More stories

  • in

    Toxoplasma gondii infections are associated with costly boldness toward felids in a wild host

    The Mara Hyena ProjectThis study uses data and samples from the Mara Hyena Project (approved by MSU IACUC and KWS), a long-term field study of individually known spotted hyenas that have been observed since May 1979. Study hyenas are monitored daily and behavioral, demographic, and ecological data are systematically collected and entered into a database. Here, we used data from four different hyena groups, called clans, as well as historic information about ecological conditions in the Masai Mara National Reserve. We maintained detailed records on the demographics of our study population, including sex, age, and the dates of key life-history milestones such as birth, weaning, dispersal and death. In the ensuing sections, we describe data collection and data processing procedures for assessment of T. gondii infection diagnosis, quantification of demographic and ecological determinants of infection status, and assessment of behavioral (boldness) and fitness (cause of mortality) characteristics hypothesized to be a consequence of positive T. gondii infection. The present analysis includes 168 hyenas, but specific subsamples vary depending on the particular hypothesis being tested.Biospecimen collection and assessment of Toxoplasma gondii exposureAs part of our long-term data collection, we routinely darted study animals in order to collect biological samples and morphological measurements. Of special relevance to this study is our blood collection procedure. We immobilized hyenas using 6.5 mg/kg of tiletamine-zolazepam (Telazol ®) in a pressurized dart fired from a CO2 powered rifle. We then drew blood from the jugular vein into sodium heparin-coated vacuum tubes. After the hyena was secured in a safe place to recover from the anesthesia, we took the samples back to camp where a portion of the collected blood was spun in a centrifuge at 1000 × g for 10 min to separate red and white blood cells from plasma. Plasma was aliquoted into multiple cryogenic vials. Immediately, the blood derivatives, including plasma, were flash frozen in liquid nitrogen where they remained until they were transported on dry ice to a −80 °C freezer in the U.S. All samples remained frozen until time of laboratory analysis for the T. gondii assays.Using archived plasma, we diagnosed individual hyenas using the multi-species ID Screen® Toxoplasmosis Indirect kit (IDVET, Montpellier). This ELISA-based assay tests for serological (IgG) reactivity to T. gondii’s P-30 antigen and has been used in many prior studies of T. gondii in diverse mammals22. The output of the assay is an SP ratio, which is calculated as colorimetric signal of immunoreactivity for a tested blood sample (S) divided by that of a positive control (P), after subtracting the background signal for the ELISA plate (i.e., a negative control) from both S and P. We tested 168 plasma samples from 168 individual spotted hyenas and determined infection status based on the kit manufacturer’s criteria for interpreting S/P: ≤ 40% = negative result, 40%  More

  • in

    Verrucomicrobial methanotrophs grow on diverse C3 compounds and use a homolog of particulate methane monooxygenase to oxidize acetone

    1.Etiope G, Ciccioli P. Earth’s degassing: a missing ethane and propane source. Science. 2009;323:478.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Etiope G, Drobniak A, Schimmelmann A. Natural seepage of shale gas and the origin of “eternal flames” in the Northern Appalachian Basin, USA. Mar Pet Geol. 2013;43:178–86.CAS 
    Article 

    Google Scholar 
    3.Farhan Ul Haque M, Crombie AT, Murrell JC. Novel facultative Methylocella strains are active methane consumers at terrestrial natural gas seeps. Microbiome. 2019;7:134.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Shennan JL. Utilisation of C2–C4 gaseous hydrocarbons and isoprene by microorganisms. J Chem Technol Biotechnol. 2006;81:237–56.CAS 
    Article 

    Google Scholar 
    5.Rojo F. Degradation of alkanes by bacteria. Environ Microbiol. 2009;11:2477–90.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Jaekel U, Musat N, Adam B, Kuypers M, Grundmann O, Musat F. Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps. ISME J. 2013;7:885–95.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Laso-Pérez R, Wegener G, Knittel K, Widdel F, Harding KJ, Krukenberg V, et al. Thermophilic Archaea activate butane via alkyl-coenzyme M formation. Nature. 2016;539:396–401.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    8.Picone N, Mohammadi SS, Waajen AC, van Alen TA, Jetten MSM, Pol A, et al. More than a methanotroph: a broader substrate spectrum for Methylacidiphilum fumariolicum SolV. Front Microbiol. 2020;11:3193.Article 

    Google Scholar 
    9.Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, et al. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature. 2007;450:879–82.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Sharp CE, Smirnova AV, Graham JM, Stott MB, Khadka R, Moore TR, et al. Distribution and diversity of Verrucomicrobia methanotrophs in geothermal and acidic environments. Environ Microbiol. 2014;16:1867–78.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.van Teeseling MCF, Pol A, Harhangi HR, van der Zwart S, Jetten MSM, Op den Camp HJM, et al. Expanding the verrucomicrobial methanotrophic world: description of three novel species of Methylacidimicrobium gen. nov. Appl Environ Microbiol. 2014;80:6782–91.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    12.Islam T, Jensen S, Reigstad LJ, Larsen O, Birkeland NK. Methane oxidation at 55 oC and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci USA. 2008;105:300–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MS, Op den Camp HJ. Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature. 2007;450:874–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Coleman NV, Le NB, Ly MA, Ogawa HE, McCarl V, Wilson NL, et al. Hydrocarbon monooxygenase in Mycobacterium: recombinant expression of a member of the ammonia monooxygenase superfamily. ISME J. 2012;6:171–82.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Rochman FF, Kwon M, Khadka R, Tamas I, Lopez-Jauregui AA, Sheremet A, et al. Novel copper-containing membrane monooxygenases (CuMMOs) encoded by alkane-utilizing Betaproteobacteria. ISME J. 2020;14:714–26.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Tavormina PL, Orphan VJ, Kalyuzhnaya MG, Jetten MS, Klotz MG. A novel family of functional operons encoding methane/ammonia monooxygenase-related proteins in gammaproteobacterial methanotrophs. Environ Microbiol Rep. 2011;3:91–100.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Khadka R, Clothier L, Wang L, Lim CK, Klotz MG, Dunfield PF. Evolutionary history of copper membrane monooxygenases. Front Microbiol. 2018;9:2493.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Lehtovirta-Morley LE. Ammonia oxidation: ecology, physiology, biochemistry and why they must all come together. FEMS Microbiol Lett. 2018;365:fny058.Article 
    CAS 

    Google Scholar 
    19.Knief C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front Microbiol. 2015;6:1346.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Sayavedra-Soto LA, Hamamura N, Liu CW, Kimbrel JA, Chang JH, Arp DJ. The membrane-associated monooxygenase in the butane-oxidizing Gram-positive bacterium Nocardioides sp. strain CF8 is a novel member of the AMO/PMO family. Environ Microbiol Rep. 2011;3:390–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Semrau JD, DiSpirito AA, Yoon S. Methanotrophs and copper. FEMS Microbiol Rev. 2010;34:496–531.CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Nyerges G, Stein LY. Ammonia cometabolism and product inhibition vary considerably among species of methanotrophic bacteria. FEMS Microbiol Lett. 2009;297:131–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Sayavedra-Soto LA, Gvakharia B, Bottomley PJ, Arp DJ, Dolan ME. Nitrification and degradation of halogenated hydrocarbons—a tenuous balance for ammonia-oxidizing bacteria. Appl Microbiol Biotechnol. 2010;86:435–44.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Bédard C, Knowles RPhysiology. biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev. 1989;53:68–84.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Semrau JD. Bioremediation via methanotrophy: overview of recent findings and suggestions for future research. Front Microbiol. 2011;2:209.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Chen Y, Crombie A, Rahman MT, Dedysh SN, Liesack W, Stott MB, et al. Complete genome sequence of the aerobic facultative methanotroph Methylocella silvestris BL2. J Bacteriol. 2010;192:3840–1.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Bordel S, Crombie AT, Muñoz R, Murrell JC. Genome scale metabolic model of the versatile methanotroph Methylocella silvestris. Micro Cell Fact. 2020;19:144.CAS 
    Article 

    Google Scholar 
    28.Dunfield PF, Yimga MT, Dedysh SN, Berger U, Liesack W, Heyer J. Isolation of a Methylocystis strain containing a novel pmoA-like gene. FEMS Microbiol Ecol. 2002;41:17–26.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Kits KD, Klotz MG, Stein LY. Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1. Environ Microbiol. 2015;17:3219–32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Op den Camp HJ, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, et al. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep. 2009;1:293–306.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Baani M, Liesack W. Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc Natl Acad Sci USA 2008;105:10203–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Kits KD, Campbell DJ, Rosana AR, Stein LY. Diverse electron sources support denitrification under hypoxia in the obligate methanotroph Methylomicrobium album strain BG8. Front Microbiol. 2015;6:1072.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Anvar SY, Frank J, Pol A, Schmitz A, Kraaijeveld K, den Dunnen JT, et al. The genomic landscape of the verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV. BMC Genom. 2014;15:914.Article 

    Google Scholar 
    34.Kruse T, Ratnadevi CM, Erikstad H-A, Birkeland N-K. Complete genome sequence analysis of the thermoacidophilic verrucomicrobial methanotroph “Candidatus Methylacidiphilum kamchatkense” strain Kam1 and comparison with its closest relatives. BMC Genom. 2019;20:642.Article 
    CAS 

    Google Scholar 
    35.Hou S, Makarova KS, Saw JHW, Senin P, Ly BV, Zhou Z, et al. Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct. 2008;3:26.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Erikstad HA, Ceballos RM, Smestad NB, Birkeland NK. Global biogeographic distribution patterns of thermoacidophilic Verrucomicrobia methanotrophs suggest allopatric evolution. Front Microbiol. 2019;10:1129.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Schmitz RA, Peeters SH, Versantvoort W, Picone N, Pol A, Jetten MSM, et al. Verrucomicrobial methanotrophs: ecophysiology of metabolically versatile acidophiles. FEMS Microbiol Rev. 2021. https://doi.org/10.1093/femsre/fuab007.38.Carere CR, McDonald B, Peach HA, Greening C, Gapes DJ, Collet C, et al. Hydrogen oxidation influences glycogen accumulation in a verrucomicrobial methanotroph. Front Microbiol. 2019;10:1873.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Erikstad HA, Jensen S, Keen TJ, Birkeland NK. Differential expression of particulate methane monooxygenase genes in the verrucomicrobial methanotroph ‘Methylacidiphilum kamchatkense’ Kam1. Extremophiles. 2012;16:405–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Khadem AF, Pol A, Wieczorek AS, Jetten MSM, Op Den Camp H. Metabolic regulation of “Ca. Methylacidiphilum fumariolicum” SolV cells grown under different nitrogen and oxygen limitations. Front Microbiol. 2012;3:266.PubMed 
    PubMed Central 

    Google Scholar 
    41.Carere CR, Hards K, Wigley K, Carman L, Houghton KM, Cook GM, et al. Growth on formic acid is dependent on intracellular pH homeostasis for the thermoacidophilic methanotroph Methylacidiphilum sp. RTK17.1. Front Microbiol. 2021;12:536.Article 

    Google Scholar 
    42.Singleton CM, McCalley CK, Woodcroft BJ, Boyd JA, Evans PN, Hodgkins SB, et al. Methanotrophy across a natural permafrost thaw environment. ISME J. 2018;12:2544–58.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Adachi K, Katsuta A, Matsuda S, Peng X, Misawa N, Shizuri Y, et al. Smaragdicoccus niigatensis gen. nov., sp. nov., a novel member of the suborder Corynebacterineae. Int J Syst Evol Microbiol. 2007;57:297–301.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Whitman WB, Woyke T, Klenk H-P, Zhou Y, Lilburn TG, Beck BJ, et al. Genomic encyclopedia of bacterial and archaeal type strains, phase III: the genomes of soil and plant-associated and newly described type strains. Stand Genom Sci. 2015;10:26.Article 
    CAS 

    Google Scholar 
    45.Capaccioni B, Mangani F. Monitoring of active but quiescent volcanoes using light hydrocarbon distribution in volcanic gases: the results of 4 years of discontinuous monitoring in the Campi Flegrei (Italy). Earth Planet Sci Lett. 2001;188:543–55.CAS 
    Article 

    Google Scholar 
    46.Caliro S, Chiodini G, Moretti R, Avino R, Granieri D, Russo M, et al. The origin of the fumaroles of La Solfatara (Campi Flegrei, South Italy). Geochim Cosmochim Acta. 2007;71:3040–55.CAS 
    Article 

    Google Scholar 
    47.Chiodini G, Caliro S, Cardellini C, Granieri D, Avino R, Baldini A, et al. Long-term variations of the Campi Flegrei, Italy, volcanic system as revealed by the monitoring of hydrothermal activity. J Geophys Res Solid Earth. 2010;115:B03205.Article 
    CAS 

    Google Scholar 
    48.Tamburello G, Caliro S, Chiodini G, De Martino P, Avino R, Minopoli C, et al. Escalating CO2 degassing at the Pisciarelli fumarolic system, and implications for the ongoing Campi Flegrei unrest. J Volcano Geotherm Res. 2019;384:151–7.CAS 
    Article 

