More stories

  • in

    Endocranial volume is variable and heritable, but not related to fitness, in a free-ranging primate

    1.
    Healy, S. D. & Rowe, C. A critique of comparative studies of brain size. Proc. R. Soc. B Biol. Sci. 274, 453–464 (2007).
    Article  Google Scholar 
    2.
    Roth, G. & Dicke, U. Evolution of the brain and intelligence. Trends Cogn. Sci. 9, 250–257 (2005).
    PubMed  Article  Google Scholar 

    3.
    Logan, C. J., Kruuk, L. E. B., Stanley, R., Thompson, A. M. & Clutton-Brock, T. H. Endocranial volume is heritable and is associated with longevity and fitness in a wild mammal. R. Soc. Open Sci. 3, 160622 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Dunbar, R. I. M. Neocortex size as a constraint on group size in primates. J. Hum. Evol. 22, 469–493 (1992).
    Article  Google Scholar 

    5.
    Innocenti, G. M. & Kaas, J. H. The cortex. Trends Neurosci. 18, 371–372 (1995).
    CAS  Article  Google Scholar 

    6.
    Kaas, J. H. The evolution of isocortex. Brain. Behav. Evol. 46, 187–196 (1995).
    CAS  PubMed  Article  Google Scholar 

    7.
    Barton, R. A. & Harvey, P. H. Mosaic evolution of brain structure in mammals. Nature 405, 1055–1058 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 

    8.
    Reader, S. M. & Laland, K. N. Social intelligence, innovation, and enhanced brain size in primates. Proc. Natl. Acad. Sci. 99, 4436–4441 (2002).
    ADS  CAS  PubMed  Article  Google Scholar 

    9.
    Sol, D., Székely, T., Liker, A. & Lefebvre, L. Big-brained birds survive better in nature. Proc. R. Soc. B Biol. Sci. 274, 763–769 (2007).
    Article  Google Scholar 

    10.
    Benson-Amram, S., Dantzer, B., Stricker, G., Swanson, E. M. & Holekamp, K. E. Brain size predicts problem-solving ability in mammalian carnivores. Proc. Natl. Acad. Sci. USA 113, 2532–2537 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    11.
    Cartmill, M. New views on primate origins. Evol. Anthropol. Issues News Rev. 1, 105–111 (2005).
    Article  Google Scholar 

    12.
    Allman, J., McLaughlin, T. & Hakeem, A. Brain weight and life-span in primate species. Proc. Natl. Acad. Sci. 90, 118–122 (1993).
    ADS  CAS  PubMed  Article  Google Scholar 

    13.
    González-Lagos, C., Sol, D. & Reader, S. M. Large-brained mammals live longer. J. Evol. Biol. 23, 1064–1074 (2010).
    PubMed  Article  Google Scholar 

    14.
    Harvey, P. H. & Bennett, P. M. Evolutionary biology: Brain size, energetics, ecology and life history patterns. Nature 306, 314–315 (1983).
    ADS  CAS  PubMed  Article  Google Scholar 

    15.
    Aiello, L. C. & Wheeler, P. The expensive-tissue hypothesis: The brain and the digestive system in human and primate evolution. Curr. Anthropol. 36, 199–221 (1995).
    Article  Google Scholar 

    16.
    Kudo, H. & Dunbar, R. I. M. Neocortex size and social network size in primates. Anim. Behav. 62, 711–722 (2001).
    Article  Google Scholar 

    17.
    Schillaci, M. A. Sexual selection and the evolution of brain size in primates. PLoS ONE 1, e62 (2006).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Shultz, S. & Dunbar, R. I. M. The evolution of the social brain: anthropoid primates contrast with other vertebrates. Proc. R. Soc. B Biol. Sci. 274, 2429–2436 (2007).
    Article  Google Scholar 

    19.
    King, B. J. Extractive foraging and the evolution of primate intelligence. Hum. Evol. 1, 361–372 (1986).
    Article  Google Scholar 

    20.
    Barton, R. A. Neocortex size and behavioural ecology in primates. Proc. R. Soc. Lond. B 263, 173–177 (1996).
    ADS  CAS  Article  Google Scholar 

    21.
    DeCasien, A. R., Williams, S. A. & Higham, J. P. Primate brain size is predicted by diet but not sociality. Nat. Ecol. Evol. 1, 0112 (2017).
    Article  Google Scholar 

    22.
    Powell, L. E., Isler, K. & Barton, R. A. Re-evaluating the link between brain size and behavioural ecology in primates. Proc. R. Soc. B Biol. Sci. 284, 20171765 (2017).
    Article  Google Scholar 

    23.
    Dunbar, R. I. M. & Shultz, S. Why are there so many explanations for primate brain evolution?. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160244 (2017).
    Article  Google Scholar 

    24.
    Van Schaik, C. P. Why are diurnal primates living in groups?. Behaviour 87, 120–144 (1983).
    Article  Google Scholar 

    25.
    Van Schaik, C. P. & Van Hooff, J. A. R. A. M. On the ultimate causes of primate social systems. Behaviour 85, 91–117 (1983).
    Article  Google Scholar 

    26.
    Wrangham, R. W. An ecological model of female-bonded primate groups. Behaviour 75, 262–300 (1980).
    Article  Google Scholar 

    27.
    Atchley, W. R., Riska, B., Kohn, L. A. P., Plummer, A. A. & Rutledge, J. J. A quantitative genetic analysis of brain and body size associations, their origin and ontogeny: Data from mice. Evolution 38, 1165 (1984).
    PubMed  Article  Google Scholar 

    28.
    Riska, B. & Atchley, W. R. Genetics of growth predict patterns of brain-size evolution. Science 229, 668–671 (1985).
    ADS  CAS  PubMed  Article  Google Scholar 

    29.
    Rogers, J. et al. Heritability of brain volume, surface area and shape: An MRI study in an extended pedigree of baboons. Hum. Brain Mapp. 28, 576–583 (2007).
    PubMed  PubMed Central  Article  Google Scholar 

    30.
    Gómez-Robles, A., Hopkins, W. D., Schapiro, S. J. & Sherwood, C. C. Relaxed genetic control of cortical organization in human brains compared with chimpanzees. Proc. Natl. Acad. Sci. 112, 14799–14804 (2015).
    ADS  PubMed  Article  CAS  Google Scholar 

    31.
    DeCasien, A. R., Sherwood, C. C., Schapiro, S. J. & Higham, J. P. Greater variability in chimpanzee (Pan troglodytes) brain structure among males. Proc. R. Soc. B 287, 20192858 (2020).
    PubMed  Article  Google Scholar 

    32.
    Fears, S. C. et al. Identifying heritable brain phenotypes in an extended pedigree of vervet monkeys. J. Neurosci. 29, 2867–2875 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Noreikiene, K. et al. Quantitative genetic analysis of brain size variation in sticklebacks: Support for the mosaic model of brain evolution. Proc. R. Soc. B Biol. Sci. 282, 20151008 (2015).
    Article  Google Scholar 

    34.
    Kotrschal, A. et al. Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain. Curr. Biol. 23, 168–171 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Cheverud, J. M. et al. Heritability of brain size and surface features in rhesus macaques (Macaca mulatta). J. Hered. 81, 51–57 (1990).
    CAS  PubMed  Article  Google Scholar 

    36.
    de Villemereuil, P. Tutorial estimation of a biological trait heritability using the animal model How to use the MCMCglmm R package. (2012).

    37.
    Axelrod, C. J., Laberge, F. & Robinson, B. W. Intraspecific brain size variation between coexisting sunfish ecotypes. Proc. R. Soc. B Biol. Sci. 285, 20181971 (2018).
    Article  Google Scholar 

    38.
    Blomquist, G. E. Fitness-related patterns of genetic variation in rhesus macaques. Genetica 135, 209–219 (2009).
    PubMed  Article  Google Scholar 

    39.
    Brent, L. J. N. et al. Personality traits in rhesus macaques (Macaca mulatta) are heritable but do not predict reproductive output. Int. J. Primatol. 35, 188–209 (2014).
    PubMed  Article  Google Scholar 

    40.
    Dubuc, C. et al. Sexually selected skin colour is heritable and related to fecundity in a non-human primate. Proc. R. Soc. B Biol. Sci. 281, 20141602 (2014).
    Article  Google Scholar 

    41.
    Kimock, C. M., Dubuc, C., Brent, L. J. N. & Higham, J. P. Male morphological traits are heritable but do not predict reproductive success in a sexually-dimorphic primate. Sci. Rep. 9, 19794 (2019).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Kruuk, L. E. B. Estimating genetic parameters in natural populations using the ‘animal model’. Philos. Trans. R. Soc. B 359, 873–890 (2004).
    Article  Google Scholar 

    43.
    Falk, D., Froese, N., Sade, D. S. & Dudek, B. C. Sex differences in brain/body relationships of Rhesus monkeys and humans. J. Hum. Evol. 36, 233–238 (1999).
    CAS  PubMed  Article  Google Scholar 

    44.
    Herndon, J. G., Tigges, J., Anderson, D. C., Klumpp, S. A. & McClure, H. M. Brain weight throughout the life span of the chimpanzee. J. Comp. Neurol. 409, 567–572 (1999).
    CAS  PubMed  Article  Google Scholar 

    45.
    Iwaniuk, A. N. Interspecific variation in sexual dimorphism in brain size in Nearctic ground squirrels (Spermophilus spp.). Can. J. Zool. 79, 759–765 (2001).
    Article  Google Scholar 

    46.
    Towe, A. L. & Mann, M. D. Habitat-related variations in brain and body size of pocket gophers. J. Hirnforsch. 36, 195–201 (1995).
    CAS  PubMed  Google Scholar 

    47.
    Kotrschal, A., Räsänen, K., Kristjánsson, B. K., Senn, M. & Kolm, N. Extreme sexual brain size dimorphism in sticklebacks: A consequence of the cognitive challenges of sex and parenting?. PLoS ONE 7, e30055 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Ritchie, S. J. et al. Sex differences in the adult human brain: Evidence from 5216 uk biobank participants. Cereb. Cortex 28, 2959–2975 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    49.
    Whitten, P. L. Diet and dominance among female vervet monkeys (Cercopithecus aethiops). Am. J. Primatol. 5, 139–159 (1983).
    PubMed  Article  Google Scholar 

    50.
    Mori, A. Analysis of population changes by measurement of body weight in the Koshima troop of Japanese monkeys. Primates 20, 371–397 (1979).
    Article  Google Scholar 

    51.
    Small, M. F. Body fat, rank, and nutritional status in a captive group of Rhesus Macaques. Int. J. Primatol. 2, 91–95 (1981).
    Article  Google Scholar 

    52.
    Sade, D. S. Population dynamics in relation to social structure on Cayo Santiago. Ybk. Phys. Anthr. 20, 253–262 (1976).
    Google Scholar 

    53.
    Silk, J. B., Clark-Wheatley, C. B., Rodman, P. S. & Samuels, A. Differential reproductive success and facultative adjustment of sex ratios among captive female bonnet macaques (Macaca radiata). Anim. Behav. 29, 1106–1120 (1981).
    Article  Google Scholar 

