Saxon E, Bertozzi C. Cell surface engineering by a modified Staudinger reaction. Science. 2000;287:2007–10.CAS
Google Scholar
Staudinger H, Meyer J. Über neue organische Phosphorverbindungen III. Phosphinmethylenderivate und Phosphinimine. Helv Chim Acta. 1919;2:635–46. https://doi.org/10.1002/hlca.19190020164.Article
CAS
Google Scholar
Laughlin ST, Bertozzi CR. Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization via Staudinger ligation. Nat Protoc. 2007;2:2930–44.CAS
Google Scholar
Oliveira BL, Guo Z, Bernardes GJL. Inverse electron demand Diels–Alder reactions in chemical biology. Chem Soc Rev. 2017;46:4895–950.CAS
Google Scholar
Lang K, Chin JW. Bioorthogonal reactions for labeling proteins. ACS Chem Biol. 2014;9:16–20. https://doi.org/10.1021/cb4009292.Article
CAS
Google Scholar
Kolb HC, Finn MG, Sharpless K. Click chemistry: diverse chemical function from a few good reactions. Angew Chemie-Int Ed. 2001;40:2004–21.CAS
Google Scholar
Tornøe C, Christensen C, Meldal M. Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. J Org Chem. 2002;67:3057–64. https://doi.org/10.1021/jo011148j.Article
CAS
Google Scholar
Bakkum T, Leeuwen T, van, Sarris AJC, Elsland DM, van, Poulcharidis D, Overkleeft HS, et al. Quantification of bioorthogonal stability in immune phagocytes using flow cytometry reveals rapid degradation of strained alkynes. ACS Chem Biol. 2018;13:1173–9. https://doi.org/10.1021/acschembio.8b0035.Article
CAS
Google Scholar
Wang Q, Chan T, Hilgraf R, Fokin R, Sharpless K, Finn M. Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J Am Chem Soc. 2003;125:3192–3.CAS
Google Scholar
Link A, Tirrell D. Cell surface labeling of Escherichia coli via copper(I)-catalyzed [3+2] cycloaddition. J Am Chem Soc. 2003;125:11164–5.CAS
Google Scholar
Dieterich D, Link A, Tirrell D, Schuman E. Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc Natl Acad Sci USA. 2006;103:9482–7.CAS
Google Scholar
McKay C, Finn M. Click chemistry in complex mixtures: bioorthogonal bioconjugation. Chem Biol. 2014;21:1075–101.CAS
Google Scholar
Agard N, Prescher J, Bertozzi C. A strain-promoted [3 + 2] Azide−Alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc. 2004;126:15046–7. https://doi.org/10.1021/ja044996f.Article
CAS
Google Scholar
Weissleder R, Hilderbrand S. Tetrazine-based cycloadditions: application to pretargeted live cell imaging. Bioconjug Chem. 2008;19:2297–9.
Google Scholar
Scinto SL, Bilodeau DA, Hincapie R, Lee W, Nguyen SS, Xu M, et al. Bioorthogonal chemistry. Nat Rev Methods. 2021;1:1–23.
Google Scholar
Sletten E, Bertozzi C. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed Engl. 2009;48:6974–98.CAS
Google Scholar
Moses JE, Moorhouse AD. The growing applications of click chemistry. Chem Soc Rev. 2007;36:1249–62.CAS
Google Scholar
Banahene N, Kavunja HW, Swarts BM. Chemical reporters for bacterial glycans: development and applications. Chem Rev. 2021;122:3336–413. https://doi.org/10.1021/acs.chemrev.1c00729.Article
CAS
Google Scholar
Hatzenpichler R, Krukenberg V, Spietz RL, Jay ZJ. Next-generation physiology approaches to study microbiome function at single cell level. Nat Rev Microbiol. 2020;184:241–56.
