More stories

  • in

    Preparation and application of a thidiazuron·diuron ultra-low-volume spray suitable for plant protection unmanned aerial vehicles

    Screening of solvent and adjuvant
    The results of solvent screening are shown in Table 1. The original pesticide could not be completely dissolved using a single solvent. However, 5% N-methyl-2-pyrrolidone + 10% cyclohexanone could completely dissolve the original pesticide. There was no solid precipitation at room temperature, so the formulation could be used for the subsequent experiment. According to Table 2, a mixture of sulfonate adjuvants (70b) and fatty alcohol polyoxyethylene ether adjuvants (AEO-4, -5, -7, -9, 992) could stabilize the system in a single, transparent, homogeneous phase. Therefore, sulfonate adjuvant (70b) was selected and mixed with five adjuvants of the AEO series to prepare thidiazuron·diuron ultra-low-volume sprays, numbered 1–5 (as shown in Table 3).
    Table 1 Selection of solvent type and dosage (%: mass fraction).
    Full size table

    Table 2 Selection of adjuvants type and dosage (%: mass fraction).
    Full size table

    Table 3 Ultra-low-volume formulations used in this study.
    Full size table

    Surface tension measurement
    The critical surface tension of cotton leaves is 63.30–71.81 mN/m. Figure 1 shows that the surface tension of each sample was 31.67–33.37 mN/m, which was much lower than the critical surface tension of the leaf, indicating the agent was able to completely wet the leaf and be fully distributed on the leaf surface. The maximum surface tension of the reference product was 38.90 mN/m. Under the same dosage of adjuvant, sample 5 with adjuvant 992 had the smallest surface tension of 31.67 mN/m.
    Figure 1

    Surface tensions of different samples. Different letters (a–d) indicate significant differences between means. Means followed by the same letter are not significant at the 5% significance level by the LSD test (LSD = 0.05). Vertical bars indicate a standard deviation of the mean. The detailed data of the histogram is shown in Supplementary Table S1.

    Full size image

    Contact angle measurement
    According to Young’s equation, the smaller the surface tension, the smaller the contact angle40,41. Figure 2 shows the contact angle of different samples on cotton leaves and the change in contact angle over time. The contact angles of oil agents containing the adjuvant 992, AEO-7 and AEO-9 were smaller than that of the reference product, and the spreading effect was superior to that of the reference product. In the surface tension test, sample 5 had the smallest surface tension of 31.67 mN/m; this sample showed the minimum initial contact angle (39°) and a static contact angle (22°). The surface tension of the reference product was 38.90 mN/m., with the maximum initial contact angle (65.5°). Therefore, the relationship between surface tension and contact angle conformed to Young’s equation.
    Figure 2

    Contact angles of different samples on cotton leaves in 0–10 s. The detailed data of drawing the contact Angle curve is shown in Supplementary Table S2.

    Full size image

    Volatilization rate measurement
    As shown in Fig. 3, the volatilization rate of the oil agent was much lower than that of the reference product. The volatilization rate of the five treatments was 5.80–8.74%, while the volatilization rate of the reference product was 22.97%. The volatilization rate of the oil agent met the quality requirements of an ultra-low-volume spray (≤ 30%). A low volatilization rate helps with spraying defoliants in hot and dry areas such as Xinjiang, effectively preventing evaporation of the droplets and increasing deposition.
    Figure 3

    Volatilization of different samples on filter paper. Different letters (a–e) indicate significant differences between means. Means followed by the same letter are not significant at the 5% significance level by the LSD test (LSD = 0.05). Vertical bars indicate a standard deviation of the mean. The detailed data of the histogram is shown in Supplementary Table S3.

    Full size image

    Viscosity measurement
    Viscosity is an important factor affecting the atomization performance of a formulation42. Figure 4 shows that the viscosity of the five oil agents ranged from 12.9 to 18.3 mPa s, meeting the quality requirements of an ultra-low-volume spray ( 20 V), the droplet size distribution tended to be stable. This coincided with data shown in Fig. 6, where the inflection point appeared when rotation speed was 9600 rpm (voltage = 20 V).
    Figure 6

    Relationship between the rotation speed of the centrifugal spray atomizer and droplet size. D10: 10% cumulative volume diameter, D50: 50% cumulative volume diameter, D90: 90% cumulative volume diameter. The detailed data of drawing the curve is shown in Supplementary Table S6.

    Full size image

    Figure 7

    Relationship between the rotation speed of the centrifugal spray atomizer and the fog droplet spectrum. The detailed data of drawing the curve is shown in Supplementary Table S6.

    Full size image

    Therefore, we determined that the optimal working conditions for the rotary atomizer were achieved by setting the DC voltage stabilized power supply current to 1.00 A and voltage to 20 V, which were used for subsequent experiments.
    Atomization performance
    The relationship between viscosity and droplet spectrum are shown in Table 4 and Fig. 8. The cumulative volume diameter for the five treatments was less than 150 μm meeting the requirements of the ULV spray32. The cumulative volume diameter for the five treatments was larger than that for the reference product, the width of the droplet spectrum was narrower, and the droplet distribution was more uniform. Droplet size affects the drift of droplets43. The D10 of the reference product was 25.62 μm under these working conditions. This droplet size was highly susceptible to drift and deposition on non-target organisms. Water suspension was not suitable for this application at low dosage.
    Table 4 Droplet size and droplet size distribution of different sample sprays.
    Full size table

    Figure 8

    Relationship between formulation viscosity and droplet spectrum. The detailed data of drawing the figure is shown in Supplementary Table S7.

    Full size image

    As presented in Table 4, droplet size increased with increasing viscosity, which influenced the droplet spectrum. The results in Fig. 8 show that the span of droplet size decreased with the increase of viscosity, indicating that droplets with more uniform distribution could be obtained by increasing the viscosity of the formulation41.
    Droplet deposition effect
    We tested the efficacy of the ULV spray formulation by spraying cotton plants using an UAV. The test results in Table 5 indicate that increasing the dosage of application would increase droplet size, coverage, and deposition density. At the same application dosage, the droplet size of the ultra-low-volume spray was slightly larger than that of the reference product, and the coverage and deposition density were greater than those of the reference product. The droplet spectral width (Rs) of the five treatments was less than 1, and the coefficient of variation was less than 7%, indicating that the droplet distribution was relatively uniform. Among treatments, T2 had the narrowest Rs and coefficient of variation (CV), where the droplet size distribution was the most uniform. For the ultra-low-volume spray, at the application dosage of 4.5–9.0 L/ha, the droplet coverage gradually increased from 0.85 to 4.15%; the droplet deposition densities were 15.63, 17.24, 28.45, and 42.57 pcs/cm2, which were larger than requirements suggested in the literature. The droplet coverage of the reference product (T5) was 0.73%, and the deposition density was only 11.32 pcs/cm2.
    Table 5 Droplet size, coverage, deposition density, spectral width and variation coefficient for each treatment.
    Full size table

    Efficacy trials
    The efficacy of cotton defoliant is reflected in the defoliation rate and boll opening rate of cotton after application. Therefore, we surveyed the defoliation rate and boll opening rate of cotton in the test area 3–15 days after application. The results are shown in Figs. 9 and 10.
    Figure 9

    Defoliation rate 3–15 days after treatment. The detailed data of drawing the curve is shown in Supplementary Table S8.

    Full size image

    Figure 10

    Boll opening rate 3–15 days after treatment. The detailed data of drawing the curve is shown in Supplementary Table S9.

    Full size image

    Figure 9 indicates that the defoliation rates of the five treatments 15 days after the pesticide treatment were 59.82%, 63.96%, 71.40%, 77.84%, and 54.58%, respectively. The defoliation rates of T1, T2, and T5 were less than 70%.
    Application of the ultra-low-volume spray at 4.50 L/ha or 6.00 L/ha and the reference product at 6.00 L/ha had a poor defoliation effect. T4 (9.00 L/ha) was superior to the others, and the defoliation rate reached 77.84% 15 days after application. As shown in Fig. 10, the boll opening rates of the five treatments were 58.54%, 67.74%, 95.35%, 100%, and 44.68% 15 days after application. Similarly, the boll opening rates of T1, T2, and T5 were poor, with the boll opening rate of the control T5 only 44.68%. We analyzed significant differences between the defoliation rates and boll opening rates of the five treatments. The results showed that the defoliation rate and boll opening rate associated with the thidiazuron·diuron ultra-low-volume spray on cotton plants were significantly different from those of the reference product.
    Overall, the defoliation rate and boll opening rate produced by the ultra-low-volume spray were superior to those produced by the reference product. This result was consistent with data shown in Table 5. The higher the droplet coverage rate, the higher the droplet deposition density and the higher the defoliation rate and boll opening rate. T1, T2 and T5 had poor deposition effect on cotton plants, and the effective pesticide utilization rate was low, resulting in dissatisfactory defoliation rates and boll opening rates. Both the droplet coverage rate and the droplet deposition density of T3 and T4 were large. Therefore, droplets of pesticide solution could deposit more easily and uniformly on cotton leaves, allowing the plants to defoliate and open their bolls easily. More

  • in

    The UN Environment Programme needs new powers

    Indian prime minister Indira Gandhi meets Maurice Strong, who chaired the 1972 Stockholm Conference on the Human Environment. Gandhi saw UNEP’s potential at a time when other countries doubted its value.Credit: Yutaka Nagata/UN Photo

    The United Nations Environment Programme (UNEP) will be 50 next year. But the globe’s green watchdog, which helped to create the Intergovernmental Panel on Climate Change (IPCC), very nearly didn’t exist.
    During talks hosted by Sweden in 1972, low- and middle-income countries were concerned that such a body would inhibit their industrial development. Some high-income countries also questioned its creation. UK representative Solly Zuckerman, a former chief scientific adviser to prime ministers including Winston Churchill, said the science did not justify warnings that human activities could have irreversible consequences for the planet. The view in London was that, on balance, environmental pollution was for individual nations to solve — not the UN.
    But the idea of UNEP had powerful supporters, too. India’s prime minister, Indira Gandhi, foresaw its potential in enabling industry to become cleaner and more humane. And the host nation made a wise choice in picking Canadian industrialist Maurice Strong to steer the often fractious talks to success. He would become UNEP’s first executive director. Two decades later, Strong re-emerged to chair the 1992 Earth Summit in Rio de Janeiro, Brazil, which created three landmark international agreements: to protect biodiversity, safeguard the climate and combat desertification.
    UNEP has chalked up some impressive achievements in science and legislation. In 1988, working with the World Meteorological Organization, it co-founded the IPCC, whose scientific assessments have been pivotal to global climate action. It also responded to scientists’ warnings about the hole in the ozone layer, leading to the creation of the 1987 Montreal Protocol, an international law to phase out ozone-depleting chemicals.
    Strong’s successors would go on to identify emerging green-policy issues and nudge them into the mainstream. UNEP has pushed the world of finance to think about how to stop funding polluting industries. It has also advocated working with China to green its rapid industrial growth — including the Belt and Road Initiative to develop global infrastructure. It is essential that this work continues.
    UNEP also accelerated the creation of environment ministries around the world. Their ministers sit on the programme’s governing council; at their annual meeting last week, they reflected on what UNEP must do to tackle the environmental crisis. Although the environment is a rising priority for governments, businesses and civil society, progress on the UN’s flagship Sustainable Development Goals — in biodiversity, climate, land degradation, pollution, finance and more — is next to non-existent. Moreover, the degradation of nature is putting hard-won gains at risk, argues a report that UNEP commissioned as part of its half-century commemorations.
    The report, Making Peace with Nature, assesses much of the same literature as would a climate- or land-degradation assessment, but its key strength is in how it brings together researchers from across environmental science. In doing so, UNEP is helping to accelerate a mode of working that should be standard. If, for example, there is to be an assessment of how climate change affects biodiversity, it makes much more sense for this to be carried out by a joint team from the IPCC and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) than by researchers from just one of these organizations.
    The UNEP report’s authors stop short of recommending such changes to the architecture of the UN’s scientific advisory bodies. That is a missed opportunity. Also missing is a discussion and recommendations on how to make countries more accountable for their environmental pledges.
    Both these actions are sorely needed if the world is to take more meaningful steps to battle climate change and biodiversity loss. Countries have become expert in capturing data and reporting them to UN organizations. But there is no mechanism that holds nations to account. For example, there is no system to ensure compliance with targets for the Sustainable Development Goals.
    Last week, the UN produced a report in which countries published their progress towards commitments under the 2015 Paris climate agreement, known as nationally determined contributions. The agreement includes almost 200 countries, but just 75 reported their data. There are few incentives for success and no penalties for failure. Without such measures, it is hard to see how meaningful change could ever happen.
    In the past, researchers have proposed that UNEP’s member states upgrade its powers so it becomes more of a compliance body — a World Environment Organization that, like the World Trade Organization, has the power to censure countries for failing to keep to agreements. But this has been resisted as too radical a step, which would upend the autonomy of the UN biodiversity and climate organizations that UNEP itself helped to bring into being.
    Twenty years ago, there might have been some justification for such a view, but now, with the world on a path to extreme climate change, any action will need to be radical, including considering how to give UNEP more teeth.
    UNEP helped to lay the foundations for a scientific consensus on environmental decline, and it should be proud of the body of law that has been enacted globally. Alas, such measures risk being too little, too late. As it embarks on a year of reflection ahead of its anniversary, member states must consider what more they need to do to empower UNEP to tackle the planetary emergency. More

  • in

    Large-scale spatial patterns of small-mammal communities in the Mediterranean region revealed by Barn owl diet

    1.
    de Lattin, G. Grundriss der Zoogeographie (Gustav Fischer Verlag, 1976).
    2.
    Hewitt, G. M. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. Lond. 68, 87–112. https://doi.org/10.1006/bijl.1999.0332 (1999).
    Article  Google Scholar 

    3.
    Wallace, A. R. The geographical distribution of animals; with a study of the relations of living and extinct faunas as elucidating the past changes of the Earth’s surface (Harper & Brothers, 1876).

    4.
    Mittermeier, R. A., Myers, N., Mittermeier, C. G. & Robles Gil, P. Hotspots: Earth’s biologically richest and most endangered terrestrial ecoregions (CEMEX, 1999).
    Google Scholar 

    5.
    Médail, F. & Quézel, P. Biodiversity hotspots in the Mediterranean Basin: setting global conservation priorities. Conserv. Biol. 13(6), 1510–1513 (1999).
    Article  Google Scholar 

    6.
    Temple, H. J. & Cuttelod, A. (Compilers). The Status and Distribution of Mediterranean Mammals. Gland, Switzerland and Cambridge (UK: IUCN, vii+32pp, 2009).

    7.
    Blondel, J. The nature and origin of the vertebrate fauna. pp. 139–163 In: Woodward, C. J. (ed.) The Physical Geography of the Mediterranean (Oxford University Press, Oxford, 2009).

    8.
    Aulagnier, S., Hafner, P., Mitchell-Jones, A. J., Moutou, F. & Zima, J. Mammals of Europe, North Africa and the Middle East (A&C Black Publishers, 2009).
    Google Scholar 

    9.
    Horáček, I., Hanák, V. & Gaisler, J. Bats of the Palearctic region: a taxonomic and biogeographic review. In Proceedings of the VIIIth European bat research symposium (Vol. 1, pp. 11–157) (Kraków, CIC ISEZ PAN, 2000).

    10.
    Smith, C. H. A system of world mammal faunal regions. I. Logical and statistical derivation of the regions. J. Biogeogr. 10, 455–466. https://doi.org/10.2307/2844752 (1983).

