More stories

  • in

    Scenario simulation of land use and land cover change in mining area

    Data source and preprocessingConsidering factors such as amount of cloud and time intervals of image, four remote sensing images with a spatial resolution of 30 m, including Landsat 5 Thematic Mapper (TM) images for 08-21-2000, 09-04-2005 and 09-18-2010, and Landsat 8 Operational Land Imager (OLI) for 09-02-2016,were obtained from the Geospatial Data Cloud Platform (http://www.gscloud.cn). LULC information was extracted from these remote sensing images. In addition, the digital elevation model (DEM) with a spatial resolution of 30 m was obtained from the website. Elevation and slope information were derived from DEM data and used as terrain driving factors for scenario simulation. Other supporting data, such as Weishan County land use data, mine distribution data, general land use planing (2006–2020) and mineral resources planning (2008–2015), Jining City coal mining subsidence land rearrangement planning (2016–2030), were obtained from Weishan Natural Resources and Planning Bureau. These data were used for better data analysis.Considering severe ground subsidence and seeper in the study area, and referring to national standards: Current Land Use Classification (GB/T 21010-2017), remote sensing images were interpreted into six LULC types: farmland, other agricultural land, urban and rural construction land, subsided seeper area, water area, and tidal wetland.In the process of image interpretation, firstly, the remote sensing image was divided into two regions: one region were the lake and the surrounding tidal wetland, and the other region included farmland, other agricultural land, urban and rural construction land, subsided seeper area, etc.In region 1, decision tree classification, combined with the Modified Normalized Difference Water Index (MNDWI), was used to extract lakes. Then we masked them in region 1. The Normalized Difference Vegetation Index (NDVI) was calculated for the remaining image of region 1. Tidal wetland was mainly distributed along rivers and lakes, and NDVI value was higher than that of farmland and other vegetation. By analyzing its geographical distribution and NDVI value, and referring to Weishan County land use data, the appropriate threshold was selected to extract tidal wetland.The spectral signature of rivers, ditches and aquaculture ponds in other agricultural land in region 2 could be easily distinguished from other surface features. They could be extracted step by step by manual visual interpretation and empirical knowledge, referring to Weishan County land use data and water system data. Then we masked them separately in region 2. After extracting rivers, ditches, aquaculture ponds with high water content, the remaining LULC type with high water content in region 2 was subsided seeper area. According to the relationship of spectral signature of different LULC types, it was concluded that among the remaining LULC types in region 2, only TM3 band value of subsided seeper area was higher than TM5 band value. Using this characteristic, subsided seeper area could be distinguished from other LULC types. After extracting subsided seeper area, the remaining LULC types in region 2 were farmland and urban and rural construction land. The spectral characteristics of them were very different. Therefore, they could be distinguished using support vector machine (SVM) classification method, and their respective binary images were generated using decision tree method.The extracted six LULC types were shown in single layer and binary form respectively. Six LULC types were coded and synthesized into one image. We obtained 2000, 2005, 2010, 2016 LULC type maps (Fig. 2). Finally classification post-processing and accuracy evaluation were operated.Figure 2The LULC types maps of 2000, 2005, 2010 and 2016. Maps were generated using ArcGIS 10.1 for Desktop (http://www.esri.com/software/arcgis/arcgis-for-desktop).Full size imageThe accuracy of the interpretation results was verified by confusion matrix and kappa coefficient. The kappa coefficients of the four interpretation maps were 0.84, 0.85, 0.82 and 0.86, respectively (Table 1). The accuracy could meet the needs of further research.Table 1 Accuracy evaluation of the interpretation results (%).Full size tableBy reading previous research results37,38,39,40,41, based on the entropy theory, in the same study area, high spatial resolution data contains more entropy than low spatial resolution data, and reflecting more detailed information, but it will increase the uncertainty of prediction results and reduce the prediction accuracy. Although the prediction accuracy of low spatial resolution data increases, it will lose lots of detailed information. In order to ensure the accuracy of the simulation, considering the area of the study area and data requirement of the CLUE-S model, the interpreted LULC maps with a resolution of 30 m exceed the upper limit of the CLUE-S model data requirement, so the LULC maps were resampled to multiple scales including 60 m, 90 m, 120 m, and 150 m to facilitate logistic regression analysis of LULC types and driving factors.Selection and processing of driving factorsTo interpret the relationship between the LULC and its driving factors in the mining area, we not only need to identify the driving factors that have greater explanatory power for LULC change, but also need to quantitatively describe the relationship between driving factors and LULC types.Considering the accessibility, usability of the data and the actual conditions in the study area, seven driving factors were selected based on the land use map of Weishan County in 2005 and the DEM data5,10,11,13,26,28,29,30. The driving factors included: (1) terrain factors, including elevation and slope factors; (2) five accessibility factors, including the nearest distance between each grid pixel and the main roads, the major rivers, the residential area, the major mines, and the ditches. The 30 m grid data of each driving factor were resampled to 60 m, 90 m, 120 m and 150 m respectively.In this study, BLRM was used to explore the relationship between LULC change and the related 7 driving factors. BLRM is sensitive to multicollinearity. In order to eliminate the influence of collinearity on the regression results, the multicollinearity between independent variables was diagnosed before the regression model was established.The receiver operating characteristic (ROC) curve was used to evaluate the accuracy of regression analysis results at different scales. The results showed that using 60 m resolution provided more accurate regression analysis results and suffered less loss of LULC and driving factor information during resampling. Therefore, we used 60 m × 60 m grid cell data to driving forces analysis.Raster maps of each driving factor at a resolution scale of 60 m are shown in Fig. 3.Figure 3Raster maps of driving factors at a resolution scale of 60 m. Maps were generated using ArcGIS 10.1 for Desktop (http://www.esri.com/software/arcgis/arcgis-for-desktop).Full size imageLogistic regression analysis of LULC types and driving factorsBLRM is often used for regression analysis of explanatory binary variables. The presence and absence of a certain type of LULC in a specific area is set as 1 and 0, respectively, which is characteristic for binary variable. Therefore, we used BLRM to calculate the probability (P) of various LULC types in a specific spatial location, and its mathematical expression is:$$begin{aligned} ln left( frac{P}{1-P}right) = beta _0 + beta _1 X end{aligned}$$
    (1)
    where (frac{P}{1-P}) is the ’odds ratio’ of an event, abbreviated as ( Omega ), which represents the odds that an outcome will occur given a particular condition compared to the odds of the outcome occurring in the absence of that condition; (beta _0) is a constant; (beta _1) is the correlation coefficient of an explaining variable and an explained variable. Making mathematical transformation of the above expression, we get: (Omega = (frac{P}{1-P}) = e^{beta _0 + beta _1 X}).Regression analysis using BLRM, we divided the study area into many grid cells. Taking each LULC type as the explained variable, and the driving factor causing LULC change as the explanatory variable, we calculated the odds ratio of each LULC type in a specific spatial location, and analyzed the relationship between each LULC type and the driving factors. The calculating equation is:$$begin{aligned} mathrm{Logit} P = ln left( frac{P_i}{1-P_i}right) = beta _0 + beta _1 X_{1,i} + beta _2 X_{2,i} + cdots + beta _n X_{n,i} end{aligned}$$
    (2)
    Making mathematical transformation of the above equation, we get:$$begin{aligned} P_i = frac{e^{(beta _0 + beta _1 X_{1,i} + beta _2 X_{2,i} + cdots + beta _n X_{n,i})}}{1+e^{(beta _0 + beta _1 X_{1,i} + beta _2 X_{2,i} + cdots + beta _n X_{n,i})}} end{aligned}$$
    (3)
    where: (P_i) is the probability of a certain LULC type i in a grid cell, (X_{1,i}sim X_{n,i}) are the driving factors of LULC type i, (beta _0) is the constant, (beta _1sim beta _n) are the correlation coefficients of each driving factor and LULC type i.The receiver operating characteristic (ROC) was used to evaluate the accuracy of regression analysis results. The accuracy can be measured by calculating the area under the ROC curve. The area value is between 0.5 and 1. The closer the value is to 1, the higher the accuracy is. In general, the area under the ROC curve is greater than 0.7, which indicates that the selected factor has good explanatory power27,42.CLUE-S simulation and accuracy validationBefore using the CLUE-S model for futural LULC scenario simulation in mining area, the prediction accuracy needs to be verified. Based on the data of LULC in 2005, the spatial distribution pattern of LULC in 2016 was predicted firstly.The modeling accuracy was evaluated based on the Kappa index by comparing the actual LULC map in 2016 with the simulated in 201627,43,44. Equation (4) gives one of the most popular Kappa index equations: i.e.,$$begin{aligned} mathrm{Kappa}=frac{P_o-P_c}{P_p-P_c} end{aligned}$$
    (4)
    where (P_o) is the observed proportion correct, (P_c) is the expected proportion correct due to chance, (P_c) =1/n, n is the number of LULC types, and (P_p) is the proportion correct when classification is perfect.In order to further verify the accuracy of the model simulation, we also calculated kappa for quantity (Kquantity).Scenario setting of futural LULC simulationDue to the continuous population growth and mineral exploitation in the study area, the land resources, especially farmland resources, have become increasingly scarce and the environment has been deteriorating. Based on the simulation and validated results during 2005-2016, we defined three scenarios—namely natural development scenario, ecological protection scenario, and farmland protection scenario—to predict LULC spatial patterns for 2025.Natural development scenarioIn this scenario, the land use demand of the study area was basically not restricted by policies in near future. We assumed that the change rate of each LULC type in near future was consistent with the change trend from 2005 to 2016. So it is defined as natural development scenario. Using Markov model to obtain the area transition probability matrix of each year from 2017 to 2025, and taking the proportion of each LULC type area in the total study area in 2005 as the initial state matrix, the area of each LULC type in 2025 under the natural development scenario was predicted.Based on the characteristics and trend of the LULC change from 2005 to 2016, after appropriately adjusting the transition probability matrix of different LULC types, we predicted the demands of each LULC type in 2025 under ecological protection scenario and farmland protection scenario using Markov model45,46.Ecological protection scenarioThis scenario emphasizes protecting the ecological environment, restricting the conversion of the LULC types that have more regulatory effects on the ecosystem, such as tidal wetland and water area, to other land use types. Garden land, woodland, grassland, and aquaculture land, belong to other agricultural land, which have regulatory effects on the local ecosystem, so their conversion to other LULC types should be restricted as well.Farmland protection scenarioAccording to the guidelines of “the general land use planning in Weishan County (2006-2020)”, we should maximize the potential use of current construction land, implement intensive and economical utilization of construction land, and use less or not use farmland to economical construction. So in order to ensure the dynamic balance of total farmland amount and the regional food supply security, in the farmland protection scenario, the conversion from farmland to other land use types should be restricted. The projected land use demands for 2025 under the three different scenarios are shown in Table 2.Table 2 Areas of LULC types in 2025 under different scenarios (ha).Full size table More

  • in

    Exploring physicochemical and cytogenomic diversity of African cowpea and common bean

    1.Lewis, G. P. Legumes of the World (Royal Botanic Gardens, 2005).
    Google Scholar 
    2.The Legume Phylogeny Working Group (LPWG). A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 66, 44–77 (2017).Article 

    Google Scholar 
    3.Yahara, T. et al. Global legume diversity assessment: Concepts, key indicators, and strategies. Taxon 62, 249–266 (2013).Article 

    Google Scholar 
    4.Odendo, M., Bationo, A. & Kimani, S. Socio-economic contribution of legumes to livelihoods in Sub-Saharan Africa. In Fighting Poverty in Sub-Saharan Africa: The Multiple Roles of Legumes in Integrated Soil Fertility Management (eds Bationo, A. et al.) 27–46 (Springer, 2011).Chapter 

    Google Scholar 
    5.Dakora, F. D. & Keya, S. O. Contribution of legume nitrogen fixation to sustainable agriculture in Sub-Saharan Africa. Soil Biol. Biochem. 29, 809–817 (1997).CAS 
    Article 

