More stories

  • in

    A new technique to study nutrient flow in host-parasite systems by carbon stable isotope analysis of amino acids and glucose

    Kuris, A. M. et al. Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454, 515–518. https://doi.org/10.1038/nature06970 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Dobson, A., Lafferty, K. D., Kuris, A. M., Hechinger, R. F. & Jetz, W. Homage to Linnaeus: How many parasites? How many hosts?. Proc. Natl. Acad. Sci. 105, 11482–11489 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Lafferty, K. D., Dobson, A. & Kuris, A. M. Parasites dominate food web links. Proc. Natl. Acad. Sci. 103, 11211–11216 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Amundsen, P. A. et al. Food web topology and parasites in the pelagic zone of a subarctic lake. J. Anim. Ecol. 78, 563–572. https://doi.org/10.1111/j.1365-2656.2008.01518.x (2009).Article 

    Google Scholar 
    Thompson, R. M., Mouritsen, K. N. & Poulin, R. Importance of parasites and their life cycle characteristics in determining the structure of a large marine food web. J. Anim. Ecol. 74, 77–85. https://doi.org/10.1111/j.1365-2656.2004.00899.x (2005).Article 

    Google Scholar 
    Thieltges, D. W. et al. Parasites as prey in aquatic food webs: Implications for predator infection and parasite transmission. Oikos 122, 1473–1482. https://doi.org/10.1111/j.1600-0706.2013.00243.x (2013).Article 

    Google Scholar 
    Sato, T. et al. Nematomorph parasites drive energy flow through a riparian ecosystem. Ecology 92, 201–207 (2011).Article 

    Google Scholar 
    Lafferty, K. D. & Kuris, A. M. Trophic strategies, animal diversity and body size. Trends Ecol. Evol. 17, 507–513 (2002).Article 

    Google Scholar 
    Goedknegt, M. A. et al. Trophic relationship between the invasive parasitic copepod Mytilicola orientalis and its native blue mussel (Mytilus edulis) host. Parasitology 145, 814–821. https://doi.org/10.1017/S0031182017001779 (2018).Article 
    CAS 

    Google Scholar 
    Timi, J. T. & Poulin, R. Why ignoring parasites in fish ecology is a mistake. Int. J. Parasitol. 50, 755–761. https://doi.org/10.1016/j.ijpara.2020.04.007 (2020).Article 

    Google Scholar 
    Barber, I. & Svensson, P. A. Effects of experimental Schistocephalus solidus infections on growth, morphology and sexual development of female three-spined sticklebacks Gasterosteus aculeatus. Parasitology 126, 359–367. https://doi.org/10.1017/s0031182002002925 (2003).Article 
    CAS 

    Google Scholar 
    Scharsack, J. P., Koch, K. & Hammerschmidt, K. Who is in control of the stickleback immune system: Interactions between Schistocephalus solidus and its specific vertebrate host. Proc. Biol. Sci. 274, 3151–3158. https://doi.org/10.1098/rspb.2007.1148 (2007).Article 

    Google Scholar 
    Hopkins, C. A. Studies on cestode metabolism. I. glycogen metabolism in Schistocephalus solidus In vivo. J. Parasitol. 36, 384–390 (1950).Article 
    CAS 

    Google Scholar 
    Körting, W. & Barrett, J. Carbohydrate catabolism in the plerocercoids of Schistocephalus solidus (Cestoda: Pseudophyllidea). Int. J. Parasitol. 7, 411–417 (1977).Article 

    Google Scholar 
    Hebert, F. O., Grambauer, S., Barber, I., Landry, C. R. & Aubin-Horth, N. Major host transitions are modulated through transcriptome-wide reprogramming events in Schistocephalus solidus, a threespine stickleback parasite. Mol. Ecol. 26, 1118–1130. https://doi.org/10.1111/mec.13970 (2017).Article 
    CAS 

    Google Scholar 
    Berger, C. S. et al. The parasite Schistocephalus solidus secretes proteins with putative host manipulation functions. Parasites Vectors 14, 436. https://doi.org/10.1186/s13071-021-04933-w (2021).Article 
    CAS 