    11.
    Dobson, M. Mammal distributions in the western Mediterranean: the role of human intervention. Mammal Rev. 28(2), 77–88 (1998).
    Article  Google Scholar 

    12.
    Sans-Fuentes, M. A. & Ventura, J. Distribution patterns of the small mammals (Insectivora and Rodentia) in a transitional zone between the Eurosiberian and the Mediterranean regions. J. Biogeogr. 27(3), 755–764 (2000).
    Article  Google Scholar 

    13.
    Kryštufek, B. & Vohralík, V. Mammals of Turkey and Cyprus: introduction, checklist, Insectivora (Zgodovinsko društvo za južno Primorsko, 2001).

    14.
    Kryštufek, B. A quantitative assessment of Balkan mammal diversity. In Balkan Biodiversity (pp. 79–108) (Springer, Dordrecht, 2004).

    15.
    Kryštufek, B., Vohralík, V. & Janžekovič, F. Mammals of Turkey and Cyprus: Rodentia I: Sciuridae, Dipodidae, Gliridae (Arvicolinae, 2005).
    Google Scholar 

    16.
    Kryštufek, B. & Vohralík, V. Mammals of Turkey and Cyprus, Rodentia II: Cricetinae, Murridae, Spalacidae, Calomyscidae, Capromyidae, Hystricidae Castoridae. J. Mammal. 96, 1–373 (2010).
    Google Scholar 

    17.
    Kryštufek, B., Donev, N. R. & Skok, J. Species richness and distribution of non-volant small mammals along an elevational gradient on a Mediterranean mountain. Mammalia 75(1), 3–11 (2011).
    Article  Google Scholar 

    18.
    Svenning, J. C., Fløjgaard, C. & Baselga, A. Climate, history and neutrality as drivers of mammal beta diversity in Europe: Insights from multiscale deconstruction. J. Anim. Ecol. 80(2), 393–402 (2011).
    Article  Google Scholar 

    19.
    Gaston, K., & Blackburn, T. Pattern and process in macroecology (John Wiley & Sons, 2008).

    20.
    Darwin, C. On the Origin of Species by Means of Natural Selection (J. Murray, 1859).

    21.
    Wallace, A. R. Tropical Nature and Other Essays (Macmillan, 1878).

    22.
    Hawkins, B. A. et al. Energy, water and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117. https://doi.org/10.1890/03-8006 (2002).
    Article  Google Scholar 

    23.
    Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163(2), 192–211 (2004).
    Article  Google Scholar 

    24.
    Kindlmann P, Schödelbauerová I, Dixon AF.G. Inverse latitudinal gradients in species diversity. pp. 246–257 in Storch D. et al. (eds.) Scaling Biodiversity (Cambridge University Press, 2007).

    25.
    Boone, R. B. & Krohn, W. B. Relationship between avian range limits and plant transition zones in Maine. J. Biogeogr. 27, 471–482 (2000).
    Article  Google Scholar 

    26.
    Storch, D., Evans, K. L. & Gaston, K. J. The species-area-energy relationship in orchids. Ecol. Lett. 8, 487–492. https://doi.org/10.15517/lank.v7i1-2.19504 (2005).
    Article  PubMed  Google Scholar 

    27.
    Valladares, F. et al. Global change and Mediterranean forests: current impacts and potential responses in Forests and Global Change (eds. Burslem, D. F. R. & Simonson, W. D.), 47–75 (Cambridge University Press, 2014).

    28.
    MacArthur, R. H. Patterns of Species Diversity. Geographical Ecology: Patterns in the Distributions of Species (Harper & Row, 1972).

    29.
    Whittaker, R. J. & Fernández-Palacios, J. M. Island biogeography: ecology, evolution, and conservation. Oxford University Press (2007).

    30.
    Sólymos, P. & Lele, S. R. Global pattern and local variation in species-area relationships. Glob. Ecol. Biogeogr. 21, 109–120. https://doi.org/10.1111/j.1466-8238.2011.00655.x (2012).
    Article  Google Scholar 

    31.
    Willig, M. R., Kaufman, D. M. & Stevens, R. D. Latitudinal gradients of biodiversity: patterns, scale, and synthesis. Annu. Rev. Ecol. Evol. Syst. 34, 273–309. https://doi.org/10.1146/annurev.ecolsys.34.012103.144032 (2003).
    Article  Google Scholar 

    32.
    Prevedello, J., Gotelli, N. J. & Metzger, J. A stochastic model for landscape patterns of biodiversity. Ecol. Monogr. 86, 462–479. https://doi.org/10.1002/ecm.1223 (2016).
    Article  Google Scholar 

    33.
    Blondel, J., Aronson, J., Bodiou, J. Y. & Boeuf, G. The Mediteranean region. Biological diversity in space and time (Oxford University Press, 2010).

    34.
    Vigne, J. D. The large “true” Mediterranean islands as a model for the Holocene human impact on the European vertebrate fauna? Recent data and new reflections. The Holocene history of the European vertebrate fauna. Modern aspects of research, 295–322 (1999).

    35.
    Harding, A.F., Palutikof, J. & Holt, T. The climate system. pp. 69–88 In: Woodward, C.J. (ed.) The Physical Geography of the Mediterranean (Oxford University Press, Oxford, 2009).

    36.
    Zdruli, P. Desertification in the Mediterranean Region. Mediterranean year book 2011 (European Institute of the Mediterranean, 2012).

    37.
    Bilton, D. T. et al. Mediterranean Europe as an area of endemism for small mammals rather than a source for northwards postglacial colonization. Proc. Royal Soc. B 265(1402), 1219–1226 (1998).
    CAS  Article  Google Scholar 

    38.
    Hewitt, G. M. Mediterranean peninsulas: The evolution of hotspots. In Biodiversity hotspots (pp. 123–147) (Springer, Berlin, Heidelberg, 2011).

    39.
    Bilgin, R. Back to the suture: the distribution of intraspecific genetic diversity in and around Anatolia. Int. J. Mol. Sci. 12, 4080–4103. https://doi.org/10.3390/ijms12064080 (2011).
    Article  PubMed  PubMed Central  Google Scholar 

    40.
    Vigne, J. D. The origins of mammals on the Mediterranean islands as an indicator of early voyaging. Euras. Prehistory 10(1–2), 45–56 (2014).
    Google Scholar 

    41.
    Masseti, M. Mammals of the Mediterranean islands: Homogenisation and the loss of biodiversity. Mammalia 73, 169–202. https://doi.org/10.1515/MAMM.2009.029 (2009).
    Article  Google Scholar 

    42.
    Angelici, F. M., Laurenti, A. & Nappi, A. A. checklist of the mammals of small Italian islands. Hystrix 20, 3–27. https://doi.org/10.4404/hystrix-20.1-4429 (2009).
    Article  Google Scholar 

    43.
    Cunningham, P. L. & Aspinall, S. The diet of Little Owl Athene noctua in the UAE, with notes on Barn Owl Tyto alba and Desert Eagle Owl Bubo (b.) ascalaphus. Tribulus 11, 13–15 (2001).

    44.
    Taylor, I. R. How owls select their prey: A study of Barn owls Tyto alba and their small mammal prey. Ardea 97, 635–644. https://doi.org/10.5253/078.097.0433 (2009).
    Article  Google Scholar 

    45.
    Yom-Tov, Y. & Wool, D. Do the contents of barn owl pellets accurately represent the proportion of prey species in the field?. Condor 99, 972–976. https://doi.org/10.2307/1370149 (1997).
    Article  Google Scholar 

    46.
    Dodson, P. & Wexlar, D. Taphonomic investigations of owl pellets. Paleobiology 5, 275–284 (1979).
    Article  Google Scholar 

    47.
    Heisler, L., Somers, C. & Poulin, R. Owl pellets: A more effective alternative to conventional trapping for broad-scale studies of small mammal communities. Methods Ecol. Evol. 7, 96–103. https://doi.org/10.1111/2041-210X.12454 (2015).
    Article  Google Scholar 

    48.
    Torre, I., Arrizabalaga, A. & Flaquer, C. Three methods for assessing richness and composition of small mammal communities. J. Mammal. 85, 524–530. https://doi.org/10.1644/BJK-112 (2004).
    Article  Google Scholar 

    49.
    Yalden, D. W. & Morris, P. A. The analysis of owl pellet (Occasional publications)(The Mammal Society, 1990).

    50.
    Williams, D. F. & Braun, S. E. Comparison of pitfall and conventional traps for sampling small mammal populations. J. Wildl. Manage. 47, 841–845 (1983).
    Article  Google Scholar 

    51.
    Glennon, M. J., Porter, W. F. & Demers, C. L. An alternative field technique for estimating diversity of small-mammal populations. J. Mammal. 83, 734–742. https://doi.org/10.1644/1545-1542 (2002).
    Article  Google Scholar 

    52.
    Morris, P. A., Burgis, M. J., Morris, P. A. & Holloway, R. A method for estimating total body weight of avian prey items in the diet of owls. J. Zool. 210, 642–644 (1986).
    Article  Google Scholar 

    53.
    Vukićević Radić, O., Jovanović, T. B., Matić, R. & Katarinovski, D. Age structure of yellow-necked mouse (Apodemus flavicollis Melchior 1834) in two samples obtained from live traps and owl pellets. Arch. Biol. Sci. 57, 53–56 (2005).

    54.
    Coda, J., Gomez, D., Steinmann, A. R. & Priotto, J. Small mammals in farmlands of Argentina: Responses to organic and conventional farming. Agric. Ecosyst. Environ. 211, 17–23 (2015).
    Article  Google Scholar 

    55.
    Andrade, A., de Menezes, J. F. S. & Monjeau, A. Are owl pellets good estimators of prey abundance?. J. King Saud Univ. Sci. 28, 239–244. https://doi.org/10.1016/j.jksus.2015.10.007 (2016).
    Article  Google Scholar 

    56.
    Moysi, M., Christou, M., Goutner, V., Kassinis, N. & Iezekiel, S. Spatial and temporal patterns in the diet of barn owl (Tyto alba) in Cyprus. J. Biol. Res-Thessalon. 25(1), 9 (2018).
    Article  Google Scholar 

    57.
    Romano, A., Séchaud, R. & Roulin, A. Global biogeographical patterns in the diet of a cosmopolitan predator. J. Biogeogr. 47, 1467–1481. https://doi.org/10.1111/jbi.13829 (2020).
    Article  Google Scholar 

    58.
    Baquero, R. A. & Tellería, J. L. Species richness, rarity and endemicity of European mammals: A biogeographical approach. Biodivers. Conserv. 10(1), 29–44 (2001).
    Article  Google Scholar 

    59.
    Mitchell-Jones, A. J. et al. The Atlas of European Mammals (T & AD Poyser, 1999).

    60.
    Kross, S. M., Bourbour, R. P. & Martinico, B. L. Agricultural land use, arn owl diet, and vertebrate pest control implications. Agric. Ecosyst. Environ. 223, 167–174. https://doi.org/10.1016/j.agee.2016.03.002 (2016).
    Article  Google Scholar 

    61.
    Krishnapriya, T. & Ramakrishnan, U. Higher speciation and lower extinction rates influence mammal diversity gradients in Asia. BMC Evol. Biol. 15, 11. https://doi.org/10.1186/s12862-015-0289-1 (2015).
    Article  Google Scholar 

    62.
    Kouki, J., Niemela, P. & Viitasaari, M. Reversed latitudinal gradient in species richness of sawflies (Hymenoptera, Symphyta). Ann. Zool. Fenn. 31, 83–88 (1994).
    Google Scholar 

    63.
    Rabenold, K. N. A reversed latitudinal diversity gradient in avian communities of eastern deciduous forests. Am. Nat. 114, 275–286. https://doi.org/10.1086/283474 (1979).
    Article  Google Scholar 

    64.
    Ruffino, L. & Vidal, E. Early colonization of Mediterranean islands by Rattus rattus: A review of zooarcheological data. Biol. Invasions 12(8), 2389–2394 (2010).
    Article  Google Scholar 

    65.
    Thomes, J. B. Land degradation. pp. 563–581. In: Woodward, C.J. (ed.) The Physical Geography of the Mediterranean (Oxford University Press, Oxford, 2009).

    66.
    Allen, H. D. Vegetation and ecosystem dynamics. pp. 203–227. In: Woodward, C.J. (ed.) The Physical Geography of the Mediterranean (Oxford University Press, Oxford, 2009).

    67.
    Dov Por, F. & Dimentman, C. Mare Nostrum. Neogene and anthropic natural history of the Mediterranean basin, with emphasis on the Levant (Pensoft, Sofia-Moscow, 2006).

    68.
    Zohary, D., Hopi, M. & Weiss, E. Domestication of Plants in the Old World 4th edn. (Oxford University Press, 2012).
    Google Scholar 

    69.
    Roulin, A. Spatial variation in the decline of European birds as shown by the Barn Owl Tyto alba diet. Bird Study 62, 271–275. https://doi.org/10.1080/00063657.2015.1012043 (2015).
    Article  Google Scholar 

    70.
    Pezzo, F. & Morimando, F. Food habits of the barn owl, Tyto alba, in a mediterranean rural area: Comparison with the diet of two sympatric carnivores. Boll. Zool. 62, 369–373. https://doi.org/10.1080/11250009509356091 (1995).
    Article  Google Scholar 

    71.
    Soranzo, N., Alia, R., Provan, J. & Powell, W. Patterns of variation at a mitochondrial sequence-tagged-site locus provides new insights into the postglacial history of European Pinus sylvestris populations. Mol. Ecol. 9, 1205–1211. https://doi.org/10.1046/j.1365-294x.2000.00994.x (2000).
    CAS  Article  PubMed  Google Scholar 

    72.
    van Andel, T. H. The climate and landscape of the middle part of the Weichselian Glaciation in Europe: The stage 3 project. Q. Res. 57, 2–8. https://doi.org/10.1006/qres.2001.2294 (2002).
    ADS  Article  Google Scholar 

    73.
    Johnston, D. W. & Hill, J. M. Prey selection of Common Barn-owls on islands and mainland sites. J. Raptor. Res. 21(1), 3–7 (1987).
    Google Scholar 

    74.
    Sommer, R., Zoller, H., Kock, D., Böhme, W. & Griesau, A. Feeding of the barn owl, Tyto alba with first record of the European free-tailed bat, Tadarida teniotis on the island of Ibiza (Spain, Balearics). Fol. Zool. 54, 364–370 (2005).
    Google Scholar 

    75.
    Kryštufek, B., Reed, J. Pattern and process in Balkan biodiversity – an overview in A quantitative assesment of Balkan mammal diversity (eds. Griffiths, H. I., Kryštufek, B. & Reed, J. M.) 79–108 (Kluwer Academic, 2004).

    76.
    Ricklefs, R. E. & Lovette, I. J. The roles of island area per se and habitat diversity in the species-area relationships of four Lesser Antillean faunal groups. J. Anim. Ecol. 68, 1142–1160 (1999).
    Article  Google Scholar 

    77.
    Heaney, L. R. Mammalian species richness on islands on the Sunda Shelf Southeast Asia. Oecologia 61, 11–17 (1984).
    ADS  Article  Google Scholar 

    78.
    Carvajal, A. & Adler, G. H. Biogeography of mammals on tropical Pacific islands. J. Biogeogr. 32, 1561–1569. https://doi.org/10.1111/j.1365-2699.2005.01302.x (2005).
    Article  Google Scholar 

    79.
    Millien-Parra, V. & Jaeger, J. J. Island biogeography of the Japanese terrestrial mammal assemblages: An example of a relict fauna. J. Biogeogr. 26, 959–972. https://doi.org/10.1046/j.1365-2699.1999.00346.x (1999).
    Article  Google Scholar 

    80.
    Amori, G., Rizzo Pinna, V., Sammuri, G. & Luiselli, L. Diversity of small mammal communities of the tuscan archipelago: Testing the effects of island size, distance from mainland and human density. Fol. Zool. 64, 161–166. https://doi.org/10.25225/fozo.v64.i2.a9.2015 (2015).

