Distinct late Pleistocene subtropical-tropical divergence revealed by fifteen low-copy nuclear genes in a dominant species in South-East China
1.
Qian, H. & Ricklefs, R. E. Large-scale processes and the Asian bias in species diversity of temperate plants. Nature 407, 180–182 (2000).
ADS CAS PubMed Article Google Scholar
2.
Wu, Z. Y., Sun, H., Zhou, Z. K., Li, D. Z. & Peng, H. Floristics of Seed Plants From China (Science Press, Beijing, 2010).
Google Scholar
3.
Ying, T. S. & Chen, M. L. Plant Geography of China (Shanghai Scientific and Technical Publishers, Shanghai, 2011).
Google Scholar
4.
Ye, J. W., Zhang, Y. & Wang, X. J. Phylogeographic breaks and their forming mechanisms in Sino-Japanese Floristic Region. Chin. J. Plant Ecol. 41, 1003–1019 (2017).
Article Google Scholar
5.
Guo, X. D. et al. Evolutionary history of a widespread tree species Acer mono in East Asia. Ecol. Evol. 4, 4332–4345 (2014).
PubMed PubMed Central Article Google Scholar
6.
Liu, C. P. et al. Genetic structure and hierarchical population divergence history of Acer mono var. mono in south and northeast china. PLoS ONE 9, e87187 (2014).
ADS PubMed PubMed Central Article CAS Google Scholar
7.
Bai, W. N., Wang, W. T. & Zhang, D. Y. Phylogeographic breaks within Asian butternuts indicate the existence of a phytogeographic divide in East Asia. New Phytol. 209, 1757–1772 (2016).
CAS PubMed Article Google Scholar
8.
Ye, J. W., Bai, W. N., Bao, L., Wang, H. F. & Ge, J. P. Sharp genetic discontinuity in the arid-sensitive species Lindera obtusiloba (Lauraceae): Solid evidence supporting the Tertiary floral subdivision in East Asia. J. Biogeogr. 44, 2082–2095 (2017).
Article Google Scholar
9.
Cao, Y. N., Comes, H. P., Sakaguchi, S., Chen, L. Y. & Qiu, Y. X. Evolution of East Asia’s Arcto-Tertiary relict Euptelea (Eupteleaceae) shaped by Late Neogene vicariance and Quaternary climate change. BMC Evol. Biol. 16, 1–17 (2016).
Article CAS Google Scholar
10.
Qi, X. S., Yuan, N., Comes, H. P., Sakaguchi, S. & Qiu, Y. X. A strong “filter” effect of the East China Sea land bridge for East Asia’s temperate plant species: Inferences from molecular phylogeography and ecological niche modelling of Platycrater arguta (Hydrangeaceae). BMC Evol. Biol. 14, 14–41 (2014).
Article Google Scholar
11.
Ye, J. W., Zhang, Y. & Wang, X. J. Phylogeographic history of broad-leaved forest plants in subtropical China. Acta Ecol. Sin. 37, 5894–5904 (2017).
Google Scholar
12.
Wang, Y. H. et al. Molecular phylogeography and ecological niche modelling of a widespread herbaceous climber, Tetrastigma hemsleyanum (Vitaceae): Insights into Plio-Pleistocene range dynamics of evergreen forest in subtropical China. New Phytolt. 206, 852–867 (2015).
Article Google Scholar
13.
Fan, D. M. et al. Idiosyncratic responses of evergreen broad-leaved forest constituents in China to the late Quaternary climate changes. Sci. Rep.-U.K. 6, 31044 (2016).
ADS CAS Article Google Scholar
14.
Mu, H. P. et al. Genetic variation of Ardisia crenata in south China revealed by nuclear microsatellite. J. Syst. Evol. 48, 279–285 (2010).
Article Google Scholar
15.
Shi, M. M., Michalski, S. G., Welk, E., Chen, X. Y. & Durka, W. Phylogeography of a widespread Asian subtropical tree: Genetic east-west differentiation and climate envelope modelling suggest multiple glacial refugia. J. Biogeogr. 41, 1710–1720 (2014).
Article Google Scholar
16.