Google Scholar
Siegrist M, Whiteside S, Jewett J, Aditham A, Cava F, Bertozzi C. (D)-Amino acid chemical reporters reveal peptidoglycan dynamics of an intracellular pathogen. ACS Chem Biol. 2013;8:500–5.CAS
Google Scholar
Liechti G, Kuru E, Hall E, Kalinda A, Brun YV, VanNieuwenhze M, et al. A new metabolic cell wall labeling method reveals peptidoglycan in Chlamydia trachomatis. Nature. 2014;506:507. https://doi.org/10.1038/nature12892.Article
CAS
Google Scholar
Pilhofer M, Aistleitner K, Biboy J, Gray J, Kuru E, Hall E, et al. Discovery of chlamydial peptidoglycan reveals bacteria with murein sacculi but without FtsZ. Nat Commun. 2013;4:1–7.
Google Scholar
Taylor JA, Bratton BP, Sichel SR, Blair KM, Jacobs HM, Demeester KE, et al. Distinct cytoskeletal proteins define zones of enhanced cell wall synthesis in helicobacter pylori. Elife. 2020;9:e52482.CAS
Google Scholar
Kuru E, Hughes HV, Brown PJ, Hall E, Tekkam S, Cava F, et al. In situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent D-amino acids. Angew Chemie Int Ed. 2012;51:12519–23. https://doi.org/10.1002/anie.201206749.Article
CAS
Google Scholar
van Teeseling MCF, Mesman RJ, Kuru E, Espaillat A, Cava F, Brun YV, et al. Anammox Planctomycetes have a peptidoglycan cell wall. Nat Commun. 2015;6:6878. https://doi.org/10.1038/ncomms7878.Article
CAS
Google Scholar
Wang W, Yang Q, Du Y, Zhou X, Du X, Wu Q. et al. Metabolic labeling of Peptidoglycan with NIR-II dye enables in vivo imaging of gut microbiota. Angew Chemie Int Ed. 2020;59:2628–33. https://doi.org/10.1002/anie.201910555.Article
CAS
Google Scholar
Wang W, Zhu Y, Chen X. imaging of gram-negative and gram-positive microbiotas in the mouse gut. Biochemistry. 2017;56:3889–93.CAS
Google Scholar
Geva-Zatorsky N, Alvarez D, Hudak JE, Reading NC, Erturk-Hasdemir D, Dasgupta S, et al. In vivo imaging and tracking of host-microbiota interactions via metabolic labeling of gut anaerobic bacteria. Nat Med. 2015;21:1091–100.CAS
Google Scholar
Besanceney-Webler C, Jiang H, Wang W, Baughn AD, Wu P. Metabolic labeling of fucosylated glycoproteins in Bacteroidales species. Bioorg Med Chem Lett. 2011;21:4989–92.CAS
Google Scholar
Han Z, Thuy-Boun PS, Pfeiffer W, Vartabedian VF, Torkamani A, Teijaro JR, et al. Identification of an N-acetylneuraminic acid-presenting bacteria isolated from a human microbiome. Sci Rep. 2021;11:1–12.
Google Scholar
Becam J, Walter T, Burgert A, Schlegel J, Sauer M, Seibel J, et al. Antibacterial activity of ceramide and ceramide analogs against pathogenic Neisseria. Sci Rep. 2017;7:1–12.CAS
Google Scholar
Nilsson I, Lee SY, Sawyer WS, Baxter Rath CM, Lapointe G, Six DA. Metabolic phospholipid labeling of intact bacteria enables a fluorescence assay that detects compromised outer membranes. J Lipid Res. 2020;61:870–83.CAS
Google Scholar
Evershed RP, Crossman ZM, Bull ID, Mottram H, Dungait JAJ, Maxfield PJ, et al. 13C-Labelling of lipids to investigate microbial communities in the environment. Curr Opin Biotechnol. 2006;17:72–82.CAS
Google Scholar
Salic A, Mitchison TJ. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci USA. 2008;105:2415–20. https://doi.org/10.1073/pnas.0712168105.Article
Google Scholar
Smriga S, Samo TJ, Malfatti F, Villareal J, Azam F. Individual cell DNA synthesis within natural marine bacterial assemblages as detected by ‘click’ chemistry. Aquat Microb Ecol. 2014;72:269–80.
