1.
Levy, S. B. & Marshall, B. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med. 10, S122–S129 (2004).
CAS PubMed Article PubMed Central Google Scholar
2.
Raymond, B. Five rules for resistance management in the antibiotic apocalypse, a road map for integrated microbial management. Evol. Appl. 12, 1079–1091 (2019).
PubMed PubMed Central Article Google Scholar
3.
Perron, G. G., Inglis, R. F., Pennings, P. S. & Cobey, S. Fighting microbial drug resistance: a primer on the role of evolutionary biology in public health. Evol. Appl. 8, 211–222 (2015).
PubMed PubMed Central Article Google Scholar
4.
Andersen, S. B., Shapiro, B. J., Vandenbroucke-Grauls, C. & de Vos, M. G. J. Microbial evolutionary medicine: from theory to clinical practice. Lancet Infect. Dis. 19, e273–e283 (2019).
PubMed Article PubMed Central Google Scholar
5.
Gilbert, J. A. & Lynch, S. V. Community ecology as a framework for human microbiome research. Nat. Med. 25, 884–889 (2019).
CAS PubMed PubMed Central Article Google Scholar
6.
Huijben, S., Chan, B. H. K., Nelson, W. A. & Read, A. F. The impact of within-host ecology on the fitness of a drug-resistant parasite. Evol. Med. Public Health 2018, 127–137 (2018).
PubMed PubMed Central Article Google Scholar
7.
Klümper, U. et al. Selection for antimicrobial resistance is reduced when embedded in a natural microbial community. ISME J. 13, 2927–2937 (2019).
PubMed PubMed Central Article CAS Google Scholar
8.
Andersson, D. I. & Levin, B. R. The biological cost of antibiotic resistance. Curr. Opin. Microbiol. 2, 489–493 (1999).
CAS PubMed Article PubMed Central Google Scholar
9.
Hall, A. R., Angst, D. C., Schiessl, K. T. & Ackermann, M. Costs of antibiotic resistance – separating trait effects and selective effects. Evol. Appl. 8, 261–272 (2015).
PubMed Article PubMed Central Google Scholar
10.
Lehtinen, S. et al. Evolution of antibiotic resistance is linked to any genetic mechanism affecting bacterial duration of carriage. Proc. Natl Acad. Sci. USA 114, 1075–1080 (2017).
CAS PubMed Article PubMed Central Google Scholar
11.
Colijn, C. et al. What is the mechanism for persistent coexistence of drug-susceptible and drug-resistant strains of Streptococcus pneumoniae? J. R. Soc. Interface 7, 905–919 (2010).
PubMed Article PubMed Central Google Scholar
12.
Blanquart, F., Lehtinen, S. & Fraser, C. An evolutionary model to predict the frequency of antibiotic resistance under seasonal antibiotic use, and an application to streptococcus pneumoniae. Proc. R. Soc. B 284, 20170679 (2017).
PubMed Article CAS PubMed Central Google Scholar
13.
Holmes, A. H. et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 387, 176–187 (2016).
CAS PubMed Article PubMed Central Google Scholar
14.
Blanquart, F. Evolutionary epidemiology models to predict the dynamics of antibiotic resistance. Evol. Appl. 12, 365–383 (2019).
PubMed PubMed Central Article Google Scholar
15.
Davies, N. G., Flasche, S., Jit, M. & Atkins, K. E. Within-host dynamics shape antibiotic resistance in commensal bacteria. Nat. Ecol. Evol. 3, 440–449 (2019).
PubMed PubMed Central Article Google Scholar
16.
Melnyk, A. H., Wong, A. & Kassen, R. The fitness costs of antibiotic resistance mutations. Evol. Appl. 8, 273–283 (2015).
PubMed Article PubMed Central Google Scholar
17.
Bjourkman, J., Nagaev, I., Berg, O. G., Hughes, D. & Andersson, D. I. Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. Science 287, 1479–1482 (2000).
Article Google Scholar
18.
Petersen, A., Aarestrup, F. M. & Olsen, J. E. The in vitro fitness cost of antimicrobial resistance in Escherichia coli varies with the growth conditions. FEMS Microbiol. Lett. 299, 53–59 (2009).
CAS PubMed Article PubMed Central Google Scholar
19.
Paulander, W., Maisnier-Patin, S. & Andersson, D. I. The fitness cost of streptomycin resistance depends on rpsL mutation, carbon source and RpoS (σS). Genetics 183, 539–546 (2009).
PubMed Central Article CAS Google Scholar
20.
