More stories

  • in

    Understanding microbial activity with isotope labelling of DNA

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Unraveling Amazon tree community assembly using Maximum Information Entropy: a quantitative analysis of tropical forest ecology

    Quantitative Biodiversity Dynamics, Ecology and Biodiversity, Utrecht University Botanic Gardens, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The NetherlandsEdwin PosNaturalis Biodiversity Center, PO Box 9517, Leiden, 2300 RA, The NetherlandsEdwin Pos, Olaf S. Bánki, Paul Maas, Tinde R. van Andel & Hans ter SteegeCoordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia – INPA, Av. André Araújo, 2936, Petrópolis, Manaus, AM, 69067-375, BrazilLuiz de Souza Coelho, Diogenes de Andrade Lima Filho, Iêda Leão Amaral, Francisca Dionízia de Almeida Matos, Mariana Victória Irume, Maria Pires Martins, José Ferreira Ramos, Juan Carlos Montero, Charles Eugene Zartman, Henrique Eduardo Mendonça Nascimento, Juan David Cardenas Revilla, Flávia R. C. Costa, Juliana Schietti, Priscila Souza, Rogerio Gribel, Marcelo Petratti Pansonato, Edelcilio Marques Barbosa, Luiz Carlos de Matos Bonates, Ires Paula de Andrade Miranda & Cid FerreiraPrograma Professor Visitante Nacional Sênior Na Amazônia – CAPES, Universidade Federal Rural da Amazônia, Av. Perimetral, s/n, Belém, PA, BrazilRafael P. SalomãoCoordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Magalhães Barata 376, C.P. 399, Belém, PA, 66040-170, BrazilRafael P. Salomão, Ima Célia Guimarães Vieira, Leandro Valle Ferreira & Dário Dantas do AmaralEMBRAPA – Centro de Pesquisa Agroflorestal de Roraima, BR 174, km 8 – Distrito Industrial, Boa Vista, RR, 69301-970, BrazilCarolina V. CastilhoSchool of Geography, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UKOliver L. Phillips, Euridice N. Honorio Coronado, Ted R. Feldpausch, Roel Brienen, Fernanda Coelho de Souza, Tim R. Baker, Aurora Levesley, Karina Melgaço & Georgia PickavanceGrupo de Investigación en Biodiversidad, Medio Ambiente y Salud-BIOMAS, Universidad de Las Américas, Campus Queri, Quito, EcuadorJuan Ernesto GuevaraKeller Science Action Center, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL, 60605-2496, USAJuan Ernesto GuevaraDepartamento de Botânica, Instituto de Pesquisas Científicas e Tecnológicas do Amapá – IEPA, Rodovia JK, Km 10, Campus Do IEPA da Fazendinha, Amapá, 68901-025, BrazilMarcelo de Jesus Veiga Carim & José Renan da Silva GuimarãesHerbario Amazónico Colombiano, Instituto SINCHI, Calle 20 No 5-44, Bogotá, DC, ColombiaDairon Cárdenas López & Nicolás Castaño ArboledaCoordenação de Pesquisas em Ecologia, Instituto Nacional de Pesquisas da Amazônia – INPA, Av. André Araújo, 2936, Petrópolis, Manaus, AM, 69067-375, BrazilWilliam E. Magnusson, Alberto Vicentini, Thaise Emilio, Fernanda Antunes Carvalho & Fernanda Coelho de SouzaDepartment of Wetland Ecology, Institute of Geography and Geoecology, Karlsruhe Institute of Technology – KIT, Josefstr.1, 76437, Rastatt, GermanyFlorian Wittmann & John Ethan HouseholderBiogeochemistry, Max Planck Institute for Chemistry, Hahn-Meitner Weg 1, 55128, Mainz, GermanyFlorian WittmannAMAP, IRD, Cirad, CNRS, INRA, Université de Montpellier, 34398, Montpellier, FranceDaniel Sabatier, Jean-François Molino, Julien Engel & Émile FontyCoordenação de Dinâmica Ambiental, Instituto Nacional de Pesquisas da Amazônia – INPA, Av. André Araújo, 2936, Petrópolis, Manaus, AM, 69067-375, BrazilMaria Teresa Fernandez Piedade, Jochen Schöngart, Layon O. Demarchi, Adriano Quaresma, Aline Lopes, Daniel Praia Portela de Aguiar, Bianca Weiss Albuquerque & Maira RochaScience and Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL, 60605-2496, USANigel C. A. Pitman & Corine VriesendorpJardín Botánico de Missouri, Oxapampa, Pasco, PeruAbel Monteagudo Mendoza, Rodolfo Vasquez & Luis Valenzuela GamarraApplied Ecology Research Group, School of Life Sciences, Anglia Ruskin University, East Road, Cambridge, CB1 1PT, UKJoseph E. HawesICNHS, Universidade Federal de Mato Grosso, Av. Alexandre Ferronato, 1200, Sinop, MT, 78557-267, BrazilEverton José Almeida, Luciane Ferreira Barbosa, Larissa Cavalheiro & Márcia Cléia Vilela dos SantosDepartamento de Ecologia, Universidade Estadual Paulista – UNESP – Instituto de Biociências – IB, Av. 24 A, 1515, Bela Vista, Rio Claro, SP, 13506-900, BrazilBruno Garcia LuizeDivisao de Sensoriamento Remoto – DSR, Instituto Nacional de Pesquisas Espaciais – INPE, Av. Dos Astronautas, 1758, Jardim da Granja, São José Dos Campos, SP, 12227-010, BrazilEvlyn Márcia Moraes de Leão NovoHerbario Vargas, Universidad Nacional de San Antonio Abad del Cusco, Avenida de La Cultura, Nro 733, Cusco, Cuzco, PeruPercy Núñez Vargas, Isau Huamantupa-Chuquimaco & William Farfan-RiosBiological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UKThiago Sanna Freire SilvaCentro de Biociências, Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Av. Senador Salgado Filho, 3000, Natal, RN, 59072-970, BrazilEduardo Martins VenticinqueDepartamento de Biologia, Universidade Federal de Rondônia, Rodovia BR 364 s/n Km 9, 5 – Sentido Acre, Unir, Porto Velho, RO, 76.824-027, BrazilAngelo Gilberto ManzattoPrograma de Pós- Graduação em Biodiversidade e Biotecnologia PPG- Bionorte, Universidade Federal de Rondônia, Campus Porto Velho Km 9, 5 Bairro Rural, Porto Velho, RO, 76.824-027, BrazilNeidiane Farias Costa Reis, Katia Regina Casula, Susamar Pansini & Adeilza Felipe SampaioDepartment of Biology and Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USAJohn TerborghCentre for Tropical Environmental and Sustainability Science and College of Science and Engineering, James Cook University, Cairns, QLD, 4870, AustraliaJohn Terborgh, William F. Laurance & Susan G. W. LauranceInstituto de Investigaciones de la Amazonía Peruana (IIAP), Av. A. Quiñones Km 2,5, Iquitos, Loreto, 784, PeruEuridice N. Honorio CoronadoInstituto Boliviano de Investigacion Forestal, Av. 6 de Agosto #28, Km. 14, Doble via La Guardia, 6204, Santa Cruz, Santa Cruz, Casilla, BoliviaJuan Carlos Montero & Juan Carlos LiconaPrograma de Pós-Graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso, Nova Xavantina, MT, BrazilBeatriz S. Marimon & Ben Hur Marimon-JuniorGeography, College of Life and Environmental Sciences, University of Exeter, Rennes Drive, Exeter, EX4 4RJ, UKTed R. Feldpausch & Toby PenningtonDepartamento de Ciencias Forestales, Universidad Nacional de Colombia, Calle 64 X Cra 65, 1027, Medellín, Antioquia, ColombiaAlvaro Duque & Ligia Estela Urrego GiraldoInternational Center for Tropical Botany (ICTB) Department of Biological Sciences, Florida International University, 11200 SW 8Th Street, OE 243, Miami, FL, 33199, USAChris Baraloto, Julien Engel & Freddie DraperCirad UMR Ecofog, AgrosParisTech, CNRS, INRA, Univ Guyane, Campus Agronomique, 97379, Kourou Cedex, FrancePascal PetronelliAgteca-Amazonica, Santa Cruz, BoliviaTimothy J. KilleenFacultad de Ciencias Agrícolas, Universidad Autónoma Gabriel René Moreno, Santa Cruz, Santa Cruz, BoliviaBonifacio MostacedoNatural History Museum, University of Oslo, Postboks 1172, 0318, Oslo, NorwayRafael L. AssisCentro de Investigaciones Ecológicas de Guayana, Universidad Nacional Experimental de Guayana, Calle Chile, Urbaniz Chilemex, Puerto Ordaz, Bolivar, VenezuelaHernán Castellanos & Lionel HernandezPrédio da Botânica e Ecologia, Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Av. W5 Norte, Brasilia, DF, 70770-917, BrazilMarcelo Brilhante de Medeiros & Marcelo Fragomeni SimonProjeto Dinâmica Biológica de Fragmentos Florestais, Instituto Nacional de Pesquisas da Amazônia – INPA, Av. André Araújo 2936, Petrópolis, Manaus, AM, 69067-375, BrazilAna Andrade & José Luís CamargoLaboratório de Ecologia de Doenças Transmissíveis da Amazônia (EDTA), Instituto Leônidas e Maria Deane, Fiocruz, Rua Terezina, 476, Adrianópolis, Manaus, AM, 69060-001, BrazilEmanuelle de Sousa FariasPrograma de Pós-Graduação em Biodiversidade e Saúde, Instituto Oswaldo Cruz – IOC/FIOCRUZ, Pav. Arthur Neiva – Térreo, Av. Brasil, 4365 – Manguinhos, Rio de Janeiro, RJ, 21040-360, BrazilEmanuelle de Sousa FariasInstituto de Ciências Biológicas, Universidade Federal do Pará, Av. Augusto Corrêa 01, Belém, PA, 66075-110, BrazilMaria Aparecida LopesPrograma de Pós-Graduação em Ecologia, Universidade Federal do Pará, Av. Augusto Corrêa 01, Belém, PA, 66075-110, BrazilJosé Leonardo Lima MagalhãesEmbrapa Amazônia Oriental, Trav. Dr. Enéas Pinheiro S/nº, Belém, PA, 66095-100, BrazilJosé Leonardo Lima Magalhães, Joice Ferreira & Ademir R. RuschelDiretoria Técnico-Científica, Instituto de Desenvolvimento Sustentável Mamirauá, Estrada do Bexiga, 2584, Tefé, AM, 69470-000, BrazilHelder Lima de QueirozPrograma de Ciencias del Agro y el Mar, Herbario Universitario (PORT), UNELLEZ-Guanare, Guanare, Portuguesa, 3350, VenezuelaGerardo A. C. AymardInstituto de Biociências – Department of Botanica, Universidade de Sao Paulo – USP, Rua do Matão 277, Cidade Universitária, São Paulo, SP, 05508-090, BrazilBruno Barçante Ladvocat CintraLaboratorio de Ecología de Bosques Tropicales y Primatología, Universidad de los Andes, Carrera 1 # 18a- 10, 111711, Bogotá, DC, ColombiaPablo R. Stevenson, Angela Cano, Diego F. Correa, Sasha Cárdenas & Luisa Fernanda CasasPrograma de Pós-Graduação Em Biologia (Botânica), Instituto Nacional de Pesquisas da Amazônia – INPA, Av. André Araújo, 2936, Petrópolis, Manaus, AM, 69067-375, BrazilYuri Oliveira FeitosaInstitute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, Amsterdam, 1098 XH, The NetherlandsJoost F. DuivenvoordenEndangered Species Coalition, 8530 Geren Rd., Silver Spring, MD, 20901, USAHugo F. MogollónInventory and Monitoring Program, National Park Service, 120 Chatham Lane, Fredericksburg, VA, 22405, USAJames A. ComiskeyCenter for Conservation and Sustainability, Smithsonian Conservation Biology Institute, 1100 Jefferson Dr. SW, Suite 3123, Washington, DC, 20560-0705, USAJames A. Comiskey, Alfonso Alonso, Francisco Dallmeier & Reynaldo Linares-PalominoDepartment of Global Ecology, Carnegie Institution for Science, 260 Panama St., Stanford, CA, 94305, USAFreddie DraperUniversidade Federal do Amapá, Ciências Ambientais, Rod. Juscelino Kubitschek km2, Macapá, AP, 68902-280, BrazilJosé Julio de Toledo & Renato Richard HilárioDepartment of Integrative Biology, University of California, Berkeley, CA, 94720-3140, USAGabriel Damasco, Paul V. A. Fine & Italo MesonesBiologia Vegetal, Universidade Estadual de Campinas, Caixa Postal 6109, Campinas, SP, 13.083-970, BrazilNállarett DávilaDepartment of Ecology and Evolutionary Biology, Cornell University, Corson Hall, 215 Tower Road, Ithaca, NY, 14850, USARoosevelt García-VillacortaPeruvian Center for Biodiversity and Conservation (PCBC), Iquitos, PeruRoosevelt García-VillacortaDepartment of Ecology, University of Brasilia, Brasilia, DF, 70904-970, BrazilAline LopesICNHS, Federal University of Mato Grosso, Av. Alexandre Ferronato 1200, Setor Industrial, Sinop, MT, 78.557-267, BrazilJanaína Costa Noronha, Flávia Rodrigues Barbosa, Rainiellen de Sá Carpanedo & Domingos de Jesus RodriguesNatural Capital and Plant Health, Royal Botanic Gardens, Kew, Richmond, TW9 3AB, Surrey, UKThaise Emilio & William MillikenPrograma de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia – INPA, Av. André Araújo, 2936, Petrópolis, Manaus, AM, 69067-375, BrazilCarolina LevisForest Ecology and Forest Management Group, Wageningen University and Research, Droevendaalsesteeg 3, P.O. Box 47, Wageningen, 6700 AA, The NetherlandsCarolina Levis & Lourens PoorterEscola de Negócios Tecnologia e Inovação, Centro Universitário do Pará, Belém, PA, BrazilVitor H. F. GomesUniversidade Federal do Pará, Rua Augusto Corrêa 01, Belém, PA, 66075-110, BrazilVitor H. F. GomesFaculty of Natural Sciences, Department of Life Sciences, Imperial College London, South Kensington Campus, Silwood ParkLondon, SW7 2AZ, UKJon LloydEcosistemas, Biodiversidad y Conservación de Especies, Universidad Estatal Amazónica, Km. 2 1/2 Vía a Tena (Paso Lateral), Puyo, Pastaza, EcuadorDavid NeillMuseo de Historia Natural Noel Kempff Mercado, Universidad Autónoma Gabriel Rene Moreno, Avenida Irala 565 Casilla Post Al 2489, Santa Cruz, Santa Cruz, BoliviaAlejandro Araujo-Murakami, Luzmila Arroyo & Daniel VillarroelDepartamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Av. Antônio Carlos, 6627 Pampulha, Belo Horizonte, MG, 31270-901, BrazilFernanda Antunes CarvalhoDepartment of Biology, University of Miami, Coral Gables, FL, 33146, USAKenneth J. FeeleyFairchild Tropical Botanic Garden, Coral Gables, FL, 33156, USAKenneth J. FeeleyInstituto de Biociências – Dept. Ecologia, Universidade de Sao Paulo – USP, Rua do Matão, Trav. 14, No. 321, Cidade Universitária, São Paulo, SP, 05508-090, BrazilMarcelo Petratti Pansonato, Alexandre A. Oliveira & Cláudia BaiderLancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, Lancashire, UKJos Barlow & Erika BerenguerEnvironmental Change Institute, University of Oxford, Oxford, OX1 3QY, Oxfordshire, UKErika BerenguerEmpresa Brasileira de Pesquisa Agropecuária, Embrapa Amapá, Rod. Juscelino Kubitschek Km 5, Macapá, Amapá, 68903-419, BrazilMarcelino Carneiro Guedes & Janaina Barbosa Pedrosa CostaGrupo de Ecología y Conservación de Fauna y Flora Silvestre, Instituto Amazónico de Investigaciones Imani, Universidad Nacional de Colombia Sede Amazonia, Leticia, Amazonas, ColombiaEliana M. JimenezUniversidad Regional Amazónica IKIAM, Km 7 Via Muyuna, Tena, Napo, EcuadorMaria Cristina Peñuela MoraSchool of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UKCarlos A. PeresDireccíon de Evaluación Forestal y de Fauna Silvestre, Av. Javier Praod Oeste 693, Magdalena del Mar, PeruBoris Eduardo Villa ZegarraEscuela de Biología Herbario Alfredo Paredes, Universidad Central, Ap. Postal 17.01.2177, Quito, Pichincha, EcuadorCarlos CerónDepartment of Biological Sciences, Humboldt State University, 1 Harpst Street, Arcata, CA, 95521, USATerry W. HenkelMuseu Universitário / Centro de Ciências Biológicas e da Natureza / Laboratório de Botânica e Ecologia Vegetal, Universidade Federal do Acre, Rio Branco, AC, 69915-559, BrazilMarcos SilveiraInstitute of Biological and Health Sciences, Federal University of Alagoas, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, Maceio, AL, 57072-970, BrazilJuliana StroppIwokrama International Centre for Rain Forest Conservation and Development, Georgetown, GuyanaRaquel Thomas-CaesarNew York Botanical Garden, 2900 Southern Blvd, Bronx, New York, NY, 10458-5126, USADoug DalySchool of Geosciences, University of Edinburgh, 201 Crew Building, King’s Buildings, Edinburgh, EH9 3JN, UKKyle G. DexterTropical Diversity Section, Royal Botanic Garden Edinburgh, 20a Inverleith Row, Edinburgh, EH3 5LR, Scotland, UKKyle G. Dexter & Toby PenningtonServicios de Biodiversidad EIRL, Jr. Independencia 405, Iquitos, Loreto, 784, PeruMarcos Ríos Paredes, Hilda Paulette Dávila Doza, George Pepe Gallardo Gonzales & Linder Felipe Mozombite PintoHerbario Nacional de Bolivia, Universitario UMSA, Casilla 10077 Correo Central, La Paz, La Paz, BoliviaAlfredo FuentesCenter for Conservation and Sustainable Development, Missouri Botanical Garden, P.O. Box 299, St. Louis, MO, 63166-0299, USAAlfredo Fuentes, J. Sebastián Tello & William Farfan-RiosUniversidad Nacional de Jaén, Carretera Jaén San Ignacio Km 23, Jaén, Cajamarca, 06801, PeruJosé Luis Marcelo PenaBiology Department and Center for Energy, Environment and Sustainability, Wake Forest University, 1834 Wake Forest Rd, Winston Salem, NC, 27106, USAMiles R. Silman & Karina Garcia-CabreraLaboratoire Evolution et Diversité Biologique, CNRS and Université Paul Sabatier, UMR 5174 EDB, 31000, Toulouse, FranceJerome ChaveAndes to Amazon Biodiversity Program, Madre de Dios, Madre de Dios, PeruFernando Cornejo ValverdeDepartment of Anthropology, University of Texas at Austin, SAC 5.150, 2201 Speedway Stop C3200, Austin, TX, 78712, USAAnthony Di FioreFundación Puerto Rastrojo, Cra 10 No. 24-76 Oficina 1201, Bogotá, DC, ColombiaJuan Fernando PhillipsColegio de Ciencias Biológicas y Ambientales-COCIBA and Galapagos Institute for the Arts and Sciences-GAIAS, Universidad San Francisco de Quito-USFQ, Quito, Pichincha, EcuadorGonzalo Rivas-TorresDepartment of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, FL, 32611, USAGonzalo Rivas-TorresBiosystematics Group, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, The NetherlandsTinde R. van AndelFundación Estación de Biología, Cra 10 No. 24-76 Oficina, 1201, Bogotá, DC, ColombiaPatricio von HildebrandDirection Régionale de la Guyane, ONF, Cayenne, 97300, French GuianaÉmile FontyPROTERRA, Instituto de Investigaciones de la Amazonía Peruana (IIAP), Av. A. Quiñones Km 2,5, Iquitos, Loreto, 784, PeruRicardo Zárate GómezACEER Foundation, Jirón Cusco N° 370, Puerto Maldonado, Madre de Dios, PeruTherany GonzalesDepartement EV, Muséum National d’histoire Naturelle de Paris, 16 Rue Buffon, Paris, 75005, FranceJean-Louis GuillaumetAmazon Conservation Team, Doekhieweg Oost #24, Paramaribo, SurinameBruce HoffmanInstitut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, SpainAndré Braga JunqueiraEnvironmental Change Institute, Dyson Perrins Building, Oxford University Centre for the Environment, South Parks Road, Oxford, OX1 3QY, England, UKYadvinder MalhiInstituto de Ciencias Naturales, Universidad Nacional de Colombia, 7945, Apartado, Bogotá, DC, ColombiaAdriana Prieto & Agustín RudasInstituto de Ciência Agrárias, Universidade Federal Rural da Amazônia, Av. Presidente Tancredo Neves 2501, Belém, PA, 66.077-830, BrazilNatalino SilvaEscuela Profesional de Ingeniería Forestal, Universidad Nacional de San Antonio Abad del Cusco, Jirón San Martín 451, Puerto Maldonado, Madre de Dios, PeruCésar I. A. VelaUniversidad Autónoma del Beni José Ballivián, Campus Universitario Final, Av. Ejercito, Riberalta, Beni, BoliviaVincent Antoine VosLaboratory of Human Ecology, Instituto Venezolano de Investigaciones Científicas – IVIC, Ado 20632, Caracas, 1020A, DC, VenezuelaEgleé L. Zent & Stanford ZentCambridge University Botanic Garden, 1 Brookside., Cambridge, CB2 1JE, UKAngela CanoSchool of Agriculture and Food Sciences – ARC Centre of Excellence for Environmental Decisions CEED, The University of Queensland, St. Lucia, QLD, 4072, AustraliaDiego F. CorreaPlant Biology Department, Rua Monteiro Lobato, University of Campinas, 255, Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, São Paulo, CEP 13083-862, BrazilBernardo Monteiro FloresResource Ecology Group, Wageningen University and Research, Droevendaalsesteeg 3a, Lumen, Building Number 100, Wageningen, Gelderland, 6708 PB, The NetherlandsMilena HolmgrenLaboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego 2000, Campos dos, Goyatacazes, RJ, 28013-620, BrazilMarcelo Trindade NascimentoInstituto de Investigaciones Para el Desarrollo Forestal (INDEFOR), Universidad de los Andes, Conjunto Forestal, Mérida, Mérida, 5101, VenezuelaHirma Ramirez-Angulo, Emilio Vilanova Torre & Armando Torres-LezamaDepartamento de Biologia, Universidade Federal do Amazonas – UFAM – Instituto de Ciências Biológicas – ICB1, Av General Rodrigo Octavio 6200, Manaus, AM, 69080-900, BrazilVeridiana Vizoni ScudellerGeoIS, el Día 369 y el Telégrafo, 3° Piso, Quito, Pichincha, EcuadorRodrigo Sierra & Milton TiradoDepartment of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USAMaria Natalia UmañaUniversity of Nottingham, University Park, Nottingham, NG7 2RD, UKGeertje van der HeijdenSchool of Environmental and Forest Sciences, University of Washington, Seattle, WA, 98195-2100, USAEmilio Vilanova TorreEnvironmental Science and Policy, Northern Arizona University, Flagstaff, AZ, 86011, USAOphelia WangGeography and the Environment, University of Texas at Austin, 305 E. 23Rd Street, CLA Building, Austin, TX, 78712, USAKenneth R. YoungMedio Ambiente, PLUSPRETOL, Iquitos, Loreto, PeruManuel Augusto Ahuite ReateguiThe Mauritius Herbarium, Agricultural Services, Ministry of Agro-Industry and Food Security, Reduit, 80835, MauritiusCláudia BaiderDepartment of Bioscience, Aarhus University, Building 1540 Ny Munkegade, 8000, Aarhus C, Aarhus, DenmarkHenrik BalslevLiving Earth Collaborative, Washington University in Saint Louis, St. Louis, MO, 63130, USAWilliam Farfan-RiosEscuela de Ciencias Forestales (ESFOR), Universidad Mayor de San Simon (UMSS), Sacta, Cochabamba, BoliviaCasimiro MendozaFOMABO, Manejo Forestal en Las Tierras Tropicales de Bolivia, Sacta, Cochabamba, BoliviaCasimiro MendozaTropenbos International, Lawickse Allee 11, PO Box 232, Wageningen, 6700 AE, The NetherlandsRoderick ZagtSchool of Anthropology and Conservation, University of Kent, Marlowe Building, Canterbury, Kent, CT2 7NR, UKMiguel N. AlexiadesHerbario Nacional del Ecuador, Universidad Técnica del Norte, Quito, Pichincha, EcuadorWalter Palacios CuencaInstituto de Biodiversidade e Floresta, Universidade Federal do Oeste do Pará, Rua Vera Paz, Campus Tapajós, Santarém, PA, 68015-110, BrazilDaniela PaulettoFacultad de Biologia, Universidad Nacional de la Amazonia Peruana, Pevas 5Ta Cdra, Iquitos, Loreto, PeruFreddy Ramirez Arevalo & Elvis H. Valderrama SandovalDepartment of Biology, University of Missouri, St. Louis, MO, 63121, USAElvis H. Valderrama SandovalDepartment of Biogeochemical Integration, Max-Planck-Institute for Biogeochemistry, P.O. Box 10 01 64, 07701, Jena, GermanyGerhard BoenischFunctional Biogeography, Max-Planck-Institute for Biogeochemistry, P.O. Box 10 01 64, 07701, Jena, GermanyJens KattgeDepartment of Ecology and Evolutionary Biology, UCLA, 621 Charles E. Young Drive South, Box 951606, Los Angeles, CA, 90095, USANathan KraftE.T.P. and H.T.S. designed the study. E.T.P. performed analyses and took the lead in writing the manuscript, H.T.S. supervised the writing and provided regular feedback both for the manuscript and the interpretation of the results. All other authors provided feedback on the manuscript and provided their data from the Amazon Tree Diversity Network or trait data. Authors E.T.P. to L.V.G. provided tree inventory data, authors G.B., J.K., N.K., A.L., K.M., G.P., L.P. provided data on functional traits, C.B., J.L., A.A.O. and H.T.S. provided both tree inventory and functional trait data. More