Google Scholar
Beauchemina ET, Hunter C, Maurice CF. Actively replicating gut bacteria identified by 5-ethynyl-2’-deoxyuridine (EdU) click chemistry and cell sorting. bioRxiv. 2022. https://www.biorxiv.org/content/10.1101/2022.07.20.500840v2.Sinclair L, Barthelemy C, Cantrell D. Single cell glucose uptake assays: a cautionary tale. Immunometabolism. 2020;2. https://pubmed.ncbi.nlm.nih.gov/32879737/.Hu F, Chen DZ, Zhang DL, Shen Y, Wei L, Min PW. Vibrational imaging of glucose uptake activity in live cells and tissues by stimulated Raman scattering. Angew Chem Int Ed Engl. 2015;54:9821.CAS
Google Scholar
Kiick K, Saxon E, Tirrell D, Bertozzi C. Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proc Natl Acad Sci USA. 2002;99:19–24.CAS
Google Scholar
Kiick K, Tirrell D. Protein engineering by in vivo incorporation of non-natural amino acids: control of incorporation of methionine analogues by Methionyl-tRNA Synthetase. Tetrahedron. 2000;56:9487–93.CAS
Google Scholar
Ignacio B, Bakkum T, Bonger K, Martin N, van Kasteren S. Metabolic labeling probes for interrogation of the host-pathogen interaction. Org Biomol Chem. 2021;19:2856–70.CAS
Google Scholar
Bagert JD, Kessel JC, van, Sweredoski MJ, Feng L, Hess S, Bassler BL, et al. Time-resolved proteomic analysis of quorum sensing in Vibrio harveyi. Chem Sci. 2016;7:1797–806.CAS
Google Scholar
Babin BM, Atangcho L, Van Eldijk MB, Sweredoski MJ, Moradian A, Hess S, et al. Selective proteomic analysis of antibiotic-tolerant cellular subpopulations in pseudomonas aeruginosa biofilms. 2017. https://doi.org/10.1128/mBio.01593-17.Hatzenpichler R, Scheller S, Tavormina PL, Babin BM, Tirrell DA, Orphan VJ. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environ Microbiol. 2014;16:2568–90. https://doi.org/10.1111/1462-2920.12436.Article
CAS
Google Scholar
Samo TJ, Smriga S, Malfatti F, Sherwood BP, Azam F. Broad distribution and high proportion of protein synthesis active marine bacteria revealed by click chemistry at the single cell level. Front Mar Sci. 2014;0:48.
Google Scholar
Hatzenpichler R, Connon SA, Goudeau D, Malmstrom RR, Woyke T, Orphan VJ. Visualizing in situ translational activity for identifying and sorting slow-growing archaeal-bacterial consortia. Proc Natl Acad Sci USA. 2016;113:E4069–78. https://doi.org/10.1073/pnas.1603757113.Article
CAS
Google Scholar
Couradeau E, Sasse J, Goudeau D, Nath N, Hazen TC, Bowen BP, et al. Probing the active fraction of soil microbiomes using BONCAT-FACS. Nat Commun. 2019;10:1–10.CAS
Google Scholar
Leizeaga A, Estrany M, Forn I, Sebastián M. Using click-chemistry for visualizing in situ changes of translational activity in planktonic marine bacteria. Front Microbiol. 2017;0:2360.
Google Scholar
Lindivat M, Larsen A, Hess-Erga OK, Bratbak G, Hoell IA. Bioorthogonal non-canonical amino acid tagging combined with flow cytometry for determination of activity in aquatic microorganisms. Front Microbiol. 2020;0:1929.