    54.
    Rawlins, R. G. & Kessler, M. J. The Cayo Santiago macaques: History, behavior, and biology (SUNY Series Primatology, Suny, 1986).
    Google Scholar 

    55.
    Kessler, M. J. & Rawlins, R. G. A 75-year pictorial history of the Cayo Santiago rhesus monkey colony. Am. J. Primatol. 78, 6–43 (2016).
    PubMed  Article  Google Scholar 

    56.
    Widdig, A. et al. Genetic studies on the Cayo Santiago rhesus macaques: A review of 40 years of research. Am. J. Primatol. 78, 44–62 (2016).
    PubMed  Article  Google Scholar 

    57.
    Widdig, A. et al. Low incidence of inbreeding in a long-lived primate population isolated for 75 years. Behav. Ecol. Sociobiol. 71, 18 (2017).
    PubMed  Article  Google Scholar 

    58.
    Cheverud, J. M. Epiphyseal union and dental eruption in Macaca mulatta. Am. J. Phys. Anthropol. 56, 157–167 (1981).
    CAS  PubMed  Article  Google Scholar 

    59.
    Turnquist, J. E. & Kessler, M. J. Free-ranging Cayo Santiago rhesus monkeys (Macaca mulatta): I. Body size, proportion, and allometry. Am. J. Primatol. 19, 1–13 (1989).
    PubMed  Article  Google Scholar 

    60.
    Havill, L. M. Osteon remodeling dynamics in macaca mulatta: Normal variation with regard to age, sex, and skeletal maturity. Calcif. Tissue Int. 74, 95–102 (2004).
    CAS  PubMed  Article  Google Scholar 

    61.
    Konigsberg, L. et al. External brain morphology in rhesus macaques (Macaca mulatta). J. Hum. Evol. 19, 269–284 (1990).
    Article  Google Scholar 

    62.
    Logan, C. J. & Clutton-Brock, T. H. Validating methods for estimating endocranial volume in individual red deer (Cervus elaphus). Behav. Process. 92, 143–146 (2013).
    Article  Google Scholar 

    63.
    Jolly, C. The classification and natural history of Theropithecus (Simopithecus) (Andrew, 1916) baboons of the African Plio-Pleistocene. (Bull. Brit. Mus. Nat. Hist., 1972).

    64.
    Delson, E. et al. Body mass in Cercopithecidae (Primates, mammalia): Estimation and scaling in extinct and extant taxa. (American Museum of Natural History, 2000).

    65.
    Hadfield, J. D., Richardson, D. S. & Burke, T. Towards unbiased parentage assignment: Combining genetic, behavioural and spatial data in a Bayesian framework. Mol. Ecol. 15, 3715–3730 (2006).
    CAS  PubMed  Article  Google Scholar 

    66.
    Hadfield, J. D. MCMCglmm Course Notes. (2016).

    67.
    Morrissey, M. B. & Wilson, A. J. pedantics: An r package for pedigree-based genetic simulation and pedigree manipulation, characterization and viewing: Computer program article. Mol. Ecol. Resour. 10, 711–719 (2009).
    PubMed  Article  Google Scholar 

    68.
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).
    Article  Google Scholar 

    69.
    Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: Phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).
    CAS  PubMed  Article  Google Scholar 

    70.
    Wilson, A. J. et al. An ecologist’s guide to the animal model. J. Anim. Ecol. 79, 13–26 (2010).
    PubMed  Article  Google Scholar 

    71.
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 13 (2017).
    Article  Google Scholar 

    72.
    Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).
    PubMed  Article  Google Scholar 

    73.
    Morrissey, M. B. & Sakrejda, K. Unification of regression-based methods for the analysis of natural selection. Evolution 67, 2094–2100 (2013).
    PubMed  Article  Google Scholar 

    74.
    Stinchcombe, J., Agrawal, A., Hohenlohe, P., Arnold, S. & Blows, M. Estimating nonlinear selection gradients using quadratic regression coefficients: Double or nothing?. Evolution 62, 2435–2440 (2008).
    PubMed  Article  Google Scholar 

    75.
    Matsumura, S., Arlinghaus, R. & Dieckmann, U. Standardizing selection strengths to study selection in the wild: A critical comparison and suggestions for the future. Bioscience 62, 1039–1054 (2012).
    Article  Google Scholar  More

  • in

    Investigating an increase in Florida manatee mortalities using a proteomic approach

    This proteomic survey was conducted to identify proteins that were differentially expressed in the serum of manatees affected by two distinct mortality episodes: a red tide group and an unknown mortality episode group in the IRL. These groups were compared to a control group sampled at Crystal River. The red tide group’s exposure was evidenced by the presence of the PbTx antigen, with brevetoxin values in the 4.3 to 14.4 ng/ml range. The other group did not present with clinical symptoms except for mild cold stress in some animals. Two proteomics approaches were employed, 2D-DIGE and shot gun proteomics using LC–MS/MS, which provided similar results, suggesting that several serum proteins were specifically altered in each of the manatee mortality episode groups compared to the Crystal River control group. The differentially expressed serum proteins were cautiously identified based on annotation of the manatee genome6,7 and their amino acid sequence homologies with human serum proteins. While additional work still needs to be done to confirm that the identified manatee proteins function similarly to their human homologs, possible insight on the function of the proteins can be derived from human studies.
    The two proteomics methods used, 2D-DIGE and iTRAQ LC–MS/MS are complementary and both rely on LC–MS/MS for protein identification. 2D-DIGE is a top-down approach, quantifying the differentially expressed proteins at the protein level before identifying the protein by LC–MS/MS, while the iTRAQ method is a bottom-up approach, where the whole proteome is first digested with trypsin, the generated peptides are separated by chromatography and identified and measured by mass spectrometry. Mass spectrometry has become the primary method to analyze proteomes, benefitting from genomic sequences and bioinformatics tools that can translate the sequences into predicted proteins. There are excellent reviews of proteomics methods and how they may be used across species8,9.
    In total, 19 of the 26 proteins identified using the 2D-DIGE method were also identified by iTRAQ (Supplementary Table 1) which showed that these findings were replicated using two complementary experimental methods. In the 2D-DIGE method, most of the proteins were found in multiple spots, suggesting that they were differentially modified. 2D-DIGE can separate proteins based on a single charge difference. Some of the spots contained multiple proteins so it was difficult to determine the fold change of each of the proteins in these spots. For example, protein C4A was identified in 7 different spots, likely representing multiple isoforms. We were not able to corroborate the different post-translational modifications (PTMs) with iTRAQ, as the experiment was not designed to look for PTMs, only total protein quantitation. A drawback of 2D-DIGE is that keratin introduced into the sample from reagents at the time of electrophoresis or through the multiple steps required for protein extraction is also seen in the gels10,11,12. It is unlikely that the keratins were from the serum samples, as blood was collected directly into vacuum tubes. Because of the issue of keratin contamination, the 2D-DIGE method is considered more qualitative in its determination and thus in this study, iTRAQ data were the primary basis for quantitation.
    Pathway analysis detects groups of proteins that are linked in pathways that may be related to disease processes. We used Pathway Studio using subnetwork enrichment analysis to determine disease pathways potentially in place for the red tide and IRL manatees. The Pathway Studio database is constructed from relationships detected between proteins and diseases from articles present in Pubmed but is heavily directed towards human and rodent proteomes. To be able to use this tool, we assigned human homologs to the identified manatee proteins, assuming that based on their sequence homology the proteins would function in a similar way. There are many studies that suggest this assumption has merit, for example Nonaka and Kimura have examined the evolution of the complement system and found clear indications of homology among vertebrates13.
    The top 20 pathways for the red tide group (Table 3) and the IRL group (Table 4) show the diverse set of molecular pathways that may be affected by the exposures. Many of the same pathways appeared for both groups including thrombophilia, inflammation, wounds and injuries, acute phase reaction and amyloidosis. Thrombophilia was the most upregulated pathway for the IRL group (p-value 1.10E-19) and the second most upregulated pathway for the red tide group (p-value 4.1E-19). Thrombophilia, a condition in which blood clots occur in the absence of injury, happens when clotting factors become unbalanced. We obtained proteomics information on 12 of the proteins in this pathway, with some moving in opposing directions. The dysregulated proteins that were increased for both red tide and the IRL groups were SERPIN D1 (Serpin family member D 1), CRP (C-reactive protein), and PLAT (plasminogen activator) and the ones that were decreased in both groups, were SERPIN C1 (Serpin family member C 1), F5 (coagulation factor 5), and ALB (albumin). One protein, AGT (angiotensinogen), was upregulated in the red tide group but downregulated in the IRL. HRG (histidine rich glycoprotein), PROS1 (Protein S), C4BPA (complement component 4 binding protein alpha, and F2 (coagulation factor 2, also known as prothrombin) were downregulated in the red tide group but upregulated in the IRL group. The disparate regulation of proteins in this pathway suggests that clotting was among the pathways disrupted in the affected manatees. Red tide exposed manatees often present with hemorrhagic issues in their intestines, lungs and the brain (14), suggesting that downregulation of coagulation factors may be responsible for this clinical evaluation. Interestingly HRG was upregulated in the IRL by 1.34-fold and downregulated in the red tide group by 0.56-fold, making this protein a good biomarker to distinguish the two events.
    Table 3 Subnetwork enrichment pathways for serum proteins obtained from manatees exposed to red tide.
    Full size table

    Table 4 Subnetwork enrichment pathways for serum proteins obtained from manatees sampled in the IRL.
    Full size table

    Among the manatees in the red tide group, inflammation was ranked 3rd (p-value  More

  • in

    Evolutionary history and genetic connectivity across highly fragmented populations of an endangered daisy

    Aægisdóttir HH, Kuss P, Stöcklin J (2009) Isolated populations of a rare alpine plant show high genetic diversity and considerable population differentiation. Ann Bot 104:1313–1322
    Article  CAS  Google Scholar 

    Ahrens CW, James EA, Botanic R, Melbourne G, Ave B, Yarra S (2015) Range-wide genetic analysis reveals limited structure and suggests asexual patterns in the rare forb Senecio macrocarpus. Biol J Linn Soc 115:256–269
    Article  Google Scholar 

    Bouckaert R (2010) DensiTree: making sense of sets of phylogenetic trees. Bioinformatics 26:1372–137
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Bouckaert R, Vaughan TG, Barido-Sottani J, Duchene S, Fourmet M, Gavryushkina A et al. (2019) BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol 15:1–28
    Article  CAS  Google Scholar 

    Bowler J (1982) Aridity in the late tertiary and quaternary of Australia. In: Barker W, Greenslade P (eds) Evolution of the flora and fauna of arid Australia. Peacock Publications, Adelaide, p 35–45
    Google Scholar 

