1.
Breitbart M, Rohwer F. Here a virus, there a virus, everywhere the same virus? Trends Microbiol. 2005;13:278–84.
CAS PubMed Article PubMed Central Google Scholar
2.
Hatfull GF. Dark matter of the biosphere: the amazing world of bacteriophage diversity. J Virol. 2015;89:8107–10.
CAS PubMed PubMed Central Article Google Scholar
3.
Bouvier T, Del Giorgio PA. Key role of selective viral-induced mortality in determining marine bacterial community composition. Environ Microbiol. 2007;9:287–97.
CAS PubMed Article PubMed Central Google Scholar
4.
Canchaya C, Fournous G, Chibani-Chennoufi S, Dillmann ML, Brüssow H. Phage as agents of lateral gene transfer. Curr Opin Microbiol. 2003;6:417–24.
CAS PubMed Article PubMed Central Google Scholar
5.
Howard-Varona C, Hargreaves KR, Solonenko NE, Markillie LM, White RA, Brewer HM, et al. Multiple mechanisms drive phage infection efficiency in nearly identical hosts. ISME J. 2018;12:1605–18.
PubMed PubMed Central Article Google Scholar
6.
Weinbauer MG, Rassoulzadegan F. Are viruses driving microbial diversification and diversity? Environ Microbiol. 2004;6:1–11.
PubMed Article PubMed Central Google Scholar
7.
Thurber RV. Current insights into phage biodiversity and biogeography. Curr Opin Microbiol. 2009;12:582–7.
CAS PubMed Article PubMed Central Google Scholar
8.
Chow C-ET, Suttle CA. Biogeography of viruses in the sea. Annu Rev Virol. 2015;2:41–66.
CAS PubMed Article PubMed Central Google Scholar
9.
Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature. 2016;537:689–93.
CAS PubMed Article PubMed Central Google Scholar
10.
Shkoporov AN, Khokhlova EV, Fitzgerald CB, Stockdale SR, Draper LA, Ross RP, et al. ΦCrAss001 represents the most abundant bacteriophage family in the human gut and infects Bacteroides intestinalis. Nat Commun. 2018;9:4781.
PubMed PubMed Central Article CAS Google Scholar
11.
Breitbart M, Miyake JH, Rohwer F. Global distribution of nearly identical phage-encoded DNA sequences. FEMS Microbiol Lett. 2004;236:249–56.
CAS PubMed Article PubMed Central Google Scholar
12.
Dutilh BE, Cassman N, McNair K, Sanchez SE, Silva GGZ, Boling L, et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat Commun. 2014;5:4498.
CAS PubMed PubMed Central Article Google Scholar
13.
Jameson E, Mann NH, Joint I, Sambles C, Mühling M. The diversity of cyanomyovirus populations along a North-South Atlantic Ocean transect. ISME J. 2011;5:1713–21.
CAS PubMed PubMed Central Article Google Scholar
14.
Delong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard N, et al. Community genomics among stratified microbial assemblages in the ocean’s interior. Science. 2006;311:496–503.
CAS PubMed Article PubMed Central Google Scholar
15.
Finke JF, Suttle CA. The environment and cyanophage diversity: insights from environmental sequencing of DNA polymerase. Front Microbiol. 2019;10:167.
PubMed PubMed Central Article Google Scholar
16.
Hanson CA, Marston MF, Martiny JB. Biogeographic variation in host range phenotypes and taxonomic composition of marine cyanophage isolates. Front Microbiol. 2016;7:983.
PubMed PubMed Central Article Google Scholar
17.
Huang S, Zhang S, Jiao N, Chen F. Marine cyanophages demonstrate biogeographic patterns throughout the global ocean. Appl Environ Microbiol. 2015;81:441–52.
CAS PubMed Article PubMed Central Google Scholar
18.
Marston MF, Taylor S, Sme N, Parsons RJ, Noyes TJE, Martiny JBH. Marine cyanophages exhibit local and regional biogeography. Environ Microbiol. 2013;15:1452–63.
CAS PubMed Article PubMed Central Google Scholar
19.
Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M, Mikhailova N, et al. Uncovering Earth’s virome. Nature. 2016;536:425–30.
