More stories

  • in

    TRPM8 thermosensation in poikilotherms mediates both skin colour and locomotor performance responses to cold temperature

    Lovegrove, B. G. A phenology of the evolution of endothermy in birds and mammals. Biol. Rev. 92, 1213–1240 (2017).
    Google Scholar 
    Cuthill, I. C. et al. The biology of color. Science 357, 1–7 (2017).
    Google Scholar 
    Stuart-Fox, D., Newton, E. & Clusella-Trullas, S. Thermal consequences of colour and near-infrared reflectance. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160345 (2017).
    Google Scholar 
    Smith, K. R. et al. Color change for thermoregulation versus camouflage in free-ranging lizards. Am. Nat. 188, 668–678 (2016).
    Google Scholar 
    Rudh, A. & Qvarnström, A. Adaptive colouration in amphibians. Semin. Cell Dev. Biol. 24, 553–561 (2013).
    Google Scholar 
    Geen, M. R. S. & Johnston, G. R. Coloration affects heating and cooling in three color morphs of the Australian bluetongue lizard, Tiliqua scincoides. J. Therm. Biol. 43, 54–60 (2014).
    Google Scholar 
    Tattersall, G. J., Eterovick, P. C. & de Andrade, D. V. Tribute to R. G. Boutilier: skin colour and body temperature changes in basking Bokermannohyla alvarengai (Bokermann 1956). J. Exp. Biol. 209, 1185–1196 (2006).
    Google Scholar 
    Tattersall, G. J., Hillman, S. S., Drewes, R. C. & Sokol, O. M. The thermogenesis of digestion in rattlesnakes. J. Exp. Biol. 207, 579–585 (2004).
    Google Scholar 
    Seebacher, F. & Murray, S. A. Transient receptor potential ion channels control thermoregulatory behaviour in reptiles. PLoS One 2, e281, 1–7 (2007).Forget-Klein, É. & Green, D. M. Toads use the subsurface thermal gradient for temperature regulation underground. J. Therm. Biol. 99, 1–9 (2021).
    Google Scholar 
    Kiefer, M. C., Van Sluys, M. & Rocha, C. F. D. Thermoregulatory behaviour in Tropidurus torquatus (Squamata, Tropiduridae) from Brazilian coastal populations: an estimate of passive and active thermoregulation in lizards. Acta Zool. 88, 81–87 (2007).
    Google Scholar 
    Spencer, K. et al. Growth at cold temperature increases the number of motor neurons to optimize locomotor function. Curr. Biol. 29, 1787–1799.e5 (2019).CAS 

    Google Scholar 
    Herrel, A. & Bonneaud, C. Temperature dependence of locomotor performance in the tropical clawed frog, Xenopus tropicalis. J. Exp. Biol. 215, 2465–2470 (2012).
    Google Scholar 
    Casterlin, M. E. & Reynolds, W. W. Diel activity and thermoregulatory behavior of a fully aquatic frog: Xenopus laevis. Hydrobiologia 75, 189–191 (1980).
    Google Scholar 
    Guo, K. et al. The thermal dependence and molecular basis of physiological color change in Takydromus septentrionalis (Lacertidae). Biol. Open 10, 1–9 (2021).
    Google Scholar 
    De Velasco, J. B. & Tattersall, G. J. The influence of hypoxia on the thermal sensitivity of skin colouration in the bearded dragon, Pogona vitticeps. J. Comp. Physiol. B. 178, 867–875 (2008).CAS 

    Google Scholar 
    Stuart-Fox, D. & Moussalli, A. Camouflage, communication and thermoregulation: lessons from colour changing organisms. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 364, 463–470 (2009).
    Google Scholar 
    Sanabria, E. A., Vaira, M., Quiroga, L. B., Akmentins, M. S. & Pereyra, L. C. Variation of thermal parameters in two different color morphs of a diurnal poison toad, Melanophryniscus rubriventris (Anura: Bufonidae). J. Therm. Biol. 41, 1–5 (2014).
    Google Scholar 
    Clusella-Trullas, S., van Wyk, J. H. & Spotila, J. R. Thermal benefits of melanism in cordylid lizards: a theoretical and field test. Ecology 90, 2297–2312 (2009).
    Google Scholar 
    Duarte, R. C., Flores, A. A. V. & Stevens, M. Camouflage through colour change: mechanisms, adaptive value and ecological significance. Philos. Trans. R. Soc. B: Biol. Sci. 372, 1–7 (2017).Bertolesi, G. E. & McFarlane, S. Seeing the light to change colour: an evolutionary perspective on the role of melanopsin in neuroendocrine circuits regulating light-mediated skin pigmentation. Pigment Cell Melanoma Res. 31, 354–373 (2018).CAS 

    Google Scholar 
    Bertolesi, G. E. et al. The regulation of skin pigmentation in response to environmental light by pineal type II opsins and skin melanophore melatonin receptors. J. Photochem. Photobiol. B Biol. 212, 112024 (2020).CAS 

    Google Scholar 
    Bagnara, J. T. Pineal regulation of the body lightening reaction in amphibian larvae. Sci. (80-.). 132, 1481–1483 (1960).CAS 

    Google Scholar 
    Bertolesi, G. E., Song, Y. N., Atkinson-Leadbeater, K., Yang, J.-L. J. & McFarlane, S. Interaction and developmental activation of two neuroendocrine systems that regulate light-mediated skin pigmentation. Pigment Cell Melanoma Res. 30, 413–423 (2017).CAS 

    Google Scholar 
    Wang, H. & Siemens, J. TRP ion channels in thermosensation, thermoregulation and metabolism. Temp. (Austin, Tex.) 2, 178–187 (2015).
    Google Scholar 
    Hoffstaetter, L. J., Bagriantsev, S. N. & Gracheva, E. O. TRPs et al.: a molecular toolkit for thermosensory adaptations. Pflug. Arch. Eur. J. Physiol. 470, 745–759 (2018).CAS 

    Google Scholar 
    Kashio, M. Thermosensation involving thermo-TRPs. Mol. Cell. Endocrinol. 520, 1–8 (2021).
    Google Scholar 
    Señarís, R., Ordás, P., Reimúndez, A. & Viana, F. Mammalian cold TRP channels: impact on thermoregulation and energy homeostasis. Pflug. Arch. 470, 761–777 (2018).
    Google Scholar 
    Guo, H., Carlson, J. A. & Slominski, A. Role of TRPM in melanocytes and melanoma. Exp. Dermatol. 21, 650–654 (2012).CAS 

    Google Scholar 
    Kadowaki, T. Evolutionary dynamics of metazoan TRP channels. Pflug. Arch. 467, 2043–2053 (2015).CAS 

    Google Scholar 
    Saito, S. & Tominaga, M. Evolutionary tuning of TRPA1 and TRPV1 thermal and chemical sensitivity in vertebrates. Temp. (Austin, Tex.) 4, 141–152 (2017).
    Google Scholar 
    Saito, S. et al. Analysis of transient receptor potential ankyrin 1 (TRPA1) in frogs and lizards illuminates both nociceptive heat and chemical sensitivities and coexpression with TRP vanilloid 1 (TRPV1) in ancestral vertebrates. J. Biol. Chem. 287, 30743–30754 (2012).CAS 

    Google Scholar 
    Saito, S. et al. Evolution of heat sensors drove shifts in thermosensation between xenopus species adapted to different thermal niches. J. Biol. Chem. 291, 11446–11459 (2016).CAS 

    Google Scholar 
    Gracheva, E. O. et al. Molecular basis of infrared detection by snakes. Nature 464, 1006–1011 (2010).CAS 

    Google Scholar 
    Laursen, W. J., Anderson, E. O., Hoffstaetter, L. J., Bagriantsev, S. N. & Gracheva, E. O. Species-specific temperature sensitivity of TRPA1. Temp. (Austin, Tex.) 2, 214–226 (2015).
    Google Scholar 
    Bertolesi, G. E., Hehr, C. L. & McFarlane, S. Melanopsin photoreception in the eye regulates light-induced skin colour changes through the production of α-MSH in the pituitary gland. Pigment Cell Melanoma Res. 28, 559–571 (2015).CAS 

    Google Scholar 
    Bagnara, J. T. The pineal and the body lightening reaction of larval amphibians. Gen. Comp. Endocrinol. 3, 86–100 (1963).CAS 

    Google Scholar 
    Nisembaum, L. et al. In the heat of the night: thermo-TRPV channels in the salmonid pineal photoreceptors and modulation of melatonin secretion. Endocrinology 156, 4629–4638 (2015).CAS 

    Google Scholar 
    Schartl, M. et al. What is a vertebrate pigment cell? Pigment Cell Melanoma Res. 29, 8–14 (2016).
    Google Scholar 
    Slominski, A. Cooling skin cancer: menthol inhibits melanoma growth. Focus on ‘TRPM8 activation suppresses cellular viability in human melanoma’. Am. J. Physiol. – Cell Physiol. 295, C293–C295 (2008).CAS 

    Google Scholar 
    Yamamura, H., Ugawa, S., Ueda, T., Morita, A. & Shimada, S. TRPM8 activation suppresses cellular viability in human melanoma. Am. J. Physiol. Cell Physiol. 295, C296–C301 (2008).CAS 

    Google Scholar 
    Knowlton, W. M. et al. A sensory-labeled line for cold: TRPM8-expressing sensory neurons define the cellular basis for cold, cold pain, and cooling-mediated analgesia. J. Neurosci. 33, 2837–2848 (2013).CAS 

    Google Scholar 
    Weyer-Menkhoff, I., Pinter, A., Schlierbach, H., Schänzer, A. & Lötsch, J. Epidermal expression of human TRPM8, but not of TRPA1 ion channels, is associated with sensory responses to local skin cooling. Pain 160, 2699–2709 (2019).Kumasaka, M., Sato, S., Yajima, I. & Yamamoto, H. Isolation and developmental expression of tyrosinase family genes in Xenopus laevis. Pigment Cell Res. 16, 455–462 (2003).CAS 

    Google Scholar 
    Rodionov, V. I., Hope, A. J., Svitkina, T. M. & Borisy, G. G. Functional coordination of microtubule-based and actin-based motility in melanophores. Curr. Biol. 8, 165–169 (1998).CAS 

    Google Scholar 
    Session, A. M. et al. Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538, 336–343 (2016).CAS 

    Google Scholar 
    Gosset, J. R. et al. A cross-species translational pharmacokinetic-pharmacodynamic evaluation of core body temperature reduction by the TRPM8 blocker PF-05105679. Eur. J. Pharm. Sci. 109S, S161–S167 (2017).
    Google Scholar 
    Winchester, W. J. et al. Inhibition of TRPM8 channels reduces pain in the cold pressor test in humans. J. Pharmacol. Exp. Ther. 351, 259–269 (2014).
    Google Scholar 
    Bianchi, B., Smith, P. A. & Abriel, H. The ion channel TRPM4 in murine experimental autoimmune encephalomyelitis and in a model of glutamate-induced neuronal degeneration. Mol. Brain 11, 1–10 (2018).
    Google Scholar 
    Li, K., Shi, Y., Gonye, E. C. & Bayliss, D. A. TRPM4 contributes to subthreshold membrane potential oscillations in multiple mouse pacemaker neurons. eNeuro 8, 1–13 (2021).
    Google Scholar 
    Dong, W. et al. Visual avoidance in Xenopus tadpoles is correlated with the maturation of visual responses in the optic tectum. J. Neurophysiol. 101, 803–815 (2009).
    Google Scholar 
    Bertolesi, G. E., Debnath, N., Atkinson-Leadbeater, K., Niedzwiecka, A. & McFarlane, S. Distinct type II opsins in the eye decode light properties for background adaptation and behavioural background preference. Mol. Ecol. 30, 6659–6676 (2021).CAS 