Google Scholar
Chen L, Zhao B, Li X, Cheng Z, Wu R, Xia Y. Isolating and characterizing translationally active fraction of anammox microbiota using bioorthogonal non-canonical amino acid tagging. Chem Eng J. 2021;418:129411.CAS
Google Scholar
McKay LJ, Smith HJ, Barnhart EP, Schweitzer HD, Malmstrom RR, Goudeau D, et al. Activity-based, genome-resolved metagenomics uncovers key populations and pathways involved in subsurface conversions of coal to methane. ISME J. 2021;16:915–26.
Google Scholar
Du Z, Behrens SF. Tracking de novo protein synthesis in the activated sludge microbiome using BONCAT-FACS. Water Res. 2021;205:117696.CAS
Google Scholar
Valentini TD, Lucas SK, Binder KA, Cameron LC, Motl JA, Dunitz JM, et al. Bioorthogonal non-canonical amino acid tagging reveals translationally active subpopulations of the cystic fibrosis lung microbiota. Nat Commun. 2020;11:1–11.
Google Scholar
Taguer M, Shapiro BJ, Maurice CF. Translational activity is uncoupled from nucleic acid content in bacterial cells of the human gut microbiota. Gut Microbes. 2021;13:1–15.
Google Scholar
Banahene N, Kavunja HW, Swarts BM. Chemical reporters for bacterial glycans: development and applications. Chem Rev. 2021;122:3336–413. https://doi.org/10.1021/acs.chemrev.1c00729.Article
CAS
Google Scholar
Kavunja HW, Piligian BF, Fiolek TJ, Foley HN, Nathan TO, Swarts BM. A chemical reporter strategy for detecting and identifying O-mycoloylated proteins in Corynebacterium. Chem Commun. 2016;52:13795–8.CAS
Google Scholar
Demeester KE, Liang H, Jensen MR, Jones ZS, D’Ambrosio EA, Scinto SL, et al. Synthesis of functionalized N-Acetyl Muramic acids to probe bacterial cell wall recycling and biosynthesis. J Am Chem Soc. 2018;140:9458–65. https://doi.org/10.1021/jacs.8b03304.Article
CAS
Google Scholar
Moulton KD, Adewale AP, Carol HA, Mikami SA, Dube DH. Metabolic glycan labeling-based screen to identify bacterial glycosylation genes. ACS Infect Dis. 2020;6:3247–59. https://doi.org/10.1021/acsinfecdis.0c00612.Article
CAS
Google Scholar
Keller LJ, Babin BM, Lakemeyer M, Bogyo M. Activity-based protein profiling in bacteria: Applications for identification of therapeutic targets and characterization of microbial communities. Curr Opin Chem Biol. 2020;54:45–53.CAS
Google Scholar
Speers AE, Adam GC, Cravatt BF. Activity-based protein profiling in vivo using a copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J Am Chem Soc. 2003;125:4686–7. https://doi.org/10.1021/ja034490.Article
CAS
Google Scholar
Krysiak J, Sieber SA. Activity-based protein profiling in bacteria. Methods Mol Biol. 2017;1491:57–74.CAS
Google Scholar
Jariwala PB, Pellock SJ, Cloer EW, Artola M, Simpson JB, Bhatt AP, et al. Discovering the microbial enzymes driving drug toxicity with activity-based protein profiling. ACS Chem Biol. 2020;15:217–25. https://doi.org/10.1021/acschembio.9b00788.Article
CAS
Google Scholar
Kovalyova Y, Hatzios SK. Activity-based protein profiling at the host-pathogen interface. Curr Top Microbiol Immunol. 2019;420:73–91.CAS
Google Scholar
Sakoula D, Smith GJ, Frank J, Mesman RJ, Kop LFM, Blom P, et al. Universal activity-based labeling method for ammonia- and alkane-oxidizing bacteria. ISME J. 2021;16:958–71.
Google Scholar
Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2020;19:55–71.