CAS PubMed Article PubMed Central Google Scholar
20.
Winter C, Matthews B, Suttle CA. Effects of environmental variation and spatial distance on bacteria, archaea and viruses in sub-polar and arctic waters. ISME J. 2013;7:1507–18.
PubMed PubMed Central Article Google Scholar
21.
Luo E, Aylward FO, Mende DR, Delong EF. Bacteriophage distributions and temporal variability in the ocean’s interior. mBio 2017;8:e01903–17.
CAS PubMed PubMed Central Article Google Scholar
22.
Brum JR, Ignacio-espinoza JC, Roux S, Doulcier G, Acinas SG, Alberti A, et al. Patterns and ecological drivers of ocean viral communities. Science. 2015;348:1261498.
PubMed Article CAS PubMed Central Google Scholar
23.
Dennehy JJ. What ecologists can tell virologists. Annu Rev Microbiol. 2014;68:117–35.
CAS PubMed Article PubMed Central Google Scholar
24.
Held NL, Whitaker RJ. Viral biogeography revealed by signatures in Sulfolobus islandicus genomes. Environ Microbiol. 2009;11:457–66.
CAS PubMed Article PubMed Central Google Scholar
25.
Ashby B, Boots M. Multi-mode fluctuating selection in host–parasite coevolution. Ecol Lett. 2017;20:357–65.
PubMed Article PubMed Central Google Scholar
26.
Koskella B, Brockhurst MA. Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol Rev. 2014;38:916–31.
CAS PubMed PubMed Central Article Google Scholar
27.
Vos M, Birkett PJ, Birch E, Griffiths RI, Buckling A. Local adaptation of bacteriophages to their bacterial hosts in soil. Science 2009;325:833.
CAS PubMed Article PubMed Central Google Scholar
28.
Gomez P, Buckling A. Coevolution with phages does not influence the evolution of bacterial mutation rates in soil. ISME J. 2013;7:2242–4.
CAS PubMed PubMed Central Article Google Scholar
29.
Kraemer SA, Boynton PJ. Evidence for microbial local adaptation in nature. Mol Ecol. 2017;26:1860–76.
PubMed Article PubMed Central Google Scholar
30.
Kawecki T, Ebert D. Conceptual issues in local adaptation. Ecol Lett. 2004;7:1225–41.
Article Google Scholar
31.
Lenormand T. Gene flow and the limits to natural selection. Trends Ecol Evol. 2002;17:183–9.
Article Google Scholar
32.
Nosil P, Egan SP, Funk DJ. Heterogeneous genomic differentiation between walking-stick ecotypes: “isolation by adaptation” and multiple roles for divergent selection. Evolution. 2008;62:316–36.
PubMed Article Google Scholar
33.
Orsini L, Vanoverbeke J, Swillen I, Mergeay J, De Meester L. Drivers of population genetic differentiation in the wild: Isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Mol Ecol. 2013;22:5983–99.
PubMed Article Google Scholar
34.
Zhang Q-G, Buckling A. Migration highways and migration barriers created by host–parasite interactions. Ecol Lett. 2016;19:1479–85.
PubMed Article Google Scholar
35.
Wang IJ, Bradburd GS. Isolation by environment. Mol Ecol. 2014;23:5649–62.
PubMed Article Google Scholar
36.
Buckling A, Rainey PB. Antagonistic coevolution between a bacterium and a bacteriophage. Proc Biol Sci. 2002;269:931–6.
PubMed PubMed Central Article Google Scholar
37.
Kunin V, He S, Warnecke F, Peterson SB, Garcia Martin H, Haynes M, et al. A bacterial metapopulation adapts locally to phage predation despite global dispersal. Genome Res. 2008;18:293–7.
CAS PubMed PubMed Central Article Google Scholar
38.
Lopez Pascua L, Gandon S, Buckling A. Abiotic heterogeneity drives parasite local adaptation in coevolving bacteria and phages. J Evol Biol. 2012;25:187–95.
CAS PubMed Article Google Scholar
39.
Baumann P. Biology of endosymbionts of plant sap-sucking insects. Annu Rev Microbiol. 2005;59:155–89.
CAS PubMed Article Google Scholar
40.
