Predator-induced defence in a dinoflagellate generates benefits without direct costs
1.
Llewellyn LE. Saxitoxin, a toxic marine natural product that targets a multitude of receptors. Nat Prod Rep. 2006;23:200–18.
CAS PubMed Article Google Scholar
2.
Selander E, Thor P, Toth G, Pavia H. Copepods induce paralytic shellfish toxin production in marine dinoflagellates. Proc R Soc B. 2006;273:1673–80.
CAS PubMed Article Google Scholar
3.
Turner JT, Tester PA. Toxic marine phytoplankton, zooplankton grazers, and pelagic food webs. Limnol Oceanogr. 1997;42:1203–13.
Article Google Scholar
4.
Smetacek V. A watery arms race. Nature. 2001;441:745.
Article Google Scholar
5.
Xu J, Kiørboe T. Toxic dinoflagellates produce true grazer deterrents. Ecology. 2018;99:2240–9.
PubMed Article Google Scholar
6.
Cusick KD, Widder EA. Bioluminescence and toxicity as driving factors in harmful algal blooms: ecological functions and genetic variability. Harmful Algae. 2020;98:101850.
CAS PubMed Article Google Scholar
7.
Pančić M, Kiørboe T. Phytoplankton defence mechanisms: traits and trade-offs: defensive traits and trade-offs. Biol Rev. 2018;93:1269–303.
PubMed Article Google Scholar
8.
John EH, Flynn KJ. Growth dynamics and toxicity of Alexandrium fundyense (Dinophyceae): the effect of changing N:P supply ratios on internal toxin and nutrient levels. Eur J Phycol. 2000;35:11–23.
Google Scholar
9.
Selander E, Cervin G, Pavia H. Effects of nitrate and phosphate on grazer-induced toxin production in Alexandrium minutum. Limnol Oceanogr. 2008;53:523–30.
CAS Article Google Scholar
10.
Blossom HE, Markussen B, Daugbjerg N, Krock B, Norlin A, Hansen PJ. The cost of toxicity in microalgae: direct evidence from the dinoflagellate Alexandrium. Front Microbiol. 2019;10:1065.
PubMed PubMed Central Article Google Scholar
11.
Brown ER, Kubanek J. Harmful alga trades off growth and toxicity in response to cues from dead phytoplankton. Limnol Oceanogr. 2020;65:1723–33.
12.
Windust AJ, Wright JLC, McLachlan JL. The effects of the diarrhetic shellfish poisoning toxins, okadaic acid and dinophysistoxin-1, on the growth of microalgae. Mar Biol. 1996;126:19–25.
CAS Article Google Scholar
13.
Legrand C, Rengefors K, Fistarol GO, Granéli E. Allelopathy in phytoplankton—biochemical, ecological and evolutionary aspects. Phycologia. 2003;42:406–19.
Article Google Scholar
14.
John E, Flynn K. Modelling changes in paralytic shellfish toxin content of dinoflagellates in response to nitrogen and phosphorus supply. Mar Ecol Prog Ser. 2002;225:147–60.
CAS Article Google Scholar
15.
Lundholm N, Krock B, John U, Skov J, Cheng J, Pančić M, et al. Induction of domoic acid production in diatoms—types of grazers and diatoms are important. Harmful Algae. 2018;79:64–73.
CAS PubMed Article Google Scholar
16.
Bergkvist J, Selander E, Pavia H. Induction of toxin production in dinoflagellates: the grazer makes a difference. Oecologia. 2008;156:147–54.
PubMed Article Google Scholar
17.
Griffin JE, Park G, Dam HG. Relative importance of nitrogen sources, algal alarm cues and grazer exposure to toxin production of the marine dinoflagellate Alexandrium catenella. Harmful Algae. 2019;84:181–7.
CAS PubMed Article Google Scholar
18.
Selander E, Berglund EC, Engström P, Berggren F, Eklund J, Harðardóttir S, et al. Copepods drive large-scale trait-mediated effects in marine plankton. Sci Adv. 2019;5:eaat5096.
CAS PubMed PubMed Central Article Google Scholar
19.
Rhoades DF. Evolution of plant chemical defense against herbivores. Herbivores: their interaction with secondary plant metabolites. New York: Academic Press;1979. p 1–55.
20.
Karban R. The ecology and evolution of induced resistance against herbivores: induced resistance against herbivores. Funct Ecol. 2011;25:339–47.
Article Google Scholar
21.
Strauss SY, Rudgers JA, Lau JA, Irwin RE. Direct and ecological costs of resistance to herbivory. TREE. 2002;17:278–85.
Google Scholar
22.
Agrawal AA. Current trends in the evolutionary ecology of plant defence. Funct Ecol. 2011;25:420–32.
Article Google Scholar
23.
Pančić M, Torres RR, Almeda R, Kiørboe T. Silicified cell walls as a defensive trait in diatoms. Proc R Soc B. 2019;286:20190184.