    Google Scholar 
    49.de Bruyn JC, Boogerd FC, Bos P, Kuenen JG. Floating filters, a novel technique for isolation and enumeration of fastidious, acidophilic, iron-oxidizing, autotrophic bacteria. Appl Environ Microbiol. 1990;56:2891–4.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991;173:697–703.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.DeLong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA. 1992;89:5685–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Hurt RA, Qiu X, Wu L, Roh Y, Palumbo AV, Tiedje JM, et al. Simultaneous recovery of RNA and DNA from soils and sediments. Appl Environ Microbiol. 2001;67:4495–503.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    Article 

    Google Scholar 
    54.Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011;27:2957–63.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    55.Li W, Fu L, Niu B, Wu S, Wooley J. Ultrafast clustering algorithms for metagenomic sequence analysis. Brief Bioinform. 2012;13:656–68.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44:6614–24.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Vallenet D, Calteau A, Dubois M, Amours P, Bazin A, Beuvin M, et al. MicroScope: an integrated platform for the annotation and exploration of microbial gene functions through genomic, pangenomic and metabolic comparative analysis. Nucleic Acids Res. 2020;48:D579–D89.CAS 

    Google Scholar 
    59.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Thompson JD, Higgins DG, Gibson TJ, CLUSTAL W. improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Hall TA. BioEdit : a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–8.CAS 

    Google Scholar 
    62.Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Yoon SH, Ha S, Kwon S, Lim J, Kim Y, Seo H, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Salamov VSA, Solovyevand A. Automatic annotation of microbial genomes and metagenomic sequences. Li RW, editor. Hauppauge, N.Y.: Nova Science Publishers; 2011. 61–78.65.Umarov RK, Solovyev VV. Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks. PLOS One. 2017;12:e0171410.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    66.Naville M, Ghuillot-Gaudeffroy A, Marchais A, Gautheret D. ARNold: a web tool for the prediction of Rho-independent transcription terminators. RNA Biol. 2011;8:11–3.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Shen T, Stieglmeier M, Dai J, Urich T, Schleper C. Responses of the terrestrial ammonia-oxidizing archaeon Ca. Nitrososphaera viennensis and the ammonia-oxidizing bacterium Nitrosospira multiformis to nitrification inhibitors. FEMS Microbiol Lett. 2013;344:121–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Mackay D, Shiu WY. A critical review of Henry’s law constants for chemicals of environmental interest. J Phys Chem Ref Data. 1981;10:1175–99.CAS 
    Article 

    Google Scholar 
    69.Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 2009;461:976–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Carere CR, Hards K, Houghton KM, Power JF, McDonald B, Collet C, et al. Mixotrophy drives niche expansion of verrucomicrobial methanotrophs. ISME J. 2017;11:2599–610.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Mohammadi S, Pol A, van Alen TA, Jetten MSM, Op den Camp HJM. Methylacidiphilum fumariolicum SolV, a thermoacidophilic ‘Knallgas’ methanotroph with both an oxygen-sensitive and -insensitive hydrogenase. ISME J. 2017;11:945–58.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Khadem AF, Pol A, Wieczorek A, Mohammadi SS, Francoijs KJ, Stunnenberg HG, et al. Autotrophic methanotrophy in verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation. J Bacteriol. 2011;193:4438–46.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Hogendoorn C, Pol A, Nuijten GHL, Op den Camp HJM. Methanol production by “Methylacidiphilum fumariolicum” SolV under different growth conditions. Appl Environ Microbiol. 2020;86:e01188–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Crombie AT, Murrell JC. Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris. Nature. 2014;510:148–51.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Ashraf W, Mihdhir A, Colin Murrell J. Bacterial oxidation of propane. FEMS Microbiol Lett. 1994;122:1–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Hausinger RP. New insights into acetone metabolism. J Bacteriol. 2007;189:671–3.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Dedysh SN, Dunfield PF. Facultative methane oxidizers. In: McGenity TJ, editor. Taxonomy, genomics and ecophysiology of hydrocarbon-degrading microbes. Cham: Springer International Publishing; 2019:279–97. https://doi.org/10.1007/978-3-030-14796-9_11.78.Belova SE, Baani M, Suzina NE, Bodelier PLE, Liesack W, Dedysh SN. Acetate utilization as a survival strategy of peat-inhabiting Methylocystis spp. Environ Microbiol Rep. 2011;3:36–46.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Belova SE, Kulichevskaya IS, Bodelier PL, Dedysh SN. Methylocystis bryophila sp. nov., a facultatively methanotrophic bacterium from acidic Sphagnum peat, and emended description of the genus Methylocystis (ex Whittenbury et al. 1970) Bowman et al. 1993. Int J Syst Evol Microbiol. 2013;63:1096–104.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Fisher OS, Kenney GE, Ross MO, Ro SY, Lemma BE, Batelu S, et al. Characterization of a long overlooked copper protein from methane- and ammonia-oxidizing bacteria. Nat Commun. 2018;9:4276.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    81.El Sheikh AF, Poret-Peterson AT, Klotz MG. Characterization of two new genes, amoR and amoD, in the amo operon of the marine ammonia oxidizer Nitrosococcus oceani ATCC 19707. Appl Environ Microbiol. 2008;74:312–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Pol A, Barends TR, Dietl A, Khadem AF, Eygensteyn J, Jetten MS, et al. Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ Microbiol. 2014;16:255–64.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Sützl L, Foley G, Gillam EMJ, Bodén M, Haltrich D. The GMC superfamily of oxidoreductases revisited: analysis and evolution of fungal GMC oxidoreductases. Biotechnol Biofuels. 2019;12:118.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Fröbel J, Rose P, Müller M. Twin-arginine-dependent translocation of folded proteins. Philos Trans R Soc Lond B Biol Sci. 2012;367:1029–46.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    85.Sluis MK, Larsen RA, Krum JG, Anderson R, Metcalf WW, Ensign SA. Biochemical, molecular, and genetic analyses of the acetone carboxylases from Xanthobacter autotrophicus strain Py2 and Rhodobacter capsulatus strain B10. J Bacteriol. 2002;184:2969–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Kotani T, Yurimoto H, Kato N, Sakai Y. Novel acetone metabolism in a propane-utilizing bacterium, Gordonia sp. strain TY-5. J Bacteriol. 2007;189:886–93.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    87.Furuya T, Nakao T, Kino K. Catalytic function of the mycobacterial binuclear iron monooxygenase in acetone metabolism. FEMS Microbiol Lett. 2015;362:fnv136.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    88.Koop DR, Casazza JP. Identification of ethanol-inducible P-450 isozyme 3a as the acetone and acetol monooxygenase of rabbit microsomes. J Biol Chem. 1985;260:13607–12.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Patel NA, Crombie A, Slade SE, Thalassinos K, Hughes C, Connolly JB, et al. Comparison of one- and two-dimensional liquid chromatography approaches in the label-free quantitative analysis of Methylocella silvestris. J Proteome Res. 2012;11:4755–63.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Jain M, Nagar P, Sharma A, Batth R, Aggarwal S, Kumari S, et al. GLYI and D-LDH play key role in methylglyoxal detoxification and abiotic stress tolerance. Sci Rep. 2018;8:5451.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    91.MacLean MJ, Ness LS, Ferguson GP, Booth IR. The role of glyoxalase I in the detoxification of methylglyoxal and in the activation of the KefB K+ efflux system in Escherichia coli. Mol Microbiol. 1998;27:563–71.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Detman A, Mielecki D, Pleśniak Ł, Bucha M, Janiga M, Matyasik I. et al. Methane-yielding microbial communities processing lactate-rich substrates: a piece of the anaerobic digestion puzzle. Biotechnol Biofuels. 2018;11:116.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    93.Cooper RA, Kornberg HL. The direct synthesis of phosphoenolpyruvate from pyruvate by Escherichia coli. Proc R Soc Lond B Biol Sci. 1967;168:263–80.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Balasubramanian R, Smith SM, Rawat S, Yatsunyk LA, Stemmler TL, Rosenzweig AC. Oxidation of methane by a biological dicopper centre. Nature. 2010;465:115–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    95.Ross MO, MacMillan F, Wang J, Nisthal A, Lawton TJ, Olafson BD, et al. Particulate methane monooxygenase contains only mononuclear copper centers. Science. 2019;364:566–70.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    96.Ro SY, Schachner LF, Koo CW, Purohit R, Remis JP, Kenney GE, et al. Native top-down mass spectrometry provides insights into the copper centers of membrane-bound methane monooxygenase. Nat Commun. 2019;10:2675.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    97.Liew EF, Tong D, Coleman NV, Holmes AJ. Mutagenesis of the hydrocarbon monooxygenase indicates a metal centre in subunit-C, and not subunit-B, is essential for copper-containing membrane monooxygenase activity. Microbiology. 2014;160:1267–77.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    98.Nguyen TT, Hwang IY, Na JG, Lee EY. Biological conversion of propane to 2-propanol using group I and II methanotrophs as biocatalysts. J Ind Microbiol Biotechnol. 2019;46:675–85.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Hur DH, Nguyen TT, Kim D, et al. EY. Selective bio-oxidation of propane to acetone using methane-oxidizing Methylomonas sp. DH-1 J Ind Microbiol Biotechnol. 2017;44:1097–105.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    100.Schoell M. Genetic characterization of natural gases. AAPG Bull. 1983;67:2225–38.CAS 

    Google Scholar  More

  • in

    Ammonia-oxidizing archaea have similar power requirements in diverse marine oxic sediments

    1.Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D’Hondt S. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci USA. 2012;109:16213–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Parkes RJ, Cragg B, Roussel E, Webster G, Weightman A, Sass H. A review of prokaryotic populations and processes in sub-seafloor sediments, including biosphere: geosphere interactions. Mar Geol. 2014;352:409–25.CAS 
    Article 

    Google Scholar 
    3.D’Hondt S, Jørgensen BB, Miller DJ, Batzke A, Blake R, Cragg BA, et al. Distributions of microbial activities in deep subseafloor sediments. Science 2004;306:2216–21.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    4.Røy H, Kallmeyer J, Adhikari RR, Pockalny R, Jørgensen BB, D’Hondt S. Aerobic microbial respiration in 86-million-year-old deep-sea red clay. Science. 2012;336:922–5.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    5.D’Hondt S, Inagaki F, Zarikian CA, Abrams LJ, Dubois N, Engelhardt T, et al. Presence of oxygen and aerobic communities from sea floor to basement in deep-sea sediments. Nat Geosci. 2015;8:299–304.Article 
    CAS 

    Google Scholar 
    6.Jørgensen BB, Marshall IPG. Slow microbial life in the seabed. Annu Rev Mar Sci. 2016;8:311–32.Article 

    Google Scholar 
    7.Danovaro R, Dell’Anno A, Corinaldesi C, Rastelli E, Cavicchioli R, Krupovic M, et al. Virus-mediated archaeal hecatomb in the deep seafloor. Sci Adv. 2016;2:e1600492.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    8.Engelhardt T, Kallmeyer J, Cypionka H, Engelen B. High virus-to-cell ratios indicate ongoing production of viruses in deep subsurface sediments. ISME J. 2014;8:1503–9.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Engelhardt T, Orsi WD, Jørgensen BB. Viral activities and life cycles in deep subseafloor sediments. Environ Microbiol Rep. 2015;7:868–73.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.LaRowe DE, Amend JP. Catabolic rates, population sizes and doubling/replacement times of microorganisms in natural settings. Am J Sci. 2015;315:167–203.CAS 
    Article 

    Google Scholar 
    11.LaRowe DE, Amend JP. Power limits for microbial life. Front Microbiol. 2015;6:718.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Hoehler TM, Jørgensen BB. Microbial life under extreme energy limitation. Nat Rev Microbiol. 2013;11:83–94.CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Zhao R, Mogollón JM, Abby SS, Schleper C, Biddle JF, Roerdink DL, et al. Geochemical transition zone powering microbial growth in subsurface sediments. Proc Natl Acad Sci USA 2020;117:32617–26.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Bradley J, Arndt S, Amend J, Burwicz E, Dale AW, Egger M, et al. Widespread energy limitation to life in global subseafloor sediments. Sci Adv 2020;6:eaba0697.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Bradley JA, Amend JP, LaRowe DE. Survival of the fewest: Microbial dormancy and maintenance in marine sediments through deep time. Geobiology 2019;17:43–59.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Lever MA, Rogers KL, Lloyd KG, Overmann J, Schink B, Thauer RK, et al. Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations. FEMS Microbiol Rev. 2015;39:688–728.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Lloyd KG, Steen AD, Ladau J, Yin J, Crosby L. Phylogenetically novel uncultured microbial cells dominate earth microbiomes. mSystems 2018;3:e00055–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Durbin AM, Teske A. Microbial diversity and stratification of south pacific abyssal marine sediments. Environ Microbiol. 2011;13:3219–34.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Tully BJ, Heidelberg JF. Potential mechanisms for microbial energy acquisition in oxic deep-sea sediments. Appl Environ Microbiol. 2016;82:4232–43.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Vuillemin A, Wankel SD, Coskun ÖK, Magritsch T, Vargas S, Estes ER, et al. Archaea dominate oxic subseafloor communities over multimillion-year time scales. Sci Adv 2019;5:eaaw4108.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Hiraoka S, Hirai M, Matsui Y, Makabe A, Minegishi H, Tsuda M, et al. Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments. ISME J. 2020;14:740–56.CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Hoshino T, Doi H, Uramoto G-I, Wörmer L, Adhikari RR, Xiao N, et al. Global diversity of microbial communities in marine sediment. Proc Natl Acad Sci USA 2020;117:27587–97.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Zhao R, Hannisdal B, Mogollon JM, Jørgensen SL. Nitrifier abundance and diversity peak at deep redox transition zones. Sci Rep. 2019;9:8633.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Jensen K, Sloth NP, Risgaardpetersen N, Rysgaard S, Revsbech NP. Estimation of nitrification and denitrification from microprofiles of oxygen and nitrate in model sediment systems. Appl Environ Microbiol. 1994;60:2094–100.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Middelburg JJ, Soetaert K, Herman PMJ, Heip CHR. Denitrification in marine sediments: a model study. Glob Biogeochemical Cycles. 1996;10:661–73.CAS 
    Article 