Levy A, Gonzalez IS, Mittelviefhaus M, Clingenpeel S, Paredes SH, Miao J, et al. Genomic features of bacterial adaptation to plants. Nat Genet. 2018;50:138–50.
CAS Article Google Scholar
41.
Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science 2005;307:1915–20.
PubMed Article CAS PubMed Central Google Scholar
42.
Heath KD, Tiffin P. Context dependence in the coevolution of plant and rhizobial mutualists. Proc Biol Sci. 2007;274:1905–12.
PubMed PubMed Central Google Scholar
43.
Koch M, Delmotte N, Rehrauer H, Vorholt JA, Pessi G, Hennecke H. Rhizobial adaptation to hosts, a new facet in the legume root-nodule symbiosis. Mol Plant Microbe Interact. 2010;23:784–90.
CAS PubMed Article PubMed Central Google Scholar
44.
Aguilar OM, Riva O, Peltzer E. Analysis of Rhizobium etli and of its symbiosis with wild Phaseolus vulgaris supports coevolution in centers of host diversification. Proc Natl Acad Sci. 2004;101:13548–53.
CAS PubMed Article PubMed Central Google Scholar
45.
Bitocchi E, Bellucci E, Giardini A, Rau D, Rodriguez M, Biagetti E, et al. Molecular analysis of the parallel domestication of the common bean (Phaseolus vulgaris) in Mesoamerica and the Andes. N Phytol. 2013;197:300–13.
CAS Article Google Scholar
46.
Koenig R, Gepts P. Allozyme diversity in wild Phaseolus vulgaris: further evidence for two major centers of genetic diversity. Theor Appl Genet. 1989;78:809–17.
CAS PubMed Article PubMed Central Google Scholar
47.
Melkonian R, Moulin L, Béna G, Tisseyre P, Chaintreuil C, Heulin K, et al. The geographical patterns of symbiont diversity in the invasive legume Mimosa pudica can be explained by the competitiveness of its symbionts and by the host genotype. Environ Microbiol. 2014;16:2099–111.
PubMed Article PubMed Central Google Scholar
48.
Tian CF, Young JPW, Wang ET, Tamimi SM, Chen WX. Population mixing of Rhizobium leguminosarum bv. viciae nodulating Vicia faba: the role of recombination and lateral gene transfer. FEMS Microbiol Ecol. 2010;73:563–76.
CAS PubMed PubMed Central Google Scholar
49.
Burdon JJ, Thrall PH. Spatial and temporal patterns in coevolving plant and pathogen associations. Am Nat. 1999;153:S15–S33.
CAS PubMed Article PubMed Central Google Scholar
50.
Van Cauwenberghe J, Visch W, Michiels J, Honnay O. Selection mosaics differentiate Rhizobium-host plant interactions across nitrogen environments. Oikos 2016;125:1755–61.
Article Google Scholar
51.
Guimarães PR, Pires MM, Jordano P, Bascompte J, Thompson JN. Indirect effects drive coevolution in mutualistic networks. Nature 2017;550:511–4.
PubMed Article CAS PubMed Central Google Scholar
52.
Heath KD, Lau JA. Herbivores alter the fitness benefits of a plant–rhizobium mutualism. Acta Oecol. 2011;37:87–92.
Article Google Scholar
53.
Rogers HS, Buhle ER, HilleRisLambers J, Fricke EC, Miller RH, Tewksbury JJ. Effects of an invasive predator cascade to plants via mutualism disruption. Nat Commun. 2017;8:6–13.
Article CAS Google Scholar
54.
Delmas E, Besson M, Brice MH, Burkle LA, Dalla Riva GV, Fortin MJ, et al. Analysing ecological networks of species interactions. Biol Rev. 2019;94:16–36.
Article Google Scholar
55.
Gaiarsa MP, Guimarães PR. Interaction strength promotes robustness against cascading effects in mutualistic networks. Sci Rep. 2019;9:1–7.
CAS Article Google Scholar
56.
Sih A, Crowley P, McPeek M, Petranka J, Strohmeier K. Predation, competition, and prey communities: a review of field experiments. Annu Rev Ecol Syst. 1985;16:269–311.
Article Google Scholar
57.