Hall, A. R., Iles, J. C. & MacLean, R. C. The fitness cost of rifampicin resistance in Pseudomonas aeruginosa depends on demand for RNA polymerase. Genetics 187, 817–822 (2011).
CAS PubMed PubMed Central Article Google Scholar
21.
Trindade, S., Sousa, A. & Gordo, I. Antibiotic resistance and stress in the light of Fisher’s model. Evolution 66, 3815–3824 (2012).
PubMed Article PubMed Central Google Scholar
22.
Tilman, D. Resource Competition and Community Structure (Princeton Univ. Press, 1982).
23.
Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).
Article Google Scholar
24.
Chase, J. & Leibold, M. Ecological Niches: Linking Classical and Contemporary Approaches (Univ. Chicago Press, 2003).
25.
Adler, P. B., Hillerislambers, J. & Levine, J. M. A niche for neutrality. Ecol. Lett. 10, 95–104 (2007).
PubMed Article PubMed Central Google Scholar
26.
HilleRisLambers, J., Adler, P. B., Harpole, W., Levine, J. M. & Mayfield, M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 43, 227–248 (2012).
Article Google Scholar
27.
Letten, A. D., Ke, P.-J. & Fukami, T. Linking modern coexistence theory and contemporary niche theory. Ecol. Monogr. 87, 161–177 (2017).
Article Google Scholar
28.
Barabás, G., D’Andrea, R. & Stump, S. M. Chesson’s coexistence theory. Ecol. Monogr. 88, 277–303 (2018).
Article Google Scholar
29.
Chesson, P. Updates on mechanisms of maintenance of species diversity. J. Ecol. 106, 1773–1794 (2018).
Article Google Scholar
30.
Ellner, S. P., Snyder, R. E., Adler, P. B. & Hooker, G. An expanded modern coexistence theory for empirical applications. Ecol. Lett. 22, 3–18 (2019).
PubMed Article PubMed Central Google Scholar
31.
Chesson, P. Multispecies competition in variable environments. Theor. Popul. Biol. 45, 227–276 (1994).
Article Google Scholar
32.
Adler, P. B., HilleRisLambers, J., Kyriakidis, P. C., Guan, Q. & Levine, J. M. Climate variability has a stabilizing effect on the coexistence of prairie grasses. Proc. Natl Acad. Sci. USA 103, 12793–12798 (2006).
CAS PubMed Article PubMed Central Google Scholar
33.
Yuan, C. & Chesson, P. The relative importance of relative nonlinearity and the storage effect in the lottery model. Theor. Popul. Biol. 105, 39–52 (2015).
PubMed Article PubMed Central Google Scholar
34.
Wale, N., Sim, D. G. & Read, A. F. A nutrient mediates intraspecific competition between rodent malaria parasites in vivo. Proc. R. Soc. B 284, 20171067 (2017).
PubMed Article CAS PubMed Central Google Scholar
35.
Pereira, F. C. & Berry, D. Microbial nutrient niches in the gut. Environ. Microbiol. 19, 1366–1378 (2017).
PubMed PubMed Central Article Google Scholar
36.
Hester, E. R., Jetten, M. S. M., Welte, C. U. & Lücker, S. Metabolic overlap in environmentally diverse microbial communities. Front. Genet. 10, 989 (2019).
CAS PubMed PubMed Central Article Google Scholar
37.
Smith, V. H. & Holt, R. D. Resource competition and within-host disease dynamics. Trends Ecol. Evol. 11, 386–389 (1996).
CAS PubMed Article PubMed Central Google Scholar
38.
Hurtado, P. J., Hall, S. R. & Ellner, S. P. Infectious disease in consumer populations: dynamic consequences of resource-mediated transmission and infectiousness. Theor. Ecol. 7, 163–179 (2014).
Article Google Scholar
39.
Cressler, C. E., Nelson, W. A., Day, T. & McCauley, E. Disentangling the interaction among host resources, the immune system and pathogens. Ecol. Lett. 17, 284–293 (2014).
PubMed Article PubMed Central Google Scholar
40.
Smith, V. H., Holt, R. D., Smith, M. S., Niu, Y. & Barfield, M. Resources, mortality, and disease ecology: importance of positive feedbacks between host growth rate and pathogen dynamics. Isr. J. Ecol. Evol. 61, 37–49 (2015).
PubMed PubMed Central Article Google Scholar
41.
Alonso, A. et al. Overexpression of the multidrug efflux pump SmeDEF impairs Stenotrophomonas maltophilia physiology. J. Antimicrob. Chemother. 53, 432–434 (2004).
CAS PubMed Article PubMed Central Google Scholar
42.