    Google Scholar 
    Viczian, A. S. & Zuber, M. E. A simple behavioral assay for testing visual function in xenopus laevis. J. Vis. Exp. 12, 51726 (2014).
    Google Scholar 
    Myers, B. R., Sigal, Y. M. & Julius, D. Evolution of thermal response properties in a cold-activated TRP channel. PLoS One 4, e5741 (2009).
    Google Scholar 
    Furman, B. L. S. et al. Pan-African phylogeography of a model organism, the African clawed frog ‘Xenopus laevis’. Mol. Ecol. 24, 909–925 (2015).CAS 

    Google Scholar 
    Wilson, R. S., James, R. S. & Johnston, I. A. Thermal acclimation of locomotor performance in tadpoles and adults of the aquatic frog Xenopus laevis. J. Comp. Physiol. B. 170, 117–124 (2000).CAS 

    Google Scholar 
    Kashiwagi, K. et al. Xenopus tropicalis: an ideal experimental animal in amphibia. Exp. Anim. 59, 395–405 (2010).CAS 

    Google Scholar 
    Martínez-Freiría, F., Toyama, K. S., Freitas, I. & Kaliontzopoulou, A. Thermal melanism explains macroevolutionary variation of dorsal pigmentation in Eurasian vipers. Sci. Rep. 10, 72871–1 (2020).Tanaka, K. Does the thermal advantage of melanism produce size differences in color-dimorphic snakes? Zool. Sci. 26, 698–703 (2009).
    Google Scholar 
    Moreno Azócar, D. L., Nayan, A. A., Perotti, M. G. & Cruz, F. B. How and when melanic coloration is an advantage for lizards: the case of three closely-related species of Liolaemus. Zool. (Jena.) 141, 125774 (2020).
    Google Scholar 
    Azócar, D. L. M. et al. Effect of body mass and melanism on heat balance in Liolaemus lizards of the goetschi clade. J. Exp. Biol. 219, 1162–1171 (2016).
    Google Scholar 
    Smith, K. R. et al. Colour change on different body regions provides thermal and signalling advantages in bearded dragon lizards. Proc. R. Soc. B Biol. Sci. 283, 20160626 (2016).
    Google Scholar 
    Rowe, J. W. et al. Thermal and substrate color-induced melanization in laboratory reared red-eared sliders (Trachemys scripta elegans). J. Therm. Biol. 61, 125–132 (2016).
    Google Scholar 
    Larsen, E. H. Dual skin functions in amphibian osmoregulation. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 253, 110869 (2021).CAS 

    Google Scholar 
    Franco-Belussi, L., Sköld, H. N. & De Oliveira, C. Internal pigment cells respond to external UV radiation in frogs. J. Exp. Biol. 219, 1378–1383 (2016).
    Google Scholar 
    Langhelle, A., Lindell, M. J. & Nyström, P. Effects of ultraviolet radiation on amphibian embryonic and larval development. J. Herpetol. 33, 449–456 (1999).
    Google Scholar 
    Mueller, K. P. & Neuhauss, S. C. F. Sunscreen for fish: co-option of UV light protection for camouflage. PLoS One 9, e87372 (2014).
    Google Scholar 
    Perotti, M. G., Diéguez, M. & Del, C. Effect of UV-B exposure on eggs and embryos of patagonian anurans and evidence of photoprotection. Chemosphere 65, 2063–2070 (2006).CAS 

    Google Scholar 
    Nilsson Sköld, H., Aspengren, S. & Wallin, M. Rapid color change in fish and amphibians – function, regulation, and emerging applications. Pigment Cell Melanoma Res. 26, 29–38 (2013).
    Google Scholar 
    Vences, M. et al. Field body temperatures and heating rates in a montane frog population: the importance of black dorsal pattern for thermoregulation on JSTOR. Ann. Zool. Fennici 39, 209–220 (2002).
    Google Scholar 
    Lindgren, J. et al. Skin pigmentation provides evidence of convergent melanism in extinct marine reptiles. Nature 506, 484–488 (2014).CAS 

    Google Scholar 
    Bonino, M. F., Cruz, F. B. & Perotti, M. G. Does temperature at local scale explain thermal biology patterns of temperate tadpoles? J. Therm. Biol. 94, 102744 (2020).
    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 

    Google Scholar 
    Liu, T. et al. RNA interference-mediated depletion of TRPM8 enhances the efficacy of epirubicin chemotherapy in prostate cancer LNCaP and PC3 cells. Oncol. Lett. 15, 4129–4136 (2018).
    Google Scholar 
    Kashina, A. S. et al. Protein Kinase A, which regulates intracellular transport, forms complexes with molecular motors on organelles. Curr. Biol. 14, 1877–1881 (2004).CAS 

    Google Scholar  More

  • in

    Dynamics of aggregate-associated organic carbon after long-term cropland conversion in a karst region, southwest China

    Effects of cropland conversion on OC pool in bulk soilCropland restoration identified as an efficient ecological project to promote soil C sequestration in karst erosion areas28,30. The conversion from MS to FG resulted in the total soil OC content and stock across 0–30 cm layers increasing by 46.12% and 43.73% respectively. The result was highly coincident with previous studies observed at 0–10 cm layer, which reported that FG cultivation replaced from MS cultivation could remarkably increase soil OC pool in karst region, Southwest China28. In our study, the lower OC content and stock in MS may be partially attributed to the non-returned crop residues and increased exposure of deep soil OM to oxygen under tillage disturbance, resulting in decreased soil OC accumulation through reducing the input of OM and accelerating OM decomposition28,30,37,38. Nevertheless, the conversion from MS to FG can increase the soil OC pool by increasing inputs from crops. For detail, laregly aboverground crops are harvested and removed from the fields each every year for economic production, there is thus a lack of aboverground OC input. Therefore, the root biomass became the main source of OM inputs, and even slight changes in biomass can substantially alter soil C level39. In the present study, the root biomass in FG field was approximately 6 times that in MS field (110.06 ± 17.24 kg hm−2 averagely) (Table S2). Consequently, the higher root biomass in FG are responsible for the corresponding higher C storage of fine root in FG, which is supported by the fact that higher amount of C were stored in the fine roots of FG field compared with that of MS field (Table S2). In fact, several studies have demonstrated that cultivation of perennial grasses is efficient in stimulating soil OC accumulation owing to its great amount of fine roots and underground biomass33,40. Soil disturbance (such as tillage) is one of the main causes of soil C depletion in agricultural systems, and increased tillage practice can result in greater soil C loss41,42,43. Therefore, the frequent tillage conducted in MS field resulted in lower levels of OC than that in FG field under minimal tillage disturbance.Impacts of cropland conversion on soil aggregates structure and stabilitySoil structure plays an important role in soil environment and quality, which is strongly characterized by soil aggregates and their stability43,44. In our study, soil macro-aggregates dominated the largest portion of total soil while meso-aggregates and micro-aggregates were only accounted for a small portion, indicating that cropland conversion could facilitated the formation of macro-aggregates (Table 2). These findings are in line with other studies, wherein that macro-aggregates occupied the major portion of total soil following farmland or vegetation restoration19,30. Tillage disturbance often disrupts aggregates by bringing subsurface soil to the surface, which can readily promote soil C turnover and hinder macro-aggregate formation45. Conversely, minimal tillage experienced and greater accumulation of root residues resulted in higher C accumulation in the FG field. Furthermore, fine roots improved the soil aggregate stability via the interaction with mycorrhizal fungi, which produced exudates and binding agents and promoted the formation of soil aggregates46,47. Therefore, higher inputs of root residue in the soil could enhance the capacity of aggregate re-formation. In fact, these can be supported by the higher value of root biomass and its C stock in the FG field. In addition, forage grass cultivation can enhance the formation of large and stable soil aggregates by fine roots and fungal hyphae through the production of exudates and binding agents, such as humic compounds, polymers and roots48,49. Thus, few tillage disturbance and higher inputs of root biomass in FG field resulted in soil aggregation enhanced, especially macro-aggregates.Soil aggregate stability can also be characterized by the values of MWD and GMD. Higher MWD or GMD values indicate greater aggregate stability due to more agglomerate ability. The value of MWD in the current study varied from 1.36 to 1.96, which was classified as “stable” by LeBissonnais’ categorization of aggregate stability50.Regardless of soil depth, the FG field had the greatest MWD and GMD values, indicating that its soil aggregates were more stable than those of the other three cropland use types. We may thus draw the conclusion that FG cropland conversion can improve the stability of aggregates based on MWD and GMD.Changes in OC stocks associated –aggregates following cropland conversionCropland use change generally affects soil C sequestration through changing OM inputs and decomposition19. Our study revealed that aggregate-associated OC was significantly higher in FG field than in MS field. These increases were mainly attributed to the new C derived from root residues inputs and decreased losses of OC associated-aggregate by C mineralization in FG soil49. Generally, tillage can breakdown large aggregates into small aggregates, and thus decrease the formation of soil macro-aggregates41,42. Thus, the lower OC content and stock associated-aggregate in MS field can be attributed to the OC loss resulting from soil erosion, and OM input reduction with tillage disturbance8,30,45.In this study, the effects of cropland conversion on OC content associated-aggregate fractions occurred in the top 20 cm soil layers. In the karst region, approximate 57–89% of crop roots are concentrated in the surface soil layer, which directly affects OM inputs from underground root residues51,52. Meanwhile, tillage practices also happened on top 20 cm soil layer6,28,29. As a result, in soils below 20 cm, little or no tillage disturbance and limited OM inputs resulted in fewer or no distinctly changing levels of OC content associated with aggregate following cropland use change.Cropland use change not only affected the OC stocks in bulk soil, but also affected the OC stocks associated-aggregates (Table 1). The difference of sensitivity of OC associated-aggregate to cropland use change may affect its contribution to bulk soil OC accumulation30,38. In our study, the macro-aggregate fraction was the most important contributor to total OC stock increase, followed by meso-aggregate and micro-aggregate (Fig. 4). This is primarily due to the higher amount and OC content of macro-aggregates. Overall all cropland use types, the OC stock associated with macro-aggregate in FG field was higher than that in other three cropland types regardless of soil depth (Fig. 4). For instance, OC stocks within macro-aggregate accounted for about 85.40%, 77.72% and 97.55% of total soil OC stock at 0–10 cm, 10–20 cm and 20–30 cm, respectively, under the conversion from MS to FG. Thus, the accumulation pattern of bulk soil OC stocks could closely related with changes of OC stocks associated with macro-aggregate under cropland use change.The physical protection of OC in aggregates is regarded as one of the main mechanisms for soil OC accumulation through diminishing soil OC degradation and preventing its interaction with mineral particles53,54. In the present study, OC stock in bulk soil correlated substantially with the OC content-associated aggregate following cropland conversion (Fig. 5). Further analysised revealed that OC stocks in bulk soil was significantly correlated to OC stock associated with macro-aggregate (R2 = 0.83, p  More

  • in

    Elevated alpha diversity in disturbed sites obscures regional decline and homogenization of amphibian taxonomic, functional and phylogenetic diversity

    Butchart, S. H. M. et al. Global biodiversity: Indicators of recent declines. Science 328, 1164–1168 (2010).ADS 
    CAS 

    Google Scholar 
    McGill, B. J., Dornelas, M., Gotelli, N. J. & Magurran, A. E. Fifteen forms of biodiversity trend in the Anthropogene. Trends Ecol. Evol. 30, 104–113 (2015).
    Google Scholar 
    Bradshaw, C. J. A., Sodhi, N. S. & Brook, B. W. Tropical turmoil: A biodiversity tragedy in progress. Front. Ecol. Environ. 7, 79–87 (2009).
    Google Scholar 
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).ADS 
    CAS 

    Google Scholar 
    Loreau, M. et al. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 294, 804–808 (2001).ADS 
    CAS 

    Google Scholar 
    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).
    Google Scholar 
    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).ADS 
    CAS 

    Google Scholar 
    Balvanera, P. et al. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 9, 1146–1156 (2006).
    Google Scholar 
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).ADS 
    CAS 

