More stories

  • in

    Calcification in free-living coralline algae is strongly influenced by morphology: Implications for susceptibility to ocean acidification

    1.Foster, M. S. Rhodoliths between rocks and soft places. J. Phycol. 37, 659–667. https://doi.org/10.1046/j.1529-8817.2001.00195.x (2001).Article 

    Google Scholar 
    2.Riosmena-Rodríguez, R., Nelson, W. & Aguirre, J. Rhodolith/mäerl beds: A global perspective (Springer, 2017). https://doi.org/10.1007/978-3-319-29315-8.Book 

    Google Scholar 
    3.Nelson, W. A. Calcified macroalgae—critical to coastal ecosystems and vulnerable to change: a review. Mar. Freshw. Res. 60, 787–801. https://doi.org/10.1071/MF08335 (2009).CAS 
    Article 

    Google Scholar 
    4.Amado-Filho, G. M. et al. Rhodolith beds are major CaCO3 bio-factories in the tropical South West Atlantic. PLoS ONE 7, e35171. https://doi.org/10.1371/journal.pone.0035171 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Smith, S. V. & Mackenzie, F. T. The role of CaCO3 reactions in the contemporary oceanic CO2 cycle. Aquat. Geochem. 22, 153–175. https://doi.org/10.1007/s10498-015-9282-y (2015).Article 

    Google Scholar 
    6.Amado-Filho, G.M., Bahia, R.G., Pereira-Filho, G.H. & Longo, L.L. South Atlantic rhodolith beds: Latitudinal distribution, species composition, structure and ecosystem functions, threats and conservation status. In Rhodolith/mäerl beds: A global perspective (eds, Riosmena-Rodríguez, R. et al.), Switzerland: Springer International Publishing; https://doi.org/10.1007/978-3-319-29315-8_12 (2017).7.Carvalho, V. F. et al. Environmental drivers of rhodolith beds and epiphytes community along the South Western Atlantic coast. Mar. Environ. Res. 154, 104827. https://doi.org/10.1016/j.marenvres.2019.104827 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Legrand, E. et al. Species interactions can shift the response of a maerl bed community to ocean acidification and warming. Biogeosciences 14, 5359–5376. https://doi.org/10.5194/bg-14-5359-2017 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    9.Legrand, E. et al. Grazers increase the sensitivity of coralline algae to ocean acidification and warming. J. Sea Res. 148–149, 1–7. https://doi.org/10.1016/j.seares.2019.03.001 (2019).Article 

    Google Scholar 
    10.Legrand, E., Martin, S., Leroux, C. & Riera, P. Using stable isotope analysis to determine the effects of ocean acidification and warming on trophic interactions in a maerl bed community. Mar. Ecol. https://doi.org/10.1111/maec.12612 (2020).Article 

    Google Scholar 
    11.Burdett, H. L., Perna, G., McKay, L., Broomhead, G. & Kamenos, N. A. Community-level sensitivity of a calcifying ecosystem to acute in situ CO2 enrichment. Mar. Ecol. Prog. Ser. 587, 73–80. https://doi.org/10.3354/meps12421 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Sordo, L., Santos, R., Barrote, I. & Silva, J. High CO2 decreases the long-term resilience of the free-living coralline algae Phymatolithon lusitanicum. Ecol. Evol. 8, 4781–4792. https://doi.org/10.1002/ece3.4020 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Sordo, L., Santos, R., Barrote, I. & Silva, J. Temperature amplifies the effect of high CO2 on the photosynthesis, respiration, and calcification of the coralline algae Phymatolithon lusitanicum. Ecol. Evol. 9, 11000–11009. https://doi.org/10.1002/ece3.5560 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Qui-Minet, Z. M. et al. Combined effects of global climate change and nutrient enrichment on the physiology of three temperate maerl species. Ecol. Evol. 9, 13787–13807. https://doi.org/10.1002/ece3.5802 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Schubert, N. et al. Rhodolith primary and carbonate production in a changing ocean: the interplay of warming and nutrients. Sci. Total Environ. 676, 455–468. https://doi.org/10.1016/j.scitotenv.2019.04.280 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Martin, S. & Hall-Spencer, J.M. Effects of ocean warming and acidification on rhodolith/mäerl beds. In Rhodolith/mäerl beds: A global perspective (eds. Riosmena-Rodríguez, R. et al.). Switzerland: Springer International Publishing; https://doi.org/10.1007/978-3-319-29315-8_3 (2017).17.Roleda, M. Y., Boyd, P. W. & Hurd, C. L. Before ocean acidification: calcifier chemistry lessons. J. Phycol. 48(4), 840–843. https://doi.org/10.1111/j.1529-8817.2012.01195.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Dupont, S. & Pörtner, H. O. A snapshot of ocean acidification research. Mar. Biol. 160, 1765–1771. https://doi.org/10.1007/s00227-013-2282-9 (2013).CAS 
    Article 

    Google Scholar 
    19.Cyronak, T., Schulz, K. G. & Jokiel, P. L. The Omega myth: what really drives lower calcification rates in an acidifying ocean. ICES J. Mar. Sci. 73(3), 558–562. https://doi.org/10.1093/icesjms/fsv075 (2016).Article 

    Google Scholar 
    20.Falkenberg, L. J., Dupont, S. & Bellerby, R. G. Approaches to reconsider literature on physiological effects of environmental change: examples from ocean acidification research. Front. Mar. Sci. 5, 453. https://doi.org/10.3389/fmars.2018.00453 (2018).Article 

    Google Scholar 
    21.Cornwall, C. E., Comeau, S. & McCulloch, M. T. Coralline algae elevate pH at the site of calcification under ocean acidification. Global Change Biol. 23, 4245–4256. https://doi.org/10.1111/gcb.13673 (2017).ADS 
    Article 

    Google Scholar 
    22.Cornwall, C. E. et al. Resistance of corals and coralline algae to ocean acidification: physiological control of calcification under natural pH variability. Proc. Roy. Soc. B 285(1884), 20181168. https://doi.org/10.1098/rspb.2018.1168 (2018).CAS 
    Article 

    Google Scholar 
    23.Comeau, S., Cornwall, C. E., De Carlo, T. M., Krieger, E. & McCulloch, M. Similar controls on calcification under ocean acidification across unrelated coral reef taxa. Global Change Biol. 24, 4857–4868. https://doi.org/10.1111/gcb.14379 (2018).ADS 
    Article 

    Google Scholar 
    24.Comeau, S. et al. Flow-driven micro-scale pH variability affects the physiology of corals and coralline algae under ocean acidification. Sci. Rep. 9, 1–12. https://doi.org/10.1038/s41598-019-49044-w (2019).Article 

    Google Scholar 
    25.Comeau, S. et al. Resistance to ocean acidification in coral reef taxa is not gained by acclimatization. Nat. Clim. Chang. 9(6), 477–483. https://doi.org/10.1038/s41558-019-0486-9 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    26.Liu, Y. W., Sutton, J. N., Ries, J. B. & Eagle, R. A. Regulation of calcification site pH is a polyphyletic but not always governing response to ocean acidification. Sci. Adv. 6(5), aax1314. https://doi.org/10.1126/sciadv.aax1314 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    27.Donald, H. K., Ries, J. B., Stewart, J. A., Fowell, S. E. & Foster, G. L. Boron isotope sensitivity to seawater pH change in a species of Neogoniolithon coralline red alga. Geochim. Cosmochim. Acta 217, 240–253. https://doi.org/10.1016/j.gca.2017.08.021 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    28.Hofmann, L. C., Schoenrock, K. M. & de Beer, D. Arctic coralline algae elevate surface pH and carbonate in the dark. Front. Plant Sci. 9, 1416. https://doi.org/10.3389/fpls.2018.01416 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Hurd, C. L. et al. Metabolically induced pH fluctuations by some coastal calcifiers exceed projected 22nd century ocean acidification: a mechanism for differential susceptibility. Global Change Biol. 17, 3254–3262. https://doi.org/10.1111/j.1365-2486.2011.02473.x (2011).ADS 
    Article 

    Google Scholar 
    30.Cornwall, C. E. et al. Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa. PLoS ONE 9, e97235. https://doi.org/10.1371/journal.pone.0097235 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Hofmann, L. C., Koch, M. & de Beer, D. Biotic control of surface pH and evidence of light-induced H+ pumping and Ca2+-H+ exchange in a tropical crustose coralline alga. PLoS ONE 1, e0159057. https://doi.org/10.1371/journal.pone.0159057 (2016).CAS 
    Article 

    Google Scholar 
    32.McNicholl, C., Koch, M. S. & Hofmann, L. C. Photosynthesis and light-dependent proton pumps increase boundary layer pH in tropical macroalgae: A proposed mechanism to sustain calcification under ocean acidification. J. Exp. Mar. Biol. Ecol. 521, 151208. https://doi.org/10.1016/j.jembe.2019.151208 (2019).Article 

    Google Scholar 
    33.Hurd, C. L. & Pilditch, C. A. Flow-induced morphological variations affect diffusion boundary-layer thickness of Macrocystis pyrifera (Heterokontophyta, Laminariales). J. Phycol. 47, 341–351. https://doi.org/10.1111/j.1529-8817.2011.00958.x (2011).Article 
    PubMed 

    Google Scholar 
    34.Foster, M.S., Amado-Filho, G.M., Kamenos, N.A., Riosmena-Rodríguez, R. & Steller D.L. Rhodoliths and rhodolith beds. In Research and Discoveries: The Revolution of Science Through SCUBA (eds, Lang, M.A. et al.). Washington, D.C, USA: Smithsonian Institution Scholarly Press (2013).35.Melbourne, L. A., Denny, M. W., Harniman, R. L., Rayfield, E. J. & Schmidt, D. N. The importance of wave exposure on the structural integrity of rhodoliths. J. Exp. Mar. Biol. Ecol. 503, 109–119. https://doi.org/10.1016/j.jembe.2017.11.007 (2018).Article 

    Google Scholar 
    36.Farias, J. N., Riosmena-Rodríguez, R., Bouzon, Z., Oliveira, E. C. & Horta, P. A. Lithothamnion superpositum (Corallinales; Rhodophyta): First description for the Western Atlantic or rediscovery of a species?. Phycol. Res. 58, 210–216. https://doi.org/10.1111/j.1440-1835.2010.00581.x (2010).Article 

    Google Scholar 
    37.Vieira-Pinto, T. et al. Lithophyllum species from Brazilian coast: range extension of Lithophyllum margaritae and description of Lithophyllum atlanticum sp. nov. (Corallineales, Corallinophycidae, Rhodophyta). Phytotaxa 190, 355–369. https://doi.org/10.11646/phytotaxa.190.1.21 (2014).Article 

    Google Scholar 
    38.Sissini, M. N. et al. Mesophyllum erubescens (Corallinales, Rhodophyta)-so many species in one epithet. Phytotaxa 190, 299–319. https://doi.org/10.11646/phytotaxa.190.1.18 (2014).Article 

    Google Scholar 
    39.de Beer, D. & Larkum, A. Photosynthesis and calcification in the calcifying algae Halimeda discoidea studied with microsensors. Plant Cell Environ. 24, 1209–1217. https://doi.org/10.1046/j.1365-3040.2001.00772.x (2001).Article 

    Google Scholar 
    40.Hurd, C. L. Slow-flow habitats as refugia for coastal calcifiers from ocean acidification. J. Phycol. 51, 599–605. https://doi.org/10.1111/jpy.12307 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    41.Nash, M. C., Diaz-Pulido, G., Harvey, A. S. & Adey, W. Coralline algal calcification: A morphological and process-based understanding. PLoS ONE 14, e0221396. https://doi.org/10.1371/journal.pone.0221396 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Burdett, H. L., Hennige, S. J., Francis, F. T. Y. & Kamenos, N. A. The photosynthetic characteristics of red coralline algae, determined using pulse amplitude modulation (PAM) fluorometry. Bot. Mar. 5, 499–509. https://doi.org/10.1515/bot-2012-0135 (2012).CAS 
    Article 

    Google Scholar 
    43.Noisette, F., Egilsdottir, H., Davoult, D. & Martin, S. Physiological responses of three temperate coralline algae from contrasting habitats to near-future ocean acidification. J. Exp. Mar. Biol. Ecol. 448, 179–187. https://doi.org/10.1016/j.jembe.2013.07.006 (2013).CAS 
    Article 

    Google Scholar 
    44.Martin, S., Cohu, S., Vignot, C., Zimmerman, G. & Gattuso, J. P. One-year experiment on the physiological response of the Mediterranean crustose coralline alga, Lithophyllum cabiochae, to elevated pCO2 and temperature. Ecol. Evol. 3(3), 676–693. https://doi.org/10.1002/ece3.475 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Johnson, M. D., Moriarty, V. W. & Carpenter, R. C. Acclimatization of the crustose coralline alga Porolithon onkodes to variable pCO2. PLoS ONE 9(2), e87678. https://doi.org/10.1371/journal.pone.0087678 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Cornwall, C. E. et al. A coralline alga gains tolerance to ocean acidification over multiple generations of exposure. Nat. Clim. Chang. 10, 143–146. https://doi.org/10.1038/s41558-019-0681-8 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    47.Cornwall, C. E. et al. Diurnal fluctuations in seawater pH influence the response of a calcifying macroalga to ocean acidification. Proc. Roy. Soc. London Series B 280, 20132201. https://doi.org/10.1098/rspb.2013.2201 (2013).CAS 
    Article 

    Google Scholar 
    48.Boyd, P. W. et al. Biological responses to environmental heterogeneity under future ocean conditions. Global Change Biol. 22(8), 2633–2650. https://doi.org/10.1111/gcb.13287 (2016).ADS 
    Article 

    Google Scholar 
    49.Noisette, F. & Hurd, C. Abiotic and biotic interactions in the diffusive boundary layer of kelp blades create a potential refuge from ocean acidification. Funct. Ecol. 32(5), 1329–1342. https://doi.org/10.1111/1365-2435.13067 (2018).Article 

    Google Scholar 
    50.Johnson, M. D. et al. pH variability exacerbates effects of ocean acidification on a Caribbean crustose coralline alga. Front. Mar. Sci. 6, 150. https://doi.org/10.3389/fmars.2019.00150 (2019).Article 