Google Scholar
Fitzpatrick CR, Salas-González I, Conway JM, Finkel OM, Gilbert S, Russ D, et al. The plant microbiome: from ecology to reductionism and beyond. 101146/annurev-micro-022620-014327. 2020;74:81–100. https://www.annualreviews.org/doi/abs/10.1146/annurev-micro-022620-014327.Kawecki TJ, Lenski RE, Ebert D, Hollis B, Olivieri I, Whitlock MC. Experimental evolution. Trends Ecol Evol. 2012;27:547–60.
Google Scholar
Lenski RE. Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations. ISME J. 2017;11:2181–94.CAS
Google Scholar
Rodríguez-Verdugo A. Evolving Interactions and Emergent Functions in Microbial Consortia. mSystems. 2021;6. https://pubmed.ncbi.nlm.nih.gov/34427521/.Pascual-García A, Bonhoeffer S, Bell T. Metabolically cohesive microbial consortia and ecosystem functioning. Philos Trans R Soc B. 2020;375. https://royalsocietypublishing.org/doi/full/10.1098/rstb.2019.0245.Ackermann M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol. 2015;13:497–508.CAS
Google Scholar
Balaban NQ, Helaine S, Lewis K, Ackermann M, Aldridge B, Andersson DI, et al. Definitions and guidelines for research on antibiotic persistence. Nat Rev Microbiol. 2019;17:441–8.CAS
Google Scholar
Vermeersch L, Perez-Samper G, Cerulus B, Jariani A, Gallone B, Voordeckers K, et al. On the duration of the microbial lag phase. Curr Genet. 2019;65:721–7.CAS
Google Scholar
Solopova A, van Gestel J, Weissing FJ, Bachmann H, Teusink B, Kok J, et al. Bet-hedging during bacterial diauxic shift. Proc Natl Acad Sci USA. 2014;111:7427–32.CAS
Google Scholar
Zhang Z, Du C, de Barsy F, Liem M, Liakopoulos A, van Wezel GP, et al. Antibiotic production in Streptomyces is organized by a division of labor through terminal genomic differentiation. Sci Adv. 2020;6:eaay5781.CAS
Google Scholar
Mavridou DAI, Gonzalez D, Kim W, West SA, Foster KR. Bacteria use collective behavior to generate diverse combat strategies. Curr Biol. 2018;28:345–355.e4.CAS
Google Scholar
Levin AM, de Vries RP, Conesa A, de Bekker C, Talon M, Menke HH, et al. Spatial differentiation in the vegetative mycelium of Aspergillus niger. Eukaryot Cell. 2007;6:2311–22.CAS
Google Scholar
Zacchetti B, Wösten HAB, Claessen D. Multiscale heterogeneity in filamentous microbes. Biotechnol Adv. 2018;36:2138–49.CAS
Google Scholar
Bleichrodt R-J, Vinck A, Read ND, Wösten HAB. Selective transport between heterogeneous hyphal compartments via the plasma membrane lining septal walls of Aspergillus niger. Fungal Genet Biol. 2015;82:193–200.CAS
Google Scholar
Nürnberg DJ, Mariscal V, Bornikoel J, Nieves-Morión M, Krauß N, Herrero A, et al. Intercellular diffusion of a fluorescent sucrose analog via the septal junctions in a Filamentous Cyanobacterium. MBio. 2015;6. https://journals.asm.org/doi/full/10.1128/mBio.02109-14.Pasulka AL, Thamatrakoln K, Kopf SH, Guan Y, Poulos B, Moradian A, et al. Interrogating marine virus-host interactions and elemental transfer with BONCAT and nanoSIMS-based methods. Environ Microbiol. 2018;20:671–92. https://doi.org/10.1111/1462-2920.13996.Article
CAS
Google Scholar
Berjón-Otero M, Duponchel S, Hackl T, Fischer M. Visualization of giant virus particles using BONCAT labeling and STED microscopy. bioRxiv. 2020;2020.07.14.202192. https://www.biorxiv.org/content/10.1101/2020.07.14.202192v1.Steward KF, Eilers B, Tripet B, Fuchs A, Dorle M, Rawle R, et al. Metabolic implications of using BioOrthogonal Non-Canonical Amino Acid Tagging (BONCAT) for tracking protein synthesis. Front Microbiol. 2020;0:197.
