman, L. J. M. & Gienapp, P. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 147, 164–172 (2006).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.García-navas, V. & Sanz, J. J. Seasonal decline in provisioning effort and nestling mass of Blue Tits Cyanistes caeruleus: Experimental support for the parent quality hypothesis. Ibis (Lond. 1859). 153, 59–69 (2011).Article 

    Google Scholar 
    45.García-Navas, V. & Sanz, J. J. The importance of a main dish: Nestling diet and foraging behaviour in Mediterranean blue tits in relation to prey phenology. Oecologia 165, 639–649 (2011).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Boyce, M. S. & Perrins, C. M. Optimizing great tit clutch size in a fluctuating environment. Ecology 68, 142–153 (1987).Article 

    Google Scholar 
    47.Wilkin, T. A., King, L. E. & Sheldon, B. C. Habitat quality, nestling diet, and provisioning behaviour in great tits Parus major. J. Avian Biol. 40, 135–145 (2009).Article 

    Google Scholar 
    48.Stalwick, J. A. & Wiebe, K. L. Delivery rates and prey use of mountain bluebirds in grassland and clear-cut habitats. Avian Conserv. Ecol. 14, 1–11 (2019).
    Google Scholar 
    49.Kadin, M., Olsson, O., Hentati-Sundberg, J., Ehrning, E. W. & Blenckner, T. Common Guillemot Uria aalge parents adjust provisioning rates to compensate for low food quality. Ibis (Lond. 1859). 158, 167–178 (2016).Article 

    Google Scholar 
    50.Stauss, M. J., Burkhardt, J. F. & Tomiuk, J. Foraging flight distances as a measure of parental effort in blue tits Parus caeruleus differ with environmental conditions. J. Avian Biol. 36, 47–56 (2005).Article 

    Google Scholar 
    51.Killpack, T. L., Tie, D. N. & Karasov, W. H. Compensatory growth in nestling Zebra Finches impacts body composition but not adaptive immune function. Auk 131, 396–406 (2014).Article 

    Google Scholar 
    52.Geluso, K. & Hayes, J. P. Effects of dietary quality on basal metabolic rate and internal morphology of European starlings (Sturnus vulgaris). Physiol. Biochem. Zool. Ecol. Evol. Approaches 72, 189–197 (1999).CAS 
    Article 

    Google Scholar 
    53.Williams, J. B. & Tieleman, B. I. Flexibility in basal metabolic rate and evaporative water loss among hoopoe larks exposed to different environmental temperatures. J. Exp. Biol. 203, 3153–3159 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Barceló, G., Love, O. P. & Vézina, F. Uncoupling basal and summit metabolic rates in white-throated Sparrows: digestive demand drives maintenance costs, but changes in muscle mass are not needed to improve thermogenic capacity. Physiol. Biochem. Zool. 90, 153–165 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Cotton, P. A., Kacelnik, A. & Wright, J. Chick begging as a signal: are nestlings honest?. Behav. Ecol. 7, 178–182 (1996).Article 

    Google Scholar 
    56.Royle, N. J., Hartley, I. R. & Parker, G. A. Begging for control: when are offspring solicitation behaviours honest?. Trends Ecol. Evol. 17, 434–440 (2002).Article 

    Google Scholar 
    57.Kilner, R. & Johnstone, R. A. Begging the question: are offspring solicitation behaviours signals of need?. Tree 12, 11–15 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Macnair, M. R. & Parker, G. A. Models of parent-offspring conflict III. Intra-brood conflict. Anim. Behav. 27, 1202–1209 (1979).Article 

    Google Scholar 
    59.Hamer, K. C., Lynnes, A. S. & Hill, J. K. Parent-offspring interactions in food provisioning of Manx shearwaters: Implications for nestling obesity. Anim. Behav. 57, 627–631 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Godfray, H. C. J. & Johnstone, R. A. Begging and bleating: the evolution of parent-offspring signalling. Philos. Trans. R. Soc. B Biol. Sci. 355, 1581–1591 (2000).CAS 
    Article 

    Google Scholar 
    61.Leonard, M. L. & Horn, A. G. Acoustic signalling of hunger and thermal state by nestling tree swallows. Anim. Behav. 61, 87–93 (2001).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Leonard, M. L. & Horn, A. G. Ambient noise and the design of begging signals. Proc. Biol. Sci. 272, 651–656 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    63.Sacchi, R., Saino, N. & Galeotti, P. Features of begging calls reveal general condition and need of food of barn swallow (Hirundo rustica) nestlings. Behav. Ecol. 13, 268–273 (2002).Article 

    Google Scholar 
    64.Marques, P. A. M., Vicente, L. & Márquez, R. Iberian azure-winged magpie cyanopica (cyana) cooki nestlings begging calls: call characterization and hunger signalling. Bioacoustics 18, 133–149 (2008).Article 

    Google Scholar 
    65.Marques, P. A. M., Vicente, L. & Márquez, R. Nestling begging call structure and bout variation honestly signal need but not condition in Spanish sparrows. Zool. Stud. 48, 587–595 (2009).
    Google Scholar 
    66.Klenova, A. V. Chick begging calls reflect degree of hunger in three auk species (Charadriiformes: Alcidae). PLoS ONE 10, 4–6 (2015).Article 
    CAS 

    Google Scholar 
    67.Williams, T. D. Physiology, activity and costs of parental care in birds. J. Exp. Biol. 221, 1–8 (2018).Article 

    Google Scholar  More

  • in

    Coexistence holes characterize the assembly and disassembly of multispecies systems

    1.Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015).
    Google Scholar 
    2.Tylianakis, J. M., Martínez-García, L. B., Richardson, S. J., Peltzer, D. A. & Dickie, I. A. Symmetric assembly and disassembly processes in an ecological network. Ecol. Lett. 21, 896–904 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    3.Chase, J. M., Blowes, S. A., Knight, T. M., Gerstner, K. & May, F. Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 584, 238–243 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Vellend, M. The Theory of Ecological Communities (MPB-57) (Princeton Univ. Press, 2016).5.Hutchinson, G. E. Homage to Santa Rosalia or why are there so many kinds of animals? Am. Nat. 93, 145–159 (1959).
    Google Scholar 
    6.Tilman, D. Resource Competition and Community Structure (Princeton Univ. Press, 1982).7.Barbier, M., Arnoldi, J.-F., Bunin, G. & Loreau, M. Generic assembly patterns in complex ecological communities. Proc. Natl Acad. Sci. USA 115, 2156–2161 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Serván, C. A., Capitán, J. A., Grilli, J., Morrison, K. E. & Allesina, S. Coexistence of many species in random ecosystems. Nat. Ecol. Evol. 2, 1237–1242 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    9.MacArthur, R. Species packing and competitive equilibrium for many species. Theor. Popul. Biol. 1, 1–11 (1970).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Medeiros, L. P., Boege, K., del Val, E., Zaldivar-Riverón, A. & Saavedra, S. Observed ecological communities are formed by species combinations that are among the most likely to persist under changing environments. Am. Nat. https://doi.org/10.1086/711663 (2020).11.Barabás, G., D’Andrea, R. & Stump, S. M. Chesson’s coexistence theory. Ecol. Monogr. 88, 277–303 (2018).
    Google Scholar 
    12.Grainger, T. N. & Gilbert, J. M. L. B. The invasion criterion: a common currency for ecological research. Trends Ecol. Evol. 34, 925–935 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    13.Alberch, P. The logic of monsters: evidence for internal constraint in development and evolution. Geobios 22, 21–57 (1989).
    Google Scholar 
    14.Clements, F. E. Nature and structure of the climax. J. Ecol. 24, 252–284 (1936).
    Google Scholar 
    15.Odum, E. P. & Barrett, G. W. Fundamentals of Ecology 5th edn (Thomson Brooks/Cole, 2005).16.Friedman, J., Higgins, L. M. & Gore, J. Community structure follows simple assembly rules in microbial microcosms. Nat. Ecol. Evol. 1, 0109 (2017).
    Google Scholar 
    17.Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).
    Google Scholar 
    18.Drake, J. A. Community-assembly mechanics and the structure of an experimental species ensemble. Am. Nat. 137, 1–26 (1991).
    Google Scholar 
    19.Warren, P. H., Law, R. & Weatherby, A. J. Mapping the assembly of protist communities in microcosms. Ecology 84, 1001–1011 (2003).
    Google Scholar 
    20.Schreiber, S. J. & Rittenhouse, S. From simple rules to cycling in community assembly. Oikos 105, 349–358 (2004).
    Google Scholar 
    21.Chase, J. M. & Leibold, M. A. Ecological Niches: Linking Classical and Contemporary Approaches (Univ. Chicago Press, 2003).22.Kraft, N. J. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).
    Google Scholar 
    23.Moore, R., Robinson, W., Lovette, I. & Robinson, T. Experimental evidence for extreme dispersal limitation in tropical forest birds. Ecol. Lett. 11, 960–968 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Maherali, H. & Klironomos, J. N. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316, 1746–1748 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Serván, C. & Allesina, S. Tractable models of ecological assembly. Ecol. Lett. 24, 1029–1037 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    26.Rosindell, J., Hubbell, S. P. & Etienne, R. S. The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol. Evol. 26, 340–348 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    27.Case, T. J. Surprising behavior from a familiar model and implications for competition theory. Am. Nat. 146, 961–966 (1995).
    Google Scholar 
    28.Saavedra, S. et al. A structural approach for understanding multispecies coexistence. Ecol. Monogr. 87, 470–486 (2017).
    Google Scholar 
    29.Tilman, D. Resources: a graphical-mechanistic approach to competition and predation. Am. Nat. 116, 362–393 (1980).
    Google Scholar 
    30.May, R. M. & Leonard, W. J. Nonlinear aspects of competition between three species. SIAM J. Appl. Math. 29, 243–253 (1975).
    Google Scholar 
    31.Dean, A. M. A simple model of mutualism. Am. Nat. 121, 409–417 (1983).
    Google Scholar 
    32.Song, C., Ahn, S. V., Rohr, R. P. & Saavedra, S. Towards a probabilistic understanding about the context-dependency of species interactions. Trends Ecol. Evol. 35, 384–396 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    33.Saavedra, S., Medeiros, L. P. & AlAdwani, M. Structural forecasting of species persistence under changing environments. Ecol. Lett. https://doi.org/10.1111/ele.13582 (2020).34.Law, R. & Blackford, J. C. Self-assembling food webs: a global viewpoint of coexistence of species in Lotka–Volterra communities. Ecology 73, 567–578 (1992).
    Google Scholar 
    35.Sigmuiud, K. Darwin’s ‘circles of complexity’: assembling ecological communities. Complexity 1, 40–44 (1995).
    Google Scholar 
    36.Law, R. & Morton, R. D. Permanence and the assembly of ecological communities. Ecology 77, 762–775 (1996).
    Google Scholar 
    37.Wilson, J. B., Spijkerman, E. & Huisman, J. Is there really insufficient support for Tilman’s R* concept? A comment on Miller et al. Am. Nat. 169, 700–706 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    38.May, R. M. Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Cenci, S., Song, C. & Saavedra, S. Rethinking the importance of the structure of ecological networks under an environment-dependent framework. Ecol. Evol. 8, 6852–6859 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    40.O’Dwyer, J. P. Whence Lotka-Volterra? Theor. Ecol. 11, 441–452 (2018).
    Google Scholar 
    41.Levine, J. M., Bascompte, J., Adler, P. B. & Allesina, S.Beyond pairwise mechanisms of species coexistence in complex communities. Nature 546, 56–64 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Vandermeer, J. H. The competitive structure of communities: an experimental approach with protozoa. Ecology 50, 362–371 (1969).
    Google Scholar 
    43.Stein, R. R. et al. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLoS Comput. Biol. 9, e1003388 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    44.Venturelli, O. S. et al. Deciphering microbial interactions in synthetic human gut microbiome communities. Mol. Syst. Biol. 14, e8157 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    45.Bucci, V. et al. MDSINE: Microbial Dynamical Systems Inference Engine for microbiome time-series analyses. Genome Biol. 17, 121 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    46.Turelli, M. A reexamination of stability in randomly varying versus deterministic environments with comments on the stochastic theory of limiting similarity. Theor. Popul. Biol. 13, 244–267 (1978).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.May, R. M. Stability and Complexity in Model Ecosystems (Princeton Univ. Press, 2019).48.Allesina, S. & Tang, S. The stability–complexity relationship at age 40: a random matrix perspective. Popul. Ecol. 57, 63–75 (2015).
    Google Scholar 
    49.Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Grilli, J., Rogers, T. & Allesina, S. Modularity and stability in ecological communities. Nat. Commun. 7, 12031 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Hoek, T. A. et al. Resource availability modulates the cooperative and competitive nature of a microbial cross-feeding mutualism. PLoS Biol. 14, e1002540 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    52.Case, T. J. An Illustrated Guide to Theoretical Ecology (Oxford Univ. Press, 2000).53.Freedman, H. & So, J.-H. Global stability and persistence of simple food chains. Math. Biosci. 76, 69–86 (1985).
    Google Scholar 
    54.Posfai, A., Taillefumier, T. & Wingreen, N. S. Metabolic trade-offs promote diversity in a model ecosystem. Phys. Rev. Lett. 118, 028103 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    55.Gould, A. L. et al. Microbiome interactions shape host fitness. Proc. Natl Acad. Sci. USA 115, E11951–E11960 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Kehe, J. et al. Massively parallel screening of synthetic microbial communities. Proc. Natl Acad. Sci. USA 116, 12804–12809 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Xiao, Y. et al. Mapping the ecological networks of microbial communities. Nat. Commun. 8, 2042 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    58.AlAdwani, M. & Saavedra, S. Is the addition of higher-order interactions in ecological models increasing the understanding of ecological dynamics? Math. Biosci. 315, 108222 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    59.Weibel, C. A. in History of Topology (ed. James, I.) 797–836 (North-Holland, 1999).60.Carlsson, G. Topology and data. Bull. Am. Math. Soc. 46, 255–308 (2009).
    Google Scholar 
    61.Rabadán, R. & Blumberg, A. J. Topological Data Analysis for Genomics and Evolution: Topology in Biology (Cambridge Univ. Press, 2019).62.Sizemore, A. E., Phillips-Cremins, J. E., Ghrist, R. & Bassett, D. S. The importance of the whole: topological data analysis for the network neuroscientist. Netw. Neurosci. 3, 656–673 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    63.Sugihara, G. Graph theory, homology and food webs. In Proc. Symposia in Applied Mathematics 30, 83–101 (American Mathematical Society, 1984).64.Singh, G., Mémoli, F. & Carlsson, G. E. Topological methods for the analysis of high dimensional data sets and 3D object recognition. In Symposium on Point Based Graphics 91–100 (The Eurographics Association, 2007).65.Giusti, C., Ghrist, R. & Bassett, D. S. Two’s company, three (or more) is a simplex. J. Comput. Neurosci. 41, 1–14 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    66.Bauer, U. Ripser: efficient computation of Vietoris–Rips persistence barcodes. Preprint at https://arxiv.org/abs/1908.02518 (2019).67.Fort, H. On predicting species yields in multispecies communities: quantifying the accuracy of the linear Lotka–Volterra generalized model. Ecol. Model. 387, 154–162 (2018).
    Google Scholar 
    68.Halty, V., Valdés, M., Tejera, M., Picasso, V. & Fort, H. Modeling plant interspecific interactions from experiments with perennial crop mixtures to predict optimal combinations. Ecol. Appl. 27, 2277–2289 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    69.Tabi, A. et al. Species multidimensional effects explain idiosyncratic responses of communities to environmental change. Nat. Ecol. Evol. 4, 1036–1043 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    70.Jansen, W. A permanence theorem for replicator and Lotka–Volterra systems. J. Math. Biol. 25, 411–422 (1987).
    Google Scholar 
    71.Schreiber, S. J. Criteria for Cr robust permanence. J. Differ. Equ. 162, 400–426 (2000).
    Google Scholar 
    72.Angulo, M. T., Moreno, J. A., Lippner, G., Barabási, A.-L. & Liu, Y.-Y. Fundamental limitations of network reconstruction from temporal data. J. R. Soc. Interface 14, 20160966 (2017).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Differential gene expression indicates modulated responses to chronic and intermittent hypoxia in corallivorous fireworms (Hermodice carunculata)