Parratt SR, Barrès B, Penczykowski RM, Laine AL. Local adaptation at higher trophic levels: contrasting hyperparasite–pathogen infection dynamics in the field and laboratory. Mol Ecol. 2017;26:1964–79.
CAS PubMed Article PubMed Central Google Scholar
58.
Hatcher MJ, Dick JTA, Dunn AM. How parasites affect interactions between competitors and predators. Ecol Lett. 2006;9:1253–71.
PubMed Article PubMed Central Google Scholar
59.
Hutchinson MC, Bramon Mora B, Pilosof S, Barner AK, Kéfi S, Thébault E, et al. Seeing the forest for the trees: putting multilayer networks to work for community ecology. Funct Ecol. 2019;33:206–17.
Article Google Scholar
60.
Koskella B, Taylor TB. Multifaceted impacts of bacteriophages in the plant microbiome. Annu Rev Phytopathol. 2018;56:361–80.
CAS PubMed Article PubMed Central Google Scholar
61.
Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010;8:317–27.
CAS PubMed Article PubMed Central Google Scholar
62.
Evans TJ, Ind A, Komitopoulou E, Salmond GPC. Phage-selected lipopolysaccharide mutants of Pectobacterium atrosepticum exhibit different impacts on virulence. J Appl Microbiol. 2010;109:505–14.
CAS PubMed PubMed Central Google Scholar
63.
Perez Carrascal OM, Vaninsberghe D, Juárez S, Polz MF. Population genomics of the symbiotic plasmids of sympatric nitrogen-fixing Rhizobium species associated with Phaseolus vulgaris. Environ Microbiol. 2016;18:2660–76.
CAS PubMed Article PubMed Central Google Scholar
64.
Santamaría RI, Bustos P, Sepúlveda-Robles O, Lozano L, Rodríguez C, Fernández JL, et al. Narrow-host-range bacteriophages that infect Rhizobium etli associate with distinct genomic types. Appl Environ Microbiol. 2014;80:446–54.
PubMed PubMed Central Article CAS Google Scholar
65.
Carlson K. Working with bacteriophages: common techniques and methodological approaches. In: Kutter E, Sulakvelidze A (eds). Bacteriophages: biology and applications. Boca Raton, FL: CRC Press; 2005). p. 437–94.
66.
Werle E, Schneider C, Renner M, Völker M, Fiehn W. Convenient single-step, one tube purification of PCR products for direct sequencing. Nucleic Acids Res. 1994;22:4354–5.
CAS PubMed PubMed Central Article Google Scholar
67.
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.
CAS PubMed PubMed Central Article Google Scholar
68.
Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–20.
CAS PubMed PubMed Central Article Google Scholar
69.
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-Cell sequencing. J Comput Biol. 2012;19:455–77.
CAS PubMed PubMed Central Article Google Scholar
70.
Zerbino DR, Birney E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:821–9.
CAS PubMed PubMed Central Article Google Scholar
71.
Gordon D, Green P. Consed: a graphical editor for next-generation sequencing. Bioinformatics 2013;29:2936–7.
CAS PubMed PubMed Central Article Google Scholar
72.
Chaudhari NM, Gupta VK, Dutta C. BPGA- an ultra-fast pan-genome analysis pipeline. Sci Rep. 2016;6:24373.
CAS PubMed PubMed Central Article Google Scholar
73.
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3 — new capabilities and interfaces. Nucleic Acids Res. 2012;40:e115.
CAS PubMed PubMed Central Article Google Scholar
74.
Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci. 2009;106:19126–31.
CAS PubMed Article PubMed Central Google Scholar
75.
Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods. 2016;8:12–14.
Article Google Scholar
76.
Lopes A, Tavares P, Petit M, Guérois R, Zinn-justin S. Automated classification of tailed bacteriophages according to their neck organization. BMC Genom. 2014;15:1027.
Article CAS Google Scholar
77.
Hyman P, Abedon ST. Phage host range and efficiency of plating. In: Clokie MRJ, Kropinski AM (eds). Bacteriophages, methods and protocols. Vol. I: Isolation, characterization, and interactions. Totowa, NJ: Humana Press; 2009. p. 175–202.
78.
Hyman P, Abedon ST. Bacteriophage host range and bacterial resistance. Adv Appl Microbiol. 2010;70:217–48.