    Google Scholar 
    Pasari, J. R., Levi, T., Zavaleta, E. S. & Tilman, D. Several scales of biodiversity affect ecosystem multifunctionality. Proc. Natl. Acad. Sci. U.S.A. 110, 10219–10222 (2013).ADS 
    CAS 

    Google Scholar 
    Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).
    Google Scholar 
    Murphy, G. E. P. & Romanuk, T. N. A meta-analysis of declines in local species richness from human disturbances. Ecol. Evol. 4, 91–103 (2014).
    Google Scholar 
    Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).ADS 
    CAS 

    Google Scholar 
    de Coster, G., Banks-Leite, C. & Metzger, J. P. Atlantic forest bird communities provide different but not fewer functions after habitat loss. Proc. R. Soc. B 282, 20142844 (2015).
    Google Scholar 
    Riemann, J. C., Ndriantsoa, S. H., Rödel, M.-O. & Glos, J. Functional diversity in a fragmented landscape—habitat alterations affect functional trait composition of frog assemblages in Madagascar. Global Ecol. Conserv. 10, 173–183 (2017).
    Google Scholar 
    McKinney, M. L. & Lockwood, J. L. Biotic homogenization: A few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999).CAS 

    Google Scholar 
    Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation?. Trends Ecol. Evol. 31, 67–80 (2016).
    Google Scholar 
    van der Plas, F. et al. Biotic homogenization can decrease landscape-scale forest multi-functionality. Proc. Natl. Acad. Sci. U.S.A. 113, 3557–3562 (2016).ADS 

    Google Scholar 
    Mori, A. S., Isbell, F. & Seidl, R. β-diversity, community assembly, and ecosystem functioning. Trends Ecol. Evol. 33, 549–564 (2018).
    Google Scholar 
    Dehling, J. M. & Dehling, D. M. Conserving ecological functions of frog communities in Borneo requires diverse forest landscapes. Global Ecol. Conserv. 26, e01481 (2021).
    Google Scholar 
    Hector, A. & Bagchi, R. Biodiversity and ecosystem multifunctionality. Nature 448, 188–190 (2007).ADS 
    CAS 

    Google Scholar 
    Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).ADS 
    CAS 

    Google Scholar 
    Loreau, M., Mouquet, N. & Gonzalez, A. Biodiversity as spatial insurance in heterogeneous landscapes. Proc. Natl. Acad. Sci. U.S.A. 100, 12765–12770 (2003).ADS 
    CAS 

    Google Scholar 
    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).ADS 
    CAS 

    Google Scholar 
    Felipe-Lucia, M. R. et al. Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proc. Natl. Acad. Sci. U.S.A. 117, 28140–28149 (2020).ADS 
    CAS 

    Google Scholar 
    Tilman, D. Functional diversity in Encyclopedia of biodiversity, Vol. 3. (ed. Levin S. A.) 109–120 (Academic Press, 2001)Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).
    Google Scholar 
    Flynn, D. F. B., Mirotchnick, N., Jain, M., Palmer, M. I. & Naeem, S. Functional and phylogenetic diversity as predictors of biodiversity-ecosystem function relationships. Ecology 92, 1573–1581 (2011).
    Google Scholar 
    Lean, C. & Maclaurin, J. The value of phylogenetic diversity in Biodiversity conservation and phylogenetic systematics. Topics in Biodiversity and Conservation 14. (eds. Pellens, R., Grandcolas, P.) 19–38 (Springer, 2016).Owen, N. R., Gumbs, R., Gray, C. L. & Faith, D. P. Global conservation of phylogenetic diversity captures more than just functional diversity. Nat. Commun. 10, 859 (2019).ADS 

    Google Scholar 
    Gumbs, R., Williams, R. C., Lowney, A. M. & Smith, D. Spatial and species-level metrics reveal global patterns of irreplaceable and imperiled gecko phylogenetic diversity. Israel J. Ecol. Evolut. 66, 239–252 (2020).
    Google Scholar 
    Brooks, D. R., Mayden, R. L. & McLennan, D. A. Phylogeny and biodiversity: Conserving our evolutionary legacy. Trends Ecol. Evol. 7, 55–59 (1992).CAS 

    Google Scholar 
    Phillimore, A. B. et al. Biogeographical basis of recent phenotypic divergence among birds: a global study of subspecies richness. Evolution 61, 942–957 (2007).
    Google Scholar 
    Miraldo, A. et al. An Anthropocene map of genetic diversity. Science 353, 1532–1535 (2016).ADS 
    CAS 

    Google Scholar 
    Smith, B. T., Seeholzer, G. F., Harvey, M. G., Cuervo, A. M. & Brumfield, R. T. A latitudinal phylogeographic diversity gradient in birds. PLoS Biol. 15, e2001073 (2017).
    Google Scholar 
    Tucker, C. M. et al. Assessing the utility of conserving evolutionary history. Biol. Rev. 94, 1740–1760 (2019).
    Google Scholar 
    Flynn, D. F. B. et al. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12, 22–33 (2009).
    Google Scholar 
    Villéger, S., Miranda, J. R., Hernández, D. F. & Mouillot, D. Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecological Applications 20, 1512–1522 (2010).Gibbons, J. W. et al. Remarkable amphibian biomass and abundance in an isolated wetland: Implications for wetland conservation. Conserv. Biol. 20, 1457–1465 (2006).
    Google Scholar 
    Hocking, D. J. & Babbitt, K. J. Amphibian contributions to ecosystem services. Herpetol. Conserv. Biol. 9, 1–17 (2014).
    Google Scholar 
    Beebee, T. J. C. Amphibian breeding and climate change. Nature 374, 219–220 (1995).ADS 
    CAS 

    Google Scholar 
    Kiesecker, J. M., Blaustein, A. R. & Belden, L. K. Complex causes of amphibian population declines. Nature 410, 681–684 (2001).ADS 
    CAS 

    Google Scholar 
    Cheng, T. L., Rovito, S. M., Wake, D. B. & Vredenburg, V. T. Coincident mass extirpation of neotropical amphibians with the emergence of the infection fungal pathogen Batrachochytrium dendrobatidis. Proc. Natl. Acad. Sci. U.S.A. 108, 9502–9507 (2011).ADS 
    CAS 

    Google Scholar 
    Wake, D. B. & Vredenburg, V. T. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl. Acad. Sci. U.S.A. 105, 11466–11473 (2008).ADS 
    CAS 

    Google Scholar 
    Ernst, R. & Rödel, M.-O. Patterns of community composition in two tropical tree frog assemblages: Separating spatial structure and environmental effects in disturbed and undisturbed forests. J. Trop. Ecol. 24, 111–120 (2008).
    Google Scholar 
    Gardner, T. A. et al. The value of primary, secondary, and plantation forests for a Neotropical Herpetofauna. Conserv. Biol. 21, 775–787 (2007).
    Google Scholar 
    Gardner, T. A., Fitzherbert, E. B., Drewes, R. C., Howell, K. M. & Caro, T. Spatial and temporal patterns of abundance and diversity of an East African leaf litter amphibian fauna. Biotropica 39, 105–113 (2007).
    Google Scholar 
    Gillespie, G. R. et al. Conservation of amphibians in Borneo: relative value of secondary tropical forest and non-forest habitats. Biol. Cons. 152, 136–144 (2012).
    Google Scholar 
    Angarita-M., O., Montes-Correa, A. C. & Renjifo, J. M. Amphibians and reptiles of an agroforestry system in the Colombian Caribbean. Amphibian & Reptile Conservation 8, 33–52 (2015).Jiménez-Robles, O., Guayasamin, J. M., Ron, S. R. & De la Riva, I. Reproductive traits associated with species turnover of amphibians in Amazonia and its Andean slopes. Ecol. Evol. 7, 2489–2500 (2017).
    Google Scholar 
    Ernst, R., Linsenmair, K. E. & Rödel, M.-O. Diversity erosion beyond the species level: dramatic loss of functional diversity after selective logging in two tropical amphibian communities. Biol. Cons. 133, 143–155 (2006).
    Google Scholar 
    Oda, F. H. et al. Anuran species richness, composition, and breeding habitat preferences: a comparison between forest remnants and agricultural landscapes in Southern Brazil. Zool. Stud. 55, 34 (2016).
    Google Scholar 
    Sinsch, U., Lümkemann, K., Rosar, K., Schwarz, C. & Dehling, J. M. Acoustic niche partitioning in an anuran community inhabiting an Afromontane wetland (Butare, Rwanda). African Zool. 47, 60–73 (2012).
    Google Scholar 
    Tumushimire, L., Mindje, M., Sinsch, U. & Dehling, J. M. The anuran diversity of cultivated wetlands in Rwanda: Melting pot of generalists?. Salamandra 56, 99–112 (2020).
    Google Scholar 
    REMA. Rwanda State of Environment and Outlook Report 2017 – Achieving Sustainable Urbanization. (Rwanda Environment Management Authority, Government of Rwanda, 2017).Su, J. C., Debinski, D. M., Jakubauskas, M. E. & Kindscher, K. Beyond species richness: Community similarity as a measure of cross-taxon congruence for coarse-filter conservation. Conserv. Biol. 18, 167–173 (2004).
    Google Scholar 
    Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).ADS 
    CAS 

    Google Scholar 
    Zimkus, B. M., Rödel, M.-O. & Hillers, A. Complex patterns of continental speciation: Molecular phylogenetics and biogeography of sub-Saharan puddle frogs (Phrynobatrachus). Mol. Phylogenet. Evol. 55, 883–900 (2010).
    Google Scholar 
    Dehling, J. M. & Sinsch, U. Partitioning of morphospace in larval and adult reed frogs (Anura: Hyperoliidae: Hyperolius) of the Central African Albertine Rift. Zool. Anz. 280, 65–77 (2019).
    Google Scholar 
    Mazel, F. et al. Prioritizing phylogenetic diversity captures functional diversity unreliably. Nat. Commun. 9, 2888 (2018).ADS 

    Google Scholar 
    Haddad, C. F. B. & Prado, C. P. A. Reproductive modes and their unexpected diversity in the Atlantic forest of Brazil. Bioscience 55, 207–217 (2005).
    Google Scholar 
    Capinha, C., Essl, F., Seebens, H., Moser, D. & Pereira, H. M. The dispersal of alien species redefines biogeography in the Anthropocene. Science 348, 1248–1251 (2015).ADS 
    CAS 

    Google Scholar 
    Alroy, J. Effects of habitat disturbance on tropical forest biodiversity. Proc. Natl. Acad. Sci. U.S.A. 114, 6056–6061 (2017).ADS 
    CAS 

    Google Scholar 
    Dehling, J. M. & Sinsch, U. Diversity of Ptychadena in Rwanda and taxonomic status of P. chrysogaster Laurent, 1954 (Amphibia, Anura, Ptychadenidae). ZooKeys 356, 69–102 (2013).IUCN. The IUCN Red List of Threatened Species. Version 2020–1. https://www.iucnredlist.org (2020).Portillo, F., Greenbaum, E., Menegon, M., Kusamba, C. & Dehling, J. M. Phylogeography and species boundaries of Leptopelis (Anura: Arthroleptidae) from the Albertine Rift. Mol. Phylogenet. Evol. 82, 75–86 (2015).
    Google Scholar 
    Channing, A., Dehling, J. M., Lötters, S. & Ernst, R. Species boundaries and taxonomy of the African River Frogs (Anura: Pyxicephalidae: Amietia). Zootaxa 4155, 1–76 (2016).CAS 