    Google Scholar 
    6.Ajeigde, H. A., Singh, B. B. & Osenj, T. O. Cowpea-cereal intercrop productivity in the Sudan savanna zone of Nigeria as affected by planting pattern, crop variety and pest management. Afr. Crop Sci. J. 13, 269–279 (2005).
    Google Scholar 
    7.Rahmanian, M., Batello, C. & Calles, T. Pulse Crops for Sustainable Farms in Sub-Saharan Africa (FAO, 2018).
    Google Scholar 
    8.Rawal, V. & Navarro, D. K. The Global Economy of Pulses (FAO, 2017).
    Google Scholar 
    9.Plants of the World Online. http://powo.science.kew.org (2020).10.Broughton, W. J. et al. Beans (Phaseolus spp.)—Model food legumes. Plant Soil 252, 55–128 (2003).CAS 
    Article 

    Google Scholar 
    11.Delgado-Salinas, A., Bibler, R. & Lavin, M. Phylogeny of the genus Phaseolus (Leguminosae): A recent diversification in an ancient landscape. Syst. Bot. 31, 779–791 (2006).Article 

    Google Scholar 
    12.Greenway, P. J. Origins of some East African food plants: Part V. East Afr. Agric. J. 11, 56–63 (1945).
    Google Scholar 
    13.Wortmann, C. S. & Allen, D. J. African Bean Production Environments: Their Definition, Characteristics and Constraints. Occasional Publication Series 11 (CIAT, 1994).
    Google Scholar 
    14.Maxted, N. et al. African Vigna: Systematic and Ecogeographic Studies (International Plant Genetic Resource Institute, 2004).
    Google Scholar 
    15.Singh, B. B. Cowpea: The Food Legume of the 21st Century (Crop Science Society of America Inc., 2014).Book 

    Google Scholar 
    16.Catarino, S. et al. Conservation priorities for African Vigna species: Unveiling Angola’s diversity hotspots. Glob. Ecol. Conserv. 25, e01415. https://doi.org/10.1016/j.gecco.2020.e01415 (2021).Article 

    Google Scholar 
    17.Vidigal, P., Romeiras, M. M. & Monteiro, F. Crops diversification and the role of orphan legumes to improve the Sub-Saharan Africa farming systems. In Sustainable Crop Production (ed. Hasanuzzaman, M.) (IntechOpen, 2019).
    Google Scholar 
    18.Maréchal, R. Etude taxonomique d’un groupe complexe d’espèces des genres Phaseolus et Vigna (Papilionaceae) sur la base de données morphologiques et polliniques, traitées par l’analyse informatique. Boissiera 28, 1–273 (1978).
    Google Scholar 
    19.Peksen, E., Peksen, A. & Gulumser, A. Leaf and stomata characteristics and tolerance of cowpea cultivars to drought stress based on drought tolerance indices under rainfed and irrigated conditions. Int. J. Curr. Microbiol. Appl. Sci. 3, 626–634 (2014).CAS 

    Google Scholar 
    20.Iqbal, A., Khalil, I. A., Ateeq, N. & Khan, M. S. Nutritional quality of important food legumes. Food Chem. 97, 331–335 (2006).CAS 
    Article 

    Google Scholar 
    21.African Orphan Crops Consortium. http://africanorphancrops.org/meet-the-crops/ (2021)22.Boukar, O. et al. Cowpea. In Grain Legumes (ed. de Ron, A. M.) 219–250 (Springer, 2015).Chapter 

    Google Scholar 
    23.Animasaun, D. A., Oyedeji, S., Azeez, Y. K., Mustapha, O. T. & Azeez, M. A. Genetic variability study among ten cultivars of cowpea (Vigna unguiculata L. Walp) using morpho-agronomic traits and nutritional composition. J. Agric. Sci. 10, 119–130 (2015).
    Google Scholar 
    24.Timko, M. P. & Singh, B. B. Cowpea, a multifunctional legume. In Plant Genetics and Genomics: Crops and Models Vol. 1 (eds Moore, P. H. & Ming, R.) 227–258 (Springer, 2008).
    Google Scholar 
    25.Wortmann, S. C., Kirkby, A. R., Eledu, A. C. & Allen, J. D. Atlas of Common Bean (Phaseolus vulgaris L.) Production in Africa (International Centre for Tropical Agriculture, 2004).
    Google Scholar 
    26.Guignard, M. S. et al. Genome size and ploidy influence angiosperm species’ biomass under nitrogen and phosphorus limitation. New Phytol. 210, 1195–1206 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Sheidai, M. et al. Genetic diversity and genome size variability in Linum austriacum (Lineaceae) populations. Biochem. Syst. Ecol. 57, 20–26 (2014).CAS 
    Article 

    Google Scholar 
    28.Kron, P., Suda, J. & Husband, B. C. Applications of flow cytometry to evolutionary and population biology. Annu. Rev. Ecol. Evol. Syst. 38, 847–876 (2007).Article 

    Google Scholar 
    29.Wu, Y. Q. et al. Genetic analyses of Chinese Cynodon accessions by flow cytometry and AFLP markers. Crop Sci. 46, 917–926 (2016).Article 

    Google Scholar 
    30.Parida, A., Raina, S. N. & Narayan, R. K. J. Quantitative DNA variation between and within chromosome complements of Vigna species (Fabaceae). Genetica 82, 125–133 (1990).CAS 
    Article 

    Google Scholar 
    31.Nagl, W. & Treviranus, A. A flow cytometric analysis of the nuclear 2C DNA content in 17 Phaseolus species (53 genotypes). Bot. Acta 108, 403–406 (1995).CAS 
    Article 

    Google Scholar 
    32.Barow, M. & Meister, A. Endopolyploidy in seed plants is differently correlated to systematics, organ, life strategy and genome size. Plant Cell Environ. 26, 571–584 (2003).Article 

    Google Scholar 
    33.Lonardi, S. et al. The genome of cowpea (Vigna unguiculata [L.] Walp.). Plant J. 98, 767–782 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.The IUCN Red List of Threatened Species. Version 2020-2. https://www.iucnredlist.org/ (2020).35.Genesys. Plant Genetic Resources Accession. https://www.genesys-pgr.org/ (2021).36.Pope, G. V. & Polhill, R. M. Flora Zambesiaca, part 5 Vol. 3 (Royal Botanic Gardens, 2001).
    Google Scholar 
    37.Tomooka, N., Vaughan, D. A., Moss, H. & Maxted, N. The Asian Vigna: Genus Vigna Subgenus Ceratotropis Genetic Resources (Kluwer Academic Publishers, 2002).Book 

    Google Scholar 
    38.Debouck, D. G. Primary diversification of Phaseolus in the Americas: Three centers. Plant Genet. Resour. Newsl. 67, 2–8 (1986).
    Google Scholar 
    39.Plant Resources of Tropical Africa. https://www.prota4u.org/database/ (2021).40.Linder, H. P. The evolution of African plant diversity. Front. Ecol. Evol. 2, 38. https://doi.org/10.3389/fevo.2014.00038 (2014).Article 
    ADS 

    Google Scholar 
    41.Romeiras, M. M., Figueira, R., Duarte, M. C., Beja, P. & Darbyshire, I. Documenting biogeographical patterns of African timber species using herbarium records: A conservation perspective based on native trees from Angola. PLoS ONE 9, e103403. https://doi.org/10.1371/journal.pone.0103403 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    42.Catarino, S. et al. Spatial and temporal trends of burnt area in angola: Implications for natural vegetation and protected area management. Diversity 12, 307. https://doi.org/10.3390/d12080307 (2020).Article 

    Google Scholar 
    43.Catarino, S., Duarte, M. C., Costa, E., Carrero, P. G. & Romeiras, M. M. Conservation and sustainable use of the medicinal Leguminosae plants from Angola. PeerJ 7, e6736. https://doi.org/10.7717/peerj.6736 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Romeiras, M. M. et al. IUCN Red List assessment of the Cape Verde endemic flora: Towards a global strategy for plant conservation in Macaronesia. Bot. J. Linn. Soc. 180, 413–425 (2016).Article 

    Google Scholar 
    45.Gomes, A. M. et al. Drought response of cowpea (Vigna unguiculata (L.) Walp.) landraces at leaf physiological and metabolite profile levels. Environ. Exp. Bot. 175, 104060. https://doi.org/10.1016/j.envexpbot.2020.104060 (2020).CAS 
    Article 

    Google Scholar 
    46.The International Institute of Tropical Agriculture (IITA). https://www.iita.org/ (2021)47.Fatokun, C. et al. Genetic diversity and population structure of a mini-core subset from the world cowpea (Vigna unguiculata (L.) Walp.) germplasm collection. Sci. Rep. 8, 16035. https://doi.org/10.1038/s41598-018-34555-9 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    48.Rocha, V., Duarte, M. C., Catarino, S., Duarte, I. & Romeiras, M. M. Cabo Verde’s Poaceae flora: A reservoir of crop wild relatives diversity for crop improvement. Front. Plant Sci. 12, 630217. https://doi.org/10.3389/fpls.2021.630217 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Brilhante, M. et al. Tackling food insecurity in Cabo Verde Islands: The nutritional, agricultural and environmental values of the legume species. Foods 10, 206. https://doi.org/10.3390/foods10020206 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Pasquet, R. S. Wild cowpea (Vigna unguiculata) evolution. In Advances in Legume Systematics 8: Legumes of Economic Importance (eds Pickersgill, B. & Lock, J. M.) 95–100 (Royal Botanic Gardens, 1996).
    Google Scholar 
    51.Di Bella, G. et al. Mineral composition of some varieties of beans from Mediterranean and Tropical areas. Int. J. Food Sci. Nutr. 67, 239–248 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    52.Gelin, J. R., Forster, S., Grafton, K. F., McClean, P. E. & Rojas-Cifuentes, G. A. Analysis of seed zinc and other minerals in a recombinant inbred population of navy bean (Phaseolus vulgaris L.). Crop Sci. 47, 1361–1366 (2007).CAS 
    Article 

    Google Scholar 
    53.Dakora, F. D. & Belane, A. K. Evaluation of protein and micronutrient levels in edible cowpea (Vigna unguiculata L. Walp) leaves and seeds. Front. Sustain. Food Syst. 3, 70. https://doi.org/10.3389/fsufs.2019.00070 (2019).Article 

    Google Scholar 
    54.Yeken, M. Z., Akpolat, H., Karaköy, T. & Çiftçi, V. Assessment of mineral content variations for biofortification of the bean seed. Int. J. Agric. Sci. 4, 261–269 (2018).
    Google Scholar 
    55.Gondwe, T. M., Alamu, E. O., Mdziniso, P. & Maziya-Dixon, B. Cowpea (Vigna unguiculata (L.) Walp) for food security: An evaluation of end-user traits of improved varieties in Swaziland. Sci. Rep. 9, 15991. https://doi.org/10.1038/s41598-019-52360-w (2019).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    56.Sperotto, R. A., Ricachenevsky, F. K., Williams, L. E., Vasconcelos, M. W. & Menguer, P. K. From soil to seed: Micronutrient movement into and within the plant. Front. Plant Sci. 5, 438. https://doi.org/10.3389/fpls.2014.00438 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Maziya-Dixon, B., Kling, J. G., Menkir, A. & Dixon, A. Genetic variation in total carotene, iron, and zinc contents of maize and cassava genotypes. Food Nutr. Bull. 21, 419–422 (2000).Article 

    Google Scholar 
    58.Shewfelt, R. L. Sources of variation in the nutrient content of agricultural commodities from the farm to the consumer. J. Food Qual. 13, 37–54 (1990).Article 

    Google Scholar 
    59.World Health Organization. The World Health Report 2006: Working Together for Health. https://www.who.int/whr/2006/whr06_en.pdf?ua=1 (2006).60.Gödecke, T., Stein, A. J. & Qaim, M. The global burden of chronic and hidden hunger: Trends and determinants. Glob. Food Sec. 17, 21–29 (2018).Article 

    Google Scholar 
    61.Shankar, A. H. Mineral deficiencies. In Hunter’s Tropical Medicine and Emerging Infectious Diseases (eds Ryan, E. T. et al.) 1048–1054 (Elsevier, 2020).Chapter 