    Google Scholar 
    51.Borowitzka, M. A. Photosynthesis and calcification in the articulated coralline red algae Amphiroa anceps and A foliacea. Mar. Biol. 62, 17–23. https://doi.org/10.1007/BF00396947 (1981).CAS 
    Article 

    Google Scholar 
    52.Chisholm, J. R. Calcification by crustose coralline algae on the northern Great Barrier Reef Australia. Limnol. Oceanogr. 45(7), 1476–1484. https://doi.org/10.4319/lo.2000.45.7.1476 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    53.Martin, S., Castets, M.-D. & Clavier, J. Primary production, respiration and calcification of the temperate free-living coralline alga Lithothamnion corallioides. Aquat. Bot. 85, 121–128. https://doi.org/10.1016/j.aquabot.2006.02.005 (2006).CAS 
    Article 

    Google Scholar 
    54.McNicholl, C. et al. Ocean acidification effects on calcification and dissolution in tropical reef macroalgae. Coral Reefs 39, 1635–1647. https://doi.org/10.1007/s00338-020-01991-x (2020).Article 

    Google Scholar 
    55.Kamenos, N. A. et al. Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification. Global Change Biol. 19, 3621–3628. https://doi.org/10.1111/gcb.12351 (2013).ADS 
    Article 

    Google Scholar 
    56.Vogel, N. et al. Calcareous green alga Halimeda tolerates ocean acidification conditions at tropical carbon dioxide seeps. Limnol. Oceanogr. 60, 263–275. https://doi.org/10.1002/lno.10021 (2015).ADS 
    Article 

    Google Scholar 
    57.Vogel, N., Meyer, F. W., Wild, C. & Uthicke, S. Decreased light availability can amplify negative impacts of ocean acidification on calcifying coral reef organisms. Mar. Ecol. Prog. Ser. 521, 49–61. https://doi.org/10.3354/meps11088 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    58.McNicholl, C. & Koch, M. S. Irradiance, photosynthesis and elevated pCO2 effects on net calcification in tropical reef macroalgae. J. Exp. Mar. Biol. Ecol. 535, 151489. https://doi.org/10.1016/j.jembe.2020.151489 (2021).Article 

    Google Scholar 
    59.Schoenrock, K. M. et al. Influences of salinity on the physiology and distribution of the Arctic coralline algae, Lithothamnion glaciale (Corallinales, Rhodophyta). J. Phycol. 54, 690–702. https://doi.org/10.1111/jpy.12774 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    60.MAArE. Projeto de monitoramento ambiental da Reserva Biológica Marinha do Arvoredo e entorno. Florianópolis, Brazil: ICMBio/UFSC (2017).61.Kaandorp, J. A. & Kübler, J. E. The algorithmic beauty of seaweeds, sponges and corals (Springer, Heidelberg, 2001). https://doi.org/10.1007/978-3-662-04339-4.Book 
    MATH 

    Google Scholar 
    62.Leal, R. N., Bassi, D., Posenato, R. & Amado-Filho, G. M. Tomographic analysis for bioerosion signatures in shallow-water rhodoliths from the Abrolhos Bank Brazil. J. Coast. Res. 279, 306–309. https://doi.org/10.2112/11T-00006.1 (2012).Article 

    Google Scholar 
    63.Teichert, S. Hollow rhodoliths increase Svalbard’s shelf biodiversity. Sci. Rep. 4, 1–5. https://doi.org/10.1038/srep06972 (2014).CAS 
    Article 

    Google Scholar 
    64.Torrano-Silva, B. N., Ferreira, S. G. & Oliveira, M. C. Unveiling privacy: Advances in microtomography of coralline algae. Micron 72, 34–38. https://doi.org/10.1016/j.micron.2015.02.004 (2015).Article 
    PubMed 

    Google Scholar 
    65.Laforsch, C. et al. A precise and non-destructive method to calculate the surface area in living scleractinian corals using x-ray computed tomography and 3D modeling. Coral Reefs 27, 811–820. https://doi.org/10.1007/s00338-008-0405-4 (2008).ADS 
    Article 

    Google Scholar 
    66.Limaye, A. Drishti: a volume exploration and representation tool. In Developments in X-Ray Tomography VIII, San Diego, California, USA: SPIE Proc. 85060X; https://doi.org/10.1117/12.935640 (2012).67.Ahrens, J., Geveci, B. & Law, C. ParaView: An End-User Tool for Large Data Visualization. In Visualization Handbook (eds CD Hansen, CR Johnson) Oxford, UK: Elsevier; https://doi.org/10.1016/B978-012387582-2/50038-1 (2005).68.Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682. https://doi.org/10.1038/nmeth.2019 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    69.Rueden, C. T. et al. Image J2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18, 529. https://doi.org/10.1186/s12859-017-1934-z (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Revsbech, N. P. An oxygen microsensor with a guard cathode. Limnol. Oceanogr. 34, 474–478. https://doi.org/10.4319/lo.1989.34.2.0474 (1989).ADS 
    CAS 
    Article 

    Google Scholar 
    71.de Beer, D. et al. A microsensor for carbonate ions suitable for microprofiling in freshwater and saline environments. Limnol. Oceanogr. Methods 6, 532–541. https://doi.org/10.4319/lom.2008.6.532 (2008).Article 

    Google Scholar 
    72.Jørgensen, B. B. & Revsbech, N. P. Diffusive boundary layers and the oxygen uptake of sediments and detritus 1. Limnol. Oceanogr. 30, 111–122. https://doi.org/10.4319/lo.1985.30.1.0111 (1985).ADS 
    Article 

    Google Scholar 
    73.Smith, S.V. & Kinsey, D.W. Calcification and organic carbon metabolism as indicated by carbon dioxide. In Coral Reefs: Research Methods. Monographs on Oceanographic Methodology (eds. Stoddart, D. & Johannes, R.). Paris: UNESCO (1978)74.Hansson, I. & Jagner, D. Evaluation of the accuracy of Gran plots by means of computer calculations: application to the potentiometric titration of the total alkalinity and carbonate content in sea water. Anal. Chim. Acta 75, 363–373. https://doi.org/10.1016/S0003-2670(01)82503-4 (1973).Article 

    Google Scholar 
    75.Bradshaw, A. L., Brewer, P. G., Sharer, D. K. & Williams, R. T. Measurements of total carbon dioxide and alkalinity by potentiometric titration in the GEOSECS program. Earth Planet. Sci. Lett. 55, 99–115. https://doi.org/10.1016/0012-821X(81)90090-X (1981).ADS 
    CAS 
    Article 

    Google Scholar 
    76.Stimson, J. & Kinzie, R. A. The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillophora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. J. Exp. Mar. Biol. Ecol. 153, 63–74. https://doi.org/10.1016/S0022-0981(05)80006-1 (1991).Article 

    Google Scholar 
    77.Naumann, M. S., Niggl, W., Laforsch, C., Glaser, C. & Wild, C. Coral surface area quantification-evaluation of established techniques by comparison with computer tomography. Coral Reefs 28, 109–117. https://doi.org/10.1007/s00338-008-0459-3 (2009).ADS 
    Article 

    Google Scholar 
    78.Veal, C. J., Holmes, G., Nunez, M., Hoegh-Guldberg, O. & Osborn, J. A comparative study of methods for surface area and three-dimensional shape measurements of coral skeletons. Limnol. Oceanogr. Methods 8, 241–253. https://doi.org/10.4319/lom.2010.8.241 (2010).Article 

    Google Scholar  More

  • in

    Experimental validation of small mammal gut microbiota sampling from faeces and from the caecum after death

    Aivelo T, Norberg A (2018) Parasite-microbiota interactions potentially affect intestinal communities in wild mammals. J Anim Ecol 87:438–447PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Alberdi A, Aizpurua O, Bohmann K, Zepeda-Mendoza ML, Gilbert MTP (2016) Do vertebrate gut metagenomes confer rapid ecological adaptation? Trends Ecol Evol 31:689–699PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Amaral WZ, Lubach GR, Proctor A, Lyte M, Phillips GJ, Coe CL (2017) Social influences on Prevotella and the gut microbiome of young monkeys. Psychosom Med 79:888–897PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Amato KR, Sanders GJ, Song SJ, Nute M, Metcalf JL, Thompson LR et al. (2019) Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J 13:576–587CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300
    Google Scholar 
    Björk JR, Dasari M, Grieneisen L, Archie EA (2019) Primate microbiomes over time: longitudinal answers to standing questions in microbiome research. Am J Primatol 81:e22970PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brooks JW (2016) Postmortem changes in animal carcasses and estimation of the postmortem interval. Vet Pathol 53:929–940CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Callahan BJ, Wong J, Heiner C, Oh S, Theriot CM, Gulati AS et al. (2019) High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. Nucleic Acids Res 47:e103CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clayton JB, Vangay P, Huang H, Ward T, Hillmann BM, Al-Ghalith GA et al. (2016) Captivity humanizes the primate microbiome. Proc Natl Acad Sci U S A 113:10376–10381CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13:701–712CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S et al. (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107:14691–14696PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dill-McFarland KA, Neil KL, Zeng A, Sprenger RJ, Kurtz CC, Suen G et al. (2014) Hibernation alters the diversity and composition of mucosa-associated bacteria while enhancing antimicrobial defence in the gut of 13-lined ground squirrels. Mol Ecol 23:4658–4669CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Donaldson GP, Lee SM, Mazmanian SK (2016) Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 14:20–32CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Dubois S, Fenwick N, Ryan EA, Baker L, Baker SE, Beausoleil NJ et al. (2017) International consensus principles for ethical wildlife control. Conserv Biol J Soc Conserv Biol 31:753–760Article 

    Google Scholar 
    Earl JP, Adappa ND, Krol J, Bhat AS, Balashov S, Ehrlich RL et al. (2018) Species-level bacterial community profiling of the healthy sinonasal microbiome using Pacific Biosciences sequencing of full-length 16S rRNA genes. Microbiome 6:190PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ericsson AC, Johnson PJ, Lopes MA, Perry SC, Lanter HR (2016) A microbiological map of the healthy equine gastrointestinal tract. PLoS ONE 11:e0166523PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    García-Amado MA, Michelangeli F, Gueneau P, Perez ME, Domínguez-Bello MG (2007) Bacterial detoxification of saponins in the crop of the avian foregut fermenter Opisthocomus hoazin. J Anim Feed Sci 16:82–85Article 

    Google Scholar 
    Gomez A, Petrzelkova KJ, Burns MB, Yeoman CJ, Amato KR, Vlckova K et al. (2016) Gut microbiome of coexisting BaAka pygmies and Bantu reflects gradients of traditional subsistence patterns. Cell Rep 14:2142–2153CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Gomez A, Petrzelkova K, Yeoman CJ, Vlckova K, Mrázek J, Koppova I et al. (2015) Gut microbiome composition and metabolomic profiles of wild western lowland gorillas (Gorilla gorilla gorilla) reflect host ecology. Mol Ecol 24:2551–2565CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Gorvitovskaia A, Holmes SP, Huse SM (2016) Interpreting Prevotella and bacteroides as biomarkers of diet and lifestyle. Microbiome 4:15PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gregorová S, Forejt J (2000) PWD/Ph and PWK/Ph inbred mouse strains of Mus m. musculus subspecies–a valuable resource of phenotypic variations and genomic polymorphisms. Folia Biol 46:31–41
    Google Scholar 
    Gu S, Chen D, Zhang J-N, Lv X, Wang K, Duan L-P et al. (2013) Bacterial community mapping of the mouse gastrointestinal tract. PLoS ONE 8:e74957Heimesaat MM, Boelke S, Fischer A, Haag L-M, Loddenkemper C, Kühl AA et al. (2012) Comprehensive postmortem analyses of intestinal microbiota changes and bacterial translocation in human flora associated mice. PloS ONE 7:e40758CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hird SM (2017) Evolutionary biology needs wild microbiomes. Front Microbiol 8:725Iljazovic A, Roy U, Gálvez EJC, Lesker TR, Zhao B, Gronow A et al. (2020) Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation. Mucosal Immunol 14:113–124PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ingala MR, Simmons NB, Wultsch C, Krampis K, Speer KA, Perkins SL (2018) Comparing microbiome sampling methods in a wild mammal: fecal and intestinal samples record different signals of host ecology, evolution. Front Microbiol 9:803Karasov WH, Douglas AE (2013) Comparative digestive physiology. Compr Physiol 3:741–783PubMed 
    PubMed Central 

    Google Scholar 
    Kartzinel TR, Hsing JC, Musili PM, Brown BRP, Pringle RM (2019) Covariation of diet and gut microbiome in African megafauna. Proc Natl Acad Sci U S A 116:23588–23593CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kohl KD, Dearing MD (2016) The woodrat gut microbiota as an experimental system for understanding microbial metabolism of dietary toxins. Front Microbiol 7:1165Kohl KD, Luong K, Dearing MD (2015) Validating the use of trap-collected feces for studying the gut microbiota of a small mammal (Neotoma lepida). J Mammal 96:90–93Article 

    Google Scholar 
    Kohl KD, Varner J, Wilkening JL, Dearing MD (2018) Gut microbial communities of American pikas (Ochotona princeps): Evidence for phylosymbiosis and adaptations to novel diets. J Anim Ecol 87:323–330PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Kreisinger J, Bastien G, Hauffe HC, Marchesi J, Perkins SE (2015) Interactions between multiple helminths and the gut microbiota in wild rodents. Philos Trans R Soc B Biol Sci 370:20140295Kreisinger J, Čížková D, Vohánka J, Piálek J (2014) Gastrointestinal microbiota of wild and inbred individuals of two house mouse subspecies assessed using high-throughput parallel pyrosequencing. Mol Ecol 23:5048–5060CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Kreisinger J, Kropáčková L, Petrželková A, Adámková M, Tomášek O, Martin J-F et al. (2017) Temporal stability and the effect of transgenerational transfer on fecal microbiota structure in a long distance migratory bird. Front Microbiol 8:50Laukaitis CM, Critser ES, Karn RC (1997) Salivary androgen-binding protein (ABP) mediates sexual isolation in Mus musculus. Evol Int J Org Evol 51:2000–2005CAS 
    Article 