PubMed Article CAS Google Scholar
24.
Grønning J, Kiørboe T. Diatom defence: grazer induction and cost of shell‐thickening. Funct Ecol. 2020;34:1790–1801.
25.
Kiørboe T, Andersen KH. Nutrient affinity, half-saturation constants and the cost of toxin production in dinoflagellates. Ecol Lett. 2019;22:558–60.
PubMed Article Google Scholar
26.
Wang X, Wang Y, Ou L, He X, Chen D. Allocation costs associated with induced defense in Phaeocystis globosa (Prymnesiophyceae): the effects of nutrient availability. Sci Rep. 2015;5:10850.
CAS PubMed PubMed Central Article Google Scholar
27.
Zhu X, Wang J, Chen Q, Chen G, Huang Y, Yang Z. Costs and trade-offs of grazer-induced defenses in Scenedesmus under deficient resource. Sci Rep. 2016;6:22594.
CAS PubMed PubMed Central Article Google Scholar
28.
Redfield AC. The biological control of chemical factors in the environment. Am Sci. 1958;46:205–21.
CAS Google Scholar
29.
Boyer GL, Sullivan JJ, Andersen RJ, Harrison PJ, Taylor FJR. Effects of nutrient limitation on toxin production and composition in the marine dinoflagellate Protogonyaulax tamarensis. Mar Biol. 1987;96:123–8.
CAS Article Google Scholar
30.
Leong SCY, Murata A, Nagashima Y, Taguchi S. Variability in toxicity of the dinoflagellate Alexandrium tamarense in response to different nitrogen sources and concentrations. Toxicon. 2004;43:407–15.
CAS PubMed Article Google Scholar
31.
Chakraborty S, Pančić M, Andersen KH, Kiørboe T. The cost of toxin production in phytoplankton: the case of PST producing dinoflagellates. ISME J. 2019;13:64–75.
CAS PubMed Article Google Scholar
32.
Andersson L. Trends in nutrient and oxygen concentrations in the Skagerrak-Kattegat. J Sea Res. 1996;35:63–71.
CAS Article Google Scholar
33.
Tiselius P, Belgrano A, Andersson L, Lindahl O. Primary productivity in a coastal ecosystem: a trophic perspective on a long-term time series. J Plankton Res. 2016;38:1092–102.
CAS Article Google Scholar
34.
Kiørboe T, Nielsen TG. Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. 1. Copepods. Limnol Oceanogr. 1994;39:493–507.
Article Google Scholar
35.
Selander E, Kubanek J, Hamberg M, Andersson MX, Cervin G, Pavia H. Predator lipids induce paralytic shellfish toxins in bloom-forming algae. Proc Natl Acad Sci USA. 2015;112:6395–400.
CAS PubMed Article Google Scholar
36.
Hansen PJ. The red tide dinoflagellate Alexandrium tamarense: effects on behaviour and growth of a tintinnid ciliate. Mar Ecol Prog Ser. 1989;53:105–16.
Article Google Scholar
37.
Berdalet E, Peters F, Koumandou VL, Roldán C, Guadayol Ò, Estrada M. Species-specific physiological response of dinoflagellates to quantified small-scale turbulence 1. J Phycol. 2007;43:965–77.
Article Google Scholar
38.
Fischer R, Andersen T, Hillebrand H, Ptacnik R. The exponentially fed batch culture as a reliable alternative to conventional chemostats. Limnol Oceanogr Meth. 2014;12:432–40.
Article Google Scholar
39.
Flynn K, Jones KJ, Flynn KJ. Comparisons among species of Alexandrium (Dinophyceae) grown in nitrogen- or phosphorus-limiting batch culture. Mar Biol. 1996;126:9–18.
CAS Article Google Scholar
40.
Brandenburg KM, Wohlrab S, John U, Kremp A, Jerney J, Krock B, et al. Intraspecific trait variation and trade-offs within and across populations of a toxic dinoflagellate. Ecol Lett. 2018;21:1561–71.
PubMed Article Google Scholar
41.
Hillebrand H, Dürselen C-D, Kirschtel D, Pollingher U, Zohary T. Biovolume calculation for pelagic and benthic microalgae. J Phycol. 1999;35:403–24.
Article Google Scholar
42.
Schnetger B, Lehners C. Determination of nitrate plus nitrite in small volume marine water samples using vanadium(III)chloride as a reduction agent. Mar Chem. 2014;160:91–8.
CAS Article Google Scholar
43.
Asp TN, Larsen S, Aune T. Analysis of PSP toxins in Norwegian mussels by a post-column derivatization HPLC method. Toxicon. 2004;43:319–27.
CAS PubMed Article Google Scholar
44.
Turner A, Tölgyesi L. Determination of Paralytic Shellfish Toxins and Tetrodotoxin in Shellfish using HILIC/MS/MS. Application Note No. 5994-0967EN. [Internet]. 2019. Available from: https://www.agilent.com/en/solutions/food-testing-agriculture/seafood-testing.