  • in

    Continuous advance in the onset of vegetation green-up in the Northern Hemisphere, during hiatuses in spring warming

    Peñuelas, J., Rutishauser, T. & Filella, I. Phenology feedbacks on climate change. Science 324, 887 (2009).Article 

    Google Scholar 
    Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, eaax0255 (2020).Article 

    Google Scholar 
    Shen, M. et al. Plant phenology changes and drivers on the Qinghai–Tibetan Plateau. Nat. Rev. Earth Environ. 3, 633–651 (2022).Menzel, A. et al. Climate change fingerprints in recent European plant phenology. Glob. Change Biol. 26, 2599–2612 (2020).Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).Article 

    Google Scholar 
    Wang, X. et al. No trends in spring and autumn phenology during the global warming hiatus. Nat. Commun. 10, 2389 (2019).Article 

    Google Scholar 
    Park, H., Jeong, S.-J., Ho, C.-H., Park, C.-E. & Kim, J. Slowdown of spring green-up advancements in boreal forests. Remote Sens. Environ. 217, 191–202 (2018).Article 

    Google Scholar 
    IPCC. Summary for Policymakers (Cambridge Univ. Press, 2013).Fyfe, J. C. et al. Making sense of the early-2000s warming slowdown. Nat. Clim. Change 6, 224–228 (2016).Article 

    Google Scholar 
    Pinzon, J. & Tucker, C. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).Article 

    Google Scholar 
    Ye, W., van Dijk, A. I. J. M., Huete, A. & Yebra, M. Global trends in vegetation seasonality in the GIMMS NDVI3g and their robustness. Int. J. Appl. Earth Obs. Geoinf. 94, 102238 (2021).
    Google Scholar 
    Zhang, J. et al. Comparison of land surface phenology in the Northern Hemisphere based on AVHRR GIMMS3g and MODIS datasets. ISPRS J. Photogramm. Remote Sens. 169, 1–16 (2020).Article 

    Google Scholar 
    Wang, X. et al. No consistent evidence for advancing or delaying trends in spring phenology on the Tibetan Plateau. J. Geophys. Res. Biogeosci. 122, 3288–3305 (2017).Article 