    81.
    Audoin-Rouzeau, F. & La Vigne, J. D. colonisation de l’Europe par le rat noir (Rattus rattus). Rev. de Paléobiologie 13, 125–145. https://doi.org/10.1134/S1062359011020130 (1994).
    Article  Google Scholar 

    82.
    Towns, D. R., Atkinson, I. A. E. & Daugherty, Ch. H. Have the harmful effects of introduced rats on islands been exaggerated?. Biol. Invasions 8, 863–891. https://doi.org/10.1007/s10530-005-0421-z (2006).
    Article  Google Scholar 

    83.
    Martin, J. L., Thibault, J. C. & Bretagnolle, V. Black rats, island characteristics, and colonial nesting birds in the Mediterranean: Consequences of an ancient introduction. Conserv. Biol. 14, 1452–1466. https://doi.org/10.1046/j.1523-1739.2000.99190.x (2000).
    Article  Google Scholar 

    84.
    Landová, E., Horáček, I. & Frynta, D. Have black rats evolved a culturally-transmitted technique of pinecone opening independently in Cyprus and Israel?. Isr. J. Ecol. Evol. 52(2), 151–158 (2006).
    Article  Google Scholar 

    85.
    Sarà, M. & Morand, S. Island incidence and mainland population density: Mammals from Mediterranean islands. Divers. Distrib. 8, 1–9 (2002).
    Article  Google Scholar 

    86.
    Libois, M. R., Fons, R., Saint Girons, M. C. Le régime alimentaire de la chouette effraie Tyto alba, dans les Pyrénées-orientales. Etude des variations ecogéographiques. Rev. Ecol.-Terre Vie 37, 187–217 (1983).

    87.
    Di Russo, C. Dati sui micromammiferi da borre di barbacianni, Tyto alba, di un Sito della Sardegna Centro-orientale. Hystrix 2, 57–62. https://doi.org/10.4404/hystrix-2.1-3885 (1987).
    Article  Google Scholar 

    88.
    Guerra, C., García, D. & Alcover, J. A. Unusual foraging patterns of the barn owl, Tyto alba (Strigiformes: Tytonidae), on small islets from the Pityusic archipelago (Western Mediterranean Sea). Fol. Zool. 63, 180–187. https://doi.org/10.25225/fozo.v63.i3.a5.2014 (2014).

    89.
    Patterson, B. D. & Atmar, W. Nested subsets and the structure of insular mammalian faunas and archipelagos. Biol. J. Linn. Soc. Lond. 28, 65–82. https://doi.org/10.1111/j.1095-8312.1986.tb01749.x (1986).
    Article  Google Scholar 

    90.
    Kutiel, P., Peled, Y. & Geffen, E. The effect of removing shrub cover on annual plants and small mammals in a coastal sand dune ecosystem. Biol. Conserv. 94, 235–242. https://doi.org/10.1016/S0006-3207(99)00172-X (2000).
    Article  Google Scholar 

    91.
    Tores, M., Motro, Y., Motro, U. & Yom-Tov, Y. The barn owl-a selective opportunist predator. Israel J. Zool. 51, 349–360. https://doi.org/10.1560/7862-9E5G-RQJJ-15BE (2005).
    Article  Google Scholar 

    92.
    Obuch, J. & Benda, P. Food of the Barn Owl (Tyto alba) in the Eastern Mediterranean. Slovak Raptor J. 3, 41–50. https://doi.org/10.2478/v10262-012-0032-4 (2009).
    Article  Google Scholar 

    93.
    Anděra, M. & Horáček, I. Determining our mammals (Sobotáles, 2005).

    94.
    Dor, M. Observations sur les Micromammiferes trouves dans les Pelotes de la Chouette effraye (Tyto alba) en Palestine. Mammalia 11, 50–54 (1947).
    Article  Google Scholar 

    95.
    De Pablo, F. Alimentación de la Lechuza Común (Tyto alba) en Menorca. Bolleti Soc. Hist. Nat. Balear. 43, 15–26 (2000).
    Google Scholar 

    96.
    Rihane, A. Contribution to the study of the diet of Barn Owl Tyto alba in the semi-arid plains of Atlantic Morocco. Alauda 71, 363–369 (2003).
    Google Scholar 

    97.
    Kennedy, C. M., J. R. Oakleaf, D. M. Theobald, Baruch-Mordo, S. & Kiesecker, J. Managing the middle: A shift in conservation priorities based on the global human modification gradient. Global Change Biol. 25(3), 811–826. https://doi.org/10.1111/gcb.14549 (2019).

    98.
    Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, S. & Kiesecker, J. Global Human Modification of Terrestrial Systems. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/edbc-3z60. Accessed DAY MONTH YEAR (2020).

    99.
    Shannon, C. & Weaver, W. The Mathematical Theory of Communication (The University of Illinois Press, 1964).

    100.
    R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Found Stat Comp (2011).

    101.
    Anderson, D. R. & Burnham, K. P. Avoiding pitfalls when using information-theoretic methods. J. Wildl. Manag. 66, 912–918 (2002).
    Article  Google Scholar 

    102.
    Whittingham, M. J., Stephens, P. A., Bradbury, R. B. & Freckleton, R. P. Why do we still use stepwise modelling in ecology and behaviour?. J. Anim. Ecol. 75, 1182–1189. https://doi.org/10.1111/j.1365-2656.2006.01141.x (2006).
    Article  PubMed  Google Scholar 

    103.
    Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35. https://doi.org/10.1007/s00265-010-1039-4 (2011).
    Article  Google Scholar 

    104.
    ter Braak, C. & Šmilauer, P. Canoco reference manual and user’s quide: software for ordination, version 5.0 (Microcomputer Power, 2012).

    105.
    StatSoft Inc. Statistica (data analysis software system), version 12. http://www.statsoft.com (2013). More

  • in

    The interplay of labile organic carbon, enzyme activities and microbial communities of two forest soils across seasons

    1.
    Dixon, R. K. et al. Carbon pools and flux of global forest ecosystems. Science 263, 185–190 (1994).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Siles, J. A., Cajthaml, T., Filipová, A., Minerbi, S. & Margesin, R. Altitudinal, seasonal and interannual shifts in microbial communities and chemical composition of soil organic matter in Alpine forest soils. Soil Biol. Biochem. 112, 1–13 (2017).
    CAS  Article  Google Scholar 

    3.
    Sedjo, R. A. The carbon cycle and global forest ecosystem. Water Air Soil Pollut. 70, 295–307 (1993).
    ADS  CAS  Article  Google Scholar 

    4.
    Flato, G. & Marotzke, J. Evaluation of climate models. In Climate Change 2013: The physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (2013).

    5.
    Zhao, W. et al. Effect of different vegetation cover on the vertical distribution of soil organic and inorganic carbon in the Zhifanggou Watershed on the loess plateau. CATENA 139, 191–198 (2016).
    CAS  Article  Google Scholar 

    6.
    Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 123(1–2), 1–22 (2004).
    ADS  CAS  Article  Google Scholar 

    7.
    Yang, Y. & Tilman, D. Soil and root carbon storage is key to climate benefits of bioenergy crops. Biofuel Res. J. 7(2), 1143–1148 (2020).
    Article  Google Scholar 

    8.
    Rovira, P. & Vallejo, V. R. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: An acid hydrolysis approach. Geoderma 107, 109–141 (2002).
    ADS  CAS  Article  Google Scholar 

    9.
    Zou, X., Ruan, H., Fu, Y., Yang, X. & Sha, L. Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation-incubation procedure. Soil Biol. Biochem. 37, 1923–1928 (2005).
    CAS  Article  Google Scholar 

    10.
    Liang, B. C. et al. Management-induced change in labile soil organic matter under continuous corn in eastern Canadian soils. Biol. Fertil. Soils 26, 88–94 (1997).
    Article  Google Scholar 

    11.
    Xu, G. et al. Labile, recalcitrant, microbial carbon and nitrogen and the microbial community composition at two Abies faxoniana forest elevations under elevated temperatures. Soil Biol. Biochem. 91, 1–13 (2015).
    CAS  Article  Google Scholar 

    12.
    Wolters, V. Invertebrate control of soil organic matter stability. Biol. Fertil. Soils 31, 1–19 (2000).
    MathSciNet  CAS  Article  Google Scholar 

    13.
    Marschner, P., Kandelerb, E. & Marschnerc, B. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol. Biochem. 35, 453–461 (2003).
    CAS  Article  Google Scholar 

    14.
    Xiao, Y., Huang, Z. & Lu, X. Changes of soil labile organic carbon fractions and their relation to soil microbial characteristics in four typical wetlands of Sanjiang Plain, Northeast China. Ecol. Eng. 82, 381–389 (2015).
    Article  Google Scholar 

    15.
    Burke, D. J., Weintraub, M. N., Hewins, C. R. & Kalisz, S. Relationship between soil enzyme activities, nutrient cycling and soil fungal communities in a northern hardwood forest. Soil Biol. Biochem. 43, 795–803 (2011).
    CAS  Article  Google Scholar 

    16.
    Ljungdahl, L. G. & Eriksson, K. E. Ecology of microbial cellulose degradation. Adv. Microb. Ecol. 8, 237–299 (1985).
    CAS  Article  Google Scholar 

    17.
    Sinsabaugh, R. L., Hill, B. H. & Follstad-Shah, J. J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 468, 122–122 (2010).
    ADS  CAS  Article  Google Scholar 

    18.
    Bowles, T. M., Acosta-Martínez, V., Calderón, F. & Jackson, L. E. Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biol. Biochem. 68, 252–262 (2014).
    CAS  Article  Google Scholar 

    19.
    Chen, X. et al. Soil labile organic carbon and carbon-cycle enzyme activities under different thinning intensities in Chinese fir plantations. Appl. Soil Ecol. 107, 162–169 (2016).
    Article  Google Scholar 

    20.
    Qi, R. et al. Temperature effects on soil organic carbon, soil labile organic carbon fractions, and soil enzyme activities under long-term fertilization regimes. Appl. Soil Ecol. 102, 36–45 (2016).
    Article  Google Scholar 

    21.
    Rasche, F. et al. Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest. ISME J 5, 389–402 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Piao, H., Hong, Y. & Yuan, Z. Seasonal changes of microbial biomass carbon related to climatic factors in soils from karst areas of southwest China. Biol. Fertil. Soils 30, 294–297 (2000).
    CAS  Article  Google Scholar 

    23.
    Zhou, G., Xu, J. & Jiang, P. Effect of management practices on seasonal dynamics of organic carbon in soils under bamboo plantations. Pedosphere 16, 525–531 (2006).
    CAS  Article  Google Scholar 

    24.
    Thomas, G. W. Soil pH and soil acidity. Soil Sci. Soc. Am. J. 5, 475–490 (1996).
    Google Scholar 

    25.
    Walkley, A. An examination of methods for determining organic carbon and nitrogen in soils (with one text-figure). Indian. J. Agric. Sci. 25, 598–609 (1935).
    CAS  Article  Google Scholar 

    26.
    Jenkinson, D. S. & Powlson, D. S. The effects of biocidal treatments on metabolism in soil: A method for measuring soil biomass. Soil Biol. Biochem. 8, 209–213 (1976).
    CAS  Article  Google Scholar 

    27.
    Blair, G. J., Lefroy, R. & Lisle, L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust. J. Agric. Res. 46, 393–406 (1995).
    Article  Google Scholar 

    28.
    Mcgill, W. B., Cannon, K. R., Robertson, J. A. & Cook, F. D. Dynamics of soil microbial biomass and water-soluble organic C in Breton L after 50 years of cropping to two rotations. Can. J. Soil Sci. 66, 1–19 (1986).
    Article  Google Scholar 

    29.
    Marx, M. C., Wood, M. & Jarvis, S. C. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol. Biochem. 33, 1633–1640 (2001).
    CAS  Article  Google Scholar 

    30.
    Fadrosh, D. W. et al. An improved dual-indexing approach for multiplexed 16s rrna gene sequencing on the illumina miseq platform. Microbiome 2, 1–7 (2014).
    Article  Google Scholar 

    31.
    Mukherjee, P. K. et al. Oral mycobiome analysis of HIV-infected patients: Identification of Pichia as an antagonist of opportunistic fungi. PLoS Pathog 10, e1003996 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    32.
    Masella, A. P., Bartram, A. K., Truszkowski, J. M. & Brown, D. G. Neufeld JD (2012) PANDAseq: Paired-end assembler for illumina sequences. BMC Bioinform. 13, 31 (2014).
    Article  CAS  Google Scholar 

    33.
    Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    34.
    Kemp, P. F. & Aller, J. Y. Bacterial diversity in aquatic and other environments: What 16S rDNA libraries can tell us. FEMS Microbiol. Ecol. 47, 161–177 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Cole, J. R. et al. Ribosomal Database Project, data and tools for high throughput rRNA analysis. Nucleic Acids. Res. 42, 633–642 (2014).
    Article  CAS  Google Scholar 

    36.
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. App. Environ. Microbiol. 73, 5261–5267 (2007).
    CAS  Article  Google Scholar 

    37.
    Haynes, R. J. Labile organic matter fractions as central components of the quality of agricultural soils: An pverview. Adv. Agron. 85, 221–268 (2005).
    CAS  Article  Google Scholar 

    38.
    Wang, J., Song, C., Wang, X. & Song, Y. Changes in labile soil organic carbon fractions in wetland ecosystems along a latitudinal gradient in northeast china. CATENA 96, 83–89 (2012).
    CAS  Article  Google Scholar 

    39.
    Ma, W., Li, G., Wu, J., Xu, G. & Wu, J. Response of soil labile organic carbon fractions and carbon-cycle enzyme activities to vegetation degradation in a wet meadow on the Qinghai-Tibet Plateau. Geoderma 377, 114565 (2020).
    ADS  CAS  Article  Google Scholar 

    40.
    Smolander, A. & Kitunen, V. Soil microbial activities and characteristics of dissolved organic C and N in relation to tree species. Soil Biol. Biochem. 34, 651–660 (2002).
    CAS  Article  Google Scholar 

    41.
    Wang, Q. & Wang, S. Soil organic matter under different forest types in Southern China. Geoderma 142, 349–356 (2007).
    ADS  CAS  Article  Google Scholar 

    42.
    Kalbitz, K., Solinger, S., Park, J. H., Michalzik, B. & Matzner, E. Controls on the dynamics of dissolved organic matter in soils: A review. Soil Sci. 165, 277–304 (2000).
    ADS  CAS  Article  Google Scholar 

    43.
    Quideau, S. A. et al. Vegetation control on soil organic matter dynamics. Org. Geochem. 32, 247–252 (2001).
    CAS  Article  Google Scholar 

    44.
    Liu, C. et al. Standing fine root mass and production in four Chinese subtropical forests along a succession and species diversity gradient. Plant Soil 376, 445–459 (2014).
    CAS  Article  Google Scholar 

    45.
    Jiang, P., Xu, Q., Xu, Z. & Cao, Z. Seasonal changes in soil labile organic carbon pools within a Phyllostachys praecox stand under high rate fertilization and winter mulch in subtropical China. Forest Ecol. Manag. 236, 30–36 (2006).
    Article  Google Scholar 

    46.
    Hu, Y. et al. Climate change affects soil labile organic carbon fractions in a Tibetan alpine meadow. J. Soil Sediment 17, 326–339 (2016).
    Article  CAS  Google Scholar 

    47.
    Liu, G. et al. Seasonal changes in labile organic matter as a function of environmental factors in a relict permafrost region on the Qinghai-Tibetan Plateau. CATENA 180, 194–202 (2019).
    CAS  Article  Google Scholar 