    Google Scholar 
    26.Devol AH. Denitrification, anammox, and n2 production in marine sediments. Annu Rev Mar Sci. 2015;7:403–23.Article 

    Google Scholar 
    27.Wankel SD, Germanovich LN, Lilley MD, Genc G, DiPerna CJ, Bradley AS, et al. Influence of subsurface biosphere on geochemical fluxes from diffuse hydrothermal fluids. Nat Geosci. 2011;4:461–8.CAS 
    Article 

    Google Scholar 
    28.Middelburg JJ. Chemoautotrophy in the ocean. Geophys Res Lett. 2011;38:L24604.Article 
    CAS 

    Google Scholar 
    29.Meador TB, Schoffelen N, Ferdelman TG, Rebello O, Khachikyan A, Könneke M. Carbon recycling efficiency and phosphate turnover by marine nitrifying archaea. Sci Adv 2020;6:eaba1799.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Kerou M, Offre P, Valledor L, Abby SS, Melcher M, Nagler M. et al. Proteomics and comparative genomics of nitrososphaera viennensis reveal the core genome and adaptations of archaeal ammonia oxidizers. Proc Natl Acad Sci USA. 2016;113:E7937–E46.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Kerou M, Ponce-Toledo RI, Zhao R, Abby SS, Hirai M, Nomaki H et al. Genomes of thaumarchaeota from deep sea sediments reveal specific adaptations of three independently evolved lineages. ISME J. 2021. https://doi.org/10.1038/s41396-021-00962-6.32.Boetius A, Ferdelman T, Lochte K. Bacterial activity in sediments of the deep Arabian sea in relation to vertical flux. Deep-Sea Res Part II. 2000;47:2835–75.Article 

    Google Scholar 
    33.Grandel S, Rickert D, Schluter M, Wallmann K. Pore-water distribution and quantification of diffusive benthic fluxes of silicic acid, nitrate and phosphate in surface sediments of the deep arabian sea. Deep-Sea Res Part II. 2000;47:2707–34.CAS 
    Article 

    Google Scholar 
    34.Orcutt BN, Wheat CG, Rouxel O, Hulme S, Edwards KJ, Bach W. Oxygen consumption rates in subseafloor basaltic crust derived from a reaction transport model. Nat Commun. 2013;4:2539.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    35.Ziebis W, McManus J, Ferdelman T, Schmidt-Schierhorn F, Bach W, Muratli J, et al. Interstitial fluid chemistry of sediments underlying the North Atlantic gyre and the influence of subsurface fluid flow. Earth Planet Sci Lett. 2012;323:79–91.Article 
    CAS 

    Google Scholar 
    36.Huang Y. The no3-/o2 respiration ratio of the deep sedimentary biosphere in the pacific gyres. Open Access Master’s Thesis Paper 288, University of Rhode Island. 2014; https://digitalcommons.uri.edu/theses/288.37.Ryan WBF, Carbotte SM, Coplan JO, O’Hara S, Melkonian A, Arko R, et al. Global multi-resolution topography synthesis. Geochem Geophysics Geosystems. 2009;10:Q03014.
    Google Scholar 
    38.Bolleter W, Bushman C, Tidwell PW. Spectrophotometric determination of ammonia as indophenol. Anal Chem. 1961;33:592–4.CAS 
    Article 

    Google Scholar 
    39.Hansen HP, Koroleff F. Determination of nutrients. Methods of seawater analysis. 1999. p. 159−228.40.Expedition 336 Scientists. Sediment and basement contact coring. In Edwards, KJ, Bach, W, Klaus, A, and the Expedition 336 Scientists, Proc IODP, 336: Tokyo (Integrated Ocean Drilling Program Management International, Inc) 2012.41.Mogollón JM, Mewes K, Kasten S. Quantifying manganese and nitrogen cycle coupling in manganese‐rich, organic carbon‐starved marine sediments: Examples from the Clarion−Clipperton fracture zone. Geophys Res Lett. 2016;43:7114–23.Article 
    CAS 

    Google Scholar 
    42.Jørgensen BB. Comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. Ii. Calculation from mathematical models. Geomicrobiol J. 1978;1:29–47.Article 

    Google Scholar 
    43.Grundmanis V, Murray JW. Aerobic respiration in pelagic marine sediments. Geochimica et Cosmochimica Acta. 1982;46:1101–20.CAS 
    Article 

    Google Scholar 
    44.Murray JW, Kuivila KM. Organic matter diagenesis in the northeast pacific: Transition from aerobic red clay to suboxic hemipelagic sediments. Deep-Sea Res Part A. 1990;37:59–80.CAS 
    Article 

    Google Scholar 
    45.Anderson LA, Sarmiento JL. Redfield ratios of remineralization determined by nutrient data analysis. Glob Biogeochemical Cycles. 1994;8:65–80.CAS 
    Article 

    Google Scholar 
    46.Dick JM. Calculation of the relative metastabilities of proteins using the chnosz software package. Geochemical Trans. 2008;9:10.Article 
    CAS 

    Google Scholar 
    47.Helgeson HC. Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am J Sci. 1969;267:729–804.CAS 
    Article 

    Google Scholar 
    48.Jung M-Y, Sedlacek CJ, Dimitri Kits K, Mueller AJ, Rhee S-K, Hink L et al. Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities. Preprint at bioRxiv https://doi.org/10.1101/2021.03.02.433310. 2021.49.Beman JM, Chow CE, King AL, Feng YY, Fuhrman JA, Andersson A, et al. Global declines in oceanic nitrification rates as a consequence of ocean acidification. Proc Natl Acad Sci USA. 2011;108:208–13.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Zeebe RE, Wolf-Gladrow D. CO2 in seawater: equilibrium, kinetics, isotopes. Gulf Professional Publishing; 2001.51.Bayer B, Vojvoda J, Reinthaler T, Reyes C, Pinto M, Herndl GJ. Nitrosopumilus adriaticus sp. Nov. And nitrosopumilus piranensis sp. Nov., two ammonia-oxidizing archaea from the Adriatic sea and members of the class nitrososphaeria. Int J Syst Evolut Microbiol. 2019;69:1892–902.CAS 
    Article 

    Google Scholar 
    52.Qin W, Heal KR, Ramdasi R, Kobelt JN, Martens-Habbena W, Bertagnolli AD, et al. Nitrosopumilus maritimus gen. nov., sp. nov., nitrosopumilus cobalaminigenes sp. nov., nitrosopumilus oxyclinae sp. nov., and nitrosopumilus ureiphilus sp. nov., four marine ammonia-oxidizing archaea of the phylum thaumarchaeota. Int J Syst Evolut Microbiol. 2017;67:5067–79.Article 

    Google Scholar 
    53.Tijhuis L, van Loosdrecht MCM, Heijnen JJ. A thermodynamically based correlation for maintenance Gibbs energy requirements in aerobic and anaerobic chemotrophic growth. Biotechnol Bioeng. 1993;42:509–19.CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Glover HE. The relationship between inorganic nitrogen oxidation and organic carbon production in batch and chemostat cultures of marine nitrifying bacteria. Arch Microbiol. 1985;142:45–50.CAS 
    Article 

    Google Scholar 
    55.Jahnke RA, Emerson SR, Reimers CE, Schuffert J, Ruttenberg K, Archer D. Benthic recycling of biogenic debris in the eastern tropical Atlantic ocean. Geochimica et Cosmochimica Acta. 1989;53:2947–60.CAS 
    Article 

    Google Scholar 
    56.Nath BN, Mudholkar AV. Early diagenetic processes affecting nutrients in the pore waters of central Indian ocean cores. Mar Geol. 1989;86:57–66.CAS 
    Article 

    Google Scholar 
    57.Van Der Loeff MMR. Oxygen in pore waters of deep-sea sediments. Philos Trans R Soc A. 1990;331:69–84.
    Google Scholar 
    58.Mewes K, Mogollón J, Picard A, Rühlemann C, Eisenhauer A, Kuhn T, et al. Diffusive transfer of oxygen from seamount basaltic crust into overlying sediments: an example from the Clarion–Clipperton fracture zone. Earth Planet Sci Lett. 2016;433:215–25.CAS 
    Article 

    Google Scholar 
    59.Buchwald C, Homola K, Spivack AJ, Estes ER, Murray RW, Wankel SD. Isotopic constraints on nitrogen transformation rates in the deep sedimentary marine biosphere. Glob Biogeochemical Cycles. 2018;32:1688–702.CAS 
    Article 

    Google Scholar 
    60.Volz JB, Mogollón JM, Geibert W, Arbizu PM, Koschinsky A, Kasten S. Natural spatial variability of depositional conditions, biogeochemical processes and element fluxes in sediments of the eastern Clarion-Clipperton zone, pacific ocean. Deep Sea Res Part I. 2018;140:159–72.CAS 
    Article 

    Google Scholar 
    61.Wang Y, Van, Cappellen P. A multicomponent reactive transport model of early diagenesis: Application to redox cycling in coastal marine sediments. Geochimica et Cosmochimica Acta. 1996;60:2993–3014.CAS 
    Article 

    Google Scholar 
    62.Soetaert K, Herman PMJ, Middelburg JJ. A model of early diagenetic processes from the shelf to abyssal depths. Geochimica et Cosmochimica Acta. 1996;60:1019–40.CAS 
    Article 

    Google Scholar 
    63.Wilson TRS. Evidence for denitrification in aerobic pelagic sediments. Nature 1978;274:354–6.CAS 
    Article 

    Google Scholar 
    64.Brandes JA, Devol AH. Simultaneous nitrate and oxygen respiration in coastal sediments – evidence for discrete diagenesis. J Mar Res. 1995;53:771–97.CAS 
    Article 

    Google Scholar 
    65.Gao H, Schreiber F, Collins G, Jensen MM, Kostka JE, Lavik G, et al. Aerobic denitrification in permeable wadden sea sediments. ISME J. 2010;4:417–26.CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Marchant HK, Ahmerkamp S, Lavik G, Tegetmeyer HE, Graf J, Klatt JM, et al. Denitrifying community in coastal sediments performs aerobic and anaerobic respiration simultaneously. ISME J. 2017;11:1799–812.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Bianchi D, Weber TS, Kiko R, Deutsch C. Global niche of marine anaerobic metabolisms expanded by particle microenvironments. Nat Geosci. 2018;11:263–8.CAS 
    Article 

    Google Scholar 
    68.Henriksen K, Hansen J, Blackburn T. Rates of nitrification, distribution of nitrifying bacteria, and nitrate fluxes in different types of sediment from Danish waters. Mar Biol. 1981;61:299–304.CAS 
    Article 

    Google Scholar 
    69.Billen G. Evaluation of nitrifying activity in sediments by dark 14c-bicarbonate incorporation. Water Res. 1976;10:51–7.CAS 
    Article 

    Google Scholar 
    70.Newell SE, Fawcett SE, Ward BB. Depth distribution of ammonia oxidation rates and ammonia-oxidizer community composition in the sargasso sea. Limnol Oceanogr. 2013;58:1491–500.CAS 
    Article 

    Google Scholar 
    71.Zhao R, Dahle H, Ramírez GA, Jørgensen SL. Indigenous ammonia-oxidizing archaea in oxic subseafloor oceanic crust. mSystems 2020;5:e00758–19.PubMed 
    PubMed Central 

    Google Scholar 
    72.Müller V, Hess V. The minimum biological energy quantum. Front Microbiol. 2017;8:2019.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Jørgensen SL, Hannisdal B, Lanzen A, Baumberger T, Flesland K, Fonseca R, et al. Correlating microbial community profiles with geochemical data in highly stratified sediments from the arctic mid-ocean ridge. Proc Natl Acad Sci USA. 2012;109:2846–55.Article 

    Google Scholar 
    74.Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, et al. Complete nitrification by nitrospira bacteria. Nature 2015;528:504–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Durbin AM, Teske A. Sediment-associated microdiversity within the marine group i crenarchaeota. Environ Microbiol Rep. 2010;2:693–703.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Bristow LA, Dalsgaard T, Tiano L, Mills DB, Bertagnolli AD, Wright JJ, et al. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. Proc Natl Acad Sci USA. 2016;113:10601–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Sintes E, Bergauer K, De Corte D, Yokokawa T, Herndl GJ. Archaeal amoa gene diversity points to distinct biogeography of ammonia-oxidizing crenarchaeota in the ocean. Environ Microbiol. 2013;15:1647–58.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Kitzinger K, Padilla CC, Marchant HK, Hach PF, Herbold CW, Kidane AT, et al. Cyanate and urea are substrates for nitrification by thaumarchaeota in the marine environment. Nat Microbiol. 2019;4:234–43.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Palatinszky M, Herbold C, Jehmlich N, Pogoda M, Han P, von Bergen M, et al. Cyanate as an energy source for nitrifiers. Nature 2015;524:105–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Marschall E, Jogler M, Henßge U, Overmann J. Large-scale distribution and activity patterns of an extremely low-light-adapted population of green sulfur bacteria in the black sea. Environ Microbiol. 2010;12:1348–62.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.McCollom T, Amend J. A thermodynamic assessment of energy requirements for biomass synthesis by chemolithoautotrophic micro‐organisms in oxic and anoxic environments. Geobiology 2005;3:135–44.CAS 
    Article 