Perkins, A. E. & Nicholson, W. L. Uncovering new metabolic capabilities of Bacillus subtilis using phenotype profiling of rifampin-resistant rpoB mutants. J. Bacteriol. 190, 807–814 (2008).
CAS PubMed Article PubMed Central Google Scholar
43.
Martínez, J. L. & Rojo, F. Metabolic regulation of antibiotic resistance. FEMS Microbiol. Rev. 35, 768–789 (2011).
PubMed Article CAS PubMed Central Google Scholar
44.
Zampieri, M. et al. Metabolic constraints on the evolution of antibiotic resistance. Mol. Syst. Biol. 13, 917 (2017).
PubMed PubMed Central Article CAS Google Scholar
45.
Dunphy, L. J., Yen, P. & Papin, J. A. Integrated experimental and computational analyses reveal differential metabolic functionality in antibiotic-resistant Pseudomonas aeruginosa. Cell Syst. 8, 3-14.e3 (2019).
PubMed PubMed Central Google Scholar
46.
Webber, M. A. & Piddock, L. J. V. The importance of efflux pumps in bacterial antibiotic resistance. J. Antimicrob. Chemother. 51, 9–11 (2003).
CAS PubMed Article PubMed Central Google Scholar
47.
Fitzsimmons, J. M., Schoustra, S. E., Kerr, J. T. & Kassen, R. Population consequences of mutational events: effects of antibiotic resistance on the r/K trade-off. Evol. Ecol. 24, 227–236 (2010).
Article Google Scholar
48.
Baltrus, D. A. Exploring the costs of horizontal gene transfer. Trends Ecol. Evol. 28, 489–495 (2013).
PubMed Article PubMed Central Google Scholar
49.
San Millan, A. & MacLean, R. C. Fitness costs of plasmids: a limit to plasmid transmission. Microbiol. Spectrum 5, 65–79 (2017).
Google Scholar
50.
Dennis, J. J. The evolution of IncP catabolic plasmids. Curr. Opin. Biotechnol. 16, 291–298 (2005).
CAS PubMed Article PubMed Central Google Scholar
51.
Shintani, M. et al. Response of the Pseudomonas host chromosomal transcriptome to carriage of the IncP-7 plasmid pCAR1. Environ. Microbiol. 12, 1413–1426 (2009).
PubMed PubMed Central Google Scholar
52.
San Millan, A. et al. Integrative analysis of fitness and metabolic effects of plasmids in Pseudomonas aeruginosa PAO1. ISME J. 12, 3014–3024 (2018).
CAS PubMed PubMed Central Article Google Scholar
53.
Schlüter, A. et al. The 64508 bp IncP-1β antibiotic multiresistance plasmid pB10 isolated from a waste-water treatment plant provides evidence for recombination between members of different branches of the IncP-1β group. Microbiology 149, 3139–3153 (2003).
PubMed Article CAS PubMed Central Google Scholar
54.
Chen, K. et al. Comparison of four Comamonas catabolic plasmids reveals the evolution of pBHB to catabolize haloaromatics. Appl. Environ. Microbiol. 82, 1401–1411 (2016).
CAS PubMed Central Article Google Scholar
55.
Douglas, A. E. Fundamentals of Microbiome Science: How Microbes Shape Animal Biology (Princeton Univ. Press, 2018).
56.
Ibrahim, K. H., Gunderson, B. W., Hermsen, E. D., Hovde, L. B. & Rotschafer, J. C. Pharmacodynamics of pulse dosing versus standard dosing: in vitro metronidazole activity against Bacteroides fragilis and Bacteroides thetaiotaomicron. Antimicrob. Agents Chemother. 48, 4195–4199 (2004).
CAS PubMed PubMed Central Article Google Scholar
57.
Peña-Miller, R., Lähnemann, D., Schulenburg, H., Ackermann, M. & Beardmore, R. Selecting against antibiotic-resistant pathogens: optimal treatments in the presence of commensal bacteria. Bull. Math. Biol. 74, 908–934 (2012).
PubMed Article CAS PubMed Central Google Scholar
58.
Lin, W.-H. & Kussell, E. Complex interplay of physiology and selection in the emergence of antibiotic resistance. Curr. Biol. 26, 1486–1493 (2016).
CAS PubMed PubMed Central Article Google Scholar
59.
Bauer, M., Graf, I. R., Ngampruetikorn, V., Stephens, G. J. & Frey, E. Exploiting ecology in drug pulse sequences in favour of population reduction. PLoS Comput. Biol. 13, e1005747 (2017).
PubMed PubMed Central Article CAS Google Scholar
60.