    48.
    Mcdowell, W. H., Currie, W. S., Aber, J. D. & Yano, Y. Effects of chronic nitrogen amendments on production of dissolved organic carbon and nitrogen in forest soils. Water Air Soil Pollut. 105, 175–182 (1998).
    ADS  CAS  Article  Google Scholar 

    49.
    Kurka, A. M., Starr, M., Heikinheimo, M. & Salkinojasalonen, M. Decomposition of cellulose strips in relation to climate, litterfall nitrogen, phosphorus and C/N ratio in natural boreal forests. Plant Soil 219, 91–101 (2000).
    CAS  Article  Google Scholar 

    50.
    Waldrop, M. P. & Firestone, M. K. Response of microbial community composition and function to soil climate change. Microb. Ecol. 52, 716–724 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Uselman, S. M., Qualls, R. G. & Thomas, R. B. Effects of increased atmospheric CO2, temperature, and soil N availability on root exudation of dissolved organic carbon by a N-fixing tree. Plant Soil 222, 191–202 (2000).
    CAS  Article  Google Scholar 

    52.
    Ziegler, S. E., Billings, S. A., Lane, C. S., Li, J. & Fogel, M. L. Warming alters routing of labile and slower-turnover carbon through distinct microbial groups in boreal forest organic soils. Soil Biol. Biochem. 60, 23–32 (2013).
    CAS  Article  Google Scholar 

    53.
    Mondal, I. K. et al. Seasonal variation of soil enzymes in areas of fluoride stress in Birbhum District, West Bengal, India. J. Taibah. Univ. Sci. 9, 133–142 (2015).
    Article  Google Scholar 

    54.
    Wang, C., Lü, Y., Wang, L., Liu, X. & Tian, X. Insights into seasonal variation of litter decomposition and related soil degradative enzyme activities in subtropical forest in China. J. Forest Res. 24, 683–689 (2013).
    CAS  Article  Google Scholar 

    55.
    Baldrian, P., Merhautová, V., Petránková, M., Cajthaml, T. & Šnajdr, J. Distribution of microbial biomass and activity of extracellular enzymes in a hardwood forest soil reflect soil moisture content. Appl. Soil Ecol. 46, 177–182 (2010).
    Article  Google Scholar 

    56.
    Song, Y. et al. Changes in labile organic carbon fractions and soil enzyme activities after marshland reclamation and restoration in the Sanjiang Plain in northeast China. Environ. Manag. 50, 418–426 (2012).
    ADS  Article  Google Scholar 

    57.
    Shi, W., Dell, E., Bowman, D. & Iyyemperumal, K. Soil enzyme activities and organic matter composition in a turfgrass chronosequence. Plant Soil 288, 285–296 (2006).
    CAS  Article  Google Scholar 

    58.
    Salazar, S. et al. Correlation among soil enzyme activities under different forest system management practices. Ecol. Eng. 37, 1123–1131 (2011).
    Article  Google Scholar 

    59.
    Waldrop, M. P. & Zak, D. R. Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon. Ecosystems 9, 921–933 (2006).
    CAS  Article  Google Scholar 

    60.
    Stursova, M., Zifcakova, L., Leigh, M. B., Burgess, R. & Baldrian, P. Cellulose utilization in forest litter and soil: Identification of bacterial and fungal decomposers. FEMS Microbiol. Ecol. 80, 735–746 (2012).
    CAS  PubMed  Article  Google Scholar 

    61.
    Pankratov, T. A., Ivanova, A. O., Dedysh, S. N. & Liesack, W. Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat. Environ. Microbiol. 13, 1800–1814 (2011).
    CAS  PubMed  Article  Google Scholar 

    62.
    Eichorst, S. A., Kuske, C. R. & Schmidt, T. M. Influence of plant polymers on the distribution and cultivation of bacteria in the phylum Acidobacteria. Appl. Environ. Microbiol. 77, 586–596 (2011).
    CAS  PubMed  Article  Google Scholar 

    63.
    Ward, N. L., Challacombe, J. F., Janssen, P. H., Henrissat, B. & Coutinho, P. M. Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. App. Environ. Microbiol. 75, 2046–2056 (2009).
    CAS  Article  Google Scholar 

    64.
    Bastida, F., Hernández, T., Albaladejo, J. & García, C. Phylogenetic and functional changes in the microbial community of long-term restored soils under semiarid climate. Soil Biol. Biochem. 65, 12–21 (2013).
    CAS  Article  Google Scholar 

    65.
    Hannula, S. E., Boschker, H. T. S., Boer, W. D. & Veen, J. A. V. 13C pulse-labeling assessment of the community structure of active fungi in the rhizosphere of a genetically starch-modified potato (Solanum tuberosum) cultivar and its parental isoline. New Phytol. 194, 784–799 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    66.
    Edwards, I. P., Zak, D. R., Kellner, H., Eisenlord, S. D. & Pregitzer, K. S. Simulated atmospheric N deposition alters fungal community composition and suppresses ligninolytic gene expression in a northern hardwood forest. PLoS ONE 6, e20421 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    67.
    Fontaine, S., Mariotti, A. & Abbadie, L. The priming effect of organic matter: A question of microbial competition?. Soil Biol. Biochem. 35, 837–843 (2003).
    CAS  Article  Google Scholar  More

  • in

    Iron limitation by transferrin promotes simultaneous cheating of pyoverdine and exoprotease in Pseudomonas aeruginosa

    1.
    Smith P, Schuster M. Public goods and cheating in microbes. Curr Biol. 2019;29:R442–7.
    2.
    Harrison F, McNally A, Da Silva AC, Heeb S, Diggle SP. Optimised chronic infection models demonstrate that siderophore ‘cheating’ in Pseudomonas aeruginosa is context specific. ISME J. 2017;11:2492–509.

    3.
    Kümmerli R, Santorelli LA, Granato ET, Dumas Z, Dobay A, Griffin AS, et al. Co-evolutionary dynamics between public good producers and cheats in the bacterium Pseudomonas aeruginosa. J Evol Biol. 2015;28:2264–74.

    4.
    Stilwell P, Lowe C, Buckling A. The effect of cheats on siderophore diversity in Pseudomonas aeruginosa. J Evol Biol. 2018;31:1330–9.

    5.
    Butaite E, Baumgartner M, Wyder S, Kümmerli R. Siderophore cheating and cheating resistance shape competition for iron in soil and freshwater Pseudomonas communities. Nat Commun. 2017;8:414.

    6.
    Jin Z, Li J, Ni L, Zhang R, Xia A, Jin F. Conditional privatization of a public siderophore enables Pseudomonas aeruginosa to resist cheater invasion. Nat Commun. 2018;9:1383.

    7.
    Leinweber A, Fredrik Inglis R, Kümmerli R. Cheating fosters species co-existence in well-mixed bacterial communities. ISME J. 2017;11:1179–88.

    8.
    Özkaya Ö, Balbontín R, Gordo I, Xavier KB. Cheating on cheaters stabilizes cooperation in Pseudomonas aeruginosa. Curr Biol. 2018;28:2070–80.

    9.
    O’Brien S, Kümmerli R, Paterson S, Winstanley C, Brockhurst MA. Transposable temperate phages promote the evolution of divergent social strategies in Pseudomonas aeruginosa populations. Proc R Soc B Biol Sci. 2019;286:20191794.

    10.
    Wolz C, Hohloch K, Ocaktan A, Poole K, Evans RW, Rochel N, et al. Iron release from transferrin by pyoverdin and elastase from Pseudomonas aeruginosa. Infect Immun. 1994;62:4021–7.

    11.
    Kim SJ, Park RY, Kang SM, Choi MH, Kim CM, Shin SH. Pseudomonas aeruginosa alkaline protease can facilitate siderophore-mediated iron-uptake via the proteolytic cleavage of transferrins. Biol Pharm Bull. 2006;29:2295–300.

    12.
    Sandoz KM, Mitzimberg SM, Schuster M. Social cheating in Pseudomonas aeruginosa quorum sensing. Proc Natl Acad Sci USA. 2007;104:15876–81.
    CAS  Article  Google Scholar 

    13.
    Diggle SP, Griffin AS, Campbell GS, West SA. Cooperation and conflict in quorum-sensing bacterial populations. Nature. 2007;450:411–4.
    CAS  Article  Google Scholar 

    14.
    Dandekar AA, Chugani S, Greenberg EP. Bacterial quorum sensing and metabolic incentives to cooperate. Science. 2012;338:264–6.
    CAS  Article  Google Scholar 

    15.
    Loarca D, Díaz D, Quezada H, Guzmán-Ortiz AL, Rebollar-Ruiz A, Presas AMF, et al. Seeding public goods is essential for maintaining cooperation in Pseudomonas aeruginosa. Front Microbiol. 2019;10:1–8.
    Article  Google Scholar 

    16.
    García-Contreras R, Loarca D, Pérez-González C, Jiménez-Cortés JG, Gonzalez-Valdez A, Soberón-Chávez G. Rhamnolipids stabilize quorum sensing mediated cooperation in Pseudomonas aeruginosa. FEMS Microbiol Lett. 2020;367:1–5.

    17.
    García-Contreras R, Lira-Silva E, Jasso-Chávez R, Hernández-González IL, Maeda T, Hashimoto T, et al. Isolation and characterization of gallium resistant Pseudomonas aeruginosa mutants. Int J Med Microbiol. 2013;303:574–82.

    18.
    Castañeda-Tamez P, Ramírez-Peris J, Pérez-Velázquez J, Kuttler C, Jalalimanesh A, Saucedo-Mora M, et al. Pyocyanin restricts social cheating in Pseudomonas aeruginosa. Front Microbiol. 2018;9:1–10.
    Article  Google Scholar 

    19.
    Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

    20.
    Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 2013;00:1–3.

    21.
    Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing — Free bayes — Variant Calling — Longranger. arXiv Prepr arXiv12073907 2012.

    22.
    Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly. 2012;6:80–92.

    23.
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.

    24.
    Quinlan AR, Hall IM BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.

    25.
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.

    26.
    Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. Artemis: An integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics. 2012;28:464–9.

    27.
    Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, et al. Current protocols in molecular biology: preface. Curr Protoc Mol Biol. 2010;1:178–89.

    28.
    King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954;44:301–7.

    29.
    López-Jácome LE, Garza-Ramos G, Hernández-Durán M, Franco-Cendejas R, Loarca D, Romero-Martínez D, et al. AiiM lactonase strongly reduces quorum sensing controlled virulence factors in clinical strains of Pseudomonas aeruginosa isolated from burned patients. Front Microbiol. 2019;10:1–11.
    Article  Google Scholar 

    30.
    Sandoz KM, Mitzimberg SM, Schuster M. Social cheating in Pseudomonas aeruginosa quorum sensing. Proc Natl Acad Sci USA. 2007;104:15876–81.

    31.
    D’Onofrio A, Crawford JM, Stewart EJ, Witt K, Gavrish E, Epstein S, et al. Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem Biol. 2010;17:254–64.

    32.
    Wang Y, Gao L, Rao X, Wang J, Yu H, Jiang J, et al. Characterization of lasR-deficient clinical isolates of Pseudomonas aeruginosa. Sci Rep. 2018;8:13344.

    33.
    Wilder CN, Allada G, Schuster M. Instantaneous within-patient diversity of Pseudomonas aeruginosa quorum-sensing populations from cystic fibrosis lung infections. Infect Immun. 2009;77:5631–9.
    CAS  Article  Google Scholar 

    34.
    Brown SP, West SA, Diggle SP, Griffin AS. Social evolution in micro-organisms and a Trojan horse approach to medical intervention strategies. Philos Trans R Soc B Biol Sci. 2009;364:3157–68.

    35.
    Rumbaugh KP, Diggle SP, Watters CM, Ross-Gillespie A, Griffin AS, West SA. Quorum sensing and the social evolution of bacterial virulence. Curr Biol. 2009;19:341–5.

    36.
    Bonchi C, Frangipani E, Imperi F, Visca P. Pyoverdine and proteases affect the response of Pseudomonas aeruginosa to gallium in human serum. Antimicrob Agents Chemother. 2015;59:5641–6.

    37.
    Sathe S, Mathew A, Agnoli K, Eberl L, Kümmerli R. Genetic architecture constrains exploitation of siderophore cooperation in the bacterium Burkholderia cenocepacia. Evol Lett. 2019;3:610–22.

    38.
    Liberati NT, Urbach JM, Miyata S, Lee DG, Drenkard E, Wu G, et al. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci USA. 2006;103:2833–8.

    39.
    Chandler CE, Horspool AM, Hill PJ, Wozniak DJ, Schertzer JW, Rasko DA, et al. Genomic and phenotypic diversity among ten laboratory isolates of Pseudomonas aeruginosa PAO1. J Bacteriol. 2019;201. More

  • in

    Expansion of the mangrove species Rhizophora mucronata in the Western Indian Ocean launched contrasting genetic patterns

    1.
    Bryan-Brown, D. N., Brown, C. J., Hughes, J. M. & Connolly, R. M. Patterns and trends in marine population connectivity research. Mar. Ecol. Prog. Ser. 585, 243–256 (2017).
    ADS  Article  Google Scholar 
    2.
    Tomlinson, P. B. The Botany of Mangroves (Cambridge University Press, Cambridge, 2016).
    Google Scholar 

    3.
    Bunting, P. et al. The global mangrove watch—a new 2010 global baseline of mangrove extent. Remote Sens. 10, 1669. https://doi.org/10.3390/rs10101669 (2018).
    ADS  Article  Google Scholar 

    4.
    Ward, R. D., Friess, D. A., Day, R. H. & MacKenzie, R. A. Impacts of climate change on mangrove ecosystems: a region by region overview. Ecosyst. Health Sustain. 2, 01211. https://doi.org/10.1002/ehs2.1211 (2016).
    Article  Google Scholar 

    5.
    Richards, D. R. & Friess, D. A. Rates of drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 113, 344–349 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    6.
    Hermansen, T. D., Britton, D. R., Ayre, D. J. & Minchonton, T. E. Identifying the real pollinators? Exotic honeybees are the dominant flower visitors and only effective pollinators of Avicennia marina in Australian temperate mangroves. Estuar. Coast. 37, 621–635 (2014).
    Article  Google Scholar 

    7.
    Wee, A. K. S., Low, S. Y. & Webb, E. L. Pollen limitation affects reproductive outcome in the bird-pollinated mangrove Bruguiera gymnorrhiza (Lam.) in a highly urbanized environment. Aquat. Bot. 120, 240–243 (2015).
    Article  Google Scholar 

    8.
    Rabinowitz, D. Dispersal properties of mangrove propagules. Biotropica 10, 47–57 (1978).
    Article  Google Scholar 

    9.
    Drexler, J. Z. Maximum longevities of Rhizophora apiculataand R. mucronatapropagules. Pac. Sci. 55, 17–22 (2001).
    Article  Google Scholar 

    10.
    Nettel, A. & Dodd, R. S. Drifting propagules and receding swamps: genetic footprints of mangrove recolonization and dispersal along tropical coasts. Evolution 61, 958–971 (2007).
    CAS  PubMed  Article  Google Scholar 

    11.
    Takayama, K., Tamura, M., Tateshi, Y., Webb, E. L. & Kajita, T. Strong genetic structure over the American continents and transoceanic dispersal in red mangroves Rhizophora (Rhizophoraceae), revealed by broad-scale nuclear and chloroplast DNA analysis. Am. J. Bot. 100, 1191–1201 (2013).
    CAS  PubMed  Article  Google Scholar 

    12.
    Lo, E. Y., Duke, N. C. & Sun, M. Phylogeographic pattern of Rhizophora(Rhizophoraceae) reveals the importance of both vicariance and long-distance oceanic dispersal to modern mangrove distribution. BMC Evol. Biol. 14, 83. https://doi.org/10.1186/1471-2148-14-83 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    13.
    Van der Stocken, T. et al. A general framework for propagule dispersal in mangroves. Biol. Rev. 94, 1547–1575 (2019).
    PubMed  Article  Google Scholar 