    Google Scholar 
    Jolles, J. W., Mazue, G. P. F., Davidson, J., Behrmann-Godel, J. & Couzin, I. D. Schistocephalus parasite infection alters sticklebacks’ movement ability and thereby shapes social interactions. Sci. Rep. 10, 12282. https://doi.org/10.1038/s41598-020-69057-0 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Scharsack, J. P. et al. Climate change facilitates a parasite’s host exploitation via temperature-mediated immunometabolic processes. Glob. Change Biol. 27, 94–107. https://doi.org/10.1111/gcb.15402 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Kochneva, A., Borvinskaya, E. & Smirnov, L. Zone of interaction between the parasite and the host: Protein profile of the body cavity fluid of Gasterosteus aculeatus L. infected with the Cestode Schistocephalus solidus (Muller, 1776). Acta Parasitol. 66, 569–583. https://doi.org/10.1007/s11686-020-00318-8 (2021).Article 
    CAS 

    Google Scholar 
    Barber, I. & Scharsack, J. P. The three-spined stickleback-Schistocephalus solidus system: An experimental model for investigating host-parasite interactions in fish. Parasitology 137, 411–424. https://doi.org/10.1017/S0031182009991466 (2010).Article 
    CAS 

    Google Scholar 
    Weber, J. N., Steinel, N. C., Shim, K. C. & Bolnick, D. I. Recent evolution of extreme cestode growth suppression by a vertebrate host. Proc. Natl. Acad. Sci. U. S. A. 114, 6575–6580. https://doi.org/10.1073/pnas.1620095114 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Sabadel, A. J. M., Stumbo, A. D. & MacLeod, C. D. Stable-isotope analysis: A neglected tool for placing parasites in food webs. J. Helminthol. 93, 1–7. https://doi.org/10.1017/S0022149X17001201 (2019).Article 
    CAS 

    Google Scholar 
    Hayes, J. M. Factors controlling 13C contents of sedimentary organic compounds: Principles and evidence. Mar. Geol. 113, 111–125 (1993).Article 
    ADS 
    CAS 

    Google Scholar 
    France, R. L. Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes. Limnol. Oceanogr. 40, 1310–1313 (1995).Article 
    ADS 

    Google Scholar 
    Post, D. M. Using stable isotopes to estimate trophic position: Models, methods and assumptions. Ecology 83, 703–718 (2002).Article 

    Google Scholar 
    O’Connell, T. C. ‘Trophic’ and ‘source’ amino acids in trophic estimation: A likely metabolic explanation. Oecologia 184, 317–326. https://doi.org/10.1007/s00442-017-3881-9 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    McMahon, K. W., Fogel, M. L., Elsdon, T. S. & Thorrold, S. R. Carbon isotope fractionation of amino acids in fish muscle reflects biosynthesis and isotopic routing from dietary protein. J. Anim. Ecol. 79, 1132–1141. https://doi.org/10.1111/j.1365-2656.2010.01722.x (2010).Article 

    Google Scholar 
    Liu, H.-z, Luo, L. & Cai, D.-l. Stable carbon isotopic analysis of amino acids in a simplified food chain consisting of the green alga Chlorella spp., the calanoid copepod Calanus sinicus, and the Japanese anchovy (Engraulis japonicus). Can. J. Zool. 96, 23–30. https://doi.org/10.1139/cjz-2016-0170 (2018).Article 
    CAS 

    Google Scholar 
    Wang, Y. V. et al. Know your fish: A novel compound-specific isotope approach for tracing wild and farmed salmon. Food Chem. 256, 380–389. https://doi.org/10.1016/j.foodchem.2018.02.095 (2018).Article 
    CAS 

    Google Scholar 
    Whiteman, J. P., Kim, S. L., McMahon, K. W., Koch, P. L. & Newsome, S. D. Amino acid isotope discrimination factors for a carnivore: Physiological insights from leopard sharks and their diet. Oecologia 188, 977–989. https://doi.org/10.1007/s00442-018-4276-2 (2018).Article 
    ADS 

