A novel system for intensive Diadema antillarum propagation as a step towards population enhancement
1.Hughes, T. P., Reed, D. C. & Boyle, M. J. Herbivory on coral reefs: community structure following mass mortalities of sea urchins. J. Exp. Mar. Biol. Ecol. 113, 39–59 (1987).Article
Google Scholar
2.Jackson, J., Donovan, M., Cramer, K. & Lam, V. Status and trends of Caribbean coral reefs (Global Coral Reef Monitoring Network, IUCN, 2014).
Google Scholar
3.Goldberg, J. & Wilkinson, C. Global threats to coral reefs: coral bleaching, global climate change, disease, predator plagues, and invasive species. Status Coral Reefs World 2004(1), 67–92 (2004).
Google Scholar
4.Abelson, A. et al. Upgrading marine ecosystem restoration using ecological-social concepts. Bioscience 66, 156–163 (2016).PubMed
Article
Google Scholar
5.Conservation International. Economic values of coral reefs, mangroves, and seagrasses: A global compilation. Center for Applied Biodiversity Science, Conservation International (2008).6.Rocha, J., Peixe, L., Gomes, N. C. M. & Calado, R. Cnidarians as a source of new marine bioactive compounds—an overview of the last decade and future steps for bioprospecting. Mar. Drugs 9, 1860–1886 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
7.Storlazzi, C. D. et al. Rigorously Valuing the Role of U. S. Coral Reefs in Coastal Hazard Risk Reduction. No. 2019–1027. US Geological Survey (2019).8.Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
9.Possingham, H. P., Bode, M. & Klein, C. J. Optimal conservation outcomes require both restoration and protection. PLoS Biol. 13, e1002052 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
10.Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).ADS
CAS
PubMed
Article
Google Scholar
11.Greenstein, B. J., Curran, H. A. & Pandolfi, J. M. Shifting ecological baselines and the demise of Acropora cervicornis in the western North Atlantic and Caribbean Province: a pleistocene perspective. Coral Reefs 17, 249–261 (1998).Article
Google Scholar
12.Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science 301, 958–960 (2003).ADS
CAS
PubMed
Article
Google Scholar
13.Osinga, R. et al. The biology and economics of coral growth. Mar. Biotechnol. 13, 658–671 (2011).CAS
Article
Google Scholar
14.Leal, M. C., Ferrier-Pagès, C., Petersen, D. & Osinga, R. Coral aquaculture: applying scientific knowledge to ex situ production. Rev. Aquac. 8, 136–153 (2016).Article
Google Scholar
15.Lirman, D. & Schopmeyer, S. Ecological solutions to reef degradation: optimizing coral reef restoration in the Caribbean and Western Atlantic. PeerJ 2016, e2597 (2016).Article
Google Scholar
16.Barton, J. A., Willis, B. L. & Hutson, K. S. Coral propagation: a review of techniques for ornamental trade and reef restoration. Rev. Aquac. 9, 238–256 (2017).Article
Google Scholar
17.Boström-Einarsson, L. et al. Coral restoration—a systematic review of current methods, successes, failures and future directions. PLoS ONE 15, e0226631 (2020).PubMed
PubMed Central
Article
CAS
Google Scholar
18.Rinkevich, B. Restoration strategies for coral reefs damaged by recreational activities: the use of sexual and asexual recruits. Restor. Ecol. 3, 241–251 (1995).Article
Google Scholar