    Google Scholar 
    62.Muthayya, S. et al. The global hidden hunger indices and maps: An advocacy tool for action. PLoS ONE 8, e67860. https://doi.org/10.1371/journal.pone.0067860 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    63.Joy, E. J. et al. Dietary mineral supplies in Africa. Physiol. Plant. 151, 208–229 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.World Health Organization. World health statistics 2015. https://apps.who.int/iris/bitstream/handle/10665/170250/9789240694439_eng.pdf;jsessionid=9CFCB446F9217B60415DD216E70F6A49?sequence=1 (2015).65.Muriuki, J. M. et al. Estimating the burden of iron deficiency among African children. BMC Med. 18, 31. https://doi.org/10.1186/s12916-020-1502-7 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Official Journal of the European Union. Regulation (Eu) No 1169/2011 of the European Parliament and of the Council of 25 October 2011. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32011R1169&from=EN (2011).67.Nowicka, A. et al. Nuclear DNA content variation within the genus Daucus (Apiaceae) determined by flow cytometry. Sci. Hortic. 209, 132–138 (2016).CAS 
    Article 

    Google Scholar 
    68.Guilengue, N., Alves, S., Talhinhas, P. & Neves-Martins, J. Genetic and genomic diversity in a tarwi (Lupinus mutabilis Sweet) germplasm collection and adaptability to Mediterranean climate conditions. Agronomy 10, 21. https://doi.org/10.3390/agronomy10010021 (2020).Article 

    Google Scholar 
    69.Chable, V. et al. Embedding cultivated diversity in society for agro-ecological transition. Sustainability 12, 784. https://doi.org/10.3390/su12030784 (2020).Article 

    Google Scholar 
    70.Knight, C. A., Molinari, N. A. & Petrov, D. A. The large genome constraint hypothesis: Evolution, ecology and phenotype. Ann. Bot. 95, 177–190 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Pati, K., Zhang, F. & Batley, J. First report of genome size and ploidy of the underutilized leguminous tuber crop Yam Bean (Pachyrhizus erosus and P. tuberosus) by flow cytometry. Plant Genet. Resour. 17, 456–459 (2019).CAS 
    Article 

    Google Scholar 
    72.Sliwinska, E. Flow cytometry—A modern method for exploring genome size and nuclear DNA synthesis in horticultural and medicinal plant species. Folia Hortic. 30, 103–128 (2018).Article 

    Google Scholar 
    73.Veselý, P., Bureš, P. & Šmarda, P. Nutrient reserves may allow for genome size increase: Evidence from comparison of geophytes and their sister non-geophytic relatives. Ann. Bot. 112, 1193–1200 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    74.African Plant Database. http://www.ville-ge.ch/musinfo/bd/cjb/africa/index. (2021).75.Hyde, M. A., Wursten, B. T., Ballings, P. & Coates Palgrave, M. Flora of Botswana. https://www.botswanaflora.com (2021).76.Hyde, M. A., Wursten, B. T., Ballings, P. & Coates Palgrave, M. Flora of Malawi. http://www.malawiflora.com (2021).77.Hyde, M. A., Wursten, B. T., Ballings, P. & Coates Palgrave, M. Flora of Mozambique. http://www.mozambiqueflora.com (2021)78.Bingham, M. G., Willemen, A., Wursten, B. T., Ballings, P. & Hyde, M. A. Flora of Zambia http://www.zambiaflora.com (2021).79.Hyde, M. A., Wursten, B. T., Ballings, P. & Coates Palgrave, M. Flora of Zimbabwe. http://www.zimbabweflora.co.zw (2021).80.International Legume Database & Information Service. https://ildis.org/LegumeWeb (2020).81.Exell, A.W. & Fernandes, A. Conspectus florae angolensis. Vol. 3, No. 2. Leguminosae (Papilionoideae: Hedysareae-Sophoreae) (Junta de Investigações do Ultramar, 1966)82.Pasquet, R. S. Notes on the genus Vigna (Leguminosae-Papilionoideae). Kew Bull 56, 223–227 (2001).Article 

    Google Scholar 
    83.van Zonneveld, M. et al. Mapping patterns of abiotic and biotic stress resilience uncovers conservation gaps and breeding potential of Vigna wild relatives. Sci. Rep. 10, 2111. https://doi.org/10.1038/s41598-020-58646-8 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    84.Global Biodiversity Information Facility. https://www.gbif.org/ (2021).85.GBIF Occurrence Download—Vigna. https://doi.org/10.15468/dl.bsjsk5 (2021).86.GBIF Occurrence Download—Phaseolus. https://doi.org/10.15468/dl.kjw72 (2021).87.QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2021).88.Doležel, J., Sgorbati, S. & Lucretti, S. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol. Plant. 85, 625–631 (1992).Article 

    Google Scholar 
    89.Loureiro, J., Rodriguez, E., Doležel, J. & Santos, C. Two new nuclear isolation buffers for plant DNA flow cytometry: A test with 37 species. Ann. Bot. 100, 875–888 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Doležel, J. & Bartoš, J. Plant DNA flow cytometry and estimation of nuclear genome size. Ann. Bot. 95, 99–110 (2005).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    91.Doležel, J., Bartoš, J., Voglmayr, H. & Greilhuber, J. Nuclear DNA content and genome size of trout and human. Cytometry 51, 127–128 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Jelihovschi, E. G., Faria, J. C. & Allaman, I. B. ScottKnott: A package for performing the Scott-Knott clustering algorithm in R. TEMA 15, 3–17 (2014).MathSciNet 
    Article 

    Google Scholar 
    93.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar 
    94.R Core Team. R: A language and environment for statistical computing https://www.R-project.org/ (R Foundation for Statistical Computing, 2020). More

  • in

    Oil palm cultivation can be expanded while sparing biodiversity in India

    1.Vijay, V., Pimm, S. L., Jenkins, C. N. & Smith, S. J. The impacts of oil palm on recent deforestation and biodiversity loss. PLoS One 11, pe0159668 (2016).Article 

    Google Scholar 
    2.Rulli, M. C. et al. Interdependencies and telecoupling of oil palm expansion at the expense of Indonesian rainforest. Renew. Sustain. Energy Rev. 105, 499–512 (2019).Article 

    Google Scholar 
    3.Davis, K. F. et al. Tropical forest loss enhanced by large-scale land acquisitions. Nat. Geosci. 13, 482–488 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    4.Strona, G. et al. Small room for compromise between oil palm cultivation and primate conservation in Africa. Proc. Natl Acad. Sci. USA 115, 8811–8816 (2018).CAS 
    Article 

    Google Scholar 
    5.United States Department of Agriculture, Foreign Agricultural Service. Data retrieved from: https://apps.fas.usda.gov/psdonline/app/index.html#/app/advQuery (2020).6.Sagar, H. S. et al. India in the oil palm era: describing India’s dependence on palm oil, recommendations for sustainable production, and opportunities to become an influential consumer. Trop. Conserv. Sci. 12, 1940082919838918 (2019).Article 

    Google Scholar 
    7.Jadhav, R. Exclusive: India urges boycott of Malaysian palm oil after diplomatic row—sources. Reuters (13 January 2020).8.Srinivasan, U. Oil palm should not be expanded in Arunachal Pradesh. Arunachal Times (October 2016).9.Ministry of Agriculture and Farmers’ Welfare. National Mission on Oilseeds and Oil Palm; https://nmoop.gov.in (Government of India, 2020).10.Bose, P. Oil palm plantations vs shifting cultivation for indigenous peoples: analyzing Mizoram’s New Land Use Policy. Land Use Policy 81, 115–123 (2019).Article 

    Google Scholar 
    11.Dhar, A. Enter oil palm in northeast India: centre, Patanjali, Godrej bet big. The Citizen (16 September 2020).12.Raman, T. R. S. R. Is oil palm expansion good for Mizoram? The Frontier Despatch 3, 6–7 (2016).
    Google Scholar 
    13.Khandekar, N. Expanding oil palm plantations in the northeast could extract a long-term cost. The Wire (4 August 2020).14.Mandal, J. & Raman, T. R. S. R. Shifting agriculture supports more tropical forest birds than oil palm or teak plantations in Mizoram, northeast India. The Condor 118, 345–359 (2016).Article 

    Google Scholar 
    15.Nandi, J. Oil palm push on the northeast may impact biodiversity, water table, say experts. Hindustan Times 10, 51 (2020).
    Google Scholar 
    16.Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Global Agro-Ecological Zones, GAEZ v.3.0 (Food and Agriculture Organization, 2016); https://gaez.fao.org/pages/data-viewer18.Corley, R. H. V. How much palm oil do we need? Environ. Sci. Policy 12, 134–139 (2009).CAS 
    Article 

    Google Scholar 
    19.Meijaard, E. et al. The environmental impacts of palm oil in context. Nat. Plants 6, 1418–1426 (2020).Article 

    Google Scholar 
    20.West, P. C. et al. Leverage points for improving global food security and the environment. Science 18, 325–328 (2014).ADS 
    Article 

    Google Scholar 
    21.Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).22.Shaktivadivel, R. The Agricultural Groundwater Revolution: Opportunities and Threats to Development (CAB International, 2007).
    Google Scholar 
    23.Lee, J. S. H., Miteva, D. A., Carlson, K. M., Heilmayr, R. & Saif, O. Does oil palm certification create trade-offs between environment and development in Indonesia? Env. Res. Lett. 15, 124064 (2020).Article 

    Google Scholar 
    24.Sankar, K. N. M. Oil palm finds favour with East Godavari farmers. The Hindu (25 January 2017).25.Curry, G. N. & Koczberski, G. Finding common ground: relational concepts of land tenure and economy in the oil palm frontier of Papua New Guinea. Geogr. J. 175, 98–111 (2009).Article 

    Google Scholar 
    26.DeVos, R., Kohne, M. & Roth, D. We’ll turn your water in Coca Cola: the atomising practices of oil palm development in Indonesia. J. Agrar. Change 1, 385–405 (2018).Article 

    Google Scholar 
    27.IPCC. Climate Change: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer, L. A.) (IPCC, 2014).28.IPCC. IPCC Special Reports on Emissions Scenarios: Summary for Policymakers (IPCC, 2000).29.Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8. 5 tracks cumulative CO2 emissions. Proc. Natl Acad. Sci. USA 18, 19656–19657 (2020).ADS 
    Article 

    Google Scholar 
    30.Copernicus Land Monitoring Service (European Environment Agency, 2020).31.Hoffman, M., Koenig, K., Bunting, G., Cosntanza, J. & Willams, K. J. Biodiversity Hotspots v.2016.1 (2016); https://doi.org/10.5281/zenodo.326180632.IUCN World Database on Protected Areas, online April 2017 (UNEP-WCMC, 2016); www.protectedplanet.net33.QGIS Development Team. QGIS Geographic Information System (Open Source Geospatial Foundation, 2021); http://qgis.osgeo.org34.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021). More

  • in

    Observed increasing water constraint on vegetation growth over the last three decades

    1.Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, 1023–1027 (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    2.Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529 (2005).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    3.Porporato, A., D’odorico, P., Laio, F., Ridolfi, L. & Rodriguez-Iturbe, I. Ecohydrology of water-controlled ecosystems. Adv. Water Resour. 25, 1335–1348 (2002).Article 
    ADS 

    Google Scholar 
    4.Huang, K. et al. Enhanced peak growth of global vegetation and its key mechanisms. Nat. Ecol. Evolution 2, 1897 (2018).Article 

    Google Scholar 
    5.Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166 (2016).Article 
    ADS 

    Google Scholar 
    6.Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    7.Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951 (2010).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    8.Sherwood, S. & Fu, Q. A drier future? Science 343, 737–739 (2014).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    9.Lucht, W. et al. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science 296, 1687–1689 (2002).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    10.Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. change 6, 791–795 (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    11.Fensholt, R. et al. Greenness in semi-arid areas across the globe 1981–2007—an Earth Observing Satellite based analysis of trends and drivers. Remote Sens. Environ. 121, 144–158 (2012).Article 
    ADS 

    Google Scholar 
    12.Fernández-Martínez, M. et al. Global trends in carbon sinks and their relationships with CO2 and temperature. Nat. Clim. change 9, 73 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    13.Dannenberg, M. P., Wise, E. K. & Smith, W. K. Reduced tree growth in the semiarid United States due to asymmetric responses to intensifying precipitation extremes. Sci. Adv. 5, eaaw0667 (2019).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    14.Piao, S. et al. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nat. Commun. 5, 5018 (2014).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    15.Wild, M. et al. From dimming to brightening: decadal changes in solar radiation at Earth’s surface. Science 308, 847–850 (2005).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    16.Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    17.Forzieri, G., Alkama, R., Miralles, D. G. & Cescatti, A. Satellites reveal contrasting responses of regional climate to the widespread greening of Earth. Science 356, 1180–1184 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl Acad. Sci. USA 110, 52–57 (2013).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    19.Anderegg, W. R. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538 (2018).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    20.Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324 (2013).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    21.Jiao, W., Wang, L. & McCabe, M. F. Multi-sensor remote sensing for drought characterization: current status, opportunities and a roadmap for the future. Remote Sens. Environ. 256, 112313 (2021).Article 
    ADS 