    14.
    Thomas, L. et al. Isolation by resistance across a complex coral reef seascape. Proc. R. Soc. B Biol. Sci. 282, 20151217. https://doi.org/10.1098/rspb.2015.1217 (2015).
    CAS  Article  Google Scholar 

    15.
    Ngeve, M. N., Van der Stocken, T., Menemenlis, D., Koedam, N. & Triest, L. Contrasting effects of historical sea level rise and contemporary ocean currents on regional gene flow of Rhizophora racemosain eastern Atlantic mangroves. PLoS ONE 11, e0150950. https://doi.org/10.1371/journal.pone.0150950 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    16.
    Wee, A. K. S. et al. Oceanic currents, not land masses, maintain the genetic structure of the mangrove Rhizophora mucronataLam. (Rhizophoraceae) in Southeast Asia. J. Biogeogr. 41, 954–964 (2014).
    Article  Google Scholar 

    17.
    Wee, A. K. S. et al. Genetic structures across a biogeographical barrier reflect dispersal potential of four Southeast Asian mangrove plant species. J. Biogeogr. 47, 1258–1271 (2020).
    Article  Google Scholar 

    18.
    Lessios, H. A. & Robertson, D. R. Crossing the impassable: genetic connections in 20 reef fishes across the eastern Pacific barrier. Proc. R. Soc. B: Biol. Sci. 273, 2201–2208 (2006).
    CAS  Article  Google Scholar 

    19.
    Ng, W. L., Chan, H. T. & Szmidt, A. E. Molecular identification of natural mangrove hybrids of Rhizophora in Peninsular Malaysia. Tree Genet. Genomes 9, 1151–1160 (2013).
    Article  Google Scholar 

    20.
    Guo, Z. et al. Genetic discontinuities in a dominant mangrove Rhizophora apiculata (Rhizophoraceae) in the Indo-Malaysian region. J. Biogeogr. 43, 1856–1868 (2016).
    Article  Google Scholar 

    21.
    Yan, Y.-B., Duke, N. & Sun, M. Comparative analysis of the pattern of population genetic diversity in three Indo-West Pacific Rhizophora mangrove species. Front. Plant Sci. 7, 1434. https://doi.org/10.3389/fpls.2016.01434 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    22.
    Triest, L., Hasan, S., Motro, P. R. & De Ryck, D. J. R. Geographical distance and large rivers shape genetic structure of Avicennia officinalis in the highly dynamic Sundarbans mangrove forest and Ganges Delta region. Estuar. Coast. 41, 908–920 (2018).
    Article  Google Scholar 

    23.
    Do, B. T. N., Koedam, N. & Triest, L. Avicennia marina maintains genetic structure whereas Rhizophora stylosa connects mangroves in a flooded, former inner sea (Vietnam). Estuar. Coast. Shelf Sci. 222, 195–204 (2019).
    ADS  Article  Google Scholar 

    24.
    He, Z. et al. Speciation with gene flow via cycles of isolation and migration: insights from multiple mangrove taxa. Natl. Sci. Rev. 6, 272–288 (2019).
    Google Scholar 

    25.
    Pil, M. W. et al. Postglacial north-south expansion of populations of Rhizophora mangle (Rhizophoraceae) along the Brazilian coast revealed by microsatellite analysis. Am. J. Bot. 98, 1031–1039 (2011).
    PubMed  Article  Google Scholar 

    26.
    Cerón-Souza, I. et al. Contrasting demographic history and gene flow patterns of two mangrove species on either side of the Central American Isthmus. Ecol. Evol. 5, 3486–3499 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    27.
    Sandoval-Castro, E. et al. Post-glacial expansion and population genetic divergence of mangrove species Avicennia germinans (L.) Stearn and Rhizophora mangle L. along the Mexican coast. PLoS ONE 9, 93358. https://doi.org/10.1371/journal.pone.0093358 (2014).
    ADS  CAS  Article  Google Scholar 

    28.
    Kennedy, J. P. et al. Contrasting genetic effects of red mangrove (Rhizophora mangleL.) range expansion along West and East Florida. J. Biogeogr. 44, 335–347 (2017).
    Article  Google Scholar 

    29.
    Francisco, P. M., Mori, G. M., Alves, F. A., Tambarussi, E. V. & de Souza, A. P. Population genetic structure, introgression, and hybridization in the genus Rhizophora along the Brazilian coast. Ecol. Evol. 8, 3491–3504. https://doi.org/10.1002/ece3.3900 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    30.
    Ngeve, M. N., Van der Stocken, T., Menemenlis, D., Koedam, N. & Triest, L. Hidden founders? Strong bottlenecks and fine-scale genetic structure in mangrove populations of the Cameroon Estuary complex. Hydrobiologia 803, 189–207 (2017).
    Article  Google Scholar 

    31.
    Ngeve, M. N., Van der Stocken, T., Sierens, T., Koedam, N. & Triest, L. Bidirectional gene flow on a mangrove river landscape and between-catchment dispersal of Rhizophora racemosa (Rhizophoraceae). Hydrobiologia 790, 93–108 (2017).
    Article  Google Scholar 

    32.
    De Ryck, D. J. R. et al. Dispersal limitation of the mangrove Avicennia marina at its South African range limit in strong contrast to connectivity in its core East African region. Mar. Ecol. Prog. Ser. 545, 123–134 (2016).
    ADS  Article  CAS  Google Scholar 

    33.
    Duke, N. C., Lo, E. Y. Y. & Sun, M. Global distribution and genetic discontinuities of mangroves—emerging patterns in the evolution of Rhizophora. Trees Struct. Funct. 16, 65–79 (2002).
    Article  Google Scholar 

    34.
    Spalding, M., Kainuma, M. & Collins, L. World Atlas of Mangroves (Earthscan and James & James, 2010).

    35.
    Osland, M. J. et al. Climatic controls on the global distribution, abundance, and species richness of mangrove forests. Ecol. Monogr. 87, 341–359 (2017).
    Article  Google Scholar 

    36.
    Duke, N. et al. Rhizophora mucronata. The IUCN Red List of Threatened Species 2010: e.T178825A7618520.https://doi.org/10.2305/IUCN.UK.2010-2.RLTS.T178825A7618520.en (2010). Downloaded on 27 January 2020.

    37.
    Schouten, M. W., de Ruijter, W. P. M., van Leeuwen, P. J. & Ridderinkhof, H. Eddies and variability in the Mozambique Channel. Deep-Sea Res. II(50), 1987–2003 (2003).
    ADS  Google Scholar 

    38.
    Ternon, J. F., Roberts, M. J., Morris, T., Hancke, L. & Backeberg, B. In situ measured current structures of the eddy field in the Mozambique Channel. Deep-Sea Res. II 100, 10–26 (2014).
    Article  Google Scholar 

    39.
    Yokoyama, Y., Lambeck, K., De Deckker, P., Johnston, P. & Fifield, K. L. Timing of the Last Glacial Maximum from observed sea-level minima. Nature 406, 713–716 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 

    40.
    Van der Stocken, T., Carroll, D., Menemenlis, D., Simard, M. & Koedam, N. Global-scale dispersal and connectivity in mangroves. Proc. Natl. Acad. Sci. USA 116, 915–922 (2019).
    PubMed  Article  CAS  Google Scholar 

    41.
    Schott, F. A., Shang-Ping, X. & McCreary, J. P. Jr. Indian Ocean circulation and climate variability. Rev. Geophys. 47, RG1002. https://doi.org/10.1029/2007RG000245 (2009).
    ADS  Article  Google Scholar 

    42.
    Hume, J. P., Martill, D. & Hing, R. A. Terrestrial vertebrate palaeontological review of Aldabra Atoll, Aldabra Group. Seychelles. PLoS ONE 13, e0192675. https://doi.org/10.1371/journal.pone.0192675 (2018).
    CAS  Article  PubMed  Google Scholar 

    43.
    Braithwaite, C. J. R., Taylor, J. D. & Kennedy, W. J. The evolution of an atoll: the depositional and erosional history of Aldabra. Philos. Trans. R. Soc. Lond. B. 266, 307–340 (1973).
    ADS  Article  Google Scholar 

    44.
    Obura, D. The diversity and biogeography of Western Indian Ocean reef-building corals. PLoS ONE 7, e45013. https://doi.org/10.1371/journal.pone.0045013 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    45.
    Urashi, C., Teshima, K. M., Minobe, S., Koizumi, O. & Inomata, N. Inferences of evolutionary history of a widely distributed mangrove species, Bruguiera gymnorrhiza, in the Indo-West Pacific region. Ecol. Evol. 3, 2251–2261 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    46.
    Tomizawa, Y. et al. Genetic structure and population demographic history of a widespread mangrove plant Xylocarpus granatum J. Koenig across the Indo-West Pacific region. Forests 8, 480 (2017).
    Article  Google Scholar 

    47.
    van der Ven, R. M. et al. Population genetic structure of the stony coral Acropora tenius shows high but variable connectivity in East Africa. J. Biogeogr. 43, 510–519 (2016).
    Article  Google Scholar 

    48.
    Jahnke, M. et al. Population genetic structure and connectivity of the seagrass Thalassia hemprichii in the Western Indian Ocean is influenced by predominant ocean currents. Ecol. Evol. 9, 8953–8964 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    49.
    Muths, D., Tessier, E. & Bourjea, J. Genetic structure of the reef grouper Epinephelus merra in the West Indian Ocean appears congruent with biogeographic and oceanographic boundaries. Mar. Ecol. 36, 447–461 (2015).
    ADS  Article  Google Scholar 

    50.
    Mori, G. M., Zucchi, M. I. & Souza, A. P. Multiple-geographic-scale genetic structure of two mangrove tree species: the roles of mating system, hybridization, limited dispersal and extrinsic factors. PLoS ONE 10, 0118710. https://doi.org/10.1371/journal.pone.0118710 (2015).
    CAS  Article  Google Scholar 

    51.
    Hancke, L., Roberts, M. J. & Ternon, J. F. Surface drifter trajectories highlight flow pathways in the Mozambique Channel. Deep-Sea Res. II(100), 27–37 (2014).
    Google Scholar 

    52.
    Gamoyo, M., Obura, D. & Reason, C. J. C. Estimating connectivity through larval dispersal in the Western Indian Ocean. J. Geophys. Res. Biogeo. 124, 2446–2459. https://doi.org/10.1029/2019JG005128 (2019).
    Article  Google Scholar 

    53.
    Silva, I., Mesquita, N. & Paula, J. Genetic and morphological differentiation of the mangrove crab Perisesarma guttatum (Brachyura Sesarmidae) along an East African latitudinal gradient. Biol. J. Linn. Soc. 99, 28–46 (2010).
    Article  Google Scholar 

    54.
    Madeira, C., Alves, M. J., Mesquita, N., Silva, I. & Paula, J. Tracing geographical patterns of population differentiation in a widespread mangrove gastropod: genetic and geometric morphometrics surveys along the eastern African coast. Biol. J. Linn. Soc. 107, 647–663 (2012).
    Article  Google Scholar 

    55.
    Fatoyinbo, E. T., Simard, M., Washington-Allen, R. A. & Shugart, H. H. Landscape-scale extent, height, biomass, and carbon estimation of Mozambique’s mangrove forests with Landsat ETM+ and Shuttle Radar Topography Mission elevation data. J. Geophys. Res. Biogeo. 113, G02S06. https://doi.org/10.1029/2007JG000551 (2008).
    ADS  Article  Google Scholar 

    56.
    Lutjeharms, J. R. E. & Da Silva, A. J. The Delagoa bight eddy. Deep-Sea Res. 35, 619–634 (1988).
    ADS  Article  Google Scholar 

    57.
    Quartly, G. D. & Srokosz, M. A. Eddies in the southern Mozambique Channel. Dee-Sea Res. II: Top. Stud. Oceanogr. 51, 69–83 (2004).
    ADS  CAS  Article  Google Scholar 

    58.
    Paula, J., Dray, T. & Queiroga, H. Interaction of offshore and inshore processes controlling settlement of brachyuran megalopae in Saco mangrove creek, Inhaca Island (South Mozambique). Mar. Ecol. Prog. Ser. 215, 251–260 (2001).
    ADS  Article  Google Scholar 

    59.
    Singh, S. P., Groeneveld, J. C., Hart-Davis, M. G., Backeberg, B. C. & Willows-Munro, S. Seascape genetics of the spiny lobster Panulirus homarus in the Western Indian Ocean: understanding how oceanographic features shape the genetic structure of species with high larval dispersal potential. Ecol. Evol. 8, 12221–12237 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    60.
    Ngeve, M., Koedam, N. & Triest, L. Runaway fathers? Limited pollen dispersal and mating system in Rhizophora racemosa populations of a disturbed mangrove estuary. Aquat. Bot. 165, 103241. https://doi.org/10.1016/j.aquabot.2020.103241 (2020).
    Article  Google Scholar 

    61.
    Kondo, K., Nakamura, T., Tsuruda, K., Saito, N. & Yaguchi, Y. Pollination in Bruguiera gymnorrhiza and Rhizophora mucronata (Rhizophoraceae) in Ishigaki Island, The Ryukyu Islands, Japan. Biotropica 19, 377–380 (1987).
    Article  Google Scholar 

    62.
    Islam, M. S., Lian, C., Kameyama, N., Wu, B. & Hogetsu, T. Development of microsatellite markers in Rhizophora stylosa using a dual-suppression-polymerase chain reaction technique. Mol. Ecol. Notes 4, 110–112 (2004).
    CAS  Article  Google Scholar 

    63.
    Takayama, K., Tamura, M., Tateishi, Y. & Kajita, T. Isolation and characterization of microsatellite loci in the red mangrove Rhizophora mangle (Rhizophoraceae) and its related species. Conserv. Genet. 9, 1323–1325 (2008).
    CAS  Article  Google Scholar 

    64.
    Takayama, K. et al. Isolation and characterization of microsatellite loci in a mangrove species, Rhizophora stylosa (Rhizophoraceae). Conserv. Genet. Resour. 1, 175. https://doi.org/10.1007/s12686-009-9042-7 (2009).
    Article  Google Scholar 

    65.
    Shinmura, Y. et al. Isolation and characterization of 14 microsatellite markers for Rhizophora mucronata (Rhizophoraceae) and their potential use in range-wide population studies. Conserv. Genet. Resour. 4, 951–954 (2012).
    Article  Google Scholar 

    66.
    Wee, A. K. S., Takayama, K., Kajita, T. & Webb, E. L. Microsatellite loci for Avicennia alba (Acanthaceae), Sonneratia alba (Lythraceae) and Rhizophora mucronata (Rhizophoraceae). J. Trop. For. Sci. 25, 131–136 (2013).
    Google Scholar 

    67.
    Ribeiro, D. O. et al. Isolation of microsatellite markers for the red mangrove, Rhizophora mangle (Rhizophoraceae). Appl. Plant Sci. 1, 1300003. https://doi.org/10.3732/apps.1300003 (2013).
    Article  Google Scholar 

    68.
    Goudet, J. FSTAT, version 2.9.3, a program to estimate and test gene diversities and fixation indices. (2001).

    69.
    van Oosterhout, C., Hutchison, W. F., Wills, D. P. M. & Shipley, P. Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).
    Article  CAS  Google Scholar 

    70.
    Chybicki, I. J. & Burczyk, J. Simultaneous estimation of null alleles and inbreeding coefficients. J. Hered. 100, 106113 (2009).
    Article  CAS  Google Scholar 