19.Young, C. N., Schopmeyer, S. A. & Lirman, D. A review of reef restoration and coral propagation using the threatened genus Acropora in the Caribbean and western Atlantic. Bull. Mar. Sci. 88, 1075–1098 (2012).Article
Google Scholar
20.Rinkevich, B. Rebuilding coral reefs: does active reef restoration lead to sustainable reefs?. Curr. Opin. Environ. Sustain. 7, 28–36 (2014).Article
Google Scholar
21.Patterson, J. T. The growing role of aquaculture in ecosystem restoration. Restor. Ecol. 27, 938–941 (2019).Article
Google Scholar
22.Schopmeyer, S. A. et al. In situ coral nurseries serve as genetic repositories for coral reef restoration after an extreme cold-water event. Restor. Ecol. 20, 696–703 (2012).Article
Google Scholar
23.Miller, M. W., Kerr, K. & Williams, D. E. Reef-scale trends in Florida Acropora spp. abundance and the effects of population enhancement. PeerJ 2016, e2523 (2016).Article
Google Scholar
24.Ware, M. et al. Survivorship and growth in staghorn coral (Acropora cervicornis) outplanting projects in the Florida Keys National Marine Sanctuary. PLoS ONE 15, e0231817 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
25.Ogden, J. Carbonate-sediment production by parrot fish and sea urchins on Caribbean reefs: reef biota. Stud. Geol. 4, 281–288 (1977).CAS
Google Scholar
26.Sammarco, P. W. Echinoid grazing as a structuring force in coral communities: whole reef manipulations. J. Exp. Mar. Biol. Ecol. 61, 31–55 (1982).Article
Google Scholar
27.Foster, S. A. The relative impacts of grazing by Caribbean coral reef fishes and Diadema: effects of habitat and surge. J. Exp. Mar. Biol. Ecol. 105, 1–20 (1987).Article
Google Scholar
28.Ogden, J. C. & Lobel, P. S. The role of herbivorous fishes and urchins in coral reef communities. Environ. Biol. Fishes 3, 49–63 (1978).Article
Google Scholar
29.Perry, C. T. et al. Changing dynamics of Caribbean reef carbonate budgets: emergence of reef bioeroders as critical controls on present and future reef growth potential. Proc. R. Soc. B Biol. Sci. 281, 20142018 (2014).Article
Google Scholar
30.Precht, L. & Precht, W. The sea urchin Diadema antillarum—keystone herbivore or redundant species?. PeerJ PrePrints 3, e1565v1 (2015).
Google Scholar
31.Hughes, T. P., Graham, N. A. J., Jackson, J. B. C., Mumby, P. J. & Steneck, R. S. Rising to the challenge of sustaining coral reef resilience. Trends Ecol. Evol. 25, 633–642 (2010).PubMed
Article
Google Scholar
32.Lessios, H. A. The Great Diadema antillarum die-off: 30 years later. Ann. Rev. Mar. Sci. 8, 267–283 (2016).CAS
PubMed
Article
Google Scholar
33.Lessios, H. A., Glynn, P. W. & Robertson, D. R. Mass mortalities of coral reef organisms. Science 222, 715 (1983).ADS
CAS
PubMed
Article
Google Scholar
34.Lessios, H. A., Robertson, D. R. & Cubit, J. D. Spread of Diadema mass mortality through the Caribbean. Science 226, 335–337 (1984).ADS
CAS
PubMed
Article
Google Scholar
35.Lessios, H. A. et al. Mass mortality of Diadema antillarum on the Caribbean coast of Panama. Coral Reefs 3, 173–182 (1984).ADS
Article
Google Scholar
36.Bak, R., Carpay, M. & de Ruyter van Steveninck, E. Densities of the sea urchin Diadema antillarum before and after mass mortalities on the coral reefs of Curagao. Mar. Ecol. Prog. Ser. 17, 105–108 (1984).ADS
Article
Google Scholar
37.Hughes, T. P. Mass mortality of the echinoid Diadema antillarum Philippi in Jamaica. Bull. Mar. Sci. 36, 377–384 (1985).