    Google Scholar 
    22.Lobell, D. B. et al. Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Science 344, 516–519 (2014).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    23.Saleska, S. R., Didan, K., Huete, A. R. & Da Rocha, H. R. Amazon forests green-up during 2005 drought. Science 318, 612–612 (2007).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    24.Chen, T., Werf, G., Jeu, R., Wang, G. & Dolman, A. A global analysis of the impact of drought on net primary productivity. Hydrol. Earth Syst. Sci. 17, 3885 (2013).Article 
    ADS 

    Google Scholar 
    25.Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    26.Kreuzwieser, J. & Rennenberg, H. Molecular and physiological responses of trees to waterlogging stress. Plant, Cell Environ. 37, 2245–2259 (2014).CAS 

    Google Scholar 
    27.Buermann, W. et al. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature 562, 110 (2018).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    28.Zhao, M. & Running, S. W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329, 940–943 (2010).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    29.Anderegg, W. R. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    30.Field, C. B., Barros, V., Stocker, T. F. & Dahe, Q. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2012).31.Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52 (2013).Article 
    ADS 

    Google Scholar 
    32.Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Change 4, 17 (2013).Article 
    ADS 

    Google Scholar 
    33.Cook, B. I., Ault, T. R. & Smerdon, J. E. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv. 1, e1400082 (2015).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    34.Milly, P. C. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946 (2016).Article 
    ADS 

    Google Scholar 
    35.Xu, C. et al. Increasing impacts of extreme droughts on vegetation productivity under climate change. Nat. Clim. Change 9, 948–953 (2019).CAS 
    Article 
    ADS 

    Google Scholar 
    36.Konapala, G., Mishra, A. K., Wada, Y. & Mann, M. E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 11, 1–10 (2020).Article 
    CAS 

    Google Scholar 
    37.Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evolution 1, 1438–1445 (2017).Article 

    Google Scholar 
    38.Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    39.Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).Article 
    ADS 

    Google Scholar 
    40.Doughty, C. E. et al. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519, 78–82 (2015).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    41.Schwalm, C. R. et al. Global patterns of drought recovery. Nature 548, 202 (2017).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    42.Peters, W. et al. Increased water-use efficiency and reduced CO2 uptake by plants during droughts at a continental scale. Nat. Geosci. 11, 744 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    43.Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl Acad. Sci. USA 117, 20438–20446 (2020).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    44.Minasny, B. et al. Digital mapping of peatlands–A critical review. Earth-Sci. Rev. 196, 102870 (2019).CAS 
    Article 

    Google Scholar 
    45.Cronk, J. K. & Fennessy, M. S. Wetland Plants: Biology and Ecology. (CRC press, 2016).46.Zohaib, M. & Choi, M. Satellite-based global-scale irrigation water use and its contemporary trends. Sci. Total Environ. 714, 136719 (2020).47.Smith, W. K. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    48.Abel, C. et al. The human–environment nexus and vegetation–rainfall sensitivity in tropical drylands. Nat. Sustain. 4, 25–32 (2020).49.Lu, X., Wang, L. & McCabe, M. F. Elevated CO2 as a driver of global dryland greening. Sci. Rep. 6, 20716 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    50.Oliveira, P. J., Davin, E. L., Levis, S. & Seneviratne, S. I. Vegetation‐mediated impacts of trends in global radiation on land hydrology: a global sensitivity study. Glob. Change Biol. 17, 3453–3467 (2011).Article 
    ADS 

    Google Scholar 
    51.Grömping, U. Relative importance for linear regression in R: the package relaimpo. J. Stat. Softw. 17, 1–27 (2006).Article 

    Google Scholar 
    52.Moesinger, L. et al. The global long-term microwave vegetation optical depth climate archive (VODCA). Earth Syst. Sci. Data 12, 177–196 (2020).Article 
    ADS 

    Google Scholar 
    53.Li, X. & Xiao, J. A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data. Remote Sens. 11, 517 (2019).Article 
    ADS 

    Google Scholar 
    54.Palmer, W. C. Meteorological Drought. Vol. 30 (Citeseer, 1965).55.Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Trabucco, A. & Zomer, R. J. Global aridity index (global-aridity) and global potential evapo-transpiration (global-PET) geospatial database. CGIAR Consortium for Spatial Information (2009).57.Zomer, R. J., Trabucco, A., Bossio, D. A. & Verchot, L. V. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agriculture, Ecosyst. Environ. 126, 67–80 (2008).Article 

    Google Scholar 
    58.Gruber, A., Scanlon, T., Schalie, R. V. D., Wagner, W. & Dorigo, W. Evolution of the ESA CCI soil moisture climate data records and their underlying merging methodology. Earth Syst. Sci. Data 11, 717–739 (2019).Article 
    ADS 

    Google Scholar 
    59.Dorigo, W. et al. ESA CCI Soil moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 203, 185–215 (2017).Article 
    ADS 

    Google Scholar 
    60.Wagner, W. et al. Fusion of active and passive microwave observations to create an essential climate variable data record on soil moisture. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Annals) 7, 315–321 (2012).61.Harris, I., Jones, P., Osborn, T. & Lister, D. Updated high‐resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. Int. J. Climatol. 34, 623–642 (2014).Article 

    Google Scholar 
    62.Sheffield, J., Goteti, G. & Wood, E. F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 19, 3088–3111 (2006).Article 
    ADS 

    Google Scholar 
    63.Tian, F. et al. Remote sensing of vegetation dynamics in drylands: Evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ green biomass data over West African Sahel. Remote Sens. Environ. 177, 265–276 (2016).Article 
    ADS 

    Google Scholar 
    64.Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    65.Frank, D. et al. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob. Change Biol. 21, 2861–2880 (2015).Article 
    ADS 

    Google Scholar 
    66.Goetz, S. J., Bunn, A. G., Fiske, G. J. & Houghton, R. A. Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc. Natl Acad. Sci. USA 102, 13521–13525 (2005).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    67.Wu, D. et al. Time‐lag effects of global vegetation responses to climate change. Glob. Change Biol. 21, 3520–3531 (2015).Article 
    ADS 

    Google Scholar 
    68.Tei, S. & Sugimoto, A. Time lag and negative responses of forest greenness and tree growth to warming over circumboreal forests. Glob. Change Biol. 24, 4225–4237 (2018).Article 
    ADS 

    Google Scholar 
    69.Wen, Y. et al. Cumulative effects of climatic factors on terrestrial vegetation growth. J. Geophys. Res.: Biogeosciences 124, 789–806 (2019).Article 
    ADS 

    Google Scholar 
    70.McKee, T. B., Doesken, N. J. & Kleist, J. in Proceedings of the 8th Conference on Applied Climatology. 179-183 (American Meteorological Society Boston, MA).71.Jiao, W., Tian, C., Chang, Q., Novick, K. A. & Wang, L. A new multi-sensor integrated index for drought monitoring. Agric. For. Meteorol. 268, 74–85 (2019).Article 
    ADS 

    Google Scholar  More

  • in

    Changes in soil microbial community and activity caused by application of dimethachlor and linuron

    1.Food and Agriculture Organization of the United Nations. FAOSTAT Database., http://www.fao.org/faostat/en/#home (2020).2.Sharma, A. et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 1, 1446. https://doi.org/10.1007/s42452-019-1485-1 (2019).CAS 
    Article 

    Google Scholar 
    3.Peterson, M. A., Collavo, A., Ovejero, R., Shivrain, V. & Walsh, M. J. The challenge of herbicide resistance around the world: A current summary. Pest. Manag. Sci. 74, 2246–2259. https://doi.org/10.1002/ps.4821 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Landrigan, P. J. & Benbrook, C. GMOs, herbicides, and public health. N. Engl. J. Med. 373, 693–695 (2015).Article 

    Google Scholar 
    5.Horwath, W. R. The role of the soil microbial biomass in cycling nutrients. Microbial biomass: A paradigm shift in terrestrial biogeochemistry. World Sci. 41–66 https://doi.org/10.1142/9781786341310_0002 (2017).6.Meena, R. S. et al. Impact of agrochemicals on soil microbiota and management: A review. Land 9, 34 (2020).Article 

    Google Scholar 
    7.Perucci, P., Vischetti, C. & Battistoni, F. Rimsulfuron in a silty clay loam soil: Effects upon microbiological and biochemical properties under varying microcosm conditions. Soil Biol. Biochem. 31, 195–204 (1999).Article 

    Google Scholar 
    8.Huang, X. et al. Microbial catabolism of chemical herbicides: Microbial resources, metabolic pathways and catabolic genes. Pestic. Biochem. Physiol. 143, 272–297 (2017).CAS 
    Article 

    Google Scholar 
    9.Lewis, K. A., Tzilivakis, J., Warner, D. J. & Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. 22, 1050–1064. https://doi.org/10.1080/10807039.2015.1133242 (2016).CAS 
    Article 

    Google Scholar 
    10.Syngenta. Teridox label, https://www.syngenta.sk/sites/g/files/zhg356/f/etiketa_teridox_500_ec.pdf (2014).11.European Food Safety Authority. Conclusion regarding the peer review of the pesticide risk assessment of the active substance dimethachlor. EFSA J. 6, 169r (2008).
    Google Scholar 
    12.López-Ruiz, R., Romero-González, R., Ortega-Carrasco, E., Martínez Vidal, J. L. & Garrido Frenich, A. Degradation studies of dimethachlor in soils and water by UHPLC-HRMS: Putative elucidation of unknown metabolites. Pest. Manag. Sci. 76, 721–729. https://doi.org/10.1002/ps.5570 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Rasmussen, J., Aamand, J., Rosenberg, P., Jacobsen, O. S. & Sørensen, S. R. Spatial variability in the mineralisation of the phenylurea herbicide linuron within a Danish agricultural field: Multivariate correlation to simple soil parameters. Pest Manag. Sci. Formerly Pesticide Sci. 61, 829–837 (2005).CAS 
    Article 

    Google Scholar 
    14.European Food Safety Authority. Peer review of the pesticide risk assessment of the active substance linuron. EFSA J. 14, e04518 (2016).
    Google Scholar 
    15.Crouzet, O. et al. Response of soil microbial communities to the herbicide mesotrione: A dose-effect microcosm approach. Soil Biol. Biochem. 42, 193–202. https://doi.org/10.1016/j.soilbio.2009.10.016 (2010).CAS 
    Article 

    Google Scholar 
    16.Latkovic, D. et al. Case study upon foliar application of biofertilizers affecting microbial biomass and enzyme activity in soil and yield related prop. Biology 9, 452 (2020).CAS 
    Article 

    Google Scholar 
    17.Nannipieri, P. et al. Beyond microbial diversity for predicting soil functions: A mini review. Pedosphere 30, 5–17. https://doi.org/10.1016/S1002-0160(19)60824-6 (2020).Article 

    Google Scholar 
    18.Krogh, K. A., Halling-Sørensen, B., Mogensen, B. B. & Vejrup, K. V. Environmental properties and effects of nonionic surfactant adjuvants in pesticides: A review. Chemosphere 50, 871–901. https://doi.org/10.1016/S0045-6535(02)00648-3 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    19.García-Ortega, S., Holliman, P. J. & Jones, D. L. Toxicology and fate of Pestanal® and commercial propetamphos formulations in river and estuarine sediment. Sci. Total Environ. 366, 826–836. https://doi.org/10.1016/j.scitotenv.2005.08.008 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    20.Medo, J., Maková, J., Kovácsová, S., Majerčíková, K. & Javoreková, S. Effect of Dursban 480 EC (chlorpyrifos) and Talstar 10 EC (bifenthrin) on the physiological and genetic diversity of microorganisms in soil. J. Environ. Sci. Health B 50, 871–883 (2015).CAS 
    Article 