    Google Scholar 
    Rödel, M.-O. & Ernst, R. Measuring and monitoring amphibian diversity in tropical forests. I. An evaluation of methods with recommendations for standardization. Ecotropica 10, 1–14 (2004).Channing, A. & Howell, K. M. Amphibians of East Africa. (Chimaira, 2006).Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evolut. 2, 850–858 (2018).
    Google Scholar 
    Villéger, S., Mason, N. W. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).
    Google Scholar 
    Maire, E., Grenouillet, G., Brosse, S. & Villéger, S. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Glob. Ecol. Biogeogr. 24, 728–740 (2015).
    Google Scholar 
    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Cons. 61, 1–10 (1992).
    Google Scholar 
    Dehling, D. M. et al. Functional and phylogenetic diversity and assemblage structure of frugivorous birds along an elevational gradient in the tropical Andes. Ecography 37, 1047–1055 (2014).
    Google Scholar 
    Baselga, A. et al. betapart: partitioning beta diversity into turnover and nestedness components. R package version 1.5.6. https://CRAN.R-project.org/package=betapart (2022).Dehling, D. M. et al. Specialists and generalists fulfil important and complementary functional roles in ecological processes. Funct. Ecol. 35, 1810–1821 (2021).CAS 

    Google Scholar 
    Dehling, D. M., Barreto, E. & Graham, C. H. The contribution of mutualistic interactions to functional and phylogenetic diversity. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2022.05.006 (2022).Article 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. (R Foundation for Statistical Computing, 2021). More

  • in

    Predicting the potential suitable distribution area of Emeia pseudosauteri in Zhejiang Province based on the MaxEnt model

    Daskalova, G. N. et al. Landscape-scale forest loss as a catalyst of population and biodiversity change. Science 368(6497), 1341–1347 (2020).ADS 
    CAS 

    Google Scholar 
    Betts, M. G. et al. Extinction filters mediate the global effects of habitat fragmentation on animals. Science 366(6470), 1236–1239 (2019).ADS 
    CAS 

    Google Scholar 
    Siddig, A. A., Ellison, A. M., Ochs, A., Villar-Leeman, C. & Lau, M. K. How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in Ecological Indicators. Ecol. Ind. 60, 223–230 (2016).
    Google Scholar 
    Thancharoen, A. Well managed firefly tourism: A good tool for firefly conservation in Thailand. Lampyrid. 2, 142–148 (2012).
    Google Scholar 
    Hwang, Y. T., Moon, J., Lee, W. S., Kim, S. A. & Kim, J. Evaluation of firefly as a tourist attraction and resource using contingent valuation method based on a new environmental paradigm. J. Qual. Assur. Hosp. Tour. 21(3), 320–336 (2019).Carlson, A. D. & Copeland, J. Flash communication in fireflies. Q. Rev. Biol. 60(4), 415–436 (1985).
    Google Scholar 
    Evans, T. R., Salvatore, D., van de Pol, M. & Musters, C. J. M. Adult firefly abundance is linked to weather during the larval stage in the previous year. Ecol. Entomol. 44(2), 265–273 (2018).
    Google Scholar 
    Lewis, S. M. et al. A global perspective on firefly extinction threats. Bioscience 70(2), 157–167 (2020).
    Google Scholar 
    Cao, C. Q., Zhang, Y., Wang, Y. Z. & He, H. Progress in the research, protection, development and utilization of fireflies. J. Environ. Entomol.1–36 (2022).Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403(6772), 853–858 (2000).ADS 
    CAS 

    Google Scholar 
    Thorn, J. S., Nijman, V., Smith, D. & Nekaris, K. A. I. Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates:Nycticebus). Divers. Distrib. 15(2), 289–298 (2009).
    Google Scholar 
    Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40(1), 677–697 (2009).
    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3–4), 231–259 (2006).
    Google Scholar 
    Hirzel, A. H., Hausser, J., Chessel, D. & Perrin, N. Ecological-Niche Factor Analysis: How to compute habitat-suitability maps without absence data?. Ecology 83(7), 2027–2036 (2002).
    Google Scholar 
    Nelder, J. A. & Wedderburn, R. W. Generalized linear models. J. R. Stat. Soc. Ser. A (General). 135(3), 370–384 (1972).
    Google Scholar 
    Hastie, T. J. Generalized additive models. Statistical models in S. Routledge. 249–307 (2017).Stockwell, D. R. & Noble, I. R. Induction of sets of rules from animal distribution data: A robust and informative method of data analysis. Math. Comput. Simul. 33(5–6), 385–390 (1992).
    Google Scholar 
    Beaumont, L. J., Hughes, L. & Poulsen, M. Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol. Model. 186(2), 251–270 (2005).
    Google Scholar 
    Jung, J. M., Lee, W. H. & Jung, S. Insect distribution in response to climate change based on a model: Review of function and use of CLIMEX. Entomol. Res. 46(4), 223–235 (2016).
    Google Scholar 
    Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2), 161–175 (2008).
    Google Scholar 
    Moreno, R., Zamora, R., Molina, J. R., Vasquez, A. & Herrera, M. Á. Predictive modeling of microhabitats for endemic birds in South Chilean temperate forests using Maximum entropy (Maxent). Eco. Inform. 6(6), 364–370 (2011).
    Google Scholar 
    Wang, Z. et al. Prediction of potential distribution of the invasive Chrysanthemum Lace Bug, Corythucha marmorata in China based on Maxent. J. Environ. Entomol. 41(3), 626–633 (2019).
    Google Scholar 
    Li, A. et al. MaxEnt modeling to predict current and future distributions of Batocera lineolata (Coleoptera: Cerambycidae) under climate change in China. Ecoscience 27(1), 23–31 (2020).
    Google Scholar 
    Sutherland, L. N., Powell, G. S. & Bybee, S. M. Validating species distribution models to illuminate coastal fireflies in the South Pacific (Coleoptera: Lampyridae). Sci. Rep. 11(1), 1–12 (2021).ADS 

    Google Scholar 
    Fu, X. H., Ballantyne, L. A. & Lambkin, C. Emeia gen. nov., a new genus of Luciolinae fireflies from China (Coleoptera: Lampyridae) with an unusual trilobite-like larva, and a redescription of the genus Curtos Motschulsky. Zootaxa. 3403(1), 1–53 (2012).Idris, N. S. et al. The dynamics of landscape changes surrounding a firefly ecotourism area. Glob. Ecol. Conserv. 29, e01741 (2021).
    Google Scholar 
    Santiago-Blay, J. A. Silent Sparks: The Wondrous World of Fireflies. Life: The Excitement of Biology. (2016).Picchi, M. S., Avolio, L., Azzani, L., Brombin, O. & Camerini, G. Fireflies and land use in an urban landscape: the case of Luciola italica L.(Coleoptera: Lampyridae) in the city of Turin. J. Insect Conserv. 17(4), 797–805 (2013).Pearsons, K. A., Lower, S. E. & Tooker, J. F. Toxicity of clothianidin to common Eastern North American fireflies. PeerJ 9, e12495 (2021).
    Google Scholar 
    Madruga Rios, O. & Hernández Quinta, M. Larval Feeding Habits of the Cuban Endemic FireflyAlecton discoidalisLaporte (Coleoptera: Lampyridae). Psyche J. Entomol. 2010, 1–5 (2010).Roberge, J. M. & Angelstam, P. E. R. Usefulness of the umbrella species concept as a conservation tool. Conserv. Biol. 18(1), 76–85 (2004).
    Google Scholar 
    Bowen-Jones, E. & Entwistle, A. Identifying appropriate flagship species: The importance of culture and local contexts. Oryx 36(2), 189–195 (2002).
    Google Scholar 
    Walpole, M. J. & Leader-Williams, N. Tourism and flagship species in conservation. Biodivers. Conserv. 11(3), 543–547 (2002).Zhejiang Provincial Bureau of Statistics. Zhejiang physical geography profile, http://tjj.zj.gov.cn/col/col1525489/index.html (2022).Zhejiang Provincial Forestry Department. Announcement of Forest Resources and Their Ecological Function Value in Zhejiang Province. Zhejiang Daily. https://doi.org/10.38328/n.cnki.nzjrb.2016.002829 (2016).Boria, R. A., Olson, L. E., Goodman, S. M. & Anderson, R. P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 275, 73–77 (2014).
    Google Scholar 
    Brown, J. L. SDM toolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 5(7), 694–700 (2014).
    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12), 4302–4315 (2017).
    Google Scholar 
    Elvidge, C. D., Zhizhin, M., Ghosh, T., Hsu, F.-C. & Taneja, J. Annual time series of global VIIRS nighttime lights derived from monthly averages: 2012 to 2019. Remote Sens. 13(5), 922 (2021).ADS 

    Google Scholar 
    WAN, J. et al. Predicting the potential geographic distribution of Bactrocera bryoniae and Bactrocera neohumeralis (Diptera: Tephritidae) in China using MaxEnt ecological niche modeling. J. Integr. Agric. 19(8), 2072–2082 (2020).Zhou, R. et al. Projecting the potential distribution of glossina morsitans (Diptera: Glossinidae) under climate change using the MaxEnt model. Biology. 10(11), 1150 (2021).
    Google Scholar 
    Hill, M. P., Hoffmann, A. A., McColl, S. A. & Umina, P. A. Distribution of cryptic blue oat mite species in Australia: current and future climate conditions. Agric. For. Entomol. 14(2), 127–137 (2011).
    Google Scholar 
    Su, H., Bista, M. & Li, M. Mapping habitat suitability for Asiatic black bear and red panda in Makalu Barun National Park of Nepal from Maxent and GARP models. Sci. Rep. 11(1), 1 (2021).ADS 
    CAS 

    Google Scholar 
    Proosdij, A. J., Sosef, M., Wieringa, J. & Raes, N. Minimum required number of specimen records to develop accurate species distribution models. Ecography 39, 542–552 (2016).
    Google Scholar 
    Lobo, J. M., Jiménez-Valverde, A. & Real, R. AUC: A misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17(2), 145–151 (2008).
    Google Scholar 
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43(6), 1223–1232 (2006).
    Google Scholar 
    Liu, C., Newell, G. & White, M. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol. 6(1), 337–348 (2016).
    Google Scholar 
    Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240(4857), 1285–1293 (1988).ADS 
    CAS 
    MATH 

    Google Scholar 
    Pearce, J. & Ferrier, S. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model. 133(3), 225–245 (2000).
    Google Scholar 
    Gama, M., Crespo, D., Dolbeth, M. & Anastácio, P. M. Ensemble forecasting of Corbicula fluminea worldwide distribution: projections of the impact of climate change. Aquat. Conserv. Mar. Freshwat. Ecosyst. 27(3), 675–684 (2017).
    Google Scholar 
    Zhao, Y., Deng, X., Xiang, W., Chen, L. & Ouyang, S. Predicting potential suitable habitats of Chinese fir under current and future climatic scenarios based on Maxent model. Eco. Inform. 64, 101393 (2021).
    Google Scholar 
    Evans, T. R., Salvatore, D., van de Pol, M. & Musters, C. J. M. Adult firefly abundance is linked to weather during the larval stage in the previous year. Ecol. Entomol. 44(2), 265–273 (2018).Chettri, B., Bhupathy, S. & Acharya, B. K. Distribution pattern of reptiles along an eastern Himalayan elevation gradient India. Acta Oecol. 36(1), 16–22 (2010).ADS 

    Google Scholar 
    Brown, J. H. Mammals on mountainsides: elevational patterns of diversity. Global Ecol. Biogeogr. 10(1), 101–109 (2001).Gairola, S., Sharma, C. M., Ghildiyal, S. K. & Suyal, S. Tree species composition and diversity along an altitudinal gradient in moist tropical montane valley slopes of the Garhwal Himalaya India. For. Sci. Technol. 7(3), 91–102 (2011).
    Google Scholar 
    Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 34(1), 102–117 (2007).Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29(5), 773–785 (2006).
    Google Scholar 
    Abe, N. Kansei estimation on luminescence of Firefly-Kansei information measurement and welfare utilization. J. Japan Soc. Kansei Eng. 3(2), 41–50 (2004).
    Google Scholar 
    Buckley, R. et al. Economic value of protected areas via visitor mental health. Nat. Commun. 10(1), 1 (2019).
    Google Scholar 
    Lewis, S. M. et al. Firefly tourism: Advancing a global phenomenon toward a brighter future. Conserv. Sci. Pract. 3(5), 1 (2021).
    Google Scholar  More