Google Scholar
38.Hunte, W., Côté, I. & Tomascik, T. On the dynamics of the mass mortality of Diadema antillarum in Barbados. Coral Reefs 4, 135–139 (1986).ADS
Article
Google Scholar
39.Lessios, H. A. Mass mortality of Diadema antillarum in the Caribbean: what have we learned?. Annu. Rev. Ecol. Syst. 19, 371–393 (1988).Article
Google Scholar
40.Carpenter, R. C. Mass mortality of a Caribbean sea urchin: immediate effects on community metabolism and other herbivores. Proc. Natl. Acad. Sci. 85, 511–514 (1988).ADS
CAS
PubMed
Article
Google Scholar
41.Carpenter, R. C. Mass mortality of Diadema antillarum—II. Effects on population densities and grazing intensity of parrotfishes and surgeonfishes. Mar. Biol. 104, 79–86 (1990).Article
Google Scholar
42.Carpenter, R. C. Mass mortality of Diadema antillarum—I. Long-term effects on sea urchin population-dynamics and coral reef algal communities. Mar. Biol. 104, 67–77 (1990).Article
Google Scholar
43.Levitan, D. R. Algal-urchin biomass responses following mass mortality of Diadema antillarum Philippi at Saint John, U.S. Virgin Islands. J. Exp. Mar. Biol. Ecol. 119, 167–178 (1988).Article
Google Scholar
44.Lessios, H. A. Diadema antillarum 10 years after mass mortality: still rare, despite help from a competitor. Proc. R. Soc. B Biol. Sci. 259, 331–337 (1995).ADS
Article
Google Scholar
45.Miller, R. J., Adams, A. J., Ogden, N. B., Ogden, J. C. & Ebersole, J. P. Diadema antillarum 17 years after mass mortality: is recovery beginning on St. Croix?. Coral Reefs 22, 181–187 (2003).Article
Google Scholar
46.National Marine Fisheries Service. Recovery plan for elkhorn coral (Acropora palmata) and staghorn corals (A. cervicornis). National Oceanic and Atmospheric Administration (2015).47.Rogers, A. & Lorenzen, K. Does slow and variable recovery of Diadema antillarum on Caribbean fore-reefs reflect density-dependent habitat selection?. Front. Mar. Sci. 3, 63 (2016).Article
Google Scholar
48.Eckert, G. Larval development, growth and morphology of the sea urchin Diadema antillarum. Bull. Mar. Sci. 63, 443–451 (1998).
Google Scholar
49.Leber, K. et al. Developing restoration methods to aid in recovery of a key herbivore, Diadema antillarum, on Florida coral reefs. Mote Marine Laboratory Technical Report No. 1347 (2009).50.Moe, M. Breeding the West Indian sea egg: Tripneustes ventricosus. CORAL Mag. 11, 80–94 (2014).
Google Scholar
51.Harrold, C., Lisin, S., Light, K. H. & Tudor, S. Isolating settlement from recruitment of sea urchins. J. Exp. Mar. Biol. Ecol. 147, 81–94 (1991).Article
Google Scholar
52.Lambert, D. M. & Harris, L. G. Larval settlement of the green sea urchin, Strongylocentrotus droebachiensis, in the southern Gulf of Maine. Invertebr. Biol. 119, 403–409 (2005).Article
Google Scholar
53.McBride, S. C. Sea urchin aquaculture. Am. Fish. Soc. Symp. 2005, 179–208 (2005).