Zheng, J. Y., Yin, Y. H. & Li, B. Y. A new scheme for climate regionalization in China. Acta Geogr. Sin. 65, 3–12 (2010).
ADS Google Scholar
17.
Bai, W. N. & Zhang, D. Y. Current status and future direction in plant phylogeography. Chin. Bull. Life Sci. 26, 125–137 (2014).
Google Scholar
18.
Wang, X. H., Kent, M. & Fang, X. F. Evergreen broad-leaved forest in Eastern China: Its ecology and conservation and the importance of resprouting in forest restoration. For. Ecol. Manag. 245, 76–87 (2007).
Article Google Scholar
19.
Hirayama, D., Itoh, A. & Yamakura, T. Implications from seed traps for reproductive success, allocation and cost in a tall tree species Lindera erythrocarpa. Plant Spec. Biol. 19, 185–196 (2004).
Article Google Scholar
20.
Ye, J. W., Li, D. Z. & Hampe, A. Differential Quaternary dynamics of evergreen broadleaved forests in subtropical China revealed by phylogeography of Lindera aggregata (Lauraceae). J. Biogeogr. 46, 1112–1123 (2019).
Article Google Scholar
21.
Wright, S. Isolation by distance. Genetics 28, 114 (1943).
CAS PubMed PubMed Central Google Scholar
22.
Wang, I. J. & Bradburd, G. S. Isolation by environment. Mol. Ecol. 23, 5649–5662 (2014).
PubMed Article Google Scholar
23.
McRae, B. H. & Beier, P. Circuit theory predicts gene flow in plant and animal populations. Proc. Natl. Acad. Sci. U. S. A. 104, 19885–19890 (2007).
ADS CAS PubMed PubMed Central Article Google Scholar
24.
Drouin, G., Daoud, H. & Xia, J. Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants. Mol. Phylogenet. Evol. 49, 827–831 (2008).
CAS PubMed Article Google Scholar
25.
Meirmans, P. G. The trouble with isolation by distance. Mol. Ecol. 21, 2839–2846 (2012).
PubMed Article Google Scholar
26.
Meirmans, P. G. Seven common mistakes in population genetics and how to avoid them. Mol. Ecol. 24, 3223–3231 (2015).
PubMed Article Google Scholar
27.
Gong, W. et al. From glacial refugia to wide distribution range: Demographic expansion of Loropetalum chinense (Hamamelidaceae) in Chinese subtropical evergreen broadleaved forest. Org. Divers. Evol. 16, 23–38 (2016).
Article Google Scholar
28.
Li, X. H., Shao, J. W., Lu, C., Zhang, X. P. & Qiu, Y. X. Chloroplast phylogeography of a temperate tree Pteroceltis tatarinowii (Ulmaceae) in China. J. Syst. Evol. 50, 325–333 (2012).
Article Google Scholar
29.
Tian, S. et al. Phylogeography of Eomecon chionantha in subtropical China: The dual roles of the Nanling Mountains as a glacial refugium and a dispersal corridor. BMC Evol. Biol. 18, 20 (2018).
PubMed PubMed Central Article Google Scholar
30.
Waters, J. M., Fraser, C. I. & Hewitt, G. M. Founder takes all: Density-dependent processes structure biodiversity. Trends Ecol. Evol. 28, 78–85 (2013).
PubMed Article Google Scholar
31.
Smith, C. G. III., Hamel, P. B., Devall, M. S. & Schiff, N. M. Hermit thrush is the first observed dispersal agent for pondberry (Lindera melissifolia). Castanea 69, 1–8 (2004).
Article Google Scholar
32.
Excoffier, L., Foll, M. & Petit, R. J. Genetic consequences of range expansions. Annu. Rev. Ecol. Evol. S 40, 481–501 (2009).
Article Google Scholar
33.
Ge, X. J. et al. Inferring multiple refugia and phylogeographical patterns in Pinus massoniana based on nucleotide sequence variation and DNA fingerprinting. PLoS ONE 7, e43717 (2012).
ADS CAS PubMed PubMed Central Article Google Scholar
34.