  • in

    Global vegetation resilience linked to water availability and variability

    Vegetation and land-cover dataTo monitor vegetation at the global scale, we use three datasets: (1) vegetation optical depth (VOD, 0.25°, Ku-Band, daily 1987–201723) (Fig. 1A), (2) AVHRR GIMMSv3g normalized difference vegetation index (NDVI, 1/12°, bi-weekly 1981–201524) (Fig. 1B), and (3) MODIS MOD13 NDVI at 0.05° (16-day, 2000–202125). We correct for spurious values in the NDVI data (e.g., cloud contamination) using the method of Chen et al.43. We resample the VOD data using bi-weekly medians to agree with the NDVI data time sampling.For all three vegetation datasets, we remove seasonality and long-term trends using seasonal trend decomposition by Loess4,44 based on the proposed optimal parameters listed in Cleveland et al.44 (code available on Zenodo45). That is, we use a period of 24 (bi-monthly, 1 year), 47 for the trend smoother (just under 2 years) and 25 for low-pass (just over 1 year). We only use the STL residual—the de-seasoned and de-trended NDVI and VOD time series—in our analysis.To contextualize our understanding of vegetation resilience, we use MODIS MCD12Q1 land cover46 (Fig. 1C) as well as a global average aridity index based on WorldCLIM data31 (Fig. 1D). We exclude from our analysis anthropogenic and non-vegetated landscapes (e.g., permanent snow and ice, desert, urban), as well as any land covers which have changed (e.g., forest to grassland) during the period 2001–2020.Precipitation data and variability metricsTo measure precipitation at the global scale, we rely upon ERA5 data (~30 km, monthly, 1981–2021)33. We process global-scale precipitation metrics using the Google Earth Engine47 platform. We further use the sum of soil moisture from the surface down to 28 cm of depth (first two layers of the ECMWF Integrated Forecasting System soil moisture estimates) to quantify soil moisture means and inter-annual variability33.It is well-documented that vegetation resilience is responsive to the MAP of certain regions1. However, the role of precipitation variability in controlling vegetation resilience has not been well-studied. Here we examine precipitation variability in terms of both intra- and inter-annual patterns. Intra-annual precipitation variability is determined in terms of the Walsh-Lawler Seasonality index32 (Fig. 1D), calculated using monthly data from ERA533.Partly due to the fact that precipitation is non-negative, simple inter-annual variability metrics such as the standard deviation of annual precipitation sums are biased by the absolute precipitation sums; higher precipitation regions have a higher possible range of variability. To limit the influence of MAP, we hence investigate the standard deviation of annual precipitation sums normalized by the MAP, over the period 1981–2021, based on ERA5 data33 (Fig. 1F). We motivate our normalization by MAP with the strong linear relationship between MAP and MAP standard deviation (Supplementary Fig. S2). We further confirm our discovered relationships (Fig. 5) using only those regions where MAP was between the 40 and 60th percentile of MAP for a given land cover (Supplementary Figs. S11,S12). This serves as an additional check that our normalization of MAP standard deviation by MAP does not bias the inferred relationship between vegetation resilience and precipitation variability. Similarly, we generate a normalized inter-annual soil moisture variability by normalizing year-on-year soil moisture standard deviation (Supplementary Fig. S8) by long-term mean soil moisture (Supplementary Fig. S5).Empirical resilience estimationResilience is defined as the ability of a system to recover from perturbations, and can be quantified empirically by the speed of recovery to the previous state16,17. To measure resilience on the global scale, we employ a recently introduced methodology4 which we will briefly summarize in the following.We first identify sharp transitions in the vegetation time series using an 18-point (9 month) moving window to define local slopes throughout the time series48. We then identify slopes above the 99th percentile, and define connected regions as individual perturbations. The highest peak (largest instantaneous slope) within each connected region is then labeled as an individual disturbance.The employed approach does not delineate every rapid transition in a time series due to our reliance on percentiles; our dataset will be inherently biased towards the largest transitions. Furthermore, the same transitions are not guaranteed to be captured for both NDVI and VOD data in each location, as the percentiles will naturally vary between the datasets. Finally, our method will in some cases produce false positives, especially in cases where a given time series does not have any significant rapid transitions. To limit the influence of false positives on our results, we discard any perturbations where the time series does not drop significantly, and where the period before and after a given transition does not pass a two-sample Kolmogorov–Smirnov test4.Finally, using our global set of time-series transitions, we can identify each local vegetation (NDVI or VOD) minima, and use the five following years of data to fit an exponential function to the residual time series, assuming that the recovery after a perturbation to a vegetation state x0 follows approximately the equation$$x(t),approx ,{x}_{0}{e}^{rt}$$
    (1)
    where x(t) denotes the vegetation state at time t after the perturbation. Negative r indicates that the vegetation system will return to the original stable state at rate ∣r∣. For positive r, the initial perturbation would be amplified, suggesting a non-resilient vegetation state. Our empirical recovery rates are defined as the fitted exponent r, obtained for each detected transition in the NDVI and VOD residual time series. We finally use the coefficient of determination R2 to remove instances where the fitted exponential poorly matches the underlying data4.For the empirical estimate of the restoring rate obtained from fitting an exponential to the recovery after an abrupt negative deviation of VOD or NDVI, abrupt changes in the mean state induced by changing sensors rather than an actual vegetation shift may impact the results. However, all datasets used here are tightly cross-calibrated to eliminate mean-shifts when new instruments are introduced23,24. It is therefore unlikely that changes in the instrumentation of the various datasets unduly influence our empirical estimates of λ.Dynamical system metrics of resilienceThe lag-one autocorrelation (AC1) has previously been proposed to measure the stability of real-world dynamical systems in general, and the resilience of vegetation systems in particular1,19,20,21,49. Based on the concept of critical slowing down, the AC1 has, together with the variance, also been suggested as an early-warning indicator for forthcoming critical transitions50,51. Mathematically, the suitability of the variance and AC1 as resilience measures and early-warning indicators can be motivated as follows4,52,53. First, linearize the system around a given stable state x*:$$dbar{x}=lambda bar{x}dt+sigma dW$$
    (2)
    for (bar{x}: !!=x-{x}^{*}), assuming a Wiener Process W with standard deviation σ. The dynamics are stable for λ  More

  • in

    Forest edges increase pollinator network robustness to extinction with declining area

    Millard, J. et al. Global effects of land-use intensity on local pollinator biodiversity. Nat. Commun. 12, 2902 (2021).Article 
    CAS 

    Google Scholar 
    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).Article 

    Google Scholar 
    Valiente-Banuet, A. et al. Beyond species loss: the extinction of ecological interactions in a changing world. Funct. Ecol. 29, 299–307 (2015).Article 

    Google Scholar 
    Rybicki, J., Abrego, N. & Ovaskainen, O. Habitat fragmentation and species diversity in competitive communities. Ecol. Lett. 23, 506–517 (2020).Article 

    Google Scholar 
    Chase, J. M., Blowes, S. A., Knight, T. M., Gerstner, K. & May, F. Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 584, 238–243 (2020).Article 
    CAS 

    Google Scholar 
    Ewers, R. M. & Didham, R. K. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. 81, 117–142 (2006).Article 

    Google Scholar 
    Didham, R. K. Ecological consequences of habitat fragmentation. In Encyclopedia of Life Sciences (ed Jansson, R.), 61, 1–39 (Wiley, UK2010).Aizen, M. A., Sabatino, M. & Tylianakis, J. M. Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science 335, 1486–1489 (2012).Article 
    CAS 

    Google Scholar 
    Spiesman, B. J. & Inouye, B. D. Habitat loss alters the architecture of plant-pollinator interaction networks. Ecology 94, 2688–2696 (2013).Article 

    Google Scholar 
    Aizen, M. A. et al. The phylogenetic structure of plant-pollinator networks increases with habitat size and isolation. Ecol. Lett. 19, 29–36 (2016).Article 

    Google Scholar 
    Emer, C. et al. Seed-dispersal interactions in fragmented landscapes-a metanetwork approach. Ecol. Lett. 21, 484–493 (2018).Article 

    Google Scholar 
    Fortuna, M. A. & Bascompte, J. Habitat loss and the structure of plant-animal mutualistic networks. Ecol. Lett. 9, 278–283 (2006).Article 

    Google Scholar 
    Grass, I., Jauker, B., Steffan-Dewenter, I., Tscharntke, T. & Jauker, F. Past and potential future effects of habitat fragmentation on structure and stability of plant-pollinator and host-parasitoid networks. Nat. Ecol. Evol. 2, 1408–1417 (2018).Article 

    Google Scholar 
    Glenn R. Matlack & John A. Litvaitis. Forest edges. In Maintaining Biodiversity in Forest Ecosystems (ed Hunter, M.) 6, 210–233 (Cambridge Univ. Press, 1999).Hadley, A. S. & Betts, M. G. The effects of landscape fragmentation on pollination dynamics: absence of evidence not evidence of absence. Biol. Rev. 87, 526–544 (2012).Article 

    Google Scholar 
    Ibanez, I., Katz, D. S. W., Peltier, D., Wolf, S. M. & Barrie, B. T. C. Assessing the integrated effects of landscape fragmentation on plants and plant communities: the challenge of multiprocess-multiresponse dynamics. J. Ecol. 102, 882–895 (2014).Article 

    Google Scholar 
    Morreale, L. L., Thompson, J. R., Tang, X., Reinmann, A. B. & Hutyra, L. R. Elevated growth and biomass along temperate forest edges. Nat. Commun. 12, 7181 (2021).Article 
    CAS 

    Google Scholar 
    Martinez-Ramos, M., Alvarez-Buylla, E. & Sarukhan, J. Tree demography and gap dynamics in a tropical rain forest. Ecology 70, 555–558 (1989).Article 

    Google Scholar 
    Yamamoto, S. I. Forest gap dynamics and tree regeneration. J. For. Res. 5, 223–229 (2000).Article 

    Google Scholar 
    Schnitzer, S. A. & Carson, W. P. Treefall gaps and the maintenance of species diversity in a tropical forest. Ecology 82, 913–919 (2001).Article 

    Google Scholar 
    Kricher, J. A Shifting Mosaic: Rain Forest Development and Dynamics. In Tropical Ecology 6, 188–226 (Princeton Univ. Press, 2011).Gayer, C. et al. Flowering fields, organic farming and edge habitats promote diversity of plants and arthropods on arable land. J. Appl. Ecol. 58, 1155–1166 (2021).Article 

    Google Scholar 
    Bailey, S. et al. Distance from forest edge affects bee pollinators in oilseed rape fields. Ecol. Evol. 4, 370–380 (2014).Article 

    Google Scholar 
    Thebault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).Article 
    CAS 

    Google Scholar 
    Hagen, M. et al. Biodiversity, species interactions and ecological networks in a fragmented world. Adv. Ecol. Res. 46, 89–210 (2012).Article 

    Google Scholar 
    Traveset, A., Castro-Urgal, R., Rotllan-Puig, X. & Lazaro, A. Effects of habitat loss on the plant-flower visitor network structure of a dune community. Oikos 127, 45–55 (2018).Article 

    Google Scholar 
    Rezende, E. L., Lavabre, J. E., Guimaraes, P. R., Jordano, P. & Bascompte, J. Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448, 925–928 (2007).Article 
    CAS 

    Google Scholar 
    Staddon, P., Lindo, Z., Crittenden, P. D., Gilbert, F. & Gonzalez, A. Connectivity, non-random extinction and ecosystem function in experimental metacommunities. Ecol. Lett. 13, 543–552 (2010).Article 

    Google Scholar 
    Wardle, D. A., Bardgett, R. D., Callaway, R. M. & Van der Putten, W. H. Terrestrial ecosystem responses to species gains and losses. Science 332, 1273–1277 (2011).Article 
    CAS 

    Google Scholar 
    Sargent, R. D. & Ackerly, D. D. Plant-pollinator interactions and the assembly of plant communities. Trends Ecol. Evol. 23, 123–130 (2008).Article 