    Breed MF, Harrison PA, Blyth C, Byrne M, Gaget V, Gellie NJC et al. (2019) The potential of genomics for restoring ecosystems and biodiversity. Nat Rev Genet 20:615–628
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Brown AHD, Young AG (2000) Genetic diversity in tetraploid populations of the endangered daisy Rutidosis leptorrhynchoides and implications for its conservation. Heredity (Edinb) 85:122–129
    CAS  Article  Google Scholar 

    Bryant D, Bouckaert R, Felsenstein J, Rosenberg NA, Roychoudhury A (2012) Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis. Mol Biol Evol 29:1917–1932
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Bull M, Stolfo G (2014) Flora of Melbourne. A guide to the indigenous plants of the greater Melbourne area, 4th edn. Hyland House, Melbourne
    Google Scholar 

    Buza L, Young A, Thrall P (2000) Genetic erosion, inbreeding and reduced fitness in fragmented populations of the endangered tetraploid pea Swainsona recta. Biol Conserv 93:177–186
    Article  Google Scholar 

    Charlesworth D (2006) Balancing selection and its effects on sequences in nearby genome regions. PLoS Genet 2:379–384
    CAS  Article  Google Scholar 

    Chen C, Lu RS, Zhu SS, Tamaki I, Qiu YX (2017) Population structure and historical demography of Dipteronia dyeriana (Sapindaceae), an extremely narrow palaeoendemic plant from China: implications for conservation in a biodiversity hot spot. Heredity (Edinb) 119:95–106
    CAS  Article  Google Scholar 

    Clarke GM, O’Dwyer C (2000) Genetic variability and population structure of the endangered golden sun moth, Synemon plana. Biol Conserv 92:371–381
    Article  Google Scholar 

    Cole CT (2003) Genetic variation in rare and common plants. Annu Rev Ecol Evol Syst 34:213–237
    Article  Google Scholar 

    Coleman RA, Weeks AR, Hoffmann AA (2013) Balancing genetic uniqueness and genetic variation in determining conservation and translocation strategies: a comprehensive case study of threatened dwarf galaxias, Galaxiella pusilla (Mack) (Pisces: Galaxiidae). Mol Ecol 22:1820–1835
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Courtice B, Hoebee SE, Sinclair S, Morgan JW (2020) Local population density affects pollinator visitation in the endangered grassland daisy Rutidosis leptorhynchoides (Asteraceae). Aust J Bot 67:638–648
    Article  Google Scholar 

    Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. TREE 15:290–295
    CAS  PubMed  PubMed Central  Google Scholar 

    Delph LF, Kelly JK (2014) On the importance of balancing selection in plants. N Phytol 201:45–56
    Article  Google Scholar 

    DeMauro MM (1993) Relationship of breeding system to rarity in the Lakeside Daisy (Hymenoxys acaulis var. glabra). Conserv Biol 7:542–550
    Article  Google Scholar 

    Department of the Environment (2020) Senecio macrocarpus in Species Profile and Threats Database, Department of the Environment, Canberra. Available from: http://www.environment.gov.au/sprat. Accessed 27 May 2020.

    Diekmann OE, Gouveia L, Perez JA, Gil-Rodriguez C, Serrão EA (2010) The possible origin of Zostera noltii in the Canary Islands and guidelines for restoration. Mar Biol 157:2109–2115
    Article  Google Scholar 

    Dorrough J, Ash JE (1999) Using past and present habitat to predict the current distribution and abundance of a rare cryptic lizard, Delma impar (Pygopodidae). Austral Ecol 24:614–624
    Article  Google Scholar 

    Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–241

    Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620
    CAS  PubMed  PubMed Central  Google Scholar 

    Foll M, Gaggiotti OE (2006) Identifying the environmental factors that determine the genetic structure of populations. Genetics 174:875–891
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993
    PubMed  PubMed Central  Article  Google Scholar 

    Frankham R (1996) Relationship between genetic variation and populations size in wildlife. Conserv Biol 10:1500–1508
    Article  Google Scholar 

    Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140

    Frankham R (2015) Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Mol Ecol 24:2610–2618
    PubMed  Article  PubMed Central  Google Scholar 

    Frankham R, Ballou JD, Eldridge MDB, Lacy RC, Ralls K, Dudash MR et al. (2011) Predicting the probability of outbreeding depression. Conserv Biol 25:465–475
    PubMed  Article  PubMed Central  Google Scholar 

    Frankham R, Ballou JD, Ralls K, Eldridge MDB, Dudash MR, Fenster CB, et al. (2017) Genetic management of fragmented animal and plant populations, 1st edn. Oxford University Press, Oxford

    Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol Conserv 170:56–63
    Article  Google Scholar 

    Frankham R, Lees K, Montgomery ME, England PR, Lowe EH, Briscoe DA (1999) Do population size bottlenecks reduce evolutionary potential? Anim Conserv 2:255–260
    Article  Google Scholar 

    Georges A, Gruber B, Pauly GB, White D, Adams M, Young MJ et al. (2018) Genomewide SNP markers breathe new life into phylogeography and species delimitation for the problematic short-necked turtles (Chelidae: Emydura) of eastern Australia. Mol Ecol 27:5195–5213
    PubMed  Article  PubMed Central  Google Scholar 

    Glémin S, Gaude T, Guillemin ML, Lourmas M, Olivieri I, Mignot A (2005) Balancing selection in the wild: testing population genetics theory of self-incompatibility in the rare species Brassica insularis. Genetics 171:279–289
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Goudet J (2005) HIERFSTAT, a package for R to compute and test hierarchical F‐statistics. Mol Ecol Resour 5:184–186
    Article  Google Scholar 

    Gruber B, Unmack PJ, Berry OF, Georges A (2018) DARTR: an R package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol Ecol Resour 18:691–699
    PubMed  Article  PubMed Central  Google Scholar 

    Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information dependent genotyping. Nucl Acids Res 29:e25
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Janes JK, Malenfant M, Andrew RL, Miller JM, Dupuis JR, Gorrell JC et al. (2017) The K = 2 conundrum. Mol Ecol 26:3594–3602
    PubMed  Article  PubMed Central  Google Scholar 

    Jones RN (1997) The biogeography of the grasses and lowland grasslands of south-eastern Australia. Adv Nat Conserv 2:11–18
    Google Scholar 

    Kamvar ZN, Brooks JC, Grünwald NJ (2015) Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front Genet 6:1–10
    CAS  Article  Google Scholar 

    Knapp EE, Rice KJ (1996) Genetic structure and gene flow in Elymus glaucus (blue wildrye): implications for native grassland restoration. Restor Ecol 4:1–10
    Article  Google Scholar 

    Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Ro AY (2015) CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15:1179–1191
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Kronenberger JA, Funk WC, Smith JW, Fitzpatrick SW, Angeloni LM, Broder ED et al. (2017) Testing the demographic effects of divergent immigrants on small populations of Trinidadian guppies. Anim Conserv 20:3–11
    Article  Google Scholar 

    Lande R, Shannon S (1996) The role of genetic variation in adaptation and population persistence in a changing environment. Evolution (NY) 50:434–437
    Article  Google Scholar 

    Liddell E, Cook CN, Sunnucks P (2020) Evaluating the use of risk assessment frameworks in the identification of population units for biodiversity conservation. Wildl Res 47:208–216
    Article  Google Scholar 

    Lippé C, Dumont P, Bernatchez L (2006) High genetic diversity and no inbreeding in the endangered copper redhorse, Moxostoma hubbsi (Catostomidae, Pisces): the positive sides of a long generation time. Mol Ecol 15:1769–1780
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    Lloyd MW, Burnett RK, Engelhardt KAM, Neel MC (2011) The structure of population genetic diversity in Vallisneria Americana in the Chesapeake Bay: implications for restoration. Conserv Genet 12:1269–1285
    Article  Google Scholar 

    Mable BK, Robertson AV, Dart S, Di Berardo C, Witham L (2005) Breakdown of self-incompatibility in the perennial Arabidopsis lyrata (Brassicaceae) and its genetic consequences. Evolution (NY) 59:1437–1448
    Article  Google Scholar 

    Markgraf V, McGlone M, Hope G (1995) Neogene paleoenvironmental and paleoclimatic change in southern temperate ecosystems—a southern perspective. Trends Ecol Evol 10:143–147
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Melville J, Goebel S, Starr C, Keogh JS, Austin JJ (2007) Conservation genetics and species status of an endangered Australian dragon, Tympanocryptis pinguicolla (Reptilia: Agamidae). Conserv Genet 8:185–195
    Article  Google Scholar 

    Mijangos JL, Pacioni C, Spencer PBS, Craig MD (2015) Contribution of genetics to ecological restoration. Mol Ecol 22:22–37
    Article  Google Scholar 

    Morgan JW (1995) Ecological studies of the endangered Rutidosis leptorrhynchoides: I. Seed production, soil seed bank dynamics, population density and their effects on recruitment. Aust J Bot 43:1–11
    Article  Google Scholar 

    Moritz C (1999) Conservation units and translocations: Strategies for conserving evolutionary processes. Hereditas 130:217–228
    Article  Google Scholar 

    Murray BG, Young AG (2001) Widespread chromosome variation in the endangered grassland forb Rutidosis leptorrhynchoides F. Muell. (Asteraceae: Gnaphalieae). Ann Bot 87:83–90
    Article  Google Scholar 

    NSW Office of Environment and Heritage (2012) National Recovery Plan for Button Wrinklewort Rutidosis leptorrhynchoides. NSW Office of Environment and Heritage, Hurstville

    Nybom H, Bartish I (2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect Plant Ecol Evol Syst 3:93–114
    Article  Google Scholar 

    Pacioni C, Hunt H, Allentoft ME, Vaughan TG, Wayne AF, Baynes A et al. (2015) Genetic diversity loss in a biodiversity hotspot: ancient DNA quantifies genetic decline and former connectivity in a critically endangered marsupial. Mol Ecol 24:5813–5828
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Pavlova A, Selwood P, Harrisson KA, Murray N, Quin B, Menkhorst P et al. (2014) Integrating phylogeography and morphometrics to assess conservation merits and inform conservation strategies for an endangered subspecies of a common bird species. Biol Conserv 174:136–146
    Article  Google Scholar 

    Pickrell JK, Pritchard JK (2012) Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet 8:1–17
    Article  CAS  Google Scholar 

    Pickup M, Field DL, Rowell DM, Young AG (2012) Predicting local adaptation in fragmented plant populations: Implications for restoration genetics. Evol Appl 5:913–924
    PubMed  PubMed Central  Article  Google Scholar 

    Pickup M, Field DL, Rowell DM, Young AG (2013) Source population characteristics affect heterosis following genetic rescue of fragmented plant populations. Proc R Soc B Biol Sci 280:20122058
    CAS  Article  Google Scholar 

    Pickup M, Young AG (2008) Population size, self-incompatibility and genetic rescue in diploid and tetraploid races of Rutidosis leptorrhynchoides (Asteraceae). Heredity (Edinb) 100:268–274
    CAS  Article  Google Scholar 

    Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN et al. (2015) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344:1246752
    Article  CAS  Google Scholar 

    Potter S, Neaves LE, Lethbridge M, Eldridge MDB (2020) Understanding historical demographic processes to inform contemporary conservation of an arid zone specialist: the yellow-footed rock-wallaby. Genes (Basel) 11:1–24
    Article  CAS  Google Scholar 

    Powell JM (1969) The squatting occupation of Victoria 1834-60. Aust Geogr Stud 7:9–27
    Article  Google Scholar 

    Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Pritchard JK, Wen W (2003) Documentation for STRUCTURE Software: Version 2.