    Google Scholar 
    Lawrence K, Lam K, Morgun A, Shulzhenko NLöhr C (2019) Effect of temperature and time on the thanatomicrobiome of the cecum, ileum, kidney, and lung of domestic rabbits. J Vet Diagn Invest 31. https://doi.org/10.1177/1040638719828412Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69:1–24Article 

    Google Scholar 
    Li D, Chen H, Mao B, Yang Q, Zhao J, Gu Z et al. (2017) Microbial biogeography and core microbiota of the rat digestive tract. Sci Rep 7:45840PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Maslanik T, Tannura K, Mahaffey L, Loughridge AB, Benninson L, Ursell L et al. (2012) Commensal bacteria and MAMPs are necessary for stress-induced increases in IL-1β and IL-18 but not IL-6, IL-10 or MCP-1. PLoS ONE 7:e50636CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Matsuo Y, Komiya S, Yasumizu Y, Yasuoka Y, Mizushima K, Takagi T et al. (2020) Full-length 16S rRNA gene amplicon analysis of human gut microbiota using MinIONTM nanopore sequencing confers species-level resolution. bioRxiv. https://doi.org/10.1101/2020.05.06.078147McKenzie VJ, Song SJ, Delsuc F, Prest TL, Oliverio AM, Korpita TM et al. (2017) The effects of captivity on the mammalian gut microbiome. Integr Comp Biol 57:690–704PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McMurdie PJ, Holmes S (2014) Waste not, want not: why rarefying microbiome data is inadmissible. PLOS Comput Biol 10:e1003531PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Menke S, Meier M, Sommer S (2015) Shifts in the gut microbiome observed in wildlife faecal samples exposed to natural weather conditions: lessons from time-series analyses using next-generation sequencing for application in field studies. Methods Ecol Evol 6:1080–1087Article 

    Google Scholar 
    Miller AW, Oakeson KF, Dale C, Dearing MD (2016) Microbial community transplant results in increased and long-term oxalate degradation. Micro Ecol 72:470–478CAS 
    Article 

    Google Scholar 
    Pafčo B, Čížková D, Kreisinger J, Hasegawa H, Vallo P, Shutt K et al. (2018) Metabarcoding analysis of strongylid nematode diversity in two sympatric primate species. Sci Rep 8:5933Palm NW, de Zoete MR, Cullen TW, Barry NA, Stefanowski J, Hao L et al. (2014) Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158:1000–1010CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pechal JL, Schmidt CJ, Jordan HR, Benbow ME (2018) A large-scale survey of the postmortem human microbiome, and its potential to provide insight into the living health condition. Sci Rep 8:5724PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pollock J, Glendinning L, Wisedchanwet T, Watson M (2018) The madness of microbiome: attempting to find consensus “best practice” for 16S microbiome studies. Appl Environ Microbiol 84:e02627–17PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P et al. (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
    Google Scholar 
    Rosshart SP, Vassallo BG, Angeletti D, Hutchinson DS, Morgan AP, Takeda K et al. (2017) Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell 171:1015–1028.e13CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Round JL, Mazmanian SK (2009) The gut microbiome shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C et al. (2013) Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2:e01202PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sommer F, Ståhlman M, Ilkayeva O, Arnemo JM, Kindberg J, Josefsson J et al. (2016) The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep 14:1655–1661CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Stalder GL, Pinior B, Zwirzitz B, Loncaric I, Jakupović D, Vetter SG et al. (2019) Gut microbiota of the European Brown Hare (Lepus europaeus). Sci Rep 9:2738CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stanley D, Geier MS, Chen H, Hughes RJ, Moore RJ (2015) Comparison of fecal and cecal microbiotas reveals qualitative similarities but quantitative differences. BMC Microbiol 15:51PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stearns JC, Lynch MDJ, Senadheera DB, Tenenbaum HC, Goldberg MB, Cvitkovitch DG et al. (2011) Bacterial biogeography of the human digestive tract. Sci Rep 1:170CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stothart MR, Palme R, Newman AEM (2019) It’s what’s on the inside that counts: stress physiology and the bacterial microbiome of a wild urban mammal. Proc R Soc B Biol Sci 286:20192111Article 

    Google Scholar 
    Suzuki TA, Martins FM, Nachman MW (2019) Altitudinal variation of the gut microbiota in wild house mice. Mol Ecol 28:2378–2390CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Suzuki TA, Nachman MW (2016) Spatial heterogeneity of gut microbial composition along the gastrointestinal tract in natural populations of house mice (EG Zoetendal, Ed.). PLoS ONE 11:e0163720PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Tanca A, Manghina V, Fraumene C, Palomba A, Abbondio M, Deligios M et al. (2017) Metaproteogenomics reveals taxonomic and functional changes between cecal and fecal microbiota in mouse. Front Microbiol 8:391Tang Q, Jin G, Wang G, Liu T, Liu X, Wang B et al. (2020) Current sampling methods for gut microbiota: a call for more precise devices. Front Cell Infect Microbiol 10:151Tang W, Zhu G, Shi Q, Yang S, Ma T, Mishra SK et al. (2019) Characterizing the microbiota in gastrointestinal tract segments of Rhabdophis subminiatus: dynamic changes and functional predictions. MicrobiologyOpen 8:e789Trevelline BK, Fontaine SS, Hartup BK, Kohl KD (2019) Conservation biology needs a microbial renaissance: a call for the consideration of host-associated microbiota in wildlife management practices. Proc R Soc B Biol Sci 286:20182448Article 

    Google Scholar 
    Tuomisto S, Karhunen PJ, Pessi T (2013) Time-dependent post mortem changes in the composition of intestinal bacteria using real-time quantitative PCR. Gut Pathog 5:35Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Vasemägi A, Visse M, Kisand V (2017) Effect of Environmental Factors and an Emerging Parasitic Disease on Gut Microbiome of Wild Salmonid Fish. mSphere 2:e00418–17PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Videvall E, Strandh M, Engelbrecht A, Cloete S, Cornwallis C (2017) Measuring the gut microbiome in birds: Comparison of faecal and cloacal sampling. Mol Ecol Resour 18:424–434PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Vlčková K, Shutt-Phillips K, Heistermann M, Pafčo B, Petrželková KJ, Todd A et al. (2018) Impact of stress on the gut microbiome of free-ranging western lowland gorillas. Microbiol Read Engl 164:40–44Article 
    CAS 

    Google Scholar 
    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang J, Linnenbrink M, Künzel S, Fernandes R, Nadeau M-J, Rosenstiel P et al. (2014) Dietary history contributes to enterotype-like clustering and functional metagenomic content in the intestinal microbiome of wild mice. Proc Natl Acad Sci U S A 111:E2703–2710CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Warne RW, Kirschman L, Zeglin L (2017) Manipulation of gut microbiota reveals shifting community structure shaped by host developmental windows in amphibian larvae. Integr Comp Biol 57:786–794PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Weldon L, Abolins S, Lenzi L, Bourne C, Riley EM, Viney M (2015) The gut microbiota of wild mice. PLoS ONE 10:e0134643PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh SA et al. (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yan W, Sun C, Zheng J, Wen C, Ji C, Zhang D et al. (2019) Efficacy of fecal sampling as a gut proxy in the study of chicken gut microbiota. Front Microbiol 10:2126Yasuda K, Oh K, Ren B, Tickle TL, Franzosa EA, Wachtman LM et al. (2015) Biogeography of the intestinal mucosal and lumenal microbiome in the rhesus macaque. Cell Host Microbe 17:385–391CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zemanova MA (2019) Poor implementation of non-invasive sampling in wildlife genetics studies. Rethink Ecol 4:119–132Article 

    Google Scholar 
    Zemanova MA (2020) Towards more compassionate wildlife research through the 3Rs principles: moving from invasive to non-invasive methods. Wildl Biol 2020. https://doi.org/10.2981/wlb.00607Zhao W, Wang Y, Liu S, Huang J, Zhai Z, He C et al. (2015) The dynamic distribution of porcine microbiota across different ages and gastrointestinal tract segments. PLoS ONE 10:e0117441PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    The variability of soils and vegetation of hydrothermal fields in the Valley of Geysers at Kamchatka Peninsula

    The catenary sequence of soilsThe catena of Andosols down a slope near a hot spring in the Valley of Geysers was subdivided into four thermal zones (Fig. 1a–e), which are described below.Figure 1Location of study area (a–c), soil pits along the catena (d, e) and photos of soil pits (f–i). (a b) Study area location. Soil map is from133 (open access) with additions and corrections by I.N. Semenkov based on the map of soil temperature at a depth of 15 cm in the Valley of Geysers131 and the soil names from44 using CorelDraw X7 software (https://www.coreldraw.com/). (c) Top view of the left side of the Geysernaya River with the body of a catastrophic landslide, a visitor center (in the left lower part) and the location of the transect studied (1–15). (d) The location of transect studied. (e) A schematic profile of the catena studied with numbered soil pits. The main soil pits selected for comprehensive analyses (see section ‘Soil analyses’) are in red. (f) Non-heated Eutrosilic Silandic Andosols (Arenic, Cutanic) on pyroclastic material (pit no 16, Zone I), within levelled parts of the interfluve, under tall-herb meadow communities with local patches of Erman’s birch woods. (g) Slightly heated Eutrosilic Aluandic Andosols (Cutanic, Loamic, Natric) in the upper part of the catena, on hydrothermally altered sandy-loamy pyroclastic material (pit no 12, Zone II), on slightly heated slopes, under tall-herb meadows. (h) Moderately heated Eutrosilic Gleyic Aluandic Andosols (Loamic, Reductic, Protosalic, Hyperthionic) in the middle part of the catena, on hydrothermally altered clayey pyroclastic material (pit no 9.1, Zone III), under different moss and ‘microzonal’ communities. (i) Hot Gleyic Aluandic Andosols (Clayic, Reductic, Salic, Hyperthionic) in the lower part of the catena, on hydrothermal clays (pit no 4, Zone IV), on most heated bare slopes.Full size imageZone I. Non-heated Eutrosilic Silandic Andosols (Arenic, Cutanic) under Kamchatka’s tall herb communities and fragmented Erman’s birch woodsNon-heated Andosols with temperatures of 50 with very small amounts of PM5–50 ( More

  • in

    Environmental DNA detection of an invasive ant species (Linepithema humile) from soil samples

    1.Moller, H. Lessons for invasion theory from social insects. Biol. Conserv. 78, 125–142 (1996).Article 

    Google Scholar 
    2.Pimentel, D. et al. Economic and environmental threats of alien plant, animal, and microbe invasions. Agric. Ecosyst. Environ. 84, 1–20 (2001).Article 

    Google Scholar 
    3.Kenis, M. et al. Ecological effects of invasive alien insects. Biol. Invasion 11, 21–45 (2009).Article 

    Google Scholar 
    4.McGlynn, T. P. The worldwide transfer of ants: Geographical distribution and ecological invasions. J. Biogeog. 26, 535–548 (1999).Article 

    Google Scholar 
    5.Morrison, L. W., Porter, S. D., Daniels, E. & Korzukhin, M. D. Potential global range expansion of the invasive fire ant, Solenopsis invicta. Biol. Invasions 6, 183–191 (2004).Article 

    Google Scholar 
    6.Fitzpatrick, M. C., Weltzin, J. F., Sanders, N. J. & Dunn, R. R. The biogeography of prediction error: Why does the introduced range of the fire ant over-predict its native range?. Global Ecol. Biogeog. 16, 24–33 (2007).Article 

    Google Scholar 
    7.Bertelsmeier, C., Luque, G. M., Hoffmann, B. D. & Courchamp, F. Worldwide ant invasions under climate change. Biodivers. Conserv. 24, 117–128 (2015).Article 

    Google Scholar 
    8.Rowles, A. D. & O’Dowd, D. J. Impacts of the invasive Argentine ant on native ants and other invertebrates in coastal scrub in south-eastern Australia. Austral. Ecol. 34, 239–248 (2009).Article 

    Google Scholar 
    9.Naumann, K. & Higgins, R. J. The European fire ant (Hymenoptera: Formicidae) as an invasive species: Impact on local ant species and other epigaeic arthropods. Can. Entomol. 147, 592–601 (2015).Article 

    Google Scholar 
    10.Uchida, S. et al. Effects of an invasive ant on land snails in the Ogasawara Islands. Conserv. Biol. 30, 1330–1337 (2016).PubMed 
    Article 

    Google Scholar 
    11.Helanterä, H., Strassmann, J. E., Carrillo, J. & Queller, D. C. Unicolonial ants: Where do they come from, what are they and where are they going?. Trends Ecol. Evol. 24, 341–349 (2009).PubMed 
    Article 

    Google Scholar 
    12.Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D. & Case, T. J. The causes and consequences of ant invasions. Ann. Rev. Ecol. Syst. 33, 181–233 (2002).Article 

    Google Scholar 
    13.Stafford, C. T. Hypersensitivity to fire ant venom. Ann. Allerg. Asthma Im. 77, 87–99 (1996).CAS 
    Article 

    Google Scholar 
    14.Kemp, S. F., deShazo, R. D., Moffitt, J. E., Williams, D. F. & Buhner, W. A. II. Expanding habitat of the imported fire ant (Solenopsis invicta): A public health concern. J. Allergy Clin. Immun. 105, 683–691 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Morrison, J. E. Jr., Williams, D. F., Oi, D. H. & Potter, K. N. Damage to dry crop seed by red imported fire ant (Hymenoptera: Formicidae). J. Econ. Entomol. 90, 218–222 (1997).Article 

    Google Scholar 
    16.Mikissa, J. B., Jeffery, K., Fresneau, D. & Mercier, J. L. Impact of an invasive alien ant, Wasmannia auropunctata Roger., on a specialised plant-ant mutualism, Barteria fistulosa Mast. and Tetraponera aethiops F. Smith., in a Gabon forest. Ecol. Entomol. 38, 580–584 (2013).Article 