    Google Scholar 
    Rogers, M., Bare, R., Gray, A., Scott-Moelder, T. & Heintz, R. Assessment of two feeds on survival, proximate composition, and amino acid carbon isotope discrimination in hatchery-reared Chinook salmon. Fish. Res. 219, 105303. https://doi.org/10.1016/j.fishres.2019.06.001 (2019).Article 

    Google Scholar 
    Choy, K., Smith, C. I., Fuller, B. T. & Richards, M. P. Investigation of amino acid δ13C signatures in bone collagen to reconstruct human palaeodiets using liquid chromatography–isotope ratio mass spectrometry. Geochim. Cosmochim. Acta 74, 6093–6111. https://doi.org/10.1016/j.gca.2010.07.025 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Newsome, S. D., Clementz, M. T. & Koch, P. L. Using stable isotope biogeochemistry to study marine mammal ecology. Mar. Mamm. Sci. 26, 509–572. https://doi.org/10.1111/j.1748-7692.2009.00354.x (2010).Article 
    CAS 

    Google Scholar 
    Raghavan, M., McCullagh, J. S., Lynnerup, N. & Hedges, R. E. Amino acid delta13C analysis of hair proteins and bone collagen using liquid chromatography/isotope ratio mass spectrometry: Paleodietary implications from intra-individual comparisons. Rapid Commun. Mass Spectrom. 24, 541–548. https://doi.org/10.1002/rcm.4398 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Honch, N. V., McCullagh, J. S. & Hedges, R. E. Variation of bone collagen amino acid delta13C values in archaeological humans and fauna with different dietary regimes: Developing frameworks of dietary discrimination. Am. J. Phys. Anthropol. 148, 495–511. https://doi.org/10.1002/ajpa.22065 (2012).Article 

    Google Scholar 
    Mora, A. et al. High-resolution palaeodietary reconstruction: Amino acid δ 13 C analysis of keratin from single hairs of mummified human individuals. Quatern. Int. 436, 96–113. https://doi.org/10.1016/j.quaint.2016.10.018 (2017).Article 

    Google Scholar 
    Matos, M. P. V., Konstantynova, K. I., Mohr, R. M. & Jackson, G. P. Analysis of the (13)C isotope ratios of amino acids in the larvae, pupae and adult stages of Calliphora vicina blow flies and their carrion food sources. Anal. Bioanal. Chem. 410, 7943–7954. https://doi.org/10.1007/s00216-018-1416-9 (2018).Article 
    CAS 

    Google Scholar 
    Bontempo, L. et al. Bulk and compound-specific stable isotope ratio analysis for authenticity testing of organically grown tomatoes. Food Chem. 318, 126426. https://doi.org/10.1016/j.foodchem.2020.126426 (2020).Article 
    CAS 

    Google Scholar 
    Gaye-Siessegger, J., McCullagh, J. S. & Focken, U. The effect of dietary amino acid abundance and isotopic composition on the growth rate, metabolism and tissue delta13C of rainbow trout. Br. J. Nutr. 105, 1764–1771. https://doi.org/10.1017/S0007114510005696 (2011).Article 
    CAS 

    Google Scholar 
    Newsome, S. D., Fogel, M. L., Kelly, L. & del Rio, C. M. Contributions of direct incorporation from diet and microbial amino acids to protein synthesis in Nile tilapia. Funct. Ecol. 25, 1051–1062. https://doi.org/10.1111/j.1365-2435.2011.01866.x (2011).Article 

    Google Scholar 
    Larsen, T. et al. Tracing carbon sources through aquatic and terrestrial food webs using amino acid stable isotope fingerprinting. PLoS ONE 8, e73441. https://doi.org/10.1371/journal.pone.0073441 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Thieltges, D. W., Goedknegt, M. A., O’Dwyer, K., Senior, A. M. & Kamiya, T. Parasites and stable isotopes: A comparative analysis of isotopic discrimination in parasitic trophic interactions. Oikos 128, 1329–1339. https://doi.org/10.1111/oik.06086 (2019).Article 