CAS PubMed Article PubMed Central Google Scholar
79.
Holmfeldt K, Solonenko N, Howard-Varona C, Moreno M, Malmstrom RR, Blow MJ, et al. Large-scale maps of variable infection efficiencies in aquatic Bacteroidetes phage-host model systems. Environ Microbiol. 2016;18:3949–61.
CAS PubMed Article PubMed Central Google Scholar
80.
Ishizawa H, Kuroda M, Morikawa M, Ike M. Evaluation of environmental bacterial communities as a factor affecting the growth of duckweed Lemna minor. Biotechnol Biofuels. 2017;10:1–10.
Article CAS Google Scholar
81.
Cenens W, Makumi A, Mebrhatu MT, Lavigne R, Aertsen A. Phage–host interactions during pseudolysogeny. Bacteriophage 2013;3:e25029.
PubMed PubMed Central Article Google Scholar
82.
Kauffman KM, Hussain FA, Yang J, Arevalo P, Brown JM, Chang WK, et al. A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature. 2018;554:118–22.
CAS PubMed Article PubMed Central Google Scholar
83.
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, Glinn D, et al. Community Ecology Package. https://cran.r-project.org, https://github.com/vegandevs/vegan. 2019.
84.
Flores CO, Poisot T, Valverde S, Weitz JS. BiMat: a MATLAB package to facilitate the analysis of bipartite networks. Methods Ecol Evol. 2016;7:127–32.
Article Google Scholar
85.
Consul PC. A simple urn model dependent on predetermined strategy. Sankhyā Indian J Stat Ser B. 1974;36:391–9.
Google Scholar
86.
Borcard D, Legendre P. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Modell. 2002;153:51–68.
Article Google Scholar
87.
Flores CO, Valverde S, Weitz JS. Multi-scale structure and geographic drivers of cross-infection within marine bacteria and phages. ISME J. 2013;7:520–32.
PubMed Article PubMed Central Google Scholar
88.
Porter SS, Chang PL, Conow CA, Dunham JP, Friesen ML. Association mapping reveals novel serpentine adaptation gene clusters in a population of symbiotic Mesorhizobium. ISME J. 2016;11:248–62.
PubMed PubMed Central Article CAS Google Scholar
89.
Greenlon A, Chang PL, Damtew ZM, Muleta A, Carrasquilla-Garcia N, Kim D, et al. Global-level population genomics reveals differential effects of geography and phylogeny on horizontal gene transfer in soil bacteria. Proc Natl Acad Sci. 2019;116:15200–9.
CAS PubMed Article PubMed Central Google Scholar
90.
Scola V, Ramond JB, Frossard A, Zablocki O, Adriaenssens EM, Johnson RM, et al. Namib desert soil microbial community diversity, assembly, and function along a natural xeric gradient. Micro Ecol. 2018;75:193–203.
CAS Article Google Scholar
91.
Short CM, Suttle CA. Nearly identical bacteriophage structural gene sequences are widely distributed in both marine and freshwater environments. Appl Environ Microbiol. 2005;71:480–6.
CAS PubMed PubMed Central Article Google Scholar
92.
Edwards RA, Vega AA, Norman HM, Ohaeri M, Levi K, Dinsdale EA, et al. Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nat Microbiol. 2019;4:1727–36.
CAS PubMed PubMed Central Article Google Scholar
93.
Culley AI, Steward GF. New genera of RNA viruses in subtropical seawater, inferred from polymerase gene sequences. Appl Environ Microbiol. 2007;73:5937–44.
CAS PubMed PubMed Central Article Google Scholar
94.
Miranda-Sánchez F, Rivera J, Vinuesa P. Diversity patterns of Rhizobiaceae communities inhabiting soils, root surfaces and nodules reveal a strong selection of rhizobial partners by legumes. Environ Microbiol. 2016;18:2375–91.
PubMed Article CAS PubMed Central Google Scholar
95.
Bontemps C, Rogel MA, Wiechmann A, Mussabekova A, Moody S, Simon MF, et al. Endemic Mimosa species from Mexico prefer alphaproteobacterial rhizobial symbionts. N Phytol. 2016;209:319–33.