Baker, C. M., Ferrari, M. J. & Shea, K. Beyond dose: pulsed antibiotic treatment schedules can maintain individual benefit while reducing resistance. Sci. Rep. 8, 5866 (2018).
PubMed PubMed Central Article CAS Google Scholar
61.
Nev, O. A., Jepson, A., Beardmore, R. E. & Gudelj, I. Predicting community dynamics of antibiotic-sensitive and -resistant species in fluctuating environments. J. R. Soc. Interface 17, 20190776 (2020).
PubMed Article PubMed Central Google Scholar
62.
Kouyos, R. D. et al. The path of least resistance: aggressive or moderate treatment? Proc. R. Soc. B 281, 20140566 (2014).
PubMed Article PubMed Central Google Scholar
63.
Day, T. & Read, A. F. Does high-dose antimicrobial chemotherapy prevent the evolution of resistance? PLoS Comput. Biol. 12, e1004689 (2016).
PubMed PubMed Central Article CAS Google Scholar
64.
Alexander, H. K. & MacLean, R. C. Stochastic bacterial population dynamics restrict the establishment of antibiotic resistance from single cells. Proc. Natl Acad. Sci. USA 117, 19455–19464 (2020).
CAS PubMed Article PubMed Central Google Scholar
65.
Zarrinpar, A., Chaix, A., Yooseph, S. & Panda, S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 20, 1006–1017 (2014).
CAS PubMed PubMed Central Article Google Scholar
66.
Thaiss, C. A., Zeevi, D., Levy, M., Segal, E. & Elinav, E. A day in the life of the meta-organism: diurnal rhythms of the intestinal microbiome and its host. Gut Microbes 6, 137–142 (2015).
CAS PubMed PubMed Central Article Google Scholar
67.
Kaczmarek, J. L., Thompson, S. V. & Holscher, H. D. Complex interactions of circadian rhythms, eating behaviors, and the gastrointestinal microbiota and their potential impact on health. Nutr. Rev. 75, 673–682 (2017).
PubMed PubMed Central Article Google Scholar
68.
Turnbaugh, P. J. et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 1, 6ra14 (2009).
PubMed PubMed Central Article CAS Google Scholar
69.
Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).
CAS PubMed PubMed Central Article Google Scholar
70.
David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).
CAS Article Google Scholar
71.
Venable, E. B. et al. Effects of feeding management on the equine cecal microbiota. J. Equine Vet. Sci. 49, 113–121 (2017).
Article Google Scholar
72.
Parris, D. J., Morgan, M. M. & Stewart, F. J. Feeding rapidly alters microbiome composition and gene transcription in the clownfish gut. Appl. Environ. Microbiol. 85, e02479-18 (2019).
CAS PubMed PubMed Central Google Scholar
73.
Chesson, P. & Huntly, N. The roles of harsh and fluctuating conditions in the dynamics of ecological communities. Am. Nat. 150, 519–553 (1997).
CAS PubMed Article PubMed Central Google Scholar
74.
Chesson, P. Quantifying and testing coexistence mechanisms arising from recruitment fluctuations. Theor. Popul. Biol. 64, 345–357 (2003).
PubMed Article PubMed Central Google Scholar
75.
Watson, S. P., Clements, M. O. & Foster, S. J. Characterization of the starvation-survival response of Staphylococcus aureus. J. Bacteriol. 180, 1750–1758 (1998).
CAS PubMed PubMed Central Article Google Scholar
76.
Grover, J. Resource Competition Vol. 19 (Springer Science & Business Media, 1997).
77.
Letten, A. D., Dhami, M. K., Ke, P.-J. & Fukami, T. Species coexistence through simultaneous fluctuation-dependent mechanisms. Proc. Natl Acad. Sci. USA 115, 6745–6750 (2018).
CAS PubMed Article PubMed Central Google Scholar
78.
Levison, M. E. & Levison, J. H. Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect. Dis. Clin. N. Am. 23, 791–815 (2009).
Article Google Scholar
79.
Maharjan, R. & Ferenci, T. The fitness costs and benefits of antibiotic resistance in drug-free microenvironments encountered in the human body. Environ. Microbiol. Rep. 9, 635–641 (2017).
CAS PubMed Article PubMed Central Google Scholar
80.
Silva, A. S. et al. Evolutionary approaches to prolong progression-free survival in breast cancer. Cancer Res. 72, 6362–6370 (2012).
CAS PubMed PubMed Central Article Google Scholar
81.
