1.
Angilletta, M. J. Thermal Adaptation: A Theoretical And Empirical Analysis (Oxford University Press, 2009).
2.
Chown, S. L., Sinclair, B. J., Leinaas, H. P. & Gaston, K. J. Hemispheric asymmetries in biodiversity—a serious matter for ecology. PLoS Biol. 2, e406 (2004).
PubMed PubMed Central Article CAS Google Scholar
3.
Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).
ADS Article Google Scholar
4.
Kellermann, V., van Heerwaarden, B., Sgrò, C. M. & Hoffmann, A. A. Fundamental evolutionary limits in ecological traits drive Drosophila species distributions. Science 325, 1244–1246 (2009).
ADS CAS PubMed Article Google Scholar
5.
Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).
PubMed Article Google Scholar
6.
García-Robledo, C., Kuprewicz, E. K., Staines, C. L., Erwin, T. L. & Kress, W. J. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proc. Natl Acad. Sci. USA 113, 680–685 (2016).
ADS PubMed Article CAS Google Scholar
7.
Geerts, A. N. et al. Rapid evolution of thermal tolerance in the water flea, Daphnia. Nat. Clim. Change 5, 665–668 (2015).
ADS Article Google Scholar
8.
Iossa, G. Sex-specific differences in thermal fertility limits. Trends Ecol. Evol. 34, 490–492 (2019).
PubMed Article Google Scholar
9.
Walsh, B. S. et al. The impact of climate change on fertility. Trends Ecol. Evol. 34, 249–259 (2019).
PubMed Article Google Scholar
10.
Vasudeva, R. et al. Adaptive thermal plasticity enhances sperm and egg performance in a model insect. eLife 8, e49452 (2019).
PubMed PubMed Central Article Google Scholar
11.
Hurley, L. L., McDiarmid, C. S., Friesen, C. R., Griffith, S. C. & Rowe, M. Experimental heatwaves negatively impact sperm quality in the zebra finch. Proc. R. Soc. B 285, 20172547 (2018).
PubMed Article Google Scholar
12.
Dahlke, F., Wohlrab, S., Butzin, M. & Pörtner, H. Thermal bottlenecks in the lifecycle define climate vulnerability of fish. Science 369, 65–70 (2020).
ADS CAS PubMed PubMed Central Article Google Scholar
13.
Bathiany, S., Dakos, V., Scheffer, M. & Lenton, T. M. Climate models predict increasing temperature variability in poor countries. Sci. Adv. 4, 1–11 (2018).
Article Google Scholar
14.
Vázquez, D. P., Gianoli, E., Morris, W. F. & Bozinovic, F. Ecological and evolutionary impacts of changing climatic variability. Biol. Rev. 92, 22–42 (2017).
PubMed Article Google Scholar
15.
Chevin, L.-M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357 (2010).
PubMed PubMed Central Article CAS Google Scholar
16.
Sgrò, C. M. & Hoffmann, A. A. Genetic correlations, tradeoffs and environmental variation. Heredity 93, 241–248 (2004).
PubMed Article Google Scholar
17.
Wood, C. W. & Brodie, E. D. Environmental effects on the structure of the G-matrix. Evolution 69, 2927–2940 (2015).
PubMed Article Google Scholar
18.
Brommer, J. E., Merila, J., Sheldon, B. C. & Gustavsson, L. Natural selection and genetic variation for reproductive reaction norms in a wild bird population. Evolution 59, 1362–1371 (2005).
PubMed Article Google Scholar
19.
Brommer, J. E., Rattiste, K. & Wilson, A. J. Exploring plasticity in the wild: laying date–temperature reaction norms in the common gull Larus canus. Proc. R. Soc. B 275, 687–693 (2008).
PubMed Article Google Scholar
20.
Nussey, D. H., Postma, E., Gienapp, P., Visser, M. E. & Gienapp, P. Selection on heritable phenotypic plasticity in a wild bird population. Science 310, 304–306 (2005).