CAS Article Google Scholar
96.
Van Cauwenberghe J, Lemaire B, Stefan A, Efrose R, Michiels J, Honnay O. Symbiont abundance is more important than pre-infection partner choice in a Rhizobium – legume mutualism. Syst Appl Microbiol. 2016;39:345–9.
PubMed Article PubMed Central Google Scholar
97.
Van Cauwenberghe J, Michiels J, Honnay O. Effects of local environmental variables and geographical location on the genetic diversity and composition of Rhizobium leguminosarum nodulating Vicia cracca populations. Soil Biol Biochem. 2015;90:71–9.
Article CAS Google Scholar
98.
Van Cauwenberghe J, Verstraete B, Lemaire B, Lievens B, Michiels J, Honnay O. Population structure of root nodulating Rhizobium leguminosarum in Vicia cracca populations at local to regional geographic scales. Syst Appl Microbiol. 2014;37:613–21.
PubMed Article PubMed Central Google Scholar
99.
Hurwitz BL, Brum JR, Sullivan MB. Depth-stratified functional and taxonomic niche specialization in the ‘core’ and ‘flexible’ Pacific Ocean Virome. ISME J. 2015;9:472–84.
CAS PubMed Article PubMed Central Google Scholar
100.
Mühling M, Fuller NJ, Millard A, Somerfield PJ, Marie D, Wilson WH, et al. Genetic diversity of marine Synechococcus and co-occurring cyanophage communities: evidence for viral control of phytoplankton. Environ Microbiol. 2005;7:499–508.
PubMed Article PubMed Central Google Scholar
101.
Sun Y, Zhang S, Long L, Dong J, Chen F, Huang S. Genetic diversity and cooccurrence patterns of marine cyanopodoviruses and picocyanobacteria. Appl Environ Microbiol. 2018;84:e00591–18.
CAS PubMed PubMed Central Google Scholar
102.
Chase AB, Arevalo P, Brodie EL, Polz MF, Karaoz U, Martiny JBH. Maintenance of sympatric and allopatric populations in free-living terrestrial bacteria. mBio. 2019;10:e02361–19.
CAS PubMed PubMed Central Article Google Scholar
103.
Flores CO, Meyer JR, Valverde S, Farr L, Weitz JS. Statistical structure of host – phage interactions. Proc Natl Acad Sci. 2011;108:E288.
CAS PubMed Article PubMed Central Google Scholar
104.
Koskella B, Thompson JN, Preston GM, Buckling A. Local biotic environment shapes the spatial scale of bacteriophage adaptation to bacteria. Am Nat. 2011;177:440–51.
PubMed Article PubMed Central Google Scholar
105.
Koskella B, Parr N. The evolution of bacterial resistance against bacteriophages in the horse chestnut phyllosphere is general across both space and time. Philos Trans R Soc B Biol Sci. 2015;370:20140297.
Article Google Scholar
106.
Morgan AD, Gandon S, Buckling A. The effect of migration on local adaptation in a coevolving host-parasite system. Nature 2005;437:253–6.
CAS PubMed Article PubMed Central Google Scholar
107.
Gómez P, Paterson S, De Meester L, Liu X, Lenzi L, Sharma MD, et al. Local adaptation of a bacterium is as important as its presence in structuring a natural microbial community. Nat Commun. 2016;7:12453.
PubMed PubMed Central Article CAS Google Scholar
108.
Zhang Q-G, Buckling A. Resource-dependent antagonistic coevolution leads to a new paradox of enrichment. Ecology 2016;97:1319–28.
PubMed Article PubMed Central Google Scholar
109.
Lopez-Pascua LDC, Buckling A. Increasing productivity accelerates host-parasite coevolution. J Evol Biol. 2008;21:853–60.
CAS PubMed Article PubMed Central Google Scholar
110.
Gurney J, Aldakak L, Betts A, Gougat-Barbera C, Poisot T, Kaltz O, et al. Network structure and local adaptation in co-evolving bacteria–phage interactions. Mol Ecol. 2017;26:1764–77.
CAS PubMed Article PubMed Central Google Scholar
111.
Thompson JN. The geographic mosaic of coevolution. Chicago, IL: Uni. Chicago Press; 2005. More