Google Scholar
54.Mos, B., Cowden, K. L., Nielsen, S. J. & Dworjanyn, S. A. Do cues matter? Highly inductive settlement cues don’t ensure high post-settlement survival in sea urchin aquaculture. PLoS ONE 6, e28054 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
55.Bielmyer, G. K., Brix, K. V., Capo, T. R. & Grosell, M. The effects of metals on embryo-larval and adult life stages of the sea urchin, Diadema antillarum. Aquat. Toxicol. 74, 254–263 (2005).CAS
PubMed
Article
Google Scholar
56.Nadella, S. R. et al. Toxicity of lead and zinc to developing mussel and sea urchin embryos: critical tissue residues and effects of dissolved organic matter and salinity. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 158, 72–83 (2013).CAS
PubMed
Article
Google Scholar
57.Dautov, S. S. & Dautova, T. N. The larvae of Diadema setosum (Leske, 1778) (Camarodonta: Diadematidae) from South China Sea. Invertebr. Reprod. Dev. 60, 290–296 (2016).Article
Google Scholar
58.Huggett, M. J., King, C. K., Williamson, J. E. & Steinberg, P. D. Larval development and metamorphosis of the Australian diadematid sea urchin Centrostephanus rodgersii. Invertebr. Reprod. Dev. 47, 197–204 (2005).Article
Google Scholar
59.Dautov, S. S. The embryological and larval development of the sea urchin Diadema savignyi (Audouin, 1809) (Diadematoida: Diadematidae) from the South China Sea. Mar. Biol. Res. 16, 166–176 (2020).Article
Google Scholar
60.Harris, L. G. & Eddy, S. D. Sea urchin ecology and biology. In Echinoderm Aquaculture (eds Brown, N. P. & Eddy, S. D.) 1–24 (Wiley, 2015). https://doi.org/10.1002/9781119005810.ch1.
Google Scholar
61.Westbrook, C. E. et al. Survivorship and feeding preferences among size classes of outplanted sea urchins, Tripneustes gratilla, and possible use as biocontrol for invasive alien algae. PeerJ 2015, e1235 (2015).Article
Google Scholar
62.Neilson, B. J., Wall, C. B., Mancini, F. T. & Gewecke, C. A. Herbivore biocontrol and manual removal successfully reduce invasive macroalgae on coral reefs. PeerJ 2018, e5332 (2018).Article
Google Scholar
63.Palmer, L. The shedding reaction in Arbacia punctulata. Physiol. Zool. 10, 352–367 (1937).CAS
Article
Google Scholar
64.Hammer, H., Powell, M. & Watts, S. Species Profile: Sea Urchins of the Southern Region 1–6 (Southern Regional Aquaculture Center, 2013).
Google Scholar
65.Luis, O., Delgado, F. & Gago, J. Year-round captive spawning performance of the sea urchin Paracentrotus lividus: relevance for the use of its larvae as live feed. Aquat. Liv. Resour. 18, 45–54 (2005).Article
Google Scholar
66.Gago, J. & Luís, O. J. Comparison of spawning induction techniques on Paracentrotus lividus (Echinodermata: Echinoidea) broodstock. Aquacult. Int. 19, 181–191 (2011).Article
Google Scholar
67.Watts, S. A., Lawrence, A. L. & Lawrence, J. M. Nutrition. In Sea Urchins: Biology and Ecology Vol. 38 (ed. Lawrence, J. M.) 155–169 (Elsevier, 2013).
Google Scholar
68.Walker, C. W. & Lesser, M. P. Manipulation of food and photoperiod promotes out-of-season gametogenesis in the green sea urchin, Strongylocentrotus droebachiensis implications for aquaculture. Mar. Biol. 132, 663–676 (1998).Article
Google Scholar
69.Pearse, J. S., Eernisse, D. J., Pearse, V. B. & Beauchamp, K. A. Photoperiodic regulation of gametogenesis in sea stars, with evidence for an annual calendar independent of fixed daylength. Integr. Comp. Biol. 26, 417–431 (1986).