    Google Scholar 
    Shen, M. et al. Greater temperature sensitivity of vegetation greenup onset date in areas with weaker temperature seasonality across the Northern Hemisphere. Agric. For. Meteorol. 313, 108759 (2022).Article 

    Google Scholar 
    Zhang, C., Li, S., Luo, F. & Huang, Z. The global warming hiatus has faded away: an analysis of 2014–2016 global surface air temperatures. Int. J. Climatol. 39, 4853–4868 (2019).Article 

    Google Scholar 
    Gonsamo, A., Chen, J. M. & D’Odorico, P. Deriving land surface phenology indicators from CO2 eddy covariance measurements. Ecol. Indic. 29, 203–207 (2013).Article 

    Google Scholar 
    Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).Article 

    Google Scholar 
    Jeong, S.-J., Ho, C.-H., Gim, H.-J. & Brown, M. E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008. Glob. Change Biol. 17, 2385–2399 (2011).Article 

    Google Scholar 
    Wang, S. et al. Temporal trends and spatial variability of vegetation phenology over the northern hemisphere during 1982–2012. PLoS ONE 11, e0157134 (2016).Article 

    Google Scholar 
    Chen, L. et al. Spring phenology at different altitudes is becoming more uniform under global warming in Europe. Glob. Change Biol. 24, 3969–3975 (2018).Article 

    Google Scholar 
    Ren, S., Yi, S. Peichl, M. & Wang, X. Diverse responses of vegetation phenology to climate change in different grasslands in inner Mongolia during 2000–2016. Remote Sens. 10, 17 (2017).Vitasse, Y., Signarbieux, C. & Fu, Y. H. Global warming leads to more uniform spring phenology across elevations. Proc. Natl Acad. Sci. USA 115, 1004–1008 (2018).Article 

    Google Scholar 
    Zhu, Z. et al. The accelerating land carbon sink of the 2000s may not be driven predominantly by the warming Hiatus. Geophys. Res. Lett. 45, 1402–1409 (2018).Article 

    Google Scholar 
    Ballantyne, A. et al. Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nat. Clim. Change 7, 148–152 (2017).Article 

    Google Scholar 
    Zhou, X. et al. Legacy effect of spring phenology on vegetation growth in temperate China. Agric. For. Meteorol. 281, 107845 (2020).Liu, Q. et al. Extension of the growing season increases vegetation exposure to frost. Nat. Commun. 9, 426 (2018). More

  • in

    Post-whaling shift in mating tactics in male humpback whales

    Study area and general observationsFour datasets, equating to four post-whaling timeframes, were used for this study: 1997 (32 years post-whaling), 2003/2004 (38/39 years post-whaling), 2008 (43 years post-whaling) and 2014/2015 (49/50 years post-whaling). Data collection for each timeframe occurred during the annual migration of humpback whales, from breeding grounds in the Great Barrier Reef, to feeding grounds in the Antarctic Ocean. The study site was located off the coast of Peregian Beach (north of Brisbane, in Queensland, Australia), which was approximately one-third of the way along their return migration route. Here, humpback whales were still exhibiting breeding behaviours, such as singing, males joining females as escorts, and males forming competitive groups around a central female. Field work took place in September and October of each year. Generally, the number of migrating groups increased per day to peak during late September and early October. Numbers then gradually fell until the end of the migration.For this study, a group was defined as cluster of whales within approximately 100 m of each other that were diving and surfacing together (as estimated by the land-based visual observers). Groups were constantly changing membership with animals joining and splitting from the group and tend to move at different speeds, and in different directions, whilst making general progress southwards. Groups, unless joining together, were separated by at least 2 km, meaning it was relatively easy to keep a separate track of each group (see below).Acoustic recordings were made from three to five hydrophone buoys moored in 18–28 m of water and arranged in a line or T-shaped array (Fig. 6). Each hydrophone buoy consisted of a surface buoy containing a custom-built pre-amplifier (+20 dB gain) and 41B sonobuoy VHF radio transmitter. A High Tech HTI-96-MIN hydrophone with built-in +40 dB pre-amplifier was suspended approximately 1 m above each buoy’s mooring. Signals were received onshore at a base station 1.5 to 2.5 km away using a directional Yagi antenna and type 8101, four-channel sonobuoy receiver. Singing whales were located by cross-correlating the same song sound arriving at the different hydrophones to determine time-of-arrival differences. These differences, together with an accurate knowledge of the positions of the hydrophones, were then used to determine the most likely location of the singer. Singers generally move slowly and calculating an acoustic position approximately every 10 min produced a detailed track of the singer.Fig. 6: Outline of the study site including the range of visual observations and the position of the acoustic tracking array.Illustrating the study site at Peregian Beach, north of Brisbane, east coast of Australia. The map indicates the position of the land-based station (Emu Mountain) and the acoustic base station along with the position of the 5-buoy hydrophone array. The outline designates the study area. Whales moved in a southerly direction through the area daily. Whale icons illustrate acoustically tracked singing whales (circled in blue) and visually tracked presumed males (black), females (orange), and calves (small black). The 5 km social circle radius for a focal singing (blue circle) and a non-singing (black circle) male are also illustrated. The map is taken from “Google Earth” with permission to print without the need to submit a request (Brand Resource Center | Products and Services – Geo Guidelines (about.google)).Full size imageMigrating groups were tracked visually (7am to 5pm, weather permitting) from a land-based elevated survey point, Emu Mountain (73 m elevation). A theodolite (Leica TM 1100) was used in conjunction with a notebook computer running Cyclopes software (E. Kniest, Univ. Newcastle, Australia) to track the groups in real-time and note group behaviours. The field of view was approximately 20 km in a north/south direction and 10 km offshore (Fig. 6). Humpback whale groups were observed ad libitum and tracked by teams of five people. When whale groups surfaced, the observers called the sighted behaviour, compass bearing, and angle from the group to the horizon (in reticules). Each observation included group identification letter, the time, group size and composition, whether a calf was present, direction of travel, and group location, either by using a binocular reticular measurement or a theodolite measurement. Joining and splitting animals were also noted. A join was defined as one of more animals actively moving towards a group to surface within 100 m and then match the group surfacing times. Examples of this include an individual singing or non-singing whale actively moving towards, and then joining, another individual or group of whales. If more animals subsequently moved in and joined the group, this was termed an additional join to that group. These additionally joined group usually comprised of a female-calf and more than one male escort, or three or more adults, with additional joiners highly likely to be male (21,25,26, supplementary results). On rare occasions a singing whale remained in one place but was joined by another individual. This was termed an additional join given there was no evidence the singer actively moved to join this animal. However, the rarity of these occurrences meant the allocation of this behaviour to additional join, rather than join, had no influence on the results.Some of the migrating animals were biopsied during the day for post-field later sexing. Note biopsied animals were sometimes part of different studies occurring at the field site30,50 and were not necessarily the animals used in this study. However, these biopsy results were used to test assumptions made in this study regarding the sex of joining whales and whales within the observed groups (supplementary results and supplementary note). Weather was noted hourly.Statistics and reproducibilityDefining the proximate effect of male density on individual mating tacticsFor this analysis, a specific period, the 2003/2004 dataset, was chosen as it had the most instances of identified singers and non-singers. Within this timeframe, whales were migrating through the study area at sufficiently low density to avoid confusion. After 2004, it became increasingly difficult to focally follow males.First, for singing males (n = 86), their location within the study area was recorded at the start of singing using the acoustic array. Whilst singing they remained in the same location or meandered slowly within a small area. Non-singing animals that were observed to join a group (n = 31) were assumed to be male (21,25,26,30, supplementary methods and supplementary results). For these joining animals, visual observations were backtracked for 10 to 15 min until they were sighted alone. They were only included in the analysis if they could be definitively backtracked using visual (theodolite) observations, with no opportunity for confusion with other whales in area (i.e., no other whales within 2 km).For each unaccompanied focal male, the number of, and roles, of other presumed males within 5 km radius from the focal whale (Fig. 6) was used as a measure of local male density. The 5 km radius was termed social circle and was chosen as the most likely communication space for their acoustic signals51. For singing focal whales, their social circle was estimated using their location when they began to sing. For non-singing focal males, their social circle was estimated using the backtracked theodolite position to when it was first sighted alone. Next, all groups within the 5 km social circle of the focal whale, along with each group composition (singing animal, lone animal, female and calf pair, female-calf and escort number, adult-only group with the number of adults) were recorded at that timepoint. It was not logistically possible to biopsy and sex all migrating animals, therefore, to estimate the number of males within their social circle several assumptions were made. These assumptions were also tested using a biopsy study carried out in the area (supplementary methods and supplementary results). Female-calf pairs were discounted as it was assumed all adults with a calf were female. It was assumed that female-calf pairs were being escorted by males (21,25,26, supplementary methods and supplementary results). Groups of multiple adults were assumed to be comprised of a likely single female, principal male escort and secondary male escorts or challengers (21,25,26, supplementary methods and supplementary results). Lone animals not involved in any group interactions, and not singing, were given a 70% chance of being male (supplementary note). Animals within adult pairs were given a 70% chance of being male given the likelihood of having a mix of female-male pairs and male-male pairs (21,30, supplementary results and supplementary note).All analysis models were carried out in R (version 3.4.0). The first analysis aimed to determine if the likelihood of first observing the focal individual as a singing or non-singing male was significantly related to local male density, as determined by the number of males within a 5 km radius, termed social circle. Singing whales were allocated a 0 and non-singing whales were allocated a 1. A generalised linear model structure was used, assuming a binomial distribution. Likely males within their social circle were divided into non-singing and singing males (to delineate tactics) and these were included as the two covariates.$${{{{{rm{Singing}}}}}},(0),{{{{{rm{or }}}}}},{{{{{rm{Non}}}}}}{mbox{-}}{{{{{rm{singing}}}}}},(1) sim {{{{{rm{Non}}}}}}{mbox{-}}{{{{{rm{singing}}}}}},{{{{{rm{males}}}}}}, 5,{{{{{rm{km}}}}}}+{{{{{rm{Singing}}}}}},{{{{{rm{whales}}}}}}, 5,{{{{{rm{km}}}}}}$$Each focal male was an independent sample given males were migrating southwards and extremely unlikely to back-track into the study area and therefore be resampled. Significance was set at p  More

  • in

    Non-lethal fungal infection could reduce aggression towards strangers in ants

    Schmid-Hempel P. Parasites in social insects. Princeton University Press (1998).Lefèvre, T. et al. The ecological significance of manipulative parasites. Trends Ecol. Evol. 24, 41–48 (2009).Article 
    PubMed 

    Google Scholar 
    Elya, C. et al. Robust manipulation of the behavior of Drosophila melanogaster by a fungal pathogen in the laboratory. Elife 7, e34414 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Herbison, R., Lagrue, C. & Poulin, R. The missing link in parasite manipulation of host behaviour. Parasites Vectors 11, 1–6 (2018).Article 

    Google Scholar 
    Csata, E., Billen, J., Barbu-Tudoran, L. & Markó, B. Inside Pandora’s box: development of the lethal myrmecopathogenic fungus Pandora formicae within its ant host. Fungal Ecol. 50, 101022 (2021).Article 

    Google Scholar 
    Trinh, T., Ouellette, R. & de Bekker, C. Getting lost: the fungal hijacking of ant foraging behaviour in space and time. Anim. Behav. 181, 165–184 (2021).Article 

    Google Scholar 
    Moore J. Parasites and the Behavior of Animals. Oxford University Press, Oxford (2002).Thomas, F., Fauchier, J. & Lafferty, K. D. Conflict of interest between a nematode and a trematode in an amphipod host: test of the “sabotage” hypothesis. Behav. Ecol. Sociobiol. 51, 296–301 (2002).Article 

    Google Scholar 
    Stroeymeyt, N. et al. Social network plasticity decreases disease transmission in a eusocial insect. Science 362, 941–945 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Beros, S., Foitzik, S. & Menzel, F. What are the mechanisms behind a parasite-induced decline in nestmate recognition in ants? J. Chem. Ecol. 43, 869–880 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hamilton, W. D. Kinship, recognition, disease, and intelligence: constraints of social evolution. In: Ito Y., Brown J. L., Kikkawa J. (eds) Animal societies: theories and facts. Jpn Sci Soc Press, Tokyo, pp 81–102 (1987).Hunt, J. H. & Richard, F. J. Intracolony vibroacoustic communication in social insects. Insect Soc. 60, 403–417 (2013).Article 

    Google Scholar 
    Wyatt, T. D. Proteins and peptides as pheromone signals and chemical signatures. Anim. Behav. 97, 273–280 (2014).Article 

    Google Scholar 
    Leonhardt, S. D., Menzel, F., Nehring, V. & Schmitt, T. Ecology and evolution of communication in social insects. Cell 164, 1277–1287 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Casacci, L. P. et al. Ant pupae employ acoustics to communicate social status in their colony’s hierarchy. Curr. Biol. 23, 323–327 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schönrogge, K., Barbero, F., Casacci, L. P., Settele, J. & Thomas, J. A. Acoustic communication within ant societies and its mimicry by mutualistic and socially parasitic myrmecophiles. Anim. Behav. 134, 249–256 (2017).Article 

    Google Scholar 
    Sheehan, M. J. & Tibbetts, E. A. Specialized face learning is associated with individual recognition in paper wasps. Science 334, 1272–1275 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chittka, L. & Dyer, A. Your face looks familiar. Nature 481, 154–155 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Billen, J. Signal variety and communication in social insects. Proc. Neht. Entomol. Soc. Meet. 17, 9 (2006).
    Google Scholar 
    Blomquist G. J. Biosynthesis of cuticular hydrocarbons. In: Blomquist, G. J., Bagnères, A.-G. (eds.): Insect hydrocarbons: biology, biochemistry and chemical ecology. Cambridge University Press (2010).Hefetz, A. The evolution of hydrocarbon pheromone parsimony in ants (Hymenoptera: Formicidae) – interplay of colony odor uniformity and odor idiosyncrasy. Myrmecol. N. 10, 59–68 (2007).
    Google Scholar 
    Bagnères A. G., Lorenzi M. C. Chemical deception/mimicry using cuticular hydrocarbons. Insect hydrocarbons: Biology, biochemistry and chemical ecology. Chemical deception/mimicry using cuticular hydrocarbons, 282–324 (2010).van Zweden, J. S. & d’Ettorre, P. Nestmate recognition in social insects and the role of hydrocarbons. Insect Hydrocarbons: Biol. Biochem. Chem. Ecol. 11, 222–243 (2010).Article 