    Google Scholar 
    82.D’Hondt S, Rutherford S, Spivack AJ. Metabolic activity of subsurface life in deep-sea sediments. Science 2002;295:2067–70.PubMed 
    Article 

    Google Scholar 
    83.Price PB, Sowers T. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci USA. 2004;101:4631–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Gibson B, Wilson DJ, Feil E, Eyre-Walker A. The distribution of bacterial doubling times in the wild. Proc R Soc B: Biol Sci 2018;285:20180789.Article 
    CAS 

    Google Scholar 
    85.Weissman JL, Hou S, Fuhrman JA. Estimating maximal microbial growth rates from cultures, metagenomes, and single cells via codon usage patterns. Proc Natl Acad Sci 2021;118:e2016810118.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    86.Steen AD, Kevorkian RT, Bird JT, Dombrowski N, Baker BJ, Hagen SM, et al. Kinetics and identities of extracellular peptidases in subsurface sediments of the white oak river estuary, North Carolina. Appl Environ Microbiol. 2019;85:e00102–19.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Kim J-G, Kim S-J, Cvirkaite-Krupovic V, Yu W-J, Gwak J-H, López-Pérez M, et al. Spindle-shaped viruses infect marine ammonia-oxidizing thaumarchaea. Proc Natl Acad Sci USA 2019;116:15645–50.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Cai L, Jørgensen BB, Suttle CA, He M, Cragg BA, Jiao N, et al. Active and diverse viruses persist in the deep sub-seafloor sediments over thousands of years. ISME J. 2019;13:1857–64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Paul SA, Gaye B, Haeckel M, Kasten S, Koschinsky A. Biogeochemical regeneration of a nodule mining disturbance site: trace metals, doc and amino acids in deep-sea sediments and pore waters. Front Mar Sci. 2018;5:117.Article 

    Google Scholar 
    90.D’Hondt S, Pockalny R, Fulfer VM, Spivack AJ. Subseafloor life and its biogeochemical impacts. Nat Commun. 2019;10:3519.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar  More

  • in

    Modeling host-associating microbes under selection

    Baseline model: no competitionWe start by assuming no competition and consider unconstrained growth in each of the two compartments. In this case, the equations describing our model become linear and can be rewritten in matrix form [4] as$$left( {begin{array}{*{20}{c}} {frac{{partial n_{H}}}{{partial t}}} \ {frac{{partial n_{E}}}{{partial t}}} end{array}} right) = underbrace{left( {begin{array}{*{20}{c}} {r_{H} – m_{E}} & {m_{H}} \ {m_{E}} & {r_{E} – m_{H}} end{array}} right)}_{{mathrm{projection}}, {mathrm{matrix}}}left( {begin{array}{*{20}{c}} {n_{H}} \ {n_{E}}end{array}} right)$$
    (2)
    The dominant eigenvalue λ of the above-defined projection matrix gives the asymptotic overall growth rate of the considered microbial lineage. This quantity is an appropriate measure of fitness [4] insofar as it measures reproductive as well as transmission success and recapitulates the effects of all the life-history traits (rE, rH, mE, and mH, also defining the phenotype in our model). Overall microbial fitness is thus integrated across the different steps of the life cycle, thereby considering the reproductive rates (i.e., replication rates) within each of the compartments and importantly transmission rates (i.e., migration rates) across the compartments. The dominant right eigenvector represents the stable distribution of microbes in the two compartments, and the number of microbes in each of the compartments grows exponentially with rate λ. The value of λ can be calculated at each point of the phenotypic space defined by the ranges of possible values that could be taken by the life-history traits rE, rH, mE, and mH. The dependence of λ on these traits tells us at which points of the phenotypic space fitness is maximized and how it can be increased at all other points.From the projection matrix, we calculate the dominant eigenvalue as$$lambda = frac{1}{2}left(sqrt {left( {r_E + r_H – m_E – m_H} right)^2 {,}-{,} 4left( {r_Er_H – r_Em_E – r_Hm_H} right)} + r_E +r_H – m_E – m_H right).$$
    (3)
    Note that if microbes replicate at the same rate in the host and in the environment, i.e., if rE = rH = r, λ simplifies to r, regardless of the migration rates mH and mE. When there is an asymmetry between the two replication rates however, which is very likely to be the case in nature, then the migration rates also affect the overall growth rate. In the following sections, we study this effect compared to the effect of the replication rates. We arbitrarily set rH ≤ rE, and rE  > 0 – otherwise the lineage goes extinct. In biological terms, this corresponds to the situation where the microbial lineage is initially more adapted to the environment than to the host and thus grows faster in the environment. But mathematically, in this model, host and environment are symmetrical, i.e., they only differ by the rates defined above. Thus, the chosen direction of this inequality does not carry any strong meaning, and there is no loss of generality in making this choice. In particular, one can access the opposite biological situation where microbes replicate faster in the host than in the environment – as is the case for viruses, that can only replicate in the host (rH  > 0) but decay in the environment (rE  0. Setting rE = 1 to scale time (and thus, measuring all other rates in units of the replication rate of the microbe in the environment), λ reduces to$${uplambda}_{sym} = frac{1}{2}left( {1 + r_H – 2m + sqrt {left( {1 – r_H} right)^2 {,}+ {,}4m^2} } right)$$
    (4)
    For any fixed positive value of m, λsym is a strictly increasing function of rH, which reflects the fact that increasing rH allows for additional growth within the host. We will limit ourselves to the study of rH ≥ −1, which ensures a positive value for λsym. For any fixed value of rH, λsym is a decreasing function of m, which reflects the fact that for increasing m, microbes are increasingly lost towards the host, where growth is slower than in the environment. Figure 1C shows the value of λsym on the reduced phenotypic space defined by rH and m. The maximum possible value for λ is 1 (in units of rE). This value is achieved either by increasing the ratio of replication rates between host and environment, so that the replication rates in both compartments are identical (strategy I), or by reducing migration between host and environment, and in particular, by reducing mH (strategy II). This second strategy allows microbes to spend a longer time in the environment on average. Note however, that this strategy is limited, since setting m to zero decouples the two compartments completely, in which case the microbial lineage is no longer subject to a multi-step life cycle.How strong is the selection on these traits? This question can be approached by inferring how strongly the overall growth rate depends on the traits we are considering. One standard approach to measure this is sensitivity analysis [4]. One defines the sensitivity of the overall growth rate λ achieved by the phenotype described by the vector x = (x1,…, xN) in the trait space to its ith life-history trait as$$s_{mathrm{i}}left( {mathbf{x}} right) = left. {frac{{partial {uplambda}}}{{partial {mathrm{x}}_{mathrm{i}}}}} right|_{mathbf{x}}$$
    (5)
    This quantity gives the change in the value of λ that results from a small increment of the trait i. It is a local property that can be calculated for each point ({mathbf{x}}) of the trait space. The vector of the sensitivities at point ({mathbf{x}}) gives the direction of the selection gradient on the fitness landscape. In other words, to achieve efficient phenotypic adaptation, the lineage should move in the trait space following the direction of this gradient.If the lineage can invest in phenotypic adaptation only by tuning one of its life-history traits at a time, then it should act upon the trait that has the largest (absolute) sensitivity at the current position of the lineage in the trait space. In our model, in all generic cases (i.e., when m  > 0), the largest sensitivity is always associated to the increase of the trait rE, the replication rate in the fast-growing compartment. However, we assume that the considered microbial lineage is initially fully adapted to the environment, so that it has reached its evolutionary limit, and we can essentially ignore the sensitivity to rE throughout the manuscript to focus on the sensitivity to the other traits. This reasoning allows to divide the trait space into regions of distinct optimal strategies, as shown in Fig. 1C. In the regime of high migration rates (i.e., when the switch between the compartments is so rapid that the microbial lineage is almost experiencing a habitat having average properties between the host and the environment), strategy I (increasing rH) becomes almost always optimal, except for small replication ratios, where there is almost no replication in the host. In summary, migration rates are important when replication in the host is slow compared to the environment, and when migration itself is slow. These conclusions remain qualitatively unchanged with asymmetric migration rates, although a third optimal strategy (increasing mE) appears for an intermediate region of the traits space when the asymmetry is important (see electronic Supplementary Material (ESM) section 1 and Supplementary Fig. S1).Model with global competition between all microbesIn the baseline model, there are no constraints on growth. In nature, however, microbes do face limits to their growth. Since the equations above are linear and can only give rise to exponential growth or exponential decay, they can only describe the microbial dynamics over a limited period of time. In order to account for saturation and competition during growth, we thus need to introduce non-linear terms to the equations (1). The study of this kind of systems often focus on long-term dynamics, yet it can be of high practical relevance to study the transient optimal strategies, as shorter timescales are often relevant in the real world – whether it be due to experimental constraints or to ecological disturbances and perturbations [20]. Since we are going to consider some out-of equilibrium dynamics, in particular in the section with competition limited to one of the compartments, and because we are also interested in transient properties, we will adopt a numerical approach based on the number of microbes [21, 22].In this section, we study the case of a microbial lineage constrained by global competition occurring at rate k = kHH = kEE = kEH = kHE. This situation could correspond to a host-associated microbe living in direct contact with an external environment, e.g., on the surface of an organism. Alternatively, what we call the “environment” in our model could represent another host compartment in direct contact with the other, like the gut lumen and the colonic crypts. In that case, microbes living in association with the host are in direct contact with those in the environment and can mutually impact each other’s growth. This is of particular relevance if microbes living in both compartments rely on and are limited by the same nutrients for growth.From the microbial abundances in the two compartments obtained by numerically solving the equations, one can build a proxy for the overall growth rate of the microbial lineage. To remain consistent with the previous section, we define$$varLambda left( {mathbf{x}} right) = frac{1}{{t_{max}}}log left( {frac{{n_Eleft( {t_{max}} right) + n_Hleft( {t_{max}} right)}}{{n_Eleft( 0 right) + n_Hleft( 0 right)}}} right)$$
    (6)
    i.e., the effective exponential growth rate of the microbial lineage over a chosen period of time [0, tmax]. Figure 2A provides a graphical explanation for the expression of Λ. There are indeed several fundamental differences between the effective exponential growth rate Λ in a non-linear system and the asymptotic growth rate λ in a linear system, the dominant eigenvalue of the projection matrix as defined in the baseline model. First, Λ provides a measure of growth for the whole lineage, but is not an asymptotic growth rate (as compared to λ in the baseline model): in the case of global saturation, replication stops when the carrying capacity is reached, and the asymptotic growth rate for the whole lineage would thus be zero. Therefore, the choice of the probing time tmax has an impact on Λ, as shown in Fig. 2A. Second, the choice of the exact form of Λ now implies biological assumptions on the selection pressure experienced by the microbial lineage: choosing the effective exponential growth rate over the whole lineage as we do implies that selection is acting on both compartments evenly. There may be some situations in which the microbes in one of the compartments only are artificially selected for (e.g., as part of the protocol of an evolution experiment). In such cases, it would make sense to define Λ as the effective exponential growth rate over just this compartment. This may lead to different conclusions, in particular at the transient scale. One must thus adapt Λ to the specifics of the modeled system. In addition, the choice of tmax itself has a biological meaning, and should in particular not exceed the time upon which the dynamics of the system are accurately described by the set of equations. This may also be determined by experimental times.Fig. 2: Optimal strategies in the model with global competition.A Temporal dynamics of the total number of microbes nE(t) + nH(t) for three different sets of traits values, differing only by their intensity of competition k = kHH = kEE = kEH = kHE. Other parameter values are: rH = 0.1, mE = mH = 0.5. The effective overall growth rate Λ is calculated numerically by taking the slope of the straight line that connects the abundances in t = 0 and in tmax, thus making Λ a quantity that strongly depends on tmax. B Change in the contour line delimiting the regions of optimality of the two optimal strategies (strategy I: increasing rH; strategy II: decreasing mH) with tmax, the time chosen to measure the final number of microbes, measured in units of 1/rE. Initially the microbes are equally distributed between the host and the environment. Supplementary Fig. S2 shows how this is modified with different initial conditions. Because in this model all the microbes are equally impacted by competition, with tmax large enough, one recovers the contour line of the baseline model calculated analytically (black line). Continuous lines: k = 0, i.e., no competition. Dashed lines: increasing values of k (competition intensity). C, D Change in the fitness landscape with tmax (panel C: tmax = 0.7 and panel D: tmax = 3). The colored lines show the contour delimiting the regions of optimality of strategies I and II for three different values of k, as shown on panel B. Black line: long-term limit of no competition from the base model.Full size imageWe now calculate the sensitivity of Λ in the direction of the trait i at the point x of the phenotypic space as$$S_i = frac{{varLambda left( {x_1,x_2, ldots ,x_{i – 1},x_i + delta x_i,x_{i + 1}, ldots ,x_N} right) – varLambda left( {x_1,x_2, ldots ,x_N} right)}}{{delta x_i}}$$
    (7)
    with δxi the discretization interval, and N the number of traits defining a phenotype x.For this numerical approach, additional choices need to be made. First, the trait space needs to be discretized. Then, to calculate Eq. (7), one needs to choose a set of initial conditions and a probing time at which to measure the microbial abundances, as exposed in detail for the linear case in [20]. Finally, we need to choose the discretization interval δxi. In the following, we always choose δxi sufficiently small for convergence, i.e., so that it does not significantly impact the numerical values of the sensitivities, and focus on the choices of the other parameters (probing time and initial conditions) and the influence of the competition intensity k. One strategy to explore the possible impact of initial conditions is to use “stage biased vectors” [20], i.e., extreme initial distributions of microbes across the two compartments. This corresponds to initial conditions where microbes either exist only in the host or only in the environment.In Fig. 2B, we show how the contour lines delimiting the two optimal strategies change with the final time tmax chosen to measure the overall growth rate and with the intensity of competition k, for a mixed initial condition (nE(0) = 0.5, nH(0) = 0.5), and Supplementary Fig. S2 shows how this is modified with stage biased vectors. In all cases, with sufficiently long tmax, the contours converge to the contour plot of the baseline model shown in the previous section. This is expected, since competition here affects all the microbes in the same way, so that the equilibrium distribution is the same as the asymptotic distribution of the baseline model (given by the dominant eigenvector). Mathematically, global competition can be seen as a modification of the baseline projection matrix by subtracting an identity matrix times a scalar depending on time. This does neither affect the eigenvectors nor the dependence of the dominant eigenvalue on the traits.In the case where all the microbes are initially in the environment (Supplementary Fig. S2A), there is no transient effect and whichever tmax is chosen, all the contour lines collapse to the limit of the baseline case. In the case where all the microbes are initially in the host (Supplementary Fig. S2B), a third optimal strategy transiently appears (increasing mE) and remains at long times around m = 0. In this unfavorable condition (m = 0 and an initially empty environment), increasing the microbial flux towards the environment becomes more important than limiting the flux of microbes leaving it (which is nonexistent when m = 0).Finally, we observe that the intensity of competition has only a small effect on the contours (Fig. 2B and S2B), but increasing k appears to slightly accelerate convergence to the baseline contour. By limiting growth in the host compartment – when it is initially relatively more populated than in the asymptotic distribution – competition facilitates the convergence to the baseline asymptotic distribution, where most of the microbes live in the environment.Model with competition within one of the compartments onlyIn this section we consider competition happening inside one of the compartments only (i.e., kEH = kHE = 0 and kEE ≠ 0 or kHH ≠ 0). We will start by considering competition in the host only (the slow-replicating compartment). In a second step we also look at the case with competition limited to the environment. One should bear in mind that it also covers the case of competition limited to a host where replication is faster than in the environment (rH  > rE), provided a switch of the H and E index.In the case where competition is limited to only one of the compartments, we do not expect an equilibrium to exist for all traits combination of the phenotypic space. If migration is not sufficiently important, the number of microbes in the unconstrained compartment keeps increasing exponentially faster than the number of microbes in the constrained compartment, which contribution to the whole lineage thus becomes rapidly negligible. At sufficiently high migration rates however, an equilibrium is expected, because microbes switch habitats sufficiently rapidly for competition to be globally effective, although it directly affects only one of the compartments.Competition in the host only (slow-replicating compartment)When there is competition in the host only, there is no (positive) equilibrium for all mH  More