    Google Scholar 
    21.Cycoń, M., Piotrowska-Seget, Z. & Kozdrój, J. Dehydrogenase activity as an indicator of different microbial responses to pesticide-treated soils. Chem. Ecol. 26, 243–250. https://doi.org/10.1080/02757540.2010.495062 (2010).CAS 
    Article 

    Google Scholar 
    22.Singh, M. K., Singh, N. K. & Singh, S. P. In Plant Responses to Soil Pollution (eds Singh, P. et al.) 179–194 (Springer Singapore, 2020). https://doi.org/10.1007/978-981-15-4964-9_11Chapter 

    Google Scholar 
    23.Makova, J., Javorekova, S., Medo, J. & Majerčíková, K. Characteristics of microbial biomass carbon and respiration activities in arable soil and pasture grassland soil. J. Cent. Eur. Agric. 12, 0–0 (2011).Article 

    Google Scholar 
    24.Imfeld, G. & Vuilleumier, S. Measuring the effects of pesticides on bacterial communities in soil: A critical review. Eur. J. Soil Biol. 49, 22–30. https://doi.org/10.1016/j.ejsobi.2011.11.010 (2012).CAS 
    Article 

    Google Scholar 
    25.Nguyen, D. B., Rose, M. T., Rose, T. J., Morris, S. G. & van Zwieten, L. Impact of glyphosate on soil microbial biomass and respiration: A meta-analysis. Soil Biol. Biochem. 92, 50–57. https://doi.org/10.1016/j.soilbio.2015.09.014 (2016).CAS 
    Article 

    Google Scholar 
    26.Mesnage, R. & Antoniou, M. N. Ignoring adjuvant toxicity falsifies the safety profile of commercial pesticides. Front Public Health https://doi.org/10.3389/fpubh.2017.00361 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Haney, R., Senseman, S., Krutz, L. & Hons, F. Soil carbon and nitrogen mineralization as affected by atrazine and glyphosate. Biol. Fertil. Soils 35, 35–40. https://doi.org/10.1007/s00374-001-0437-1 (2002).CAS 
    Article 

    Google Scholar 
    28.Ratcliff, A. W., Busse, M. D. & Shestak, C. J. Changes in microbial community structure following herbicide (glyphosate) additions to forest soils. Appl. Soil Ecol. 34, 114–124. https://doi.org/10.1016/j.apsoil.2006.03.002 (2006).Article 

    Google Scholar 
    29.Sofo, A., Scopa, A., Dumontet, S., Mazzatura, A. & Pasquale, V. Toxic effects of four sulphonylureas herbicides on soil microbial biomass. J. Environ. Sci. Health B 47, 653–659. https://doi.org/10.1080/03601234.2012.669205 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    30.Lee, S.-H., Kim, M.-S., Kim, J.-G. & Kim, S.-O. Use of soil enzymes as indicators for contaminated soil monitoring and sustainable management. Sustainability 12, 8209 (2020).CAS 
    Article 

    Google Scholar 
    31.Wolińska, A. & Stępniewska, Z. Dehydrogenase activity in the soil environment. Dehydrogenases 10, 183–210 (2012).
    Google Scholar 
    32.Pozo, C., Salmeron, V., Rodelas, B., Martinez-Toledo, M. V. & Gonzalez-Lopez, J. Effects of the herbicide alachlor on soil microbial activities. Ecotoxicology 3, 4–10. https://doi.org/10.1007/BF00121384 (1994).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Sebiomo, A., Ogundero, V. & Bankole, S. Effect of four herbicides on microbial population, soil organic matter and dehydrogenase activity. Afr. J. Biotechnol. 10, 770–778 (2011).CAS 

    Google Scholar 
    34.Pertile, M. et al. Responses of soil microbial biomass and enzyme activity to herbicides imazethapyr and flumioxazin. Sci. Rep. 10, 7694. https://doi.org/10.1038/s41598-020-64648-3 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Dzionek, A., Dzik, J., Wojcieszyńska, D. & Guzik, U. Fluorescein diacetate hydrolysis using the whole biofilm as a sensitive tool to evaluate the physiological state of immobilized bacterial cells. Catalysts 8, 434 (2018).Article 

    Google Scholar 
    36.Das, P., Pal, R. & Chowdhury, A. Effect of novaluron on microbial biomass, respiration, and fluorescein diacetate-hydrolyzing activity in tropical soils. Biol. Fertil. Soils 44, 387–391. https://doi.org/10.1007/s00374-007-0219-5 (2007).Article 

    Google Scholar 
    37.Zabaloy, M. C., Garland, J. L. & Gómez, M. A. An integrated approach to evaluate the impacts of the herbicides glyphosate, 2,4-D and metsulfuron-methyl on soil microbial communities in the Pampas region, Argentina. Appl. Soil. Ecol. 40, 1–12. https://doi.org/10.1016/j.apsoil.2008.02.004 (2008).Article 

    Google Scholar 
    38.Perucci, P., Dumontet, S., Bufo, S. A., Mazzatura, A. & Casucci, C. Effects of organic amendment and herbicide treatment on soil microbial biomass. Biol. Fertil. Soils 32, 17–23. https://doi.org/10.1007/s003740000207 (2000).CAS 
    Article 

    Google Scholar 
    39.Medo, J. et al. Effects of sulfonylurea herbicides chlorsulfuron and sulfosulfuron on enzymatic activities and microbial communities in two agricultural soils. Environ. Sci. Pollut. Res. 27, 41265–41278 (2020).CAS 
    Article 

    Google Scholar 
    40.Dennis, P. G., Kukulies, T., Forstner, C., Orton, T. G. & Pattison, A. B. The effects of glyphosate, glufosinate, paraquat and paraquat-diquat on soil microbial activity and bacterial, archaeal and nematode diversity. Sci. Rep. 8, 2119 (2018).ADS 
    Article 

    Google Scholar 
    41.Du, P. et al. Clomazone influence soil microbial community and soil nitrogen cycling. Sci. Total Environ. 644, 475–485. https://doi.org/10.1016/j.scitotenv.2018.06.214 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Elsayed, O. F., Maillard, E., Vuilleumier, S., Millet, M. & Imfeld, G. Degradation of chloroacetanilide herbicides and bacterial community composition in lab-scale wetlands. Sci. Total Environ. 520, 222–231. https://doi.org/10.1016/j.scitotenv.2015.03.061 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Chauhan, A., Pathak, A., Ewida, A. Y., Griffiths, Z. & Stothard, P. Whole genome sequence analysis of an Alachlor and Endosulfan degrading Pseudomonas strain W15Feb9B isolated from Ochlockonee River, Florida. Genom. Data 8, 134–138 (2016).Article 

    Google Scholar 
    44.Xu, C., Ding, J., Qiu, J. & Ma, Y. Biodegradation of acetochlor by a newly isolated Achromobacter sp. strain D-12. J. Environ. Sci. Health B 48, 960–966. https://doi.org/10.1080/03601234.2013.816601 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    45.Dwivedi, S., Singh, B., Al-Khedhairy, A., Alarifi, S. & Musarrat, J. Isolation and characterization of butachlor-catabolizing bacterial strain Stenotrophomonas acidaminiphila JS-1 from soil and assessment of its biodegradation potential. Lett. Appl. Microbiol. 51, 54–60 (2010).CAS 
    PubMed 

    Google Scholar 
    46.Mohanty, S. S. & Jena, H. M. Degradation kinetics and mechanistic study on herbicide bioremediation using hyper butachlor-tolerant Pseudomonas putida G3. Process Saf. Environ. Prot. 125, 172–181 (2019).CAS 
    Article 

    Google Scholar 
    47.Öztürk, B. et al. Comparative genomics suggests mechanisms of genetic adaptation towards the catabolism of the phenylurea herbicide linuron in Variovorax. Genome Biol. Evol. https://doi.org/10.1093/gbe/evaa085 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Sørensen, S. R., Ronen, Z. & Aamand, J. Isolation from agricultural soil and characterization of a Sphingomonas sp. able to mineralize the phenylurea herbicide isoproturon. Appl. Environ. Microbiol. 67, 5403–5409 (2001).Article 

    Google Scholar 
    49.Batisson, I., Pesce, S., Besse-Hoggan, P., Sancelme, M. & Bohatier, J. Isolation and characterization of diuron-degrading bacteria from lotic surface water. Microb. Ecol. 54, 761–770 (2007).CAS 
    Article 

    Google Scholar 
    50.Villaverde, J., Rubio-Bellido, M., Merchán, F. & Morillo, E. Bioremediation of diuron contaminated soils by a novel degrading microbial consortium. J. Environ. Manag. 188, 379–386 (2017).CAS 
    Article 

    Google Scholar 
    51.Cassel, D. & Nielsen, D. Field capacity and available water capacity. Methods Soil Anal. Part 1 Phys. Mineral. Methods 5, 901–926 (1986).
    Google Scholar 
    52.Alef, K. Soil respiration. In Methods in Applied Soil Microbiology and Biochemistry (eds Alef, P. & Nannipieri, K.) 214–218 (Academic Press, 1995).
    Google Scholar 
    53.Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41, e1–e1 (2013).CAS 
    Article 

    Google Scholar 
    54.Fadrosh, D. W. et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2, 6 (2014).Article 

    Google Scholar 
    55.Vetrovský, T., Baldrian, P., Morais, D. & Berger, B. SEED 2: A user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics 1, 3 (2018).
    Google Scholar 
    56.Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    Article 

    Google Scholar 
    57.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    Article 

    Google Scholar 
    58.Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).CAS 
    Article 

    Google Scholar 
    59.Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 1–5 https://doi.org/10.1038/s41587-020-0548-6 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).Article 

    Google Scholar 
    61.Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: An effective distance metric for microbial community comparison. ISME J 5, 169–172 (2011).Article 

    Google Scholar 
    62.Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).CAS 
    Article 

    Google Scholar 
    63.Casida, L. Jr., Klein, D. & Santoro, T. Soil dehydrogenase activity. Soil Sci. 98, 371–376 (1964).ADS 
    CAS 
    Article 

    Google Scholar 
    64.Green, V. S., Stott, D. E. & Diack, M. Assay for fluorescein diacetate hydrolytic activity: Optimization for soil samples. Soil Biol. Biochem. 38, 693–701. https://doi.org/10.1016/j.soilbio.2005.06.020 (2006).CAS 
    Article 

    Google Scholar 
    65.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).66.Oksanen, J. et al. Package ‘vegan’. Community ecology package, version 2 (2013). More