    Google Scholar 
    17.Keller, R. P., Lodge, D. M. & Finnoff, D. C. Risk assessment for invasive species produces net bioeconomic benefits. Proc. Natl. Acad. Sci. 104, 203–207 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Hulme, P. E., Nentwig, W., Pyšek, P. & Vilà, M. Common market, shared problems: Time for a coordinated response to biological invasions in Europe. Neobiota 8, 3–19 (2009).
    Google Scholar 
    19.Pluess, T. et al. Which factors affect the success or failure of eradication campaigns against Alien species?. PLoS One 7, 48157 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    20.Sakamoto, Y., Kumagai, N. H. & Goka, K. Declaration of local chemical eradication of the Argentine ant: Bayesian estimation with a multinomial-mixture model. Sci. Rep. 7, 1–8 (2017).Article 
    CAS 

    Google Scholar 
    21.Jiménez-Carmona, F., Carpintero, S. & Reyes-López, J. L. The digging-in effect on ant studies with pitfall traps: Influence of type of habitat and sampling time. Entomol. Exp. Appl. 167, 906–914 (2019).Article 

    Google Scholar 
    22.Paknia, O., Bergmann, T. & Hadrys, H. Some ‘ant’swers: Application of a layered barcode approach to problems in ant taxonomy. Mol. Ecol. Resour. 15, 1262–1274 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Chen, Y. & Zhou, S. Phylogenetic relationships based on DNA barcoding among 16 species of the Ant Genus Formica (Hymenoptera: Formicidae) from China. J. Insect Sci. 17, 1–7 (2017).CAS 
    Article 

    Google Scholar 
    24.Giraud, T., Pedersen, J. S. & Keller, L. Evolution of supercolonies: Argentine ants of southern Europe. Proc. Natl. Acad. Sci. 99, 6075–6079 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Touyama, Y., Ogata, K. & Sugiyama, T. The Argentine ant, Linepithema humile, in Japan: Assessment of impact on species diversity of ant communities in urban environments. Entomol. Sci. 6, 57–62 (2003).Article 

    Google Scholar 
    26.Okaue, M. et al. Distribution of the Argentine ant, Linepithema humile, along the Seto Inland Sea, western Japan: Result of surveys in 2003–2005. Entomol. Sci. 10, 337–342 (2007).Article 

    Google Scholar 
    27.Sunamura, E., Nishisue, K., Terayama, M. & Tatsuki, S. Invasion of four Argentine ant supercolonies into Kobe Port, Japan: Their distributions and effects on indigenous ants (Hymenoptera: Formicidae). Sociobiol. 50, 659–674 (2007).
    Google Scholar 
    28.Inoue, M. N. et al. Recent range expansion of Argentine ant in Japan. Divers. Distrib. 19, 2937 (2013).Article 

    Google Scholar 
    29.Park, S. H., Hosoishi, S. & Ogata, K. Long-term impacts of Argentine ant invasion of urban parks in Hiroshima, Japan. J. Ecol. Environ. 37, 123–129 (2014).Article 

    Google Scholar 
    30.Sugiyama, T. & Onishi, O. Invasion of Argentinean ants in Kyoto City Ari. J. Myrmecol. Soci. Jpn. 32, 127–129 (2009).
    Google Scholar 
    31.Murakami, K. Exotic ants in PortIsland, Kobe City Ari. J. Myrmecol. Soci. Jpn. 26, 45–46 (2002).
    Google Scholar 
    32.Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 4, 423–425 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Jerde, C. L., Mahon, A. R., Chadderton, W. L. & Lodge, D. M. “Sight-unseen” detection of rare aquatic species using environmental DNA. Conserv. Lett. 4, 150–157 (2011).Article 

    Google Scholar 
    34.Minamoto, T., Yamanaka, H., Takahara, T., Honjo, M. N. & Kawabata, Z. Surveillance of fish species composition using environmental DNA. Limnology 13, 193–197 (2012).CAS 
    Article 

    Google Scholar 
    35.Bienert, F. et al. Tracking earthworm communities from soil DNA. Mol. Ecol. 21, 2017–2030 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Turner, C. R., Uy, K. L. & Everhart, R. C. Fish environmental DNA is more concentrated in aquatic sediments than surface water. Biol. Conserv. 183, 93–102 (2015).Article 

    Google Scholar 
    37.Goldberg, C. S. et al. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol. Evol. 7, 1299–1307 (2016).Article 

    Google Scholar 
    38.Dejean, T. et al. Improved detection of an alien invasive species through environmental DNA barcoding: The example of the American bullfrog Lithobates catesbeianus. J. Appl. Ecol. 49, 953–959 (2012).Article 

    Google Scholar 
    39.Takahara, T., Minamoto, T. & Doi, H. Using environmental DNA to estimate the distribution of an invasive fish species in Ponds. PLoS One 8, e56584 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Geerts, A. N., Boets, P., Van den Heede, S., Goethals, P. & Van der Heyden, C. A search for standardized protocols to detect alien invasive crayfish based on environmental DNA (eDNA): A lab and field evaluation. Ecol. Indic. 84, 564–572 (2018).CAS 
    Article 

    Google Scholar 
    41.Valentin, R. E., Fonseca, D. M., Nielsen, A. L., Leskey, T. C. & Lockwood, J. L. Early detection of invasive exotic insect infestations using eDNA from crop surfaces. Front. Ecol. Environ. 16, 265–270 (2018).Article 

    Google Scholar 
    42.Shogren, A. J. et al. Controls on eDNA movement in streams: Transport, retention, and resuspension. Sci. Rep. 7, 1–11 (2017).CAS 
    Article 

    Google Scholar 
    43.Jo, T., Murakami, H., Yamamoto, S., Masuda, R. & Minamoto, T. Effect of water temperature and fish biomass on environmental DNA shedding, degradation, and size distribution. Ecol. Evol. 9, 1135–1146 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Takahara, T., Minamoto, T., Yamanaka, H., Doi, H. & Kawabata, Z. Estimation of fish biomass using environmental DNA. PLoS One 7, e35868 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Tillotson, M. D. et al. Concentrations of environmental DNA (eDNA) reflect spawning salmon abundance at fine spatial and temporal scales. Biol. Conserv. 220, 1–11 (2018).Article 

    Google Scholar 
    46.Sakata, M. K. et al. Sedimentary eDNA provides different information on timescale and fish species composition compared with aqueous eDNA. Environ. DNA 2, 505–518 (2020).Article 

    Google Scholar 
    47.Pietramellara, G. et al. Extracellular DNA in soil and sediment: Fate and ecological relevance. Biol. Fert. Soils 45, 219–235 (2009).CAS 
    Article 

    Google Scholar 
    48.Matisoo-Smith, E. et al. Recovery of DNA and pollen from New Zealand lake sediments. Quat. Int. 184, 139–149 (2008).Article 

    Google Scholar 
    49.Foucher, A. et al. Persistence of environmental DNA in cultivated soils: Implication of this memory effect for reconstructing the dynamics of land use and cover changes. Sci. Rep. 10, 10502 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Sirois, S. H. & Buckley, D. H. Factors governing extracellular DNA degradation dynamics in soil. Environ. Microbiol. Rep. 11, 173–184 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Ogram, A. V., Mathot, M. L., Harsh, J. B., Boyle, J. & Pettigrew, C. A. Effects of DNA polymer length on its adsorption to soils. Appl. Environ. Microbiol. 60, 393–396 (1994).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Braid, M. D., Daniels, L. M. & Kitts, C. L. Removal of PCR inhibitors from soil DNA by chemical flocculation. J. Microbiol. Methods 52, 389–393 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Shogren, A. J. et al. Modelling the transport of environmental DNA through a porous substrate using continuous flow-through column experiments. J. R. Soc. Interface 13, 20160290 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Oliverio, A. M., Gan, H., Wickings, K. & Fierer, N. A DNA metabarcoding approach to characterize soil arthropod communities. Soil Biol. Biochem. 125, 37–43 (2018).CAS 
    Article 

    Google Scholar 
    55.Hayami, K. et al. Effects of sampling seasons and locations on fish environmental DNA metabarcoding in dam reservoirs. Ecol. Evol. 10, 5354–5367 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Sato, K. et al. Relationship among establishment durations, kin relatedness, aggressiveness, and distance between populations of eight invasive Argentine Ant (Hymenoptera: Formicidae) supercolonies in Japan. J. Econ. Entomol. 110, 1676–1684 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Nakajima, S. et al. A list of ant species on the Yard of Kyoto Prefectural Institute of Public Health and Environment, Fushimi, Kyoto Annual report of Kyoto Pref. Inst. Hyg. Environ. Sci. 58, 47–50 (2013).
    Google Scholar 
    58.Nakajima, S. et al. Time saving improvement to the time-unit sampling method for quantitative surveys of ant faunas. Jpn. J. Environ. Entomol. Zool. 24, 39–50 (2013).
    Google Scholar 
    59.Kouduka, M. et al. A new DNA extraction method by controlled alkaline treatments from consolidated subsurface sediments. FEMS Microbiol. Lett. 326, 47–54 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    60.The eDNA Society. Environmental DNA Sampling and Experiment Manual (ver. 2.1). https://ednasociety.org/eDNA_manual_Eng_v2_1_3b.pdf (2019).61.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://www.R-project.org/ (2018). More

  • in

    Inter-sexual and inter-generation differences in dispersal of a bivoltine butterfly

    1.Høye, T. T. et al. Phenology of high-arctic butterflies and their floral resources: Species-specific responses to climate change. Curr. Zool. 60, 243–251 (2014).Article 

    Google Scholar 
    2.Bell, J. R. et al. Spatial and habitat variation in aphid, butterfly, moth and bird phenologies over the last half century. Glob. Change Biol. 25, 1982–1994 (2019).ADS 
    Article 

    Google Scholar 
    3.Lewins, R. Evolution in Changing Environments: Some Theoretical Explorations (Princeton University Press, 1968).
    Google Scholar 
    4.Zografou, K. et al. Who flies first? Habitat-specific phenological shifts of butterflies and orthopterans in the light of climate change: A case study from the south-east Mediterranean. Ecol. Entomol. 40, 562–574 (2015).Article 

    Google Scholar 
    5.Yamamura, N. & Kiritani, K. A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Appl. Entomol. Zool. 33, 289–298 (1998).Article 

    Google Scholar 
    6.Barton, M. G. & Terblanche, J. S. Predicting performance and survival across topographically heterogeneous landscapes: The global pest insect Helicoverpa armigera (Hubner, 1808) (Lepidoptera: Noctuidae). Aus. Entomol. 53, 249–258 (2014).Article 

    Google Scholar 
    7.Tauber, M. J., Tauber, C. A. & Masaki, S. Seasonal Adaptations Of Insects (Oxford University Press on Demand, 1986).
    Google Scholar 
    8.Altermatt, F. Climatic warming increases voltinism in European butterflies and moths. Proc. R. Soc. B. 277, 1281–1287 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Lees, A. D. The physiology and biochemistry of diapause. Annu. Rev. Entomol. 1, 1–16 (1956).CAS 
    Article 

    Google Scholar 
    10.Roff, D. A. & Fairbairn, D. J. Wing dimorphisms and the evolution of migratory polymorphisms among the Insecta. Am. Zool. 31, 243–251 (1991).Article 

    Google Scholar 
    11.Van Dyck, H. & Wiklund, C. Seasonal butterfly design: MORPHOLOGICAL plasticity among three developmental pathways relative to sex, flight and thermoregulation. J. Evol. Biol. 15, 216–225 (2002).Article 

    Google Scholar 
    12.Fric, Z. & Konvicka, M. Generations of the polyphenic butterfly Araschnia levana differ in body design. Evol. Ecol. Res. 4, 1017–1032 (2002).
    Google Scholar 
    13.Urquhart, F. A. The Monarch Butterfly (University of Toronto Press, 1960).Book 

    Google Scholar 
    14.Stefanescu, C. The nature of migration in the red admiral butterfly Vanessa atalanta: Evidence from the population ecology in its southern range. Ecol. Entomol. 26, 525–536 (2001).Article 

    Google Scholar 
    15.Stefanescu, C., Askew, R. R., Corbera, J. & Shaw, M. R. Parasitism and migration in southern Palaearctic populations of the painted lady butterfly, Vanessa cardui (Lepidoptera: Nymphalidae). Eur. J. Entomol. 109, 85–94 (2012).Article 

    Google Scholar 
    16.Ohsaki, N. Comparative population studies of three Pieris butterflies, P. rapae, P. melete and P. napi, living in the same area. II. Utilization of patchy habitats by adults through migratory and non-migratory movements. Res. Popul. Ecol. 22, 163–183 (1980).Article 

    Google Scholar 
    17.Pollard, E., Greatorex-Davies, J. N. & Thomas, J. A. Drought reduces breeding success of the butterfly Aglais urticae. Ecol. Entomol. 22, 315–318 (1997).Article 

    Google Scholar 
    18.Matthysen, E. Density-dependent dispersal in birds and mammals. Ecography 28, 403–416 (2005).Article 

    Google Scholar 
    19.Kim, S. Y., Torres, R. & Drummond, H. Simultaneous positive and negative density-dependent dispersal in a colonial bird species. Ecology 90, 230–239 (2009).PubMed 
    Article 

    Google Scholar 
    20.Nowicki, P. & Vrabec, V. Evidence for positive density dependent emigration in butterfly metapopulations. Oecologia 167, 657–665 (2011).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Plazio, E., Margol, T. & Nowicki, P. Intersexual differences in density-dependent dispersal and their evolutionary drivers. J. Evol. Biol. 33, 1495–1506 (2020).PubMed 
    Article 

    Google Scholar 
    22.Brown, I. & Ehrlich, P. Population biology of the checkerspot butterfly, Euphydryas chalcedona structure of the Jasper Ridge colony. Oecologia 47, 239–251 (1980).ADS 
    PubMed 
    Article 

    Google Scholar 
    23.Hanski, I., Kuussaari, M. & Nieminen, M. Metapopulation structure and migration in the butterfly Melitaea cinxia. Ecology 75, 747–762 (1994).Article 

    Google Scholar 
    24.Petit, S., Moilanen, A., Hanski, I. & Baguette, M. Metapopulation dynamics of the bog fritillary butterfly, movements between habitat patches. Oikos 92, 491–500 (2001).Article 

    Google Scholar 
    25.Enfjäll, K. & Leimar, O. Density-dependent dispersal in the Glanville fritillary, Melitaea cinxia. Oikos 108, 465–472 (2005).Article 