  • in

    Canopy distribution and microclimate preferences of sterile and wild Queensland fruit flies

    1.Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science (80-) 328, 894–899 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Benton, M. J. The red queen and the court jester: Species diversity and the role of biotic and abiotic factors through time. Science (80-) 323, 728–732 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Addo-Bediako, A., Chown, S. L. & Gaston, K. J. Revisiting water loss in insects: a large scale view. J. Insect Physiol. 47, 1377–1388 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Abram, P., Boivin, G., Moiroux, J. & Brodeur, J. Behavioural effects of temperature on ectothermic animals: unifying thermal physiology and behavioural plasticity. Biol. Rev. Camb. Philos. Soc. 92, 1859–1876 (2016).PubMed 
    Article 

    Google Scholar 
    5.Woods, H. A., Dillon, M. E. & Pincebourde, S. The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change. J. Therm. Biol. 54, 86–97 (2015).PubMed 
    Article 

    Google Scholar 
    6.Duffy, G. A., Coetzee, B. W., Janion-Scheepers, C. & Chown, S. L. Microclimate-based macrophysiology: implications for insects in a warming world. Curr. Opin. Insect Sci. 11, 84–89 (2015).PubMed 
    Article 

    Google Scholar 
    7.Pincebourde, S., Sinoquet, H., Combes, D. & Casas, J. Regional climate modulates the canopy mosaic of favourable and risky microclimates for insects. J. Anim. Ecol. 76, 424–438 (2007).PubMed 
    Article 

    Google Scholar 
    8.Sinoquet, H. et al. 3-D maps of tree canopy geometries at leaf scale. Ecology 90, 283 (2009).Article 

    Google Scholar 
    9.Pincebourde, S. & Woods, H. A. Climate uncertainty on leaf surfaces: The biophysics of leaf microclimates and their consequences for leaf-dwelling organisms. Funct. Ecol. 26, 844–853 (2012).Article 

    Google Scholar 
    10.Pincebourde, S. & Casas, J. Narrow safety margin in the phyllosphere during thermal extremes. Proc. Natl. Acad. Sci. 116, 5588–5596 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Classen, A. T., Hart, S. C., Whitman, T. G., Cobb, N. S. & Koch, G. W. Insect infestations linked to shifts in microclimate: important climate change implications. Soil Sci. Soc. Am. J. 69, 2049–2057 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Beetge, L. & Krüger, K. Drought and heat waves associated with climate change affect performance of the potato aphid Macrosiphum euphorbiae. Sci. Rep. 9, 3645 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    13.Dale, A. G. & Frank, S. D. Warming and drought combine to increase pest insect fitness on urban trees. PLoS One 12, e0173844 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    14.Sørensen, J. G., Addison, M. F. & Terblanche, J. S. Mass-rearing of insects for pest management: challenges, synergies and advances from evolutionary physiology. Crop Prot. 38, 87–94 (2012).Article 

    Google Scholar 
    15.Klassen, W. & Curtis, C. F. History of the sterile insect technique. in Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds. Dyck, V. A., Hendrichs, J. & Robinson, A. S.) 3–36 (Springer, 2005).16.Orozco-Dávila, D. et al. Mass rearing and sterile insect releases for the control of Anastrepha spp. pests in Mexico-a review. Entomol. Exp. Appl. 164, 176–187 (2017).Article 

    Google Scholar 
    17.Vreysen, M. J. B., Hendrichs, J. & Enkerlin, W. R. The sterile insect technique as a component of sustainable area-wide integrated pest management of selected horticultural insect pests. J. Fruit Ornam. Plant Res. 14, 107–130 (2006).
    Google Scholar 
    18.Enkerlin, W. R. Impact of fruit fly control programmes using the sterile insect technique. in Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds. Dyck, V. A., Hendrichs, J. & Robinson, A. S.) 652–676 (Springer, 2005).19.Dunn, D. W. & Follett, P. A. The sterile insect technique (SIT)-an introduction. Entomol. Exp. Appl. 164, 151–154 (2017).Article 

    Google Scholar 
    20.Vargas, R. I. Mass production of tephritid fruit flies. in Fruit Flies: Their Biology, Natural Enemies, and Control (eds. Robinson, A. S. & Hooper, G.) 141–152 (Elsevier, 1989).21.Perez-Staples, D., Shelly, T. E. & Yuval, B. Female mating failure and the failure of ‘mating’ in sterile insect programs. Entomol. Exp. Appl. 146, 66–78 (2013).Article 

    Google Scholar 
    22.Koyama, J., Kakinohana, H. & Miyatake, T. Eradication of the melon fly, Bactrocera cucurbitae, in Japan: importance of behavior, ecology, genetics, and evolution. Annu. Rev. Entomol. 49, 331–349 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Cayol, J. P. Changes in sexual behavior and life history traits of tephritid species caused by mass-rearing processes. in Fruit flies (Tephritidae): Phylogeny and Evolution of Behavior (eds. Aluja, M. & Norrbom, A. L.) 843–860 (CRC Press, 2000).24.Meza-Hernández, J. S. & Díaz-Fleischer, F. Comparison of sexual compatibility between laboratory and wild Mexican fruit flies under laboratory and field conditions. J. Econ. Entomol. 99, 1979–1986 (2006).PubMed 
    Article 

    Google Scholar 
    25.Moreno, D. S., Sanchez, M., Robacker, D. C. & Worley, J. Mating competitiveness of irradiated mexican fruit fly (Diptera: Tephritidae). J. Econ. Entomol. 84, 1227–1234 (1991).Article 

    Google Scholar 
    26.Orozco-Dávila, D., Hernández, R., Meza, S. & Domínguez, J. Sexual competitiveness and compatibility between mass-reared sterile flies and wild populations of Anastrepha ludens (Diptera: Tephritidae) from different regions in Mexico. Florida Entomol. 90, 19–26 (2007).Article 

    Google Scholar 
    27.Weldon, C. W., Schutze, M. K. & Karsten, M. Trapping to monitor tephritid movement: results, best practice, and assessment of alternatives. in Trapping Tephritid Fruit Flies: Lures, Area-Wide Programs, and Trade Implications (eds. Shelly, T., Epsky, N., Jang, E. B., Reyes-Flores, J. & Vargas, R.) 175–217 (Springer, 2014).28.Dominiak, B. C., Worsley, P. M. & Nicol, H. Release from a point source and dispersal of sterile Queensland fruit fly (Bactrocera tryoni (froggatt)) (Diptera: Tephritidae) at Wagga Wagga. Plant Prot. Q. 28, 120–125 (2013).
    Google Scholar 
    29.Dimou, I., Koutsikopoulos, C., Economopoulos, A. P. & Lykakis, J. The distribution of olive fruit fly captures with McPhail traps within an olive orchard. Phytoparasitica 31, 124–131 (2003).Article 

    Google Scholar 
    30.Raghu, S., Drew, R. A. I. & Clarke, A. R. Influence of host plant structure and microclimate on the abundance and behavior of a tephritid fly. J. Insect. Behav. 17, 179–190 (2004).Article 

    Google Scholar 
    31.Kaspi, R. & Yuval, B. Mediterranean Fruit Fly leks: factors affecting male location. Funct. Ecol. 13, 539–545 (1999).Article 

    Google Scholar 
    32.Baker, P. S. & van der Valk, H. Distribution and behaviour of sterile Mediterranean fruit flies in a host tree. J. Appl. Entomol. 114, 67–76 (1992).Article 

    Google Scholar 
    33.Aluja, M. & Birke, A. Habitat use by adults of Anastrepha obliqua (Diptera: Tephritidae) in a mixed mango and tropical plum orchard. Ann. Entomol. Soc. Am. 86, 799–812 (1993).Article 

    Google Scholar 
    34.Aluja, M., Jácome, I., Birke, A., Lozada, N. & Quintero, G. Basic patterns of behavior in wild Anastrepha striata (Diptera: Tephritidae) flies under field-cage conditions. Ann. Entomol. Soc. Am. 86, 776–793 (1993).Article 

    Google Scholar 
    35.Huettel, M. D. Monitoring the quality of laboratory-reared insects: A biological and behavioral perspective. Environ. Entomol. 5, 807–814 (1976).Article 

    Google Scholar 
    36.Dominiak, B. C. & Daniels, D. Review of the past and present distribution of Mediterranean fruit fly (Ceratitis capitata Wiedemann) and Queensland fruit fly (Bactrocera tryoni Froggatt) in Australia. Aust. J. Entomol. 51, 104–115 (2012).Article 

    Google Scholar 
    37.MacLellan, R. & King, K. National fruit fly surveillance programme 2017–2018. Surveillance 45, 68–71 (2018).
    Google Scholar 
    38.Aguilar, G., Blanchon, D., Foot, H., Pollonais, C. & Mosee, A. Queensland fruit fly invasion of New Zealand: Predicting area suitability under future climate change scenarios. Unitec ePress Perspectives in Biosecurity Research Series (2015).39.Vargas, R. I., Leblanc, L., Piñero, J. C. & Hoffman, K. Male annihilation, past, present, and future. in Trapping Tephritid Fruit Flies: Lures, Area-Wide Programs, and Trade Implications (eds. Shelly, T., Epsky, N., Jang, E. B., Reyes-Flores, J. & Vargas, R.) 493–511 (Springer, 2014).40.Vargas, R., Piñero, J. & Leblanc, L. An overview of pest species of Bactrocera fruit flies (Diptera: Tephritidae) and the integration of biopesticides with other biological approaches for their management with a focus on the Pacific region. Insects 6, 297–318 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Clarke, A. R., Powell, K. S., Weldon, C. W. & Taylor, P. W. The ecology of Bactrocera tryoni (Diptera: Tephritidae): What do we know to assist pest management?. Ann. Appl. Biol. 158, 26–54 (2011).Article 