Chen, Y. et al. Genetic diversity and variation of Chinese fir from Fujian province and Taiwan, China, based on ISSR markers. PLoS ONE 12, e0175571 (2017).
PubMed PubMed Central Article CAS Google Scholar
35.
Jiang, X. L., Gardner, E. M., Meng, H. H., Deng, M. & Xu, G. B. Land bridges in the Pleistocene contributed to flora assembly on the continental islands of South China: Insights from the evolutionary history of Quercus championii. Mol. Phylogenet. Evol. 132, 36–45 (2019).
PubMed Article Google Scholar
36.
Hewitt, G. M. Genetic consequences of climatic oscillations in the Quaternary. Philos. Trans. R. Soc. B 359, 183–195 (2004).
CAS Article Google Scholar
37.
Miller, K. G., Mountain, G. S., Wright, J. D. & Browning, J. V. A 180-million-year record of sea level and ice volume variations from continental margin and deep-sea isotopic records. Oceanography 24, 40–53 (2011).
Article Google Scholar
38.
Voris, H. K. Maps of Pleistocene sea levels in Southeast Asia: Shorelines, river systems and time durations. J. Biogeogr. 27, 1153–1167 (2000).
Article Google Scholar
39.
Yao, Y. T., Harff, J., Meyer, M. & Zhan, W. H. Reconstruction of paleocoastlines for the northwestern South China Sea since the Last Glacial Maximum. Sci. China Ser. D Earth Sci. 52, 1127–1136 (2009).
ADS CAS Article Google Scholar
40.
He, J. K., Gao, Z. F., Su, Y. Y., Lin, S. L. & Jiang, H. S. Geographical and temporal origins of terrestrial vertebrates endemic to Taiwan. J. Biogeogr. 45, 2458–2470 (2018).
Article Google Scholar
41.
Li, H. W. Parallel evolution in Litsea and Lindera of lauraceae. Acta Bot. Yunnanica 7, 129–135 (1985).
Google Scholar
42.
Tian, X. Y., Ye, J. W. & Song, Y. Plastome sequences help to improve the systematic position of trinerved Lindera species in the family Lauraceae. Peerj 7, e7662 (2019).
PubMed PubMed Central Article Google Scholar
43.
Rozas, J., Sánchez-DelBarrio, J. C., Messeguer, X. & Rozas, R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 2496–2497 (2003).
CAS PubMed Article Google Scholar
44.
Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Mol. Ecol. Notes 7, 574–578 (2007).
CAS PubMed PubMed Central Article Google Scholar
45.
Dellicour, S. & Mardulyn, P. spads 1.0: A toolbox to perform spatial analyses on DNA sequence data sets. Mol. Ecol. Resour. 14, 647–651 (2014).
PubMed Article Google Scholar
46.
Heled, J. & Drummond, A. J. Bayesian inference of species trees from multilocus data. Mol. Biol. Evol. 27, 570–580 (2010).
CAS PubMed Article Google Scholar
47.
Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).
PubMed PubMed Central Article CAS Google Scholar
48.
Cornuet, J. M. et al. DIYABC v2.0: A software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA Sequence and microsatellite data. Bioinformatics 30, 1187–1189 (2014).
CAS PubMed Article Google Scholar
49.
Yu, Y., Harris, A. J., Blair, C. & He, X. RASP (Reconstruct Ancestral State in Phylogenies): A tool for historical biogeography. Mol. Phylogenet. Evol. 87, 46–49 (2015).
PubMed Article Google Scholar
50.
R Core Team R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.Rproject.org/. Accessed 24 May 2014. (2013).
51.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
Article Google Scholar
52.
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model 190, 231–259 (2006).
Article Google Scholar
53.
Wang, Y. H., Yang, K. C., Bridgman, C. L. & Lin, L. K. Habitat suitability modelling to correlate gene flow with landscape connectivity. Landsc. Ecol. 23, 989–1000 (2008).
Google Scholar
54.
Wang, I. J. Examining the full effects of landscape heterogeneity on spatial genetic variation: A multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution 67, 3403–3411 (2013).
PubMed Article Google Scholar More