    Google Scholar 
    26.Schtickzelle, N., Mennechez, G. & Baguette, M. Dispersal depression with habitat fragmentation in the bog fritillary butterfly. Ecology 87, 1057–1065 (2006).PubMed 
    Article 

    Google Scholar 
    27.Habel, J. C., Meyer, M., & Schmitt, T. Jewels In The Mist. A Synopsis On The Endangered Violet Copper Butterfly Lycaena helle (Pensoft, 2014).28.Martin, Y., Habel, J. C., Van Dyck, H. & Titeux, N. Losing genetic uniqueness under global change: the Violet Copper (Lycaena helle) in Europe. In Jewels In The Mist. A Synopsis On The Endangered Violet Copper Butterfly Lycaena helle. (ed. Habel, J. C., Meyer, M. & Schmitt, T.) 165–184 (Pensoft, 2014).29.Nabielec, J. & Nowicki, P. Drivers of local densities of endangered Lycaena helle butterflies in a fragmented landscape. Popul. Ecol. 57, 649–656 (2015).Article 

    Google Scholar 
    30.Bauerfeind, S. S., Theisen, A. & Fischer, K. Patch occupancy in the endangered butterfly Lycaena helle in fragmented landscape: effects of habitat quality, patch size and isolation. J. Insect. Conserv. 13, 271–277 (2009).Article 

    Google Scholar 
    31.Habel, J. C., Rodder, D., Schmitt, T. & Néves, G. Global warming will affect the genetic diversity and uniqueness of Lycaena helle populations. Glob. Change Biol. 17, 194–205 (2011).ADS 
    Article 

    Google Scholar 
    32.Van Helsdingen, P. J., Willemse, L. & Speight, M. C. D. Background Information On Invertebrates Of The Habitats Directive And The Bern Convention. Crustacea, Coleoptera And Lepidoptera. Vol. 2 (Council of Europe Publishing, 1996)33.Van Swaay, C. et al. European Red List Of Butterfies. (Publications Office of the European Union, 2010).34.Fischer, K., Beinlich, B. & Plachter, H. Population structure, mobility and habitat preferences of the violet copper Lycaena helle (Lepidoptera: Lyceanidae) in Western Germany: Implications for conservation. J. Insect. Conserv. 3, 43–52 (1999).Article 

    Google Scholar 
    35.Kudłek, J & Pępkowska, A. Natura 2000 Standard Data Form For SCI Dębnicko-Tyniecki Obszar Łąkowy PLH 120065 (GDOŚ, 2008).36.Begon, M. Investigating Animal Abundance. Capture-recapture For Biologists. (Edward Arnold (Publishers) Ltd., 1979).37.Cerrato, C., Lai, V., Balletto, E. & Bonelli, S. Direct and indirect effects of weather variability in a specialist butterfly. Ecol. Entomol. 41, 263–275 (2016).Article 

    Google Scholar 
    38.Hanski, I., Alho, J. & Moilanen, A. Estimating the parameters of survival and migration of individuals in metapopulations. Ecology 81, 239–251 (2000).Article 

    Google Scholar 
    39.Schwarz, C. J. & Arnason, A. N. A general methodology for the analysis of capture-recapture experiments in open populations. Biometrics 52, 860–873 (1996).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    40.Bubova, T., Kulma, M., Vrabec, V. & Nowicki, P. Adult longevity and its relationship with conservation status in European butterflies. J. Insect Conserv. 20, 1021–1032 (2016).Article 

    Google Scholar 
    41.Hambäck, P. A. & Englund, G. Patch area, population density and the scaling of migration rates: The resource concentration hypothesis revisited. Ecol. Lett. 8, 1057–1065 (2005).Article 

    Google Scholar 
    42.Matter, S. F., Roland, J., Moilanen, A. & Hanski, I. Migration and survival of Parnassius smintheus: detecting effects of habitat for individual butterflies. Ecol. Appl. 14, 1526–1534 (2004).Article 

    Google Scholar 
    43.Dempster, J. P. & Pollard, E. Spatial heterogeneity, stochasticity and the detection of density dependence in animal populations. Oikos 46, 413–416 (1986).Article 

    Google Scholar 
    44.Gros, A., Hovestadt, T. & Poethke, H. J. Evolution of sex-biased dispersal: the role of sex-specific dispersal costs, demographic stochasticity, and inbreeding. Ecol. Model. 219, 226–233 (2008).MATH 
    Article 

    Google Scholar 
    45.Shapiro, A. M. The role of sexual behavior in density related dispersal of pierid butterflies. Am. Nat. 104, 367–372 (1970).Article 

    Google Scholar 
    46.Odendaal, F. J., Turchin, P. & Stermitz, F. R. Influence of host-plant density and male harassment on the distribution of female Euphydryas anicia (Nymphalidae). Oecologia 78, 283–288 (1989).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Baguette, M., Convie, I. & Neve, G. Male density affects female spatial behaviour in the butterfly Proclossiana eunomia. Acta. Oecol. (Montrouge) 17, 225–232 (1996).
    Google Scholar 
    48.Baguette, M., Vansteenwegen, C., Convi, I. & Neve, G. Sex-biased density-dependent migration in a metapopulation of the butterfly Proclossiana eunomia. Acta. Oecol. (Montrouge) 19, 17–24 (1998).ADS 
    Article 

    Google Scholar 
    49.Matthysen, E. Multicausality of dispersal: a review. In Dispersal Ecology And Evolution (ed. Clobert, J., Baguette, M., Benton, T. G. & Bullock, J. M.) 3–18 (Oxford University Press, 2012).50.Li, X. Y. & Kokko, H. Sex-biased dispersal: a review of the theory. Biol. Rev. 94, 721–736 (2019).PubMed 
    Article 

    Google Scholar 
    51.Dethier, V. & MacArthur, R. A field’s capacity to support a butterfly population. Nature 201, 728–729 (1964).ADS 
    Article 

    Google Scholar 
    52.Baker, R. The dilemma: when and how to go or stay. In The Biology Of Butterflies. Symposium Of The Royal Entomological Society Of London. Number 11 (ed. Vane-Wright, R. I. & Ackery, P. R.) 279–296 (Academic Press, 1984).53.Rausher, M. Egg recognition: Its advantage to a butterfly. Anim. Behav. 27, 1034–1040 (1979).Article 

    Google Scholar 
    54.Ray, C., Gilpin, M. & Smith, A. The effect of conspecific attraction on metapopulation dynamics. Biol. J. Linn. Soc. Lond. 42, 123–134 (1991).Article 

    Google Scholar 
    55.Kuussaari, M., Nieminen, M. & Hanski, I. An experimental study of migration in the Glanville fritillary butterfly Melitaea cinxia. J. Anim. Ecol. 65, 791–801 (1996).Article 

    Google Scholar 
    56.Fric, Z. & Konvicka, M. Adult population structure and behaviour of two seasonal generations of the European Map Butterfly, Araschnia levana, species with seasonal polyphenism (Nymphalidae). Nota Lepid. 23, 2–25 (2000).
    Google Scholar 
    57.Gilchrist, G. W. The consequences of sexual dimorphism in body size for butterfly flight and thermoregulation. Funct. Ecol. 4, 475–487 (1990).Article 

    Google Scholar 
    58.Klockmann, M., Karajoli, F., Kuczyk, J., Reimer, S. & Fischer, K. Fitness implications of simulated climate change in three species of copper butterflies (Lepidoptera: Lycaenidae). Biol. J. Linn. Soc. Lond. 120, 125–143 (2017).
    Google Scholar 
    59.Piaggio, A. J, Navo, K. W. & Stihler, C. W. Intraspecific comparison of population structure, genetic diversity, and dispersal among three subspecies of Townsend’s big-eared bats, Corynorhinus townsendii townsendii, C. t. pallescens, and the endangered C. t. virginianus. Conserv. Genet. 10, 143–159 (2009).60.Solmsen, N., Johannesen, J. & Schradin, C. Highly asymmetric fine-scale genetic structure between sexes of African striped mice and indication for condition dependent alternative male dispersal tactics. Mol. Ecol. 20, 1624–1634 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Bergman, K. O. & Landin, J. Population structure and movements of a threatened butterfly (Lopinga achine) in a fragmented landscape in Sweden. Biol. Conserv. 108, 361–369 (2002).Article 

    Google Scholar 
    62.Craioveanu, C., Sitar, C. & Rakosy, L. Mobility, behaviour and phenology of the Violet Copper Lycaena helle in North-Western Romania. In Jewels In The Mist. A Synopsis On The Endangered Violet Copper Butterfly Lycaena helle. (ed. Habel, J. C., Meyer, M. & Schmitt, T.) 91–105 (Pensoft, 2014).63.Turlure, C., Van Dyck, H., Goffart, P., & Schtickzelle, N. Resource-based habitat use in Lycaena helle: Significance of a functional, ecological niche-oriented approach. In Jewels In The Mist. A Synopsis On The Endangered Violet Copper Butterfly Lycaena helle. (ed. Habel, J. C., Meyer, M. & Schmitt, T.) 67–86 (Pensoft, 2014).64.Hanski, I., & Gaggiotti, O. E. Ecology, Genetics and Evolution Of Metapopulations (Elsevier Academic Press, 2004). More

  • in

    Visibility and attractiveness of Fritillaria (Liliaceae) flowers to potential pollinators

    1.Warren, J. & Mackenzie, S. Why are all colour combinations not equally represented as flower-colour polymorphisms?. New Phytol. 151, 237–241 (2001).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Armbruster, S., Fenster, C. & Dudash, M. Pollination ‘principles’ revisited: specialization, pollination syndromes, and the evolution of flowers. Scandanavian Assoc. Pollinat. Ecol. 39, 179–200 (2000).
    Google Scholar 
    3.Hargreaves, A. L., Harder, L. D. & Johnson, S. D. Consumptive emasculation: the ecological and evolutionary consequences of pollen theft. Biol. Rev. 84, 259–276 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Hansen, D. M., van der Niet, T. & Johnson, S. D. Floral signposts: testing the significance of visual ‘nectar guides’ for pollinator behaviour and plant fitness. Proc. R. Soc. B Biol. Sci. 279, 634–639 (2012).Article 

    Google Scholar 
    5.Rosas-Guerrero, V. et al. A quantitative review of pollination syndromes: do floral traits predict effective pollinators?. Ecol. Lett. 17, 388–400 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Narbona, E., Wang, H., Ortiz, P. L., Arista, M. & Imbert, E. Flower colour polymorphism in the Mediterranean Basin: occurrence, maintenance and implications for speciation. Plant Biol. 20, 8–20 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Altshuler, D. L. Flower color, hummingbird pollination, and habitat irradiance in four neotropical forests1. Biotropica 35, 344 (2003).Article 

    Google Scholar 
    8.Riordan, C. E., Ault, J. G., Langreth, S. G. & Keithly, J. S. Cryptosporidium parvum Cpn60 targets a relict organelle. Curr. Genet. 44, 138–147 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Rodríguez-Gironés, M. A. & Santamaría, L. Why are so many bird flowers red?. PLoS Biol. 2, 1515–1519 (2004).Article 
    CAS 

    Google Scholar 
    10.Whibley, A. C. et al. Evolutionary paths underlying flower color variation in Antirrhinum. Science (80-.) 313, 963–966 (2006).CAS 
    Article 
    ADS 

    Google Scholar 
    11.Papiorek, S. et al. Bees, birds and yellow flowers: pollinator-dependent convergent evolution of UV patterns. Plant Biol. 18, 46–55 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Wilson, P., Castellanos, M., Wolfe, A. D. & Thomson, J. D. Shifts between bee and bird pollination in penstemons. Plant-Pollinat. Interact. Spec. Gen. 3, 47–68 (2006).13.Wilson, P., Castellanos, M. C., Hogue, J. N., Thomson, J. D. & Armbruster, W. S. A multivariate search for pollination syndromes among penstemons. Oikos 104, 345–361 (2004).Article 

    Google Scholar 
    14.Sutherland, S. D. & Vickery, R. K. Jr. On the relative importance of floral color, shape, and nectar rewards in attracting pollinators to Mimulus. Gt. Basin Nat. 53, 107–117 (1993).
    Google Scholar 
    15.Wester, P. & Lunau, K. Plant-Pollinator Communication. Advances in Botanical Research Vol. 82 (Elsevier, 2017).
    Google Scholar 
    16.de Camargo, M. G. G. et al. How flower colour signals allure bees and hummingbirds: a community-level test of the bee avoidance hypothesis. New Phytol. 222, 1112–1122 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.van der Kooi, C. J., Dyer, A. G., Kevan, P. G. & Lunau, K. Functional significance of the optical properties of flowers for visual signalling. Ann. Bot. https://doi.org/10.1093/aob/mcy119 (2018).Article 
    PubMed Central 

    Google Scholar 
    18.Castellanos, M. C., Wilson, P. & Thomson, J. D. ‘ Anti-bee ’ and ‘ pro-bird ’ changes during the evolution of hummingbird pollination in Penstemon flowers. J. Evol. Biol. 17, 876–885 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.del Carmen Salas-Arcos, L., Lara, C., Castillo-Guevara, C., Cuautle, M. & Ornelas, J. F. “Pro-bird” floral traits discourage bumblebee visits to Penstemon gentianoides (Plantaginaceae), a mixed-pollinated herb. Sci. Nat. 106, 1–11 (2019).Article 
    CAS 

    Google Scholar 
    20.Armbruster, W. S. Evolution of floral morphology and function: an integrative approach to adaptation, constraint, and compromise in Dalechampia (Euphorbiaceae). Flor. Biol. https://doi.org/10.1007/978-1-4613-1165-2_9 (1996).Article 

    Google Scholar 
    21.Chittka, L. & Schürkens, S. Successful invasion of a floral market. Nature 411, 653 (2001).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    22.Ellis, T. J. & Field, D. L. Repeated gains in yellow and anthocyanin pigmentation in flower colour transitions in the Antirrhineae. Ann. Bot. 117, 1133–1140 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Tanaka, Y., Sasaki, N. & Ohmiya, A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. 54, 733–749 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Lázaro, A., Lundgren, R. & Totland, Ø. Pollen limitation, species’ floral traits and pollinator visitation: different relationships in contrasting communities. Oikos 124, 174–186 (2015).Article 