    Raj A, Stephens M, Pritchard JK (2014) fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics 197:573–589
    PubMed  PubMed Central  Article  Google Scholar 

    Ralls K, Ballou JD, Dudash MR, Eldridge MDB, Fenster CB, Lacy RC et al. (2018) Call for a paradigm shift in the genetic management of fragmented populations. Conserv Lett 11:1–6
    Article  Google Scholar 

    Rambaut A, Drummond AJ, Xie D, Baele G, Suchard M (2018) Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67:901–904
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Rodger YS, Greenbaum G, Silver M, Bar-david S, Winters G (2018) Detecting hierarchical levels of connectivity in a population of Acacia tortilis at the northern edge of the species’ global distribution: combining classical population genetics and network analyses. PLoS ONE 13:1–16
    Article  CAS  Google Scholar 

    Rojas D, Lima AP, Momigliano P, Ivo P, Dudaniec RY, Sauer TC et al. (2020) The evolution of polymorphism in the warning coloration of the Amazonian poison frog Adelphobates galactonotus. Heredity 124:439–456

    Scarlett NH, Parsons RF (1990) Conservation biology of the southern Australian daisy Rutidosis leptorrhynchoides. In: Clark TW, Seebeck JH (eds) Management and conservation of small populations. Chicago Zoological Society, Chicago, p 195–205
    Google Scholar 

    Sinclair SJ (2010) National recovery plan for the large-fruit groundsel Senecio macrocarpus. Department of Sustainability and Environment, Melbourne

    Sjogren P, Wyoni PI (1994) Conservation genetics and detection of rare alleles in finite populations. Conserv Biol 8:267–270
    Article  Google Scholar 

    Spalink D, Mackay R, Sytsma KJ (2019) Phylogeography, population genetics and distribution modelling reveal vulnerability of Scirpus longii (Cyperaceae) and the Atlantic Coastal Plain Flora to climate change. Mol Ecol 28:2046–2061

    Team RC (2018) R: a language and environment for statistical computing

    Wagenius S, Lonsdorf E, Neuhauser C (2007) Patch aging and the S-Allee effect: breeding system effects on the demographic response of plants to habitat fragmentation. Am Nat 169:383–397
    PubMed  Article  PubMed Central  Google Scholar 

    Weaver JC (1996) Beyond the fatal shore: pastoral squatting and the occupation of Australia. Am Hist Rev 101:981–1007
    Article  Google Scholar 

    Weeks AR, Sgro CM, Young AG, Frankham R, Mitchell NJ, Miller KA et al. (2011) Assessing the benefits and risks of translocations in changing environments: A genetic perspective. Evol Appl 4:709–725
    PubMed  PubMed Central  Article  Google Scholar 

    Weeks AR, Stoklosa J, Hoffmann AA (2016) Conservation of genetic uniqueness of populations may increase extinction likelihood of endangered species: the case of Australian mammals. Front Zool 13:1–9
    Article  CAS  Google Scholar 

    Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution (NY) 38:1358–1370
    CAS  Google Scholar 

    Wells GP, Young AG (2002) Effects of seed dispersal on spatial genetic structure in populations of Rutidosis leptorrhychoides with different levels of correlated paternity. Genet Res 79:219–226

    Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA (2015) Genetic rescue to the rescue. Trends Ecol Evol 30:42–49
    PubMed  Article  PubMed Central  Google Scholar 

    Young AG, Brown AHD, Murray BG, Thrall PH, Miller CH (2000) Genetic erosion, restricted mating and reduced viability in fragmented populations of the endangered grassland herb Rutidosis leptorrhynchoides. In: Young AG, Clarke G (eds) Genetics, demography and viability of fragmented populations, Cambridge University Press, London, p 335–359

    Young AG, Brown AHD, Zich FC (1999) Genetic structure of fragmented populations of the endangered Daisy Rutidosis leptorrhynchoides. Cons Biol 13:256–265

    Young AG, Miller C, Gregory E, Langston A (2000) Sporophytic self-incompatibility in diploid and tetraploid races of Rutidosis leptorrhynchoides (Asteraceae). Aust J Bot 48:667–672

    Young AG, Murray BG (2000) Genetic bottlenecks and dysgenic gene flow into re-established populations of the grassland daisy, Rutidosis leptorrhynchoides. Aust J Bot 48:409–416

    Young AG, Pickup M (2010) Low S-allele numbers limit mate availability, reduce seed set and skew fitness in small populations of a self-incompatible plant. J Appl Ecol 47:541–548
    Article  Google Scholar  More

  • in

    Epigenetic responses of hare barley (Hordeum murinum subsp. leporinum) to climate change: an experimental, trait-based approach

    Alsdurf J, Anderson C, Siemens DH (2016) Epigenetics of drought-induced trans-generational plasticity: consequences for range limit development. Ann Bot 8:plv146
    Google Scholar 

    Anderson JT, Willis JH, Mitchell-Olds T (2011) Evolutionary genetics of plant adaptation. Trends Genet 27:258–66
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Aragón-Gastélum JL, Flores J, Yáñez-Espinosa L, Badano E, Ramírez-Tobías HM, Rodas-Ortíz JP et al. (2014) Induced climate change impairs photosynthetic performance in Echinocactus platyacanthus, an especially protected Mexican cactus species. Flora—Morphol Distrib Funct Ecol Plants 209:499–503
    Article  Google Scholar 

    Banerjee A, Roychoudhury A (2017) Epigenetic regulation during salinity and drought stress in plants: histone modifications and DNA methylation. Plant Gene 11:199–204
    CAS  Article  Google Scholar 

    Bartels A, Han Q, Nair P, Stacey L, Gaynier H, Mosley M et al. (2018) Dynamic DNA methylation in plant growth and development. Int J Mol Sci 19:2144
    PubMed Central  Article  CAS  Google Scholar 

    Benjamini Y, Hochberg Y (1995) Controlling the False Discovery Rate: a practical and powerful approach to multiple testing. J R Stat Soc 57:289–300
    Google Scholar 

    Bonasio R, Tu S, Reinberg D (2010) Molecular signals of epigenetic states. Science 330:612–6
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Bongers FJ, Olmo M, Lopez-Iglesias B, Anten NPR, Villar R (2017) Drought responses, phenotypic plasticity and survival of Mediterranean species in two different microclimatic sites. Plant Biol 19:386–395
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Bossdorf O, Richards CL, Pigliucci M (2008) Epigenetics for ecologists. Ecol Lett 11:106–115
    PubMed  PubMed Central  Google Scholar 

    Bossdorf O, Zhang Y (2011) A truly ecological epigenetics study. Mol Ecol 20:1572–1574
    PubMed  Article  PubMed Central  Google Scholar 

    Chapin FS, Autumn K, Pugnaire F (1993) Evolution of suites of traits in response to environmental stress. Am Nat 142:78–92
    Article  Google Scholar 

    Conrath U, Pieterse CMJ, Mauch-Mani B (2002) Priming in plant-pathogen interactions. Trends Plant Sci 7:210–6
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Dabros A, Fyles JW (2010) Effects of open-top chambers and substrate type on biogeochemical processes at disturbed boreal forest sites in northwestern Quebec. Plant Soil 327:465–479
    CAS  Article  Google Scholar 

    Delgado-Baquerizo M, Maestre FT, Rodríguez JGP, Gallardo A (2013) Biological soil crusts promote N accumulation in response to dew events in dryland soils. Soil Biol Biochem 62:22–27
    CAS  Article  Google Scholar 

    Diez CM, Meca E, Tenaillon MI, Gaut BS (2014) Three groups of transposable elements with contrasting copy number dynamics and host responses in the maize (Zea mays ssp. mays) genome. PLoS Genet 10:e1004298
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15
    Google Scholar 

    Ewens WJ (2013) Genetic variation. In: Maloy S, Hughes K (eds) Brenner’s encyclopedia of genetics, pp 290–291

    Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes. Genetics 131:479–91
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Fernández-Pascual E, Jiménez-Alfaro B, Caujapé-Castells J, Jaén-Molina R, Díaz TE (2013) A local dormancy cline is related to the seed maturation environment, population genetic composition and climate. Ann Bot 112:937–45
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Forestan C, Aiese Cigliano R, Farinati S, Lunardon A, Sanseverino W, Varotto S (2016) Stress-induced and epigenetic-mediated maize transcriptome regulation study by means of transcriptome reannotation and differential expression analysis. Sci Rep 6:30446
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Fotiou C, Damialis A, Krigas N, Vokou D (2007) Hordeum murinum pollen as a contributor to pollinosis: important or trivial aeroallergen? Allergy 62:180
    Google Scholar 

    Freschet GT, Violle C, Bourget MY, Scherer-Lorenzen M, Fort F (2018) Allocation, morphology, physiology, architecture: the multiple facets of plant above- and below-ground responses to resource stress. N Phytol 219:1338–52
    Article  Google Scholar 

    Garnier E, Shipley B, Roumet C, Laurent G (2001) A standardized protocol for the determination of specific leaf area and leaf dry matter content. Funct Ecol 15:688–95
    Article  Google Scholar 

    Gayacharan JA (2013) Epigenetic responses to drought stress in rice (Oryza sativa L.). Physiol Mol Biol Plants 19:379–87
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Gómez JM (2004) Importance of microhabitat and acorn burial on Quercus ilex early recruitment: Non-additive effects on multiple demographic processes. Plant Ecol 172:287–297
    Article  Google Scholar 

    Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27:857–71
    Article  Google Scholar 

    Grigorova B, Vaseva I, Demirevska K, Feller U (2011) Combined drought and heat stress in wheat: changes in some heat shock proteins. Biol Plant 55:105–111
    CAS  Article  Google Scholar 

    Gu Z, Eils R, Schlesner M (2016) Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32:2847–9
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Herrera CM, Bazaga P (2010) Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis. N Phytol 187:867–76
    CAS  Article  Google Scholar 

    Herrera CM, Pozo MI, Bazaga P (2012) Jack of all nectars, master of most: DNA methylation and the epigenetic basis of niche width in a flower-living yeast. Mol Ecol 21:2602–16
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Hulting AG, Haavisto JL (2013) Hare barley (Hordeum murinum ssp. leporinum) biology and management in cool season perennial grass pastures of Western Oregon. J Chem Inform Model 33:1689–99
    Google Scholar 

    Hussain F, Durrani MJ (2009) Seasonal availability, palatability and animal preferences of forage plants in Harboi arid range land, Kalat, Pakistan. Pak J Bot 41:539–554
    Google Scholar 