    Google Scholar 
    Layman, C. A. et al. Applying stable isotopes to examine food-web structure: An overview of analytical tools. Biol. Rev. Camb. Philos. Soc. 87, 545–562. https://doi.org/10.1111/j.1469-185X.2011.00208.x (2011).Article 

    Google Scholar 
    Wang, Y. V., Wan, A. H. L., Krogdahl, A., Johnson, M. & Larsen, T. (13)C values of glycolytic amino acids as indicators of carbohydrate utilization in carnivorous fish. PeerJ 7, e7701. https://doi.org/10.7717/peerj.7701 (2019).Article 

    Google Scholar 
    Hesse, T. et al. Insights into amino acid fractionation and incorporation by compound-specific carbon isotope analysis of three-spined sticklebacks. Sci. Rep. 12, 11690. https://doi.org/10.1038/s41598-022-15704-7 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Riekenberg, P. M. et al. Stable nitrogen isotope analysis of amino acids as a new tool to clarify complex parasite–host interactions within food webs. Oikos 130, 1650–1664. https://doi.org/10.1111/oik.08450 (2021).Article 
    CAS 

    Google Scholar 
    Carleton, S. A. & Del Rio, C. M. Growth and catabolism in isotopic incorporation: A new formulation and experimental data. Funct. Ecol. 24, 805–812. https://doi.org/10.1111/j.1365-2435.2010.01700.x (2010).Article 

    Google Scholar 
    Perga, M. E. & Gerdeaux, D. ‘Are fish what they eat’ all year round?. Oecologia 144, 598–606. https://doi.org/10.1007/s00442-005-0069-5 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Grey, J. Trophic fractionation and the effects of diet switch on the carbon stable isotopic ‘signatures’ of pelagic consumers. SIL Proc. 1922–2010(27), 3187–3191. https://doi.org/10.1080/03680770.1998.11898266 (2000).Article 

    Google Scholar 
    Danfaer, A. Nutrient metabolism and utilization in the liver. Livest. Prod. Sci. 39, 115–127 (1994).Article 

    Google Scholar 
    Read, C. P. & Simmons, J. E. Biochemistry and physiology of tapeworms. Physiol. Rev. 43, 263–305 (1963).Article 
    CAS 

    Google Scholar 
    Nachev, M. et al. Understanding trophic interactions in host-parasite associations using stable isotopes of carbon and nitrogen. Parasites Vectors 10, 1–9. https://doi.org/10.1186/s13071-017-2030-y (2017).Article 
    CAS 

    Google Scholar 
    Kanaya, G. et al. Application of stable isotopic analyses for fish host–parasite systems: An evaluation tool for parasite-mediated material flow in aquatic ecosystems. Aquat. Ecol. 53, 217–232. https://doi.org/10.1007/s10452-019-09684-6 (2019).Article 
    CAS 

    Google Scholar 
    Gilbert, B. M. et al. You are how you eat: differences in trophic position of two parasite species infecting a single host according to stable isotopes. Parasitol. Res. 119, 1393–1400. https://doi.org/10.1007/s00436-020-06619-1 (2020).Article 

    Google Scholar 
    Gilbert, B. M. et al. Stable isotope analysis spills the beans about spatial variance in trophic structure in a fish host—Parasite system from the Vaal River System, South Africa. Int. J. Parasitol. Parasites Wildl. 12, 134–141. https://doi.org/10.1016/j.ijppaw.2020.05.011 (2020).Article 

    Google Scholar 
    Felig, P. The glucose-alanine cycle. Metabolism 22, 179–207 (1973).Article 
    CAS 

    Google Scholar 
    Dale, R. A. Catabolism of threonine in mammals by coupling of L-threonine 3-dehydrogenase with 2-amino-3-oxobutyrate-CoA ligase. Biochem. Biophys. Acta. 544, 496–503 (1978).Article 
    CAS 

    Google Scholar 
    Jordan, P. M. & Akhtar, M. The mechanism of action of serine Transhydroxymethylase. Biochem. J. 116, 277–286 (1970).Article 
    CAS 

    Google Scholar 
    Linstead, D. J., Klein, R. A. & Cross, G. A. M. Threonine catabolism in Trypanosoma brucei. J. Gen. Microbiol. 101, 243–251 (1977).Article 
    CAS 