  • in

    Production of basil (Ocimum basilicum L.) under different soilless cultures

    The experiment was conducted at Agricultural and Bio-Systems Engineering Department, Faculty of Agriculture Moshtohor, Benha University, Egypt (latitude 30° 21′ N and 31° 13′ E), during the period of May to July, 2019 season under the university guidelines and legislation. Basil seedlings were sown in the plastic cups (7 cm diameter and 7 cm height) filled with peat moss. The cups were irrigated daily using water with nutrient solution (Ca(NO3)2, 236 g L−1, KNO3, 101 g L−1, K2SO4, 115 g L−1, KH2PO4, 136 g L−1, MgSO4 246 g L−1 and chelates for trace elements into preacidified groundwater (from the following ppm concentration are achieved in this formulation: N = 210, P = 31, K = 234, Ca = 200, Mg = 48, S = 64, Fe = 14, Mn = 0.5, Zn = 0.05, Cu = 0.02, B = 0.5, Mo = 0.01)). Two weeks old basil seedlings were planted at 9.0 plant m−2 in the experimental tanks. These seedlings were planted according to the permission of Benha university rules and legislation.Culture systems descriptionFigure 1a,b show the experimental setup. It shows the system which consists of hydroponic system, aeroponic system, soilless substrate, solution system and pumps.Figure 1(a) The experimental setup. (b) Images of system.Full size imageThe hydroponic system (Deep Water Culture (DWC)) consists of three rectangular polyethylene tanks that used for basil plants culture. Dimensions of each tank are 80 cm long, 40 cm wide and 30 cm high. The slope of hydroponic tanks was 2% and stand 1 m high above the ground. The hydroponic tanks were covered with foam boards to support the plants. Each hydroponic tank provided with an air blower (Model NS 780—Flow Rate 850 L h−1—Head 1.5 m—Power 15 W, China) to increase dissolved oxygen concentrations. The solution was circulated by a pump (Model First QB60—Flow Rate 30 L min−1—Head 25 m—Power 0.5 hp, China) from the solution tank to the upper ends of the hydroponic tanks. Small tubes (16 mm) were used to provide tanks with solution in a closed system.Aeroponic system consists of three rectangular polyethylene tanks that used for basil plants culture. Dimensions of each tank are 80 cm long, 40 cm wide and 50 cm high. The aeroponic tanks were established 1 m above the ground. Each aeroponic tank was divided into two parts, the lower part was made from polyethylene and the upper part was made from wood. The aeroponic tanks were covered with foam boards to support the plants. Each aeroponic tank was provided with two fog nozzles (Model M3MNWT5M – Orifice 2 mm – Discharge 8 L h−1, India) located at the bottom of the tank sprayed nutrient solution into the tank in order to keep the roots wet. Small tubes (16 mm) were used to provide aeroponic tank with solution in a closed system.Soilless substrates consist are placed in three rows are 2 m long. Each row consists standard peat moss slabs (1.00 m × 0.20 m × 0.075 m). Basil plants were placed on row peat moss slabs with a drip irrigation system. There were three plants per slab giving a mean density of 9.0 plant m−2. Each plant was fed by a single drip.The circular polyethylene tank of the nutrient solution system 500 L capacity was used for collecting the drained solution by gravity from the ends of the three systems. The nutrient solutions were prepared manually once per ten days17,18 by dissolving appropriate amounts of Ca(NO3)2, 236 g L−1, KNO3, 101 g L−1, K2SO4, 115 g L−1, KH2PO4, 136 g L−1, MgSO4 246 g L−1 and chelates for trace elements into preacidified groundwater (from the following ppm concentration are achieved in this formulation: N = 210, P = 31, K = 234, Ca = 200, Mg = 48, S = 64, Fe = 14, Mn = 0.5, Zn = 0.05, Cu = 0.02, B = 0.5, Mo = 0.01). pH and Electrical Conductivity (EC) were further adjusted to 6.5–7.0 and 1.4–1.8 dS m−1, respectively, after salt addition. The average air ambient temperature was 25.97 ± 4.37 °C and the average water temperature was 24.03 ± 3.92 °C. The average relative humidity was 65.4% and the light intensity was 338.55 ± 40.06 W m−2.MeasurementsThree plants sample were taken during the vegetative and flowering stages (four and seven weeks after transplanting, respectively) for growth measurement and chemical analysis. Plant height, root length and the fresh and dry weight of leaves, stems and roots were determined. After measuring fresh mass, the plants were oven dried at 65 °C until constant weight was reached19. Total content of macro elements was evaluated after being digested20. Nitrogen was determined by Kjeldahl digestion methods21. Potassium, Calcium and magnesium were determined by Photofatometer (Model Jenway PFP7—Range 0—160 mmol L−1, USA) and phosphorus (P) was determined colorimetrically method22. The content of oil was determined in different organs: leaves, stems and inflorescences according to23.Water samples were taken, at inlet and outlet of the culture units for measuring nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg) were measured every week at 10 am during the experimental period.Total production costThe cost calculation based on the following parameters was also performed:Fixed costs (Fc)Depreciation costs (Dc)$$D_{c} = frac{{P_{d} – S_{r} }}{{L_{d} }}$$
    (1)

    where Dc is the depreciation cost, EGP (Egyptian pound) year−1. ($ = 15.63 EGP). Pd is the system price, EGP. Sr is the salvage rate (0.1Pd) EGP. Ld is the system life, year.Interest costs (In):$$I_{n} = frac{{P_{d} + S_{r} }}{2} times {text{i}}_{{text{n}}}$$
    (2)

    where In is the interest, EGP year−1. in is the interest as compounded annually, decimal (12%). Shelter, taxes and insurance costs (Si).Shelter, taxes and insurance costs were assumed to be 3% of the purchase price of the automatic feeder (Pm).Then:$${text{Fixed,cost }} = {text{ D}}_{{text{c}}} + {text{ I}}_{{text{n}}} + 0.03{text{ P}}_{{text{m}}} /{text{ hour, of, use ,per ,year}}$$
    (3)
    Variable (operating) costs (Vc)Repair and maintenance costs (Rm):$${text{R}}_{{text{m}}} = 100% ;{text{deprecation,cost/hour,of,use,per,year}}$$
    (4)
    Energy costs (E):$${text{E }} = {text{ EC }} times {text{ EP}}$$
    (5)

    where E is the energy costs, EGP h−1. EC is the electrical energy consumption, kWh. EP is the energy price, 0.57 EGP kW−1.Labor costs (La):$${text{L}}_{{text{a}}} = {text{ Salary, of, one, worker }} times {text{ No}}{text{. ,of, workers}}$$
    (6)

    where La is the Labor costs, EGP h−1. Salary of one worker = 10 EGP h−1. No. of workers = 1.Then:$${text{Variable,costs }} = {text{ Rm }} + {text{ E }} + {text{ La}}$$
    (7)
    Total costs (Tc)$${text{Total ,costs }} = {text{ Fixed ,costs }} + {text{ Variable ,costs}}$$
    (8)

    Table 1 shows the input parameters of calculate total production costs of basil plants grown in different soilless systems.Table 1 The input parameters of calculate total production costs of basil plants grown in different soilless systems.Full size tableNutrients consumption rateThe Nutrients consumption rate were calculated as the differences between the nutrients at inlet and outlet of culture units by the following formula24:$$C_{{Nc}} = frac{{Nc_{{in}} – Nc_{{out}} }}{{{text{Number, of ,plants}}}} times Q times {text{24}}$$
    (9)

    where CNc is the nutrients consumption rate, mg day−1 plant −1. Ncin is the nutrients at inlet of the hydroponic unit, mg L−1. Ncout is the nutrients at outlet of the hydroponic unit, mg L−1. Q is the discharge, L h−1.Model development of nutrient consumptionModel assumptions:

    N, P, K, Ca and Mg are the nutrients used in study.

    The plants are uniformity distributed in the solution, so they work as a uniform sink for water and minerals with space at any time.

    The root systems are uniformly dispersed in the solution with uniform root length density at any time.

    The whole root system uptake characteristics are uniform.

    Water losses by evaporation are negligible.

    The simplest nutrient consumption models relate the nutrient consumption to the concentration gradient using some sort of proportionality factor such as root permeability or conductivity25,26. The nutrient consumption was determined by using the following equation:$$NC = a_{{NC}} cdot Delta {text{C }}$$
    (10)

    where NC is the nutrient consumption, mg plant−1 day−1. ∆C is the concentration gradient, mg plant−1 day−1. aNC is the proportionality factor, dimensionless.A similar model of nutrient consumption takes into consideration the differing effects caused by variations in root growth stage. Assuming that growth follows a first order differential equation and assuming that the root growth is exponential27, then Eq. (11) can be derived. This equation is presented in similar form to Eq. (10) and use the following equation:$$NC = left( {frac{{left( {C_{{plant}} – {text{C}}_{{{text{plant0}}}} } right)}}{{A_{r} – A_{{r0}} }}} right) cdot left( {frac{{{text{ln}}left( {frac{{{text{A}}_{{text{r}}} }}{{{text{A}}_{{{text{r0}}}} }}} right)}}{{{text{t}} – {text{t}}_{0} }}} right){text{.A}}_{{text{r}}}$$
    (11)

    where Cplanto is the concentration of the nutrients in the plant at time t0, mg plant−1. Ar is the root surface area at time t, cm2 plant−1. Ar0 is the root surface area at time t0, cm2 plant−1.Root surface area was calculated from root length and mean root radius using the following equation:$$A_{r} = {text{2}}pi {text{r}}_{{text{0}}} {text{L}}_{{text{r}}}$$
    (12)
    The root length increment using the following equation28:$$Delta L_{r} = Delta DW_{{root}} {text{v }}$$
    (13)

    where ∆Lr is the root length increment, cm day−1. ∆DWroot is the daily amount of root dry mass increment, g day−1. v is the ratio of root length and mass of roots, cm g−1.The daily amount of dry weight of roots is calculated from the following equation29:$$Delta DW_{{root}} = left{ {begin{array}{*{20}l} {{text{5LAI}}} hfill & {{text{for,LAI}} le {{0}}{{.5}}} hfill \ {{{2}}{{.5}} + {{23}}{{.9}}left( {{text{LAI-0}}{{.5}}} right)} hfill & {{text{for,LAI}} > {{0}}{{.5}}} hfill \ end{array} } right.$$
    (14)

    where LAI is the leaf area index.Leaf area index was changed in the same proportions as root length density to maintain a constant ratio between roots and shoots. The leaf area index is calculated from the following equation30:$$LAI = frac{{LAI_{{max }} }}{{1 + K_{2} e^{{left( { – k_{1} t} right)}} }}$$
    (15)

    where LAImax is the maximum leaf area index. K2 and k1 are the coefficients of the growth functions.All computational procedures of the model were carried out using Excel spreadsheet. The computer program was devoted to mass balance for predicting the nutrients consumption. The differences between the predicted and measured values were evaluated using RMSE indicator (root means square error) which is calculated using the following equation:$$RMSE = sqrt {frac{{sum {left( {Predicted-Measured} right)^{2} } }}{n}}$$
    (16)
    The parameters used in the model that were obtained from the literature are listed in Table 2. Figure 2 shows flow chart of the model.Table 2 The parameters used in the model.Full size tableFigure 2Flow chart of nutrients consumption rate.Full size imageStatistical analysisThree replicates of each treatment were allocated in a Randomize Complete Block Design (RCBD) in the system. Data were analyzed one-way ANOVA (analysis of variance) using statistical package for social sciences (spss v21). Means were separated using New Duncan Multiple Range Test (DMRT). Data presented are mean ± standard division (SD) of four replicates. More

  • in

    Impacts of detritivore diversity loss on instream decomposition are greatest in the tropics

    1.van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    2.Isbell, F. et al. Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecol. Lett. 21, 763–778 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Naeem, S., Thompson, L. J., Lawler, S. P., Lawton, J. H. & Woodfin, R. M. Declining biodiversity can alter the performance of ecosystems. Nature 368, 734–737 (1994).ADS 
    Article 

    Google Scholar 
    4.Cardinale, B. J. Impacts of biodiversity loss. Science 336, 552–553 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Caliman, A., Pires, A. F., Esteves, F. A., Bozelli, R. L. & Farjalla, V. F. The prominence of and biases in biodiversity and ecosystem functioning research. Biodivers. Conserv 19, 651–664 (2010).Article 

    Google Scholar 
    6.Cardinale, B. J. et al. The functional role of producer diversity in ecosystems. Am. J. Bot. 98, 572–592 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Porre R. J., van der Werf W., De Deyn G. B., Stomph T. J. & Hoffland E. Is litter decomposition enhanced in species mixtures? A meta-analysis. Soil Biol. Biochem. 145, 107791 (2020).8.Kou, L. et al. Diversity-decomposition relationships in forests worldwide. eLife 9, e55813 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Srivastava, D. et al. Diversity has stronger top-down than bottom-up effects on decomposition. Ecology 90, 1073–1083 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Gessner, M. O. et al. Diversity meets decomposition. Trends Ecol. Evol. 25, 372–380 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Cebrian, J. Patterns in the fate of production in plant communities. Am. Nat. 154, 449–468 (1999).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).Article 

    Google Scholar 
    13.Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Hotchkiss, E. R. et al. Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nat. Geosci. 8, 696–699 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    15.Yao, Y. et al. Increased global nitrous oxide emissions from streams and rivers in the Anthropocene. Nat. Clim. Change 10, 138–142 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    16.Gessner, M. O., Chauvet, E. & Dobson, M. A perspective on leaf litter breakdown in streams. Oikos 85, 377–384 (1999).Article 

    Google Scholar 
    17.Marks, J. C. Revisiting the fates of dead leaves that fall into streams. Annu. Rev. Ecol. Evol. Syst. 50, 547–568 (2019).Article 

    Google Scholar 
    18.Tonin, A. M. et al. Interactions between large and small detritivores influence how biodiversity impacts litter decomposition. J. Anim. Ecol. 87, 1465–1474 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Jonsson, M. & Malmqvist, B. Mechanisms behind positive diversity effects on ecosystem functioning: testing the facilitation and interference hypotheses. Oecologia 134, 554–559 (2003).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Bastian, M., Pearson, R. G. & Boyero, L. Effects of diversity loss on ecosystem function across trophic levels and ecosystems: a test in a detritus-based tropical food web. Austral. Ecol. 33, 301–306 (2008).Article 