    Ibáñez I, Schupp EW (2001) Positive and negative interactions between environmental conditions affecting Cercocarpus ledifolius seedling survival. Oecologia 129:543–550
    PubMed  Article  PubMed Central  Google Scholar 

    Jakob SS, Meister A, Blattner FR (2004) The considerable genome size variation of Hordeum species (Poaceae) is linked to phylogeny, life form, ecology, and speciation rates. Mol Biol Evol 21:860–9
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Jaskiewicz M, Conrath U, Peterhälnsel C (2011) Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep 12:50–55
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Jeremias G, Barbosa J, Marques SM, Asselman J, Gonçalves FJM, Pereira JL (2018) Synthesizing the role of epigenetics in the response and adaptation of species to climate change in freshwater ecosystems. Mol Ecol 27:2790–2806
    PubMed  Article  PubMed Central  Google Scholar 

    Jiang Y, Huang B (2000) Effects of drought or heat stress alone and in combination on Kentucky bluegrass. Crop Sci 40:1358–62
    Article  Google Scholar 

    Kaur A, Grewal A, Sharma P (2018) Comparative analysis of DNA methylation changes in two contrasting wheat genotypes under water deficit. Biol Plant 62:471–8
    CAS  Article  Google Scholar 

    Kronholm I, Bassett A, Baulcombe D, Collins S (2017) Epigenetic and genetic contributions to adaptation in Chlamydomonas. Mol Biol Evol 34:2285–2306
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    de la Riva EG, Tosto A, Pérez-Ramos IM, Navarro-Fernández CM, Olmo M, Anten NPR et al. (2016) A plant economics spectrum in Mediterranean forests along environmental gradients: is there coordination among leaf, stem and root traits? J Veg Sci 27:187–199
    Article  Google Scholar 

    Lamaoui M, Jemo M, Datla R, Bekkaoui F (2018) Heat and drought stresses in crops and approaches for their mitigation. Front Chem 6:26
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Lampei C (2019) Multiple simultaneous treatments change plant response from adaptive parental effects to within-generation plasticity, in Arabidopsis thaliana. Oikos 128:368–379
    Article  Google Scholar 

    Latzel V, Allan E, Bortolini Silveira A, Colot V, Fischer M, Bossdorf O (2013) Epigenetic diversity increases the productivity and stability of plant populations. Nat Commun 4:2875
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    Laughlin DC, Leppert JJ, Moore MM, Sieg CH (2010) A multi-trait test of the leaf-height-seed plant strategy scheme with 133 species from a pine forest flora. Funct Ecol 24:493–501
    Article  Google Scholar 

    Li X, Zhu J, Hu F, Ge S, Ye M, Xiang H et al. (2012) Single-base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression. BMC Genom 2:300
    Article  CAS  Google Scholar 

    Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J et al. (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Ecol Manag 259:698–709
    Article  Google Scholar 

    Lira-Medeiros CF, Parisod C, Fernandes RA, Mata CS, Cardoso MA, Ferreira PCG (2010) Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS One 5:e10326
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Liu J, Feng L, Li J, He Z (2015) Genetic and epigenetic control of plant heat responses. Front Plant Sci 6:267
    PubMed  PubMed Central  Google Scholar 

    Liu G, Xia Y, Liu T, Dai S, Hou X (2018) The DNA methylome and association of differentially methylated regions with differential gene expression during heat stress in Brassica rapa. Int J Mol Sci 19:1414
    PubMed Central  Article  CAS  Google Scholar 

    Liu Z, Xin M, Qin J, Peng H, Ni Z, Yao Y et al. (2015) Temporal transcriptome profiling reveals expression partitioning of homoeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.). BMC Plant Biol 15:1
    Article  CAS  Google Scholar 

    Maestre FT, Escolar C, de Guevara ML, Quero JL, Lázaro R, Delgado-Baquerizo M et al. (2013) Changes in biocrust cover drive carbon cycle responses to climate change in drylands. Glob Chang Biol 19:3835–3847
    PubMed  PubMed Central  Article  Google Scholar 

    Marion GM, Henry GHR, Freckman DW, Johnstone J, Jones G, Jones MH et al. (1997) Open-top designs for manipulating field temperature in high-latitude ecosystems. Glob Chang Biol 3:20–32
    Article  Google Scholar 

    Mariotte P, Vandenberghe C, Kardol P, Hagedorn F, Buttler A (2013) Subordinate plant species enhance community resistance against drought in semi‐natural grasslands (S Schwinning, Ed.). J Ecol 101:763–773
    Article  Google Scholar 

    Mastan SG, Rathore MS, Bhatt VD, Yadav P, Chikara J (2012) Assessment of changes in DNA methylation by methylation-sensitive amplification polymorphism in Jatropha curcas L. subjected to salinity stress. Gene 508:125–9
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Matías L, Godoy O, Gómez-Aparicio L, Pérez-Ramos IM (2018) An experimental extreme drought reduces the likelihood of species to coexist despite increasing intransitivity in competitive networks. J Ecol 106:826–837
    Article  Google Scholar 

    Metzger DCH, Schulte PM (2017) Persistent and plastic effects of temperature on DNA methylation across the genome of threespine stickleback (Gasterosteus aculeatus). Proc R Soc B Biol Sci 284:20171667
    Article  CAS  Google Scholar 

    Mitchell P, Wardlaw T, Pinkard L (2015) Combined stresses in forests (R Mahalingam, Ed.). Springer International Publishing, Switzerland
    Google Scholar 

    Moles AT, Westoby M (2004) Seedling survival and seed size: a synthesis of the literature. J Ecol 92:372–383
    Article  Google Scholar 

    Moore LM, Lauenroth WK (2017) Differential effects of temperature and precipitation on early- vs. late-flowering species. Ecosphere 8:e01819
    Article  Google Scholar 

    Muller-Landau HC (2010) The tolerance-fecundity trade-off and the maintenance of diversity in seed size. Proc Natl Acad Sci USA 107:4242–4247
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    Münzbergová Z, Latzel V, Šurinová M, Hadincová V (2019) DNA methylation as a possible mechanism affecting ability of natural populations to adapt to changing climate. Oikos 128:124–34
    Article  CAS  Google Scholar 

    Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U et al. (2010) Plant phenotypic plasticity in a changing climate. Trends Plant Sci 15:684–92
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Ogaya R, Peñuelas J, Martínez-Vilalta J, Mangirón M (2003) Effect of drought on diameter increment of Quercus ilex, Phillyrea latifolia, and Arbutus unedo in a holm oak forest of NE Spain. Ecol Manag 180:175–184
    Article  Google Scholar 

    Olea L, San Miguel A (2006) The Spanish dehesa. A traditional Mediterranean silvopastoral system linking production and nature conservation. In: Sustainable grassland productivity: Proceedings of the 21st General Meeting of the European Grassland Federation

    Paun O, Bateman RM, Fay MF, Hedrén M, Civeyrel L, Chase MW (2010) Stable epigenetic effects impact adaptation in allopolyploid orchids (Dactylorhiza: Orchidaceae). Mol Biol Evol 27:2465–73
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Pérez-Figueroa A (2013) msap: a tool for the statistical analysis of methylation-sensitive amplified polymorphism data. Mol Ecol Resour 13:522–527
    PubMed  Article  PubMed Central  Google Scholar 

    Pérez-Ramos IM, Cambrollé J, Hidalgo-Galvez MD, Matías L, Montero-Ramírez A, Santolaya S et al. (2020) Phenological responses to climate change in communities of plants species with contrasting functional strategies. Environ Exp Bot 170:103852
    Article  CAS  Google Scholar 

    Pérez-Ramos IM, Díaz-Delgado R, de la Riva EG, Villar R, Lloret F, Marañon T (2017) Climate variability and community stability in Mediterranean shrublands: the role of functional diversity and soil environment. J Ecol 105:1335–1346
    Article  Google Scholar 

    Pérez-Ramos IM, Matías L, Gómez-Aparicio L, Godoy Ó (2019) Functional traits and phenotypic plasticity modulate species coexistence across contrasting climatic conditions. Nat Commun 10:2555
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Piikkia K, De Temmerman L, Högy P, Pleijel H (2008) The open-top chamber impact on vapour pressure deficit and its consequences for stomatal ozone uptake. Atmos Environ 42:6513–22
    Article  CAS  Google Scholar 

    Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. N Phytol 182:565–588
    Article  Google Scholar 

    R Core Team (2013) R: a language and environment for statistical computing. 55: 275–286.

    Reyna-López GE, Simpson J, Ruiz-Herrera J (1997) Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol Gen Genet 253:703–710
    PubMed  Article  PubMed Central  Google Scholar 

    Richards CL, Verhoeven KJF, Bossdorf O (2012) Evolutionary significance of epigenetic variation. In: Plant Genome Diversity Volume 1: Plant Genomes, their Residents, and their Evolutionary Dynamics, pp 257–274

    Rizhsky L (2004) When defense pathways collide. the response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–96
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Rodríguez-Calcerrada J, Letts MG, Rolo V, Roset S, Rambal S (2013) Multiyear impacts of partial throughfall exclusion on Buxus sempervirens in a Mediterranean forest. Syst 22:202–213
    Google Scholar 

    Seifan M, Tielbörger K, Kadmon R (2010) Direct and indirect interactions among plants explain counterintuitive positive drought effects on an eastern Mediterranean shrub species. Oikos 119:1601–9
    Article  Google Scholar 

    Sharifi-Rigi P, Saeidi H, Rahiminejad MR (2014) Genetic diversity and geographic distribution of variation of Hordeum murinum as revealed by retroelement insertional polymorphisms in Iran. Biology 69:469–77
    Google Scholar 

    Shen X, De Jonge J, Forsberg SKG, Pettersson ME, Sheng Z, Hennig L et al. (2014) Natural CMT2 variation is associated with genome-wide methylation changes and temperature seasonality. PLoS Genet 10:e1004842
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Suzuki MM, Bird A (2008) DNA methylation landscapes: Provocative insights from epigenomics. Nat Rev Genet 9:465–76
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Tan MP (2010) Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism. Plant Physiol Biochem 48:21–6
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Tani E, Polidoros AN, Nianiou-Obeidat I, Tsaftaris AS (2005) DNA methylation patterns are differently affected by planting density in maize inbreeds and their hybrids. Maydica 50:19–23
    Google Scholar 

    Valencia E, Méndez M, Saavedra N, Maestre FT (2016) Plant size and leaf area influence phenological and reproductive responses to warming in semiarid Mediterranean species. Perspect Plant Ecol Evol Syst 21:31–40
    PubMed  PubMed Central  Article  Google Scholar 

    Verhoeven KJF, Jansen JJ, van Dijk PJ, Biere A (2010) Stress-induced DNA methylation changes and their heritability in asexual dandelions. N Phytol 185:1108–18
    CAS  Article  Google Scholar 

    Vos P, Hogers R, Bleeker M, Reijans M, Van De Lee T, Hornes M et al. (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–14
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Wang WS, Pan YJ, Zhao XQ, Dwivedi D, Zhu LH, Ali J et al. (2011) rought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa) L.). J Exp Bot 62:1951–60
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Watson RGA, Baldanzi S, Pérez-Figueroa A, Gouws G, Porri F (2018) Morphological and epigenetic variation in mussels from contrasting environments. Mar Biol 165:50
    Article  CAS  Google Scholar 