    Google Scholar 
    Hare, P. E., Fogel, M. L., Stafford, T. W. Jr., Mitchell, A. D. & Hoering, T. C. The isotopic composition of carbon and nitrogen in individual amino acids isolated from modern and fossil proteins. J. Archaeol. Sci. 18, 277–292 (1991).Article 

    Google Scholar 
    Petzke, K. J., Boeing, H., Klaus, S. & Metges, C. C. Carbon and nitrogen stable isotopic composition of hair protein and amino acids can be used as biomarkers for animal-derived dietary protein intake in humans. J. Nutr. 135, 1515–1520 (2005).Article 
    CAS 

    Google Scholar 
    McMahon, K. W., Polito, M. J., Abel, S., McCarthy, M. D. & Thorrold, S. R. Carbon and nitrogen isotope fractionation of amino acids in an avian marine predator, the gentoo penguin (Pygoscelis papua). Ecol. Evol. 5, 1278–1290. https://doi.org/10.1002/ece3.1437 (2015).Article 

    Google Scholar 
    Fuller, B. T. & Petzke, K. J. The dietary protein paradox and threonine (15) N-depletion: Pyridoxal-5’-phosphate enzyme activity as a mechanism for the delta (15) N trophic level effect. Rapid Commun. Mass Spectrom. 31, 705–718. https://doi.org/10.1002/rcm.7835 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Bowyer, A. et al. Structure and function of the l-threonine dehydrogenase (TkTDH) from the hyperthermophilic archaeon Thermococcus kodakaraensis. J. Struct. Biol. 168, 294–304. https://doi.org/10.1016/j.jsb.2009.07.011 (2009).Article 
    CAS 

    Google Scholar 
    Kikuchi, G., Motokawa, Y., Yoshida, T. & Hiraga, K. Glycine cleavage system: Reaction mechanism, physiological significance and hyperglycinemia. Proc. Jpn. Acad. https://doi.org/10.2183/pjab/84.246 (2008).Article 

    Google Scholar 
    Locasale, J. W. Serine, glycine and one-carbon units: Cancer metabolism in full circle. Nat. Rev. Cancer 13, 572–583. https://doi.org/10.1038/nrc3557 (2013).Article 
    CAS 

    Google Scholar 
    Kalhan, S. C. & Hanson, R. W. Resurgence of serine: An often neglected but indispensable amino Acid. J. Biol. Chem. 287, 19786–19791. https://doi.org/10.1074/jbc.R112.357194 (2012).Article 
    CAS 

    Google Scholar 
    Larsen, T., Wang, Y. V. & Wan, A. H. L. Tracing the Trophic fate of aquafeed macronutrients with carbon isotope ratios of amino acids. Front. Mar. Sci. https://doi.org/10.3389/fmars.2022.813961 (2022).Article 

    Google Scholar 
    Sweeting, C. J., Polunin, N. V. & Jennings, S. Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues. Rapid Commun. Mass Spectrom. 20, 595–601. https://doi.org/10.1002/rcm.2347 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Tarallo, A., Bailey, C., Agnisola, C. & D’Onofrio, G. A theoretical evaluation of the respiration rate partition in the Gasterosteus aculeatus-Schistocephalus solidus host-parasite system. Int. Aquat. Res. 13, 185. https://doi.org/10.22034/IAR.2021.1924974.1142 (2021).Article 

    Google Scholar 
    Takizawa, Y. et al. A new insight into isotopic fractionation associated with decarboxylation in organisms: Implications for amino acid isotope approaches in biogeoscience. Progress Earth Planet. Sci. https://doi.org/10.1186/s40645-020-00364-w (2020).Article 

    Google Scholar 
    Ron-Harel, N. et al. T cell activation depends on extracellular alanine. Cell Rep. 28, 3011-3021.e4. https://doi.org/10.1016/j.celrep.2019.08.034 (2019).Article 
    CAS 