    71.
    Campagne, P., Smouse, P. E., Varouchas, G., Silvain, J.-F. & Leru, B. Comparing the van Oosterhout and Chybicki-Burczyk methods of estimating null allele frequencies for inbred populations. Mol. Ecol. Resour. 12, 975–982 (2012).
    CAS  PubMed  Article  Google Scholar 

    72.
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    73.
    Hardy, O. & Vekemans, X. spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol. Ecol. Notes 2, 618–620 (2002).
    Article  CAS  Google Scholar 

    74.
    Loiselle, B., Sork, V. L., Nason, J. & Graham, C. Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am. J. Bot. 82, 1420–1425 (1995).
    Article  Google Scholar 

    75.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    76.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software Structure: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).
    CAS  PubMed  Article  Google Scholar 

    77.
    Earl, D. M. & von Holdt, B. M. Structure harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).
    Article  Google Scholar 

    78.
    Li, Y. L. & Liu, J. X. Structureselector: a web based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 18, 176–177 (2018).
    PubMed  Article  Google Scholar 

    79.
    Manni, F., Guerard, E. & Heyer, E. Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Hum. Biol. 76, 173190 (2004).
    Article  Google Scholar 

    80.
    Beerli, P. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22, 341–345 (2006).
    CAS  PubMed  Article  Google Scholar 

    81.
    Beerli, P. & Palczewski, M. Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 185, 313–326 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    82.
    Cornuet, J. M. et al. DIYABC v2.0: a software to make approximate bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30, 1187–1189 (2014).
    CAS  PubMed  Article  Google Scholar 

    83.
    Lutjeharms, J. R. E., Biastoch, A., Van der Werf, P. M., Ridderinkhof, H. & De Ruijter, W. P. M. On the discontinuous nature of the Mozambique Current. S. Afr. J. Sci. https://doi.org/10.4102/sajs.v108i1/2.428 (2012).
    Article  Google Scholar  More

  • in

    The potential risk of exposure to Borrelia garinii, Anaplasma phagocytophilum and Babesia microti in the Wolinski National Park (north-western Poland)

    1.
    Nowak-Chmura, M. Fauna of ticks (Ixodida) of Central Europe (Wydawnictwo Naukowe Uniwersytetu Pedagogicznego, Kraków, 2013).
    Google Scholar 
    2.
    Balmelli, T. & Piffaretti, J. C. Association between different clinical manifestations of Lyme disease and different species of Borrelia burgdorferi sensu lato. Res. Microbiol. 146, 329–340 (1995).
    CAS  Article  Google Scholar 

    3.
    Strzelczyk, J. K. et al. Prevalence of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected from southern Poland. Acta Parasitol. 60, 666–674 (2015).
    CAS  Article  Google Scholar 

    4.
    Blanco, J. R. & Oteo, J. A. Human granulocytic ehrlichiosis in Europe. Clin. Microbiol. Infect. 8, 763–772 (2002).
    CAS  Article  Google Scholar 

    5.
    Boustani, M. R. & Gelfand, J. A. Babesiosis. Clin. Infect. Dis. 22, 611–614 (1996).
    CAS  Article  Google Scholar 

    6.
    Siuda, K. Kleszcze (Acari: Ixodida) Polski Część II Systematyka i Rozmieszczenie (Polskie Towarzystwo Parazytologiczne, Warsaw, 1993).
    Google Scholar 

    7.
    Guy, E. & Stanek, G. Detection of Borrelia burgdorferi in patients with Lyme disease by the polymerase chain reaction. J. Clin. Pathol. 29, 610–611 (1991).
    Article  Google Scholar 

    8.
    Wójcik-Fatla, A., Szymańska, J., Wdowiak, L., Buczek, A. & Dutkiewicz, J. Coincidence of three pathogens (Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Babesia microti) in Ixodes ricinus ticks in the Lublin macroregion. Ann. Agric. Environ. Med. 16, 151–158 (2009).
    PubMed  Google Scholar 

    9.
    Wodecka, B., Rymaszewska, A., Sawczuk, M. & Skotarczak, B. Detectability of tick-borne agents DNA in the blood of dogs, undergoing treatment for borreliosis. Ann. Agric. Environ. Med. 16, 9–14 (2009).
    CAS  PubMed  Google Scholar 

    10.
    Wodecka, B. FlaB gene as a molecular marker for distinct identification of Borrelia species in environmental samples by the PCR-restriction fragment length polymorphism method. Appl. Environ. Microbiol. 77, 7088–7092 (2011).
    CAS  Article  Google Scholar 

    11.
    Massung, R. F. et al. Nested PCR assay for detection of granulocytic ehrlichiae. J. Clin. Microbiol. 36, 1090–1095 (1998).
    CAS  Article  Google Scholar 

    12.
    Persing, D. H. et al. Detection of Babesia microti by polymerase chain reaction. J. Clin. Microbiol. 30, 2097–2103 (1992).
    CAS  Article  Google Scholar 

    13.
    Stańczak, J., Kubica-Biernat, B., Racewicz, M., Kruminis-Łozowska, W. & Kur, J. Detection of three genospecies of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected in different regions of Poland. Int. J. Med. Microbiol. 290, 559–566 (2000).
    Article  Google Scholar 

    14.
    Wodecka, B. & Skotarczak, B. First isolation of Borrelia lusitaniae DNA from Ixodes ricinus ticks in Poland. Scand. J. Infect. Dis. 37, 27–34 (2005).
    CAS  Article  Google Scholar 

    15.
    Kiewra, D., Stańczak, J. & Richter, M. Ixodes ricinus ticks (Acari, Ixodidae) as a vector of Borrelia burgdorferi sensu lato and Borrelia miyamotoi in Lower Silesia. Tick Tick-borne Dis. 5, 892–897 (2014).
    Article  Google Scholar 

    16.
    Asman, M. et al. Occupational risk of infections with Borrelia burgdorferi sensu lato, B. burgdorferi sensu stricto, B. garinii and B. afzelii in agricultural workers on the territory of Beskid Żywiecki. in Arthropods: Medical and Economical Significance (ed. Buczek, A. & Błaszak, Cz.) 163–170 (Akapit, 2012).

    17.
    Asman, M., Witecka, J., Solarz, K., Zwonik, A. & Szilman, P. Occurrence of Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Babesia microti in Ixodes ricinus ticks collected from selected areas of Opolskie Province in south-west Poland. Ann. Agric. Environ. Med. 26, 544–547 (2019).
    CAS  Article  Google Scholar 

    18.
    Wodecka, B. & Skotarczak, B. Genetic diversity of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected in north-west Poland. Wiad Parazytol. 46, 475–485 (2000).
    CAS  PubMed  Google Scholar 

    19.
    Bartosik, K., Lachowska-Kotowska, P., Szymańska, J., Pabis, A. & Buczek, A. Lyme borreliosis in south-eastern Poland: Relationships with environmental factors and medical attention standards. Ann. Agric. Environ. Med. 18, 131–137 (2011).
    PubMed  Google Scholar 

    20.
    Hubálek, Z., Halouzka, J., Juricová, Z., Sikutová, S. & Rudolf, I. Effect of forest clearing on the abundance of Ixodes ricinus ticks and the prevalence of Borrelia burgdorferi s.l. Med. Vet. Entomol. 20, 166–172 (2006).
    Article  Google Scholar 

    21.
    Hanincova, K. et al. Association of Borrelia afzelii with rodents in Europe. Parasitology 126, 11–20 (2003).
    CAS  Article  Google Scholar 

    22.
    Hanincova, K. et al. Association of Borrelia garinii and B. valaisiana with songbirds in Slovakia. Appl. Environ. Microbiol. 69, 2825–2830 (2003).
    CAS  Article  Google Scholar 

    23.
    Kurtenbach, K. et al. Differential transmission of the genospecies of Borrelia burgdorferi sensu lato by game birds and small rodents in England. Appl. Environ. Microbiol. 64, 1169–1174 (1998).
    CAS  Article  Google Scholar 

    24.
    Rauter, C. & Hartung, T. Prevalence of Borrelia burgdorferi sensu lato genospecies in Ixodes ricinus ticks in Europe: A metaanalysis. Appl. Environ. Microbiol. 71, 7203–7216 (2005).
    CAS  Article  Google Scholar 

    25.
    Wodecka, B. Significance of red deer (Cervus elaphus) in the ecology of Borrelia burgdorferi sensu lato. Wiad Parazytol. 53, 231–237 (2007).
    PubMed  Google Scholar 

    26.
    Chen, S.-M., Dumler, J. S., Bakken, J. S. & Walker, D. H. Identification of a granulocytotropic Ehrlichia species as the etiologic agent of human disease. J. Clin. Microbiol. 32, 589–595 (1994).
    CAS  Article  Google Scholar 

    27.
    Zhang, Y., Cui, Y., Sun, Y., Jing, H. & Ning, Ch. Novel Anaplasma variants in small ruminants from central China. Front. Vet. Sci. 7, 1–7 (2020).
    ADS  Article  Google Scholar 

    28.
    Petrovec, M. et al. Human disease in Europe caused by a granulocytic Ehrlichia species. J. Clin. Microbiol. 35, 1556–1559 (1997).
    CAS  Article  Google Scholar 

    29.
    Siński, E. Enzoonotic reservoir for new Ixodes ricinus—Transmitted infections. Wiad Parazytol. 45, 135–142 (1999).
    PubMed  Google Scholar 

    30.
    Kiewra, D., Zaleśny, G. & Czułowska, A. The risk of infection with Anaplasma phagocytophilum and Babesia microti in Lower Silesia, SW Poland. in Arthropods: Threat to Human and Animals Health (ed. Buczek, A. & Błaszak, Cz.) 103–110 (Koliber, 2014).

    31.
    Asman, M. et al. The risk of exposure to Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, Babesia sp. and coinfections in Ixodes ricinus ticks on the territory of Niepołomice Forest (southern Poland). Ann. Parasitol. 59, 13–19 (2013).
    PubMed  Google Scholar 

    32.
    Asman, M. et al. Anaplasma phagocytophilum, Babesia microti, Borrelia burgdorferi sensu lato, and Toxoplasma gondii in Ixodes ricinus (Acari, Ixodida) ticks collected from Slowinski National Park (Northern Poland). J. Vector Ecol. 42, 200–202 (2017).
    Article  Google Scholar 

    33.
    Stańczak, J., Gabre, M. R., Kruminis-Łozowska, W., Racewicz, M. & Kubica-Biernat, B. Ixodes riciuns as a vector of Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Babesia microti in urban and suburban forests. Ann. Agric. Environ. Med. 11, 109–114 (2004).
    PubMed  Google Scholar 

    34.
    Asman, M. et al. Detection of protozoans Babesia microti and Toxoplasma gondii and their co-existence in ticks (Acari: Ixodida) collected in Tarnogórski district (Upper Silesia, Poland). Ann. Agric. Environ. Med. 22, 80–83 (2015).
    Article  Google Scholar 

    35.
    Yabsley, M. J. & Shock, B. C. Natural history of Zoonotic Babesia: Role of wildlife reservoirs. Int. J. Parasitol. Parasites Wildl. 2, 18–31 (2013).
    Article  Google Scholar 

    36.
    Sytykiewicz, H. et al. Molecular evidence of Anaplasma phagocytophilum and Babesia microti co-infections in Ixodes ricinus ticks in central-eastern region of Poland. Ann. Agric. Environ. Med. 19, 45–49 (2012).
    CAS  PubMed  Google Scholar 

    37.
    Asman, M. et al. The occurrence of three tick-borne pathogens in Ixodes ricinus ticks collected from the area of the Kraków—Czestochowa Upland (Southern Poland). Acarologia 58, 967–975 (2018).
    Google Scholar  More

  • in

    Tardigrades of Kristianstads Vattenrike Biosphere Reserve with description of four new species from Sweden

    Taxonomic and morphological results
    Four species new to science (Mesobiotus emiliae sp. nov., Xerobiotus gretae sp. nov., Itaquascon magnussoni sp. nov., and Thulinius gustavi sp. nov.) were found in the Kristianstad Vattenrike Biosphere Reserve, and their formal descriptions follow.
    Morphometric data for the animals and the egg of these species are reported in the Tables 1 and 2 respectively (Supplementary Table S1 for the raw and the Thorpe’s normalized data). The morphometric data used in differential diagnoses of the species were not Thorpe’s normalized. After Thorpe’s normalization, only the lengths of very few characters in the new species resulted not isometric with respect to the length of the buccal tube (Supplementary Table S1). For these characters, the range (min–max) of pt indexes calculated on the Thorpe’s normalized data and the range (min–max) of pt indexes calculated on the non-normalized data did not change significantly (Supplementary Table S1).
    Table 1 Summary of the morphometric data of the animals of the species new to science.
    Full size table

    Table 2 Summary of the morphometric data of the eggs of two of the species new to science.
    Full size table

    Mesobiotus emiliae sp. nov.
    ZooBank: lsid:zoobank.org:act:3DA2F1C0-BEC8-4D9A-B111-5D5F8F1FCCA0.
    Type locality
    Sånnarna, west of the nature reserve (Kristianstad, Skåne, Sweden). Sandy soil with grass (55.928931 N, 14.246299 E), collected on June 10th, 2014; sample SVC22 (C4342 in Bertolani’s Collection). The species was also found in two other localities (SVC34, 35) and it is probably present in further four localities in which only animals were found (SVC2, 8, 27, 30; Supplementary Table S2).
    Type repositories
    The holotype (SVC22 s11o), 34 paratypes, and an egg (SVC22 s1, s5, s7, s8, s11) are at Kristianstad University [HKR], 19 paratypes and an egg (SVC22 s4, s10) are in the collection of the Swedish Museum of Natural History [SMNH], and 3 paratypes and two eggs (C4342 s3, s9) are in the Bertolani’s Collection of University of Modena and Reggio Emilia [Unimore].
    Description
    Body whitish, 96.8–342.0 µm in length (Fig. 1a). Eye-spots absent in mounted specimens. Cuticle smooth, with sparse granules on the posterior side of the legs IV (visible with Light Microscopy [LM]; Fig. 1g,i), and with granules covered with 1–5 dots on the external side of the legs I-III (Fig. 1h; visible with Scanning Electron Microscopy [SEM]).
    Figure 1

    Mesobiotus emiliae sp. nov. (a) In toto (ventro-dorsal view) (b) Bucco-pharyngeal apparatus (dorso-ventral view from multiplanar images stack), (c) Buccal armature (ventral view), (d) Bucco-pharyngeal apparatus (lateral view) (e) Claw III (lateral view from multiplanar images stack), (f,g) Claw IV (lateral view from multiplanar images stack), (h) Claw III (fronto-lateral view), (i) Claw IV (frontal view). Empty indented arrows: crests of the buccal armature; indented white arrows: placoids constrictions; white arrowhead: cuticular ring of the buccal tube pharynx ending; empty arrows: accessory points of the main claw branch; empty indented arrowheads: lunules; asterisks: granulation on the legs IV. (a–c,e) Holotype. (a–g) LM, PhC; (h,i) SEM. Scale bars (a) 100 µm; (b–d) 10 µm; (e–i) 5 µm.