    Google Scholar 
    42.Dominiak, B. C. Review of dispersal, survival, and establishment of Bactrocera tryoni (Diptera: Tephritidae) for quarantine purposes. Ann. Entomol. Soc. Am. 105, 434–446 (2012).Article 

    Google Scholar 
    43.Hancock, D. L., Hamacek, E. L., Lloyd, A. C. & Elson-Harris, M. M. The distribution and host plants of fruit flies (Diptera: Tephritidae) in Australia. Queensland Department of Primary Industries (2000).44.PHA. The National Plant Health Status Report (08/09). Plant Health Australia, Canberra, ACT (2009).45.Ha, A., Larson, K., Harvey, S., Fisher, W. & Malcolm, L. Benefit-cost analysis of options for managing Queensland fruit fly in Victoria. Victoria Department of Primary Industries (2010).46.Dominiak, B. C. Components of a systems approach for the management of Queensland fruit fly Bactrocera tryoni (Froggatt) in a post dimethoate fenthion era. Crop Prot. 116, 56–67 (2019).Article 

    Google Scholar 
    47.Stringer, L. D., Kean, J. M., Beggs, J. R. & Suckling, D. M. Management and eradication options for Queensland fruit fly. Popul. Ecol. 59, 259–273 (2017).Article 

    Google Scholar 
    48.Lynch, K. E., White, T. E. & Kemp, D. J. The effect of captive breeding upon adult thermal preference in the Queensland fruit fly (Bactrocera tryoni). J. Therm. Biol. 78, 290–297 (2018).PubMed 
    Article 

    Google Scholar 
    49.Weldon, C. W., Yap, S. & Taylor, P. W. Desiccation resistance of wild and mass-reared Bactrocera tryoni (Diptera: Tephritidae). Bull. Entomol. Res. 103, 690–699 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Fanson, B. G., Sundaralingam, S., Jiang, L., Dominiak, B. C. & D’Arcy, G. A review of 16 years of quality control parameters at a mass-rearing facility producing Queensland fruit fly, Bactrocera tryoni. Entomol. Exp. Appl. 151, 152–159 (2014).Article 

    Google Scholar 
    51.Moadeli, T., Taylor, P. W. & Ponton, F. High productivity gel diets for rearing of Queensland fruit fly, Bactrocera tryoni. J. Pest Sci. 2004(90), 507–520 (2017).Article 

    Google Scholar 
    52.Pérez-Staples, D., Weldon, C. W. & Taylor, P. W. Sex differences in developmental response to yeast hydrolysate supplements in adult Queensland fruit fly. Entomol. Exp. Appl. 141, 103–113 (2011).Article 

    Google Scholar 
    53.Perez-Staples, D., Prabhu, V. & Taylor, P. W. Post-teneral protein feeding enhances sexual performance of Queensland fruit flies. Physiol. Entomol. 32, 225–232 (2007).Article 

    Google Scholar 
    54.McInnis, D. O., Rendon, P. & Komatsu, J. Mating and remating of medflies (Diptera: Tephritidae) in Guatemala: Individual fly marking in field cages. Florida Entomol. 85, 126–137 (2002).Article 

    Google Scholar 
    55.R Core Team. R: a language and environment for statistical computing version 1.1.419. R Foundation for Statistical Computing (2019).56.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    57.Bartoń, K. MuMIn: Multi-Model Inference. R Package version 1.43.6 (2019).58.Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Control 19, 716–723 (1974).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    59.Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).Article 

    Google Scholar 
    60.Symonds, M. R. E. & Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65, 13–21 (2011).Article 

    Google Scholar 
    61.Lenth, R. emmeans: estimated marginal means, aka least-squares means. R Package version 1.3.3 (2019).62.Prokopy, R. J., Bennett, E. W. & Bush, G. L. Mating behavior in Rhagoletis pomonella (Diptera: Tephritidae) II. Temportal organization. Can. Entomol. 104, 97–104 (1972).Article 

    Google Scholar 
    63.McQuate, G. T. & Vargas, R. I. Assessment of attractiveness of plants as roosting sites for the melon fly, Bactrocera cucurbitae, and the oriental fruit fly, B. dorsalis. J. Insect Sci. 7, 13 (2007).Article 

    Google Scholar 
    64.Casas, J. & Aluja, M. The geometry of search movements of insects in plant canopies. Behav. Ecol. 8, 37–45 (1997).Article 

    Google Scholar 
    65.Shelly, T. E. & Kennelly, S. S. Settlement patterns of Mediterranean fruit flies in the tree canopy: an experimental analysis. J. Insect Behav. 20, 453–472 (2007).Article 

    Google Scholar 
    66.Warburg, M. S. & Yuval, B. Circadian patterns of feeding and reproductive activities of Mediterranean fruit flies (Diptera: Tephritidae) on various hosts in Israel. Ann. Entomol. Soc. Am. 90, 487–495 (1997).Article 

    Google Scholar 
    67.Hendrichs, J. & Hendrichs, M. A. Mediterranean fruit fly (Diptera: Tephritidae) in nature: Location and diel pattern of feeding and other activities on fruiting and nonfruiting hosts and nonhosts. Ann. Entomol. Soc. Am. 83, 632–641 (1990).Article 

    Google Scholar 
    68.Morgan, K. R., Shelly, T. E. & Kimsey, L. S. Body temperature regulation, energy metabolism, and foraging in light-seeking and shade-seeking robber flies. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 155, 561–570 (1985).69.Whitman, D. Function and evolution of thermoregulation in the desert grasshopper Taeniopoda eques. J. Anim. Ecol. 57, 369–383 (1988).Article 

    Google Scholar 
    70.Tychsen, P. H. & Fletcher, B. S. Studies on the rhythm of mating in the Queensland fruit fly, Dacus tryoni. J. Insect Physiol. 17, 2139–2156 (1971).Article 

    Google Scholar 
    71.Cheng, D., Chen, L., Yi, C., Liang, G. & Xu, Y. Association between changes in reproductive activity and D-glucose metabolism in the tephritid fruit fly, Bactrocera dorsalis (Hendel). Sci. Rep. 4, 7489 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Warburg, M. S. & Yuval, B. Effects of energetic reserves on behavioral patterns of Mediterranean fruit flies (Diptera: Tephritidae). Oecologia 112, 314–319 (1997).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Arita, L. & Kaneshiro, K. Sexual selection and lek behavior in the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). Pacific Sci. 43, 135–143 (1989).
    Google Scholar 
    74.Hendrichs, J., Lauzon, C. R., Cooley, S. S. & Prokopy, R. J. Contribution of natural food sources to adult longevity and fecundity of Rhagoletis pomonella (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 86, 250–264 (1993).Article 

    Google Scholar 
    75.Urbaneja-Bernat, P., Tena, A., González-Cabrera, J. & Rodriguez-Saona, C. Plant guttation provides nutrient-rich food for insects. Proc. R. Soc. B Biol. Sci. 287, 20201080 (2020).CAS 
    Article 

    Google Scholar 
    76.Drew, R., Courtice, A. & Teakle, D. Bacteria as a natural source of food for adult fruit flies (Diptera: Tephritidae). Oecologia 60, 279–284 (1983).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Prokopy, R. J., Drew, R. A. I., Sabine, B. N. E., Lloyd, A. C. & Hamacek, E. Effects of physiological and experiential state of Bactrocera tryoni flies on intra-tree foraging behavior for food (Bacteria) and host fruit. Oecologia 87, 394–400 (1991).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Scarpati, M. L., Scalzo, R. L., Vita, G. & Gambacorta, A. Chemiotropic behavior of female olive fly (Bactrocera oleae GMEL.) on Olea Europeae L. J. Chem. Ecol. 22, 1027–1036 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Truu, M. et al. Elevated air humidity changes soil bacterial community structure in the silver birch stand. Front. Microbiol. 8, 557 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Hockberger, P. E. The discovery of the damaging effect of sunlight on bacteria. J. Photochem. Photobiol. B Biol. 58, 185–191 (2000).CAS 
    Article 

    Google Scholar 
    81.Jones, J., Raju, B. & Engelhard, A. Effects of temperature and leaf wetness on development of bacterial spot of geraniums and chrysanthemums incited by Pseudomonas cichorii. Plant Dis. 68, 248–251 (1984).Article 

    Google Scholar 
    82.Majumder, R., Sutcliffe, B., Taylor, P. W. & Chapman, T. A. Microbiome of the Queensland fruit fly through metamorphosis. Microorganisms 8, 795 (2020).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    83.Majumder, R., Sutcliffe, B., Taylor, P. W. & Chapman, T. A. Next-generation sequencing reveals relationship between the larval microbiome and food substrate in the polyphagous Queensland fruit fly. Sci. Rep. 9, 14292 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    84.Deutscher, A. T. et al. Near full-length 16S rRNA gene next-generation sequencing revealed Asaia as a common midgut bacterium of wild and domesticated Queensland fruit fly larvae. Microbiome 6, 85 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Morrow, J., Frommer, M., Shearman, D. & Riegler, M. The microbiome of field-caught and laboratory-adapted Australian tephritid fruit fly species with different host plant use and specialisation. Microb. Ecol. 70, 498–508 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    86.Thaochan, N., Drew, R. A. I., Hughes, J. M., Vijaysegaran, S. & Chinajariyawong, A. Alimentary tract bacteria isolated and identified with API-20E and molecular cloning techniques from Australian tropical fruit flies, Bactrocera cacuminata and B. tryoni. J. Insect Sci. 10, 131 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Sultana, S., Baumgartner, J. B., Dominiak, B. C., Royer, J. E. & Beaumont, L. J. Potential impacts of climate change on habitat suitability for the Queensland fruit fly. Sci. Rep. 7, 1–10 (2017).CAS 
    Article 

    Google Scholar 
    88.Meats, A. The bioclimatic potential of the Queensland fruit fly, Dacus tryoni, Australia. Proc. Ecol. Soc. Aust. 11, 151–161 (1981).ADS 

    Google Scholar 
    89.Fletcher, B. The ecology of a natural population of the Queensland Fruit Fly, Dacus tryoni. IV. The immigration and emigration of adults. Aust. J. Zool. 21, 541 (1973).Article 

    Google Scholar 
    90.Bateman, M. A. The ecology of fruit flies. Annu. Rev. Entomol. 17, 493–518 (1972).Article 

    Google Scholar 
    91.O’Loughlin, G. T., East, R. A. & Meats, A. Survival, development rates and generation times of the Queensland fruit fly, Dacus tryoni, in a marginally favourable climate: experiments in Victoria. Aust. J. Zool. 32, 353–361 (1984).Article 

    Google Scholar 
    92.Dominiak, B. C., Mavi, H. S. & Nicol, H. I. Effect of town microclimate on the Queensland fruit fly Bactrocera tryoni. Aust. J. Exp. Agric. 46, 1239–1249 (2006).Article 

    Google Scholar 
    93.Weldon, C. W., Terblanche, J. S. & Chown, S. L. Time-course for attainment and reversal of acclimation to constant temperature in two Ceratitis species. J. Therm. Biol. 36, 479–485 (2011).Article 

    Google Scholar 
    94.Nyamukondiwa, C., Weldon, C. W., Chown, S. L., le Roux, P. C. & Terblanche, J. S. Thermal biology, population fluctuations and implications of temperature extremes for the management of two globally significant insect pests. J. Insect Physiol. 59, 1199–1211 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    95.Meats, A. Rapid acclimatization to low temperature in the Queensland fruit fly, Dacus tryoni. J. Insect Physiol. 19, 1903–1911 (1973).Article 

    Google Scholar 
    96.Meats, A. Developmental and long-term acclimation to cold by the Queensland fruit-fly (Dacus tryoni) at constant and fluctuating temperatures. J. Insect Physiol. 22, 1013–1019 (1976).ADS 
    Article 

    Google Scholar 
    97.Fay, H. A. C. & Meats, A. Survival rates of the queensland fruit fly, dacus tryoni, in early spring: Field-cage studies with cold-acclimated wild flies and irradiated, warm- or cold-acclimated, laboratory flies. Aust. J. Zool. 35, 187–195 (1987).Article 

    Google Scholar 
    98.Fay, H. A. C. & Meats, A. The sterile insect release method and the importance of thermal conditioning before release: field-cage experiments with dacus tryoni in spring weather. Aust. J. Zool. 35, 197–204 (1987).Article 

    Google Scholar 
    99.Bubliy, O. A. & Loeschcke, V. Correlated responses to selection for stress resistance and longevity in a laboratory population of Drosophila melanogaster. J. Evol. Biol. 18, 789–803 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    100.Weldon, C., Diaz-Fleischer, F. & Perez-Staples, D. Desiccation resistance of tephritid flies: Recent research results and future directions. in Area-Wide Management of Fruit Fly Pests (eds. Pérez-Staples, D., Díaz-Fleischer, F., Montoya, P. & Vera, T.) 3–36 (CRC Press, 2019).101.Nishida, T. Food system of tephritid fruit flies in Hawaii. Proc. Hawaiian Entomol. Soc. 23, 245–254 (1980).
    Google Scholar 
    102.Nishida, T. & Bess, H. A. Studies on the ecology and control of the melon fly Dacus (Strumeta) Cucurbitae Coquillett (Diptera: Tephritidae). Hawaii Agric. Exp. Stn. Tech. Bull. 1–44 (1957). More