Song, T. et al. Fitness costs of rifampicin resistance in Mycobacterium tuberculosis are amplified under conditions of nutrient starvation and compensated by mutation in the β subunit of RNA polymerase. Mol. Microbiol. 91, 1106–1119 (2014).
CAS PubMed PubMed Central Article Google Scholar
82.
Hart, S. P., Schreiber, S. J. & Levine, J. M. How variation between individuals affects species coexistence. Ecol. Lett. 19, 825–838 (2016).
PubMed Article PubMed Central Google Scholar
83.
Schreiber, S. J., Levine, J. M., Godoy, O., Kraft, N. J. & Hart, S. P. Does deterministic coexistence theory matter in a finite world? Insights from serpentine annual plants. Preprint at bioRxiv https://doi.org/10.1101/290882 (2020).
84.
Data from the ECDC Surveillance Atlas – Antimicrobial Resistance (European Centre for Disease Prevention and Control, 2020); http://go.nature.com/3oLrjOG
85.
Matteo, M. J., Granados, G., Olmos, M., Wonaga, A. & Catalano, M. Helicobacter pylori amoxicillin heteroresistance due to point mutations in PBP-1A in isogenic isolates. J. Antimicrob. Chemother. 61, 474–477 (2008).
CAS PubMed Article PubMed Central Google Scholar
86.
Mongkolrattanothai, K. et al. Simultaneous carriage of multiple genotypes of Staphylococcus aureus in children. J. Med. Microbiol. 60, 317–322 (2011).
CAS PubMed Article PubMed Central Google Scholar
87.
Folkvardsen, D. B. et al. Rifampin heteroresistance in Mycobacterium tuberculosis cultures as detected by phenotypic and genotypic drug susceptibility test methods. J. Clin. Microbiol. 51, 4220–4222 (2013).
PubMed PubMed Central Article Google Scholar
88.
Kamng’ona, A. W. et al. High multiple carriage and emergence of Streptococcus pneumoniae vaccine serotype variants in Malawian children. BMC Infect. Dis. 15, 234 (2015).
89.
Andersson, D. I., Nicoloff, H. & Hjort, K. Mechanisms and clinical relevance of bacterial heteroresistance. Nat. Rev. Microbiol. 17, 479–496 (2019).
CAS PubMed Article PubMed Central Google Scholar
90.
Chesson, P. & Kuang, J. J. The interaction between predation and competition. Nature 456, 235–238 (2008).
CAS PubMed Article PubMed Central Google Scholar
91.
Gonze, D., Coyte, K. Z., Lahti, L. & Faust, K. Microbial communities as dynamical systems. Curr. Opin. Microbiol. 44, 41–49 (2018).
PubMed Article PubMed Central Google Scholar
92.
Godoy, O., Kraft, N. J. B. & Levine, J. M. Phylogenetic relatedness and the determinants of competitive outcomes. Ecol. Lett. 17, 836–844 (2014).
PubMed Article PubMed Central Google Scholar
93.
Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl. Acad. Sci. USA 112, 797–802 (2015).
CAS PubMed Article PubMed Central Google Scholar
94.
Hart, S. P., Freckleton, R. P. & Levine, J. M. How to quantify competitive ability. J. Ecol. 106, 1902–1909 (2018).
Article Google Scholar
95.
Hallinen, K. M., Karslake, J. & Wood, K. B. Delayed antibiotic exposure induces population collapse in enterococcal communities with drug-resistant subpopulations. eLife 9, e52813 (2020).
CAS PubMed PubMed Central Article Google Scholar
96.
Gould, A. L. et al. Microbiome interactions shape host fitness. Proc. Natl Acad. Sci. USA 115, E11951–E11960 (2018).
CAS PubMed Article PubMed Central Google Scholar
97.
Torres-Barceló, C. & Hochberg, M. E. Evolutionary rationale for phages as complements of antibiotics. Trends Microbiol. 24, 249–256 (2016).
PubMed Article CAS PubMed Central Google Scholar
98.
Burmeister, A. R. et al. Pleiotropy complicates a trade-off between phage resistance and antibiotic resistance. Proc. Natl Acad. Sci. USA 117, 11207–11216 (2020).
CAS PubMed Article PubMed Central Google Scholar
99.
Butler, S. & O’Dwyer, J. P. Stability criteria for complex microbial communities. Nat. Commun. 9, 2970 (2018).
PubMed PubMed Central Article CAS Google Scholar
100.
Estrela, S. & Brown, S. P. Community interactions and spatial structure shape selection on antibiotic resistant lineages. PLoS Comput. Biol. 14, e1006179 (2018).
PubMed PubMed Central Article CAS Google Scholar More