    1.Altieri, A. H. et al. Tropical dead zones and mass mortalities on coral reefs. Proc. Natl. Acad. Sci. 114, 3660–3665 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Lehrter, J. C., Ko, D. S., Lowe, L. L. & Penta, B. Predicted effects of climate change on northern Gulf of Mexico hypoxia. In Modeling coastal hypoxia 173–214 (Springer, 2017).3.Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    4.Nelson, H. R. & Altieri, A. H. Oxygen: The universal currency on coral reefs. Coral Reefs 38, 177–198 (2019).ADS 
    Article 

    Google Scholar 
    5.Hughes, D. J. et al. Coral reef survival under accelerating ocean deoxygenation. Nat. Clim. Change 10, 1–12 (2020).ADS 
    Article 

    Google Scholar 
    6.Murphy, J. W. & Richmond, R. H. Changes to coral health and metabolic activity under oxygen deprivation. PeerJ 4, e1956 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    7.Harborne, A. R., Rogers, A., Bozec, Y.-M. & Mumby, P. J. Multiple stressors and the functioning of coral reefs. Ann. Rev. Mar. Sci. 9, 5.1-5.24 (2017).Article 

    Google Scholar 
    8.Van Oppen, M. J. et al. Shifting paradigms in restoration of the world’s coral reefs. Glob. Change Biol. 23, 3437–3448 (2017).ADS 
    Article 

    Google Scholar 
    9.Montagna, P. A. & Ritter, C. Direct and indirect effects of hypoxia on benthos in Corpus Christi Bay, Texas, USA. J. Exp. Mar. Biol. Ecol. 330, 119–131 (2006).CAS 
    Article 

    Google Scholar 
    10.Pollock, M., Clarke, L. & Dubé, M. The effects of hypoxia on fishes: from ecological relevance to physiological effects. Environ. Rev. 15, 1–14 (2007).CAS 
    Article 

    Google Scholar 
    11.Seitz, R. D., Dauer, D. M., Llansó, R. J. & Long, W. C. Broad-scale effects of hypoxia on benthic community structure in Chesapeake Bay, USA. J. Exp. Mar. Biol. Ecol. 381, S4–S12 (2009).Article 

    Google Scholar 
    12.Diaz, R. J. & Rosenberg, R. Marine benthic hypoxia: A review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr. Mar. Biol. Ann. Rev. 33, 245–203 (1995).
    Google Scholar 
    13.Dean, T. L. & Richardson, J. Responses of seven species of native freshwater fish and a shrimp to low levels of dissolved oxygen. NZ J. Mar. Freshw. Res. 33, 99–106 (1999).Article 

    Google Scholar 
    14.Wannamaker, C. M. & Rice, J. A. Effects of hypoxia on movements and behavior of selected estuarine organisms from the southeastern United States. J. Exp. Mar. Biol. Ecol. 249, 145–163 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Richardson, J., Williams, E. K. & Hickey, C. W. Avoidance behaviour of freshwater fish and shrimp exposed to ammonia and low dissolved oxygen separately and in combination. NZ J. Mar. Freshwat. Res. 35, 625–633 (2001).Article 

    Google Scholar 
    16.McAllen, R., Davenport, J., Bredendieck, K. & Dunne, D. Seasonal structuring of a benthic community exposed to regular hypoxic events. J. Exp. Mar. Biol. Ecol. 368, 67–74 (2009).Article 

    Google Scholar 
    17.Ogino, T. & Toyohara, H. Identification of possible hypoxia sensor for behavioral responses in a marine annelid. Capitella teleta. Biol. Open 8, bio37630 (2019).
    Google Scholar 
    18.Lenihan, H. S. & Peterson, C. H. How habitat degradation through fishery disturbance enhances impacts of hypoxia on oyster reefs. Ecol. Appl. 8, 128–140 (1998).Article 

    Google Scholar 
    19.Li, F.-G., Chen, J., Jiang, X.-Y. & Zou, S.-M. Transcriptome analysis of blunt snout bream (Megalobrama amblycephala) reveals putative differential expression genes related to growth and hypoxia. PLoS ONE 10, e0142801 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    20.Sahlmann, A., Wolf, R., Holth, T. F., Titelman, J. & Hylland, K. Baseline and oxidative DNA damage in marine invertebrates. J. Toxicol. Environ. Health A 80, 807–819 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Zoccola, D. et al. Structural and functional analysis of coral Hypoxia Inducible Factor. PLoS ONE 12, e0186262 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Díaz, R. J. & Rosenberg, R. Marine benthic hypoxia: A review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr. Mar. Biol. Annu. Rev. 33, 245–303 (1995).
    Google Scholar 
    23.Bodamer, B. L. & Bridgeman, T. B. Experimental dead zones: two designs for creating oxygen gradients in aquatic ecological studies. Limnol. Oceanogr. Methods 12, 441–454 (2014).CAS 
    Article 

    Google Scholar 
    24.Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. Proc. Natl. Acad. Sci. 105, 15452–15457. https://doi.org/10.1073/pnas.0803833105 (2008).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Branco, P. et al. Potamodromous fish movements under multiple stressors: Connectivity reduction and oxygen depletion. Sci. Total Environ. 572, 520–525 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Hayes, D. S., Branco, P., Santos, J. M. & Ferreira, T. Oxygen depletion affects kinematics and shoaling cohesion of cyprinid fish. Water 11, 642 (2019).CAS 
    Article 

    Google Scholar 
    27.Grimes, C. J., Capps, C., Petersen, L. H. & Schulze, A. Oxygen consumption during and post hypoxia exposure in bearded fireworms (Annelida: Amphinomidae). J. Comp. Physiol. B 190, 681–689 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    28.Semenza, G. L. Hypoxia-inducible factor 1 (HIF-1) pathway. Sci. Stke 407, 1–3 (2007).29.Taylor, C. T. & McElwain, J. C. Ancient atmospheres and the evolution of oxygen sensing via the hypoxia-inducible factor in metazoans. Physiology 25, 272–279 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Wang, G. L., Jiang, B.-H., Rue, E. A. & Semenza, G. L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. 92, 5510–5514 (1995).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Kaelin, W. G. Jr. & Ratcliffe, P. J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 30, 393–402 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Marques, I. J. et al. Transcriptome analysis of the response to chronic constant hypoxia in zebrafish hearts. J. Comp. Physiol. B. 178, 77–92 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Schulze, A., Grimes, C. J. & Rudek, T. E. Tough, armed and omnivorous: Hermodice carunculata (Annelida: Amphinomidae) is prepared for ecological challenges. J. Mar. Biol. Assoc. UK. 97,1–6 (2017).34.Witman, J. D. Effects of predation by the fireworm Hermodice carunculata on milleporid hydrocorals. Bull. Mar. Sci. 42, 446–458 (1988).
    Google Scholar 
    35.Vreeland, H. & Lasker, H. Selective feeding of the polychaete Hermodice carunculata Pallas on Caribbean gorgonians. J. Exp. Mar. Biol. Ecol. 129, 265–277 (1989).Article 

    Google Scholar 
    36.Vargas-Ángel, B., Thomas, J. D. & Hoke, S. M. High-latitude Acropora cervicornis thickets off Fort Lauderdale, Florida, USA. Coral Reefs 22, 465–473 (2003).Article 

    Google Scholar 
    37.Miller, M., Marmet, C., Cameron, C. & Williams, D. Prevalence, consequences, and mitigation of fireworm predation on endangered staghorn coral. Mar. Ecol. Prog. Ser. 516, 187–194 (2014).ADS 
    Article 