    Google Scholar 
    Esponda, F. & Gordon, D. M. Distributed nestmate recognition in ants. Proc. R. Soc. B. 282, 20142838 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Crozier, R. & Dix, M. W. Analysis of two genetic models for the innate components of colony odor in social Hymenoptera. Behav. Ecol. Sociobiol. 4, 217–224 (1979).Article 

    Google Scholar 
    Wakonigg, G., Eveleigh, L., Arnold, G. & Crailsheim, K. Cuticular hydrocarbon profiles reveal age-related changes in honey bee drones (Apis mellifera carnica). J. Apic. Res. 39, 137–141 (2000).Article 
    CAS 

    Google Scholar 
    Cuvillier-Hot, V., Cobb, M., Malosse, C. & Peeters, C. Sex, age and ovarian activity affect cuticular hydrocarbons in Diacamma ceylonense, a queenless ant. J. Insect Physiol. 47, 485–493 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Greene, M. J. & Gordon, D. M. Cuticular hydrocarbons inform task decisions. Nature 423, 32–32 (2003).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kather, R., Drijfhout, F. P. & Martin, S. J. Task group differences in cuticular lipids in the honey bee Apis mellifera. J. Chem. Ecol. 37, 205–212 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kleeberg, I., Menzel, F. & Foitzik, S. The influence of slavemaking lifestyle, caste and sex on chemical profiles in Temnothorax ants: insights into the evolution of cuticular hydrocarbons. Proc. R. Soc. B. 284, 20162249 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sprenger, P. P. & Menzel, F. Cuticular hydrocarbons in ants (Hymenoptera: Formicidae) and other insects: how and why they differ among individuals, colonies, and species. Myrmecol. N. 30, 1–26 (2020).
    Google Scholar 
    Reeve, H. K. The evolution of conspecific acceptance thresholds. Am. Nat. 133, 407–435 (1989).Article 

    Google Scholar 
    Lenoir, A., D’Ettore, P. & Errard, C. Chemical ecology and social parasitism in ants. Annu. Rev. Entomol. 46, 573–599 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Akino, T. Chemical strategies to deal with ants: a review of mimicry, camouflage, propaganda, and phytomimesis by ants (Hymenoptera: Formicidae) and other arthropods. Myrmecol. N. 11, 173–181 (2008).
    Google Scholar 
    Akino, T., Knapp, J. J., Thomas, J. A. & Elmes, G. W. Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proc. Roy. Soc. B. 266, 1419–1426 (1999).Article 
    CAS 

    Google Scholar 
    Nash, D. R., Als, T. D., Maile, R., Jones, G. R. & Boomsma, J. J. A mosaic of chemical coevolution in a large blue butterfly. Science 319, 88–90 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Johnson, C. A., Vander Meer, R. K. & Lavine, B. Changes in the cuticular hydrocarbon profile of the slave-maker ant queen, Polyergus breviceps Emery, after killing a Formica host queen (Hymenoptera: Formicidae). J. Chem. Ecol. 27, 1787–1804 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lecuona, R., Riba, G., Cassier, P. & Clément, J. L. Alterations of insect epicuticular hydrocarbons during infection with Beauveria bassiana or B. brongniartii. J. Invertebr. Pathol. 58, 10–18 (1991).Article 
    CAS 

    Google Scholar 
    Trabalon, M., Plateaux, L., Péru, L., Bagnères, A. G. & Hartmann, N. Modification of morphological characters and cuticular compounds in worker ants Leptothorax nylanderi induced by endoparasites Anomotaenia brevis. J. Insect Physiol. 46, 169–178 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zurek, L., Watson, D. W., Krasnoff, S. B. & Schal, C. Effect of the entomopathogenic fungus, Entomophthora muscae (Zygomycetes: Entomophthoraceae), on sex pheromone and other cuticular hydrocarbons of the house fly. Musca Domestica. J. Invertebr. Pathol. 80, 171–176 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Nielsen, M. L. & Holman, L. Terminal investment in multiple sexual signals: immune‐challenged males produce more attractive pheromones. Func. Ecol. 26, 20–28 (2012).Article 

    Google Scholar 
    Beros, S., Jongepier, E., Hagemeier, F. & Foitzik, S. The parasite’s long arm: a tapeworm parasite induces behavioural changes in uninfected group members of its social host. Proc. Roy. Soc. B. 282, 20151473 (2015).Article 

    Google Scholar 
    Csata, E., Erős, K. & Markó, B. Effects of the ectoparasitic fungus Rickia wasmannii on its ant host Myrmica scabrinodis: changes in host mortality and behavior. Insectes Soc. 61, 247–252 (2014).Article 

    Google Scholar 
    Markó, B. et al. Distribution of the myrmecoparasitic fungus Rickia wasmannii (Ascomycota: Laboulbeniales) across colonies, individuals, and body parts of Myrmica scabrinodis. J. Invertebr. Pathol. 136, 74–80 (2016).Article 
    PubMed 

    Google Scholar 
    Báthori, F., Csata, E. & Tartally, A. Rickia wasmannii increases the need for water in Myrmica scabrinodis (Ascomycota: Laboulbeniales; Hymenoptera: Formicidae). J. Invertebr. Pathol. 126, 7–82 (2015).Article 

    Google Scholar 
    Csata, E. et al. Lock-picks: fungal infection facilitates the intrusion of strangers into ant colonies. Sci. Rep. 7, 46323 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Csata, E., Billen, J., Bernadou, A., Heinze, J. & Markó, B. Infection-related variation in cuticle thickness in the ant Myrmica scabrinodis (Hymenoptera: Formicidae). Insectes Soc. 65, 503–506 (2018).Article 

    Google Scholar 
    Csősz, S., Rádai, Z., Tartally, A., Ballai, L. E. & Báthori, F. Ectoparasitic fungi Rickia wasmannii infection is associated with smaller body size in Myrmica ants. Sci. Rep. 11, 1–9 (2021).Article 

    Google Scholar 
    Dani, F. R., Jones, G. R., Destri, S., Spencer, S. H. & Turillazzi, S. Deciphering the recognition signature within the cuticular chemical profile of paper wasps. Anim. Behav. 62, 165–171 (2001).Article 

    Google Scholar 
    Lorenzi, M. C., Bagneres, A. G., Clément, J. L. & Turillazzi, S. Polistes biglumis bimaculatus epicuticular hydrocarbons and nestmate recognition (Hymenoptera Vespidae). Insectes Soc. 44, 123–138 (1997).Article 

    Google Scholar 
    Ruther, J., Sieben, S. & Schricker, B. Nestmate recognition in social wasps: manipulation of hydrocarbon profiles induces aggression in the European hornet. Naturwissenschaften 89, 111–114 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Smith, A. A., Hölldobler, B. & Liebig, J. Cuticular hydrocarbons reliably identify cheaters and allow enforcement of altruism in a social insect. Curr. Biol. 19, 78–81 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ebsen, J. R., Boomsma, J. J. & Nash, D. R. Phylogeography and cryptic speciation in the Myrmica scabrinodis Nylander, 1846 species complex (Hymenoptera: Formicidae), and their conservation implications. Insect Conserv. Divers 12, 467–480 (2019).Article 

    Google Scholar 
    Ballinger, M. J., Moore, L. D. & Perlman, S. J. Evolution and diversity of inherited Spiroplasma symbionts in Myrmica ants. Appl. Environ. Microbiol. 84, e02299–17 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Menzel, F. et al. Crematoenones – a novel substance class exhibited by ants functions as appeasement signal. Front. Zool. 10, 1–12 (2013).Article 

    Google Scholar 
    Qiu, H.-L., Qin, C.-S., Fox, E. G. P., Wang, D.-S. & He, Y.-R. Differential behavioral responses of Solenopsis invicta (Hymenoptera: Formicidae) workers toward nestmate and non-nestmate corpses. J. Ins. Sci. 20, 11 (2020).Article 

    Google Scholar 
    Martin, S. J., Vitikainen, E., Helanterä, H. & Drijfhout, F. P. Chemical basis of nest-mate discrimination in the ant Formica exsecta. Proc. R. Soc. B. 275, 1271–1278 (2008).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guerrieri, F. J. et al. Ants recognize foes and not friends. Proc. R. Soc. B. 276, 2461–2468 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gibbs, A. & Pomonis, J. G. Physical properties of insect cuticular hydrocarbons: the effects of chain lengths, methyl branching and unsaturation. Comp. Biochem. Physiol. 112, 243–249 (1995).Article 

    Google Scholar 
    Menzel, F., Blaimer, B. B. & Schmitt, T. How do cuticular hydrocarbons evolve? Physiological constraints and climatic and biotic selection pressures act on a complex functional trait. Proc. R. Soc. B. 284, 20161727 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Breed, M. D., Leger, E. A., Pearce, A. M. & Wang, Y. J. Comb wax effects on the ontogeny of honey bee nestmate recognition. Anim. Behav. 55, 13–20 (1998).Article 
    CAS 
    PubMed 

    Google Scholar 
    Breed, M. D. & Stiller, T. M. Honey bee, Apis mellifera, nestmate discrimination: hydrocarbon effects and the evolutionary implications of comb choice. Anim. Behav. 43, 875–883 (1992).Article 

    Google Scholar 
    Akino, T., Yamamura, K., Wakamura, S. & Yamaoka, R. Direct behavioral evidence for hydrocarbons as nestmate recognition cues in Formica japonica (Hymenoptera: Formicidae). Appl. Entomol. Zool. 39, 381–387 (2004).Article 
    CAS 

    Google Scholar 
    Greene, M. J. & Gordon, D. M. Structural complexity of chemical recognition cues affects the perception of group membership in the ants Linepithema humile and Aphaenogaster cockerelli. J. Exp. Biol. 210, 897–905 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Casacci, L. P., Barbero, F., Ślipiński, P. & Witek, M. The inquiline ant Myrmica karavajevi uses both chemical and vibroacoustic deception mechanisms to integrate into its host colonies. Biology 10, 654 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bhatkar, A. & Whitcomb, W. Artificial diet for rearing various species of ants. Florid. Entomol. 53, 229–232 (1970).Article 

    Google Scholar 
    Espadaler X., Santamaria S. Ecto- and endoparasitic fungi on ants from the Holarctic region. Psyche 168478, 1–10 (2012).Csata, E. et al. Comprehensive survey of Romanian myrmecoparasitic fungi: new species, biology and distribution. North West J. Zool. 9, 23–29 (2013).
    Google Scholar 
    Witek, M., Barbero, F. & Markó, B. Myrmica ants host highly diverse parasitic communities: from social parasites to microbes. Insectes Soc. 61, 307–323 (2014).Article 

    Google Scholar 
    Tragust, S., Tartally, A., Espadaler, X. & Billen, J. Histopathology of Laboulbeniales (Ascomycota: Laboulbeniales): ectoparasitic fungi on ants (Hymenoptera: Formicidae). Myrmecol. N. 23, 81–89 (2016).
    Google Scholar 
    Czekes, Z. et al. The genus Myrmica Latreille, 1804 (Hymenoptera: Formicidae) in Romania: distribution of species and key for their identification. Entomol. Rom. 17, 29–50 (2012).
    Google Scholar 
    Buczkowski, G. & Silverman, J. Context-dependent nestmate discrimination and the effect of action thresholds on exogenous cue recognition in the Argentine ant. Anim. Behav. 69, 741–749 (2005).Article 

    Google Scholar 
    Diez, L., Moquet, L. & Detrain, C. Post-mortem changes in chemical profile and their influence on corpse removal in ants. J. Chem. Ecol. 39, 1424–1432 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Csata, E., Bernadou, A., Rákosy-Tican, E., Heinze, J. & Markó, B. The effects of fungal infection and physiological condition on the locomotory behaviour of the ant Myrmica scabrinodis. J. Insect Physiol. 98, 167–172 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Moroń, D., Witek, M. & Woyciechowski, M. Division of labour among workers with different life expectancy in the ant Myrmica scabrinodis. Anim. Behav. 75, 345–350 (2008).Article 

    Google Scholar 
    Bernadou, A., Felden, A., Moreau, M., Moretto, P. & Fourcassié, V. Ergonomics of load transport in the seed harvesting ant Messor barbarus: morphology influences transportation method and efficiency. J. Exp. Biol. 219, 2920–2927 (2016).PubMed 

    Google Scholar 
    Keresztes, K. K., Csata, E., Lunka-Tekla, A. & Markó, B. Friend or foe? Differential aggression towards neighbors and strangers in the ant Liometopum microcephalum (Hymenoptera: Formicidae). Sci. Entomol. 23, 351–358 (2020).Article 

    Google Scholar 
    Ratnasingham, S. & Hebert, P. D. BOLD: The Barcode of life data system. Mol. Ecol. Notes 7, 355–364, http://www.barcodinglife.org (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (URL ) (2020).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Soft. 67, 1–48 (2015).Fox J., Weisberg S. Using car and effects Functions in Other Functions. Using Car Eff. Funct. Other Funct., 3, 1–5 (2020).Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric 312 models. Biom. J. 50, 346–363 (2008).Article 
    PubMed 

    Google Scholar 
    Wickham H. ggplot2: elegant graphics for data analysis. (Springer Science & Business Media) (2009). More

  • in

    Population genetic structure of a recent insect invasion: a gall midge, Asynapta groverae (Diptera: Cecidomyiidae) in South Korea since the first outbreak in 2008

    Hobbs, R. J. (ed.) Invasive Species in a Changing World (Island press, 2000).
    Google Scholar 
    Marbuah, G., Gren, I. M. & McKie, B. Economics of harmful invasive species: A review. Diversity 6, 500–523. https://doi.org/10.3390/d6030500 (2014).Article 

    Google Scholar 
    Doherty, T. S., Glen, A. S., Nimmo, D. G., Ritchie, E. G. & Dickman, C. R. Invasive predators and global biodiversity loss. PNAS 113, 11261–11265. https://doi.org/10.1073/pnas.1602480113 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    David, P. et al. Impacts of invasive species on food webs: A review of empirical data. Adv. Ecol. Res. 56, 1–60. https://doi.org/10.1016/bs.aecr.2016.10.001 (2017).Article 