    Full size image

    Bucco-pharyngeal apparatus with antero-ventral mouth (Fig. 1b, d). Buccal ring with ten lamellae on its external margin. Buccal armature composed of: an anterior band of small teeth; a posterior line of conical teeth; three dorsal and three ventral transversal crests, the medio-ventral crest reduced to two or four mucrones in some smaller specimens (Fig. 1c), the latero-ventral crests shorter than the latero-dorsal ones. Short and straight stylet supports with distal flat enlargement, inserted at the 73.8–79.4% of the buccal tube. Typically-shaped stylet furca, with spherical condyles supported by short branches provided with small apophyses. Buccal tube ending with a thick cuticular ring within the pharynx (Fig. 1d). In the pharynx: pear-shaped pharyngeal apophyses; three grain-shaped (in lateral view) macroplacoids and an evident drop-shaped microplacoid. In frontal view, first macroplacoid triangular, second and third rectangular with rounded corners, and third with a deep distal constriction (Fig. 1b); length sequence 3  > 2  > 1.
    Double-claws of Mesobiotus type (Fig. 1e–i) with evident accessory points on the main branch. All claws similar in shape, external claws slightly larger than internal. Claws increasing in size from the first to the fourth, claws of hind legs clearly the largest. Smooth lunules under all claws, larger under claws of the hind legs (the anterior lunules clearly larger with respect to the posterior).
    Spherical eggs free laid, ornamented with processes in shape of large and short cones or mammillated with tips of different lengths (generally short), sometimes terminating in a tuft of filaments (Fig. 2a–c). Process wall formed by two sides (an internal and an external), interspersed with trabecular structures forming irregular meshes (Fig. 2b), in shape of bubble-like structures in the longer process tips (Fig. 2c). Base of the processes with a crown of irregular and small thickenings: smaller thickenings in shape of large dots, the larger ones triangular-shaped (Fig. 2b). Filaments of the process tips mostly short, elongated in abnormal processes. Processes in numbers of 11–14 on the circumference. Egg surface between the processes smooth or sparsely dotted. Egg with embryos found.
    Figure 2

    Eggs of Mesobiotus emiliae sp. nov. and Xerobiotus gretae sp. nov. (a–c) M. emiliae sp. nov. (a) iIn toto, (b) Processes surface detail, (c) Abnormal processes (lateral view). (d–j) X. gretae sp. nov. (d) In toto, (e,f) Processes (lateral view), (g) Processes (frontal view), (h) In toto, (i) Processes and surface detail, (j) Process (fronto-lateral view). Arrowhead: tuft of filaments on the tip of the egg process; arrow: septum dividing trunk and terminal disk of egg process; empty arrowhead: crown of dots at process base; indented arrowheads: pore on egg surface; empty indented arrowheads: indentation-like structures (provided with granular ornamentation) occurring in the upper surfaces of the disk. (a–g) LM, PhC; (h–j) SEM. Scale bars (a,d,h) 10 µm; (b,c,e–g,i) 5 µm; (j) 1 µm.

    Full size image

    Differential diagnosis
    According to the taxonomic key of Mesobiotus species32,33, M. emiliae sp. nov. is different from any other described species of this genus. Mesobiotus emiliae sp. nov. belongs to the harmsworthi group of species, and within this group Mesobiotus insuetus (Pilato, Sabella & Lisi, 2014)34, Mesobiotus lusitanicus (Maucci & Durante Pasa, 1984)35, Mesobiotus occultatus Kaczmarek, Zawierucha, Buda, Stec, Gawlak, Michalczyk & Roszkowska, 201836, Mesobiotus patiens (Pilato, Binda, Napolitano & Moncada, 2000)37, Mesobiotus pseudoblocki Roszkowska, Stec, Ciobanu & Kaczmarek, 201638, and Mesobiotus snaresensis (Horning, Schuster & Grigarick, 1978)39 share with Mesobiotus emiliae sp. nov. the following characteristics: smooth cuticle; buccal armature with both anterior and posterior rows of teeth visible with LM, and without accessory teeth between posterior row and transversal crests; smooth lunules in the claws of the hind legs; eggs with processes in shape of cone or hemisphere with elongated tip or inverted funnel surrounded by a basal crown of dots or digitations, and with smooth or wrinkled surface between them.
    Mesobiotus emiliae sp. nov. differs from:
    M. insuetus by: the presence of granulation on legs IV, the shorter first macroplacoid (pt 15.4–16.8 in M. insuetus; pt 7.9–12.7 in M. emiliae), the shorter macroplacoids row (pt 46.2–48.9 in M. insuetus; pt 35.2–46.0 in M. emiliae), the different morphology of the hind claws (i.e. not with secondary branches diverging distally and forming a right angle with the primary branches as in M. insuetus), the shorter primary branch of all claws (e.g., pt of the primary branch of the claws II, 31.9–36.0 in M. insuetus; 20.4–25.4 in M. emiliae), and the processes of the egg with larger meshes on the surface (with LM, as small separated dots in M. insuetus and bubbles in contact to each other in M. emiliae);
    M. lusitanicus by: the presence of granulation on legs IV, the length sequence of macroplacoids (3  > 1  > 2 in M. lusitanicus), the more evident microplacoid (pt 4.2 in M. lusitanicus; pt 7.3–12.3 in M. emiliae), and the shape of egg processes (i.e. not in shape of hemispheres terminating with a cap-like structure or with a fringed cones as in M. lusitanicus);
    M. occultatus by: the absence of granulation on the legs I-III (with LM), the length sequence of macroplacoids (1 ≥ 3  > 2 in M. occultatus), the smaller eggs (full diameter 97.4–126.6 µm in M. occultatus and 62.4–76.5 µm in M. emiliae), the shape of the egg processes with a base/height ratio (74–106% in M. occultatus and 144–164% in M. emiliae), the distance between the egg processes (mean 2.6 µm, 0.6 SD in M. occultatus and mean 1.1 µm, 0.4 SD in M. emiliae);
    M. patiens by: the absence of granulation on the legs I-III (with LM), the length sequence of macroplacoids (1  > 3  > 2 in M. patiens), the smaller eggs (full diameter 90.5–100.0 µm in M. patiens and 62.4–76.5 µm in M. emiliae), absence of slender tips in the egg processes;
    M. pseudoblocki by: the presence of granulation on legs IV, the length sequence of macroplacoids (1  > 3  > 2 in M. pseudoblocki), the smaller anterior claw of the hind legs (pt 27.5–33.5 in the primary branch and 19.8–27.4 in the secondary branch in M. pseudoblocki and pt 27.5–33.5 in the primary branch and 19.8–27.4 in the secondary branch in M. emiliae), the closer processes on the egg surface (mean 2.8 µm, 0.6 SD in M. pseudoblocki and mean 1.1 µm, 0.4 SD in M. emiliae), the processes of the egg not in shape of sharpened narrow cones, the processes base/height ratio (47–70% in M. pseudoblocki and 144–164% in M. emiliae);
    M. snaresensis by: the presence of granulation on hind legs, the more evident microplacoid (pt 4.2–7.3 in M. snaresensis; pt 7.3–12.3 in M. emiliae), the processes of the egg not terminating with a sharp or bifid tips, and the absence of pseudoareolation on the egg surface between the processes.
    Molecular characterization
    The analyses of the molecular markers were not possible due to the lack of alive specimens: the genomic material extracted from dead specimens gave no amplicons.
    Etymology
    We dedicate this species to Emilia Lonis, the beloved hundred-years-old grandmother of the coauthor Massa E., one of the last living workers that with their hand-on work for the reclamation of the “Piana di Terralba” (Sardinia, Italy; now site of the “Natura 2000” network) have contributed to the eradication of malaria in the island saving thousands of life.
    Xerobiotus gretae sp. nov.
    ZooBank: lsid:zoobank.org:act:E5265E82-86E9-4069-9B3B-B0F11D43DE79.
    Type locality
    Sånnarna, (Kristianstad, Skane, Sweden). Moss on ground (55.928056 N, 14.252694 E), collected on June 10th, 2014. Sample SVC15 (C4341 in the Bertolani’s Collection). An animal of this species was also found within a Saxifraga sp. (SVC19; Supplementary Table S2).
    Type repositories
    The holotype (SVC15 s2m), 51 paratypes, and an egg (SVC15 s2, s3) are at HKR, 50 paratypes (SVC15 s5) are in the collection of the SMNH, and 29 paratypes and an egg (C4341 s1, s4) are in the Bertolani’s Collection of Unimore. Five paratypes recovered from the old slide C4341 s1 (for the extraction and mounting protocol, see: Methods section) together with four paratypes and an egg freshly extracted were mounted on stubs for SEM observation.
    Description
    Body whitish or pale green, 177.5–438.3 µm in length (Figs. 3a, 4a,f). Orange eye-spots present in mounted specimens. Very small scattered pores (about 0.5 µm in diameter) in the dorso-lateral cuticle (Figs. 3b, 4b,c). Very small single granules, distributed almost regularly, present on the entire cuticle (only visible with SEM; Fig. 4c). Legs of the first pair smaller than those of the second and third pairs. The area of the leg cuticle surrounding the claws with a swelling (forming a garter-like structure; Fig. 4a, d–f). These swellings appearing covered with microdigitations and few minute scattered granules (with SEM; Fig. 4d).
    Figure 3

    Xerobiotus gretae sp. nov. (a) In toto (ventro-dorsal view), (b) Cuticular ornamentation (dorsal view), (c) Bucco-pharyngeal apparatus (dorso-ventral view from multiplanar images stack), (d) Bucco-pharyngeal apparatus (lateral view from multiplanar images stack), (e) Buccal armature (ventral view), (f) Stylet furca (frontal view), (g) Macroplacoids (frontal view from multiplanar images stack), (h) Claw III (frontal view), (i) Claw VI (lateral view). Arrow: cuticular pores; empty indented arrows: crests on the buccal armature; empty arrowheads: cuticular ring of the buccal tube pharynx ending; indented white arrows: placoid constrictions; empty arrow: accessory points of the main claw branch; arrowheads: basal rounded cuticular thickening of the claws; black arrowhead: lunules; indented white arrowheads: cuticular bars. (a,c) Holotype; (a–i) LM, PhC. Scale bars (a) 100 µm; (b–h) 10 µm.

    Full size image

    Figure 4

    Xerobiotus gretae sp. nov. (a–e) Specimens mounted on stub from alive tardigrades. (f–g) Specimens mounted on stub from old permanent slide. (a) In toto (lateral view), (b,c) Cuticle (dorsal view), (d) Claw I (fronto-lateral view), (e) Claw IV (lateral view), (f) In toto (ventral view), (g) Buccal opening. White arrows: garter-like structure covered with microdigitations; indented white arrows: pores; arrowheads: very small single dots on the cuticle; empty arrows: accessory points; black arrows: basal rounded cuticular thickening of the claws; black arrowhead: granules on the garter-like structure; empty indented arrowhead: anterior band of small teeth at the proximal end of the peribuccal lamellae; empty arrowhead: posterior line of small teeth; indented white arrowhead: dorsal transversal crests; empty indented arrow: cribrose area in buccal tube. SEM. Scale bars (a,f) 100 µm; (b,c) 1 µm; (d,e,g) 5 µm.

    Full size image

    Bucco-pharyngeal apparatus with antero-ventral mouth (Fig. 3c,d). Buccal ring with ten peribuccal lamellae (Fig. 4g). Buccal tube of Macrobiotus type, curved in the first half, and ending with a thick cuticular ring within the pharynx (Fig. 3c,d). Ventral lamina with an antero-ventral thickening (Fig. 3d). Buccal armature (Figs. 3c,e, 4g) composed of: an anterior band of small teeth at the base of the peribuccal lamellae (with SEM); a thin posterior band of small teeth not always visible with LM, but clearly visible with SEM; three dorsal and three ventral transversal crests, medio-ventral crest appearing split in two or three mucrones in some specimens (with LM). Lateral cribrose areas posterior to the transversal crests visible with SEM (Fig. 4g). Stylet support, inserted at 77.0–81.2% of buccal tube, in shape of an elongated sigma with a distal flat enlargement (Fig. 3c). Typically-shaped stylet furcae, with oval condyles supported by short branches provided with rounded apophyses (Fig. 3f). In the pharynx: large and triangular pharyngeal apophyses overlapping the first macroplacoid; two rod-shaped macroplacoids (in lateral view; Fig. 3d), and evident drop-shaped microplacoid. In frontal view (Fig. 3g), the first macroplacoid in shape of a drop with a medial slight constriction longer than the second, the second rectangular with rounded corners and with a small terminal slight constriction.
    Double-claws I-III different from claws IV (Figs. 3h,i, 4d,e): claws I–III of Xerobiotus type (without lunules), claws IV with a longer common tract, small and short claw branches, and pale lunules (more sclerified proximally than distally) sometimes visible (Fig. 3i). Internal and external claws of the same leg similar in shape, external (or posterior, in claw IV) claw slightly larger than the internal (or anterior, in claw IV). Proximal portion of the basal part of all claws with a small enlargement, larger in claw IV (Figs. 3h,i, 4d). Claws increasing in length from the first to the third pair. Primary branch of all claws with short accessory points (larger in claws IV). Cuticular bars under the base of the claw IV thick and with ragged margin (Fig. 3i): cuticular bar under the posterior claw wider and stretched toward the anterior claw, cuticular bar under anterior claw developed toward the front of the body (Fig. 3i).
    Spherical eggs laid free (Fig. 2d,h), ornamented with processes in shape of inverted goblets with straight or concave cross section (according to Kaczmarek et al.35; Fig. 2e–g,i,j). Processes base surrounded by a crown of dots (Fig. 2g); terminal disc slightly concave and divided by a septum from the trunk (Fig. 2e,f). The edge of the terminal disks indented, the indentations appearing like tapered tip (with LM; Fig. 2g) and like elongated processes ornamented with granules (with SEM; Fig. 2i); in several processes indentation-like structures (provided with granular ornamentation) occurring also in the upper surfaces of the disk (Fig. 2j). Wrinkled egg surface between the processes (Fig. 2g, i) and scattered with dot-like pores (with SEM; Fig. 2i). Egg with an embryo found.
    Differential diagnosis
    Xerobiotus gretae sp. nov. differs from all other Xerobiotus species by having pores on the cuticle visible with LM, an enlargement in the basal part of the claws, and cuticular bars under the claws IV.
    Moreover, Xerobiotus gretae sp. nov. differs from:
    Xerobiotus xerophilus (Dastych, 1978)41,42 by: the presence of a posterior band of teeth and the dorsal transversal crests not fused in the buccal armature, the shape of the egg processes (flattened hemispherical processes in X. xerophilus), and the egg surface lacking reticulation;
    Xerobiotus euxinus Pilato, Kiosya, Lisi, Inshina & Biserov, 201143 by: the dorsal transversal crests not fused in the buccal armature, and the presence of cuticular bars under the claws of the hind legs;
    Xerobiotus pseudohufelandi (Iharos, 1966)44 by: the presence of a posterior band of teeth, shorter common tract in the claws I-III (pt 11.07–11.99 in X. pseudohufelandi; pt 9.19–9.91 in X. gretae), and the egg surface lacking reticulation.
    Molecular characterization
    It was not possible to extract genetic material from the specimens recollected from the permanent slides (C4341 A–E). The analyses of the molecular markers amplified from four specimens (C4341 G–L; GenBank accession number: MW581665-8, cox1; MW588431-3, ITS2; MW588438-41, 28S; MW588434-7, 18S; Supplementary Table S5) revealed single haplotypes for ITS2, 18S, and 28S genes, and three haplotypes for cox1 gene (highest p-distance = 0.4%; Supplementary Table S3).
    Xerobiotus gretae sp. nov., in comparison to the more similar GenBank sequences which belong to Xerobiotus sp. collected in South Africa (Cape of Good Hope, Western Cape)45, differs for p-distances of 1.6–2.6% for cox1 (796 bp), 1.0% for ITS2 (452 bp), and 0.0% for 18S (870 bp). Xerobiotus pseudohufelandi, collected in Italy (Monte Calvario)46, differs from X. gretae sp. nov. for p-distance of 16.9–17.8% for cox1, and 0.0–0.1% for 18S, Xerobiotus sp., collected in Poland (Błedowska Desert)45, differs from X. gretae sp. nov. for p-distances of 17.8–18.1% for cox1, 5.1% for ITS2, and 0.1–0.2% for 18S (Supplementary Table S3).
    Etymology
    We dedicate this species to the climate activist Greta Thunberg, for her brave and insightful efforts to open the eyes of the world leaders about the need for action against climate change. The achievements of Greta Thunberg give us hope that the challenges of changing the unsustainable path of human societies may still be possible, just like the tiny tardigrades are able to overcome seemingly impossible environmental challenges. But we have to act now!
    Itaquascon magnussoni sp. nov.
    ZooBank: lsid:zoobank.org:act:254843BC-60F7-4B8E-A94D-8783214F3399.
    Type locality
    Näsby Fält (Kristianstad, Skåne, Sweden), along a trail to Araslövssjön Lake. Moss on bark of Alnus sp. (56.059328 N, 14.136678 E), 2 m up on the tree, collected on June 10th, 2014. Sample SVC32 (C4344 in the Bertolani’s Collection). The species was also found in two other localities (SVC3, 27; Supplementary Table S2).
    Type repositories
    The holotype (SVC32 s4c) and 13 paratypes are at HKR, four paratypes (SVC32 s8) are in the collection of the SMNH, and eight paratypes (C4344 s12) in the Bertolani’s Collection of Unimore.
    Description
    Body whitish, 135.9–509.3 µm in length (Fig. 5a). Eye-spots absent in mounted specimens. Cuticle smooth. Bucco-pharyngeal apparatus of Itaquascon type (Fig. 5b). Rigid and straight buccal tube, clearly longer than the apophyses for the insertion of the stylet muscles [AISM]. AISM symmetrical and flat ridge-shaped. Buccal tube followed by a pharyngeal tube almost of the same length (pharyngeal tube pt 91.6–113.8). Flexible pharyngeal tube formed by a rope-shaped thickening organized in a geometrical repeated pattern resembling an alternating hexagonal “wire meshes” (Fig. 5b,e,f); the “wire meshes” pattern begins in a more anterior position dorsally and ventrally than laterally (Fig. 5e,f). Very thin stylet supports present but hardly detectable and inserted on the pharyngeal tube in its anterior portion (Fig. 5b,e,f). Small stylet furca with short branches ending in drop-shaped condyles. Stylet coat more sclerotized in its proximal and distal portions than in its middle part. Pharyngeal tube ending within the pharynx with three small triangular apophyses (Fig. 5b). In the pharynx, only a single long, straight, and weakly thickened bar present (Fig. 5b).
    Figure 5