    Google Scholar 
    Bastolla, U. et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018–1020 (2009).Article 
    CAS 

    Google Scholar 
    Rohr, R. P., Saavedra, S. & Bascompte, J. On the structural stability of mutualistic systems. Science 345, 1253497 (2014).Article 

    Google Scholar 
    Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).Article 

    Google Scholar 
    Pawar, S. Why are plant-pollinator networks nested? Science 345, 383–383 (2014).Article 
    CAS 

    Google Scholar 
    Kaiser-Bunbury, C. N., Muff, S., Memmott, J., Muller, C. B. & Caflisch, A. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13, 442–452 (2010).Article 

    Google Scholar 
    Evans, D. M., Pocock, M. J. O. & Memmott, J. The robustness of a network of ecological networks to habitat loss. Ecol. Lett. 16, 844–852 (2013).Article 

    Google Scholar 
    Ponisio, L. C., Gaiarsa, M. P. & Kremen, C. Opportunistic attachment assembles plant-pollinator networks. Ecol. Lett. 20, 1261–1272 (2017).Article 

    Google Scholar 
    Wilson, M. C. et al. Habitat fragmentation and biodiversity conservation: key findings and future challenges. Landsc. Ecol. 31, 219–227 (2016).Article 

    Google Scholar 
    Zhong, L., Didham, R. K., Liu, J., Jin, Y. & Yu, M. Community re-assembly and divergence of woody plant traits in an island-mainland system after more than 50 years of regeneration. Divers. Distrib. 27, 1435–1448 (2021).Article 

    Google Scholar 
    Liu, J. et al. The asymmetric relationships of the distribution of conspecific saplings and adults in forest fragments. J. Plant Ecol. 13, 398–404 (2020).Article 
    CAS 

    Google Scholar 
    Ewers, R. M., Bartlam, S. & Didham, R. K. Altered species interactions at forest edges: contrasting edge effects on bumble bees and their phoretic mite loads in temperate forest remnants. Insect Conserv. Divers. 6, 598–606 (2013).Article 

    Google Scholar 
    Wardhaugh, C. W. The spatial and temporal distributions of arthropods in forest canopies: uniting disparate patterns with hypotheses for specialisation. Biol. Rev. Camb. Philos. Soc. 89, 1021–1041 (2015).Article 

    Google Scholar 
    Lowman, M. Life in the treetops – an overview of forest canopy science and its future directions. Plants People Planet 3, 16–21 (2021).Article 

    Google Scholar 
    Nakamura, A. et al. Forests and their canopies: achievements and horizons in canopy science. Trends Ecol. Evol. 32, 438–451 (2017).Article 

    Google Scholar 
    Lennartsson, T. Extinction thresholds and disrupted plant-pollinator interactions in fragmented plant populations. Ecology 83, 3060–3072 (2002).
    Google Scholar 
    Aguilar, R., Ashworth, L., Galetto, L. & Aizen, M. A. Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecol. Lett. 9, 968–980 (2006).Article 

    Google Scholar 
    Kremen, C. et al. Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecol. Lett. 10, 299–314 (2007).Article 

    Google Scholar 
    Goulson, D., Nicholls, E., Botias, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).Article 

    Google Scholar 
    Gathmann, A. & Tscharntke, T. Foraging ranges of solitary bees. J. Anim. Ecol. 71, 757–764 (2002).Article 

    Google Scholar 
    Winfree, R., Bartomeus, I. & Cariveau, D. P. Native pollinators in anthropogenic habitats. Annu. Rev. Entomol. 42, 1–22 (2011).
    Google Scholar 
    Torné-Noguera, A. et al. Determinants of spatial distribution in a bee community: nesting resources, flower resources, and body size. PLoS ONE 9, e97255 (2014).Article 

    Google Scholar 
    Roswell, M., Dushoff, J. & Winfree, R. A conceptual guide to measuring species diversity. Oikos 130, 321–338 (2021).Article 

    Google Scholar 
    Schoereder, J. H. et al. Should we use proportional sampling for species-area studies? J. Biogeogr. 31, 1219–1226 (2004).Article 

    Google Scholar 
    Jordano, P. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. Am. Nat. 129, 657–677 (1987).Article 

    Google Scholar 
    Devoto, M., Medan, D. & Montaldo, N. H. Patterns of interaction between plants and pollinators along an environmental gradient. Oikos 109, 461–472 (2005).Article 

    Google Scholar 
    Petanidou, T., Kallimanis, A. S., Tzanopoulos, J., Sgardelis, S. P. & Pantis, J. D. Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecol. Lett. 11, 564–575 (2008).Article 

    Google Scholar 
    Brodie, J. F. et al. Secondary extinctions of biodiversity. Trends Ecol. Evol. 29, 664–672 (2014).Article 

    Google Scholar 
    Vazquez, D. P. & Aizen, M. A. Asymmetric specialization: a pervasive feature of plant-pollinator interactions. Ecology 85, 1251–1257 (2004).Article 

    Google Scholar 
    Memmott, J., Waser, N. M. & Price, M. V. Tolerance of pollination networks to species extinctions. Proc. R. Soc. Lond. B 271, 2605–2611 (2004).
    Google Scholar 
    Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical forests in the Anthropocene. Annu. Rev. Environ. Resour. 39, 125–159 (2014).Article 

    Google Scholar 
    Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827–832 (2015).Article 
    CAS 

    Google Scholar 
    Fletcher, R. J. Jr et al. Is habitat fragmentation good for biodiversity? Biol. Conserv. 226, 9–15 (2018).Article 

    Google Scholar 
    Ren, P., Si, X. & Ding, P. Stable species and interactions in plant-pollinator networks deviate from core position in fragmented habitats. Ecography 2022, e06102 (2022).Article 

    Google Scholar 
    Fortuna, M. A. et al. Nestedness versus modularity in ecological networks: two sides of the same coin? J. Anim. Ecol. 79, 811–817 (2010).
    Google Scholar 
    Bascompte, J., Jordano, P., Melian, C. J. & Olesen, J. M. The nested assembly of plant-animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387 (2003).Article 
    CAS 

    Google Scholar 
    Almeida-Neto, M., Guimaraes, P., Guimaraes, P. R. Jr, Loyola, R. D. & Ulrich, W. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117, 1227–1239 (2008).Article 

    Google Scholar 
    Ulrich, W., Almeida-Neto, M. & Gotelli, N. J. A consumer’s guide to nestedness analysis. Oikos 118, 3–17 (2009).Article 

    Google Scholar 
    Dicks, L. V., Corbet, S. A. & Pywell, R. F. Compartmentalization in plant-insect flower visitor webs. J. Anim. Ecol. 71, 32–43 (2002).Article 

    Google Scholar 
    Beckett, S. J. Improved community detection in weighted bipartite networks. R. Soc. Open Sci. 3, 140536 (2016).Article 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-7 (2020). https://CRAN.R-project.org/package=veganDormann, C. F. et al. bipartite: Visualising Bipartite Networks and Calculating Some (Ecological) Indices. R package version 2.16 (2021). https://CRAN.R-project.org/package=bipartitePocock, M. J. O., Evans, D. M. & Memmott, J. The robustness and restoration of a network of ecological networks. Science 335, 973–977 (2012).Article 
    CAS 

    Google Scholar 
    Scherber, C. et al. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468, 553–556 (2010).Article 
    CAS 

    Google Scholar 
    Schleuning, M. et al. Ecological networks are more sensitive to plant than to animal extinction under climate change. Nat. Commun. 7, 13965 (2016).Article 
    CAS 

    Google Scholar 
    Shipley, B. Confirmatory path analysis in a generalized multilevel context. Ecology 90, 363–368 (2009).Article 

    Google Scholar 
    Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar 
    Grace, J. B., Scheiner, S. M. & Schoolmaster, D. R. Jr. Structural equation modeling: building and evaluating causal models. In Ecological Statistics: From Principles to Applications (eds Fox, G. A. et al.), 8, 168–199 (Oxford Univ. Press, 2015).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2014).
    Google Scholar 
    Shipley, B. The AIC model selection method applied to path analytic models compared using a d-separation test. Ecology 94, 560–564 (2013).Article 

    Google Scholar 
    Murphy, M. semEff: Automatic Calculation of Effects for Piecewise Structural Equation Models. R package version 0.6.0 (2021). https://CRAN.R-project.org/package=semEffDudgeon, P. A comparative investigation of confidence intervals for independent variables in linear regression. Multivar. Behav. Res. 51, 139–153 (2016).Article 

    Google Scholar 
    Gotelli, N. J. & Graves, G. R. Null Models in Ecology (Smithsonian Inst. Press, 1996).Jung, V., Violle, C., Mondy, C., Hoffmann, L. & Muller, S. Intraspecific variability and trait-based community assembly. J. Ecol. 98, 1134–1140 (2010).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020). More

  • in

    Timely sown maize hybrids improve the post-anthesis dry matter accumulation, nutrient acquisition and crop productivity

    Srivastava, R. K., Mequanint, F., Chakraborty, A., Panda, R. K. & Halder, D. Augmentation of maize yield by strategic adaptation to cope with climate change for a future period in Eastern India. J. Clean. Prod. 339, 130599 (2022).
    Google Scholar 
    Pooniya, V. et al. Six years of conservation agriculture and nutrient management in maize–mustard rotation: Impact on soil properties, system productivity and profitability. Field Crops Res. 260, 108002 (2021).
    Google Scholar 
    Tsimba, R., Edmeades, G. O., Millner, J. P. & Kemp, P. D. The effect of planting date on maize grain yields and yield components. Field Crops Res. 150, 135–144 (2013).
    Google Scholar 
    Maresma, A., Ballesta, A., Santiveri, F. & Lloveras, J. Sowing date affects maize development and yield in irrigated mediterranean environments. Agriculture 9(3), 67 (2019).
    Google Scholar 
    Srivastava, R. K., Panda, R. K., Chakraborty, A. & Halder, D. Enhancing grain yield, biomass and nitrogen use efficiency of maize by varying sowing dates and nitrogen rate under rainfed and irrigated conditions. Field Crops Res. 221, 339–349 (2018).
    Google Scholar 
    Van Roekel, R. J. & Coulter, J. A. Agronomic responses of corn hybrids to row width and plant density. Agronomy J. 104(3), 612–620 (2012).
    Google Scholar 
    Santiveri, F., Royo, C. & Romagosa, I. Growth and yield responses of spring and winter triticale cultivated under Mediterranean conditions. Eur. J. Agron. 20(3), 281–292 (2004).
    Google Scholar 
    Masoni, A., Ercoli, L., Mariotti, M. & Arduini, I. Post-anthesis accumulation and remobilization of dry matter, nitrogen and phosphorus in durum wheat as affected by soil type. Eur. J. Agron. 26(3), 179–186 (2007).CAS 

    Google Scholar 
    Yang, W., Peng, S., Dionisio-Sese, M. L., Laza, R. C. & Visperas, R. M. Grain filling duration, a crucial determinant of genotypic variation of grain yield in field-grown tropical irrigated rice. Field Crops Res. 105, 221–227 (2008).
    Google Scholar 
    Wei, H. et al. Comparisons of grain yield and nutrient accumulation and translocation in high-yielding japonica/indica hybrids, indica hybrids, and japonica conventional varieties. Field Crops Res. 204, 101–109 (2017).
    Google Scholar 
    Wu, H. et al. Effects of post-anthesis nitrogen uptake and translocation on photosynthetic production and rice yield. Sci. Rep. 8(1), 1–11 (2018).ADS 