ADS CAS PubMed Article Google Scholar
21.
Charmantier, A. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803 (2008).
ADS CAS PubMed Article Google Scholar
22.
Matthysen, E., Adriaensen, F. & Dhondt, A. A. Multiple responses to increasing spring temperatures in the breeding cycle of blue and great tits (Cyanistes caeruleus, Parus major). Glob. Change Biol. 17, 1–16 (2011).
ADS Article Google Scholar
23.
Both, C. & Visser, M. E. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411, 296–298 (2001).
ADS CAS PubMed Article Google Scholar
24.
Schiegg, K., Pasinelli, G., Walters, J. R. & Daniels, S. J. Inbreeding and experience affect response to climate change by endangered woodpeckers. Proc. R. Soc. B 269, 1153–1159 (2002).
PubMed Article Google Scholar
25.
Wilson, S., Norris, D. R., Wilson, A. G. & Arcese, P. Breeding experience and population density affect the ability of a songbird to respond to future climate variation. Proc. R. Soc. B 274, 2539–2545 (2007).
PubMed Article Google Scholar
26.
Dunn, P. O. & Winkler, D. W. Climate change has affected the breeding date of tree swallows throughout North America. Proc. R. Soc. B 266, 2487–2490 (1999).
CAS Article Google Scholar
27.
Hällfors, M. H. et al. Shifts in timing and duration of breeding for 73 boreal bird species over four decades. Proc. Natl Acad. Sci. USA 117, 18557–18565 (2020).
PubMed Article CAS Google Scholar
28.
Gienapp, P., Postma, E. & Visser, M. E. Why breeding time has not responded to selection for earlier breeding in a songbird population. Evolution 60, 2381 (2006).
PubMed Article Google Scholar
29.
Jàrvinen, A. Global warming and egg size of birds. Ecography 17, 108–110 (1994).
Article Google Scholar
30.
Kitaysky, A. S. & Golubova, E. G. Climate change causes contrasting trends in reproductive performance of planktivorous and piscivorous alcids. J. Anim. Ecol. 69, 248–262 (2000).
Article Google Scholar
31.
Julliard, R., Clavel, J., Devictor, V., Jiguet, F. & Couvet, D. Spatial segregation of specialists and generalists in bird communities. Ecol. Lett. 9, 1237–1244 (2006).
PubMed Article Google Scholar
32.
Weatherhead, P. J. Effects of climate variation on timing of nesting, reproductive success, and offspring sex ratios of red-winged blackbirds. Oecologia 144, 168–175 (2005).
ADS PubMed Article Google Scholar
33.
Auer, S. K. & Martin, T. E. Climate change has indirect effects on resource use and overlap among coexisting bird species with negative consequences for their reproductive success. Glob. Change Biol. 19, 411–419 (2013).
ADS Article Google Scholar
34.
Riddell, E. A., Iknayan, K. J., Wolf, B. O., Sinervo, B. & Beissinger, S. R. Cooling requirements fueled the collapse of a desert bird community from climate change. Proc. Natl Acad. Sci. USA116, 21609–21615 (2019).
CAS PubMed Article Google Scholar
35.
Visser, M. E., Van Noordwijk, A. J., Tinbergen, J. M. & Lessells, C. M. Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc. R. Soc. B 265, 1867–1870 (1998).
Article Google Scholar
36.
Both, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and population declines in a long-distance migratory bird. Nature 441, 81–83 (2006).
ADS CAS PubMed Article Google Scholar
37.
Magige, F. J., Stokke, B. G., Sortland, R. & Røskaft, E. Breeding biology of ostriches (Struthio camelus) in the Serengeti ecosystem, Tanzania. Afr. J. Ecol. 47, 400–408 (2009).
Article Google Scholar
38.
Bertram, B. C. R. The Ostrich Communal Nesting System (Princeton University Press, New Jersey, 1992).