    Google Scholar 
    Wang, W. et al. Glycine metabolism in animals and humans: Implications for nutrition and health. Amino Acids 45, 463–477. https://doi.org/10.1007/s00726-013-1493-1 (2013).Article 
    CAS 

    Google Scholar 
    Mathis, D. & Shoelson, S. E. Immunometabolism: An emerging frontier. Nat. Rev. Immunol. 11, 81. https://doi.org/10.1038/nri2922 (2011).Article 
    CAS 

    Google Scholar 
    Guo, C. et al. Live Edwardsiella tarda vaccine enhances innate immunity by metabolic modulation in zebrafish. Fish Shellfish Immunol. 47, 664–673. https://doi.org/10.1016/j.fsi.2015.09.034 (2015).Article 
    CAS 

    Google Scholar 
    Peuss, R. et al. Adaptation to low parasite abundance affects immune investment and immunopathological responses of cavefish. Nat. Ecol. Evol. 4, 1416–1430. https://doi.org/10.1038/s41559-020-1234-2 (2020).Article 

    Google Scholar 
    Smyth, J. D. Fertilization of Schistocephalus solidus in vitro. Exp. Parasitol. 3, 64–71 (1954).Article 
    CAS 

    Google Scholar 
    Schärer, L. & Wedekind, C. Lifetime reproductive output in a hermaphrodite cestode when reproducing alone or in pairs. Evol. Ecol. 13, 381–394 (1999).Article 

    Google Scholar 
    McCullagh, J. S. Mixed-mode chromatography/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 24, 483–494. https://doi.org/10.1002/rcm.4322 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Dunn, P. J., Honch, N. V. & Evershed, R. P. Comparison of liquid chromatography-isotope ratio mass spectrometry (LC/IRMS) and gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS) for the determination of collagen amino acid delta13C values for palaeodietary and palaeoecological reconstruction. Rapid Commun. Mass Spectrom. 25, 2995–3011. https://doi.org/10.1002/rcm.5174 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Fry, B., Carter, J. F., Yamada, K., Yoshida, N. & Juchelka, D. Position-specific (13) C/(12) C analysis of amino acid carboxyl groups—Automated flow-injection-analysis based on reaction with ninhydrin. Rapid Commun. Mass Spectrom. https://doi.org/10.1002/rcm.8126 (2018).Article 

    Google Scholar 
    Marks, R. G. H., Jochmann, M. A., Brand, W. A. & Schmidt, T. C. How to couple LC-IRMS with HRMS─A proof-of-concept study. Anal Chem 94, 2981–2987 (2022).Article 
    CAS 

    Google Scholar 
    Sun, Y. et al. A method for stable carbon isotope measurement of underivatized individual amino acids by multi-dimensional high-performance liquid chromatography and elemental analyzer/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 34, e8885. https://doi.org/10.1002/rcm.8885 (2020).Article 
    CAS 

    Google Scholar 
    Werner, R. A. & Brand, W. A. Referencing strategies and techniques in stable isotope ratio analysis. Rapid Commun. Mass Spectrom. 15, 501–519. https://doi.org/10.1002/rcm.258 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Köster, D., Villalobos, I. M. S., Jochmann, M. A., Brand, W. A. & Schmidt, T. C. New concepts for the determination of oxidation efficiencies in liquid chromatography-isotope ratio mass spectrometry. Anal. Chem. 91, 5067–5073. https://doi.org/10.1021/acs.analchem.8b05315 (2019).Article 
    CAS 

    Google Scholar 
    Boschker, H. T., Moerdijk-Poortvliet, T. C., van Breugel, P., Houtekamer, M. & Middelburg, J. J. A versatile method for stable carbon isotope analysis of carbohydrates by high-performance liquid chromatography/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 22, 3902–3908. https://doi.org/10.1002/rcm.3804 (2008).Article 
    ADS 
    CAS 

    Google Scholar  More

  • in

    Genome-wide identification and expression profile of Elovl genes in threadfin fish Eleutheronema