    Google Scholar 
    Roy, H. E. et al. Developing a list of invasive alien species likely to threaten biodiversity and ecosystems in the European Union. Glob. Change Biol. 25, 1032–1048. https://doi.org/10.1111/gcb.14527 (2019).Article 
    ADS 

    Google Scholar 
    Walther, G. R. et al. Alien species in a warmer world: Risks and opportunities. Trends Ecol. Evol. 24, 686–693. https://doi.org/10.1016/j.tree.2009.06.008 (2009).Article 
    PubMed 

    Google Scholar 
    Peyton, J. et al. Horizon scanning for invasive alien species with the potential to threaten biodiversity and human health on a Mediterranean island. Biol. Invasions 21, 2107–2125. https://doi.org/10.1007/s10530-019-01961-7 (2019).Article 

    Google Scholar 
    Meyerson, L. A. & Mooney, H. A. Invasive alien species in an era of globalization. Front. Ecol. Environ. 5, 199–208. https://doi.org/10.1890/1540-9295(2007)5[199:IASIAE]2.0.CO;2 (2007).Article 

    Google Scholar 
    Hulme, P. E. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18. https://doi.org/10.1111/j.1365-2664.2008.01600.x (2009).Article 

    Google Scholar 
    Lodge, D. M. Biol Invasions: Lessons for ecology. Trends Ecol. Evol. 8, 133–137. https://doi.org/10.1016/0169-5347(93)90025-K (1993).Article 
    CAS 
    PubMed 

    Google Scholar 
    Keller, S. R. & Taylor, D. R. History, chance and adaptation during biological invasion: Separating stochastic phenotypic evolution from response to selection. Ecol. Lett. 11, 852–866. https://doi.org/10.1111/j.1461-0248.2008.01188.x (2008).Article 
    PubMed 

    Google Scholar 
    Ham, D., Kim, W. G., Lee, H., Choi, D. S. & Bae, Y. J. New Korean record of the mycophagous gall midge Asynapta groverae (Diptera: Cecidomyiidae) with its outbreak situation and ecological notes. Newsl. Entomol. Soc. Korea. 11, 25–30 (2018) (in Korean).
    Google Scholar 
    Grover, P. Studies on gall-midges from India XXXIV. On the study of Indian Porricondylini. Cecidologia Indica 6, 1–38 (1971).
    Google Scholar 
    Jiang, Y. X. & Bu, W. J. A newly recorded gall midge genus (Diptera, Cecidomyiidae) with a species, Asynapta groverae Jiang et Bu, nom. Nov. from China. Acta. Zootax. Sinica. 29, 786–789 (2004).
    Google Scholar 
    Bae, Y. J. Research report on the outbreak of the cecidomyiids (Diptera: Cecidomyiidae) from the Well-county apartment area in Songdo, Incheon. Incheon Metropolitan Development Corporation, Incheon 171 (2009) (in Korean).Ham, D. & Bae, Y. J. Description of immature stages of Asynapta groverae (Diptera: Cecidomyiidae). Bull. Entomol. Res. 34, 103–107 (2018).
    Google Scholar 
    Gagné, R. J. & Jaschhof, M. A Catalog of the Cecidomyiidae (Diptera) of the World. 5th Edition, Digital, 121–124 (2021).Jones, M., Mautner, A., Luenco, S., Bismarck, A. & John, S. Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Mater. Des. 187, 108397. https://doi.org/10.1016/j.matdes.2019.108397 (2020).Article 
    CAS 

    Google Scholar 
    Ross, K. G. & Shoemaker, D. D. Estimation of the number of founders of an invasive pest insect population: The fire ant Solenopsis invicta in the USA. Proc. R. Soc. B-Biol. Sci. 275, 2231–2240. https://doi.org/10.1098/rspb.2008.0412 (2008).Article 

    Google Scholar 
    Brandt, M., Van Wlgenburg, E. & Tsutsui, N. D. Global-scale analyses of chemical ecology and population genetics in the invasive Argentine ant. Mol. Ecol. 18, 997–1005. https://doi.org/10.1111/j.1365-294X.2008.04056.x (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Amouroux, P., Normand, F., Nibouche, S. & Delatte, H. Invasive mango blossom gall midge, Procontarinia mangiferae (Felt) (Diptera: Cecidomyiidae) in Reunion Island: Ecological plasticity, permanent and structured populations. Biol. Invasions 15, 1677–1693. https://doi.org/10.1007/s10530-012-0400-0 (2013).Article 

    Google Scholar 
    Horst, C. P. & Lau, J. A. Genetic variation in invasive species response to direct and indirect species interactions. Biol. Invasions 17, 651–659. https://doi.org/10.1007/s10530-014-0756-4 (2015).Article 

    Google Scholar 
    Nei, M., Maruyama, T. & Chakraborty, R. The bottleneck effect and genetic variability in populations. Evolution 29, 1–10. https://doi.org/10.2307/2407137 (1975).Article 
    PubMed 

    Google Scholar 
    Tsutsui, N. D. & Suarez, A. V. The colony structure and population biology of invasive ants. Conserv. Biol. 17, 48–58. https://doi.org/10.1046/j.1523-1739.2003.02018.x (2003).Article 

    Google Scholar 
    Freeland, J. Molecular markers in ecology. In (eds Freeland, J., Pertersen, S. & Kirk, H.) Oxford 31–62 (2011).Tsutsui, N. D., Suarez, A. V., Holway, D. A. & Case, T. J. Reduced genetic variation and the success of an invasive species. PNAS 97, 5948–5953. https://doi.org/10.1073/pnas.100110397 (2000).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davis, M. A. Invasion Biology (Oxford University Press, 2009).
    Google Scholar 
    Yao, Y. X. et al. Genetic variation may have promoted the successful colonization of the invasive gall midge, Obolodiplosis robiniae, in China. Front. Genet. 11, 387. https://doi.org/10.3389/fgene.2020.00387 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Johnson, R. N. & Starks, P. T. A surprising level of genetic diversity in an invasive wasp: Polistes dominulus in the northeastern United States. Ann. Entomol. Soc. Am. 97, 732–737. https://doi.org/10.1603/0013-8746(2004)097[0732:ASLOGD]2.0.CO;2 (2004).Article 

    Google Scholar 
    Roderick, G. K. Geographic structure of insect populations: Gene flow, phylogeography, and their uses. Annu. Rev. Entomol. 41, 325–352. https://doi.org/10.1146/annurev.en.41.010196.001545 (1996).Article 
    CAS 
    PubMed 

    Google Scholar 
    Puillandre, N. et al. Genetic bottleneck in invasive species: The potato tuber moth adds to the list. Biol. Invasions 10, 319–333. https://doi.org/10.1007/s10530-007-9132-y (2008).Article 

    Google Scholar 
    Zhan, A., Macisaac, H. J. & Cristescu, M. E. Invasion genetics of the Ciona intestinalis species complex: From regional endemism to global homogeneity. Mol. Ecol. 19, 4678–4694. https://doi.org/10.1111/j.1365-294X.2010.04837.x (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mallez, S. et al. Worldwide invasion routes of the pinewood nematode: What can we infer from population genetics analyses?. Biol. Invasions 17(4), 1199–1213. https://doi.org/10.1007/s10530-014-0788-9 (2015).Article 

    Google Scholar 
    Tsutsui, N. D. & Case, T. J. Population genetics and colony structure of the Argentine ant (Linepithema humile) in its native and introduced ranges. Evolution 55, 976–985. https://doi.org/10.1111/j.0014-3820.2001.tb00614.x (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kim, H., Hoelmer, K. A. & Lee, S. Population genetics of the soybean aphid in North America and East Asia: Test for introduction between native and introduced populations. Biol. Invasions 19, 597–614. https://doi.org/10.1007/s10530-016-1299-7 (2017).Article 

    Google Scholar 
    Chen, M. H. & Dorn, S. Microsatellites reveal genetic differentiation among populations in an insect species with high genetic variability in dispersal, the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Bull. Entomol. Res. 100, 75–85 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zygouridis, N. E., Augustinos, A. A., Zalom, F. G. & Mathiopoulos, K. D. Analysis of olive fly invasion in California based on microsatellite markers. Heredity 102, 402–412. https://doi.org/10.1038/hdy.2008.125 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lesieur, V. et al. The rapid spread of Leptoglossus occidentalis in Europe: A bridgehead invasion. J. Pest Sci. 92, 189–200. https://doi.org/10.1007/s10340-018-0993-x (2019).Article 

    Google Scholar 
    Mutitu, E. K. et al. Reconstructing early routes of invasion of the bronze bug Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae): Cities as bridgeheads for global pest invasions. Biol. Invasions 22, 2325–2338. https://doi.org/10.1007/s10530-020-02258-w (2020).Article 

    Google Scholar 
    Peccoud, J. et al. Host range expansion of an introduced insect pest through multiple colonizations of specialized clones. Mol. Ecol. 17(21), 4608–4618. https://doi.org/10.1111/j.1365-294X.2008.03949.x (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Eyer, P. A., Moran, M. N., Blumenfeld, A. J. & Vargo, E. L. Development of a set of microsatellite markers to investigate sexually antagonistic selection in the invasive ant Nylanderia fulva. Insects 12, 643. https://doi.org/10.3390/insects12070643 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schauer, B., Bong, J., Popp, C., Obermaier, E. & Feldhaar, H. Dispersal limitation of saproxylic insects in a managed forest? A population genetics approach. Basic Appl. Ecol. 32, 26–38. https://doi.org/10.1016/j.baae.2018.01.005 (2018).Article 

    Google Scholar 
    Bereczki, J., Póliska, S., Váradi, A. & Tóth, J. P. Incipient sympatric speciation via host race formation in Phengaris arion (Lepidoptera: Lycaenidae). Org. Divers. Evol. 20, 63–76. https://doi.org/10.1007/s13127-019-00418-y (2020).Article 

    Google Scholar 
    Selkoe, K. A. & Toonen, R. J. Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9, 615–629. https://doi.org/10.1111/j.1461-0248.2006.00889.x (2006).Article 
    PubMed 

    Google Scholar 
    Miah, G. et al. A review of microsatellite markers and their applications in rice breeding programs to improve blast disease resistance. Int. J. Mol. Sci. 14, 22499–22528. https://doi.org/10.3390/ijms141122499 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lloyd, C. J., Norton, A. P., Hufbauer, R. A., Bogdanowicz, S. M. & Nissen, S. J. Microsatellite isolation from the gall midge Spurgia capitigena (Diptera: Cecidomyiidae), a biological control agent of leafy spurge. Mol. Ecol. Notes 4, 605–607. https://doi.org/10.1111/j.1471-8286.2004.00751.x (2004).Article 
    CAS 

    Google Scholar 
    Bentur, J. S. et al. Isolation and characterization of microsatellite loci in the Asian rice gall midge (Orseolia oryzae) (Diptera: Cecidomyiidae). Int. J. Mol. Sci. 12, 755–772. https://doi.org/10.3390/ijms12010755 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hinomoto, N., Higaki, T., Abe, J., Yamane, M. & Yano, E. Development and characterization of 21 polymorphic microsatellite loci in the aphidophagous gall midge, Aphidoletes aphidimyza (Diptera: Cecidomyiidae). Appl. Entomol. Zool. 47, 165–171. https://doi.org/10.1007/s13355-012-0104-z (2012).Article 
    CAS 

    Google Scholar 
    Mezghani-Khemakhem, M. et al. Development of new polymorphic microsatellite loci for the barley stem gall midge, Mayetiola hordei (Diptera: Cecidomyiidae) from an Enriched Library. Int. J. Mol. Sci. 13, 14446–14450. https://doi.org/10.3390/ijms131114446 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kim, H. et al. Development and characterization of 12 microsatellite loci from the blueberry gall midge Dasineura oxycoccana (Diptera: Cecidomyiidae). Appl. Entomol. Zool. 50, 415–418. https://doi.org/10.1007/s13355-015-0335-x (2015).Article 

    Google Scholar 
    Benzécri, J. P. Construction d’une classification ascendante hiérarchique par la recherche en chaîne des voisins réciproques. Cahiers de l’analyse des données. 7, 209–218 (1982).MATH 

    Google Scholar 
    Simberloff, D. Invasive species. In Conservation Biology for all (eds Sodhi, N. S. & Ehrlich, P. R.) 131–152 (Oxford University Press, 2010).Chapter 

    Google Scholar 
    Keum, E. et al. Morphological, genetic and symptomatic identification of an invasive jujube pest in Korea, Dasineura jujubifolia Jiao & Bu (Diptera: Cecidomyiidae). J. Asia Pac. Entomol. 101935, 2002. https://doi.org/10.1016/j.aspen.2022.101935 (2022).Article 

    Google Scholar 
    Jaschhof, M. & Jaschhof, C. New and rarely found species of asynaptine Porricondylinae (Diptera: Cecidomyiidae) in northern Europe. Zootaxa https://doi.org/10.12651/JSR.2019.8.2.238 (2019).Article 
    PubMed 

    Google Scholar 
    Yuxia, J. & Wenjun, B. A newly recorded gall midge genus (Diptera, cecidomyiidae) with a species, Asynapta groverae Jiang et bu. nom. Nov. from China. Dong wu fen lei xue bao = Acta Zootaxonomica Sinica 29, 786–789 (2004).
    Google Scholar 
    Mamaev, M. & Krivosheina, N. P. The Larvae of the Gall Miges (CRC Press, 1992).
    Google Scholar 
    Dorchin, N., Harris, K. M. & Stireman, J. O. III. Phylogeny of the gall midges (Diptera, Cecidomyiidae, Cecidomyiinae): Systematics, evolution of feeding modes and diversification rates. Mol. Phylogenet. Evol. 140, 106602. https://doi.org/10.1016/j.ympev.2019.106602 (2019).Article 
    PubMed 

    Google Scholar 
    Gilpin, M. E. Minimal viable populations: Processes of species extinction. Conserv. Biol. Sci. Scarcity Divers. (1986).Frankham, R., Ballou, J. D. & Briscoe, D. A. Introduction to Conservation Genetics (Cambridge University Press, 2002).Book 

    Google Scholar 
    Hedrick, P. W. Genetic polymorphism in heterogeneous environments: The age of genomics. Annu. Rev. Ecol. Syst. 37, 67–93. https://doi.org/10.1146/annurev.ecolsys.37.091305.110132 (2006).Article 