    Google Scholar 
    Laza, M. R., Peng, S., Akita, S. & Saka, H. Contribution of biomass partitioning and translocation to grain yield under sub-optimum growing conditions in irrigated rice. Plant Prod. Sci. 6(1), 28–35 (2003).
    Google Scholar 
    Gao, H. et al. Intercropping modulates the accumulation and translocation of dry matter and nitrogen in maize and peanut. Field Crops Res. 284, 108561 (2022).
    Google Scholar 
    Yang, Y. et al. Solar radiation effects on dry matter accumulations and transfer in maize. Front. Plant Sci. 12, 1927 (2021).
    Google Scholar 
    Jamshidi, A. & Javanmard, H. R. Evaluation of barley (Hordeum vulgare L.) genotypes for salinity tolerance under field conditions using the stress indices. Ain Shams Eng. J. 9(4), 2093–2099 (2018).
    Google Scholar 
    Tyagi, B. S. et al. Identification of wheat cultivars for low nitrogen tolerance using multivariable screening approaches. Agronomy 10(3), 417 (2020).CAS 

    Google Scholar 
    Fischer, R. A. & Maurer, R. Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust. J. Agric. Res. 29(5), 897–912 (1978).
    Google Scholar 
    Fernandez, G. C. Effective selection criteria for assessing plant stress tolerance. In Proceeding of the International Symposium on Adaptation of Vegetables and other Food Crops in Temperature and Water Stress, Aug. 13–16, Shanhua, Taiwan. 257–270 (1992).Bouslama, M. & Schapaugh, W. T. Jr. Stress tolerance in soybeans. I. Evaluation of three screening techniques for heat and drought tolerance 1. Crop sci. 24(5), 933–937 (1984).
    Google Scholar 
    Ciampitti, I. A. & Vyn, T. J. Grain nitrogen source changes over time in maize: A review. Crop Sci. 53(2), 366–377 (2013).CAS 

    Google Scholar 
    Chen, Y. et al. Characterization of the plant traits contributed to high grain yield and high grain nitrogen concentration in maize. Field Crops Res. 159, 1–9 (2014).
    Google Scholar 
    Mi, G. et al. Nitrogen uptake and remobilization in maize hybrids differing in leaf senescence. J. plant nutr. 26(1), 237–247 (2003).CAS 

    Google Scholar 
    Tollenaar, M. & Lee, E. A. Dissection of physiological processes underlying grain yield in maize by examining genetic improvement and heterosis. Maydica 51(2), 399 (2006).
    Google Scholar 
    Samonte, S. O. P. et al. Nitrogen utilization efficiency: Relationships with grain yield, grain protein, and yield-related traits in rice. Agronomy J. 98(1), 168–176 (2006).CAS 

    Google Scholar 
    Qiao, J., Yang, L., Yan, T., Xue, F. & Zhao, D. Nitrogen fertilizer reduction in rice production for two consecutive years in the Taihu Lake area. Agric. Ecosyst. Environ. 146(1), 103–112 (2012).CAS 

    Google Scholar 
    Marschner, P. Marschner’s Mineral Nutrition of Higher Plants 3rd edn. (Academic Press, 2012).
    Google Scholar 
    Ning, P., Li, S., Yu, P., Zhang, Y. & Li, C. Post-silking accumulation and partitioning of dry matter, nitrogen, phosphorus and potassium in maize varieties differing in leaf longevity. Field Crops Res. 144, 19–27 (2013).
    Google Scholar 
    Hawkesford, M. et al. Functions of macronutrients. In Marschners Mineral Nutrition of Higher Plants 3rd edn (ed. Marschner, P.) 178–189 (Academic Press, 2012).
    Google Scholar 
    Palta, J. A. et al. Large root systems: Are they useful in adapting wheat to dry environments?. Funct. Plant Biol. 38(5), 347–354 (2011).
    Google Scholar 
    Pooniya, V., Palta, J. A., Chen, Y., Delhaize, E. & Siddique, K. H. Impact of the TaMATE1B gene on above and below-ground growth of durum wheat grown on an acid and Al3+-toxic soil. Plant Soil 447(1), 73–84 (2020).CAS 

    Google Scholar 
    Bonelli, L. E., Monzon, J. P., Cerrudo, A., Rizzalli, R. H. & Andrade, F. H. Maize grain yield components and source-sink relationship as affected by the delay in sowing date. Field Crops Res. 198, 215–225 (2016).
    Google Scholar 
    Sorensen, I., Stone, P. & Rogers, B. Effect of sowing time on yield of a short and a long season maize hybrid. Proc. Agron. Soc. NZ 30, 63–66 (2000).
    Google Scholar 
    Tsimba, R., Edmeades, G. O., Millner, J. P. & Kemp, P. D. The effect of planting date on maize: Phenology, thermal time durations and growth rates in a cool temperate climate. Field Crops Res. 150, 145–155 (2013).
    Google Scholar 
    Zhou, B. et al. Maize kernel weight responses to sowing date-associated variation in weather conditions. Crop J. 5(1), 43–51 (2017).
    Google Scholar 
    Cirilo, A. G. & Andrade, F. H. Sowing date and maize productivity: I. Crop growth and dry matter partitioning. Crop Sci. 34(4), 1039–1043 (1994).
    Google Scholar 
    Shi, Y. et al. Tillage practices affect dry matter accumulation and grain yield in winter wheat in the North China Plain. Soil Till. Res. 160, 73–81 (2016).
    Google Scholar 
    He, P., Zhou, W. & Jin, J. Carbon and nitrogen metabolism related to grain formation in two different senescent types of maize. J. Plant Nutrit. 27(2), 295–311 (2004).CAS 

    Google Scholar 
    Pommel, B. et al. Carbon and nitrogen allocation and grain filling in three maize hybrids differing in leaf senescence. Eur. J. Agron. 24(3), 203–211 (2006).CAS 

    Google Scholar 
    Clarke, J. M., Campbell, C. A., Cutforth, H. W., DePauw, R. M. & Winkleman, G. E. Nitrogen and phosphorus uptake, translocation, and utilization efficiency of wheat in relation to environment and cultivar yield and protein levels. Can. J. Plant Sci. 70(4), 965–977 (1990).CAS 

    Google Scholar 
    Mardeh, A. S. S., Ahmadi, A., Poustini, K. & Mohammadi, V. Evaluation of drought resistance indices under various environmental conditions. Field Crops Res. 98(2–3), 222–229 (2006).
    Google Scholar 
    Naderi, A., Majidi-Harvan, E., Hashemi-Dezfoli, A., Rezaei, A. & Normohamadi, G. Analysis of efficiency of drought tolerance indices in crop plants and introduction of a new criteria. Seed Plant 15(4), 390–402 (1999).
    Google Scholar 
    Zeng, W. et al. Comparative proteomics analysis of the seedling root response of drought-sensitive and drought-tolerant maize varieties to drought stress. Int. J. Mol. Sci. 20(11), 2793 (2019).CAS 

    Google Scholar 
    Hajibabaei, M. & Azizi, F. Evaluation of drought tolerance indices in some new hybrids of corn. Electron. J. Crop Prod. 3, 139–155 (2011).
    Google Scholar 
    Zhao, J. et al. Yield and water use of drought-tolerant maize hybrids in a semiarid environment. Field Crops Res. 216, 1–9 (2018).
    Google Scholar 
    Fageria, N. K. Nitrogen harvest index and its association with crop yields. J. Plant Nutri. 37(6), 795–810 (2014).CAS 

    Google Scholar 
    Raghuram, N., Sachdev, M. S. & Abrol, Y. P. Towards an integrative understanding of reactive nitrogen. In Agricultural Nitrogen Use & Its Environmental Implications (eds Abrol, Y. P. et al.) 1–6 (I.K. International Publishing House Pvt. Ltd., 2007).
    Google Scholar 
    Baligar, V. C., Fageria, N. K. & He, Z. L. Nutrient use efficiency in plants. Commun. Soil Sci. Plant Anal. 32(7–8), 921–950 (2001).CAS 

    Google Scholar 
    Foulkes, M. J. et al. Identifying traits to improve the nitrogen economy of wheat: Recent advances and future prospects. Field Crops Res. 114(3), 329–342 (2009).
    Google Scholar 
    Gaju, O. et al. Identification of traits to improve the nitrogen-use efficiency of wheat genotypes. Field Crops Res. 123(2), 139–152 (2011).
    Google Scholar 
    Ehdaie, B. A. H. M. A. N., Mohammadi, S. A. & Nouraein, M. QTLs for root traits at mid-tillering and for root and shoot traits at maturity in a RIL population of spring bread wheat grown under well-watered conditions. Euphytica 211(1), 17–38 (2016).
    Google Scholar 
    Piper, C. S. Soil and Plant Analysis (Adelaide University, 1950).
    Google Scholar 
    Subbiah, B. V. & Asija, G. L. A rapid method for the estimation of nitrogen in soil. Curr. Sci. 26, 259–260 (1956).
    Google Scholar 
    Olsen, S. R., Cole, C. V., Watanabe, F. S. & Dean, L. A. Estimation of Available Phosphorus in Soil by Extraction with Sodium Carbonate (USDA, 1954).
    Google Scholar 
    Hanway, J. J. & Heidel, H. Soil Analysis Methods as used in Iowa State College Soil Testing Laboratory, Bulletin 57 (Iowa State College of Agriculture, 1952).
    Google Scholar 
    Walkley, A. L. & Black, I. A. An examination of the Degtjareff method for determination of soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29–38 (1934).ADS 
    CAS 

    Google Scholar 
    Ntanos, D. A. & Koutroubas, S. D. Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions. Field Crops Res. 74, 93–101 (2002).
    Google Scholar 
    Prasad, R., Shivay, Y. S., Kumar, D., & Sharma, S. N. Learning by doing exercises in soil fertility (A practical manual for soil fertility). Division of Agronomy, Indian Agricultural Research Institute, India, (2006).Jiang, L. et al. Characterizing physiological N-use efficiency as influenced by nitrogen management in three rice cultivars. Field Crops Res. 88, 239–250 (2004).
    Google Scholar 
    Dai, X. et al. Managing the seeding rate to improve nitrogen-use efficiency of winter wheat. Field Crops Res. 154, 100–109 (2013).
    Google Scholar 
    Liu, W. et al. Root growth, water and nitrogen use efficiencies in winter wheat under different irrigation and nitrogen regimes in North China Plain. Front. Plant Sci. 9, 1798 (2018).
    Google Scholar 
    Gomez, K. A. & Gomez, A. A. Statistical Procedures for Agricultural Research 2nd edn, 180–209 (Wiley, 1984).
    Google Scholar  More

  • in

    Response diversity as a sustainability strategy

    Davis, K. F., Downs, S. & Gephart, J. A. Towards food supply chain resilience to environmental shocks. Nat. Food 2, 54–65 (2021).Article 

    Google Scholar 
    Lempert, R. J. & Collins, M. T. Managing the risk of uncertain threshold responses: comparison of robust, optimum, and precautionary approaches. Risk Anal. 27, 1009–1026 (2007).Article 

    Google Scholar 
    Garnett, P., Doherty, B. & Heron, T. Vulnerability of the United Kingdom’s food supply chains exposed by COVID-19. Nat. Food 1, 315–318 (2020).Article 
    CAS 

    Google Scholar 
    Abson, D. J. et al. Leverage points for sustainability transformation. Ambio 46, 30–39 (2017).Article 

    Google Scholar 
    Westley, F. et al. Tipping toward sustainability: emerging pathways of transformation. Ambio 40, 762–780 (2011).Article 

    Google Scholar 
    Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the Anthropocene: the Great Acceleration. Anthr. Rev. 2, 81–98 (2015).
    Google Scholar 
    Jouffray, J.-B., Blasiak, R., Norström, A. V., Österblom, H. & Nyström, M. The blue acceleration: the trajectory of human expansion into the ocean. One Earth 2, 43–54 (2020).Article 

    Google Scholar 
    Adger, W. N., Eakin, H. & Winkels, A. Nested and teleconnected vulnerabilities to environmental change. Front. Ecol. Environ. 7, 150–157 (2009).Article 

    Google Scholar 
    Nyström, M. et al. Anatomy and resilience of the global production ecosystem. Nature 575, 98–108 (2019).Article 