    Google Scholar 
    25.Jones, K. N. & Reithel, J. S. Pollinator-mediated selection on a flower color polymorphism in experimental populations of Anthirrhinum (Scrophulariaceae). Am. J. Bot. 88, 447–454 (2001).Article 

    Google Scholar 
    26.Teixido, A. L., Barrio, M. & Valladares, F. Size matters: understanding the conflict faced by large flowers in mediterranean environments. Bot. Rev. 82, 204–228 (2016).Article 

    Google Scholar 
    27.Ortiz, P. L., Fernández-Díaz, P., Pareja, D., Escudero, M. & Arista, M. Do visual traits honestly signal floral rewards at community level?. Funct. Ecol. 35, 369–383 (2021).Article 

    Google Scholar 
    28.Fenster, C. B., Cheely, G., Dudash, M. R. & Reynolds, R. J. Nectar reward and advertisement in hummingbird. Am. J. Bot. 93, 1800 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Simpson, B. B., Neff, J. L. & Simpson, B. B. Floral rewards: alternatives to pollen and nectar. Ann. Mo. Bot. Gard. 68, 301–322 (2015).Article 

    Google Scholar 
    30.Canto, A., Herrera, C. M., García, I. M., Pérez, R. & Vaz, M. Intraplant variation in nectar traits in Helleborus foetidus (Ranunculaceae) as related to floral phase, environmental conditions and pollinator exposure. Flora Morphol. Distrib. Funct. Ecol. Plants 206, 668–675 (2011).
    Google Scholar 
    31.Parachnowitsch, A. L., Manson, J. S. & Sletvold, N. Evolutionary ecology of nectar. Ann. Bot. https://doi.org/10.1093/aob/mcy132 (2018).Article 
    PubMed Central 

    Google Scholar 
    32.Gómez, J. M. et al. Association between floral traits and rewards in Erysimum mediohispanicum (Brassicaceae). Ann. Bot. 101, 1413–1420 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Worley, A. C. & Barrett, S. C. H. Evolution of floral display in Eichhornia paniculata (Pontederiaceae): genetic correlations between flower size and number. J. Evol. Biol. 14, 469–481 (2001).Article 

    Google Scholar 
    34.Lunau, K. The ecology and evolution of visual pollen signals. Plant Syst. Evol. 222, 89–111 (2000).Article 

    Google Scholar 
    35.Nicholls, E. & Hempel de Ibarra, N. Assessment of pollen rewards by foraging bees. Funct. Ecol. 31, 76–87 (2017).Article 

    Google Scholar 
    36.Tang, L.-L. & Huang, S.-Q. Evidence for reductions in floral attractants with increased selfing rates in two heterandrous species. New Phytol. https://doi.org/10.1111/j.1469-8137.2007.02115.x (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Faegri, K. & Van Der Pijl, L. Principles of Pollination Ecology (Elsevier, 2013).
    Google Scholar 
    38.Dellinger, A. S. Pollination syndromes in the 21st century: where do we stand and where may we go?. New Phytol. https://doi.org/10.1111/nph.16793 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Kostyun, J. L., Gibson, M. J. S., King, C. M. & Moyle, L. C. A simple genetic architecture and low constraint allow rapid floral evolution in a diverse and recently radiating plant genus. New Phytol. 223, 1009–1022 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Roguz, K. et al. Diversity of nectar amino acids in the Fritillaria (Liliaceae) genus: ecological and evolutionary implications. Sci. Rep. 9, 1–12 (2019).CAS 
    Article 
    ADS 

    Google Scholar 
    41.Roguz, K. et al. Functional diversity of nectary structure and nectar composition in the genus Fritillaria (liliaceae). Front. Plant Sci. 9, 1–21 (2018).Article 
    ADS 

    Google Scholar 
    42.Zych, M. & Stpiczyńska, M. Neither protogynous nor obligatory out-crossed: Pollination biology and breeding system of the European Red List Fritillaria meleagris L. (Liliaceae). Plant Biol. 14, 285–294 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Day, P. D. et al. Evolutionary relationships in the medicinally important genus Fritillaria L. (Liliaceae). Mol. Phylogenet. Evol. 80, 11–19 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Hayashi, K. Molecular systematics of Lilium and allied genera (Liliaceae): phylogenetic relationships among Lilium and related genera based on the rbcL and matK gene sequence data. Plant Species Biol. 15, 73–93 (2000).Article 

    Google Scholar 
    45.Stpiczyńska, M., Nepi, M. & Zych, M. Nectaries and male-biased nectar production in protandrous flowers of a perennial umbellifer Angelica sylvestris L. (Apiaceae). Plant Syst. Evol. https://doi.org/10.1007/s00606-014-1152-3 (2014).Article 

    Google Scholar 
    46.Hill, L. A taxonomic history of Japanese endemic Fritillaria (Liliaceae). Kew Bull. 66, 227–240 (2018).Article 

    Google Scholar 
    47.Kiani, M. et al. Iran supports a great share of biodiversity and floristic endemism for Fritillaria spp. (Liliaceae): a review. Plant Divers. 39, 245–262 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Shaw, A. J. Phylogeny of the Sphgnpsida based on chloroplast and nuclear DNA sequences. Bryologist 103, 277–306 (2000).CAS 
    Article 

    Google Scholar 
    49.Rønsted, N., Law, S., Thornton, H., Fay, M. F. & Chase, M. W. Molecular phylogenetic evidence for the monophyly of Fritillaria and Lilium (Liliaceae; Liliales) and the infrageneric classification of Fritillaria. Mol. Phylogenet. Evol. 35, 509–527 (2005).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    50.Tekşen, M. & Aytaç, Z. The revision of the genus Fritillaria L. (Liliaceae) in the Mediterranean region (Turkey). Turk. J. Bot. 35, 447–478 (2011).
    Google Scholar 
    51.Roguz, K., Hill, L., Roguz, A. & Zych, M. Evolution of bird and insect flower traits in Fritillaria L. (Liliaceae). Front. Plant Sci. 12, 656783 (2020).Article 

    Google Scholar 
    52.Zaharof, E. Variation and taxonomy of Fritillaria graeca (Liliaceae) in Greece. Plant Syst. Evol. 154, 41–61 (1986).Article 

    Google Scholar 
    53.Búrquez, A. & Burquez, A. Blue tits, Parus caeruleus, as pollinators of the crown imperial, Fritillaria imperialis, in Britain. Oikos 55, 335 (1989).Article 

    Google Scholar 
    54.Peters, W. S., Pirl, M., Gottsberger, G. & Peters, D. Pollination of the crown imperial Fritillaria imperialis by great tits Parus major. J. Ornithol. 136, 207–212 (1995).Article 

    Google Scholar 
    55.Pendegrass, K. & Robinson, A. A recovery plan for Fritillaria gentneri (Gentner’s fritillary). Agric. U.S.F.a.W. Serv. (2005).56.Zox, H. Ecology of black lily (Fritillaria camschatcensis): a Washington State sensitive species. Douglasia (2008).57.Cronk, Q. & Ojeda, I. Bird-pollinated flowers in an evolutionary and molecular context. J. Exp. Bot. 59, 715–727 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Lunau, K. & Verhoeven, C. Wie Bienen Blumen sehen: Falschfarbenaufnahmen von Blüten. Biol. Unserer Zeit 47, 120–127 (2017).Article 

    Google Scholar 
    59.Kranas, H., Spalik, K. & Banasiak, Ł. MatPhylobi, 0.1 (University of Warsaw, 2018).
    Google Scholar 
    60.Kuraku, S., Zmasek, C. M., Nishimura, O. & Katoh, K. Leaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Res. https://doi.org/10.1093/nar/gkt389 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Maddison, W. P. & Maddison, D. R. Mesquite: a modular system for evolutionary analysis. Evolution 62, 1103–1118 (2018).
    Google Scholar 
    62.Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinform. Appl. 30, 1312–1313 (2014).CAS 
    Article 

    Google Scholar 
    63.Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. https://doi.org/10.1093/ve/vey016 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Kim, J. S. & Kim, J. H. Updated molecular phylogenetic analysis, dating and biogeographical history of the lily family (Liliaceae: Liliales). Bot. J. Linn. Soc. 187, 579–593 (2018).Article 

    Google Scholar 
    65.Cockerell, T. D. A. Two new plants from the tertiary rocks of the west. Torrey Bot. Soc. 14, 135–137 (1914).
    Google Scholar 
    66.Ettingshausen, C. B. III. ‘ Report on Phyto-Palaeontologieal Investigations of Fossil Flora of Alum Bay.’ By Dr. (1AD).67.Conran, J. G., Carpenter, R. J. & Jordan, G. J. Early Eocene Ripogonum (Liliales: Ripogonaceae) leaf macrofossils from southern Australia. Aust. Syst. Bot. 22, 219–228 (2009).Article 

    Google Scholar 
    68.Lanfear, R., Calcott, B., Ho, S. Y. W. & Guindon, S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. https://doi.org/10.1093/molbev/mss020 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Paradis, E. & Schliep, K. Phylogenetics ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics https://doi.org/10.1093/bioinformatics/bty633 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    71.Garland, T., Dickerman, A. W., Janis, C. M. & Jones, J. A. Phylogenetic Analysis of Covariance by Computer Simulation. vol. 42, 1993. https://academic.oup.com/sysbio/article/42/3/265/1629506 (Accessed 09 March 2021).72.Orme, C. D. L. The caper package: comparative analyses in phylogenetics and evolution in R, 1–36, 2012. See http://caper.r-forge.r-project.org/. (Accessed 09 March 2021).73.TEAM, R. C. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).
    Google Scholar 
    74.Dyer, A. G. et al. Parallel evolution of angiosperm colour signals: common evolutionary pressures linked to hymenopteran vision. Proc. R. Soc. B Biol. Sci. 279, 3606–3615 (2012).Article 

    Google Scholar 
    75.Ollerton, J. Reconciling ecological processes with phylogenetic patterns: the apparent paradox of plant-pollinator systems. J. Ecol. 84, 767–769 (1996).Article 

    Google Scholar 
    76.Wessinger, C. A. & Rausher, M. D. Predictability and irreversibility of genetic changes associated with flower color evolution in Penstemon barbatus. Evolution (N. Y.) 68, 1058–1070 (2014).CAS 

    Google Scholar 
    77.Wittmann, D., Radtke, R., Cure, J. R. & Schifino-Wittmann, M. T. Coevolved reproductive strategies in the oligolectic bee Callonychium petuniae (Apoidea, Andrenidae) and three purple flowered Petunia species (Solanaceae) in southern Brazil. J. Zool. Syst. Evol. Res. 28, 157–165 (1990).Article 

    Google Scholar 
    78.Chittka, L. & Waser, N. M. Why red flowers are not invisible to bees. Isr. J. Plant Sci. 45, 169–183 (1997).Article 

    Google Scholar 
    79.Kołodziejska-Degórska, I. & Zych, M. Bees substitute birds in pollination of ornitogamous climber Campsis radicans (L.) seem. in Poland. Acta Soc. Bot. Pol. 75, 79–85 (2006).Article 

    Google Scholar 
    80.Mayr, G. New specimens of the early oligocene old world hummingbird Eurotrochilus inexpectatus. J. Ornithol. 148, 105–111 (2007).Article 

    Google Scholar 
    81.Mayr, G. Old world fossil record of modern-type hummingbirds. Science (80-.) 304, 861–864 (2004).CAS 
    Article 
    ADS 

    Google Scholar 
    82.Schiestl, F. P. & Johnson, S. D. Pollinator-mediated evolution of floral signals. Trends Ecol. Evol. 28, 307–315 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Daumer, K. Blumenfarben, wie sie die Bienen sehen. Z. Vgl. Physiol. 41, 49–110 (1958).
    Google Scholar 
    84.Kevan, P. G. Floral colours in the high Arctic with reference to insect flower relations and pollination. Can. J. Bot. 50, 2289–2316 (1972).Article 

    Google Scholar 
    85.Chittka, L., Shmida, A., Troje, N. & Menzel, R. Ultraviolet as a component of flower reflections, and the colour perception of hymenoptera. Vis. Res. 34, 1489–1508 (1994).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Lunau, K. Stamens and mimic stamens as components of floral colour patterns. Bot. Jahrbücher für Syst. Pflanzengeschichte und Pflanzengeographie 127, 13–41 (2006).Article 

    Google Scholar 
    87.Koski, M. H. & Ashman, T. L. Dissecting pollinator responses to a ubiquitous ultraviolet floral pattern in the wild. Funct. Ecol. 28, 868–877 (2014).Article 

    Google Scholar 
    88.Menzel, R. & Shmida, A. The ecology of flower colours and the natural colour vision of insect pollinators: the Israeli flora as a study case. Biol. Rev. 68, 81–120 (1993).Article 

    Google Scholar 
    89.van der Kooi, C. J. & Stavenga, D. G. Vividly coloured poppy flowers due to dense pigmentation and strong scattering in thin petals. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 205, 363–372 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Kevan, P., Giurfa, M. & Chittka, L. Why are there so many and so few white flowers?. Trends Plant Sci. 1, 280–284 (1996).Article 

    Google Scholar 
    91.Kapustjansky, A., Chittka, L. & Spaethe, J. Bees use three-dimensional information to improve target detection. Naturwissenschaften 97, 229–233 (2010).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    92.Chittka, L. & Raine, N. E. Recognition of flowers by pollinators. Curr. Opin. Plant Biol. 9, 428–435 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Hansen, D. M., Olesen, J. M., Mione, T., Johnson, S. D. & Müller, C. B. Coloured nectar: Distribution, ecology, and evolution of an enigmatic floral trait. Biol. Rev. 82, 83–111 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Raguso, R. A. Start making scents: the challenge of integrating chemistry into pollination ecology. Entomol. Exp. Appl. 128, 196–207 (2008).CAS 
    Article 