Google Scholar
70.Lorenzen, K., Leber, K. M. & Blankenship, H. L. Responsible approach to marine stock enhancement: an update. Rev. Fish. Sci. 18, 189–210 (2010).Article
Google Scholar
71.Chandler, L. M., Walters, L. J., Sharp, W. C. & Hoffman, E. A. Genetic structure of natural and broodstock populations of the long-spined sea urchin, Diadema antillarum, throughout the Florida Keys. Bull. Mar. Sci. 93, 881–889 (2017).Article
Google Scholar
72.Tringali, M. D. et al. Genetic Policy for the Release of Finfishes in Florida. Florida Fish and Wildlife Conservation Commission (2007).73.Lorenzen, K. Understanding and managing enhancements: why fisheries scientists should care. J. Fish Biol. 85, 1807–1829 (2014).CAS
PubMed
Article
Google Scholar
74.Pearce, C. M., Daggett, T. L. & Robinson, S. M. C. Optimizing prepared feed ration for gonad production of the green sea urchin Strongylocentrotus droebachiensis. J. World Aquac. Soc. 33, 268–277 (2002).Article
Google Scholar
75.Hammer, H. S. et al. Effect of feed protein and carbohydrate levels on feed intake, growth, and gonad production of the sea urchin, Lytechinus variegatus. J. World Aquac. Soc. 43, 145–158 (2012).Article
Google Scholar
76.Carboni, S., Hughes, A. D., Atack, T., Tocher, D. R. & Migaud, H. Influence of broodstock diet on somatic growth, fecundity, gonad carotenoids and larval survival of sea urchin. Aquac. Res. 46, 969–976 (2015).CAS
Article
Google Scholar
77.Liu, H. et al. The effect of diet type on growth and fatty acid composition of the sea urchin larvae, II. Psammechinus miliaris (Gmelin). Aquaculture 264, 263–278 (2007).CAS
Article
Google Scholar
78.Brundu, G. et al. Effects of on-demand feeding on sea urchin larvae (Paracentrotus lividus; Lamarck, 1816), development, survival and microalgae utilization. Aquac. Res. 48, 1550–1560 (2017).Article
Google Scholar
79.Capo, T., Boyd, A. E., Miller, M. W., Sukrhaj, N. C. & Szmant, A. Non-invasive Spawning of Captive Diadema antillarum (Philippi) Under Photo-Thermal Control (CRC Press, 2003).
Google Scholar
80.Reuter, K. E. & Levitan, D. R. Influence of sperm and phytoplankton on spawning in the echinoid Lytechinus variegatus. Biol. Bull. 219, 198–206 (2010).PubMed
Article
Google Scholar
81.Muthiga, N. A. & McClanahan, T. R. Diadema. In Sea Urchins: Biology and Ecology Vol. 38 (ed. Lawrence, J. M.) 257–274 (Elsevier, 2013).
Google Scholar
82.Lewis, J. B. Growth and breeding in the tropical echinoid Diadema antillarum Philippi. Bull. Mar. Sci. 16, 151–158 (1966).
Google Scholar
83.Bauer, J. C. Growth, aggregation, and maturation in the echinoid, Diadema antillarum. Bull. Mar. Sci. 26, 273–277 (1976).ADS
Google Scholar
84.Iliffe, T. M. & Pearse, J. S. Annual and lunar reproductive rhythms of the sea urchin, Diadema antillarum (Philippi) in Bermuda. Int. J. Invertebr. Reprod. 5, 139–148 (1982).Article
Google Scholar
85.Randall, J. E., Schroeder, R. E. & Starck, W. A. I. Notes on the biology of the echinoid Diadema antillarum. Caribb. J. Sci. 1, 421–433. https://doi.org/10.1126/science.1.10.263 (1964).Article
Google Scholar
86.Lessios, H. A. Reproductive periodicity of the echinoids Diadema and Echinometra on the two coasts of Panama. J. Exp. Mar. Biol. Ecol. 50, 47–61 (1981).Article
Google Scholar
87.Levitan, D. R. Asynchronous spawning and aggregative behavior in the sea urchin Diadema antillarum (Philippi). Direct 76, 181–186 (1988).
Google Scholar
88.Hodin, J. et al. Culturing echinoderm larvae through metamorphosis. Methods Cell Biol. 150, 125–169 (2019).PubMed
Article
Google Scholar
89.Metaxas, A. Larval ecology of echinoids. In Sea Urchins: Biology and Ecology Vol. 38 (ed. Lawrence, J. M.) 69–81 (Elsevier, 2013).