45.
Franco JM, Fernández P, Reguera B. Toxin profiles of natural populations and cultures of Alexandrium minutum Halim from Galician (Spain) coastal waters. J Appl Phycol. 1994;6:275–9.
CAS Article Google Scholar
46.
Xu J, Hansen PJ, Nielsen LT, Krock B, Tillmann U, Kiørboe T. Distinctly different behavioral responses of a copepod, Temora longicornis, to different strains of toxic dinoflagellates, Alexandrium spp. Harmful Algae. 2017;62:1–9.
PubMed Article Google Scholar
47.
Wood S, Scheipl F. gamm4: Generalized additive mixed models using mgcv and lme4. R package version 0.2-6. [Internet]. 2020. Available from: https://cran.r-project.org/.
48.
Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest package: tests in linear mixed effects models. J Stat Soft 2017;82:1–26.
49.
Wohlrab S, Selander E, John U. Predator cues reduce intraspecific trait variability in a marine dinoflagellate. BMC Ecol. 2017;17:8.
PubMed PubMed Central Article CAS Google Scholar
50.
Driscoll WW, Hackett JD, Ferrière R. Eco-evolutionary feedbacks between private and public goods: evidence from toxic algal blooms. Ecol Lett. 2016;19:81–97.
PubMed Article Google Scholar
51.
Flynn K, Franco J, Fernandez P, Reguera B, Zapata M, Wood G, et al. Changes in toxin content, biomass and pigments of the dinoflagellate Alexandrium minutum during nitrogen refeeding and growth into nitrogen or phosphorus stress. Mar Ecol Prog Ser. 1994;111:99–109.
CAS Article Google Scholar
52.
Tillmann U, John U. Toxic effects of Alexandrium spp. on heterotrophic dinoflagellates: an allelochemical defence mechanism independent of PSP-toxin content. Mar Ecol Prog Ser. 2002;230:47–58.
CAS Article Google Scholar
53.
Tillmann U, Hansen PJ. Allelopathic effects of Alexandrium tamarense on other algae: evidence from mixed growth experiments. Aquat Micro Ecol. 2009;57:101–12.
Article Google Scholar
54.
Teegarden GJ, Campbell RG, Anson DT, Ouellett A, Westman BA, Durbin EG. Copepod feeding response to varying Alexandrium spp. cellular toxicity and cell concentration among natural plankton samples. Harmful Algae. 2008;7:33–44.
Article Google Scholar
55.
Peter KH, Sommer U. Interactive effect of warming, nitrogen and phosphorus limitation on phytoplankton cell size. Ecol Evol. 2015;5:1011–24.
PubMed PubMed Central Article Google Scholar
56.
Garcia NS, Bonachela JA, Martiny AC. Interactions between growth-dependent changes in cell size, nutrient supply and cellular elemental stoichiometry of marine. Synechococcus ISME J. 2016;10:2715–24.
CAS PubMed Article Google Scholar
57.
Kiørboe T. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Adv Mar Biol. 1993;29:1–72.
Article Google Scholar
58.
Lindemann C, Fiksen Ø, Andersen KH, Aksnes DL. Scaling laws in phytoplankton nutrient uptake affinity. Front Microbiol. 2016;3:1–6.
Google Scholar
59.
Edwards KF, Thomas MK, Klausmeier CA, Litchman E. Allometric scaling and taxonomic variation in nutrient utilization traits and maximum growth rate of phytoplankton. Limnol Oceanogr. 2012;57:554–66.
Article Google Scholar
60.
Lürling M, Van Donk E. Grazer-induced colony formation in Scenedesmus: are there costs to being colonial? Oikos. 2000;88:111–8.
Article Google Scholar
61.
Selander E, Jakobsen HH, Lombard F, Kiorboe T. Grazer cues induce stealth behavior in marine dinoflagellates. Proc Natl Acad Sci USA. 2011;108:4030–4.
CAS PubMed Article PubMed Central Google Scholar
62.
Kiørboe T. A mechanistic approach to plankton ecology. Princeton, NJ: Princeton University Press; 2008. pp. 128–129.
63.
Tollrian R, Harvell CD. The ecology and evolution of inducible defenses. Princeton, NJ: Princeton University Press; 1999. pp. 1–383.
64.
Leao T, Castelão G, Korobeynikov A, Monroe EA, Podell S, Glukhov E, et al. Comparative genomics uncovers the prolific and distinctive metabolic potential of the cyanobacterial genus Moorea. Proc Natl Acad Sci USA. 2017;114:3198–203.
CAS PubMed Article PubMed Central Google Scholar
65.
Züst T, Agrawal AA. Trade-Offs Between Plant Growth and Defense Against Insect Herbivory: An Emerging Mechanistic Synthesis. Annu Rev Plant Biol. 2017;68:513–34.
PubMed Article CAS PubMed Central Google Scholar More