    Westoby M (1998) A Leaf-Height-Seed (LHS) plant ecology strategy scheme. Plant Soil 199:213–227
    CAS  Article  Google Scholar 

    Whittington HR, Tilman D, Wragg PD, Powers JS, Browning DM (2015) Phenological responses of prairie plants vary among species and year in a three-year experimental warming study. Ecosphere 6:1–15
    Article  Google Scholar 

    Wolkovich EM, Cleland EE (2014) Phenological niches and the future of invaded ecosystems with climate change. AoB Plants 6:plu013
    PubMed  PubMed Central  Article  Google Scholar 

    Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F et al. (2004) The worldwide leaf economics spectrum. Nature 428:821–7
    CAS  Article  Google Scholar 

    Zhang Y-Y, Parepa M, Fischer M, Bossdorf O (2016) Epigenetics of colonizing species? A study of japanese knotweed in central Europe. In: Barrett SC., Colautti RI, Dlugosch KM, Rieseberg LH (eds) Invasion genetics: the baker and Stebbins legacy, John Wiley & Sons, Ltd, pp 328–340

    Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SWL, Chen H et al. (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126:1189–201
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167:313–24
    CAS  PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Conservation priorities in an endangered estuarine seahorse are informed by demographic history

    1.
    Ramos-Onsins, S. E. & Rozas, J. Statistical properties of new neutrality tests against population growth. Mol. Biol. Evol. 19, 2092–2100 (2000).
    Article  Google Scholar 
    2.
    Wan, Q.-H., Wu, H., Fujihara, T. & Fang, S.-G. Which genetic marker for which conservation genetics issue? Electrophoresis 25, 2165–2176 (2004).
    CAS  PubMed  Article  Google Scholar 

    3.
    Selkoe, K. A. & Toonen, R. J. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9, 615–629 (2006).
    PubMed  Article  Google Scholar 

    4.
    Rogers, A. R. & Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552–569 (1992).
    CAS  PubMed  Google Scholar 

    5.
    Nabholz, B., Mauffrey, J.-F., Bazin, E., Galtier, N. & Glemin, S. Determination of mitochondrial genetic diversity in mammals. Genetics 178, 351–361 (2008).
    PubMed  PubMed Central  Article  Google Scholar 

    6.
    Whitfield, A., Mkare, T. K., Teske, P. R., James, N. & Cowley, P. D. Life-histories explain the conservation status of two estuary-associated pipefishes. Biol. Conserv. 212, 256–264 (2017).
    Article  Google Scholar 

    7.
    Leffler, E. M. et al. Revisiting an old riddle: what determines genetic diversity levels within species?. PLoS Biol. 10, e1001388 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Kimura, M. & Crow, J. F. The number of alleles that can be maintained in a finite population. Genetics 49, 725–738 (1964).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge University Press, Cambridge, 1983).
    Google Scholar 

    10.
    Romiguier, J. et al. Comparative population genomics in animals uncovers the determinants of genetic diversity. Nature 515, 261–263 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    11.
    Ellegren, H. & Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 17, 422–433 (2016).
    CAS  PubMed  Article  Google Scholar 

    12.
    Caley, M. J. et al. Recruitment and the local dynamics of open marine populations. Annu. Rev. Ecol. Syst. 27, 477–500 (1996).
    Article  Google Scholar 

    13.
    Teske, P. R. et al. Implications of life history for genetic structure and migration rates of southern African coastal invertebrates: planktonic, abbreviated and direct development. Mar. Biol. 152, 697–711 (2007).
    Article  Google Scholar 

    14.
    Mkare, T. K., van Vuuren, B. J. & Teske, P. R. Conservation implications of significant population differentiation in an endangered estuarine seahorse. Biodivers. Conserv. 26, 1275–1293 (2017).
    Article  Google Scholar 

    15.
    Vandewoestijne, S., Schtickzelle, N. & Baguette, M. Positive correlation between genetic diversity and fitness in a large, well-connected metapopulation. BMC Biol. 6, 46 (2008).
    PubMed  PubMed Central  Article  Google Scholar 

    16.
    Frankham, R. Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Mol. Ecol. 24, 2610–2618 (2015).
    PubMed  Article  Google Scholar 

    17.
    Nussear, K. E. et al. Translocation as a conservation tool for Agassiz’s desert tortoises: survivorship, reproduction, and movements. J. Wildl. Manag. 76, 1341–1353 (2012).
    Article  Google Scholar 

    18.
    Wright, D. J. et al. The impact of translocations on neutral and functional genetic diversity within and among populations of the Seychelles warbler. Mol. Ecol. 23, 2165–2177 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Whiteley, A. R., Fitzpatrick, S. W., Funk, W. C. & Tallmon, D. A. Genetic rescue to the rescue. Trends Ecol. Evol. 30, 42–49 (2015).
    PubMed  Article  Google Scholar 

    20.
    Edmands, S. & Timmerman, C. C. Modeling factors affecting the severity of outbreeding depression. Conserv. Biol. 17, 883–892 (2003).
    Article  Google Scholar 

    21.
    Tallmon, D. A., Luikart, G. & Waples, R. S. The alluring simplicity and complex reality of genetic rescue. Trends Ecol. Evol. 19, 489–496 (2004).
    PubMed  Article  Google Scholar 

    22.
    Frankham, R. et al. Predicting the probability of outbreeding depression. Conserv. Biol. 25, 465–475 (2011).
    PubMed  Article  Google Scholar 

    23.
    Miller, K. A. et al. Securing the demographic and genetic future of tuatara through assisted colonization. Conserv. Biol. 26, 790–798 (2012).
    PubMed  Article  Google Scholar 

    24.
    Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140 (2005).
    Article  Google Scholar 

    25.
    Peniche, G. et al. Protecting free-living dormice: molecular identification of cestode parasites in captive dormice (Muscardinus avellanarius) destined for reintroduction. EcoHealth 14, 106–116 (2017).
    PubMed  Article  Google Scholar 

    26.
    Pollom, R. Hippocampus capensis. The IUCN Red List of Threatened Species 2017: .T10056A54903534. http://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T10056A54903534.en (2017).

    27.
    Bell, E. M., Lockyear, J. F., McPherson, J. M., Marsden, A. D. & Vincent, A. C. J. First field studies of an endangered South African seahorse, Hippocampus capensis. Environ. Biol. Fishes 67, 35–46 (2003).
    Article  Google Scholar 

    28.
    Lockyear, J. F., Hecht, T., Kaiser, H. & Teske, P. R. The distribution and abundance of the endangered Knysna seahorse Hippocampus capensis (Pisces: Syngnathidae) in South African estuaries. Afr. J. Aquat. Sci. 31, 275–283 (2006).
    Article  Google Scholar 

    29.
    Teske, P. R., Cherry, M. I. & Matthee, C. A. Population genetics of the endangered Knysna seahorse, Hippocampus capensis. Mol. Ecol. 12, 1703–1715 (2003).
    CAS  PubMed  Article  Google Scholar 

    30.
    López, A., Vera, M., Planas, M. & Bouza, C. Conservation genetics of threatened Hippocampus guttulatus in vulnerable habitats in NW Spain: temporal and spatial stability of wild populations with flexible polygamous mating system in captivity. PLoS ONE 10, e0117538 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    31.
    Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Lande, R. Genetics and demography in biological conservation. Science 241, 1455–1460 (1988).
    ADS  CAS  PubMed  Article  Google Scholar 

    33.
    Wang, J. Estimation of effective population sizes from data on genetic markers. Phil. Trans. R. Soc. B360, 1395–1409 (2005).
    Article  CAS  Google Scholar 

    34.
    Schwartz, M. K., Luikart, G. & Waples, R. S. Genetic monitoring as a promising tool for conservation and management. Trends Ecol. Evol. 22, 25–33 (2007).
    PubMed  Article  Google Scholar 

    35.
    Armstrong, D. P. & Seddon, P. J. Directions in reintroduction biology. Trends Ecol. Evol. 23, 20–25 (2008).
    PubMed  Article  Google Scholar 

    36.
    Cerón-Souza, I. et al. Contrasting demographic history and gene flow patterns of two mangrove species on either side of the Central American Isthmus. Ecol. Evol. 5, 3486–3499 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    37.
    Woodall, L. C., Koldewey, H. J., Boehm, J. T. & Shaw, P. W. Past and present drivers of population structure in a small coastal fish, the European long snouted seahorse Hippocampus guttulatus. Conserv. Genet. 16, 1139–1153 (2015).
    Article  Google Scholar 

    38.
    Teske, P. R. et al. Molecular evidence for long-distance colonization in an Indo-Pacific seahorse lineage. Mar. Ecol. Prog. Ser. 286, 249–260 (2005).
    ADS  CAS  Article  Google Scholar 

    39.
    Heydorn, A. E. F. & Grindley, J. R. Estuaries of the Cape: Part II Synopses of available information on individual systems. Report 30. (Associated Printing and Publishing Co. (Pty) Ltd., 1985).

    40.
    Turpie, J. K. & Clark, B. Development of a conservation plan for temperate South African estuaries on the basis of biodiversity importance, ecosystem health and economic costs and benefits. Report by Anchor Environmental Consultants. C.A.P.E. Regional Estuarine Management Programme. 125 (2007).

    41.
    Penrith, M. J. & Penrith, M. Redescription of Pandaka silvana (Barnard) (Pisces, Gobiidae). Ann. South Afr. Mus. 60, 105–108 (1972).
    Google Scholar 

    42.
    Branch, G. M. The ecology of Patella linnaeus from the cape Peninsula, South Africa I. Zonation, movements and feeding. Zool. Afr. 6, 1–38 (1971).
    Article  Google Scholar 

    43.
    Largier, J. L., Attwood, C. & Harcourt-Baldwin, J. L. The hydrographic character of the Knysna Estuary. Trans. R. Soc. South Afr. 55, 107–122 (2000).
    Article  Google Scholar 

    44.
    Russell, I. A. Mass mortality of marine and estuarine fish in the Swartvlei and Wilderness lake systems, Southern Cape. South. Afr. J. Aquat. Sci. 20, 93–96 (1994).
    Google Scholar 

    45.
    Roberts, M. J., van der Lingen, C. D., Whittle, C. & van den Berg, M. Shelf currents, lee-trapped and transient eddies on the inshore boundary of the Agulhas Current, South Africa: their relevance to the KwaZulu-Natal sardine run. Afr. J. Mar. Sci. 32, 423–447 (2010).
    Article  Google Scholar 

    46.
    Teske, P. R., Bader, S. & Golla, T. R. Passive dispersal against an ocean current. Mar. Ecol. Prog. Ser. 539, 153–163 (2015).
    ADS  CAS  Article  Google Scholar 

    47.
    Claassens, L. An artificial water body provides habitat for an endangered estuarine seahorse species. Estuar. Coast. Shelf Sci. 180, 1–10 (2016).
    ADS  Article  Google Scholar 

    48.
    Wilcove, D. S., Rothstein, D., Dubow, J., Phillips, A. & Losos, E. Quantifying threats to imperiled species in the United States: Assessing the relative importance of habitat destruction, alien species, pollution, overexploitation, and disease. Bioscience 48, 607–615 (1998).
    Article  Google Scholar 

    49.
    Hey, J. Isolation with migration models for more than two populations. Mol. Biol. Evol. 27, 905–920 (2010).
    CAS  PubMed  Article  Google Scholar 

    50.
    Claassens, L., Barnes, R. S. K., Wasserman, J., Lamberth, S. J., Miranda, A. F., van Niekerk, L. & Adams, J. B. Knysna Estuary health: ecological status, threats and options for the future. Afr. J. Aquat. 45 (2020).