    Google Scholar 
    Kolbe, J. J. et al. Genetic variation increases during biological invasion by a Cuban lizard. Nature 431, 177–181. https://doi.org/10.1038/nature02807 (2004).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Frankham, R. Resolving the genetic paradox in invasive species. Heredity 94, 385–385. https://doi.org/10.1038/sj.hdy.6800634 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sakai, A. K. et al. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32, 305–332. https://doi.org/10.1146/annurev.ecolsys.32.081501.114037 (2001).Article 

    Google Scholar 
    Wagner, N. P. Parthenogenesis in the larva of insects. Sci. Mem. Kasan Univ. 1, 25–111 (1862) (in Russian).
    Google Scholar 
    Meinert, F. Miastor metraloas: yderlige oplysning om den af Prof. Nic. Wagner nyligt beskneune insektlarva, som formerer sig ved spinedannelse. Naturhistorisk Tidsskrqt R3(3), 37–43 (1864).
    Google Scholar 
    Wyatt, I. J. Pupal paedogenesis in the Cecidomyiidae (Diptera). II. Proceedings of the Royal Entomological Society of London. J. Entomol. Ser. A-Gen. 38, 136–144. https://doi.org/10.1111/j.1365-3032.1963.tb00768.x (1963).Article 

    Google Scholar 
    Wyatt, I. J. Immature stages of Lestremiinae (Diptera: Cecidomyiidae) infesting cultivated mushrooms. Trans. R. Entomol. Soc. Lond. 116, 15–27. https://doi.org/10.1111/j.1365-2311.1964.tb00823.x (1964).Article 

    Google Scholar 
    Panelius, I. J. A revision of the European gall midges of the subfamily Porricondylinae (Diptera: Itonididae). Acta Zool. Fenn. 13, 1–157 (1965).
    Google Scholar 
    Schüpbach, P. M. & Camenzind, R. Germ cell lineage and follicle formation in paedogenetic development of Mycophila speyeri Barnes (Diptera: Cecidomyiidae). Int. J. Insect Morphol. Embryol. 12, 211–223. https://doi.org/10.1016/0020-7322(83)90018-1 (1983).Article 

    Google Scholar 
    Sikora, T., Jaschhof, M., Mantič, M., Kaspřák, D. & Ševčík, J. Considerable congruence, enlightening conflict: molecular analysis largely supports morphology-based hypotheses on Cecidomyiidae (Diptera) phylogeny. Zool. J. Linn. Soc. 185, 98–110. https://doi.org/10.1093/zoolinnean/zly029 (2019).Article 

    Google Scholar 
    Gould, S. J. Ontogeny and Phylogeny (Harvard University Press, 1985).
    Google Scholar 
    Went, D. F. Paedogenesis in the dipteran insect Heteropeza pygmaea: An interpretation. Int. J. Invertebr. Reprod. 1, 21–30. https://doi.org/10.1080/01651269.1979.10553296 (1979).Article 

    Google Scholar 
    Hodin, J. & Riddiford, L. M. Parallel alterations in the timing of ovarian ecdysone receptor and ultraspiracle expression characterize the independent evolution of larval reproduction in two species of gall midges (Diptera: Cecidomyiidae). Dev. Genes Evol. 210, 358–372. https://doi.org/10.1007/s004270000079 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Olfert, O., Elliott, R. H. & Hartley, S. In Ecological Impacts of Non-native Invertebrates and Fungi on Terrestrial Ecosystems (eds Langor, D. W. & Sweeney, J.) 127–133 (Springer, 2008). https://doi.org/10.1007/978-1-4020-9680-8_9.Chapter 

    Google Scholar 
    Miao, J. et al. Long-distance wind-borne dispersal of Sitodiplosis mosellana Géhin (Diptera: Cecidomyiidae) in Northern China. J. Insect Behav. 26, 120–129. https://doi.org/10.1007/s10905-012-9346-4 (2013).Article 

    Google Scholar 
    Hao, Y. N. et al. Flight performance of the orange wheat blossom midge (Diptera: Cecidomyiidae). J. Econ. Entomol. 106, 2043–2047. https://doi.org/10.1603/EC13218 (2013).Article 
    PubMed 

    Google Scholar 
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS 
    PubMed 

    Google Scholar 
    Luo, R. et al. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. GigaScience 1, 2047-217X-1–18. https://doi.org/10.1186/2047-217X-1-18 (2012).Article 

    Google Scholar 
    Jiang, H., Lei, R., Ding, S. W. & Zhu, S. Skewer: A fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinform. 15, 1–12. https://doi.org/10.1186/1471-2105-15-182 (2014).Article 
    CAS 

    Google Scholar 
    Beier, S., Thiel, T., Münch, T., Scholz, U. & Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 33, 2583–2585. https://doi.org/10.1093/bioinformatics/btx198 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. In Bioinformatics Methods and Protocols. Methods in Molecular Biology™ Vol. 132 (eds Misener, S. & Krawetz, S. A.) (Humana Press, 2000). https://doi.org/10.1385/1-59259-192-2:365.Chapter 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).Article 
    PubMed 

    Google Scholar 
    Petit, R. J., Mousadik, A. E. & Pons, O. Identifying populations for conservation on the basis of genetic markers. Conserv. Biol. 12, 844–855. https://doi.org/10.1111/j.1523-1739.1998.96489.x (1998).Article 

    Google Scholar 
    Teacher, A. G. F. & Griffiths, D. J. HapStar: Automated haplotype network layout and visualization. Mol. Ecol. Resour. 11, 151–153. https://doi.org/10.1111/j.1755-0998.2010.02890.x (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rousset, F. Genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x (2008).Article 
    PubMed 

    Google Scholar 
    Goudet, J. FSTAT, a program to estimate and test gene diversity and fixation indices (version 2.9.3). http://www2.unil.ch/popgen/softwares/fstat.htm (2001).Van Oosterhout, C. V., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICROCHECKER v. 2.2.3. (2006).Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N. & Bonhomme, F. GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Montpellier, France: Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II (2004). More

  • in

    Climate-driven convergent evolution in riparian ecosystems on sky islands

    Ware, I. M. et al. Climate-driven reduction of genetic variation in plant phenology alters soil communities and nutrient pools. Glob. Change Biol. 25, 1514–1528 (2019).Article 
    ADS 

    Google Scholar 
    Ware, I. M. et al. Climate-driven divergence in plant-microbiome interactions generates range-wide variation in bud break phenology. Commun. Biol. 4, 748 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bayliss, S. L. J., Mueller, L. O., Ware, I. M., Schweitzer, J. A. & Bailey, J. K. Plant genetic variation drives geographic differences in atmosphere–plant–ecosystem feedbacks. Plant Environ. Int. 1, 166–180 (2020).Article 

    Google Scholar 
    Van Nuland, M. E. et al. Intraspecific trait variation across elevation predicts a widespread tree species’ climate niche and range limits. Ecol. Evol. 10, 3856–3867 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davis, M. B. & Shaw, R. G. Range shifts and adaptive responses to quaternary climate change. Science 292, 673–679 (2001).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hendry, A. P. Eco-Evolutionary Dynamics (Princeton University Press, 2017).Book 

    Google Scholar 
    Anstett, D. N., Branch, H. A. & Angert, A. L. Regional differences in rapid evolution during severe drought. Evol. Lett. 5, 130–142 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grainger, T. N., Rudman, S. M., Schmidt, P. & Levine, J. M. Competitive history shapes rapid evolution in a seasonal climate. PNAS 118, e2015772118 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bokhorst, S., Bjerke, J. W., Street, L. E., Callaghan, T. V. & Phoenix, G. K. Impacts of multiple extreme winter warming events on sub-Arctic heathland: Phenology, reproduction, growth, and CO2 flux responses. Glob. Change Biol. 17, 2817–2830 (2011).Article 
    ADS 

    Google Scholar 
    Anderson, J. T., Perera, N., Chowdhury, B. & Mitchell-Olds, T. Microgeographic patterns of genetic divergence and adaptation across environmental gradients in Boechera stricta (Brassicaceae). Am. Nat. 186, S60–S73 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wooliver, R., Tittes, S. B. & Sheth, S. N. A resurrection study reveals limited evolution of thermal performance in response to recent climate change across the geographic range of the scarlet monkeyflower. Evolution 74, 1699–1710 (2020).Article 
    PubMed 

    Google Scholar 
    McCormack, J. E., Huang, H. & Knowles, L. L. Sky Islands. in Encyclopedia of Islands (eds. Gillespie, R. G. & Clague, D. A.) 839–843 (2009).Knowles, J. F., Scott, R. L., Minor, R. L. & Barron-Gafford, G. A. Ecosystem carbon and water cycling from a sky island montane forest. Agric. For. Meteorol. 281, 107835 (2020).Article 
    ADS 

    Google Scholar 
    Heald, W. Sky Islands (Van Nostrand, 1967).
    Google Scholar 
    DeBano, L. H. et al. Biodiversity and management of the Madrean Archipelago: The Sky Islands of southwestern United States and northwestern Mexico: 1994 September 19–23; Tucson, AZ. Gen Tech Rep RM-GTR-264. Fort Collins, CO: US Dep Agric For Serv, Rocky Mt For Range Exp Stn. 669 p. (1995).Pérez-Alquicira, J. et al. The role of historical factors and natural selection in the evolution of breeding systems of Oxalis alpina in the Sonoran desert ‘Sky Islands’. J. Evol. Biol. 23, 2163–2175 (2010).Article 
    PubMed 

    Google Scholar 
    Wiens, J. J. et al. Climate change, extinction, and Sky Island biogeography in a montane lizard. Mol. Ecol. 28, 2610–2624 (2019).Article 
    PubMed 

    Google Scholar 
    Pielou, E. C. After the Ice Age. The return of Life to Glaciated North America (The University of Chicago Press, 1991).Book 

    Google Scholar 
    Hosner, P. A., Nyári, Á. S. & Moyle, R. G. Water barriers and intra-island isolation contribute to diversification in the insular Aethopyga sunbirds (Aves: Nectariniidae). J. Biogeogr. 40, 1094–1106 (2013).Article 

    Google Scholar 
    Favé, M.-J. et al. Past climate change on Sky Islands drives novelty in a core developmental gene network and its phenotype. Bmc Evol. Biol. 15, 183 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yanahan, A. D. & Moore, W. Impacts of 21st-century climate change on montane habitat in the Madrean Sky Island Archipelago. Divers. Distrib. 25, 1625–1638 (2019).Article 

    Google Scholar 
    Oline, D. K., Mitton, J. B. & Grant, M. C. Population and subspecific genetic differentiation in the Foxtail Pine (Pinus balfouriana). Evolution 54, 1813–1819 (2000).CAS 
    PubMed 

    Google Scholar 
    Barrowclough, G. F., Groth, J. G., Mertz, L. A. & Gutiérrez, R. J. Genetic structure of Mexican spotted owl (Strix Occidentalis Lucida) populations in a fragmented landscape. Auk 123, 1090–1102 (2006).
    Google Scholar 
    Atwood, T. C. et al. Modeling connectivity of black bears in a desert sky island archipelago. Biol. Conserv. 144, 2851–2862 (2011).Article 

    Google Scholar 
    Halbritter, D. A., Storer, C. G., Kawahara, A. Y. & Daniels, J. C. Phylogeography and population genetics of pine butterflies: Sky islands increase genetic divergence. Ecol. Evol. 9, 13389–13401 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    DeChaine, E. G. & Martin, A. P. Marked genetic divergence among sky island populations of Sedum lanceolatum (Crassulaceae) in the Rocky Mountains. Am. J. Bot. 92, 477–486 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Baker, A. J. Islands in the sky: The impact of Pleistocene climate cycles on biodiversity. J. Biol. 7, 32 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robin, V. V., Sinha, A. & Ramakrishnan, U. Ancient geographical gaps and paleo-climate shape the phylogeography of an endemic bird in the sky islands of southern India. PLoS ONE 5, e13321 (2010).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Manthey, J. D. & Moyle, R. G. Isolation by environment in White-breasted Nuthatches (Sitta carolinensis) of the Madrean Archipelago sky islands: A landscape genomics approach. Mol. Ecol. 24, 3628–3638 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vásquez, D. L. A., Balslev, H., Hansen, M. M., Sklenář, P. & Romoleroux, K. Low genetic variation and high differentiation across sky island populations of Lupinus alopecuroides (Fabaceae) in the northern Andes. Alpine Bot. 126, 135–142 (2016).Article 

    Google Scholar 
    Mairal, M. et al. Geographic barriers and Pleistocene climate change shaped patterns of genetic variation in the Eastern Afromontane biodiversity hotspot. Sci. Rep. 7, 45749 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kidane, Y. O., Steinbauer, M. J. & Beierkuhnlein, C. Dead end for endemic plant species? A biodiversity hotspot under pressure. Glob. Ecol. Conserv. 19, e00670 (2019).Article 

    Google Scholar 
    Williamson, J. L. et al. Ecology, not distance, explains community composition in parasites of sky-island Audubon’s Warblers. Int. J. Parasitol. 49, 437–448 (2019).Article 
    PubMed 

    Google Scholar 
    Knowles, L. L. & Richards, C. L. Importance of genetic drift during Pleistocene divergence as revealed by analyses of genomic variation. Mol. Ecol. 14, 4023–4032 (2005).Article 
    PubMed 

    Google Scholar 
    Woolbright, S. A., Whitham, T. G., Gehring, C. A., Allan, G. J. & Bailey, J. K. Climate relicts and their associated communities as natural ecology and evolution laboratories. Trends Ecol. Evol. 29, 406–416 (2014).Article 
    PubMed 

    Google Scholar 
    Evans, L. M., Allan, G. J., Meneses, N., Max, T. L. & Whitham, T. G. Herbivore host-associated genetic differentiation depends on the scale of plant genetic variation examined. Evol. Ecol. 27, 65–81 (2013).Article 

    Google Scholar 
    Kooyers, N. J., Greenlee, A. B., Colicchio, J. M., Oh, M. & Blackman, B. K. Replicate altitudinal clines reveal that evolutionary flexibility underlies adaptation to drought stress in annual Mimulus guttatus. New Phytol. 206, 152–165 (2015).Article 
    PubMed 

    Google Scholar 
    Price, E. A. C. & Marshall, C. Clonal plants and environmental heterogeneity—An introduction to the proceedings. Plant Ecol. 141, 3–7 (1999).Article 