39.
Kimwele, C. N. & Graves, J. A. A molecular genetic analysis of the communal nesting of the ostrich (Struthio camelus). Mol. Ecol. 12, 229–236 (2003).
CAS PubMed Article Google Scholar
40.
Maloney, S. K. Thermoregulation in ratites: a review. Aust. J. Exp. Agric. 48, 1293–1301 (2008).
Article Google Scholar
41.
Hassan, S. M., Siam, A. A., Mady, M. E. & Cartwright, A. L. Egg storage period and weight effects on hatchability of ostrich (Struthio camelus) eggs. Poult. Sci. 84, 1908–1912 (2005).
CAS PubMed Article Google Scholar
42.
Gonzalez, A., Satterlee, D. G., Moharer, F. & Cadd, G. G. Factors affecting ostrich egg hatchability. Poult. Sci. 78, 1257–1262 (1999).
CAS PubMed Article Google Scholar
43.
Roff, D. A. & Wilson, A. J. Quantifying genotype-by-environment interactions in laboratory systems. In Genotype‐by‐Environment Interactions and Sexual Selection (eds. Hunt, J. & Hosken, D.) 100–136 (John Wiley & Sons, Ltd, 2014).
44.
Christians, J. K. Avian egg size: variation within species and inflexibility within individuals. Biol. Rev. Camb. Philos. Soc. 77, 1–26 (2002).
PubMed Article Google Scholar
45.
Lack, D. The Natural Regulation of Animal Numbers (Clarendon Press, 1954).
46.
Perrins, C. M. The timing of birds‘ breeding seasons. Ibis 112, 242–255 (1970).
Article Google Scholar
47.
Sales, K. et al. Experimental heatwaves compromise sperm function and cause transgenerational damage in a model insect. Nat. Commun. 9, 1–11 (2018).
ADS CAS Article Google Scholar
48.
McAfee, A. et al. Vulnerability of honey bee queens to heat-induced loss of fertility. Nat. Sustain 3, 367–376 (2020).
Article Google Scholar
49.
Pérez-Crespo, M., Pintado, B. & Gutiérrez-Adán, A. Scrotal heat stress effects on sperm viability, sperm DNA integrity, and the offspring sex ratio in mice. Mol. Reprod. Dev. 75, 40–47 (2008).
PubMed Article CAS Google Scholar
50.
Hansen, P. J. Effects of heat stress on mammalian reproduction. Philos. Trans. R. Soc. B 364, 3341–3350 (2009).
Article Google Scholar
51.
Moreno, R. D., Lagos-Cabre, R., Bunay, J., Urzua, N. & Bustamante-Marin, X. Molecular basis of heat stress damage in mammalian testis. In Testis: Anatomy, Physiology and Pathology (eds. Nemoto, Y. & Inaba, N.) 127–155 (Nova Science, 2012).
52.
Karaca, A. G., Parker, H. M., Yeatman, J. B. & McDaniel, C. D. The effects of heat stress and sperm quality classification on broiler breeder male fertility and semen ion concentrations. Br. Poult. Sci. 43, 621–628 (2002).
CAS PubMed Article Google Scholar
53.
Mita, P., Hinton, B. T. & Dufour, J. M. The blood–testis and blood–epididymis barriers are more than just their tight junctions. Biol. Reprod. 84, 851–858 (2011).
Article CAS Google Scholar
54.
Smith, C. C. & Fretwell, S. D. The optimal balance between size and number of offspring. Am. Nat. 108, 499–506 (1974).
Article Google Scholar
55.
Ojanen, M. Composition of the eggs of the great tit (Parus major) and pied flycatcher (Ficedula hypoleuca). Ann. Zool. Fenn. 20, 57–63 (1983).
Google Scholar
56.
Krist, M. Egg size and offspring quality: a meta-analysis in birds. Biol. Rev. 86, 692–716 (2011).
PubMed Article Google Scholar
57.
Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics (Pearson, 1996).
58.
Lynch, M. & Gabriel, W. Environmental tolerance. Am. Nat. 129, 283–303 (1987).
Article Google Scholar
59.
Gilchrist, G. W. Specialists and generalists in changing environments. I. Fitness landscapes of thermal sensitivity. Am. Nat. 146, 252–270 (1995).
Article Google Scholar
60.
Whitlock, M. C. The red queen beats the jack-of-all-trades: the limitations on the evolution of phenotypic plasticity and niche breadth. Am. Nat. 148, S65 (1996).
Article Google Scholar
61.
Pen, I. & Weissing, F. J. Towards a unified theory of cooperative breeding: the role of ecology and life history re-examined. Proc. R. Soc. B 267, 2411–2418 (2000).
Article Google Scholar
62.
Emlen, S. T. The evolution of helping. I. An ecological constraints model. Am. Nat. 119, 29–39 (1982).
Article Google Scholar
63.
Rubenstein, D. R. Spatiotemporal environmental variation, risk aversion, and the evolution of cooperative breeding as a bet-hedging strategy. Proc. Natl Acad. Sci. USA 108, 10816–10822 (2011).
ADS CAS PubMed Article Google Scholar
64.
Cornwallis, C. K. et al. Cooperation facilitates the colonization of harsh environments. Nat. Ecol. Evol. 1, 0057 (2017).
Article Google Scholar
65.
Rubenstein, D. R. & Lovette, I. J. Temporal environmental variability drives the evolution of cooperative breeding in birds. Curr. Biol. 17, 1414–1419 (2007).
CAS PubMed Article Google Scholar
66.
Albright, T. P. et al. Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration. Proc. Natl Acad. Sci. USA 114, 201613625 (2017).
Google Scholar
67.
Vincze, O. et al. Parental cooperation in a changing climate: fluctuating environments predict shifts in care division. Glob. Ecol. Biogeogr. 26, 347–358 (2017).
Article Google Scholar
68.
Nord, A. & Nilsson, J. Å. Heat dissipation rate constrains reproductive investment in a wild bird. Funct. Ecol. 33, 250–259 (2019).
Article Google Scholar
69.
Cloete, S. W. P. et al. Variance components for live weight, body measurements and reproductive traits of pair-mated ostrich females. Br. Poult. Sci. 47, 147–158 (2006).
CAS PubMed Article Google Scholar
70.
Rybnik, P. K., Horbanczuk, J. O., Naranowicz, H., Lukaszewicz, E. & Malecki, I. A. Semen collection in the ostrich (Struthio camelus) using a dummy or a teaser female. Br. Poult. Sci. 48, 635–643 (2007).
CAS PubMed Article Google Scholar
71.
Brand, T. S., Olivier, T. R. & Gous, R. M. The response in food intake and reproductive parameters of breeding ostriches to increasing dietary energy. South Afr. J. Anim. Sci. 40, 434–437 (2010).
Google Scholar
72.
Brand, T. S., Olivier, T. R. & Gous, R. M. The reproductive response of female ostriches to dietary protein. Br. Poult. Sci. 56, 232–238 (2015).
CAS PubMed Article Google Scholar
73.
Martin, P. A., Reimers, T. J., Lodge, J. R. & Dziuk, P. J. The effect of ratios and numbers of spermatozoa mixed from two males on proportions of offspring. J. Reprod. Fertil. 39, 251–258 (1974).
CAS PubMed Article Google Scholar
74.
Birkhead, T. R. & Møller, A. P. Sperm Competition and Sexual Selection (Academic Press, 1998).
75.
Birkhead, T. R. & Biggins, J. D. Sperm competition mechanisms in birds: models and data. Behav. Ecol. 9, 253–260 (1998).
Article Google Scholar
76.
Soley, J. T. & Roberts, J. C. Ultrastructure of ostrich (Struthio camelus) spermatozoa. II. Scanning electron microscopy. Onderstepoort J. Vet. Res. 61, 239–246 (1994).