    51.
    Nielsen, R. & Wakeley, J. Distinguishing migration from isolation: a Markov chain Monte Carlo approach. Genetics 158, 885–896 (2001).
    CAS  PubMed  PubMed Central  Google Scholar 

    52.
    Whitfield, A. K. Threatened fishes of the world: Hippocampus capensis Boulenger, 1900 (Syngnathidae). Environ. Biol. Fishes 44, 362–362 (1995).
    Article  Google Scholar 

    53.
    Yue, G. H., David, L. & Orban, L. Mutation rate and pattern of microsatellites in common carp (Cyprinus carpio L.). Genetica 129, 329–331 (2007).
    CAS  PubMed  Article  Google Scholar 

    54.
    Waples, R. S. & Do, C. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol. Appl. 3, 244–262 (2010).
    PubMed  Article  Google Scholar 

    55.
    Do, C. et al. NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214 (2014).
    CAS  PubMed  Article  Google Scholar 

    56.
    Heled, J. & Drummond, A. J. Bayesian inference of population size history from multiple loci. BMC Evol. Biol. 8, 289 (2008).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    57.
    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Lischer, H. E. L. & Excoffier, L. PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics 28, 298–299 (2012).
    CAS  PubMed  Article  Google Scholar 

    60.
    Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. Tracer v1.6. (2014). More

  • in

    Marauding plants steer clear of a communist-ruled island

    Cuba has hosted relatively small numbers of tourist groups given its size, which might have helped to keep invasive plants at bay. Credit: Roberto Machado Noa/LightRocket/Getty

    Ecology
    18 February 2021

    Cuba’s relatively closed economy could explain why it has fewer invasive plant species per unit area than other Caribbean islands.

    For more than 60 years, the rocky relationship between the United States and Cuba has helped to steer tourists and businesses away from the Caribbean island. Now, researchers have found that Cuba’s economic and political isolation might also have limited the spread of invasive plants.
    Meghan Brown at Hobart and William Smith Colleges in Geneva, New York, and her colleagues estimated the number of invasive plant species on 45 Caribbean islands. The researchers found that larger islands tend to have more exotic plant species than do smaller ones. But Cuba, the biggest island in the Caribbean, is home to hundreds fewer such species than expected for its size.
    Mass tourism seems to favour the introduction of invasive plants, the team found, probably because hotels plant exotic ornamental species and tourists carry seeds in their bags or on their shoes. Cuba — which has one of the region’s lowest shares of holidaymakers in comparison to its area — has about the same number of invasive species as Puerto Rico, which is one-tenth the size of Cuba but has many more visitors for its land area. More

  • in

    Dogs (Canis familiaris) recognize their own body as a physical obstacle

    1.
    Bahrick, L. E. & Watson, J. S. Detection of intermodal proprioceptive–visual contingency as a potential basis of self-perception in infancy. Dev. Psychol. 21, 963 (1985).
    Article  Google Scholar 
    2.
    Van Den Bos, E. & Jeannerod, M. Sense of body and sense of action both contribute to self-recognition. Cognition 85, 177–187 (2002).
    Article  Google Scholar 

    3.
    Wilson, M. Six views of embodied cognition. Psychon. B. Rev. 9, 625–636 (2002).
    Article  Google Scholar 

    4.
    Smith, L. & Gasser, M. The development of embodied cognition: Six lessons from babies. Artif. life 11, 13–29 (2005).
    Article  Google Scholar 

    5.
    Shettleworth, S. J. Cognition, Evolution, and Behavior. Oxford University Press.

    6.
    Kohda, M. et al. If a fish can pass the mark test, what are the implications for consciousness and self-awareness testing in animals?. PLoS Biol 17, e3000021 (2019).
    CAS  Article  Google Scholar 

    7.
    Gallup, G. G. Chimpanzees: Self-recognition. Science 167, 86–87 (1970).
    ADS  Article  Google Scholar 

    8.
    Epstein, R., Lanza, R. P. & Skinner, B. F. “Self-awareness” in the pigeon. Science 212, 695–696 (1981).
    ADS  CAS  Article  Google Scholar 

    9.
    Heyes, C. M. Self-recognition in primates: Further reflections create a hall of mirrors. Anim. Behav. 50, 1533–1542 (1995).
    Article  Google Scholar 

    10.
    Suddendorf, T. & Butler, D. L. Response to Gallup et al.: Are rich interpretations of visual self-recognition a bit too rich?. Trends. Cogn. Sci. 18, 58–59 (2014).
    Article  Google Scholar 

    11.
    Reiss, D. & Marino, L. Mirror self-recognition in the bottlenose dolphin: A case of cognitive convergence. Proc. Natl. Acad. Sci. USA 98, 5937–5942 (2001).
    ADS  CAS  Article  Google Scholar 

    12.
    Plotnik, J. M., De Waal, F. B. & Reiss, D. Self-recognition in an Asian elephant. Proc. Natl. Acad. Sci. USA 103, 17053–17057 (2006).
    ADS  CAS  Article  Google Scholar 

    13.
    Prior, H., Schwarz, A. & Güntürkün, O. Mirror-induced behavior in the magpie (Pica pica): Evidence of self-recognition. PLoS Biol 6, e202 (2008).
    Article  Google Scholar 

    14.
    Bekoff, M. & Sherman, P. W. Reflections on animal selves. Trends Ecol. Evol. 19, 176–180 (2004).
    Article  Google Scholar 

    15.
    Lenkei, R., Faragó, T., Kovács, D., Zsilák, B. & Pongrácz, P. That dog won’t fit: Body size awareness in dogs. Anim. Cogn 23, 337–350 (2019).
    Article  Google Scholar 

    16.
    Zazzo, R. Des enfants, des singes et des chiens devant le miroir. Rev. Psychol. Appl. 29, 235–246 (1979).
    Google Scholar 

    17.
    Cuthill, I. & Guilford, T. Perceived risk and obstacle avoidance in flying birds. Anim. Behav. 40, 188–190 (1990).
    Article  Google Scholar 

    18.
    Khvatov, I. A., Sokolov, A. Y. & Kharitonov, A. N. Snakes Elaphe radiata may acquire awareness of their body limits when trying to hide in a shelter. Behav. Sci. 9, 67 (2019).
    Article  Google Scholar 

    19.
    Maeda, T. & Fujita, K. Do dogs (Canis familiaris) recognize their own body size? In Proceedings of the 2nd Canine Science Forum, Vienna, Austria, 52 (2010).

    20.
    Dale, R. & Plotnik, J. M. Elephants know when their bodies are obstacles to success in a novel transfer task. Sci. Rep. 7, 46309 (2017).
    ADS  CAS  Article  Google Scholar 

    21.
    Brownell, C. A., Zerwas, S. & Ramani, G. B. “So big”: The development of body self-awareness in toddlers. Child Dev. 78, 1426–1440 (2007).
    Article  Google Scholar 

    22.
    Povinelli, D. J. & Cant, J. G. Arboreal clambering and the evolution of self-conception. Q. Rev. Biol. 70, 393–421 (1995).
    CAS  Article  Google Scholar 

    23.
    Povinelli, D. J. Failure to find self-recognition in Asian elephants (Elephas maximus) in contrast to their use of mirror cues to discover hidden food. J. Comp. Psychol. 103, 122 (1989).
    Article  Google Scholar 

    24.
    Topál, J. et al. The dog as a model for understanding human social behaviour. Adv. Stud. Behav. 39, 71–116 (2009).
    Article  Google Scholar 

    25.
    Sanford, E. M., Burt, E. R. & Meyers-Manor, J. E. Timmy’s in the well: Empathy and prosocial helping in dogs. Learn. Behav. 46, 374–386 (2018).
    Article  Google Scholar 

    26.
    Pongrácz, P., Bánhegyi, P. & Miklósi, Á. When rank counts—dominant dogs learn better from a human demonstrator in a two-action test. Behaviour 149, 111–132 (2012).
    Article  Google Scholar 

    27.
    Huber, L., Popovová, N., Riener, S., Salobir, K. & Cimarelli, G. Would dogs copy irrelevant actions from their human caregiver?. Learn. Behav. 46, 387–397 (2018).
    Article  Google Scholar 

    28.
    Virányi, Z. S., Topál, J., Miklósi, Á. & Csányi, V. A nonverbal test of knowledge attribution: A comparative study on dogs and children. Anim. Cogn. 9, 13–26 (2006).
    Article  Google Scholar 

    29.
    Polgárdi, R., Topál, J. & Csányi, V. Intentional behaviour in dog-human communication: An experimental analysis of “showing” behaviour in the dog. Anim. Cogn. 3, 159–166 (2000).
    Article  Google Scholar 

    30.
    Pongrácz, P., Hegedüs, D., Sanjurjo, B., Kővári, A. & Miklósi, Á. “We will work for you”—Social influence may suppress individual food preferences in a communicative situation in dogs. Learn. Motiv. 44, 270–281 (2013).
    Article  Google Scholar 

    31.
    Fugazza, C., Pogány, Á. & Miklósi, Á. Recall of others’ actions after incidental encoding reveals episodic-like memory in dogs. Curr. Biol. 26, 3209–3213 (2016).
    CAS  Article  Google Scholar 

    32.
    Horowitz, A. Smelling themselves: Dogs investigate their own odours longer when modified in an “olfactory mirror” test. Behav. Proc. 143, 17–24 (2017).
    Article  Google Scholar 

    33.
    Moore, C., Mealiea, J., Garon, N. & Povinelli, D. J. The development of body self-awareness. Infancy 11, 157–174 (2007).
    Article  Google Scholar 

    34.
    Howell, T. J. & Bennett, P. C. Can dogs (Canis familiaris) use a mirror to solve a problem?. J. Vet. Behav. 6, 306–312 (2011).
    Article  Google Scholar 

    35.
    Bekoff, M. Awareness: Animal reflections. Nature 419, 255 (2002).
    ADS  CAS  Article  Google Scholar 

    36.
    Kaplan, J. T., Aziz-Zadeh, L., Uddin, L. Q. & Iacoboni, M. The self across the senses: An fMRI study of self-face and self-voice recognition. Soc. Cogn. Affect. Neur. 3, 218–223 (2008).
    Article  Google Scholar  More