    Google Scholar 
    38.Lucey, N. M., Collins, M. & Collin, R. Oxygen‐mediated plasticity confers hypoxia tolerance in a corallivorous polychaete. Ecol. Evol. 10, 1145–1157 (2019).39.Grimes, C. J., Paiva, P. C., Petersen, L. H. & Schulze, A. Rapid plastic responses to chronic hypoxia in the bearded fireworm, Hermodice carunculata (Annelida: Amphinomidae). Mar. Biol. https://doi.org/10.1007/s00227-020-03756-0 (2020).Article 

    Google Scholar 
    40.Yáñez-Rivera, B. & Salazar-Vallejo, S. I. Revision of Hermodice Kinberg, 1857 (Polychaeta: Amphinomidae). Sci. Mar. 75, 251–262 (2011).Article 

    Google Scholar 
    41.Ahrens, J. B. et al. The curious case of Hermodice carunculata (Annelida: Amphinomidae): Evidence for genetic homogeneity throughout the Atlantic Ocean and adjacent basins. Mol. Ecol. 22, 2280–2291 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Gorr, T. A., Cahn, J. D., Yamagata, H. & Bunn, H. F. Hypoxia-induced synthesis of hemoglobin in the crustacean Daphnia magna is hypoxia-inducible factor-dependent. J. Biol. Chem. 279, 36038–36047 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Li, T. & Brouwer, M. Hypoxia-inducible factor, gsHIF, of the grass shrimp Palaemonetes pugio: Molecular characterization and response to hypoxia. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 147, 11–19 (2007).Article 
    CAS 

    Google Scholar 
    44.Soñanez-Organis, J. G. et al. Molecular characterization of hypoxia inducible factor-1 (HIF-1) from the white shrimp Litopenaeus vannamei and tissue-specific expression under hypoxia. Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 150, 395–405 (2009).
    Google Scholar 
    45.Wei, L. et al. Comparative studies of hemolymph physiology response and HIF-1 expression in different strains of Litopenaeus vannamei under acute hypoxia. Chemosphere 153, 198–204 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Giannetto, A. et al. Hypoxia-inducible factor α and Hif-prolyl hydroxylase characterization and gene expression in short-time air-exposed Mytilus galloprovincialis. Mar. Biotechnol. 17, 768–781 (2015).CAS 
    Article 

    Google Scholar 
    47.Philipp, E. E. et al. Gene expression and physiological changes of different populations of the long-lived bivalve Arctica islandica under low oxygen conditions. PLoS ONE 7, e44621 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Sussarellu, R., Fabioux, C., Le Moullac, G., Fleury, E. & Moraga, D. Transcriptomic response of the Pacific oyster Crassostrea gigas to hypoxia. Mar. Genom. 3, 133–143 (2010).Article 

    Google Scholar 
    49.Woo, S. et al. Expressions of oxidative stress-related genes and antioxidant enzyme activities in Mytilus galloprovincialis (Bivalvia, Mollusca) exposed to hypoxia. Zool. Stud. 52, 15 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    50.Burgeot, T. et al. Oyster summer morality risks associated with environmental stress. Summer Mortality of Pacific Oyster Crassostrea Gigas. The Morest Project. Éd. Ifremer/Quæ, 107–151 (2008).51.David, E., Tanguy, A., Pichavant, K. & Moraga, D. Response of the Pacific oyster Crassostrea gigas to hypoxia exposure under experimental conditions. FEBS J. 272, 5635–5652 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Hourdez, S. et al. Gas transfer system in Alvinella pompejana (Annelida polychaeta, Terebellida): Functional properties of intracellular and extracellular hemoglobins. Physiol. Biochem. Zool. 73, 365–373 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Boutet, I., Jollivet, D., Shillito, B., Moraga, D. & Tanguy, A. Molecular identification of differentially regulated genes in the hydrothermal-vent species Bathymodiolus thermophilus and Paralvinella pandorae in response to temperature. BMC Genom. 10, 222 (2009).Article 
    CAS 

    Google Scholar 
    54.Eyre, B. D., Andersson, A. J. & Cyronak, T. Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nat. Clim. Change 4, 969–976 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    55.Huggett, J. & Griffiths, C. Some relationships between elevation, physico-chemical variables and biota of intertidal rock pools. Mar. Ecol. Prog. Ser. 29, 189–197 (1986).ADS 
    Article 

    Google Scholar 
    56.Kinsey, D. & Kinsey, E. Diurnal changes in oxygen content of the water over the coral reef platform at Heron I. Mar. Freshw. Res. 18, 23–34 (1967).Article 

    Google Scholar 
    57.Helly, J. J. & Levin, L. A. Global distribution of naturally occurring marine hypoxia on continental margins. Deep Sea Res. Part I 51, 1159–1168 (2004).CAS 
    Article 

    Google Scholar 
    58.Levin, L. A., Gage, J. D., Martin, C. & Lamont, P. A. Macrobenthic community structure within and beneath the oxygen minimum zone, NW Arabian Sea. Deep Sea Res. Part II 47, 189–226 (2000).ADS 
    Article 

    Google Scholar 
    59.Gallardo, V. et al. Macrobenthic zonation caused by the oxygen minimum zone on the shelf and slope off central Chile. Deep Sea Res. Part II 51, 2475–2490 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    60.Gooday, A. et al. Faunal responses to oxygen gradients on the Pakistan margin: a comparison of foraminiferans, macrofauna and megafauna. Deep Sea Res. Part II 56, 488–502 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    61.Prabhakar, N. R. & Semenza, G. L. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol. Rev. 92, 967–1003 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Du, S. N., Mahalingam, S., Borowiec, B. G. & Scott, G. R. Mitochondrial physiology and reactive oxygen species production are altered by hypoxia acclimation in killifish (Fundulus heteroclitus). J. Exp. Biol. 219, 1130–1138 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    63.Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Bryant, D. M. et al. A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep. 18, 762–776 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research 4, 1–19 (2015).68.Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).CAS 
    Article 

    Google Scholar 
    69.Conesa, A., Nueda, M. J., Ferrer, A. & Talón, M. maSigPro: A method to identify significantly differential expression profiles in time-course microarray experiments. Bioinformatics 22, 1096–1102 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Nueda, M.J., Tarazona, S., & Conesa, A. Next maSigPro: updating maSigPro bioconductor package for RNA-seq time series. Bioinformatics, 30, 2598–2602. https://doi.org/10.1093/bioinformatics/btu333 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.OmicsBox. Bioinformatics Made Easy, BioBam Bioinformatics. https://www.biobam.com/omicsbox (2019).72.Costa-Paiva, E. M., Schrago, C. G., Coates, C. J. & Halanych, K. M. Discovery of novel hemocyanin-like genes in Metazoans. Biol. Bull. 235, 134–151 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Kanaoka, Y. & Urade, Y. Hematopoietic prostaglandin D synthase. Prostaglandins Leukot. Essent. Fatty Acids 69, 163–167 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Altun, M. et al. Ubiquitin-specific protease 19 (USP19) regulates hypoxia-inducible factor 1α (HIF-1α) during hypoxia. J. Biol. Chem. 287, 1962–1969 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Ogawa, M. et al. 17β-estradiol represses myogenic differentiation by increasing ubiquitin-specific peptidase 19 through estrogen receptor α. J. Biol. Chem. 286, 41455–41465 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Isaacs, J. S. et al. Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1α-degradative pathway. J. Biol. Chem. 277, 29936–29944 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Nallapalli, R. K. et al. Targeting filamin A reduces K-RAS–induced lung adenocarcinomas and endothelial response to tumor growth in mice. Mol. Cancer 11, 1–11 (2012).Article 
    CAS 

    Google Scholar 
    78.Feng, Y. et al. Filamin A (FLNA) is required for cell–cell contact in vascular development and cardiac morphogenesis. Proc. Natl. Acad. Sci. 103, 19836–19841 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Muñoz-Chápuli, R. Evolution of angiogenesis. Int. J. Dev. Biol. 55, 345–351 (2011).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    80.Kim, S., Lee, M. & Choi, Y. K. The role of a neurovascular signaling pathway involving hypoxia-inducible factor and notch in the function of the central nervous system. Biomol. Ther. 28, 45 (2020).Article 

    Google Scholar 
    81.Nie, H., Wang, H., Jiang, K. & Yan, X. Transcriptome analysis reveals differential immune related genes expression in Ruditapes philippinarum under hypoxia stress: potential HIF and NF-κB crosstalk in immune responses in clam. BMC Genom. 21, 1–16 (2020).Article 
    CAS 

    Google Scholar  More

  • in

    A quantitative analysis of intensification in the ethnographic record

    1.Trigger, B. G. Sociocultural Evolution: Calculation and Contingency (Blackwell, 1998).2.Morgan, L. H. Ancient Society (Charles Kerr, 1877).3.Spencer, H. The Evolution of Society: Selections from Herbert Spencer’s Principles of Sociology (Univ. of Chicago Press, 1967).4.White, L. A. Energy and the evolution of culture. Am. Anthropol. 45, 335–356 (1943).Article 

    Google Scholar 
    5.Childe, V. G. The urban revolution. Town Plan. Rev. 21, 3–17 (1950).Article 

    Google Scholar 
    6.Adams, R. M. The Evolution of Urban Society: Early Mesopotamia and Prehispanic Mexico (Aldine, 1966).7.Wittfogel, K. A. Oriental Despotism: A Comparative Study of Total Power (Yale Univ. Press, 1957).8.Geertz, C. Agricultural Involution (Univ. of California Press, 1963).9.Boserup, E. The Conditions of Agricultural Growth: the Economics of Agrarian Change under Population Pressure (Aldine, 1965).10.Wolf, E. R. Peasants (Prentice-Hall, 1966).11.Binford, L. R. in New Perspectives in Archaeology (eds Binford, S. R. & Binford, L. R.) 421–449 (Aldine, 1968).12.Flannery, K. V. in The Domestication and Exploitation of Plants and Animals (eds Ucko, P. J. & Dimbleby, G. W.) 73–100 (Aldine, 1969).13.Sahlins, M. Stone Age Economics (Routledge, 2017).14.Cohen, M. N. The Food Crisis in Prehistory: Overpopulation and the Origins of Agriculture (Yale Univ. Press, 1977).15.Renfrew, C. in An Island Polity: the Archaeology of Exploitation in Melos (eds Renfrew, C. & Wagstaff, M.) 264–290 (Cambridge Univ. Press, 1982).16.Diamond, J. Guns, Germs, and Steel: the Fates of Human Societies (Norton, 1997).17.Johnson, A. W. & Earle, T. K. The Evolution of Human Societies: From Foraging Group to Agrarian State 2nd edn (Stanford Univ. Press, 2000).18.Trigger, B. G. Understanding Early Civilizations: a Comparative Study (Cambridge Univ. Press, 2003).19.Wenke, R. J. & Olszewski, D. I. Patterns in Prehistory: Humankind’s First Three Million Years 5th edn (Oxford Univ. Press, 2007).20.Scott, J. C. Against the Grain: a Deep History of the Earliest States (Yale Univ. Press, 2017).21.Hawkes, K., Kaplan, H., Hill, K. & Hurtado, A. M. Ache at the settlement: contrasts between farming and foraging. Hum. Ecol. 15, 133–161 (1987).Article 

    Google Scholar 
    22.Piperno, D. R. & Pearsall, D. M. The Origins of Agriculture in the Lowland Neotropics (Academic Press, 1998).23.Bronson, B. C. in Population Growth: Anthropological Implications (ed. Spooner, B.) 190–218 (MIT Press, 1972).24.Hunt, R. C. Labor productivity and agricultural development: Boserup revisited. Hum. Ecol. 28, 251–277 (2000).Article 