CAS PubMed Google Scholar
77.
Lake, P. E. & Stewart, J. M. Artificial Insemination in Poultry. Ministry of Agriculture Fisheries and Food, Bulletin 213 (Her Majesty’s Stationery Office, 1978).
78.
Bonato, M., Malecki, I. A., Rybnik-Trzaskowska, P. K., Cornwallis, C. K. & Cloete, S. W. P. Predicting ejaculate quality and libido in male ostriches: effect of season and age. Anim. Reprod. Sci. 151, 49–55 (2014).
PubMed Article Google Scholar
79.
Bonato, M., Rybnik, P. K., Malecki, I. A., Cornwallis, C. K. & Cloete, S. W. P. Twice daily collection yields greater semen output and does not affect male libido in the ostrich. Anim. Reprod. Sci. 123, 258–264 (2011).
PubMed Article Google Scholar
80.
Muvhali, P. T. et al. Ostrich ejaculate characteristics and male libido around equinox and solstice dates. Trop. Anim. Health and Prod. 52, 2609–2619 (2020).
CAS Article Google Scholar
81.
Brand, Z., Cloete, S. W. P., Brown, C. R. & Malecki, I. A. Systematic factors that affect ostrich egg incubation traits. South Afr. J. Anim. Sci. 38, 315–325 (2008).
Google Scholar
82.
Bronneberg, R. G. G. et al. The relation between ultrasonographic observations in the oviduct and plasma progesterone, luteinizing hormone and estradiol during the egg laying cycle in ostriches. Domest. Anim. Endocrinol. 32, 15–28 (2007).
CAS PubMed Article Google Scholar
83.
Van Schalkwyk, S. J., Cloete, S. W. P. & De Kock, J. A. Repeatability and phenotypic correlations for body weight and reproduction in commercial ostrich breeding pairs. Br. Poult. Sci. 37, 953–962 (1996).
PubMed Article Google Scholar
84.
Jones, R. C. & Lin, M. Spermatogenesis in birds. In Oxford Reviews of Reproductive Biology, Vol. 15 (ed. Milligan, S. R.) (Oxford University Press, 1993).
85.
R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2020).
86.
Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).
Article Google Scholar
87.
Araya-Ajoy, Y. G. & Dingemanse, N. J. Repeatability, heritability, and age-dependence of seasonal plasticity in aggressiveness in a wild passerine bird. J. Anim. Ecol. 86, 227–238 (2017).
PubMed Article Google Scholar
88.
Araya-Ajoy, Y. G., Mathot, K. J. & Dingemanse, N. J. An approach to estimate short-term, long-term and reaction norm repeatability. Methods Ecol. Evol. 6, 1462–1473 (2015).
Article Google Scholar
89.
Scheiner, S. M. Genetics and evolution of phenotypic plasticity. Annu. Rev. Ecol. Syst. 24, 35–68 (1993).
Article Google Scholar
90.
Wilson, A. J. Why h2 does not always equal VA/VP. J. Evol. Biol. 21, 647–650 (2008).
CAS PubMed Article Google Scholar
91.
de Villemereuil, P., Morrissey, M. B., Nakagawa, S. & Schielzeth, H. Fixed-effect variance and the estimation of repeatabilities and heritabilities: Issues and solutions. J. Evol. Biol. 31, 621–632 (2018).
PubMed Article Google Scholar
92.
de Villemereuil, P., Schielzeth, H., Nakagawa, S. & Morrissey, M. General methods for evolutionary quantitative genetic inference from generalized mixed models. Genetics 204, 1281–1294 (2016).
PubMed PubMed Central Article Google Scholar
93.
BirdLife International. BirdLife International and Handbook of the Birds of the World. Bird Species Distribution Maps of the World (BirdLife International, 2019).
94.
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Article Google Scholar More