    Identification of Elovl genes from E. tetradactylum and E. rhadinumTotally, we successfully identified 9 Elovl genes, including elovl1a, elovl1b, elovl4a, elovl4b, elovl5, elovl6, elovl6l, elovl7a, and elovl8b, both from E. tetradactylum and E. rhadinum genome (Table 2). In E. rhadinum, the shortest and the longest putative CDS length among all Elovl genes was 810 bp and 2019 bp, respectively. Their encoded protein size ranged from 269 amino acids to 672 amino acids. The theoretical molecular weight of Elovl proteins varied from 31061.48 to 75051.42 Da, with the theoretical isoelectric points (pI) ranging from 7.86 to 9.59. Most of the Elovl proteins were characterized as stable and hydrophilic proteins. Signal peptide prediction analysis showed that the elovl1b, elovl5, and elovl6 contained signal peptide sequences. In addition to elovl8b, all Elovl proteins contained transmembrane domains ranging from 5 to 7. Almost all Elovl proteins were predicted to be endoplasmic reticulum-located except elovl8b, predominantly localized in the nucleus.Table 2 Basic information for the Elovl gene family members.Full size tableIn E. tetradactylum, the putative CDS length of Elovl genes ranged from 810 to 1824 bp, and their encoded protein size ranged from 269 amino acids to 409 amino acids. The molecular weight of Elovl proteins varied from 31049.42 to 68750.14 Da, with the pI ranging from 8.72 to 9.64. Like Elovl proteins in E. rhadinum, most elovl proteins were predicted to be stable and hydrophilic. Signal peptide prediction analysis revealed that elovl1a, elovl5, and elovl6 had signal peptide sequence, which was different from E. rhadinum that elovl1b contained signal peptide sequence, but elovl1a did not. In addition, seven members showed the same number of transmembrane structures with E. rhadinum, while the elovl8b contained three and elovl4b contained seven transmembrane structures in contrast to E. rhadinum. The elovl8b was predicted to be localized in nuclear, while other members were localized in the endoplasmic reticulum, similar to E. rhadinum.Evolution of divergence and conservation of Elovl genesDivergence and conservation accompany the process of species evolution. To elucidate the phylogenetic relationship of Elovl genes among different species, a maximum like-hood tree was constructed on the basis of 18 Elovl genes in E. tetradactylum and E. rhadinum and 106 publicly available Elovl protein sequences. As shown in Fig. 1, these Elovl genes can be divided into eight subfamilies, including elovl1a/1b, elovl2, elovl3, elovl4a, elovl5, elovl6/6 l, elovl7a/7b, elovl8a/8b. However, 6 subfamilies were presented in the Eleutheronema genus, and there was only one subtype for elovl7 (elovl7a) and elovl8 (elovl8b) in E. tetradactylum and E. rhadinum. The elovl3 was mainly identified in mammalians such as Homo sapiens and Mus musculus, while a recent study reported a full repertoire of Elovl genes in the Colossoma macropomum genome, including elovl330. The loss of elovl2 occurred in the vast majority of marine fish lineages, which was only presented in a few fish species, such as C. carpio, D. rerio, S. salar, and S. grahami.Figure 1Phylogenetic tree for 18 Elovl proteins from E. tetradactylum and E. rhadinum, and 106 publicly available Elovl proteins from other species. All these proteins were aligned using ClustalW and then subjected to MEGAX for phylogenetic tree construction using the maximum like-hood method with 1000 replicates.Full size imageWe further performed the gene structure analysis to visualize the exon–intron structure of each gene, and the results revealed that the elovl8b had the largest intron number, while the elovl6/6 l subfamily genes contained three introns (Fig. 2a). Except for elovl8, Elovl genes belonging to the same subfamily shared a similar gene structure. Additionally, we identified ten motifs in Elovl genes, and the conversed motif types, numbers, and distributions in Elovl proteins were much more similar except for the elovl8b (Fig. 2b, TableS1). Two conserved motifs were found in the Elovl gene family except for elovl8b in E. rhadinum, which were related to the ELO domain via SMART evaluation analysis (Fig. 2c and d). Gene structural variation is important for gene evolution. In E. tetradactylum and E. rhadinum, Elovl genes showed similar gene structure, and the proteins shared similar motif compositions, indicating that the Elovl genes were highly conserved in the Eleutheronema genus.Figure 2Gene structure and conserved