    Google Scholar 
    25.Bowles, S. Cultivation of cereals by the first farmers was not more productive than foraging. Proc. Natl Acad. Sci. USA 108, 4760–4765 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Clark, C. & Haswell, M. The Economics of Subsistence Agriculture 4th edn (Macmillan, 1970).27.Netting, R. Smallholders, Householders: Farm Families and the Ecology of Intensive, Sustainable Agriculture (Stanford Univ. Press, 1993).28.Kirch, P. V. The Wet and the Dry: Irrigation and Agricultural Intensification in Polynesia (Univ. of Chicago Press, 1994).29.Stone, G. D. Settlement Ecology: the Social and Spatial Organization of Kofyar Agriculture (Univ. of Arizona Press, 1996).30.Logan, M. & Sanders, W. T. in The Valley of Mexico: Studies in Pre-Hispanic Ecology and Society (ed. Wolf, E.) 31–58 (Univ. of New Mexico Press, 1976).31.Sanders, W. T., Parsons, J. R. & Santley, R. S. The Basin of Mexico: the Evolution of a Civilization (Academic Press, 1979).32.Pimentel, D. & Pimentel, M. H. Food, Energy, and Society 3rd edn (CRC Press, 2007).33.Smil, V. Energy and Civilization: A History (MIT Press, 2017).34.Turgot, A. R. J. The Turgot Collection: Writings, Speeches, and Letters of Anne Robert Jacques Turgot, Baron de Laune (Ludwig von Mises Institute, 2011).35.Mill, J. S. The Collected Works of John Stuart Mill (Univ. of Toronto Press, 1963).36.Barkley, A. & Barkley, P. W. Principles of Agricultural Economics (Routledge, 2013).37.Naroll, R. A preliminary index of social development. Am. Anthropol. 58, 687–715 (1956).Article 

    Google Scholar 
    38.Carneiro, R. L. On the relationship between size of population and complexity of social organization. Southwest. J. Anthropol. 23, 234–243 (1967).Article 

    Google Scholar 
    39.Bettencourt, L. M., Samaniego, H. & Youn, H. Professional diversity and the productivity of cities. Sci. Rep. 4, 5393 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Hanson, J. W., Ortman, S. G. & Lobo, J. Urbanism and the division of labour in the Roman Empire. J. R. Soc. Interface 14, 20170367 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Ortman, S. & Lobo, J. Smithian growth in a nonindustrial society. Sci. Adv. 6, eaba5694 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Sandeford, D. S. Organizational complexity and demographic scale in primary states. R. Soc. Open Sci. 5, 171137 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Adams, R. M. Heartland of Cities: Surveys of Ancient Settlement and Land Use on the Central Floodplain at the Euphrates (Univ. of Chicago Press, 1981).44.O’Brien, M., Mason, R. D., Lewarch, D. E. & Neely, J. A. Late Formative Irrigation Settlement below Monte Albán: Survey and Excavation on the Xoxocotlán Piedmont, Oaxaca, Mexico (Univ. of Texas Press, 1982).45.Billman, B. R. Irrigation and the origins of the southern Moche state on the north coast of Peru. Lat. Am. Antiq. 13, 371–400 (2002).Article 

    Google Scholar 
    46.Bandy, M. S. Energetic efficiency and political expediency in Titicaca Basin raised field agriculture. J. Anthropol. Archaeol. 24, 271–296 (2005).Article 

    Google Scholar 
    47.Liu, L. & Chen, X. The Archaeology of China: From the Late Paleolithic to the Early Bronze Age (Cambridge Univ. Press, 2012).48.Allen, R. C. Economic structure and agricultural productivity in Europe, 1300–1800. Eur. Rev. Econ. Hist. 4, 1–26 (2000).Article 

    Google Scholar 
    49.Hamilton, M. J., Walker, R. S., Buchanan, B. & Sandeford, D. S. Scaling human sociopolitical complexity. PLoS ONE 15, e0234615 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Ortman, S. G., Lobo, J. & Smith, M. E. Cities: complexity, theory, and history. PLoS ONE 15, e0243621 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Fujita, M., Krugman, P. & Mori, T. On the evolution of hierarchical urban systems. Eur. Econ. Rev. 43, 209–251 (1999).Article 

    Google Scholar 
    52.Bettencourt, L. M. The origins of scaling in cities. Science 340, 1438–1441 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Samaniego, H. & Moses, M. E. Cities as organisms: allometric scaling of urban road networks. J. Transp. Land Use 1, 21–39 (2008).Article 

    Google Scholar 
    54.Smith, B. D. A cultural niche construction theory of initial domestication. Biol. Theory 6, 260–271 (2011).Article 

    Google Scholar 
    55.Winterhalder, B. & Smith, E. A. Analyzing adaptive strategies: human behavioral ecology at twenty-five. Evol. Anthropol. 9, 51–72 (2000).Article 

    Google Scholar 
    56.Kennett, D. J. & Winterhalder, B. (eds) Behavioral Ecology and the Transition to Agriculture (Univ. of California Press, 2006).57.Odling-Smee, J. F., Laland, K. N. & Feldman, M. W. Niche construction: the neglected process in evolution. Monographs in Population Biology No. 37 (Princeton Univ. Press, 2003).58.Mokyr, J. The Lever of Riches: Technological Creativity and Economic Progress (Oxford Univ. Press, 1992).59.Smith, B. D. General patterns of niche construction and the management of ‘wild’ plant and animal resources by small-scale pre-industrial societies. Phil. Trans. R. Soc. B 366, 836–848 (2011).PubMed 
    Article 

    Google Scholar 
    60.Turchin, P. in Cultural Evolution: Society, Technology, Language, and Religion (eds Richerson, P. J. & Christiansen, M. H.) 61–73 (MIT Press, 2013).61.Henrich, J. The Secret of Our Success: How Culture Is Driving Human Evolution, Domesticating Our Species, and Making Us Smarter (Princeton Univ. Press, 2016).62.Diamond, J. & Bellwood, P. Farmers and their languages: the first expansions. Science 300, 597–603 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Bellwood, P. First Farmers: the Origins of Agricultural Societies (Blackwell, 2005).64.Murdock, G. P. et al. Ethnographic Atlas. World Cult. 10, 24–136 (1999).
    Google Scholar 
    65.Bocquet-Appel, J.-P. & Bar-Yosef, O. (eds) The Neolithic Demographic Transition and Its Consequences (Springer, 2008).66.Lesure, R. G., Martin, L. S., Bishop, K. J., Jackson, B. & Chykerda, C. M. The Neolithic demographic transition in Mesoamerica. Curr. Anthropol. 55, 654–664 (2014).Article 

    Google Scholar 
    67.Cohen, J. E. Population growth and Earth’s human carrying capacity. Science 269, 341–346 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    68.DeLong, J. P. & Burger, O. Socio-economic instability and the scaling of energy use with population size. PLoS ONE 10, e0130547 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    69.Tuzin, D. Social Complexity in the Making: a Case Study among the Arapesh of New Guinea (Routledge, 2001).70.Boserup, E. Population and Technological Change: a Study of Long-Term Trends (Univ. of Chicago Press, 1981).71.Bettencourt, L. M., Lobo, J. & Strumsky, D. Invention in the city: increasing returns to patenting as a scaling function of metropolitan size. Res. Policy 36, 107–120 (2007).Article 

    Google Scholar 
    72.Rowley-Conwy, P. & Layton, R. Foraging and farming as niche construction: stable and unstable adaptations. Phil. Trans. R. Soc. B 366, 849–862 (2011).PubMed 
    Article 

    Google Scholar 
    73.Boivin, N. L. et al. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc. Natl Acad. Sci. USA 113, 6388–6396 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Ullah, I. I., Chang, C. & Tourtellotte, P. Water, dust, and agro-pastoralism: modeling socio-ecological co-evolution of landscapes, farming, and human society in southeast Kazakhstan during the mid to late Holocene. J. Anthropol. Archaeol. 55, 101067 (2019).Article 

    Google Scholar 
    75.Turner, B. L. & Doolittle, W. E. The concept and measure of agricultural intensity. Prof. Geogr. 30, 297–301 (1978).Article 

    Google Scholar 
    76.Binford, L. R. Constructing Frames of Reference: an Analytical Method for Archaeological Theory Building Using Ethnographic and Environmental Data Sets (Univ. of California Press, 2001).77.Abrams, E. M. How the Maya Built Their World: Energetics and Ancient Architecture (Univ. of Texas Press, 1994).78.Erasmus, C. J. Monument building: some field experiments. Southwest. J. Anthropol. 21, 277–301 (1965).Article 

    Google Scholar 
    79.Durrenberger, E. P. Agricultural Production and Household Budgets in a Shan Peasant Village in Northwestern Thailand: a Quantitative Description (Ohio Univ. Center for International Studies, 1978).80.Grimes, W., Hodges, J., Nichols, R. & Tapp, J. A Study of Farm Organization in Central Kansas United States Department of Agriculture Bulletin No. 1296 (Government Printing Office, 1925).81.Barker, R., Herdt, R. & Rose, B. The Rice Economy of Asia (Resources for the Future, 1985).82.Cane, S. Australian aboriginal subsistence in the western desert. Hum. Ecol. 15, 391–434 (1987).Article 

    Google Scholar 
    83.Ortman, S. G., Cabaniss, A. H., Sturm, J. O. & Bettencourt, L. M. The pre-history of urban scaling. PLoS ONE 9, e87902 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    84.R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2020).85.Geddes, W. R. The Land Dayaks of Sarawak Colonial Research Studies No. 14 (Her Majesty’s Stationary Office, 1954).86.Freeman, J. D. Iban Agriculture: a Report on the Shifting Cultivation of Hill Rice by the Iban of Sarawak Colonial Research Studies No. 18 (Her Majesty’s Stationary Office, 1955).87.Conklin, H. C. Hanunóo Agriculture: a Report on an Integral System of Shifting Cultivation in the Philippines (Food and Agricultural Organization of the United Nations, 1957).88.Moerman, M. Agricultural Change and Peasant Choice in a Thai Village (Univ. of California Press, 1968).89.Durrenberger, E. P. Rice production in a Lisu village. J. Southeast Asian Stud. 10, 139–145 (1979).Article 

    Google Scholar 
    90.Annual Report (International Rice Research Institute, 1966).91.Janlekha, K. A Study of the Economy of a Rice Growing Village in Central Thailand. PhD dissertation, Cornell Univ., 1955.92.Conelly, W. T. Agricultural intensification in a Philippine frontier community: impact on labor efficiency and farm diversity. Hum. Ecol. 20, 203–223 (1992).Article 

    Google Scholar 
    93.Chin, S. C. Agriculture and Subsistence in a Lowland Rainforest Kenyah Community. PhD dissertation, Yale Univ., 1984.94.Cramb, R. The use and productivity of labour in shifting cultivation: an East Malaysian case study. Agric. Syst. 29, 97–115 (1989).Article 

    Google Scholar 
    95.Hastorf, C. A. Agriculture and the Onset of Political Inequality before the Inka (Cambridge Univ. Press, 1993).96.Carter, W. E. New Lands and Old Traditions (Univ. of Florida Press, 1969).97.Truman, K. in Food and Farm: Current Debates and Policies Monographs in Economic Anthropology No. 7 (eds Gladwin, C. H. & Truman, K.) 161–178 (Univ. Press of America, 1989).98.Kirkby, A. Use of Land and Water Resources in the Past and Present Valley of Oaxaca, Mexico Memoirs of the University of Michigan Museum of Anthropology No. 5 (Museum of Anthropology, Univ. of Michigan, 1973).99.Lewis, O. Life in a Mexican Village: Tepoztlán Restudied (Univ. of Illinois Press, 1963).100.Tax, S. Penny Capitalism: a Guatemalan Indian Community (Univ. of Chicago Press, 1963).101.Cancian, F. Change and Uncertainty in a Peasant Economy: The Maya Corn Farmers of Zinacantan (Stanford Univ. Press, 1972).102.Stadelman, R. Maize Cultivation in Northwestern Guatemala Contributions to American Anthropology and History No. 33 (Carnegie Institution of Washington, 1940).103.Steggerda, M. Maya Indians of Yucatan (Carnegie Institution of Washington, 1941).104.Kelly, I. & Palerm, A. The Tajin Totonac: Part 1. History, Subsistence, Shelter and Technology Smithsonian Institution Institute of Social Anthropology No. 13 (United States Government Printing Office, 1952).105.Rappoport, R. Pigs for the Ancestors (Yale Univ. Press, 1968).106.Couture, M. D., Ricks, M. F. & Housley, L. Foraging behavior of a contemporary northern Great Basin population. J. Calif. Gt Basin Anthropol. 8, 150–160 (1986).
    Google Scholar 
    107.Noss, A. J. The economic importance of communal net hunting among the BaAka of the Central African Republic. Hum. Ecol. 25, 71–89 (1997).Article 