    Google Scholar 
    Matsuo, A. et al. Female and male fitness consequences of clonal growth in a dwarf bamboo population with a high degree of clonal intermingling. Ann. Bot. Lond. 114, 1035–1041 (2014).Article 
    CAS 

    Google Scholar 
    Barrett, S. C. H. Influences of clonality on plant sexual reproduction. PNAS 112, 8859–8866 (2015).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bittebiere, A.-K., Benot, M.-L. & Mony, C. Clonality as a key but overlooked driver of biotic interactions in plants. Persp. Plant Ecol. Evol. Syst. 43, 125510 (2020).Article 

    Google Scholar 
    King, D. & Roughgarden, J. Multiple switches between vegetative and reproductive growth in annual plants. Theor. Popul. Biol. 21, 194–204 (1982).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    LaDeau, S. L. & Clark, J. S. Rising CO2 levels and the fecundity of forest trees. Science 292, 95–98 (2001).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Qiu, T. et al. Is there tree senescence? The fecundity evidence. PNAS 118, e2106130118 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oddou-Muratorio, S. et al. Crown defoliation decreases reproduction and wood growth in a marginal European beech population. Ann. Bot. Lond. 128, 193–204 (2021).Article 

    Google Scholar 
    Knops, J. M. H., Koenig, W. D. & Carmen, W. J. Negative correlation does not imply a tradeoff between growth and reproduction in California oaks. PNAS 104, 16982–16985 (2007).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nakamura, I. et al. Phenotypic and genetic differences in a perennial herb across a natural gradient of CO2 concentration. Oecologia 165, 809–818 (2011).Article 
    ADS 
    PubMed 

    Google Scholar 
    Robinson, E. A., Ryan, G. D. & Newman, J. A. A meta-analytical review of the effects of elevated CO2 on plant–arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytol. 194, 321–336 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, X. Spatiotemporal Processes of Plant Phenology, Simulation and Prediction (Springer, 2017).Book 

    Google Scholar 
    Bradshaw, H. D. & Stettler, R. F. Molecular genetics of growth and development in Populus. IV. Mapping QTLs with large effects on growth, form, and phenology traits in a forest tree. Genetics 139, 963–973 (1995).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rae, A. M. et al. QTL for yield in bioenergy Populus: Identifying G×E interactions from growth at three contrasting sites. Tree Genet. Genom. 4, 97–112 (2008).Article 

    Google Scholar 
    Rae, A. M., Street, N. R., Robinson, K. M., Harris, N. & Taylor, G. Five QTL hotspots for yield in short rotation coppice bioenergy poplar: The poplar biomass loci. Bmc Plant Biol. 9, 23 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Allwright, M. R. et al. Biomass traits and candidate genes for bioenergy revealed through association genetics in coppiced European Populus nigra (L.). Biotechnol. Biofuels 9, 195 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Badmi, R. et al. A new calmodulin-binding protein expresses in the context of secondary cell wall biosynthesis and impacts biomass properties in Populus. Front. Plant Sci. 9, 1669 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dai, A. Drought under global warming: a review. Wiley Interdiscip. Rev. Clim. Change 2, 45–65 (2011).Article 

    Google Scholar 
    IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (2021).Hughes, L., Hughes, L. & Hughes, L. Biological consequences of global warming: Is the signal already apparent?. Trends Ecol. Evol. 15, 56–61 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).Article 

    Google Scholar 
    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Fuller, A. et al. Physiological mechanisms in coping with climate change. Physiol. Biochem. Zool. 83, 713–720 (2010).Article 
    PubMed 

    Google Scholar 
    Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: Lack of tree range expansion in response to climate change. Glob. Change Biol. 18, 1042–1052 (2012).Article 
    ADS 

    Google Scholar 
    Zavaleta, E. et al. Ecosystem responses to community disassembly. Ann. NY. Acad. Sci. 1162, 311–333 (2009).Article 
    ADS 
    PubMed 

    Google Scholar 
    Bertel, C. et al. Natural selection drives parallel divergence in the mountain plant Heliosperma pusillum s.l. Oikos 127, 1355–1367 (2018).Article 

    Google Scholar 
    Knotek, A. et al. Parallel alpine differentiation in Arabidopsis arenosa. Front. Plant Sci. 11, 561526 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tusiime, F. M. et al. Afro-alpine flagships revisited: Parallel adaptation, intermountain admixture and shallow genetic structuring in the giant senecios (Dendrosenecio). PLoS ONE 15, e0228979 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cooke, J. E. K. & Rood, S. B. Trees of the people: The growing science of poplars in Canada and worldwide. Botany 85, 1103–1110 (2007).
    Google Scholar 
    Evans, L. M. et al. Geographical barriers and climate influence demographic history in narrowleaf cottonwoods. Heredity 114, 387–396 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Braatne, J. H., Rood, S. B. & Heilman, P. E. Life history, ecology, and conservation of riparian cottonwoods in North America. 57–86 (1996).Schweitzer, J. A., Martinsen, G. D. & Whitham, T. G. Cottonwood hybrids gain fitness traits of both parents: A mechanism for their long-term persistence?. Am. J. Bot. 89, 981–990 (2002).Article 
    PubMed 

    Google Scholar 
    Moore, W. et al. Introduction to the Arizona Sky Island Arthropod Project (ASAP): Systematics, biogeography, ecology, and population genetics of arthropods of the Madrean Sky Islands. Proc. RMRS 2013, 144–168 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Van Nuland, M. E., Bailey, J. K. & Schweitzer, J. A. Divergent plant–soil feedbacks could alter future elevation ranges and ecosystem dynamics. Nat. Ecol. Evol. 1, 0150 (2017).Article 

    Google Scholar 
    Tuskan, G. A. et al. Characterization of microsatellites revealed by genomic sequencing of Populus trichocarpa. Can. J. For. Res. 34, 85–93 (2004).Article 
    CAS 

    Google Scholar 
    Tuskan, G. A. et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313, 1596–1604 (2006).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Peakall, R. & Ssmouse, P. E. genalex 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).Article 

    Google Scholar 
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 28, 2537–2539 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. Arxiv https://doi.org/10.48550/arxiv.1406.5823 (2014).Article 

    Google Scholar 
    Schielzeth, H. & Nakagawa, S. Nested by design: Model fitting and interpretation in a mixed model era. Methods Ecol. Evol. 4, 14–24 (2013).Article 

    Google Scholar 
    Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fox, J. et al. Package ‘car’: Companion to Applied Regression. R package version 3.0–10 (2020). More

  • in

    Optimization of green and environmentally-benign synthesis of isoamyl acetate in the presence of ball-milled seashells by response surface methodology

    McElroy, C. R., Constantinou, A., Jones, L. C., Summerton, L. & Clark, J. H. Towards a holistic approach to metrics for the 21st century pharmaceutical industry. Green Chem. 17, 3111–3121. https://doi.org/10.1039/C5GC00340G (2015).Article 
    CAS 

    Google Scholar 
    Zimmerman, J. B., Anastas, P. T., Erythropel, H. C. & Leitner, W. Designing for a green chemistry future. Science 367, 397–400. https://doi.org/10.1126/science.aay3060 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sheldon, R. A. Metrics of green chemistry and sustainability: Past, present, and future. ACS Sustain. Chem. Eng. 6, 32–48. https://doi.org/10.1021/acssuschemeng.7b03505 (2018).Article 
    CAS 

    Google Scholar 
    Anastas, P. T. & Williamson, T. C. in Green Chemistry, Vol. 626 ACS Symposium Series Ch. 1, 1–17 (American Chemical Society, 1996). https://doi.org/10.1021/bk-1996-0626.ch001.Clark, H. J. Green chemistry: Challenges and opportunities. Green Chem. 1, 1–8. https://doi.org/10.1039/A807961G (1999).Article 
    CAS 

    Google Scholar 
    Dekamin, M. G. & Eslami, M. Highly efficient organocatalytic synthesis of diverse and densely functionalized 2-amino-3-cyano-4 H-pyrans under mechanochemical ball milling. Green Chem. 16, 4914–4921 (2014).Article 
    CAS 

    Google Scholar 
    Eze, A. A. et al. Wet ball milling of niobium by using ethanol, determination of the crystallite size and microstructures. Sci. Rep. 11, 1–8 (2021).Article 

    Google Scholar 
    Gorrasi, G. & Sorrentino, A. Mechanical milling as a technology to produce structural and functional bio-nanocomposites. Green Chem. 17, 2610–2625 (2015).Article 
    CAS 

    Google Scholar 
    Li, L. H., Glushenkov, A. M., Hait, S. K., Hodgson, P. & Chen, Y. High-efficient production of boron nitride nanosheets via an optimized ball milling process for lubrication in oil. Sci. Rep. 4, 1–6 (2014).
    Google Scholar 
    Mac Naughton, G. E., Rolfe, S. A. & Siraj-Blatchford, I. E. Doing Early Childhood Research: International Perspectives on Theory and Practice (Open University Press, 2001).Evangelisti, L. et al. The borderline between reactivity and pre-reactivity of binary mixtures of gaseous carboxylic acids and alcohols. Angew. Chem. 129, 3930–3933 (2017).Article 
    ADS 

    Google Scholar 
    Gaspa, S., Porcheddu, A. & De Luca, L. Metal-free oxidative cross esterification of alcohols via acyl chloride formation. Adv. Synth. Catal. 358, 154–158 (2016).Article 
    CAS 

    Google Scholar 
    Fiorio, J. L., Braga, A. H., Guedes, C. L. S. B. & Rossi, L. M. Reusable heterogeneous tungstophosphoric acid-derived catalyst for green esterification of carboxylic acids. ACS Sustain. Chem. Eng. 7, 15874–15883 (2019).Article 
    CAS 

    Google Scholar 
    Karimi, B., Mirzaei, H. M. & Mobaraki, A. Periodic mesoporous organosilica functionalized sulfonic acids as highly efficient and recyclable catalysts in biodiesel production. Catal. Sci. Technol. 2, 828–834 (2012).Article 
    CAS 

    Google Scholar 
    Tran, T. T. V. et al. Selective production of green solvent (isoamyl acetate) from fusel oil using a sulfonic acid-functionalized KIT-6 catalyst. Mol. Catal. 484, 110724 (2020).Article 
    CAS 

    Google Scholar 
    Afshar, S. et al. Optimization of catalytic activity of sulfated titania for efficient synthesis of isoamyl acetate by response surface methodology. Mon. Chem. Chem. Mon. 146, 1949–1957 (2015).Article 
    CAS 

    Google Scholar 
    Chng, L. L., Yang, J. & Ying, J. Y. Efficient synthesis of amides and esters from alcohols under aerobic ambient conditions catalyzed by a Au/mesoporous Al2O3 nanocatalyst. Chemsuschem 8, 1916–1925 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lozano, P., Bernal, J. M. & Navarro, A. A clean enzymatic process for producing flavour esters by direct esterification in switchable ionic liquid/solid phases. Green Chem. 14, 3026–3033 (2012).Article 
    CAS 

    Google Scholar 
    Su, L., Hong, R., Guo, X., Wu, J. & Xia, Y. Short-chain aliphatic ester synthesis using Thermobifida fusca cutinase. Food Chem. 206, 131–136 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Güvenç, A., Kapucu, N., Kapucu, H., Aydoğan, Ö. & Mehmetoğlu, Ü. Enzymatic esterification of isoamyl alcohol obtained from fusel oil: Optimization by response surface methodolgy. Enzyme Microb. Technol. 40, 778–785 (2007).Article 

    Google Scholar 
    Torres, S., Baigorí, M. D., Swathy, S., Pandey, A. & Castro, G. R. Enzymatic synthesis of banana flavour (isoamyl acetate) by Bacillus licheniformis S-86 esterase. Food Res. Int. 42, 454–460 (2009).Article 
    CAS 

    Google Scholar 
    Ando, H., Kurata, A. & Kishimoto, N. Antimicrobial properties and mechanism of volatile isoamyl acetate, a main flavour component of Japanese sake (Ginjo-shu). J. Appl. Microbiol. 118, 873–880 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ghamgui, H., Karra-Chaâbouni, M., Bezzine, S., Miled, N. & Gargouri, Y. Production of isoamyl acetate with immobilized Staphylococcus simulans lipase in a solvent-free system. Enzyme Microb. Technol. 38, 788–794 (2006).Article 
    CAS 

    Google Scholar 
    Romero, M., Calvo, L., Alba, C., Daneshfar, A. & Ghaziaskar, H. Enzymatic synthesis of isoamyl acetate with immobilized Candida antarctica lipase in n-hexane. Enzyme Microb. Technol. 37, 42–48 (2005).Article 
    CAS 

    Google Scholar 
    Borges, M. E. & Díaz, L. Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review. Renew. Sustain. Energy Rev. 16, 2839–2849 (2012).Article 
    CAS 

    Google Scholar 
    Li, K.-T., Wang, C.-K., Wang, I. & Wang, C.-M. Esterification of lactic acid over TiO2–ZrO2 catalysts. Appl. Catal. A 392, 180–183 (2011).Article 
    CAS 

    Google Scholar 
    Clark, J. H. & Rhodes, C. N. In Clean Synthesis Using Porous Inorganic Solid Catalysts and Supported Reagents, Vol. 4, (Royal Society of Chemistry, London, 2000). https://doi.org/10.1039/9781847550569Dekamin, M. G. et al. Sodium alginate: An efficient biopolymeric catalyst for green synthesis of 2-amino-4H-pyran derivatives. Int. J. Biol. Macromol. 87, 172–179 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Melfi, D. T., dos Santos, K. C., Ramos, L. P. & Corazza, M. L. Supercritical CO2 as solvent for fatty acids esterification with ethanol catalyzed by Amberlyst-15. J. Supercrit. Fluids 158, 104736 (2020).Article 
    CAS 

    Google Scholar 
    Azudin, N. Y., Mashitah, M. & Abd Shukor, S. R. Optimization of isoamyl acetate production in a solvent-free system. J. Food Qual. 36, 441–446 (2013).Article 
    CAS 

    Google Scholar 
    Ćorović, M. et al. Immobilization of Candida antarctica lipase B onto Purolite® MN102 and its application in solvent-free and organic media esterification. Bioprocess Biosyst. Eng. 40, 23–34 (2017).Article 
    PubMed 