    Google Scholar 
    21.McKie, B. G., Schindler, M., Gessner, M. O. & Malmqvist, B. Placing biodiversity and ecosystem functioning in context: environmental perturbations and the effects of species richness in a stream field experiment. Oecologia 160, 757–770 (2009).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.McKie, B. G. et al. Ecosystem functioning in stream assemblages from different regions: contrasting responses to variation in detritivore richness, evenness and density. J. Anim. Ecol. 77, 495–504 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Tylianakis, J. M. Resource heterogeneity moderates the biodiversity-function relationship in real world ecosystems. PLoS Biol. 6, e122 (2008).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Boyero, L. et al. A global experiment suggests climate warming will not accelerate litter decomposition in streams but may reduce carbon sequestration. Ecol. Lett. 14, 289–294 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Boyero, L. et al. Global patterns of stream detritivore distribution: implications for biodiversity loss in changing climates. Glob. Ecol. Biogeogr. 21, 134–141 (2012).Article 

    Google Scholar 
    26.Boyero, L. et al. Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns. Ecology 92, 1839–1848 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Handa, I. T. et al. Consequences of biodiversity loss for litter decomposition across biomes. Nature 509, 218–221 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5, 65–73 (2014).Article 

    Google Scholar 
    29.Fraser, L. H. et al. Coordinated distributed experiments: an emerging tool for testing global hypotheses in ecology and environmental science. Front. Ecol. Environ. 11, 147–155 (2013).Article 

    Google Scholar 
    30.Woodward, G. et al. Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science 336, 1438–1440 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Jonsson, M. & Malmqvist, B. Ecosystem process rate increases with animal species richness: evidence from leaf-eating, aquatic insects. Oikos 89, 519–523 (2000).Article 

    Google Scholar 
    32.Boyero, L., Ramírez, A., Dudgeon, D. & Pearson, R. G. Are tropical streams really different? J. North Am. Benthol. Soc. 28, 397–403 (2009).Article 

    Google Scholar 
    33.Jonsson, M., Malmqvist, B. & Hoffsten, P. O. Leaf litter breakdown rates in boreal streams: does shredder species richness matter? Freshw. Biol. 46, 161–171 (2001).Article 

    Google Scholar 
    34.Cornejo, A. et al. Effects of multiple stressors associated with agriculture on stream macroinvertebrate communities in a tropical catchment. PLoS ONE 14, e0220528 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Cornejo, A. et al. A common fungicide impairs stream ecosystem functioning through effects on aquatic hyphomycetes and detritivorous caddisflies. J. Environ. Manag. 263, 110425 (2020).CAS 
    Article 

    Google Scholar 
    36.Zubrod, J. P. et al. Long-term effects of fungicides on leaf-associated microorganisms and shredder populations-an artificial stream study. Environ. Toxicol. Chem. 36, 2178–2189 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Rasmussen, J. J. et al. Effects of a triazole fungicide and a pyrethroid insecticide on the decomposition of leaves in the presence or absence of macroinvertebrate shredders. Aquat. Toxicol. 118-119, 54–61 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Dai, A. Drought under global warming: a review. Clim. Change 2, 45–65 (2011).
    Google Scholar 
    40.Tonin, A. M., Hepp, L. U., Restello, R. M. & Gonçalves, J. F. Understanding of colonization and breakdown of leaves by invertebrates in a tropical stream is enhanced by using biomass as well as count data. Hydrobiologia 740, 79–88 (2014).Article 

    Google Scholar 
    41.Pérez, J., Basaguren, A., Descals, E., Larrañaga, A. & Pozo, J. Leaf-litter processing in headwater streams of northern Iberian Peninsula: moderate levels of eutrophication do not explain breakdown rates. Hydrobiologia 718, 41–57 (2013).Article 

    Google Scholar 
    42.Friberg, N. et al. Biomonitoring of human impacts in freshwater ecosystems: the good, the bad and the ugly. Adv. Ecol. Res. 44, 211–278 (2011).Article 

    Google Scholar 
    43.Pennington, R. T., Cronk, Q. C. B. & Richardson, J. A. Introduction and synthesis: plant phylogeny and the origin of major biomes. Philos. Trans. R. Soc. Lond. B 359, 1455–1464 (2004).Article 

    Google Scholar 
    44.Proches, S. Latitudinal and longitudinal barriers in global biogeography. Biol. Lett. 2, 69–72 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Vanderpoorten, A., Gradstein, S. R., Carine, M. A. & Devos, N. The ghosts of Gondwana and Laurasia in modern liverwort distributions. Biol. Rev. 85, 471–487 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    46.Young, R. G., Matthaei, C. D. & Townsend, C. R. Organic matter breakdown and ecosystem metabolism: functional indicators for assessing river ecosystem health. J. North Am. Benthol. Soc. 27, 605–625 (2008).Article 

    Google Scholar 
    47.Gessner, M. O. & Chauvet, E. A case for using litter breakdown to assess functional stream integrity. Ecol. Appl 12, 498–510 (2002).Article 

    Google Scholar 
    48.Ramírez A., Pringle C. M., Wantzen K. M. in Tropical Stream Ecology (ed. Dudgeon, D.) (Academic Press, 2008).49.Tiegs, S. D., Akinwole, P. O. & Gessner, M. O. Litter decomposition across multiple spatial scales in stream networks. Oecologia 161, 343–351 (2009).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Ferreira, V. et al. A global assessment of the effects of eucalyptus plantations on stream ecosystem functioning. Ecosystems 22, 629–642 (2018).Article 

    Google Scholar 
    51.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    52.Boyero, L. et al. Latitude dictates plant diversity effects on decomposition. Sci. Adv. 7, eabe7860 (2021).53.Fugère, V., Lostchuck, E. & Chapman, L. J. Litter decomposition in Afrotropical streams: effects of land use, home-field advantage, and terrestrial herbivory. Freshw. Sci. 39, 497–507 (2020).54.Fenoy, E. et al. Temperature and substrate chemistry as major drivers of interregional variability of leaf microbial decomposition and cellulolytic activity in headwater streams. FEMS Microbiol. Ecol. 92, fiw169 (2016).55.López-Rojo, N. et al. Shifts in key leaf litter traits can predict effects of plant diversity loss on decomposition in streams. Ecosystems 24, 185–196 (2021).56.Araneda, M., Pérez, E. P. & Gasca-Leyva, E. White shrimp Penaeus vannamei culture in freshwater at three densities: condition state based on length and weight. Aquaculture 283, 13–18 (2008).Article 

    Google Scholar 
    57.Weya, J. M., Rumbiak, N. S., Hariyanto, S., Irawan, B. & Soegianto, A. Length-weight relationship and condition factor of crayfish from South Sorong and Jayawijaya, Papua, Indonesia. Croat. J. Fish. 75, 18–24 (2017).Article 

    Google Scholar 
    58.Poepperl, R. Biomass determination of aquatic invertebrates in the Northern German lowland using the relationship between body length and dry mass. Faunistisch-Ökologische Mitteilungen 7, 379–386 (1998).
    Google Scholar 
    59.Baumgärtner, D. & Rothhaupt, K. O. Predictive length–dry mass regressions for freshwater invertebrates in a pre‐alpine lake littoral. Int. Rev. Hydrobiol. 88, 453–463 (2003).Article 

    Google Scholar 
    60.Mehler, K., Acharya, K. & Sada, D. W. Spatial and temporal pattern in length-mass regressions of freshwater gastropods in Nevada Spring ecosystems. Malacologia 58, 167–177 (2015).Article 

    Google Scholar 
    61.Benke, A. C., Huryn, A. D., Smock, L. A. & Wallace, J. B. Length-mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. J. North Am. Benthol. Soc. 18, 308–343 (1999).Article 

    Google Scholar 
    62.Miyasaka, H. et al. Relationships between length and weight of freshwater macroinvertebrates in Japan. Limnology 9, 75–80 (2008).Article 

    Google Scholar 
    63.Costa, L. C., Kiffer, W. P. J., Casotti, C. G. & Moretti, M. S. Size-mass relationships in Trichodactylus fluviatilis (Decapoda: Brachyura: Trichodactylidae), a macroconsumer in coastal streams of the Atlantic Forest, southeastern Brazil. J. Crust. Biol. 38, 539–546 (2018).Article 

    Google Scholar 
    64.Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99, 673–686 (2004).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    65.Wood S. N. Generalized Additive Models: An Introduction with R 2nd edn (Chapman and Hall/CRC, 2017).66.Wagenmakers, E. J. & Farrell, S. AIC model selection using Akaike weights. Psychon. Bull. Rev. 11, 192–196 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith G. M. Mixed Effects Models and Extensions in Ecology With R (Springer, 2009).68.Ieno, E. N. & Zuur, A. F. Beginner’s Guide to Data Exploration and Visualisation with R (2015).69.Pinheiro, J. C., Bates, D. M., DebRoy, S., Sarkar, D. & Team R. C. nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-151. https://CRAN.R-project.org/package=nlme (2020).70.Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    71.Oksanen, J. et al. vegan: Community Ecology Package. R Package Version 2.5-6. https://CRAN.R-project.org/package=vegan) (2019). More

  • in

    Correlative Microscopy: a tool for understanding soil weathering in modern analogues of early terrestrial biospheres

    1.Morris, J. L. et al. The timescale of early land plant evolution. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1719588115 (2018).Article 
    PubMed 

    Google Scholar 
    2.Gibling, M. R. & Davies, N. S. Palaeozoic landscapes shaped by plant evolution. Nat. Geosci. 5, 99–105 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Gibling, M. R. et al. Palaeozoic co-evolution of rivers and vegetation: A synthesis of current knowledge. Proc. Geol. Assoc. 125, 524–533 (2014).Article 

    Google Scholar 
    4.Mitchell, R. L. et al. Mineral weathering and soil development in the earliest land plant ecosystems. Geology 44, 1007–1010 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    5.Mergelov, N. et al. Alteration of rocks by endolithic organisms is one of the pathways for the beginning of soils on Earth. Sci. Rep. 8, 1–15 (2018).CAS 
    Article 

    Google Scholar 
    6.McMahon, W. J. & Davies, N. S. Evolution of alluvial mudrock forced by early land plants. Science 359, 1022–1024 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Field, K. J. et al. Functional analysis of liverworts in dual symbiosis with Glomeromycota and Mucoromycotina fungi under a simulated Palaeozoic CO2 decline. ISME J. 10, 1514–1526 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Mills, B., Watson, A. J., Goldblatt, C., Boyle, R. & Lenton, T. M. Timing of Neoproterozoic glaciations linked to transport-limited global weathering. Nat. Geosci. 4, 861–864 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    9.Porada, P., Weber, B., Elbert, W., Pöschl, U. & Kleidon, A. Estimating impacts of lichens and bryophytes on global biogeochemical cycles. Global Biogeochem. Cycles 28, 71–85 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Edwards, D., Cherns, L. & Raven, J. A. Could land-based early photosynthesizing ecosystems have bioengineered the planet in mid-Palaeozoic times?. Palaeontology 58, 803–837 (2015).Article 

    Google Scholar 
    11.Williams, A. J., Buck, B. J. & Beyene, M. A. Biological soil crusts in the mojave desert, USA: micromorphology and pedogenesis. Soil Sci. Soc. Am. J. 76, 1685 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Belnap, J. & Lange, O. L. Biological Soil Crusts: Structure, Function, and Management (Springer, 2001).
    Google Scholar 
    13.Mitchell, R. L. et al. Cryptogamic ground covers as analogues for early terrestrial biospheres: Initiation and evolution of biologically mediated soils. Geobiology 00, 1–15 (2021).
    Google Scholar 
    14.Kenrick, P., Wellman, C. H., Schneider, H. & Edgecombe, G. D. A timeline for terrestrialization: Consequences for the carbon cycle in the Palaeozoic. Philos. Trans. R. Soc. B Biol. Sci. 367, 519–536 (2012).Article 

    Google Scholar 
    15.Strullu-Derrien, C., Wawrzyniak, Z., Goral, T. & Kenrick, P. Fungal colonization of the rooting system of the early land plant Asteroxylon mackiei from the 407-Myr-old Rhynie Chert (Scotland, UK). Bot. J. Linn. Soc. 179, 201–213 (2015).Article 