    Google Scholar 
    Mason, W. & Watts, D. J. Collaborative learning in networks. Proc. Natl Acad. Sci. USA 109, 764–769 (2012).Article 
    CAS 

    Google Scholar 
    Helbing, D. Globally networked risks and how to respond. Nature 497, 51–59 (2013).Article 
    CAS 

    Google Scholar 
    Worm, B. & Paine, R. T. Humans as a hyperkeystone species. Trends Ecol. Evol. 31, 600–607 (2016).Article 

    Google Scholar 
    Crutzen, P. J. & Stoermer, E. F. in The Future of Nature (eds Robin, L. et al.) 479–490 (Yale Univ. Press, 2017); https://doi.org/10.12987/9780300188479-041Ellis, E. C. Anthropogenic transformation of the terrestrial biosphere. Phil. Trans. R. Soc. A 369, 1010–1035 (2011).Article 

    Google Scholar 
    Senevirante, S. I. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1513–1766 (IPCC, Cambridge Univ. Press, 2021).Frank, A. B. et al. Dealing with femtorisks in international relations. Proc. Natl Acad. Sci. USA 111, 17356–17362 (2014).Article 
    CAS 

    Google Scholar 
    Folke, C. et al. Our future in the Anthropocene biosphere. Ambio 50, 834–869 (2021).Article 

    Google Scholar 
    Walker, B. & Salt, D. Resilience Practice: Building Capacity to Absorb Disturbance and Maintain Function (Island Press/Center for Resource Economics, 2012); https://doi.org/10.5822/978-1-61091-231-0Biggs, R., Schlüter, M. & Schoon, M. L. (eds) Principles for Building Resilience: Sustaining Ecosystem Services in Social–Ecological Systems (Cambridge Univ. Press, 2015); https://doi.org/10.1017/CBO9781316014240Cervantes Saavedra, M. de & Rutherford, J. Don Quixote: The Ingenious Hidalgo de la Mancha (Penguin, 2003).Coronese, M., Lamperti, F., Keller, K., Chiaromonte, F. & Roventini, A. Evidence for sharp increase in the economic damages of extreme natural disasters. Proc. Natl Acad. Sci. USA 116, 21450–21455 (2019).Article 
    CAS 

    Google Scholar 
    Cottrell, R. S. et al. Food production shocks across land and sea. Nat. Sustain. 2, 130–137 (2019).Article 

    Google Scholar 
    Elmqvist, T. et al. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1, 488–494 (2003).Article 

    Google Scholar 
    Arrow, K. J. & Fisher, A. C. Environmental preservation, uncertainty, and irreversibility. Q. J. Econ. 88, 312–319 (1974).Article 

    Google Scholar 
    Dixit, A. K. & Pindyck, R. S. Investment under Uncertainty (Princeton Univ. Press, 1994).Markowitz, H. Portfolio selection. J. Finance 7, 77–91 (1952).
    Google Scholar 
    Sharpe, W. F. Capital asset prices: a theory of market equilibrium under conditions of risk. J. Finance 19, 425–442 (1964).
    Google Scholar 
    Cifdaloz, O., Regmi, A., Anderies, J. M. & Rodriguez, A. A. Robustness, vulnerability, and adaptive capacity in small-scale social–ecological systems: the Pumpa Irrigation System in Nepal. Ecol. Soc. 15, art39 (2010).Article 

    Google Scholar 
    Levin, S. A. et al. Governance in the face of extreme events: lessons from evolutionary processes for structuring interventions, and the need to go beyond. Ecosystems 25, 697–711 (2022).Article 

    Google Scholar 
    Peterson, G., Allen, C. R. & Holling, C. S. Ecological resilience, biodiversity, and scale. Ecosystems 1, 6–18 (1998).Article 

    Google Scholar 
    Nyström, M. Redundancy and response diversity of functional groups: implications for the resilience of coral reefs. Ambio 35, 30–35 (2006).Article 

    Google Scholar 
    Kummu, M. et al. Interplay of trade and food system resilience: gains on supply diversity over time at the cost of trade independency. Glob. Food Secur. 24, 100360 (2020).Article 

    Google Scholar 
    Hedblom, M., Andersson, E. & Borgström, S. Flexible land-use and undefined governance: from threats to potentials in peri-urban landscape planning. Land Use Policy 63, 523–527 (2017).Article 

    Google Scholar 
    Haldane, A. Rethinking the Financial Network—Speech by Andy Haldane (Bank of England, 2009); https://www.bankofengland.co.uk/speech/2009/rethinking-the-financial-networkHaldane, A. G. & May, R. M. Systemic risk in banking ecosystems. Nature 469, 351–355 (2011).Article 
    CAS 

    Google Scholar 
    Carpenter, S. R., Brock, W. A., Folke, C., van Nes, E. H. & Scheffer, M. Allowing variance may enlarge the safe operating space for exploited ecosystems. Proc. Natl Acad. Sci. USA 112, 14384–14389 (2015).Article 
    CAS 

    Google Scholar 
    Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H. & Bellwood, D. R. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28, 167–177 (2013).Article 

    Google Scholar 
    Leslie, P. & McCabe, J. T. Response diversity and resilience in social–ecological systems. Curr. Anthropol. 54, 114–143 (2013).Article 

    Google Scholar 
    Biggs, R. et al. Toward principles for enhancing the resilience of ecosystem services. Annu. Rev. Environ. Resour. 37, 421–448 (2012).Article 

    Google Scholar 
    Anderies, J. M. Managing variance: key policy challenges for the Anthropocene. Proc. Natl Acad. Sci. USA 112, 14402–14403 (2015).Article 
    CAS 

    Google Scholar 
    Csete, M. E. & Doyle, J. C. Reverse engineering of biological complexity. Science 295, 1664–1669 (2002).Article 
    CAS 

    Google Scholar 
    Carlson, J. M. & Doyle, J. Highly optimized tolerance: robustness and design in complex systems. Phys. Rev. Lett. 84, 2529–2532 (2000).Article 
    CAS 

    Google Scholar 
    Kitano, H. Biological robustness. Nat. Rev. Genet. 5, 826–837 (2004).Article 
    CAS 

    Google Scholar 
    Csete, M. & Doyle, J. Bow ties, metabolism and disease. Trends Biotechnol. 22, 446–450 (2004).Article 
    CAS 

    Google Scholar 
    Anderies, J. M., Rodriguez, A. A., Janssen, M. A. & Cifdaloz, O. Panaceas, uncertainty, and the robust control framework in sustainability science. Proc. Natl Acad. Sci. USA 104, 15194–15199 (2007).Article 
    CAS 

    Google Scholar 
    Rodriguez, A. A., Cifdaloz, O., Anderies, J. M., Janssen, M. A. & Dickeson, J. Confronting management challenges in highly uncertain natural resource systems: a robustness–vulnerability trade-off approach. Environ. Model. Assess. 16, 15–36 (2011).Article 

    Google Scholar 
    Charpentier, A. Insurability of climate risks. Geneva Pap. Risk Insur. Issues Pract. 33, 91–109 (2008).Article 

    Google Scholar 
    Alfieri, L., Feyen, L. & Di Baldassarre, G. Increasing flood risk under climate change: a pan-European assessment of the benefits of four adaptation strategies. Climatic Change 136, 507–521 (2016).Article 

    Google Scholar 
    Isakson, S. R. Derivatives for development? Small-farmer vulnerability and the financialization of climate risk management: small-farmer vulnerability and financialization. J. Agrar. Change 15, 569–580 (2015).Article 

    Google Scholar 
    Müller, B. & Kreuer, D. Ecologists should care about insurance, too. Trends Ecol. Evol. 31, 1–2 (2016).Article 

    Google Scholar 
    Walker, B. et al. Looming global-scale failures and missing institutions. Science 325, 1345–1346 (2009).Article 
    CAS 

    Google Scholar 
    Berkes, F. et al. Globalization, roving bandits, and marine resources. Science 311, 1557–1558 (2006).Article 
    CAS 

    Google Scholar 
    Walker, B. H., Langridge, J. L. & McFarlane, F. Resilience of an Australian savanna grassland to selective and non-selective perturbations. Austral Ecol. 22, 125–135 (1997).Article 

    Google Scholar 
    Polasky, S. et al. Corridors of clarity: four principles to overcome uncertainty paralysis in the Anthropocene. BioScience 70, 1139–1144 (2020).Article 

    Google Scholar 
    Engström, G. et al. Carbon pricing and planetary boundaries. Nat. Commun. 11, 4688 (2020).Article 

    Google Scholar 
    Sun, J. C., Ugolini, S. & Vivier, E. Immunological memory within the innate immune system. EMBO J. https://doi.org/10.1002/embj.201387651 (2014).Vély, F. et al. Evidence of innate lymphoid cell redundancy in humans. Nat. Immunol. 17, 1291–1299 (2016).Article 

    Google Scholar 
    Grimm, N., Cook, E., Hale, R. & Iwaniec, D. in The Routledge Handbook of Urbanization and Global Environmental Change (eds Seto, K. et al.) Ch. 14 (Routledge, 2015).Jiang, B., Mak, C. N. S., Zhong, H., Larsen, L. & Webster, C. J. From broken windows to perceived routine activities: examining impacts of environmental interventions on perceived safety of urban alleys. Front. Psychol. 9, 2450 (2018).Article 

    Google Scholar 
    Andersson, E. et al. Urban climate resilience through hybrid infrastructure. Curr. Opin. Environ. Sustain. 55, 101158 (2022).Article 

    Google Scholar 
    Douglas, M. & Wildavsky, A. Risk and Culture: An Essay on the Selection of Technological and Environmental Dangers (Univ. of California Press, 1983).Weber, E. U., Ames, D. R. & Blais, A.-R. ‘How do I choose thee? Let me count the ways’: a textual analysis of similarities and differences in modes of decision-making in China and the United States. Manage. Organ. Rev. 1, 87–118 (2005).Article 

    Google Scholar 
    Kunreuther, H. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 2 (IPCC, Cambridge Univ. Press, 2014); https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_chapter2.pdfMeadows, D. H. Thinking in Systems: A Primer (Earthscan, 2009).Nyborg, K. et al. Social norms as solutions. Science 354, 42–43 (2016).Article 
    CAS 

    Google Scholar 
    Hall, P. A. & Lamont, M. (eds) Social Resilience in the Neoliberal Era (Cambridge Univ. Press, 2013).Norström, A. V. et al. Principles for knowledge co-production in sustainability research. Nat. Sustain. 3, 182–190 (2020).Article 

    Google Scholar 
    United Nations Conference on Trade and Development Review of Maritime Transport 2017 (United Nations, 2017).United Nations Conference on Trade and Development Review of Maritime Transport 2018 (United Nations, 2019).Bailey, R. & Wellesley, L. Chatham House Report 2017: Chokepoints and Vulnerabilities in Global Food Trade (Energy, Environment and Resources Department, Chatham House, The Royal Institute of International Affairs, 2017); https://www.chathamhouse.org/sites/default/files/publications/research/2017-06-27-chokepoints-vulnerabilities-global-food-trade-bailey-wellesley-final.pdfKhoury, C. K. et al. Increasing homogeneity in global food supplies and the implications for food security. Proc. Natl Acad. Sci. USA 111, 4001–4006 (2014).Article 
    CAS 

    Google Scholar 
    Hendrickson, M. K. Resilience in a concentrated and consolidated food system. J. Environ. Stud. Sci. 5, 418–431 (2015).Article 

    Google Scholar 
    Öborn, I. et al. Restoring rangelands for nutrition and health for humans and livestock. in The XXIV International Grassland Congress / XI International Rangeland Congress (Sustainable Use of Grassland and Rangeland Resources for Improved Livelihoods) (ed. National Organizing Committee of 2021 IGC/IRC Congress) (Kenya Agricultural and Livestock Research Organization, 2022).Vulnerable Supply Chains—Interim Report (Productivity Commission, Australian Government, 2021); https://www.pc.gov.au/inquiries/completed/supply-chains/interim More