    Google Scholar 
    108.Hawkes, K., O’Connell, F. & Jones, N. B. Hadza children’s foraging: juvenile dependency, social arrangements, and mobility among hunter-gatherers. Curr. Anthropol. 36, 688–700 (1995).Article 

    Google Scholar 
    109.Lupo, K. D. & Schmitt, D. N. Small prey hunting technology and zooarchaeological measures of taxonomic diversity and abundance: ethnoarchaeological evidence from Central African forest foragers. J. Anthropol. Archaeol. 24, 335–353 (2005).Article 

    Google Scholar 
    110.Bliege Bird, R. & Bird, D. W. Why women hunt: risk and contemporary foraging in a Western Desert aboriginal community. Curr. Anthropol. 49, 655–693 (2008).Article 

    Google Scholar 
    111.O’Connell, J. F. & Hawkes, K. Food choice and foraging sites among the Alyawara. J. Anthropol. Res. 40, 504–535 (1984).Article 

    Google Scholar 
    112.Greaves, R. D. Ethnoarchaeological Investigation of Subsistence Mobility, Resource Targeting, and Technological Organization among Pume Foragers of Venezuela. PhD dissertation, Univ. of New Mexico, 1998.113.Eder, J. F. The caloric returns to food collecting: disruption and change among the Batak of the Philippine tropical forest. Hum. Ecol. 6, 55–69 (1978).Article 

    Google Scholar 
    114.O’Connell, J. F. & Hawkes, K. in Hunter-Gatherer Foraging Strategies: Ethnographic and Archaeological Analyses (eds Winterhalder, B. & Smith, E. A.) 99–125 (Univ. of Chicago Press, 1981).115.Jones, N. B., Hawkes, K. & Draper, P. Foraging returns of !Kung adults and children: why didn’t !Kung children forage? J. Anthropol. Res. 50, 217–248 (1994).Article 

    Google Scholar 
    116.Lee, R. B. in Man the Hunter (eds Lee, R. B. & DeVore, I.) 30–48 (Aldine, 1968).117.Hames, R. B. A comparison of the efficiencies of the shotgun and the bow in neotropical forest hunting. Hum. Ecol. 7, 219–252 (1979).Article 

    Google Scholar 
    118.Hawkes, K., Hill, K. & O’Connell, J. F. Why hunters gather: optimal foraging and the Ache of eastern Paraguay. Am. Ethnol. 9, 379–398 (1982).Article 

    Google Scholar 
    119.Ichikawa, M. An examination of the hunting-dependent life of the Mbuti. Afr. Study Monogr. 4, 55–76 (1983).
    Google Scholar 
    120.Terashima, H. Hunting life of the Bambote: an anthropological study of hunter-gatherers in a wooded savanna. Senri Ethnol. Stud. 6, 223–268 (1980).
    Google Scholar 
    121.Terashima, H. Mota and other hunting activities of the Mbuti archers: a socio-ecological study of subsistence technology. Afr. Study Monogr. 3, 71–85 (1983).
    Google Scholar 
    122.Arsdale, P. W. Activity patterns of Asmat hunter-gatherers: a time budget analysis. Aust. J. Anthropol. 11, 453–60 (1978).Article 

    Google Scholar 
    123.Baldwin, K. D. S. The Niger Agricultural Project, an Experiment in African Development (Blackwell, 1957).124.Stone, G. D., Netting, R. M. & Stone, M. P. Seasonality, labor scheduling, and agricultural intensification in the Nigerian savanna. Am. Anthropol. 92, 7–23 (1990).Article 

    Google Scholar 
    125.Panter-Brick, C. Motherhood and subsistence work: the Tamang of rural Nepal. Hum. Ecol. 17, 205–228 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    126.Clark, G. A Farewell to Alms: A Brief Economic History of the World Vol. 25 (Princeton Univ. Press, 2008).127.Pospisil, L. J. Kapauku Papuan Economy (Dept of Anthropology, Yale Univ., 1963).128.Slicher Van Bath, B. H. The Agrarian History of Western Europe, AD 500–1850 (Edward Arnold, 1963).129.Goodell, G. Agricultural production in a traditional village of northern Khuzestan. Marbg. Geogr. Schriften 64, 243–289 (1975).
    Google Scholar 
    130.Cleave, J. H. African Farmers: Labor Use in the Development of Smallholder Agriculture (Praeger, 1974). More

  • in

    Potential local adaptation of corals at acidified and warmed Nikko Bay, Palau

    Seawater surface pH (total scale), Ωarag and temperatures (SST) showed a strong gradient at the entrance into the bay (Fig. 2a, b, e) and the seawater pH range (7.65–8.02) observed within the bay was equivalent to the ocean pH value from present to the value expected by the end of this century (IPCC 2013, RCP 8.5)29. The mean daytime seawater temperature within the bay was significantly warmer (31.8 ± 0.6 °C, mean ± S.D.) and had lower pH (7.83 ± 0.06), lower Ωarag, (2.44 ± 0.34) and higher pCO2 (619 ± 104 μatm) compared to parameters outside the bay (30.4 ± 0.1 °C, 8.02 ± 0.02, 391 ± 31 μatm, 3.63 ± 0.14, Wilcoxon-test, p  More

  • in

    Growth performance of five different strains of Nile tilapia (Oreochromis niloticus) introduced to Tanzania reared in fresh and brackish waters

    1.Fitzsimmons, K. M., Gonzalez-Alanis, P. & Martinez-Garcia, R. Why tilapia is becoming the most important food fish on the planet? In Proceedings of the 9th International Symposium on tilapia in Aquaculture, Shanghai Ocean University, Shanghai, China, 22-24 April 2011 8–16 (2011).2.FAO. The State of World Fisheries and Aquaculture. Meeting the sustainable development goals. Rome. Licence. CC BY-NC-SA 3.0 IGO (Food and Agriculture Organisation, 2018).3.ADB. An impact evaluation of the development of genetically improved farmed tilapia and their dissemination in selected countries. The Asian Development Bank, Manila, Philippines 90 (Asian Development Bank, 2004).4.Macaranas, J. M., Taniguchi, N., Pante, M. J. R., Capili, J. B. & Pullin, R. S. V. Electrophoretic evidence for extensive hybrid gene introgression into commercial Oreochromis niloticus (L.) stocks in the Philippines. Aquac. Res. 17, 249–258 (1986).CAS 
    Article 

    Google Scholar 
    5.ADB. An impact evaluation of the development of genetically improved farmed tilapia and their dissemination in selected countries. The Asian Development Bank, Manila, Philippines 137 (Asian Development Bank, 2005).6.Bradbeer, S. J. et al. Limited hybridization between introduced and critically endangered indigenous tilapia fishes in Northern Tanzania. University of Bristol. Hydrobiologia https://doi.org/10.1007/s10750-018-3572-5b (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Shechonge, A. et al. Losing cichlid fish biodiversity: Genetic and morphological homogenization of tilapia following colonization by introduced species. Conserv. Genet. 19(5), 1199–1209 (2018).8.Gupta, M. V & Acosta, B. O. A review of global tilapia farming practices. Aquac. Asia 9, 7–12 (2004). 9.Eknath, A., Dey, M. M., Rye, M. & Gjerde, B. Selective breeding of Nile tilapia for Asia. In Proceedings of the 6th World Congress on Genetics Applied to Livestock Production, Armidale, Australia, University of New England. 27, 89–96 (1998).10.Ponzoni, R. W. et al. Genetic improvement of Nile tilapia (Oreochromis niloticus) with special reference to the work conducted by the WorldFish Center with the GIFT strain. Rev. Aquac. 3, 27–41 (2011).Article 

    Google Scholar 
    11.WorldFish. Genetically Improved Farmed Tilapia (GIFT). Key facts ongoing and future research. FactSheet. https://digitalarchive.worldfishcenter.org/bitstream/handle/20.500.12348/66/3880_2015-31.pdf?sequence=1&isAllowed=y (2015).
    12.Bolivar, R. Estimation of response to within-family selection for growth in Nile tilapia (Oreochromis niloticus). PhD. Dissertation, Dalhousie University, Halifax, N.S. Canada. 166 (1998).13.Tayamen, M. M. Nationwide dissemination of GET-EXCEL tilapia in the Philippines. In Proceeding of the Sixth International Symposium on Tilapia in Aquaculture. Bureau of Fisheries and Aquatic Resources, Manila, Philippines, and American Tilapia Association, Charles Town, West Virginia (ed. Bolivar, R,B., Mair, G.C and Fitzsimmons, K.) 74–85 (2004).14.Zimmerman, S. & Natividad, J. M. Comparative pond performance evaluation of GenoMar Supreme Tilapia GST 1 and GST 3 groups. In Proceeding of the Sixth International Symposium on Tilapia in Aquaculture. Bureau of Fisheries and Aquatic Resources, Manila, Philippines, and American Tilapia Association, Charles Town, West Virginia (ed. Bolivar, R.B., Mair, G.C and Fitzsimmons, K.) 89 (2004).
    15.Thodesen, J. et al. Genetic improvement of tilapias in China: Genetic parameters and selection responses in growth, survival and external color traits of red tilapia (Oreochromis spp.) after four generations of multi-trait selection. Aquaculture 416–417, 354–366 (2013).Article 

    Google Scholar 
    16.Ansah, Y. B., Frimpong, E. A. & Hallerman, E. M. Genetically-improved tilapia strains in Africa: Potential benefits and negative impacts. Sustain. 6, 3697–3721 (2014).Article 

    Google Scholar 
    17.Charo-karisa, H. Selection for growth of Nile tilapia (Oreochromis niloticus L.) in low-input environments. PhD Thesis, Wageningen University, The Netherlands (2006). 18.Kohinoor, A. H. M., Modak, P. C. & Hussain, M. G. Growth and production performance of red tilapia and Nile tilapia (Oreochromis niloticus L.) under low-input culture system. Bangladesh J. Fish Res. 3, 11–17 (1999).
    Google Scholar 
    19.Vadhel, N. et al. Red Tilapia: A candidate euryhaline species for aqua farming in Gujarat. J. Fish. 11(1), 048–050 (2017).
    Google Scholar 
    20.Felix, E., Avwemoya, F. E. & Abah, A. Some methods of monosex tilapia production: A review. Int. j. fish. aquat. res. 4(2), 42–49 (2019). 21.Fuentes-silva, C., Soto-zarazúa, G. M., Torres-pacheco, I. & Flores-rangel, A. Male tilapia production techniques: A mini-review. Afr. J. Biotechnol. 12, 5496–5502 (2013).
    Google Scholar 
    22.Wohlfarth, G. W. The unexploited potential of tilapia hybrids in aquaculture. Aquacult Fish Manage, 25, 781–788 (1994).23.Lahav, M. & Lahav, E. The development of all-male tilapia hybrids in Nir David. Bamidgeh. Isr. J. Aquac. 42, 58–61 (1990).
    Google Scholar 
    24.Siddiqui, A. Q. & Al-harbi, A. H. Evaluation of three species of tilapia, red tilapia and a hybrid tilapia as culture species in Saudi Arabia. Aquaculture 8486, 145–157 (1995).Article 

    Google Scholar 
    25.Gjerde, B. et al. Growth and survival in two complete diallele crosses with five stocks of Rohu carp (Labeo rohita). Aquaculture 209, 103–115 (2002).Article 