    Google Scholar 
    95.Sapir, Y., Shmida, A. & Ne’eman, G. Morning floral heat as a reward to the pollinators of the Oncocyclus irises. Oecologia 147, 53–59 (2006).PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    96.Bazzaz, F. A. & Carslon, R. W. Photosynthetic contribution of flowers and seeds to reproductive effort of an annual colonizer. New Phytol. 82, 223–232 (1979).Article 

    Google Scholar  More

  • in

    Influence of intrinsic and extrinsic attributes on neonate survival in an invasive large mammal

    1.Sæther, B.-E. Environmental stochasticity and population dynamics of large herbivores: A search for mechanisms. Trends Ecol. Evol. 12, 143–149 (1997).PubMed 
    Article 

    Google Scholar 
    2.Gaillard, J.-M., Festa-Bianchet, M. & Yoccoz, N. G. Population dynamics of large herbivores: Variable recruitment with constant adult survival. Trends Ecol. Evol. 13, 58–63 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Coulson, T. et al. Estimating individual contributions to population growth: Evolutionary fitness in ecological time. Proc. R. Soc. B 273, 547–555 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Pelletier, F., Clutton-Brock, T., Pemberton, J., Tuljapurkar, S. & Coulson, T. The evolutionary demography of ecological change: Linking trait variation and population growth. Science 315, 1571–1574 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Pettorelli, N., Coulson, T., Durant, S. M. & Gaillard, J.-M. Predation, individual variability and vertebrate population dynamics. Oecologia 167, 305 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    6.Forchhammer, M. C., Clutton-Brock, T. H., Lindström, J. & Albon, S. D. Climate and population density induce long-term cohort variation in a northern ungulate. J. Anim. Ecol. 70, 721–729 (2001).Article 

    Google Scholar 
    7.Owen-Smith, N., Mason, D. R. & Ogutu, J. O. Correlates of survival rates for 10 African ungulate populations: Density, rainfall and predation. J. Anim. Ecol. 74, 774–788 (2005).Article 

    Google Scholar 
    8.Gaillard, J.-M., Festa-Bianchet, M., Yoccoz, N., Loison, A. & Toigo, C. Temporal variation in fitness components and population dynamics of large herbivores. Annu. Rev. Ecol. Syst. 31, 367–393 (2000).Article 

    Google Scholar 
    9.Griffin, K. A. et al. Neonatal mortality of elk driven by climate, predator phenology and predator community composition. J. Anim. Ecol. 80, 1246–1257 (2011).PubMed 
    Article 

    Google Scholar 
    10.Kilgo, J. C., Vukovich, M., Scott Ray, H., Shaw, C. E. & Ruth, C. Coyote removal, understory cover, and survival of white-tailed deer neonates. J. Wildl. Manag. 78, 1261–1271 (2014).Article 

    Google Scholar 
    11.Coltman, D. W., Bowen, W. D. & Wright, J. M. Birth weight and neonatal survival of harbour seal pups are positively correlated with genetic variation measured by microsatellites. Proc. R. Soc. B 265, 803–809 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Kolbe, J. & Janzen, F. The influence of propagule size and maternal nest-site selection on survival and behaviour of neonate turtles. Funct. Ecol. 15, 772–781 (2001).Article 

    Google Scholar 
    13.Kissner, K. J. & Weatherhead, P. J. Phenotypic effects on survival of neonatal northern watersnakes Nerodia sipedon. J. Anim. Ecol. 74, 259–265 (2005).Article 

    Google Scholar 
    14.Carstensen, M., Delgiudice, G. D., Sampson, B. A. & Kuehn, D. W. Survival, birth characteristics, and cause-specific mortality of white-tailed deer neonates. J. Wildl. Manag. 73, 175–183 (2009).Article 

    Google Scholar 
    15.Guttery, M. R. et al. Effects of landscape-scale environmental variation on greater sage-grouse chick survival. PLoS One 8, e65582 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Duquette, J. F., Belant, J. L., Svoboda, N. J., Beyer, D. E. Jr. & Lederle, P. E. Effects of maternal nutrition, resource use and multi-predator risk on neonatal white-tailed deer survival. PLoS One 9, 1–10 (2014).Article 

    Google Scholar 
    17.Pimentel, D. In Managing Vertebrate Invasive Species: Proceedings of an International Symposium. (eds. Pitt, W.C. et al.) 2–8 (USDA/APHIS/WS, 2007).18.Pitt, W. C., Beasley, J. & Witmer, G. W. Ecology and Management of Terrestrial Vertebrate Invasive Species in the United States. 7–31 (CRC Press, 2018).19.Strickland, B. K., Smith, M. D., Smith, A. L. Wild pig damage to resources. In Invasive Wild Pigs in North America: Ecology, Impacts, and Management (eds. Vercauteren, K. C. et al.) 143–174 (CRC Press, 2020).20.Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. In 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive Species Database. Vol. 12 (Invasive Species Specialist Group, Species Survival Commission, World Conservation Union (IUCN), 2000).21.Keiter, D. A., Mayer, J. J. & Beasley, J. C. What is in a “common” name? A call for consistent terminology for nonnative Sus scrofa. Wild. Soc. Bull. 40, 384–387 (2016).Article 

    Google Scholar 
    22.Smyser, T. J. et al. Mixed ancestry from wild and domestic lineages contributes to the rapid expansion of invasive feral swine. Mol. Ecol. 29, 1103–1119 (2020).PubMed 
    Article 

    Google Scholar 
    23.Bevins, S. N., Pedersen, K., Lutman, M. W., Gidlewski, T. & Deliberto, T. J. Consequences associated with the recent range expansion of nonnative feral swine. BioSci. 64, 291–299 (2014).Article 

    Google Scholar 
    24.Mohr, D., Cohnstaedt, L. W. & Topp, W. Wild boar and red deer affect soil nutrients and soil biota in steep oak stands of the Eifel. Soil Biol. Biochem. 37, 693–700 (2005).CAS 
    Article 

    Google Scholar 
    25.Barrios-García, M. N. & Ballari, S. A. Impact of wild boar (Sus scrofa) in its introduced and native range: A review. Biol. Invasions 14, 2283–2300 (2012).Article 

    Google Scholar 
    26.Beasley, J. C., Ditchkoff, S. S., Mayer, J. J., Smith, M. D. & Vercauteren, K. C. Research priorities for managing invasive wild pigs in North America. J. Wildl. Manag. 82, 674–681 (2018).Article 

    Google Scholar 
    27.Ditchkoff, S. S. & Bodenchuk, M. J. Management of wild pigs. In Invasive Wild Pigs in North America: Ecology, Impacts, and Management (eds. Vercauteren, K. C. et al.) 175–198 (CRC Press, 2020).28.Bieber, C. & Ruf, T. Population dynamics in wild boar Sus scrofa: Ecology, elasticity of growth rate and implications for the management of pulsed resource consumers. J. Appl. Ecol. 42, 1203–1213 (2005).Article 

    Google Scholar 
    29.Hanson, L. B. et al. Effect of experimental manipulation on survival and recruitment of feral pigs. Wildl. Res. 36, 185–191 (2009).Article 

    Google Scholar 
    30.Keiter, D. A. et al. Effects of scale of movement, detection probability, and true population density on common methods of estimating population density. Sci. Rep. 7, 1–12 (2017).CAS 
    Article 

    Google Scholar 
    31.Keiter, D. A., Kilgo, J. C., Vukovich, M. A., Cunningham, F. L. & Beasley, J. C. Development of known-fate survival monitoring techniques for juvenile wild pigs (Sus scrofa). Wildl. Res. 44, 165–173 (2017).Article 

    Google Scholar 
    32.Snow, N. P., Miller, R. S., Beasely, J. C. & Pepin, K. M. Wild pig population dynamics. In Invasive Wild Pigs in North America: Ecology, Impacts, and Management (eds. Vercauteren, K. C. et al.) 57–82 (CRC Press, 2020).33.Alonso-Spilsbury, M., Ramirez-Necoechea, R., Gonzalez-Lozano, M., Mota-Rojas, D. & Trujillo-Ortega, M. Piglet survival in early lactation: A review. J. Anim. Vet. Adv. 1, 76–86 (2007).
    Google Scholar 
    34.Baubet, E., Servanty, S. & Brandt, S. Tagging piglets at the farrowing nest in the wild: Some preliminary guidelines. Acta Sylvatica Lig. Hung. 5, 159–166 (2009).
    Google Scholar 
    35.Kerr, J. & Cameron, N. Reproductive performance of pigs selected for components of efficient lean growth. Anim. Sci. 60, 281–290 (1995).Article 

    Google Scholar 
    36.Van der Lende, T., KnoI, E. & Leenhouwers, J. Prenatal development asa predisposing factor for perinatal lossesin pigs. Reproduction 58, 247–261 (2001).PubMed 
    PubMed Central 

    Google Scholar 
    37.Mount, L. The heat loss from new-born pigs to the floor. Res. Vet. Sci. 8, 175–186 (1967).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Herpin, P., Damon, M. & Le Dividich, J. Development of thermoregulation and neonatal survival in pigs. Livest. Prod. Sci. 78, 25–45 (2002).Article 

    Google Scholar 
    39.Gaillard, J.-M., Pontier, D., Brandt, S., Jullien, J.-M. & Allaine, D. Sex differentiation in postnatal growth rate: A test in a wild boar population. Oecologia 90, 167–171 (1992).ADS 
    Article 

    Google Scholar 
    40.Trivers, R. L. & Willard, D. E. Natural selection of parental ability to vary the sex ratio of offspring. Science 179, 90–92 (1973).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Clutton-Brock, T. H., Albon, S. D. & Guinness, F. E. Parental investment and sex differences in juvenile mortality in birds and mammals. Nature 313, 131–133 (1985).ADS 
    Article 

    Google Scholar 
    42.Theil, P. K., Nielsen, M. O., Sørensen, M. T. & Lauridsen, C. Lactation, milk and suckling. In Nutritional Physiology of Pigs: with emphasis on Danish production conditions (eds. Knudsen et al.) 1–49 (University of Copenhagen, 2012).43.Theil, P. K., Lauridsen, C. & Quesnel, H. Neonatal piglet survival: Impact of sow nutrition around parturition on fetal glycogen deposition and production and composition of colostrum and transient milk. Animal 8, 1021–1030 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Mayer, J. & Brisbin Jr, I. L. Wild pigs of the Savannah River Site. Report No. SRNL-RP-2011-00295, 114 (Savannah River National Laboratory, 2012).45.Withey, J. C., Bloxton, T. D. & Marzluff, J. M. Effects of tagging and location error in wildlife telemetry studies. In Radio Tracking and Animal Populations. 43–75 (Academic Press, 2001).46.Webster, S. C. & Beasley, J. C. Influence of lure choice and survey duration on scent stations for carnivore surveys. Wildl. Soc. Bull. 43, 661–668 (2019).Article 

    Google Scholar 
    47.Matschke, G. H. Aging European wild hogs by dentition. J. Wildl. Manag. 31, 109–113 (1967).Article 

    Google Scholar 
    48.Mayer, J. J., Martin, F. D. & Brisbin, I. L. Characteristics of wild pig farrowing nests and beds in the upper Coastal Plain of South Carolina. Appl. Anim. Behav. Sci. 78, 1–17 (2002).Article 

    Google Scholar 
    49.Kilgo, J. C., Ray, H. S., Vukovich, M., Goode, M. J. & Ruth, C. Predation by coyotes on white-tailed deer neonates in South Carolina. J. Wildl. Manag. 76, 1420–1430 (2012).Article 

    Google Scholar 
    50.Mayer, J. J. & Brisbin, I. J., Jr. Wild Pigs: Biology, Damage, Control Techniques and Management. Report No. SRNL-RP-2009-00869, 77–104 (Savannah River National Laboratory, 2009).51.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using {lme4}. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    52.R: A language and environment for statistical computing. v. 3.5.3 (R Foundation for Statistical Computing, Vienna, Austria, 2020).53.Weinbeck, S. W., Viner, B. J., Rivera-Giboyeaux A. M. Meteorological Monitoring Program at the Savannah River Site. Report No. SRNL-TR-2020-00197 (Savannah River National Laboratory, 2020).54.Plummer, M. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing. 1–10 (Vienna, Austria).55.Denwood, M. J. runjags: An R package providing interface utilities, model templates, parallel computing methods and additional distributions for MCMC models in JAGS. J. Stat. Softw. 71, 1–25 (2016).Article 

    Google Scholar 
    56.Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).MATH 

    Google Scholar 
    57.Pollock, K. H., Winterstein, S. R., Bunck, C. M. & Curtis, P. D. Survival analysis in telemetry studies: The staggered entry design. J. Wildl. Manag. 53, 7–15 (1989).Article 

    Google Scholar 
    58.Harrell, F. Regression Modeling Strategies (ed. Harrell, F.) 60–64 (Springer, 2001).59.McCoy, D. E. et al. A comparative study of litter size and sex composition in a large dataset of callitrichine monkeys. Am. J. Primatol. 81, e23038. https://doi.org/10.1002/ajp.23038 (2019).60.Watanabe, S. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3594 (2010).61.Burnham, K. P. & Anderson, D. R. A practical information-theoretic approach. In Model Selection and Multimodel Inference, 2nd edn. 75–117 (Springer, 2002).62.Taylor, R. B., Hellgren, E. C., Gabor, T. M. & Ilse, L. M. Reproduction of feral pigs in southern Texas. J. Mammal. 79, 1325–1331 (1998).Article 

    Google Scholar 
    63.Mittwoch, U. Blastocysts prepare for the race to be male. Hum. Reprod. 8, 1550–1555 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Stanton, H. & Carroll, J. Potential mechanisms responsible for prenatal and perinatal mortality or low viability of swine. J. Anim. Sci. 38, 1037–1044 (1974).CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Hartsock, T. G. & Graves, H. Neonatal behavior and nutrition-related mortality in domestic swine. J. Anim. Sci. 42, 235–241 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Spicer, E. et al. Causes of preweaning mortality on a large intensive piggery. Aus. Vet. J. 63, 71–75 (1986).CAS 
    Article 

    Google Scholar 
    67.Hendrix, W. F., Kelley, K. W., Gaskins, C. T. & Hinrichs, D. J. Porcine neonatal survival and serum gamma globulins. J. Anim. Sci. 47, 1281–1286 (1978).CAS 
    PubMed 
    Article 