  • in

    Large-scale farmer-led experiment demonstrates positive impact of cover crops on multiple soil health indicators

    1.
    Seifert, C. A., Azzari, G. & Lobell, D. B. Satellite detection of cover crops and their effects on crop yield in the Midwestern United States. Environ. Res. Lett. 13, 064033 (2018).
    ADS  Article  Google Scholar 
    2.
    2017 Census of Agriculture, Summary and State Data (USDA, 2019); https://www.nass.usda.gov/Publications/AgCensus/2017/Full_Report/Volume_1,_Chapter_1_US/usv1.pdf

    3.
    Basche, A. D. et al. Soil water improvements with the long-term use of a winter rye cover crop. Agric. Water Manag. 172, 40–50 (2016).
    Article  Google Scholar 

    4.
    Schipanski, M. E. et al. A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agric. Syst. 125, 12–22 (2014).
    Article  Google Scholar 

    5.
    Blanco-Canqui, H. et al. Cover crops and ecosystem services: insights from studies in temperate soils. Agron. J. 107, 2449–2474 (2015).
    CAS  Article  Google Scholar 

    6.
    Andrews, S. S. et al. On‐farm assessment of soil quality in California’s central valley. Agron. J. 94, 12–23 (2002).
    Article  Google Scholar 

    7.
    Welch, R. Y., Behnke, G. D., Davis, A. S., Masiunas, J. & Villamil, M. B. Using cover crops in headlands of organic grain farms: effects on soil properties, weeds and crop yields. Agric. Ecosyst. Environ. 216, 322–332 (2016).
    Article  Google Scholar 

    8.
    Wyland, L. Winter cover crops in a vegetable cropping system: impacts on nitrate leaching, soil water, crop yield, pests and management costs. Agric. Ecosyst. Environ. 59, 1–17 (1996).
    Article  Google Scholar 

    9.
    Karlen, D. L. & Doran, J. W. Cover crop management effects on soybean and corn growth and nitrogen dynamics in an on-farm study. Am. J. Altern. Agric. 6, 71–82 (1991).
    Article  Google Scholar 

    10.
    Koch, R. L. et al. On-farm evaluation of a fall-seeded rye cover crop for suppression of soybean aphid (Hemiptera: Aphididae) on soybean: suppression of soybean aphid with rye cover crop. Agric. For. Entomol. 17, 239–246 (2015).
    Article  Google Scholar 

    11.
    Sayre, N. F., deBuys, W., Bestelmeyer, B. T. & Havstad, K. M. “The Range Problem” after a century of rangeland science: new research themes for altered landscapes. Rangeland Ecol. Manag. 65, 545–552 (2012).
    Article  Google Scholar 

    12.
    Kladivko, E. J. et al. State-wide soil health programs for education and on-farm assessment: lessons learned. J. Soil Water Conserv. 74, 12A–17A (2019).
    Article  Google Scholar 

    13.
    Poeplau, C. & Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops – a meta-analysis. Agric. Ecosyst. Environ. 200, 33–41 (2015).
    CAS  Article  Google Scholar 

    14.
    Vermeulen, S. et al. A global agenda for collective action on soil carbon. Nat. Sustain. 2, 2–4 (2019).
    Article  Google Scholar 

    15.
    Lehmann, J., Bossio, D. A., Kögel-Knabner, I. & Rillig, M. C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 1, 544–553 (2020).
    ADS  PubMed  Article  Google Scholar 

    16.
    Stewart, R. D. et al. What we talk about when we talk about soil health. Agric. Environ. Lett. 3, 180033 (2018).
    Article  CAS  Google Scholar 

    17.
    Norris, C. E. et al. Introducing the North American project to evaluate soil health measurements. Agron. J. 112, 3195–3215 (2020).
    Article  Google Scholar 

    18.
    Sanderman, J., Savage, K. & Dangal, S. R. S. Mid‐infrared spectroscopy for prediction of soil health indicators in the United States. Soil Sci. Soc. Am. J. 84, 251–261 (2020).
    ADS  CAS  Article  Google Scholar 

    19.
    Rorick, J. D. & Kladivko, E. J. Cereal rye cover crop effects on soil carbon and physical properties in Southeastern Indiana. J. Soil Water Conserv. 72, 260–265 (2017).
    Article  Google Scholar 

    20.
    Faé, G. S. et al. Integrating winter annual forages into a no-till corn silage system. Agron. J. 101, 1286–1296 (2009).
    Article  Google Scholar 

    21.
    Wegner, B. R. et al. Soil response to corn residue removal and cover crops in eastern South Dakota. Soil Sci. Soc. Am. J. 79, 1179–1187 (2015).
    ADS  CAS  Article  Google Scholar 

    22.
    Karlen, D. L., Goeser, N. J., Veum, K. S. & Yost, M. A. On-farm soil health evaluations: challenges and opportunities. J. Soil Water Conserv. 72, 26A–31A (2017).
    Article  Google Scholar 

    23.
    Wade, J. et al. Improved soil biological health increases corn grain yield in N fertilized systems across the Corn Belt. Sci. Rep. 10, 3917 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Bossio, D. A. et al. The role of soil carbon in natural climate solutions. Nat. Sustain. 3, 391–398 (2020).
    Article  Google Scholar 

    25.
    Stanton, C. Y. et al. Managing cropland and rangeland for climate mitigation: an expert elicitation on soil carbon in California. Clim. Change 147, 633–646 (2018).
    ADS  CAS  Article  Google Scholar 

    26.
    Lugato, E., Leip, A. & Jones, A. Mitigation potential of soil carbon management overestimated by neglecting N2O emissions. Nat. Clim. Change 8, 219–223 (2018).
    ADS  CAS  Article  Google Scholar 

    27.
    Kaye, J. P. & Quemada, M. Using cover crops to mitigate and adapt to climate change. A review. Agron. Sustain. Dev. 37, 4 (2017).
    Article  Google Scholar 

    28.
    Basche, A. D. & DeLonge, M. S. Comparing infiltration rates in soils managed with conventional and alternative farming methods: a meta-analysis. PLoS ONE 14, e0215702 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Basche, A. & DeLonge, M. The impact of continuous living cover on soil hydrologic properties: a meta-analysis. Soil Sci. Soc. Am. J. 81, 1179–1190 (2017).
    ADS  CAS  Article  Google Scholar 

    30.
    Roper, W. R., Osmond, D. L. & Heitman, J. L. A response to “Reanalysis validates soil health indicator sensitivity and correlation with long‐term crop yields”. Soil Sci. Soc. Am. J. 83, 1842–1845 (2019).
    ADS  CAS  Article  Google Scholar 

    31.
    King, A. E., Ali, G. A., Gillespie, A. W. & Wagner-Riddle, C. Soil organic matter as catalyst of crop resource capture. Front. Environ. Sci. 8, 50 (2020).
    Article  Google Scholar 

    32.
    Oldfield, E. E., Bradford, M. A. & Wood, S. A. Global meta-analysis of the relationship between soil organic matter and crop yields. SOIL 5, 15–32 (2019).
    CAS  Article  Google Scholar 

    33.
    Oldfield, E. E., Wood, S. A. & Bradford, M. A. Direct evidence using a controlled greenhouse study for threshold effects of soil organic matter on crop growth. Ecol. Appl. 30, e02073 (2020).
    PubMed  Article  Google Scholar 

    34.
    Wood, S. A. et al. Opposing effects of different soil organic matter fractions on crop yields. Ecol. Appl. 26, 2072–2085 (2016).
    PubMed  Article  Google Scholar 

    35.
    Fine, A. K., van Es, H. M. & Schindelbeck, R. R. Statistics, scoring functions, and regional analysis of a comprehensive soil health database. Soil Sci. Soc. Am. J. 81, 589 (2017).
    ADS  CAS  Article  Google Scholar 

    36.
    Fine, A. K., Ristow, A., Schindelbeck, R. R. & van Es, H. M. Update of scoring functions for Cornell Soil Health Test. What’s Cropping Up? Blog https://blogs.cornell.edu/whatscroppingup/2016/11/30/update-of-scoring-functions-for-cornell-soil-health-test/ (2016).

    37.
    Bradford, M. A. et al. Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition. Proc. Natl Acad. Sci. USA 111, 14478–14483 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Bradford, M. A. et al. Reply to Byrnes et al.: Aggregation can obscure understanding of ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, E5491 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Kettler, T. A., Doran, J. W. & Gilbert, T. L. Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Sci. Soc. Am. J. 65, 849–852 (2001).
    ADS  CAS  Article  Google Scholar 

    40.
    Moebius, B. N. et al. Evaluation of laboratory-measured soil properties as indicators of soil physical quality. Soil Sci. 172, 895–912 (2007).
    ADS  CAS  Article  Google Scholar 

    41.
    Reynolds, W. & Topp, G. in Soil Sampling and Methods of Analysis (eds Carter, M. R. & Gregorich, E. G.) 981–997 (CRC Press, 2008).

    42.
    Nelson, D. & Sommers, D. in Methods of Soil Analysis. Part 3 (Sparks, D. L., Page, A. L., Helmke, P. A. & Loeppert, R. H.) 961–1010 (Soil Science Society of America, 1996).

    43.
    Weil, R. R., Islam, K. R., Stine, M. A., Gruver, J. B. & Samson-Liebig, S. E. Estimating active carbon for soil quality assessment: a simplified method for laboratory and field use. Am. J. Altern. Agric. 18, 3–17 (2003).
    Article  Google Scholar 

    44.
    Haney, R. L. & Haney, E. B. Simple and rapid laboratory method for rewetting dry soil for incubations. Commun. Soil Sci. Plant Anal. 41, 1493–1501 (2010).
    CAS  Article  Google Scholar 

    45.
    Wright, S. F. & Upadhyaya, A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci. 161, 575–586 (1996).
    ADS  CAS  Article  Google Scholar 

    46.
    Bunnefeld, N. & Phillimore, A. B. Island, archipelago and taxon effects: mixed models as a means of dealing with the imperfect design of nature’s experiments. Ecography 35, 15–22 (2012).
    Article  Google Scholar 

    47.
    Gelman, A. Scaling regression inputs by dividing by two standard deviations. Stat. Med. 27, 2865–2873 (2008).
    MathSciNet  PubMed  Article  Google Scholar 

    48.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    49.
    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

    50.
    Stan Development Team. RStan: the R interface to Stan. R package v2.17.3 (2018).

    51.
    Rasmussen, C. et al. Beyond clay: towards an improved set of variables for predicting soil organic matter content. Biogeochemistry 137, 297–306 (2018).
    CAS  Article  Google Scholar 

    52.
    Gelman, A. et al. Bayesian Data Analysis 3rd edn (Chapman and Hall, CRC, 2013).

    53.
    Howard, P. J. A. & Howard, D. M. Use of organic carbon and loss-on-ignition to estimate soil organic matter in different soil types and horizons. Biol. Fertil. Soils 9, 306–310 (1990).
    CAS  Article  Google Scholar  More