Google Scholar
90.Grünbaum, D. & Strathmann, R. R. Form, performance and trade-offs in swimming and stability of armed larvae. J. Mar. Res. 61, 659–691 (2003).Article
Google Scholar
91.Williamson, J. E. Sea urchin aquaculture in Australia. In Echinoderm Aquaculture (eds Brown, N. P. & Eddy, S. D.) 225–243 (Wiley, 2015). https://doi.org/10.1002/9781119005810.ch10.
Google Scholar
92.Swanson, R. L. et al. Dissolved histamine: a potential habitat marker promoting settlement and metamorphosis in sea urchin larvae. Mar. Biol. 159, 915–925 (2012).CAS
Article
Google Scholar
93.Mos, B., Byrne, M. & Dworjanyn, S. A. Effects of low and high pH on sea urchin settlement, implications for the use of alkali to counter the impacts of acidification. Aquaculture 528, 735618 (2020).CAS
Article
Google Scholar
94.Radenac, G., Fichet, D. & Miramand, P. Bioaccumulation and toxicity of four dissolved metals in Paracentrotus lividus sea-urchin embryo. Mar. Environ. Res. 51, 151–166 (2001).CAS
PubMed
Article
Google Scholar
95.Phillips, B. M. et al. Toxicity of cadmium–copper–nickel–zinc mixtures to larval purple sea urchins (Strongylocentrotus purpuratus). Bull. Environ. Contam. Toxicol. 70, 592–599 (2003).CAS
PubMed
Article
Google Scholar
96.USEPA. Ambient Water Quality Criteria for Silver. U.S. Environmental Protection Agency (1980).97.USEPA. Draft Update of Ambient Water Quality Criteria for Copper. U.S. Environmental Protection Agency (2003).98.Martins, C. I. M., Pistrin, M. G., Ende, S. S. W., Eding, E. H. & Verreth, J. A. J. The accumulation of substances in recirculating aquaculture systems (RAS) affects embryonic and larval development in common carp Cyprinus carpio. Aquaculture 291, 65–73 (2009).Article
Google Scholar
99.Downs, C. A. et al. Toxicopathological effects of the sunscreen UV filter, oxybenzone (benzophenone-3), on coral planulae and cultured primary cells and its environmental contamination in hawaii and the U.S. Virgin Islands. Arch. Environ. Contam. Toxicol. 70, 265–288 (2016).CAS
PubMed
Article
Google Scholar
100.Seixas, P., Coutinho, P., Ferreira, M. & Otero, A. Nutritional value of the cryptophyte Rhodomonas lens for Artemia sp. J. Exp. Mar. Biol. Ecol. 381, 1–9 (2009).Article
Google Scholar
101.Bendich, A. Recent advances in clinical research involving carotenoids. Pure Appl. Chem. 66, 1017–1024 (1994).CAS
Article
Google Scholar
102.Krinsky, N. I. The antioxidant and biological properties of the carotenoids. Ann. N. Y. Acad. Sci. 854, 443–447 (1998).ADS
CAS
PubMed
Article
Google Scholar
103.Kelly, M. S. & Symonds, R. C. Carotenoids in sea urchins. In Sea Urchins: Biology and Ecology Vol. 38 (ed. Lawrence, J. M.) 171–177 (Elsevier, 2013).