    Itaquascon magnussoni sp. nov. (a) In toto (ventro-lateral view), (b) Bucco-pharyngeal apparatus (dorso-ventral view from multiplanar images stack), (c) Claw II (lateral view from multiplanar images stack), (d) Claw VI (frontal view), (e) First section of the pharyngeal tube (3D dorsal reconstruction), (f) First section of the pharyngeal tube (drawn of dorsal view). White arrows: stylet supports; indented arrow: thickened bar in the pharynx; empty arrows: accessory points of the main claw branch; empty indented arrows: pseudolunules; arrowhead: cuticular bar under the claw. (a–c) Holotype. (a–d) LM, PhC; (e) CLSM; (f) schematic drawing. Scale bars (a) 100 µm; (b–d) 10 µm, (e,f) 5 µm.

    Full size image

    Double-claws of Hypsibius type (Fig. 5c,d), internal (anterior, in the claw IV) and external (posterior, in the claw IV) claws of the same legs different both in shape and size. Claws increasing in length from the first to the fourth legs. Basal part of all claws long, with enlarged base. Main branch of external claw (posterior, in the claw IV) long, quite straight, and poorly sclerotized throughout its length, with evident accessory points; its proximal part placed on a cuticular digit and connected with the secondary branch with a pair of filaments spanning from the tip of the branch (Fig. 5c). Main branch of internal (anterior, in the claw IV) claw shorter and more curved than the external, with evident accessory points. Thin and hardly detectable pseudolunules present under all claws (Fig. 5c,d). Straight cuticular bars (Fig. 5c), similar in size, with ragged margins on the internal side of the legs I-III, extending from the internal claw base to the anterior side of the leg, weakly visible only on the first pair of legs.
    Eggs unknown.
    Differential diagnosis
    Itaquascon magnussoni sp. nov. differs from all other Itaquascon species by having the stylet support inserted on the flexible pharyngeal tube. Considering the presence of the thickening within the pharynx, the most similar species of I. magnussoni sp. nov. are Itaquascon placophorum Maucci, 197347 and Itaquascon simplex (Mihelčič, 1971)48 (considered nomen dubium by Ramazzotti et al.49, thus not considered in this diagnosis).
    Itaquascon magnussoni sp. nov. differs from I. placophorum by: the longer buccal tube with respect to the bucco-pharyngeal tube (buccal tube 16–17% of the bucco-pharyngeal tube in the holotype of I. placophorum and 48.0–48.4% in I. magnussoni), the longer thickening in the pharynx (calculated pt 31.3 in the holotype of I. placophorum; pt 44.8–63.5 in I. magnussoni), the claws with pseudolunules and evident accessory points on the main branch.
    Molecular characterization
    The analyses of the molecular markers were not possible due to the lack of alive specimens: the genomic material extracted from dead specimens gave no amplicons.
    Etymology
    The species name is to honor Sven-Erik Magnusson, a sustainability visionary and leading person behind the development of Kristianstads Vattenrike Biosphere Reserve, and the first Coordinator of the Biosphere Reserve.
    Thulinius gustavi sp. nov.
    ZooBank: lsid:zoobank.org:act:149B5B73-580F-4BBE-BCB0-BCFD53E54EB5.
    Type locality
    Araslövssjön Lake, Näsby Fält (Skåne, Sweden). Upper layer of freshwater sediments in the bottom of the shore of the lake (56.059050 N, 14.135425 E), sample SVC31 (C4343 in Bertolani’s Collection).
    Type repositories
    The holotype (SVC31 s3b) and nine paratypes (SVC31 s2, s4, s5; SVC31b s2, s6, s8) are at HKR, one paratype (SVC31 s4) is in the collection of the SMNH, and one paratype (C4343 s1) in the Bertolani’s Collection of the Unimore. Two paratypes were mounted on stubs for SEM observation.
    Description
    Body whitish, 231.0–346.0 µm in length (Fig. 6a,j). Eye-spots present. Dorsal cuticle sculptured with large tubercles, with polygonal base, that gradually increase in size from the head to the posterior side of the body (Fig. 6b,k).
    Figure 6

    Thulinius gustavi sp. nov. (a) In toto (dorso-lateral view), (b) Cuticular ornamentation (dorso-lateral view), (c) Bucco-pharyngeal apparatus (dorso-ventral view from multiplanar images stack), (d) Buccal armature (dorsal view), (e) Buccal armature (ventral view), (f) Stylet furca (frontal view), (g) Macroplacoids (frontal view from multiplanar images stack), (h) Claw I (lateral view), (i) Claw IV (frontal view), (j) In toto (lateral view), (k) Cuticular ornamentation (dorso-lateral), (l) Claw II (frontal-lateral view), (m) Claw IV (frontal view), (n) Bucco-pharyngeal apparatus (3D lateral reconstruction). Indented arrowheads: cuticular ornamentation; white arrowhead: peribuccal lamellae; empty indented arrowhead: posterior line of small round teeth; white arrow: second macroplacoid constriction; white indented arrows: accessory points of the main claw branch; empty arrow: pseudolunules; empty arrowheads: apophyses for the insertion of the stylet muscles. (a–c) Holotype. (a–f), (h,i). LM, PhC; (g) LM, DIC; (j–m) SEM; (n,o) CLSM; Scale bars (a) 100 µm; (b–j,n). 10 µm; (k) 2 µm; (l,m) 5 µm.

    Full size image

    Bucco-pharyngeal apparatus with antero-ventral mouth opening (Fig. 6c,n). Buccal tube straight. Twelve peribuccal lamellae present. Buccal armature formed by a posterior line of small round teeth, followed by a line of large rounded teeth in the position of the transversal crests (Fig. 6d,e). Two bigger rounded teeth present ventrally within the second line in correspondence of the stylet sheaths (Fig. 6d). Ventral and dorsal AISM crest-shaped and symmetrical with respect to the frontal plane (Fig. 6n). Long and straight stylet supports with a distal flat enlargement. Typically-shaped stylet furca, with long branches provided with large apophyses (Fig. 6f). In the pharynx, large pharyngeal apophyses overlapping the first macroplacoid (Fig. 6n); three rod-shaped (in lateral view) macroplacoids arranged in a curved line; first and second almost fuse together, third spaced from the second (Fig. 6g). In frontal view, the first macroplacoid in shape of a triangle, second in shape of a rectangle with rounded corners, and the third almond-shaped and slightly constricted in the middle; length sequence 3  > 1  > 2.
    Double-claws of Isohypsibius type (Fig. 6h,i,l,m) increasing in length from the first to the fourth pair of legs, external claw slightly longer than the internal. Basal portions of all claws short and slender, enlarged in their proximal portion. Primary branch of all claws with thin and short accessory points (never reaching the end of the branch and not always visible) and divided from the rest of the claw by a basal septum, with a dorsal knob-like thickening (Fig. 6h,i). Pseudolunules hardly detectable and small on external claws of legs I–III (Fig. 6h,l), larger on posterior claw of legs IV (Fig. 6i,m).
    Smooth oval eggs laid in exuvium (an exuvium with four eggs was found).
    Differential diagnosis
    Thulinius gustavi sp. nov. differs from all other Thulinius species by having a dorso-lateral ornamented cuticle with tubercles. Considering the presence of pseudolunules only under the external (posterior, in claws IV) claws, the most similar species are Thulinius romanoi bertolani, bartels, Guidetti, Cesari & Nelson, 201450 and Thulinius saltarsus (Schuster, Toftner & Grigarick, 1978)51.
    T. gustavi sp. nov. differs from:
    T. romanoi by: the absence of ornamented cuticle in ventral side, the presence of eye-spots, the more narrow buccal tube (pt 21.9 and 13.4 in the holotype and a paratype of T. romanoi; pt 9.1–10.7 in T. gustavi), the stylet support inserted more posteriorly (pt 62.9 in the holotype of T. romanoi; pt 70.2–73.1 in T. gustavi), the macroplacoid length sequence (1  > 3  > 2 in T. romanoi), the shorter accessory points that never reach the end of the branch, and the presence of evident pseudolunules in claw IV;
    T. saltarsus by: the dorso-lateral ornamented cuticle, presence of eye-spots, the macroplacoid length sequence (1  > 3  > 2 in T. saltarsus).
    Molecular characterization
    The analyses of the molecular markers were not possible due to the lack of alive specimens: the genomic material extracted from dead specimens gave no amplicons.
    Etymology
    The species name has been chosen in honor of Gustav Thulin (1889–1945), the first internationally recognized Swedish tardigradologist, who made important contributions to the knowledge of the Swedish tardigrade fauna and to modern taxonomy and phylogenetics of tardigrades.
    Faunistic results
    The analysis of the 34 samples collected (33 terrestrial and one freshwater; see “Methods”) in the five sampled areas within the KVBR revealed the presence of 33 morphospecies belonging to 20 genera (Table 3) of Eutardigrada (18 genera and 29 species of Parachela, and one genus and two species of Apochela), and Heterotardigrada (one genus, two species). The identification of the morphospecies was carried out with morphological and morphometric approaches.
    Table 3 Morphospecies identified with a morphological approach in the samples collected from five areas within Kristianstads Vattenrike.
    Full size table

    The highest densities of tardigrades (ind/g) were found in a lichen and a moss (Table 3, Supplementary Table S4). However, tardigrade densities in both lichens (five samples) and mosses (13 samples) were highly variable, ranging from 2.7 to 75.4 ind/g (mean: 27.6 ind/g, SD: 29.5, N = 5) in lichens, and from 0.2 to 66.4 ind/g (mean: 11.1 ind/g, SD: 17.9, N = 13) in mosses. In contrast, leaf litter (two samples) and soil with grass (three samples) were less abundant in animals and had a more homogeneous density: 0.1–1.9 ind/g (mean: 0.9 ind/g, SD: 0.68, N = 5; Table 3, Supplementary Table S4).
    The species belonging to the family Macrobiotidae were the most represented, found in 23 samples. The 11 macrobiotid species belonged to five genera (Macrobiotus, Mesobiotus, Minibiotus, Paramacrobiotus, and Xerobiotus) and were found in 69.7% of the terrestrial substrates, with variable diversity (1–4 species per substrate) and variable density (0.1–22.4 ind/g; Table 3) within each sample. The genus Macrobiotus was the most represented among the Macrobiotidae and among all the genera identified in all samples (7 species distributed among 17 samples).
    The sample SVC11 (C4340 in Bertolani’s Collection) was the richer in terms of overall density (66.4 ind/g; Table 3). Within this sample Macrobiotus polonicus Pilato, Kaczmarek, Michalczyk & Lisi, 200352 and Macrobiotus wandae Kayastha, Berdi, Mioduchowska, Gawlak, Łukasiewicz, Gołdyn, & Kaczmarek, 202053 were initially morphologically identified, but the evidence of intraspecific variability for some characters led us to suspect the presence of cryptic species. The analyses were performed by genotyping the markers ITS2 and cox1. The analyses of the cox1 were unsuccessful, but the ITS2 sequences amplified from nine specimens (C4340 C–D, J–P; GenBank accession numbers: XXXX) were sufficient to reveal the presence of three species: Macrobiotus polonicus, Macrobiotus cf. polonicus, and Macrobiotus aff. wandae. Macrobiotus polonicus, already identified via morphology, was confirmed also by a very low p-distance of its sequences (0.00–0.01%; 587 bp) with respect to those already attributed to this species (Supplementary Table S3). In the population, eight males with spermatozoans within the gonad were found. One specimen previously identified as M. polonicus was revealed to belong to a cryptic taxon that we named M. cf. polonicus (p-distance 0.04–0.05% with respect to M. polonicus sequences; Supplementary Table S3). Macrobiotus cf. polonicus differs morphologically from M. polonicus by the presence of fine granules on the external side of all legs, for this species the egg morphology is unknown. Macrobiotus aff. wandae is probably a species new to science both for the ITS2 differences (p-distance 0.17–0.18% from the three available sequences of Macrobiotus wandae; Supplementary Table S3) and for the different shape of the egg having a more expanded distal disk on the processes. Since only one egg and few animals of this species were collected and the cox1 sequencing gave no result, further collection and analyses will needed before a possible new species description.
    The most common morphospecies in the samples was Ramazzottius oberhaeuseri (Doyére, 1840)54. It was retrieved from 39.4% (13 terrestrial samples) of the samples and from all the sampled areas except Balsberget, with a highly variable density: e.g., 70.8 ind/g in a lichen, 0.3 ind/g in a soil with grass, and 0.1 ind/g in a moss or in a leaf litter. Milnesium asiaticum Tumanov, 200655 was found in 33.3% (11 samples) of the terrestrial samples from all the sampled areas, but with low density (0.1–1.4 ind/g). Hypsibius convergens (Urbanowicz, 1925)56 was found in 32.4% (11 samples) of both terrestrial and freshwater samples, and in all the sampled areas except the HKR campus, with a low density (0.1–6.2 ind/g). Macrobiotus persimilis Binda & Pilato, 197257 had a wide distribution, found in 30.3% (10 samples) of terrestrial samples, with low density (0.3–2.3 ind/g). All the other morphospecies have a more restricted distribution within the samples (Table 3).
    Considering all samples, the species diversity within individual samples and between sampling areas was variable (number of morphospecies: 0–7; 12–19, respectively), but most of the samples (67.6%) had three to six morphospecies, and only within two samples (SVC5, 6; 0.5%) there were no tardigrades (Table 3). More