Google Scholar
van Elsland DM, Pujals S, Bakkum T, Bos E, Oikonomeas-Koppasis N, Berlin I, et al. Ultrastructural Imaging of Salmonella–Host interactions using super-resolution correlative light-electron microscopy of bioorthogonal pathogens. ChemBioChem. 2018;19:1766–70. https://doi.org/10.1002/cbic.201800230.Article
CAS
Google Scholar
Michels DE, Lomenick B, Chou T-F, Sweredoski MJ, Pasulka A. Amino acid analog induces stress response in marine Synechococcus. Appl Environ Microbiol. 2021;87:1–18. https://doi.org/10.1128/AEM.00200-21.Article
Google Scholar
Hong V, Steinmetz NF, Manchester M, Finn MG. Labeling live cells by copper-catalyzed alkyne−azide click chemistry. Bioconjug Chem. 2010;21:1912–6. https://doi.org/10.1021/bc100272z.Article
CAS
Google Scholar
van Geel R, Pruijn G, van Delft F, Boelens W. Preventing thiol-yne addition improves the specificity of strain-promoted azide-alkyne cycloaddition. Bioconjug Chem. 2012;23:392–8.
Google Scholar
Patterson DM, Nazarova LA, Prescher JA. Finding the Right (Bioorthogonal) Chemistry. ACS Chem Biol. 2014;9:592–605. https://doi.org/10.1021/cb400828a.Article
CAS
Google Scholar
Ignacio BJ, Dijkstra J, Garcia NM, Slot EFJ, van Weijsten MJ, Storkebaum E, et al. THRONCAT: Efficient metabolic labeling of newly synthesized proteins using a bioorthogonal threonine analog. bioRxiv. 2022. https://www.biorxiv.org/content/10.1101/2022.03.29.486210v1.Wright MH. Chemical proteomics of host–microbe interactions. Proteomics. 2018;18:1700333. https://doi.org/10.1002/pmic.201700333.Article
CAS
Google Scholar
Yu H, Schomaker J. Recent developments and strategies for mutually orthogonal bioorthogonal reactions. Chembiochem. 2021;22:3254–62.
Google Scholar
Willems LI, Li N, Florea BI, Ruben M, van der Marel GA, Overkleeft HS. Triple bioorthogonal ligation strategy for simultaneous labeling of multiple enzymatic activities. Angew Chemie Int Ed. 2012;51:4431–4. https://doi.org/10.1002/anie.201200923.Article
CAS
Google Scholar
Simon C, Lion C, Spriet C, Baldacci-Cresp F, Hawkins S, Biot C. One, two, three: a bioorthogonal triple labelling strategy for studying the dynamics of plant cell wall formation in vivo. Angew Chemie Int Ed. 2018;57:16665–71. https://doi.org/10.1002/anie.201808493.Article
CAS
Google Scholar
Chio TI, Gu H, Mukherjee K, Tumey LN, Bane SL. Site-specific bioconjugation and multi-bioorthogonal labeling via rapid formation of a boron–nitrogen heterocycle. Bioconjug Chem. 2019;30:1554–64. https://doi.org/10.1021/acs.bioconjchem.9b0024.Article
CAS
Google Scholar
Bakkum T, Heemskerk MT, Bos E, Groenewold M, Oikonomeas-Koppasis N, Walburg KV, et al. Bioorthogonal correlative light-electron microscopy of mycobacterium tuberculosis in macrophages reveals the effect of antituberculosis drugs on subcellular bacterial distribution. ACS Cent Sci. 2020;6:1997–2007. https://doi.org/10.1021/acscentsci.0c00539.Article
CAS
Google Scholar More