    Google Scholar 
    68.De Roth, L. & Downie, H. Evaluation of viability of neonatal swine. Can. Vet. J. 17, 275–279 (1976).PubMed 
    PubMed Central 

    Google Scholar 
    69.Williams, G. The question of adaptive sex ratio in outcrossed vertebrates. Proc. R. Soc. Lond. B 205, 567–580 (1979).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Servanty, S., Gaillard, J.-M., Allainé, D., Brandt, S. & Baubet, E. Litter size and fetal sex ratio adjustment in a highly polytocous species: The wild boar. Behav. Ecol. 18, 427–432 (2007).Article 

    Google Scholar 
    71.Fernández-Llario, P., Carranza, J. & Mateos-Quesada, P. Sex allocation in a polygynous mammal with large litters: The wild boar. Anim. Behav. 58, 1079–1084 (1999).PubMed 
    Article 

    Google Scholar 
    72.Focardi, S., Gaillard, J.-M., Ronchi, F. & Rossi, S. Survival of wild boars in a variable environment: unexpected life-history variation in an unusual ungulate. J. Mammal. 89, 1113–1123 (2008).Article 

    Google Scholar 
    73.Gamelon, M. et al. Do age-specific survival patterns of wild boar fit current evolutionary theories of senescence?. Evolution 68, 3636–3643 (2014).PubMed 
    Article 

    Google Scholar 
    74.Saïd, S., Tolon, V., Brandt, S. & Baubet, E. Sex effect on habitat selection in response to hunting disturbance: The study of wild boar. Eur. J. Wildl. Res. 58, 107–115 (2012).Article 

    Google Scholar 
    75.Caro, T. The adaptive significance of coloration in mammals. BioSci. 55, 125–136 (2005).Article 

    Google Scholar 
    76.Tewes, M. E., Mock, J. M. & Young, J. H. Bobcat predation on quail, birds, and mesomammals. In Proc. Nat. Quail Symp. 65–70. (2002).77.Jones, M. P., Pierce, K. E. Jr. & Ward, D. Avian vision: a review of form and function with special consideration to birds of prey. J. Ex. Pet Med. 16, 69–87 (2007).Article 

    Google Scholar 
    78.Walsberg, G. E. Coat color and solar heat gain in animals. BioSci. 33, 88–91 (1983).Article 

    Google Scholar 
    79.Lack, D. The Natural Regulation of Animal Numbers. (ed. Lack, D.) 343 (Oxford University Press, 1954).80.Stearns, S. C. Life-history tactics: A review of the ideas. Q. Rev. Biol. 51, 3–47 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Gamelon, M. et al. The relationship between phenotypic variation among offspring and mother body mass in wild boar: Evidence of coin-flipping?. J. Anim. Ecol. 82, 937–945 (2013).PubMed 
    Article 

    Google Scholar 
    82.Mitchell, G. & Stevens, C. Primiparous and multiparous monkey mothers in a mildly stressful social situation: First three months. Dev. Psychobiol. J. Int. Soc. Dev. Psychobiol. 1, 280–286 (1968).Article 

    Google Scholar 
    83.Okai, D., Aherne, F. & Hardin, R. Effects of sow nutrition in late gestation on the body composition and survival of the neonatal pig. Can. J. Anim. Sci. 57, 439–448 (1977).CAS 
    Article 

    Google Scholar  More

  • in

    Thermally tolerant intertidal triplefin fish (Tripterygiidae) sustain ATP dynamics better than subtidal species under acute heat stress

    1.Somero, G. N. Thermal physiology and vertical zonation of intertidal animals: Optima, limits, and costs of living. Integr. Comp. Biol. 42(4), 780–789 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Hochachka, P. W. & Somero, G. N. Biochemical Adaptation: Mechanism and Process in Physiological Evolution (Oxford University Press, 2002).
    Google Scholar 
    3.Helmuth, B. et al. Living on the Edge of Two Changing Worlds: Forecasting the Responses of Rocky Intertidal Ecosystems to Climate Change Vol. 37 (ECU Publications, 2006).
    Google Scholar 
    4.Harley, C. D. et al. The impacts of climate change in coastal marine systems. Ecol. Lett. 9(2), 228–241 (2006).ADS 
    MathSciNet 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Woodward, A. Climate change: Disruption, risk and opportunity. Glob. Transit. 1, 44–49 (2019).Article 

    Google Scholar 
    6.Hoffmann, K. H. 6—Metabolic and enzyme adaptation to temperature and pressure. In The Mollusca (ed. Hochachka, P. W.) 219–255 (Academic Press, 1983).
    Google Scholar 
    7.Pörtner, H. O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315(5808), 95 (2007).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    8.Pörtner, H.-O., Bock, C. & Mark, F. C. Oxygen- and capacity-limited thermal tolerance: Bridging ecology and physiology. J. Exp. Biol. 220(15), 2685–2696 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Pörtner, H. Climate change and temperature-dependent biogeography: Oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88(4), 137–146 (2001).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Verberk, W. C. et al. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 192, 64–78 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Jutfelt, F. et al. Oxygen- and capacity-limited thermal tolerance: Blurring ecology and physiology. J. Exp. Biol. 221(1), jeb169615 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Ern, R. et al. Some like it hot: Thermal tolerance and oxygen supply capacity in two eurythermal crustaceans. Sci. Rep. 5, 10743 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Mitchell, P. et al. Regulation of Metabolic Processes in Mitochondria (Elsevier, 1966).
    Google Scholar 
    14.Hüttemann, M. et al. Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease. J. Bioenerg. Biomembr. 40(5), 445 (2008).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    15.Iftikar, F. I. & Hickey, A. J. Do mitochondria limit hot fish hearts? Understanding the role of mitochondrial function with heat stress in Notolabrus celidotus. PLoS One 8(5), e64120 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Schulte, P. M. The effects of temperature on aerobic metabolism: Towards a mechanistic understanding of the responses of ectotherms to a changing environment. J. Exp. Biol. 218(Pt 12), 1856–1866 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Power, A. et al. Uncoupling of oxidative phosphorylation and ATP synthase reversal within the hyperthermic heart. Physiol. Rep. 2(9), e12138 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Lemieux, H., Blier, P. U. & Gnaiger, E. Remodeling pathway control of mitochondrial respiratory capacity by temperature in mouse heart: Electron flow through the Q-junction in permeabilized fibers. Sci. Rep. 7(1), 2840 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Christen, F. et al. Thermal tolerance and thermal sensitivity of heart mitochondria: Mitochondrial integrity and ROS production. Free Radic. Biol. Med. 116, 11–18 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Kiyatkin, E. A. Brain hyperthermia as physiological and pathological phenomena. Brain Res. Brain Res. Rev. 50(1), 27–56 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Kiyatkin, E. A. Brain temperature homeostasis: Physiological fluctuations and pathological shifts. Front. Biosci. (Landmark Ed) 15, 73–92 (2010).CAS 
    Article 

    Google Scholar 
    22.Wang, H. et al. Brain temperature and its fundamental properties: A review for clinical neuroscientists. Front. Neurosci.-switz 8, 307–307 (2014).
    Google Scholar 
    23.Pellerin, L. & Magistretti, P. J. How to balance the brain energy budget while spending glucose differently. J. Physiol. 546(Pt 2), 325–325 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Zhao, Y. & Boulant, J. A. Temperature effects on neuronal membrane potentials and inward currents in rat hypothalamic tissue slices. J. Physiol. 564(Pt 1), 245–257 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Obel, L. F. et al. Brain glycogen-new perspectives on its metabolic function and regulation at the subcellular level. Front. Neuroenergetics 4, 3 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.White, M. G. et al. Mitochondrial dysfunction induced by heat stress in cultured rat CNS neurons. J. Neurophysiol. 108(8), 2203–2214 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Walter, E. J. & Carraretto, M. The neurological and cognitive consequences of hyperthermia. Crit. Care (London, England) 20(1), 199–199 (2016).Article 

    Google Scholar 
    28.Vornanen, M. & Paajanen, V. Seasonal changes in glycogen content and Na+-K+-ATPase activity in the brain of crucian carp. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291(5), R1482–R1489 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Hochachka, P. W. et al. Unifying theory of hypoxia tolerance: Molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc. Natl. Acad. Sci. U. S. A. 93(18), 9493–9498 (1996).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Chung, D. J., Bryant, H. J. & Schulte, P. M. Thermal acclimation and subspecies-specific effects on heart and brain mitochondrial performance in a eurythermal teleost (Fundulus heteroclitus). J. Exp. Biol. 220(8), 1459–1471 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    31.Brahim, A., Mustapha, N. & Marshall, D. J. Non-reversible and reversible heat tolerance plasticity in tropical intertidal animals: Responding to habitat temperature heterogeneity. Front. Physiol. 9, 1909–1909 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Pagel, M. Inferring evolutionary processes from phylogenies. Zool. Scr. 26(4), 331–348 (1997).Article 

    Google Scholar 
    33.Hilton, Z., Clements, K. D. & Hickey, A. J. Temperature sensitivity of cardiac mitochondria in intertidal and subtidal triplefin fishes. J. Comp. Physiol. B 180(7), 979–990 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.McArley, T. J., Hickey, A. J. R. & Herbert, N. A. Hyperoxia increases maximum oxygen consumption and aerobic scope of intertidal fish facing acutely high temperatures. J. Exp. Biol. 221(22), 189993 (2018).Article 

    Google Scholar 
    35.Gout, E. et al. Interplay of Mg2+, ADP, and ATP in the cytosol and mitochondria: Unravelling the role of Mg2+ in cell respiration. Proc. Natl. Acad. Sci. U. S. A. 111(43), E4560–E4567 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Pham, T. et al. Mitochondrial inefficiencies and anoxic ATP hydrolysis capacities in diabetic rat heart. Am. J. Physiol. Cell Physiol. 307(6), C499-507 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Masson, S. W. C. et al. Mitochondrial glycerol 3-phosphate facilitates bumblebee pre-flight thermogenesis. Sci. Rep. 7(1), 13107 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Chinopoulos, C. et al. A novel kinetic assay of mitochondrial ATP-ADP exchange rate mediated by the ANT. Biophys. J. 96(6), 2490–2504 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Devaux, J. B. L. et al. Acidosis maintains the function of brain mitochondria in hypoxia-tolerant triplefin fish: A strategy to survive acute hypoxic exposure? Front. Physiol. 9, 1941 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Goo, S. et al. Multiscale measurement of cardiac energetics. Clin. Exp. Pharmacol. Physiol. 40(9), 671–681 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Lagerspetz, K. Y. Temperature effects on different organization levels in animals. Symp. Soc. Exp. Biol. 41, 429–449 (1987).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Rosenthal, J. J. & Bezanilla, F. A comparison of propagated action potentials from tropical and temperate squid axons: Different durations and conduction velocities correlate with ionic conductance levels. J. Exp. Biol. 205(Pt 12), 1819–1830 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Robertson, R. M. Thermal stress and neural function: Adaptive mechanisms in insect model systems. J. Therm. Biol. 29(7), 351–358 (2004).CAS 
    Article 

    Google Scholar 
    44.Miller, N. A. & Stillman, J. H. Neural thermal performance in porcelain crabs, Genus Petrolisthes. Physiol. Biochem. Zool. 85(1), 29–39 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Gladwell, R. T., Bowler, K. & Duncan, C. J. Heat death in the crayfish Austropotamobius pallipes—Ion movements and their effects on excitable tissues during heat death. J. Therm. Biol. 1(2), 79–94 (1976).CAS 
    Article 

    Google Scholar 
    46.Chen, I. & Lui, F. Neuroanatomy, Neuron Action Potential (StatPearls Publishing, 2019).
    Google Scholar 
    47.Milligan, L. P. & McBride, B. W. Energy costs of ion pumping by animal tissues. J. Nutr. 115(10), 1374–1382 (1985).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Buzatu, S. The temperature-induced changes in membrane potential. Riv. Biol. 102(2), 199–217 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    49.Krans, J. L., Rivlin, P. K. & Hoy, R. R. Demonstrating the temperature sensitivity of synaptic transmission in a Drosophila mutant. J. Undergrad. Neurosci. Educ. 4(1), A27–A33 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    50.Khan, J. R. et al. Thermal plasticity of skeletal muscle mitochondrial activity and whole animal respiration in a common intertidal triplefin fish, Forsterygion lapillum (Family: Tripterygiidae). J. Comp. Physiol. B 184(8), 991–1001 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.McArley, T. et al. Intertidal triplefin fishes have a lower critical oxygen tension (Pcrit), higher maximal aerobic capacity, and higher tissue glycogen stores than their subtidal counterparts. J. Comp. Physiol. B. 189, 399–411 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Pfleger, J., He, M. & Abdellatif, M. Mitochondrial complex II is a source of the reserve respiratory capacity that is regulated by metabolic sensors and promotes cell survival. Cell Death Dis. 6(7), e1835–e1835 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Brand, M. D. The efficiency and plasticity of mitochondrial energy transduction. Biochem. Soc. Trans. 33(Pt 5), 897–904 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Brown, J. H. et al. Toward a metabolic theory of ecology. Ecology 85(7), 1771–1789 (2004).ADS 
    Article 

    Google Scholar 
    55.Salin, K. et al. Variation in the link between oxygen consumption and ATP production, and its relevance for animal performance. Proc. Biol. Sci. 2015(282), 20151028–20151028 (1812).
    Google Scholar 
    56.Findly, R. C., Gillies, R. J. & Shulman, R. G. In vivo phosphorus-31 nuclear magnetic resonance reveals lowered ATP during heat shock of Tetrahymena. Science 219(4589), 1223 (1983).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Sharma, H. S. Neurobiology of Hyperthermia (Elsevier, 2011).
    Google Scholar 
    58.Salin, K. et al. Simultaneous measurement of mitochondrial respiration and ATP production in tissue homogenates and calculation of effective P/O ratios. Physiol. Rep. 4(20), e13007 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Hinkle, P. C. P/O ratios of mitochondrial oxidative phosphorylation. Biochim. Biophys. Acta BBA Bioenerg. 1706(1), 1–11 (2005).CAS 

    Google Scholar  More