    Google Scholar 
    26.Mbiru, M. et al. Comparative performance of mixed-sex and hormonal sex-reversed Nile tilapia Oreochromis niloticus and hybrids (Oreochromis niloticus × Oreochromis urolepis hornorum) cultured in concrete tanks. Aquac. Int. 24, 557–566 (2015).Article 
    CAS 

    Google Scholar 
    27.Marengoni, N. G. et al. Morphological traits and growth performance of monosex male tilapia GIFT strain and Saint Peter®. Semin. Agrar. 36, 3399–3410 (2015).Article 

    Google Scholar 
    28.Eknath, A. E. & Acosta, B. O. Genetic improvement of farmed tilapias (GIFT) project: Final report, March to December 1997. International Center for Living Aquatic Resources Management (ICLARM), Makati City, Philippines 75 (1988). 29.Dan, N. C. & Little, D. C. The culture performance of monosex and mixed-sex new-season and overwintered fry in three strains of Nile tilapia (Oreochromis niloticus) in northern Vietnam. Aquaculture 184, 221–231. https://doi.org/10.1016/S0044-8486(99)00329-4 (2000).Article 

    Google Scholar 
    30.Kohinoor, A. H. M., Rahman, M. & Islam, S. Upgradation of genetically improved farmed tilapia (GIFT) strain by family selection in Bangladesh. Int. J. Fish. Aquat. Stud. 4, 650–654 (2016).
    Google Scholar 
    31.Ridha, M. Preliminary study on growth, feed conversion and production in non-improved and improved strains of the Nile tilapia Oreochromis niloticus. Fisheries and Marine Environment Department, Kuwait Institute for scientific Research, Salmiyah 22017, Kuwait (2016).32.Santos, B., Mareco, E. & Silva, M. Growth curves of Nile tilapia (Oreochromis niloticus) strains cultivated at different temperatures. Acta Sci. Anim. Sci. 35, 235–242 (2013).
    Google Scholar 
    33.Eknath, A. E. et al. Genetic improvement of farmed tilapias: Composition and genetic parameters of a synthetic base population of Oreochromis niloticus for selective breeding. Aquaculture 273, 1–14 (2007).CAS 
    Article 

    Google Scholar 
    34.Sukmanomon, S. et al. Genetic changes, intra- and inter-specific introgression in farmed Nile tilapia (Oreochromis niloticus) in Thailand. Aquaculture 324–325, 44–54 (2012).Article 

    Google Scholar 
    35.Anane-taabeah, G., Frimpong, E. A. & Hallerman, E. Aquaculture-mediated invasion of the Genetically Improved Farmed Tilapia (GIFT) into the Lower Volta Basin of Ghana. Diversity (Basel) 11, 188 (2019).CAS 
    Article 

    Google Scholar 
    36.Trinh, T. Q., Agyakwah, S. K., Khaw, H. L., Benzie, J. A. H. & Attipoe, F. K. Y. Performance evaluation of Nile tilapia (Oreochromis niloticus) improved strains in Ghana. Aquaculture 530, 735938 (2021).CAS 
    Article 

    Google Scholar 
    37.Canonico, G., Oceanic, N. & Arthington, A. H. The effects of introduced tilapias on native biodiversity. Aquat. Conserv. Mar. Freshw. Ecosyst. 15, 463–483 (2005).Article 

    Google Scholar 
    38.Lind, C. E., Brummett, R. E. & Ponzoni, R. W. Exploitation and conservation of fish genetic resources in Africa: Issues and priorities for aquaculture development and research. Rev. Aquac. 4, 125–141 (2012).Article 

    Google Scholar 
    39.URT. Ministry Livestock and Fisheries.Annual Report, Dodoma, Tanzania (United Republic of Tanzania, 2019).40.URT. Ministry of Livestock and Fisheries. Annual Report, Dodoma, Tanzania (United Republic of Tanzania, 2018).41.Mbiru, M. et al. Characterizing the genetic structure of introduced Nile tilapia (Oreochromis niloticus) strains in Tanzania using double digest RAD sequencing. Int. Aquac. https://doi.org/10.1007/s10499-019-00472-5 (2019).Article 

    Google Scholar 
    42.Kajungiro, R. A. et al. Population structure and genetic diversity of Nile Tilapia (Oreochromis niloticus) strains cultured in Tanzania. Front. Genet. 10, 1–12. https://doi.org/10.3389/fgene.2019.01269 (2019).Article 

    Google Scholar 
    43.Rothuis, A. et al. Aquaculture in East Africa: A regional approach. Wageningen, LEI Wageningen UR (University & Research Centre), LEI Report. IMARES C153/14| LEI. 14–120 (2014).44.URT. Vice President’s Office, Division of Environment: National Adaptation Programme of Action(NAPA, 2007).45.ATLAS. Climate change in Tanzania: Country risk profile. Task Order No. AID-OAA-I-14-00013 1–5 (Climate Change Adaptation, Thought Leadership and Assessments, 2018).46.Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plot. 2019. https://rdrr.io/cran/ggpubr 2020/03/24 (2019).47.Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    48.Evans, J. Straightforward Statistics for the Behavioral Sciences (Brooks/Cole Publishing, 1996).
    Google Scholar 
    49.Cohen, J. Statistical Power Analysis for the Behavioral Sciences 2nd edn. (Routledge, 1988).MATH 

    Google Scholar 
    50.Fox, J. & Weisberg, S. car: Companion to Applied Regression. Third Edition, Sage. Version 3.0–7 (2019). 51.Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. emmeans: Estimated marginal means, aka least-squares means. R Package version 3.5.3. http://CRAN.R-project.org/package=emmeans, https://doi.org/10.1080/00031305.1980.10483031. (2020).52.Dey, M. M. et al. Performance and nature of genetically improved farmed tilapia: A bioeconomic analysis. Aquac. Econ. Manag. 4, 1–2 (2000).Article 

    Google Scholar 
    53.Sifa, L., Chenhong, L. & Dey, M. Cold tolerance of three strains of Nile tilapia, Oreochromis niloticus, in China. Aquaculture 213, 123–129 (2002).Article 

    Google Scholar 
    54.Cnaani, A., Gall, G. A. E. & Hulata, G. Cold tolerance of tilapia species and hybrids. Aquac. Int. 8, 289–298 (2000).Article 

    Google Scholar 
    55.Nandlal, S., Morris, C. W., Lagibalavu, M. & Ledua, E. A comparative evaluation of two tilapia strains in Fiji, 35–41. In Proceeding of the Fish Genetics Research in Member Countries and Institutions of the International Network on Genetics in Aquaculture. ICLARM Conf. Proc, 2-5 March 1999, Kuala Lumpur, Malaysia (eds. Gupta, M. V. & Acosta, B. O.) 64, (179), 35–42 (2001).56.Hussain, M. G. et al. Genetic evaluation of GIFT and existing strains of nile tilapia, Oreochromis niloticus L., under on-station and on-farm conditions in Bangladesh. Asian Fish. Sci. 13, 117–126 (2000).
    Google Scholar 
    57.Hopkins, K. Reporting fish growth: A review of the basics. J. World Aquac. Soc. 33, 173–179 (1992).Article 

    Google Scholar 
    58.Bhujel, R. C. On-farm feed management practices for Nile tilapia in Thailand. In On-Farm Feeding and Feed Management in Aquaculture. FAO Fisheries and Aquaculture Technical Paper No. 583. Rome. (ed. Hasan, M. R. & New, M. B.) 159–189 (2013).59.Volpato, G. & Fernandes, M. Social control of growth in fish. Braz. J. Med. Biol. Res. 27, 797–810 (1994).
    Google Scholar 
    60.Enquist, M. & Jakobsson, S. Decision making and assessment in the fighting behaviour of Nannacara anomala (Cichlidae, Pisces). Ethology 72, 143–153 (1986).Article 

    Google Scholar 
    61.Boscolo, C. N. P., Morais, R. N. & Freitas, E. G. Same-sized fish groups increase aggressive interaction of sex-reversed males Nile tilapia GIFT strain. Appl. Anim. Behav. Sci. 135, 154–159 (2011).Article 

    Google Scholar 
    62.Ebtehag Kamel, A. R. Evaluation of reproductive performance of tilapia strains and some of their crosses. J. Arab. Aquac. Soc. 6, 119–138 (2011).
    Google Scholar 
    63.Thoa, N. P., Ninh, N. H., Hoa, N. T., Knibb, W. & Diep, N. H. Additive genetic and heterotic effects in a 4 × 4 complete diallel cross-population of Nile tilapia (Oreochromis niloticus, Linnaeus, 1758) reared in different water temperature environments in different water temperature environments in Northern Viet. Aquac. Res. 47, 708–720 (2016).Article 
    CAS 

    Google Scholar 
    64.Ridha, M. T. Comparative study of growth performance of three strains of Nile tilapia, Oreochromis niloticus, L., at two stocking densities. Aquac. Res. 37, 172–179 (2006).Article 

    Google Scholar 
    65.Khan, S., Hossain, M. & Science, P. Production and economics of GIFT strain of tilapia (Oreochromis niloticus) in small seasonal ponds. Progress. Agric. 19(1), 97–104 (2008).Article 

    Google Scholar 
    66.Alam, M. B., Islam, M. A., Marine, S. S., Rashid, A. & Hossain, M. A. Growth performances of GIFT tilapia (Oreochromis niloticus) in Cage culture at the Old Brahmaputra river using different densities. J. SylhetAgril. Univ. 1(2), 265–271 (2014).
    Google Scholar 
    67.Matthew, M. T. et al. Growth performance evaluation of four wild strains and one current farmed strain of Nile tilapia in Uganda. Int. J. Fish. Aquat. Stud. 4, 594–598 (2016).
    Google Scholar 
    68.Shoko, A. P., Limbu, S. M., Mrosso, H. D. J., Mkenda, A. F. & Mgaya, Y. D. Effect of stocking density on growth, production and economic benefits of mixed sex Nile tilapia (Oreochromis niloticus) and African sharptooth catfish (Clarias gariepinus) in polyculture and monoculture. Aquac. Res. https://doi.org/10.1111/are.12463 (2014).Article 

    Google Scholar 
    69.Hasan, S. J., Mian, S., Rashid, A. H. & Rahmatullah, S. M. Effects of stocking density on growth and production of GIFT Tilapia (Oreochromis niloticus). Bangladesh. Fish. Res. 14, 45–53 (2010).
    Google Scholar 
    70.Rahman, M. M., Mondal, D. K., Amin, M. R. & Muktadir, M. G. Impact of stocking density on growth and production performance of monosex tilapia (Oreochromis niloticus) in ponds. Asian J. Med. Biol. Res. 2, 471–476 (2016).Article 

    Google Scholar 
    71.Li, S. et al. Improving growth performance and caudal fin stripe pattern in selected F6–F8 generations of GIFT Nile tilapia (Oreochromis niloticus L.) using mass selection. Aquac. Res. 37, 1165–1171 (2006).CAS 
    Article 

    Google Scholar 
    72.Dos Santos, B., Vander Silva, V. V., De, M. V., Mareco, E. A. & Salomão, R. A. S. Performance of Nile tilapia Oreochromis niloticus strains in Brazil: A comparison with Philippine strain. J. Appl. Anim. Res. 47, 72–78 (2019).Article 

    Google Scholar 
    73.Reis Neto, V. et al. Genetic parameters and trends of morphometric traits of GIFT tilapia under selection for weight gain. Sci. Agric. 71, 259–265 (2014).Article 

    Google Scholar 
    74.Gilbert, H. R. & Gregory, P. W. Some features of growth and development of Hereford cattle. J. Anim. Sci. 11, 3–16 (1952).Article 

    Google Scholar 
    75.Russell, W. S. T. The growth of Ayrshire cattle: An analysis of linear body measurements. J. Anim. Sci. 21, 217–226 (1975).Article 

    Google Scholar 
    76.Montoya-lópez, A., Moreno-arias, C., Tarazona-morales, A., Olivera-Angel, M. & Betancur, J. Body shape variation between farms of tilapia (Oreochromis sp.) in Colombian Andes using landmark based geometric morphometrics. Lat. Am. J. Aquat. Res. 47, 194–200 (2019).Article 