    Google Scholar 
    16.Krings, M., Kerp, H., Hass, H., Taylor, T. N. & Dotzler, N. A filamentous cyanobacterium showing structured colonial growth from the Early Devonian Rhynie chert. Rev. Palaeobot. Palynol. 146, 265–276 (2007).Article 

    Google Scholar 
    17.Remy, W., Taylort, T. N., Hass, H. & Kerp, H. Four Hundred-million-year-old Vesicular Arbuscular Mycorrhizae (Endomycorrhiae/symbiosis/fossil fungi/mutualims). Proc. Natl. Acad. Sci. United States Am. 91, 11841–11843 (1994).ADS 
    CAS 
    Article 

    Google Scholar 
    18.Field, K. J. et al. Contrasting arbuscular mycorrhizal responses of vascular and non-vascular plants to a simulated Palaeozoic CO2 decline. Nat. Commun. 3, 1–8 (2012).Article 
    CAS 

    Google Scholar 
    19.Lenton, T. M., Crouch, M., Johnson, M., Pires, N. & Dolan, L. First plants cooled the Ordovician. Nat. Geosci. 5, 86–89 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    20.Mills, B. J. W., Batterman, S. A. & Field, K. J. Nutrient acquisition by symbiotic fungi governs Palaeozoic climate transition. Phil. Trans. R. Soc. B 373, 20160503 (2017).21.Mitchell, R. L., Strullu-Derrien, C. & Kenrick, P. Biologically mediated weathering in modern cryptogamic ground covers and the early paleozoic fossil record. J. Geol. Soc. London. 176, 430–439 (2019).CAS 
    Article 

    Google Scholar 
    22.Furnes, H. et al. Comparing petrographic signatures of bioalteration in recent to Mesoarchean pillow lavas: Tracing subsurface life in oceanic igneous rocks. Precambrian Res. 158, 156–176 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    23.Smits, M. M. et al. Plant-driven fungal weathering: Early stages of mineral alteration at the nanometer scale. Geology 37, 615–618 (2009).ADS 
    Article 
    CAS 

    Google Scholar 
    24.Bonneville, S. et al. Tree-mycorrhiza symbiosis accelerate mineral weathering: Evidences from nanometer-scale elemental fluxes at the hypha-mineral interface. Geochim. Cosmochim. Acta 75, 6988–7005 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    25.McLoughlin, N. Fungal origins?. Nat. Ecol. Evol. 1, 1–2 (2017).Article 

    Google Scholar 
    26.Ivarsson, M. et al. Intricate tunnels in garnets from soils and river sediments in Thailand-Possible endolithic microborings. PLoS ONE 13, 0200351 (2018).Article 
    CAS 

    Google Scholar 
    27.Hoffland, E. et al. The role of fungi in weathering. Front. Ecol. Environ. 2, 258–264 (2004).Article 

    Google Scholar 
    28.McLoughlin, N., Furnes, H., Banerjee, N. R., Muehlenbachs, K. & Staudigel, H. Ichnotaxonomy of microbial trace fossils in volcanic glass. J. Geol. Soc. London. 166, 159–169 (2009).Article 

    Google Scholar 
    29.Berner, R. A. & Cochran, M. F. Plant-induced weathering of Hawaiian basalts. J. Sediment. Res. 68, 723–726 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    30.Landeweert, R., Hoffland, E., Finlay, R. D., Kuyper, T. W. & Van Breemen, N. Linking plants to rocks: Ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol. Evol. 16, 248–254 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Van Schöll, L. et al. Rock-eating mycorrhizas: Their role in plant nutrition and biogeochemical cycles. Plant Soil 303, 35–47 (2008).Article 
    CAS 

    Google Scholar 
    32.Quirk, J. et al. Evolution of trees and mycorrhizal fungi intensifies silicate mineral weathering. Biol. Lett. 8, 1006–1011 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Daly, M. et al. A multi-scale correlative investigation of ductile fracture. Acta Mater. 130, 56–68 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Gelb, J., Finegan, D. P., Brett, D. J. L. & Shearing, P. R. Multi-scale 3D investigations of a commercial 18650 Li-ion battery with correlative electron- and X-ray microscopy. J. Power Sour. 357, 77–86 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Slater, T. J. A. et al. Multiscale correlative tomography: An investigation of creep cavitation in 316 stainless steel. Sci. Rep. 7, 1–10 (2017).CAS 
    Article 

    Google Scholar 
    36.Burnett, T. L. & Withers, P. J. Completing the picture through correlative characterization. Nat. Mater. 18, 1041–1049 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Mitchell, R. L. et al. Macro-to-nanoscale investigation of wall-plate joints in the acorn barnacle Semibalanus balanoides: correlative imaging, biological form and function, and bioinspiration. J. R. Soc. Interface 16, 20190218 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Bradley, R. S. & Withers, P. J. Correlative multiscale tomography of biological materials. MRS Bull. 41, 549–556 (2016).ADS 
    Article 

    Google Scholar 
    39.Ferstl, S. et al. Nanoscopic X-ray tomography for correlative microscopy of a small meiofaunal sea-cucumber. Sci. Rep. 10, 1–12 (2020).Article 
    CAS 

    Google Scholar 
    40.O’Sullivan, J. D. B., Cruickshank, S. M., Starborg, T., Withers, P. J. & Else, K. J. Characterisation of cuticular inflation development and ultrastructure in Trichuris muris using correlative X-ray computed tomography and electron microscopy. Sci. Rep. 10, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    41.Goral, J., Walton, I., Andrew, M. & Deo, M. Pore system characterization of organic-rich shales using nanoscale- resolution 3D imaging. Fuel 258, 116049 (2019).CAS 
    Article 

    Google Scholar 
    42.Andrew, M. Comparing organic-hosted and intergranular pore networks: topography and topology in grains, gaps and bubbles. Geol. Soc. Lond. Spec. Publ. 484, 4844 (2018).
    Google Scholar 
    43.Ma, L. et al. Correlative multi-scale imaging of shales: a review and future perspectives. Geol. Soc. Lond. Spec. Publ. 454, 175–199 (2017).ADS 
    Article 

    Google Scholar 
    44.Schlüter, S., Eickhorst, T. & Mueller, C. W. Correlative imaging reveals holistic view of soil microenvironments. Environ. Sci. Technol. 53, 829–837 (2019).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    45.Bandara, C. D. et al. High-Resolution Chemical Mapping and Microbial Identification of Rhizosphere using Correlative Microscopy. bioRxiv 1–26 (2021).46.Spruzeniece, L., Piazolo, S., Daczko, N. R., Kilburn, M. R. & Putnis, A. Symplectite formation in the presence of a reactive fluid: insights from hydrothermal experiments. J. Metamorph. Geol. 35, 281–299 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    47.Stefánsson, A. et al. Major impact of volcanic gases on the chemical composition of precipitation in Iceland during the 2014–2015 Holuhraun eruption. J. Geophys. Res. Atmos. Geophys. Res. Atmos. 122, 1971–1982 (2017).ADS 
    Article 
    CAS 

    Google Scholar 
    48.Gadd, G. M. Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology 156, 609–643 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Jongmans, A. G. et al. Rock-eating fungi. 389, 682–683 (1997).CAS 

    Google Scholar 
    50.Gadd, G. M. Fungi, rocks, and minerals. Elements 13, 171–176 (2017).Article 

    Google Scholar 
    51.Warscheid, T. & Braams, J. Biodeterioration of stone: a review. Int. Biodeterior. Biodegredation 46, 343–368 (2000).CAS 
    Article 

    Google Scholar 
    52.Burghelea, C. et al. Mineral nutrient mobilization by plants from rock: influence of rock type and arbuscular mycorrhiza. Biogeochemistry 124, 187–203 (2015).CAS 
    Article 

    Google Scholar 
    53.Mcloughlin, N., Staudigel, H., Furnes, H., Eickmann, B. & Ivarsson, M. Mechanisms of microtunneling in rock substrates: Distinguishing endolithic biosignatures from abiotic microtunnels. Geobiology 8, 245–255 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Hoffland, E., Giesler, R., Jongmans, T. & Van Breemen, N. Increasing feldspar tunneling by fungi across a North Sweden podzol chronosequence. Ecosystems 5, 11–22 (2002).Article 

    Google Scholar 
    55.Wierzchos, J. & delos Ríos A, Ascaso C, ,. Microorganisms in desert rocks: The edge of life on Earth. Int. Microbiol. 15, 173–183 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Ascaso, C. & Wierzchos, J. New approaches to the study of Antarctic lithobiontic microorganisms and their inorganic traces, and their application in the detection of life in Martian rocks. Int. Microbiol. 5, 215–222 (2003).
    Google Scholar 
    57.Gorbushina, A. A., Boettcher, M., Brumsack, H. J., Krumbein, W. E. & Vendrell-Saz, M. Biogenic forsterite and opal as a product of biodeterioration and lichen stromatolite formation in table mountain systems (Tepuis) of Venezuela. Geomicrobiol. J. 18, 117–132 (2001).CAS 
    Article 

    Google Scholar 
    58.Adamo, P. & Violante, P. Weathering of rocks and neogenesis of minerals associated with lichen activity. Appl. Clay Sci. 16, 229–256 (2000).CAS 
    Article 

    Google Scholar 
    59.Oggerin, M., Tornos, F., Rodriguez, N., Pascual, L. & Amils, R. Fungal iron biomineralization in Río Tinto. Minerals 6, 37 (2016).Article 
    CAS 

    Google Scholar 
    60.Akhtar, M. E. & Kelso, W. I. Electron microscopic characterisation of iron and manganese oxide/hydroxide precipitates from agricultural field drains 1. Biol. Fertil. Soils 16, 305–312 (1993).CAS 
    Article 

    Google Scholar 
    61.Gadd, G. M. Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv. Microb. Physiol. 41, 47–92 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Napieralski, S. A. et al. Microbial chemolithotrophy mediates oxidative weathering of granitic bedrock. Proc. Natl. Acad. Sci. U. S. A. 116, 26394–26401 (2019).ADS 
    CAS 
    PubMed Central 
    Article 

    Google Scholar 
    63.Dorn, R. I., Mahaney, W. C. & Krinsley, D. H. Case hardening: turning weathering rinds into protective shells. Elements 13, 165–169 (2017).Article 

    Google Scholar 
    64.Schreiber, H. D. Experimental studies of nickel and chromium partitioning into olivine from synthetic basaltic melts. in Lunar and Planetary Science Conference, 10th, Houston, Texas, Proceedings Volume 1 509–516 (1979).65.Burford, E. P., Kierans, M. & Gadd, G. M. Geomycology: Fungi in mineral substrata. Mycologist 17, 98–107 (2003).Article 

    Google Scholar 
    66.Dorn, R. I., Gordon, S. J., Krinsley, D. & Langworthy, K. Nanoscale: Mineral Weathering Boundary. In: Treatise on Geomorphology (eds. Shroder, J., Pope, G. A.), vol. 4, 44–69 (2013).67.Smits, M. Mineral tunneling by fungi. in Fungi in Biogeochemical cycles (ed. Gadd, G. M.) 311–327 (Cambridge University Press, 2006).68.Gorbushina, A. A. Life on the rocks. Environ. Microbiol. 9, 1613–1631 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Gadd, G. M. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol. Res. 111, 3–49 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Arocena, J. M., Zhu, L. P. & Hall, K. Mineral accumulations induced by biological activity on granitic rocks in Qinghai Plateau China. Earth Surf. Process. Landforms 28, 1429–1437 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    71.Krumbein, W. E. & Jens, K. Biogenic rock varnishes of the Negev desert (Israel) an ecological study of iron and manganese transformation by cyanobacteria and fungi. Oecologia 50, 25–38 (1981).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Gadd, G. M. Microbial formation and transformation of organometallic and organometalloid compounds. FEMS Microbiol. Rev. 11, 297–316 (1993).CAS 
    Article 

    Google Scholar 
    73.Mitchell, R. L. et al. What lies beneath: 3d vs 2d correlative imaging challenges and how to overcome them. Microsc. Microanal. 25, 416–417 (2019).Article 

    Google Scholar 
    74.Thévenaz, P., Ruttimann, U. E. & Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7, 27–41 (1998).ADS 
    PubMed 
    Article 

    Google Scholar  More