    Google Scholar 
    Liu, C. & Luo, G. Synthesis of isoamyl acetate catalyzed by ferric tri-dodecylsulfonate. Riyong Huaxue Gongye 34, 403–405 (2004).
    Google Scholar 
    Narwal, S. K., Saun, N. K., Dogra, P. & Gupta, R. Green synthesis of isoamyl acetate via silica immobilized novel thermophilic lipase from Bacillus aerius. Russ. J. Bioorg. Chem. 42, 69–73 (2016).Article 
    CAS 

    Google Scholar 
    Pizzio, L., Vázquez, P., Cáceres, C. & Blanco, M. Tungstophosphoric and molybdophosphoric acids supported on zirconia as esterification catalysts. Catal. Lett. 77, 233–239 (2001).Article 
    CAS 

    Google Scholar 
    Saha, B., Alqahtani, A. & Teo, H. T. R. Production of iso-Amyl Acetate: Heterogeneous Kinetics and Techno-feasibility Evaluation for Catalytic Distillation. Int. J. Chem. React. Eng. 3(1), https://doi.org/10.2202/1542-6580.1231 (2005).Osorio-Viana, W., Ibarra-Taquez, H. N., Dobrosz-Gomez, I. & Gómez-García, M. Á. Hybrid membrane and conventional processes comparison for isoamyl acetate production. Chem. Eng. Process. 76, 70–82 (2014).Article 
    CAS 

    Google Scholar 
    Fang, M. et al. Synthesis of isoamyl acetate using polyoxometalate-based sulfonated ionic liquid as catalyst. Indian J. Chem. Sect. A 53A, 1485–1492 (2014).Yang, Z., Zhou, C., Zhang, W., Li, H. & Chen, M. β-MnO2 nanorods: A new and efficient catalyst for isoamyl acetate synthesis. Colloids Surf., A 356, 134–139 (2010).Article 
    CAS 

    Google Scholar 
    Yang, Z. et al. Kinetic study and process simulation of transesterification of methyl acetate and isoamyl alcohol catalyzed by ionic liquid. Ind. Eng. Chem. Res. 54, 1204–1215 (2015).Article 
    CAS 

    Google Scholar 
    Dohendou, M., Pakzad, K., Nezafat, Z., Nasrollahzadeh, M. & Dekamin, M. G. Progresses in chitin, chitosan, starch, cellulose, pectin, alginate, gelatin and gum based (nano)catalysts for the Heck coupling reactions: A review. Int. J. Biol. Macromol. 192, 771–819. https://doi.org/10.1016/j.ijbiomac.2021.09.162 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Valiey, E., Dekamin, M. G. & Alirezvani, Z. Melamine-modified chitosan materials: An efficient and recyclable bifunctional organocatalyst for green synthesis of densely functionalized bioactive dihydropyrano[2,3-c]pyrazole and benzylpyrazolyl coumarin derivatives. Int. J. Biol. Macromol. 129, 407–421. https://doi.org/10.1016/j.ijbiomac.2019.01.027 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dekamin, M. G., Kazemi, E., Karimi, Z., Mohammadalipoor, M. & Naimi-Jamal, M. R. Chitosan: An efficient biomacromolecule support for synergic catalyzing of Hantzsch esters by CuSO4. Int. J. Biol. Macromol. 93, 767–774. https://doi.org/10.1016/j.ijbiomac.2016.09.012 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Valiey, E., Dekamin, M. G. & Bondarian, S. Sulfamic acid grafted to cross-linked chitosan by dendritic units: A bio-based, highly efficient and heterogeneous organocatalyst for green synthesis of 2,3-dihydroquinazoline derivatives. RSC Adv. 13, 320–334. https://doi.org/10.1039/D2RA07319F (2023).Article 
    ADS 
    CAS 

    Google Scholar 
    Dekamin, M. G., Azimoshan, M. & Ramezani, L. Chitosan: A highly efficient renewable and recoverable bio-polymer catalyst for the expeditious synthesis of α-amino nitriles and imines under mild conditions. Green Chem. 15, 811–820. https://doi.org/10.1039/C3GC36901C (2013).Article 
    CAS 

    Google Scholar 
    Alirezvani, Z., Dekamin, M. G. & Valiey, E. Cu (II) and magnetite nanoparticles decorated melamine-functionalized chitosan: A synergistic multifunctional catalyst for sustainable cascade oxidation of benzyl alcohols/Knoevenagel condensation. Sci. Rep. 9, 17758 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rostami, N., Dekamin, M., Valiey, E. & Fanimoghadam, H. Chitosan-EDTA-Cellulose network as a green, recyclable and multifunctional biopolymeric organocatalyst for the one-pot synthesis of 2-amino-4H-pyran derivatives. Sci. Rep. 12, 8642–8642 (2022).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Frindy, S., el Kadib, A., Lahcini, M., Primo, A. & García, H. Copper nanoparticles stabilized in a porous chitosan aerogel as a heterogeneous catalyst for C−S cross-coupling. ChemCatChem 7, 3307–3315 (2015).Article 
    CAS 

    Google Scholar 
    Pettignano, A. et al. Alginic acid aerogel: A heterogeneous Brønsted acid promoter for the direct Mannich reaction. New J. Chem. 39, 4222–4226 (2015).Article 
    CAS 

    Google Scholar 
    Schnepp, Z. Biopolymers as a flexible resource for nanochemistry. Angew. Chem. Int. Ed. 52, 1096–1108 (2013).Article 
    CAS 

    Google Scholar 
    Khrunyk, Y., Lach, S., Petrenko, I. & Ehrlich, H. Progress in modern marine biomaterials research. Mar. Drugs 18, 589 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee, I. Molecular self-assembly: Smart design of surface and interface via secondary molecular interactions. Langmuir 29, 2476–2489. https://doi.org/10.1021/la304123b (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Shaheed, N., Javanshir, S., Esmkhani, M., Dekamin, M. G. & Naimi-Jamal, M. R. Synthesis of nanocellulose aerogels and Cu-BTC/nanocellulose aerogel composites for adsorption of organic dyes and heavy metal ions. Sci. Rep. 11, 18553 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abdullah, M. A. et al. Processing Aspects and biomedical and environmental applications of sustainable nanocomposites containing nanofillers. In Sustainable Polymer Composites and Nanocomposites, (eds Inamuddin et al.) 727–757 (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-05399-4_25Dekamin, M. G. et al. Alginic acid: A highly efficient renewable and heterogeneous biopolymeric catalyst for one-pot synthesis of the Hantzsch 1,4-dihydropyridines. RSC Adv. 4, 56658–56664. https://doi.org/10.1039/C4RA11801D (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Ilkhanizadeh, S., Khalafy, J. & Dekamin, M. G. Sodium alginate: A biopolymeric catalyst for the synthesis of novel and known polysubstituted pyrano[3,2-c]chromenes. Int. J. Biol. Macromol. 140, 605–613. https://doi.org/10.1016/j.ijbiomac.2019.08.154 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dekamin, M. G. et al. Alginic acid: A mild and renewable bifunctional heterogeneous biopolymeric organocatalyst for efficient and facile synthesis of polyhydroquinolines. Int. J. Biol. Macromol. 108, 1273–1280. https://doi.org/10.1016/j.ijbiomac.2017.11.050 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rostami, N., Dekamin, M. G. & Valiey, E. Chitosan-EDTA-cellulose bio-based network: A recyclable multifunctional organocatalyst for green and expeditious synthesis of Hantzsch esters. Carbohydr. Polym. Technol. Appl. 5, 100279. https://doi.org/10.1016/j.carpta.2022.100279 (2023).Article 
    CAS 

    Google Scholar 
    Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S. & Escaleira, L. A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76, 965–977. https://doi.org/10.1016/j.talanta.2008.05.019 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hill, W. J. & Hunter, W. G. A review of response surface methodology: A literature survey. Technometrics 8, 571–590. https://doi.org/10.1080/00401706.1966.10490404 (1966).Article 
    MathSciNet 

    Google Scholar 
    Hamidi, F. et al. Acid red 18 removal from aqueous solution by nanocrystalline granular ferric hydroxide (GFH); optimization by response surface methodology & genetic-algorithm. Sci. Rep. 12, 1–15 (2022).Article 

    Google Scholar 
    Han, X.-X. et al. Syntheses of novel halogen-free Brønsted–Lewis acidic ionic liquid catalysts and their applications for synthesis of methyl caprylate. Green Chem. 17, 499–508 (2015).Article 
    CAS 

    Google Scholar 
    Rehman, K. et al. Operational parameters optimization for remediation of crude oil-polluted water in floating treatment wetlands using response surface methodology. Sci. Rep. 12, 1–11 (2022).Article 

    Google Scholar 
    Kamari, S., Ghorbani, F. & Sanati, A. M. Adsorptive removal of lead from aqueous solutions by amine–functionalized magMCM-41 as a low–cost nanocomposite prepared from rice husk: Modeling and optimization by response surface methodology. Sustain. Chem. Pharm. 13, 100153. https://doi.org/10.1016/j.scp.2019.100153 (2019).Article 

    Google Scholar 
    Sanati, A. M., Kamari, S. & Ghorbani, F. Application of response surface methodology for optimization of cadmium adsorption from aqueous solutions by Fe3O4@SiO2@APTMS core–shell magnetic nanohybrid. Surf. Interfaces 17, 100374. https://doi.org/10.1016/j.surfin.2019.100374 (2019).Article 
    CAS 

    Google Scholar 
    Guner, S. G. & Dericioglu, A. Nacre-mimetic epoxy matrix composites reinforced by two-dimensional glass reinforcements. RSC Adv. 6, 33184–33196 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Shao, Y., Zhao, H.-P. & Feng, X.-Q. Optimal characteristic nanosizes of mineral bridges in mollusk nacre. RSC Adv. 4, 32451–32456 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Jaji, A. Z. et al. Synthesis, characterization, and cytocompatibility of potential cockle shell aragonite nanocrystals for osteoporosis therapy and hormonal delivery. Nanotechnol. Sci. Appl. 10, 23 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Çam, M. & Aaby, K. Optimization of extraction of apple pomace phenolics with water by response surface methodology. J. Agric. Food Chem. 58, 9103–9111 (2010).Article 
    PubMed 

    Google Scholar 
    Iwuchukwu, I. J. et al. Optimization of photosynthetic hydrogen yield from platinized photosystem I complexes using response surface methodology. Int. J. Hydrog. Energy 36, 11684–11692 (2011).Article 
    CAS 

    Google Scholar 
    Hu, C. et al. Characterization and photocatalytic activity of noble-metal-supported surface TiO2/SiO2. Appl. Catal. A 253, 389–396 (2003).Article 
    CAS 

    Google Scholar 
    Noda, L. K., de Almeida, R. M., Probst, L. F. D. & Gonçalves, N. S. Characterization of sulfated TiO2 prepared by the sol–gel method and its catalytic activity in the n-hexane isomerization reaction. J. Mol. Catal. A Chem. 225, 39–46 (2005).Article 
    CAS 

    Google Scholar 
    Jalali-Heravi, M., Parastar, H. & Ebrahimi-Najafabadi, H. Characterization of volatile components of Iranian saffron using factorial-based response surface modeling of ultrasonic extraction combined with gas chromatography–mass spectrometry analysis. J. Chromatogr. A 1216, 6088–6097 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sendzikiene, E., Sinkuniene, D., Kazanceva, I. & Kazancev, K. Optimization of low quality rapeseed oil transesterification with butanol by applying the response surface methodology. Renew. Energy 87, 266–272 (2016).Article 
    CAS 

    Google Scholar 
    Das, R., Sarkar, S. & Bhattacharjee, C. Photocatalytic degradation of chlorhexidine—a chemical assessment and prediction of optimal condition by response surface methodology. J. Water Process Eng. 2, 79–86 (2014).Article 

    Google Scholar 
    Nandiwale, K. Y., Galande, N. D. & Bokade, V. V. Process optimization by response surface methodology for transesterification of renewable ethyl acetate to butyl acetate biofuel additive over borated USY zeolite. RSC Adv. 5, 17109–17116 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Soltani, R. D. C. & Safari, M. Periodate-assisted pulsed sonocatalysis of real textile wastewater in the presence of MgO nanoparticles: Response surface methodological optimization. Ultrason. Sonochem. 32, 181–190 (2016).Article 

    Google Scholar 
    Tan, K. T., Lee, K. T. & Mohamed, A. R. A glycerol-free process to produce biodiesel by supercritical methyl acetate technology: An optimization study via response surface methodology. Biores. Technol. 101, 965–969 (2010).Article 
    CAS 

    Google Scholar 
    Nagaraju, N., Peeran, M. & Prasad, D. Synthesis of isoamyl acetate usin NaX and NaY zeolites as catalysts. React. Kinet. Catal. Lett. 61, 155–160 (1997).Article 
    CAS 

    Google Scholar 
    Pizzio, L. R. & Blanco, M. N. Isoamyl acetate production catalyzed by H3PW12O40 on their partially substituted Cs or K salts. Appl. Catal. A 255, 265–277 (2003).Article 
    CAS 

    Google Scholar 
    Dekamin, M. G., Karimi, Z. & Farahmand, M. Tetraethylammonium 2-(N-hydroxycarbamoyl)benzoate: A powerful bifunctional metal-free catalyst for efficient and rapid cyanosilylation of carbonyl compounds under mild conditions. Catal. Sci. Technol. 2, 1375–1381. https://doi.org/10.1039/C2CY20037F (2012).Article 
    CAS 

    Google Scholar 
    Dekamin, M. G., Sagheb-Asl, S. & Reza Naimi-Jamal, M. An expeditious synthesis of cyanohydrin trimethylsilyl ethers using tetraethylammonium 2-(carbamoyl)benzoate as a bifunctional organocatalyst. Tetrahedron Lett. 50, 4063–4066. https://doi.org/10.1016/j.tetlet.2009.04.090 (2009).Article 
    CAS 

    Google Scholar 
    Alirezvani, Z., Dekamin, M. G. & Valiey, E. New hydrogen-bond-enriched 1,3,5-tris(2-hydroxyethyl) isocyanurate covalently functionalized MCM-41: An efficient and recoverable hybrid catalyst for convenient synthesis of acridinedione derivatives. ACS Omega 4, 20618–20633. https://doi.org/10.1021/acsomega.9b02755 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More