Google Scholar
104.Cárcamo, P. F., Candia, A. I. & Chaparro, O. R. Larval development and metamorphosis in the sea urchin Loxechinus albus (Echinodermata: Echinoidea): effects of diet type and feeding frequency. Aquaculture 249, 375–386 (2005).Article
Google Scholar
105.Carboni, S. et al. Evaluation of flow through culture technique for commercial production of sea urchin (Paracentrotus lividus) larvae. Aquac. Res. 45, 768–772 (2014).Article
Google Scholar
106.Takahashi, Y., Itoh, K., Ishii, M., Suzuki, M. & Itabashi, Y. Induction of larval settlement and metamorphosis of the sea urchin Strongylocentrotus intermedius by glycoglycerolipids from the green alga Ulvella lens. Mar. Biol. 140, 763–771 (2002).CAS
Article
Google Scholar
107.Gaylord, B., Hodin, J. & Ferner, M. C. Turbulent shear spurs settlement in larval sea urchins. Proc. Natl. Acad. Sci. U. S. A. 110, 6901–6906 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
108.Gosselin, L. A. & Qian, P. Y. Juvenile mortality in benthic marine invertebrates. Mar. Ecol. Prog. Ser. 146, 265–282 (1997).ADS
Article
Google Scholar
109.Miller, B. A. & Emlet, R. B. Development of newly metamorphosed juvenile sea urchins (Strongylocentrotus franciscanus and S. purpuratus): morphology, the effects of temperature and larval food ration, and a method for determining age. J. Exp. Mar. Biol. Ecol. 235, 67–90 (1999).Article
Google Scholar
110.Byrne, M., Sewell, M. A. & Prowse, T. A. A. Nutritional ecology of sea urchin larvae: influence of endogenous and exogenous nutrition on echinopluteal growth and phenotypic plasticity in Tripneustes gratilla. Funct. Ecol. 22, 643–648 (2008).Article
Google Scholar
111.Feehan, C. J., Brown, M. S., Sharp, W. C., Lauzon-Guay, J.-S. & Adams, D. K. Fertilization limitation of Diadema antillarum on coral reefs in the Florida Keys. Ecology 97, 1897–1904 (2016).PubMed
Article
Google Scholar
112.Miller, M. W., Kramer, K. L., Williams, S. M., Johnston, L. & Szmant, A. M. Assessment of current rates of Diadema antillarum larval settlement. Coral Reefs 28, 511–515 (2009).ADS
Article
Google Scholar
113.Vermeij, M. J. A., Debrot, A. O., van der Hal, N., Bakker, J. & Bak, R. P. M. Increased recruitment rates indicate recovering populations of the sea urchin Diadema antillarum on Curaçao. Bull. Mar. Sci. 86, 719–725 (2010).
Google Scholar
114.Miller, R. J., Adams, A. J., Ebersole, J. P. & Ruiz, E. Evidence for positive density-dependent effects in recovering Diadema antillarum populations. J. Exp. Mar. Biol. Ecol. 349, 215–222 (2007).Article
Google Scholar
115.Hunte, W. & Younglao, D. Recruitment and population recovery of Diadema antillarum (Echinodermata; Echinoidea) in Barbados. Mar. Ecol. Prog. Ser. 45, 109–119 (1988).ADS
Article
Google Scholar
116.Weil, E., Losada, F. & Bone, D. Spatial variations in density and size of the echinoid Diadema antillarum Philippi on some Venezuelan coral reefs. Bijdragen tot de Dierkunde 54, 73–82 (1984).Article
Google Scholar
117.Lee, S. C. Habitat complexity and consumer-mediated positive feedbacks on a Caribbean coral reef. Oikos 112, 442–447 (2006).Article
Google Scholar
118.Feehan, C. J. & Scheibling, R. E. Effects of sea urchin disease on coastal marine ecosystems. Mar. Biol. 161, 1467–1485 (2014).CAS
Article
Google Scholar
119.Dame, E. A. Assessing the effect of artificial habitat structure on translocation of the long-spined sea urchin, Diadema antillarum, in Curaçao (Netherlands Antilles). Bull. Mar. Sci. 82, 247–254 (2008).ADS
Google Scholar
120.Sharp, W. Assessing the use of artificial structures to enhance the survival rates of long-spined sea uchins on the reef tract of the Florida Keys. Florida Fish and Wildlife Conservation Commission (2014).121.Rogers, A. & Lorenzen, K. Recovery of Diadema antillarum and the potential for active rebuilding measures: modelling population dynamics. In Proceedings of the 11th International Coral Reef Symposium 7–11 (2008).122.Creswell, R. L. Developing echinoderm culture for consumption and stock enhancement in the Caribbean. FAO Fish. Aquac. Proc. 19, 141–145 (2011).
Google Scholar More