    Google Scholar 
    77.Bœuf, G. & Payan, P. How should salinity influence fish growth?. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 130(4), 411–423 (2001).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Azevedo, R. V. et al. Responses of Nile tilapia to different levels of water salinity Rafael. Lat. Am. J. Aquat. Res. 43, 828–835 (2015).
    Google Scholar 
    79.Nguyen, H. N., Khaw, L. H., Ponzoni, R. W., Hamzah, A. & Kamaruzzaman, N. Can sexual dimorphism and body shape be altered in Nile tilapia (Oreochromis niloticus) by genetic means?. Aquaculture 272S1, S38–S46 (2007).Article 

    Google Scholar 
    80.Imre, I., McLaughlin, R. L. & Noakes, D. L. G. Phenotypic plasticity in brook charr: Changes in caudal fin induced by water flow. J. Fish Biol. 61, 1171–1181 (2002).Article 

    Google Scholar 
    81.Costa, C. et al. Genetic and environmental influences on shape variation in the European sea bass (Dicentrarchus labrax). Biol. J. Linn. Soc. 101, 427–436 (2010).Article 

    Google Scholar 
    82.Vehanen, T. & Huusko, A. Brown trout Salmo trutta express different morphometrics due to divergence in the rearing environment. J. Fish Biol. 79, 1167–1181 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    83.Ndiwa, T. C., Nyingi, D. W., Claude, J. & Agnèse, J.-F. Morphological variations of wild populations of Nile tilapia (Oreochromis niloticus) living in extreme environmental conditions in the Kenyan Rift-Valley. Environ. Biol. Fishes. https://doi.org/10.1007/s10641-016-0492-y (2016).Article 

    Google Scholar 
    84.Khaw, L. H., Ponzoni, R. W., Hamzah, A., Abu-bakar, K. R. & Bijma, P. Genotype by production environment interaction in the GIFT strain of Nile tilapia (Oreochromis niloticus). Aquaculture 326–329, 53–60 (2012).Article 

    Google Scholar 
    85.Kosai, P., Sathavorasmith, P., Jiraungkoorskul, K. & Jiraungkoorskul, W. Morphometric characters of Nile Tilapia
    (Oreochromis niloticus) in Thailand. Walailak Jour. Sci. and Tech. 11(10), 857–863 (2014). More

  • in

    Calcification in free-living coralline algae is strongly influenced by morphology: Implications for susceptibility to ocean acidification

    1.Foster, M. S. Rhodoliths between rocks and soft places. J. Phycol. 37, 659–667. https://doi.org/10.1046/j.1529-8817.2001.00195.x (2001).Article 

    Google Scholar 
    2.Riosmena-Rodríguez, R., Nelson, W. & Aguirre, J. Rhodolith/mäerl beds: A global perspective (Springer, 2017). https://doi.org/10.1007/978-3-319-29315-8.Book 

    Google Scholar 
    3.Nelson, W. A. Calcified macroalgae—critical to coastal ecosystems and vulnerable to change: a review. Mar. Freshw. Res. 60, 787–801. https://doi.org/10.1071/MF08335 (2009).CAS 
    Article 

    Google Scholar 
    4.Amado-Filho, G. M. et al. Rhodolith beds are major CaCO3 bio-factories in the tropical South West Atlantic. PLoS ONE 7, e35171. https://doi.org/10.1371/journal.pone.0035171 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Smith, S. V. & Mackenzie, F. T. The role of CaCO3 reactions in the contemporary oceanic CO2 cycle. Aquat. Geochem. 22, 153–175. https://doi.org/10.1007/s10498-015-9282-y (2015).Article 

    Google Scholar 
    6.Amado-Filho, G.M., Bahia, R.G., Pereira-Filho, G.H. & Longo, L.L. South Atlantic rhodolith beds: Latitudinal distribution, species composition, structure and ecosystem functions, threats and conservation status. In Rhodolith/mäerl beds: A global perspective (eds, Riosmena-Rodríguez, R. et al.), Switzerland: Springer International Publishing; https://doi.org/10.1007/978-3-319-29315-8_12 (2017).7.Carvalho, V. F. et al. Environmental drivers of rhodolith beds and epiphytes community along the South Western Atlantic coast. Mar. Environ. Res. 154, 104827. https://doi.org/10.1016/j.marenvres.2019.104827 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Legrand, E. et al. Species interactions can shift the response of a maerl bed community to ocean acidification and warming. Biogeosciences 14, 5359–5376. https://doi.org/10.5194/bg-14-5359-2017 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    9.Legrand, E. et al. Grazers increase the sensitivity of coralline algae to ocean acidification and warming. J. Sea Res. 148–149, 1–7. https://doi.org/10.1016/j.seares.2019.03.001 (2019).Article 

    Google Scholar 
    10.Legrand, E., Martin, S., Leroux, C. & Riera, P. Using stable isotope analysis to determine the effects of ocean acidification and warming on trophic interactions in a maerl bed community. Mar. Ecol. https://doi.org/10.1111/maec.12612 (2020).Article 

    Google Scholar 
    11.Burdett, H. L., Perna, G., McKay, L., Broomhead, G. & Kamenos, N. A. Community-level sensitivity of a calcifying ecosystem to acute in situ CO2 enrichment. Mar. Ecol. Prog. Ser. 587, 73–80. https://doi.org/10.3354/meps12421 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Sordo, L., Santos, R., Barrote, I. & Silva, J. High CO2 decreases the long-term resilience of the free-living coralline algae Phymatolithon lusitanicum. Ecol. Evol. 8, 4781–4792. https://doi.org/10.1002/ece3.4020 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Sordo, L., Santos, R., Barrote, I. & Silva, J. Temperature amplifies the effect of high CO2 on the photosynthesis, respiration, and calcification of the coralline algae Phymatolithon lusitanicum. Ecol. Evol. 9, 11000–11009. https://doi.org/10.1002/ece3.5560 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Qui-Minet, Z. M. et al. Combined effects of global climate change and nutrient enrichment on the physiology of three temperate maerl species. Ecol. Evol. 9, 13787–13807. https://doi.org/10.1002/ece3.5802 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Schubert, N. et al. Rhodolith primary and carbonate production in a changing ocean: the interplay of warming and nutrients. Sci. Total Environ. 676, 455–468. https://doi.org/10.1016/j.scitotenv.2019.04.280 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Martin, S. & Hall-Spencer, J.M. Effects of ocean warming and acidification on rhodolith/mäerl beds. In Rhodolith/mäerl beds: A global perspective (eds. Riosmena-Rodríguez, R. et al.). Switzerland: Springer International Publishing; https://doi.org/10.1007/978-3-319-29315-8_3 (2017).17.Roleda, M. Y., Boyd, P. W. & Hurd, C. L. Before ocean acidification: calcifier chemistry lessons. J. Phycol. 48(4), 840–843. https://doi.org/10.1111/j.1529-8817.2012.01195.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Dupont, S. & Pörtner, H. O. A snapshot of ocean acidification research. Mar. Biol. 160, 1765–1771. https://doi.org/10.1007/s00227-013-2282-9 (2013).CAS 
    Article 

    Google Scholar 
    19.Cyronak, T., Schulz, K. G. & Jokiel, P. L. The Omega myth: what really drives lower calcification rates in an acidifying ocean. ICES J. Mar. Sci. 73(3), 558–562. https://doi.org/10.1093/icesjms/fsv075 (2016).Article 

    Google Scholar 
    20.Falkenberg, L. J., Dupont, S. & Bellerby, R. G. Approaches to reconsider literature on physiological effects of environmental change: examples from ocean acidification research. Front. Mar. Sci. 5, 453. https://doi.org/10.3389/fmars.2018.00453 (2018).Article 

    Google Scholar 
    21.Cornwall, C. E., Comeau, S. & McCulloch, M. T. Coralline algae elevate pH at the site of calcification under ocean acidification. Global Change Biol. 23, 4245–4256. https://doi.org/10.1111/gcb.13673 (2017).ADS 
    Article 

    Google Scholar 
    22.Cornwall, C. E. et al. Resistance of corals and coralline algae to ocean acidification: physiological control of calcification under natural pH variability. Proc. Roy. Soc. B 285(1884), 20181168. https://doi.org/10.1098/rspb.2018.1168 (2018).CAS 
    Article 

    Google Scholar 
    23.Comeau, S., Cornwall, C. E., De Carlo, T. M., Krieger, E. & McCulloch, M. Similar controls on calcification under ocean acidification across unrelated coral reef taxa. Global Change Biol. 24, 4857–4868. https://doi.org/10.1111/gcb.14379 (2018).ADS 
    Article 

    Google Scholar 
    24.Comeau, S. et al. Flow-driven micro-scale pH variability affects the physiology of corals and coralline algae under ocean acidification. Sci. Rep. 9, 1–12. https://doi.org/10.1038/s41598-019-49044-w (2019).Article 

    Google Scholar 
    25.Comeau, S. et al. Resistance to ocean acidification in coral reef taxa is not gained by acclimatization. Nat. Clim. Chang. 9(6), 477–483. https://doi.org/10.1038/s41558-019-0486-9 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    26.Liu, Y. W., Sutton, J. N., Ries, J. B. & Eagle, R. A. Regulation of calcification site pH is a polyphyletic but not always governing response to ocean acidification. Sci. Adv. 6(5), aax1314. https://doi.org/10.1126/sciadv.aax1314 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    27.Donald, H. K., Ries, J. B., Stewart, J. A., Fowell, S. E. & Foster, G. L. Boron isotope sensitivity to seawater pH change in a species of Neogoniolithon coralline red alga. Geochim. Cosmochim. Acta 217, 240–253. https://doi.org/10.1016/j.gca.2017.08.021 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    28.Hofmann, L. C., Schoenrock, K. M. & de Beer, D. Arctic coralline algae elevate surface pH and carbonate in the dark. Front. Plant Sci. 9, 1416. https://doi.org/10.3389/fpls.2018.01416 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Hurd, C. L. et al. Metabolically induced pH fluctuations by some coastal calcifiers exceed projected 22nd century ocean acidification: a mechanism for differential susceptibility. Global Change Biol. 17, 3254–3262. https://doi.org/10.1111/j.1365-2486.2011.02473.x (2011).ADS 
    Article 

    Google Scholar 
    30.Cornwall, C. E. et al. Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa. PLoS ONE 9, e97235. https://doi.org/10.1371/journal.pone.0097235 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Hofmann, L. C., Koch, M. & de Beer, D. Biotic control of surface pH and evidence of light-induced H+ pumping and Ca2+-H+ exchange in a tropical crustose coralline alga. PLoS ONE 1, e0159057. https://doi.org/10.1371/journal.pone.0159057 (2016).CAS 
    Article 

    Google Scholar 
    32.McNicholl, C., Koch, M. S. & Hofmann, L. C. Photosynthesis and light-dependent proton pumps increase boundary layer pH in tropical macroalgae: A proposed mechanism to sustain calcification under ocean acidification. J. Exp. Mar. Biol. Ecol. 521, 151208. https://doi.org/10.1016/j.jembe.2019.151208 (2019).Article 

    Google Scholar 
    33.Hurd, C. L. & Pilditch, C. A. Flow-induced morphological variations affect diffusion boundary-layer thickness of Macrocystis pyrifera (Heterokontophyta, Laminariales). J. Phycol. 47, 341–351. https://doi.org/10.1111/j.1529-8817.2011.00958.x (2011).Article 
    PubMed 

    Google Scholar 
    34.Foster, M.S., Amado-Filho, G.M., Kamenos, N.A., Riosmena-Rodríguez, R. & Steller D.L. Rhodoliths and rhodolith beds. In Research and Discoveries: The Revolution of Science Through SCUBA (eds, Lang, M.A. et al.). Washington, D.C, USA: Smithsonian Institution Scholarly Press (2013).35.Melbourne, L. A., Denny, M. W., Harniman, R. L., Rayfield, E. J. & Schmidt, D. N. The importance of wave exposure on the structural integrity of rhodoliths. J. Exp. Mar. Biol. Ecol. 503, 109–119. https://doi.org/10.1016/j.jembe.2017.11.007 (2018).Article 