  • in

    A new galling insect model enhances photosynthetic activity in an obligate holoparasitic plant

    1.Redfern, M. Plant Galls. The New Naturalist Library (Harper Collins, 2011).
    Google Scholar 
    2.Stone, G. N. & Schönrogge, K. The adaptive significance of insect gall morphology. Trends Ecol Evol. 18, 512–522 (2003).Article 

    Google Scholar 
    3.Dawkins, R. The Extended Phenotype (Oxford University Press, 1982).
    Google Scholar 
    4.Raman, A. Morphogenesis of insect-induced plant galls: Facts and questions. Flora 206, 517–533 (2011).Article 

    Google Scholar 
    5.Gatjens-Boniche, O. The mechanism of plant gall induction by insects: Revealing clues, facts, and consequences in a cross-kingdom complex interaction. Rev. Biol. Trop. 67, 1359–1382 (2019).Article 

    Google Scholar 
    6.Gonçalves-Alvim, S. J. & Fernandes, G. W. Biodiversity of galling insects: Historical, community and habitat effects in four neotropical savannas. Biodivers. Conserv. 10, 79–98 (2001).Article 

    Google Scholar 
    7.Veldtman, R. & McGeoch, M. Gall-forming insect species richness along a non-scleromorphic vegetation rainfall gradient in South Africa: The importance of plant community composition. Austral. Ecol. 28, 1–13 (2003).Article 

    Google Scholar 
    8.Stuart, J., Chen, M.-S., Shukle, R. & Harris, M. Gall midges (Hessian flies) as plant pathogens. Annu. Rev. Phytopath. 50, 339–357 (2012).CAS 
    Article 

    Google Scholar 
    9.Kono, H. Langrüssler aus japanischen Reich. Insecta Matsumurana 4, 145–162 (1930).
    Google Scholar 
    10.Morimoto, K. & Kojima, H. Weevils of the genus Smicronyx in Japan (Coleoptera: Curculionidae). Entomol. Rev. Jpn. 62, 1–9 (2007).
    Google Scholar 
    11.Hayakawa, H., Fujii, S. & Yoshitake, H. Reexamination of the host plant of Smicronyx madaranus (Coleoptera, Curculionidae, Smicronycinae). SAYABANE 30, 51–55 (2018) (in Japanese).
    Google Scholar 
    12.Yukawa, J. Synchronization of gallers with host plant phenology. Popul. Ecol. 42, 105–113 (2000).Article 

    Google Scholar 
    13.Vitou, J., Skuhravá, M., SkuhravÝ, V., Scott, J. & Sheppard, A. The role of plant phenology in the host specificity of Gephyraulus raphanistri (Diptera: Cecidomyiidae) associated with Raphanus spp. (Brassicaceae). Eur. J. Entomol. 105, 113–119 (2008).
    Article 

    Google Scholar 
    14.Yamaguchi, H. et al. Phytohormones and willow gall induction by a gall-inducing sawfly. New Phytol. 196, 586–595 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Tanaka, Y., Okada, K., Asami, T. & Suzuki, Y. Phytohormones in Japanese mugwort gall induction by a gall-inducing gall midge. Biosci. Biotechnol. Biochem. 77, 1942–1948 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Liu, P., Yang, Z. X., Chen, X. M. & Foottit, R. G. The effect of the gall-forming aphid Schlechtendalia chinensis (Hemiptera: Aphididae) on leaf wing ontogenesis in Rhus chinensis (Sapindales: Anacardiaceae). Ann. Entomol. Soc. Am. 107, 242–250 (2014).Article 

    Google Scholar 
    17.Hirano, T. et al. Reprogramming of the developmental program of Rhus javanica during initial stage of gall induction by Schlechtendalia chinensis. Front. Plant Sci. 11, 471 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Kaiser, B., Vogg, G., Fürst, U. B. & Albert, M. Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants. Front. Plant Sci. 6, 45 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Pattee, H. E., Allred, K. R. & Wiebe, H. H. Photosynthesis in dodder. Weeds 13, 193–195 (1965).CAS 
    Article 

    Google Scholar 
    20.van der Kooij, T. A. W., Krause, K., Dörr, I. & Krupinska, K. Molecular, functional and ultrastructural characterisation of plastids from six species of the parasitic flowering plant genus Cuscuta. Planta 210, 701–707 (2000).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Sherman, T. D., Pettigrew, W. T. & Vaughn, K. C. Structural and immunological characterization of the Cuscuta pentagona L. chloroplast. Plant Cell Physiol. 40, 592–603 (1999).CAS 
    Article 

    Google Scholar 
    22.Machado, M. A. & Zetsche, K. A structural, functional and molecular analysis of plastids of the holoparasites Cuscuta reflexa and Cuscuta europaea. Planta 181, 91–96 (1990).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Hibberd, J. M. et al. Localization of photosynthetic metabolism in the parasitic angiosperm Cuscuta reflexa. Planta 205, 506–513 (1998).CAS 
    Article 

    Google Scholar 
    24.Taiz, L., Zieiger, E., Max Moller, I. & Angus, M. Plant Physiology and Development 6th edn. (Sinauer Associates, 2015).
    Google Scholar 
    25.Bartlett, L. & Connor, E. F. Exogenous phytohormones and the induction of plant galls by insects. Arthropod Plant Interact. 8, 339–348 (2014).
    Google Scholar 
    26.Tooker, J. F. & Helms, A. M. Phytohormone dynamics associated with gall insects, and their potential role in the evolution of the gall-inducing habit. J. Chem. Ecol. 40, 742–753 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Tokuda, M. et al. Phytohormones related to host plant manipulation by a gall-inducing leafhopper. PLoS ONE 8, e62350 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Suzuki, H. et al. Biosynthetic pathway of the phytohormone auxin in insects and screening of its inhibitors. Insect Biochem. Mol. Biol. 53, 66–72 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Yokoyama, C., Takei, M., Kouzuma, Y., Nagata, S. & Suzuki, Y. Novel tryptophan metabolic pathways in auxin biosynthesis in silkworm. J. Insect Physiol. 101, 91–96 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Kaiser, W., Huguet, E., Casas, J., Commin, C. & Giron, D. Plant green-island phenotype induced by leaf-miners is mediated by bacterial symbionts. Proc. Biol. Sci. 277, 2311–2319 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Body, M., Kaiser, W., Dubreuil, G., Casas, J. & Giron, D. Leaf-miners co-opt microorganisms to enhance their nutritional environment. J. Chem. Ecol. 39, 969–977 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Giron, D. & Glevarec, G. Cytokinin-induced phenotypes in plant-insect interactions: Learning from the bacterial world. J. Chem. Ecol. 40, 826–835 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Gutzwiller, F., Dedeine, F., Kaiser, W., Giron, D. & Lopez-Vaamonde, C. Correlation between the green-island phenotype and Wolbachia infections during the evolutionary diversification of Gracillariidae leaf-mining moths. Ecol. Evol. 5, 4049–4062 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Giron, D., Huguet, E., Stone, G. N. & Body, M. Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant. J. Insect Physiol. 84, 70–89 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Zhao, C. et al. A massive expansion of effector genes underlies gall-formation in the wheat pest Mayetiola destructor. Curr. Biol. 25, 613–620 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Lemus, L. P. et al. Salivary proteins of a gall-inducing aphid and their impact on early gene responses of susceptible and resistant poplar genotypes. bioRxiv https://doi.org/10.1101/504613 (2018).Article 

    Google Scholar 
    37.Vogel, A. et al. Footprints of parasitism in the genome of the parasitic flowering plant Cuscuta campestris. Nat. Commun. 9, 2515 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Senthil-Kumar, M. & Mysore, K. S. Tobacco rattle virus–based virus-induced gene silencing in Nicotiana benthamiana. Nat. Protoc. 9, 1549–1562 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Norkunas, K., Harding, R., Dale, J. & Dugdale, B. Improving agroinfiltration-based transient gene expression in Nicotiana benthamiana. Plant Methods 14, 71 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Christiaens, O. et al. RNA interference: A promising biopesticide strategy against the African Sweetpotato Weevil Cylas brunneus. Sci. Rep. 6, 38836 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Maire, J., Vincent-Monégat, C., Masson, F., Zaidman-Rémy, A. & Heddi, A. An IMD-like pathway mediates both endosymbiont control and host immunity in the cereal weevil Sitophilus spp. Microbiome. 6, 6 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Barnewall, E. C. & De Clerck-Floate, R. A. A preliminary histological investigation of gall induction in an unconventional galling system. Arthropod Plant Interact. 6, 449–459 (2012).Article 

    Google Scholar 
    43.Aistova, E. V. & Bezborodov, V. G. Weevils belonging to the genus Smicronyx Schönherr, 1843 (Coleoptera, Curculionidae) affecting dodders (Cuscuta Linnaeus, 1753) in the Russian Far East. Russ. J. Biol. Invasions. 8, 184–188 (2017).Article 

    Google Scholar 
    44.Dinelli, G., Bonetti, A. & Tibiletti, E. Photosynthetic and accessory pigments in Cuscuta-Campestris Yuncker and some host species. Weed Res. 33, 253–260 (1993).CAS 
    Article 

    Google Scholar 
    45.Anikin, V. V., Nikelshparg, M. I., Nikelshparg, E. I. & Konyukhov, I. V. Photosynthetic activity of the dodder Cuscuta campestris (Convolvulaceae) in case of plant inhabitation by the gallformed weevil Smicronyx smreczynskii (Coleoptera, Curculionidae). Chem. Biol. Ecol. 17, 42–47 (2017) (in Russian).
    Google Scholar 
    46.Zagorchev, L. I., Albanova, I. A., Tosheva, A. G., Li, J. & Teofanova, D. R. Metabolic and functional distinction of the Smicronyx sp. galls on Cuscuta campestris. Planta 248, 591–599 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 9, 676–682 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Carneiro, R. G. D. S. & Isaias, R. M. D. S. Gradients of metabolite accumulation and redifferentiation of nutritive cells associated with vascular tissues in galls induced by sucking insects. AoB Plants. 7, plv086 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    49.Porra, R. J., Thompson, W. A. & Kriedemann, P. E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta 975, 384–394 (1989).CAS 
    Article 

    Google Scholar 
    50.Kawase, M., Hanba, Y. T. & Katsuhara, M. The photosynthetic response of tobacco plants overexpressing ice plant aquaporin McMIPB to a soil water deficit and high vapor pressure deficit. J. Plant Res. 126, 517–527 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Ihaka, R. & Gentleman, R. R: A language for data analysis and graphics. J. Comput. Graph Stat. 5, 299–314 (1996).
    Google Scholar  More

  • in

    Shell shock: a biologist’s quest to save the endangered painted snail

    Download PDF

    In my laboratory at the University of Oriente, in Santiago de Cuba, we study the six species of Polymita, known as painted snails, which are endemic to eastern Cuba and are in danger of extinction. The shells’ vibrant swirls and stripes look as if they’ve been painted by hand. Unfortunately, you can find their shells for sale on eBay, and many are exported to places such as the United States, China and Spain for use in art and jewellery — despite laws banning such trade.Painted snails live in mangrove forests, in sandy and rocky coastal areas and in rainforests. Some species are important parts of agro-ecosystems, such as coffee and coconut plantations. In 1995, my team began a breeding laboratory. We needed a way to isolate individual snails in containers, and to provide them with food, such as a fig-tree branch covered with moss, lichens and sooty mould fungus. But getting enough of the right containers was a problem because the nation was in an economic depression then.My students realized that when tourists visited Cuba, they left behind plastic one-litre water bottles. Since then we’ve been using them as living spaces for the snails.We study the breeding behaviour, nesting, hatching and growth of these hermaphrodites. If we want to save Polymita, we need to know more about their reproduction patterns — why one species hatches only between July and December, for instance.When mating, Polymita use a protrusion called a dart to transfer hormones, but we know very little about it. We are studying how these hormones affect the reproductive tract and influence fertilization success.In Cuba, there is more support for medical research than for biodiversity research. So we look for collaborations around the world. My motto is a Cuban saying: “We have the ‘no’, and therefore always have to look for the ‘yes’.” In other words, there is always another way, if you keep looking.