    Google Scholar 
    36.Farias, J. N., Riosmena-Rodríguez, R., Bouzon, Z., Oliveira, E. C. & Horta, P. A. Lithothamnion superpositum (Corallinales; Rhodophyta): First description for the Western Atlantic or rediscovery of a species?. Phycol. Res. 58, 210–216. https://doi.org/10.1111/j.1440-1835.2010.00581.x (2010).Article 

    Google Scholar 
    37.Vieira-Pinto, T. et al. Lithophyllum species from Brazilian coast: range extension of Lithophyllum margaritae and description of Lithophyllum atlanticum sp. nov. (Corallineales, Corallinophycidae, Rhodophyta). Phytotaxa 190, 355–369. https://doi.org/10.11646/phytotaxa.190.1.21 (2014).Article 

    Google Scholar 
    38.Sissini, M. N. et al. Mesophyllum erubescens (Corallinales, Rhodophyta)-so many species in one epithet. Phytotaxa 190, 299–319. https://doi.org/10.11646/phytotaxa.190.1.18 (2014).Article 

    Google Scholar 
    39.de Beer, D. & Larkum, A. Photosynthesis and calcification in the calcifying algae Halimeda discoidea studied with microsensors. Plant Cell Environ. 24, 1209–1217. https://doi.org/10.1046/j.1365-3040.2001.00772.x (2001).Article 

    Google Scholar 
    40.Hurd, C. L. Slow-flow habitats as refugia for coastal calcifiers from ocean acidification. J. Phycol. 51, 599–605. https://doi.org/10.1111/jpy.12307 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    41.Nash, M. C., Diaz-Pulido, G., Harvey, A. S. & Adey, W. Coralline algal calcification: A morphological and process-based understanding. PLoS ONE 14, e0221396. https://doi.org/10.1371/journal.pone.0221396 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Burdett, H. L., Hennige, S. J., Francis, F. T. Y. & Kamenos, N. A. The photosynthetic characteristics of red coralline algae, determined using pulse amplitude modulation (PAM) fluorometry. Bot. Mar. 5, 499–509. https://doi.org/10.1515/bot-2012-0135 (2012).CAS 
    Article 

    Google Scholar 
    43.Noisette, F., Egilsdottir, H., Davoult, D. & Martin, S. Physiological responses of three temperate coralline algae from contrasting habitats to near-future ocean acidification. J. Exp. Mar. Biol. Ecol. 448, 179–187. https://doi.org/10.1016/j.jembe.2013.07.006 (2013).CAS 
    Article 

    Google Scholar 
    44.Martin, S., Cohu, S., Vignot, C., Zimmerman, G. & Gattuso, J. P. One-year experiment on the physiological response of the Mediterranean crustose coralline alga, Lithophyllum cabiochae, to elevated pCO2 and temperature. Ecol. Evol. 3(3), 676–693. https://doi.org/10.1002/ece3.475 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Johnson, M. D., Moriarty, V. W. & Carpenter, R. C. Acclimatization of the crustose coralline alga Porolithon onkodes to variable pCO2. PLoS ONE 9(2), e87678. https://doi.org/10.1371/journal.pone.0087678 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Cornwall, C. E. et al. A coralline alga gains tolerance to ocean acidification over multiple generations of exposure. Nat. Clim. Chang. 10, 143–146. https://doi.org/10.1038/s41558-019-0681-8 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    47.Cornwall, C. E. et al. Diurnal fluctuations in seawater pH influence the response of a calcifying macroalga to ocean acidification. Proc. Roy. Soc. London Series B 280, 20132201. https://doi.org/10.1098/rspb.2013.2201 (2013).CAS 
    Article 

    Google Scholar 
    48.Boyd, P. W. et al. Biological responses to environmental heterogeneity under future ocean conditions. Global Change Biol. 22(8), 2633–2650. https://doi.org/10.1111/gcb.13287 (2016).ADS 
    Article 

    Google Scholar 
    49.Noisette, F. & Hurd, C. Abiotic and biotic interactions in the diffusive boundary layer of kelp blades create a potential refuge from ocean acidification. Funct. Ecol. 32(5), 1329–1342. https://doi.org/10.1111/1365-2435.13067 (2018).Article 

    Google Scholar 
    50.Johnson, M. D. et al. pH variability exacerbates effects of ocean acidification on a Caribbean crustose coralline alga. Front. Mar. Sci. 6, 150. https://doi.org/10.3389/fmars.2019.00150 (2019).Article 

    Google Scholar 
    51.Borowitzka, M. A. Photosynthesis and calcification in the articulated coralline red algae Amphiroa anceps and A foliacea. Mar. Biol. 62, 17–23. https://doi.org/10.1007/BF00396947 (1981).CAS 
    Article 

    Google Scholar 
    52.Chisholm, J. R. Calcification by crustose coralline algae on the northern Great Barrier Reef Australia. Limnol. Oceanogr. 45(7), 1476–1484. https://doi.org/10.4319/lo.2000.45.7.1476 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    53.Martin, S., Castets, M.-D. & Clavier, J. Primary production, respiration and calcification of the temperate free-living coralline alga Lithothamnion corallioides. Aquat. Bot. 85, 121–128. https://doi.org/10.1016/j.aquabot.2006.02.005 (2006).CAS 
    Article 

    Google Scholar 
    54.McNicholl, C. et al. Ocean acidification effects on calcification and dissolution in tropical reef macroalgae. Coral Reefs 39, 1635–1647. https://doi.org/10.1007/s00338-020-01991-x (2020).Article 

    Google Scholar 
    55.Kamenos, N. A. et al. Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification. Global Change Biol. 19, 3621–3628. https://doi.org/10.1111/gcb.12351 (2013).ADS 
    Article 

    Google Scholar 
    56.Vogel, N. et al. Calcareous green alga Halimeda tolerates ocean acidification conditions at tropical carbon dioxide seeps. Limnol. Oceanogr. 60, 263–275. https://doi.org/10.1002/lno.10021 (2015).ADS 
    Article 

    Google Scholar 
    57.Vogel, N., Meyer, F. W., Wild, C. & Uthicke, S. Decreased light availability can amplify negative impacts of ocean acidification on calcifying coral reef organisms. Mar. Ecol. Prog. Ser. 521, 49–61. https://doi.org/10.3354/meps11088 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    58.McNicholl, C. & Koch, M. S. Irradiance, photosynthesis and elevated pCO2 effects on net calcification in tropical reef macroalgae. J. Exp. Mar. Biol. Ecol. 535, 151489. https://doi.org/10.1016/j.jembe.2020.151489 (2021).Article 

    Google Scholar 
    59.Schoenrock, K. M. et al. Influences of salinity on the physiology and distribution of the Arctic coralline algae, Lithothamnion glaciale (Corallinales, Rhodophyta). J. Phycol. 54, 690–702. https://doi.org/10.1111/jpy.12774 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    60.MAArE. Projeto de monitoramento ambiental da Reserva Biológica Marinha do Arvoredo e entorno. Florianópolis, Brazil: ICMBio/UFSC (2017).61.Kaandorp, J. A. & Kübler, J. E. The algorithmic beauty of seaweeds, sponges and corals (Springer, Heidelberg, 2001). https://doi.org/10.1007/978-3-662-04339-4.Book 
    MATH 

    Google Scholar 
    62.Leal, R. N., Bassi, D., Posenato, R. & Amado-Filho, G. M. Tomographic analysis for bioerosion signatures in shallow-water rhodoliths from the Abrolhos Bank Brazil. J. Coast. Res. 279, 306–309. https://doi.org/10.2112/11T-00006.1 (2012).Article 

    Google Scholar 
    63.Teichert, S. Hollow rhodoliths increase Svalbard’s shelf biodiversity. Sci. Rep. 4, 1–5. https://doi.org/10.1038/srep06972 (2014).CAS 
    Article 

    Google Scholar 
    64.Torrano-Silva, B. N., Ferreira, S. G. & Oliveira, M. C. Unveiling privacy: Advances in microtomography of coralline algae. Micron 72, 34–38. https://doi.org/10.1016/j.micron.2015.02.004 (2015).Article 
    PubMed 

    Google Scholar 
    65.Laforsch, C. et al. A precise and non-destructive method to calculate the surface area in living scleractinian corals using x-ray computed tomography and 3D modeling. Coral Reefs 27, 811–820. https://doi.org/10.1007/s00338-008-0405-4 (2008).ADS 
    Article 

    Google Scholar 
    66.Limaye, A. Drishti: a volume exploration and representation tool. In Developments in X-Ray Tomography VIII, San Diego, California, USA: SPIE Proc. 85060X; https://doi.org/10.1117/12.935640 (2012).67.Ahrens, J., Geveci, B. & Law, C. ParaView: An End-User Tool for Large Data Visualization. In Visualization Handbook (eds CD Hansen, CR Johnson) Oxford, UK: Elsevier; https://doi.org/10.1016/B978-012387582-2/50038-1 (2005).68.Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682. https://doi.org/10.1038/nmeth.2019 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    69.Rueden, C. T. et al. Image J2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18, 529. https://doi.org/10.1186/s12859-017-1934-z (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Revsbech, N. P. An oxygen microsensor with a guard cathode. Limnol. Oceanogr. 34, 474–478. https://doi.org/10.4319/lo.1989.34.2.0474 (1989).ADS 
    CAS 
    Article 

    Google Scholar 
    71.de Beer, D. et al. A microsensor for carbonate ions suitable for microprofiling in freshwater and saline environments. Limnol. Oceanogr. Methods 6, 532–541. https://doi.org/10.4319/lom.2008.6.532 (2008).Article 

    Google Scholar 
    72.Jørgensen, B. B. & Revsbech, N. P. Diffusive boundary layers and the oxygen uptake of sediments and detritus 1. Limnol. Oceanogr. 30, 111–122. https://doi.org/10.4319/lo.1985.30.1.0111 (1985).ADS 
    Article 

    Google Scholar 
    73.Smith, S.V. & Kinsey, D.W. Calcification and organic carbon metabolism as indicated by carbon dioxide. In Coral Reefs: Research Methods. Monographs on Oceanographic Methodology (eds. Stoddart, D. & Johannes, R.). Paris: UNESCO (1978)74.Hansson, I. & Jagner, D. Evaluation of the accuracy of Gran plots by means of computer calculations: application to the potentiometric titration of the total alkalinity and carbonate content in sea water. Anal. Chim. Acta 75, 363–373. https://doi.org/10.1016/S0003-2670(01)82503-4 (1973).Article 

    Google Scholar 
    75.Bradshaw, A. L., Brewer, P. G., Sharer, D. K. & Williams, R. T. Measurements of total carbon dioxide and alkalinity by potentiometric titration in the GEOSECS program. Earth Planet. Sci. Lett. 55, 99–115. https://doi.org/10.1016/0012-821X(81)90090-X (1981).ADS 
    CAS 
    Article 

    Google Scholar 
    76.Stimson, J. & Kinzie, R. A. The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillophora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. J. Exp. Mar. Biol. Ecol. 153, 63–74. https://doi.org/10.1016/S0022-0981(05)80006-1 (1991).Article 

    Google Scholar 
    77.Naumann, M. S., Niggl, W., Laforsch, C., Glaser, C. & Wild, C. Coral surface area quantification-evaluation of established techniques by comparison with computer tomography. Coral Reefs 28, 109–117. https://doi.org/10.1007/s00338-008-0459-3 (2009).ADS 
    Article 

    Google Scholar 
    78.Veal, C. J., Holmes, G., Nunez, M., Hoegh-Guldberg, O. & Osborn, J. A comparative study of methods for surface area and three-dimensional shape measurements of coral skeletons. Limnol. Oceanogr. Methods 8, 241–253. https://doi.org/10.4319/lom.2010.8.241 (2010).Article 

    Google Scholar  More