    Nature 594, 606 (2021)
    doi: https://doi.org/10.1038/d41586-021-01683-8

    Related Articles

    My race against time to capture the sounds of ancient rainforests

    Fighting fires to save a natural reserve in Brazil

    Catching a wave to study coral

    Subjects

    Careers

    Conservation biology

    Developing world

    Latest on:

    Careers

    Six reasons to launch a Young Academy
    Career Column 21 JUN 21

    Better together: collaborative spaces can inspire scientists of all ages
    Career Column 18 JUN 21

    Webcast: How to learn to code
    Career News 16 JUN 21

    Developing world

    Regulate waste recycling internationally
    Correspondence 15 JUN 21

    Count the cost of disability caused by COVID-19
    Comment 26 MAY 21

    How waste water is helping South Africa fight COVID-19
    Technology Feature 24 MAY 21

    Jobs from Nature Careers

    All jobs

    Deputy Director, Division of Lung Diseases
    National Institutes of Health (NIH)
    Bethesda, MD, United States

    JOB POST

    Associate Senior Lecturer/Assistant Professor in Analytical chemistry
    Stockholm University
    Stockholm, Sweden

    JOB POST

    Senior Project Manager – COSMIC
    Wellcome Trust Sanger Institute
    Cambridge, United Kingdom

    JOB POST

    METAL-ORGANIC FRAMEWORK SYNTHESIS AND ADSORPTION STUDIES
    KU Leuven
    Leuven, Belgium

    JOB POST

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    Fear of large carnivores is tied to ungulate habitat use: evidence from a bifactorial experiment

    1.Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484. https://doi.org/10.1126/science.1241484 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Ford, A. T. & Goheen, J. R. Trophic cascades by large carnivores: A case for strong Inference and mechanism. Trend Ecol. Evol. 30, 725–735 (2015).Article 

    Google Scholar 
    4.Suraci, J. P., Clinchy, M., Dill, L. M., Roberts, D. & Zanette, L. Y. Fear of large carnivores causes a trophic cascade. Nat. Commun. 7, 10698. https://doi.org/10.1038/ncomms10698 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Atkins, J. L. et al. Cascading impacts of large-carnivore extirpation in an African ecosystem. Science 364, 173–177 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Brown, J. S., Laundre, J. W. & Gurung, M. The ecology of fear: Optimal foraging, game theory and trophic interactions. J. Mammal. 80, 385–399 (1999).Article 

    Google Scholar 
    7.Brown, J. S. Ecology of fear. In Encyclopedia of Animal Behaviour (ed. Chun, C.) (Academic Press, 2019).
    Google Scholar 
    8.Trussell, G. C., Ewanchuk, P. J. & Matassa, C. M. The fear of being eaten reduces energy transfer in a simple food chain. Ecology 87, 2979–2984 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Schmitz, O. J., Krivan, V. & Ovadia, O. Trophic cascades: The primacy of trait-mediated indirect interactions. Ecol. Lett. 7, 153–163 (2004).Article 

    Google Scholar 
    10.Say-Sallaz, E., Chamaillé-James, S., Fritz, H. & Valeix, M. Non-consumptive effects of predation in large terrestrial mammals: Mapping our knowledge and revealing the tip of the iceberg. Biol. Conserv. 235, 36–52 (2019).Article 

    Google Scholar 
    11.Malhi, Y. et al. Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proc. Natl. Acad. Sci. U.S.A. 113, 838–846 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Asner, G. P. et al. Large-scale impacts of herbivores on the structural diversity of African savannas. Proc. Natl. Acad. Sci. USA 106, 4947–4952 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Ford, A. T. et al. Large carnivores make savanna tree communities less thorny. Science 346, 346–349 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Bernes, C. et al. Manipulating ungulate herbivory in temperate and boreal forests: effects on vegetation and invertebrates: A systematic review. Environ. Evid. 7, 13. https://doi.org/10.1186/s13750-018-0125-3 (2018).Article 

    Google Scholar 
    15.Creel, S. The control of risk hypothesis: Reactive vs proactive antipredator responses and stress-mediated vs food-mediated costs of response. Ecol. Lett. 21, 947–956 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Riginos, C. Climate and the landscape of fear in an African savanna. J. Anim. Ecol. 84, 124–133 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.le Roux, E. G., Kerley, I. H. & Cromsigt, J. P. G. M. Megaherbivores modify trophic cascades triggered by fear of predation in an African savanna ecosystem. Curr. Biol. 28, 2493–2499 (2018).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    18.Eldridge, D. J. et al. Impacts of shrub encroachment on ecosystem structure and functioning: Towards a global synthesis. Ecol. Lett. 14, 709–722 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Stanton, R. A. et al. Shrub encroachment and vertebrate diversity: A global meta-analysis. Glob. Ecol. Biogeogr. 27, 368–379 (2018).Article 

    Google Scholar 
    20.Soto-Shoender, J. R., McCleery, R. A., Monadjem, A. & Gwinn, D. C. The importance of grass cover for mammalian diversity and habitat associations in a bush encroached savanna. Biol. Conserv. 221, 127–136 (2018).Article 

    Google Scholar 
    21.Courbin, N. et al. Reactive responses of zebra to lion encounters shape their predator-prey space game at large scale. Oikos 125, 829–838 (2016).Article 

    Google Scholar 
    22.van Buskirk, J. Specific induced responses to different predator species in anuran larvae. J. Evol. Biol. 14, 482–489 (2001).Article 

    Google Scholar 
    23.Chalcraft, D. R. & Resetarits, W. J. Jr. Predator identity and ecological impacts: Functional redundancy or functional diversity?. Ecology 84, 2407–2418 (2003).Article 

    Google Scholar 
    24.Templeton, C. N., Greene, E. & Davis, K. Allometry of alarm calls: Black-capped chickadees encode information about predator size. Science 308, 1934–1937 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Cooper, W. E. Jr. & Frederick, W. G. Predator lethality, optimal escape behavior, and autonomy. Behav. Eco. 21, 91–96 (2009).Article 

    Google Scholar 
    26.Dröge, E., Creel, S., Becker, M. S. & Msoka, J. Risky times and risky places interact to affect prey behaviour. Nat. Ecol. Evol. 1, 1123–1128 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Davies, A. B., Tambling, C. J., Kerley, G. I. H. & Asner, G. P. Effects of vegetation structure on the location of lion kill sites in African thicket. PLoS ONE https://doi.org/10.1371/journal.pone.0149098 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Bertram, B. C. R. Serengeti Predators and their Social Systems in Serengeti: Dynamics of an Ecosystem, 221–285. (Sinclair, A. R. E. and Norton-Griffiths, M., Eds). (University of Chicago Press, Chicago, 1979).29.Bailey, T. N. The African Leopard: Ecology and Behavior of a Solitary Felid (Columbia University Press, 1993).Book 

    Google Scholar 
    30.Hayward, M. W. & Kerley, G. I. H. Prey preferences and dietary overlap amongst Africa’s large predators. S. Afr. J. Wildl. Res. 38, 93–108 (2008).Article 

    Google Scholar 
    31.McCleery, R. A. et al. Animal diversity declines with broad-scale homogenization of canopy cover in African savannas. Biol. Conserv. 226, 54–62 (2018).Article 

    Google Scholar 
    32.Roques, K. G., O’Connor, T. G. & Watkinson, A. R. Dynamics of shrub encroachment in an African savanna: Relative influences of fire, herbivory, rainfall and density dependence. J. Appl. Ecol. 38, 268–280 (2001).Article 

    Google Scholar 
    33.Sirami, C. & Monadjem, A. Changes in bird communities in Swaziland savannas between 1998 and 2008 owing to shrub encroachment. Divers. Distrib. 18, 390–400 (2012).Article 

    Google Scholar 
    34.Estes, R. D. The Behavior Guide to African Mammals: Including Hoofed Mammals, Carnivores, Primates (University of California Press, 2012).
    Google Scholar 
    35.Hayward, M. et al. Prey preferences of the leopard (Panthera pardus). J. Zool. 270, 298–313 (2006).Article 

    Google Scholar 
    36.Holekamp, K. E. & Dloniak, S. M. Intraspecific Variation in the Behavioral Ecology of a Tropical Carnivore, the Spotted Hyena in Advances in the Study of Behavior. Vol. 42 189–229 (Elsevier, 2010).37.Retief, F. The Ecology of Spotted Hyena, Crocuta crocuta, in Majete Wildlife Reserve, Malawi. Dissertation. (Stellenbosch University, 2016).38.Suraci, J. P. et al. A new automated behavioural response system to integrate playback experiments into camera trap studies. Methods Ecol. Evol. 8, 957–964 (2017).Article 

    Google Scholar 
    39.Smith, J. A. et al. Fear of the human ‘super predator’ reduces feeding time in large carnivores. Proc. R. Soc. Lond. Ser. B. https://doi.org/10.1098/rspb.2017.0433 (2017).Article 

    Google Scholar 
    40.Stankowich, T. & Blumstein, D. T. Fear in animals: A meta-analysis and review of risk assessment. Proc. R. Soc. Lond. B. 272, 2627–2634 (2005).
    Google Scholar 
    41.Scogings, P. F. Large herbivores and season independently affect woody stem circumference increment in a semi-arid savanna. Plant Ecol. 215, 1433–1443 (2014).Article 

    Google Scholar 
    42.Skinner, J. D. & Chimimba, C. T. The Mammals of the Southern African Sub-region (Cambridge University Press, 2005).Book 

    Google Scholar 
    43.Canfield, R. H. Application of the line interception method in sampling range vegetation. J. For. 39, 388–394 (1941).
    Google Scholar 
    44.Favreau, F. R., Pays, O., Goldizen, A. W. & Fritz, H. Short-term behavioural responses of impalas in simulated antipredator and social contexts. PLoS ONE https://doi.org/10.1371/journal.pone.0084970 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Suraci, J. P., Clinchy, M. & Zanette, L. Y. Do large carnivores and mesocarnivores have redundant impacts on intertidal prey?. PLoS ONE https://doi.org/10.1371/journal.pone.0170255 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Chandler, R. B., Engebretsen, K., Cherry, M. J., Garrison, E. P. & Miller, K. V. Estimating recruitment from capture–recapture data by modelling spatio-temporal variation in birth and age-specific survival rates. Methods Ecol. Evol. 9, 2115–2130 (2018).Article 

    Google Scholar 
    47.Ydenberg, R. C. & Dill, L. M. The economics of fleeing from predators. Stud. Behav. 16, 229–249 (1986).Article 

    Google Scholar 
    48.Lind, J. & Cresswell, W. Determining the fitness consequences of anti-predation behavior. Behav. Ecol. 16, 945–956 (2005).Article 

    Google Scholar 
    49.Berger, J. Carnivore repatriation and holarctic prey: Narrowing the deficit in ecological effectiveness. Conserv. Biol. 21, 1105–1116 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Dalerum, F. & Belton, L. African ungulates recognize a locally extinct native predator. Behav. Ecol. 26, 215–222 (2015).Article 

    Google Scholar 
    51.Palmer, M. S. & Gross, A. Eavesdropping in an African large mammal community: Antipredator responses vary according to signaler reliability. Anim. Behav. 137, 1–9 (2018).Article 

    Google Scholar 
    52.Crawley, M. J. Statistical Computing: An Introduction to Data Analysis Using S-PLUS (Wiley, 2002).MATH 

    Google Scholar 
    53.Hodges, J. S. Richly Parameterized Linear Models: Additive, Time Series, and Spatial Models Using Random Effects (CRC Press, 2016).MATH 
    Book 

    Google Scholar 
    54.Agresti, A. An Introduction to Categorical Data Analysis 2nd edn. (Wiley, 2002).MATH 
    Book 

    Google Scholar 
    55.Hopcraft, J. G. C., Sinclair, A. R. E. & Packer, C. Planning for success: Serengeti lions seek prey accessibility rather than abundance. J. Anim. Ecol. 74, 559–566 (2005).Article 

    Google Scholar 
    56.Gorini, L. et al. Habitat heterogeneity and mammalian predator-prey interactions. Mammal Rev. 42, 55–77 (2011).Article 

    Google Scholar 
    57.Creel, S. et al. What explains variation in the strength of behavioral responses to predation risk? A standardized test with large carnivore and ungulate guilds in three ecosystems. Biol. Conserv. 232, 164–172 (2019).Article 

    Google Scholar 
    58.Palmer, M. S., Fieberg, J., Swanson, A., Kosmala, M. & Packer, C. A ‘dynamic’ landscape of fear: prey responses to spatiotemporal variations in predation risk across the lunar cycle. Ecol. Lett. 20, 1364–1373 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Kohl, M. T. et al. Diel predator activity drives a dynamic landscape of fear. Ecol. Monogr. 88, 1–10. https://doi.org/10.1002/ecm.1313 (2018).Article 

    Google Scholar 
    60.Breitenmoser, U., Breitenmoser-Wursten, C., Carbyn, L. N. & Funk, S. M. Assessment of Carnivore Reintroduction in Carnivore Conservation (eds. J. L. Gittleman, S. M. Funk, D. W. Macdonald and R. K. Wayne) 241–280 (Cambridge University Press and Zoological Society of London, 2001).61.Hayward, M. W. et al. The reintroduction of large carnivores to the Eastern Cape, South Africa: an assement. Oryx 41, 205–214 (2007).Article 

    Google Scholar 
    62.Thaker, M. et al. Minimizing predation risk in a landscape of multiple predators: Effects on the spatial distribution of African ungulates. Ecology 92, 398–407 (2011).PubMed 
    Article 

    Google Scholar 
    63.Augustine, D. J. & Mcnaughton, S. J. Regulation of shrub dynamics by native browsing ungulates on East African rangeland. J. Appl. Ecol. 41, 45–58 (2004).Article 

    Google Scholar 
    64.Daskin, J. H., Stalmans, M. & Pringle, R. M. Ecological legacies of civil war: 35-year increase in savanna tree cover following wholesale large-mammal declines. J. Ecol. 104, 79–89 (2016).Article 

    Google Scholar 
    65.Loggins, A. A., Shrader, A. M., Monadjem, A. & McCleery, R. A. Shrub cover homogenizes small mammals’ activity and perceived predation risk. Sci. Rep. https://doi.org/10.1038/s41598-019-53071-y (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Keesing, F. & Young, T. P. Cascading consequences of the loss of large mammals in an African savanna. Bioscience 64, 487–495 (2014).Article 

    Google Scholar  More