motifs diagram of Elovl genes. (a) Gene structure of Elovl genes. Exons were represented by pink boxes and introns by black lines; (b) Conserved motifs of Elovl proteins; (c and d) Logo representations of the ELO domains, motifs 1 and 2, respectively.Full size imageIn the process of evolution via natural selection, adaptation to certain environmental conditions likely drove the changes in endogenous capacity for LC-PUFA biosynthesis between marine and freshwater fishes31. The Elovl gene family has been functionally studied and characterized in a variety of fish species, and the member of the Elovl gene family of each species varied greatly. In the present study, for a comprehensive analysis of Elovl genes in the Eleutheronema genus, the Elovl gene ortholog clusters of mammals and various teleosts with different ecological niches and habitats were collected. The results showed that only seven Elovl genes (one gene for each subtype) were observed in mammals; however, more members were variably presented in teleosts, which might be related to the teleost-specific duplication. A previous study revealed that Sinocyclocheilus graham and C. carpio possessed the highest number of Elovl genes, containing 21 members of subtypes, resulting from an extra independent 4th whole-genome duplication event32, 33. Interestingly, only 9 Elovl genes were observed in Eleutheronema genus, the same as T. rubripes, possibly due to gene loss and the asymmetric acceleration of the evolutionary rate in one of the paralogs following the whole-genome duplication in some teleost fishes34. Additionally, the elovl2 and elovl3 were absent, but a novel subtype, elovl8, was present in most marine fishes. The elovl8, the most recently identified and novel active member of the Elovl protein family member, has been proposed to be a fish-specific elongase with two gene paralogs (elovl8a and elovl8b) described in teleost35. In Eleutheronema, we also found that the elovl8b was presented in E. tetradactylum and E. rhadinum, indicating the important roles in the LC-PUFAs biosynthesis of Eleutheronema fish. Similar results were also observed in rabbitfish and zebrafish20. The Elovl gene family member number in Eleutheronema genus is the same as T. rubripes, but less than I. punctatus (10), Gadus morhua (10), D. rerio (14), S. salar (18), and C. carpio (21), which might be due to the differential expansion events during the evolutions of fish species.Predicting the protein structure is a fundamental prerequisite for understanding the function and possible interactions of a protein. In the present study, the secondary structures as well as three-dimensional structures of Elovl proteins in both E. tetradactylum and E. rhadinum were predicted using the SOPMA and Phyre2 programs, respectively. The protein structures of all the candidate Elovl proteins were modeled at  > 90% confidence. The secondary structures of these proteins in E. tetradactylum revealed 40.86–50.30% alpha helixes, 28.10–28.10% random coil, 13.75–20.67% extended strand and 2.38–4.47% beta turn, while these ratios were predicted to be 47.55–53.27, 30.00–36.01, 6.99–18.12 and 2.38–4.75%, respectively, in E. rhadinum (Table 3). High ratio of alpha helixes and random coil in the Elovl protein structure might play important roles in fatty acids biosynthesis in fish, in accordance with the literature for the order Perciformes in Perca fluviatilis36. Additionally, the secondary structure pattern of Elovl proteins in the candidate E. tetradactylum and E. rhadinum species were highly similar (Fig. 3), indicating the probable similar biological functions as well as highly evolutionarily conserved Elovl genes in Eleutheronema species.Table 3 Properties of the secondary structures of Elovl proteins.Full size tableFigure 3The secondary structure pattern, including alpha helix (blue color), random coil (purple color), extended strand (red color), and beta turn (green color), of Elovl proteins in E. tetradactylum and E. rhadinum.Full size imageThe 3D model results showed that all predicted Elovl proteins had complex 3D structures, composing of multiple secondary structures including alpha-helices, random coils, and others (Fig. 4). The Elovl proteins of different subfamilies showed different 3D configurations. The 3D structures of Elovl proteins also revealed the presence of the conserved domain in each Elovl protein, which showed a typical three-dimensional frame comprising of various parallel alpha-helixes. To assay the quality and accuracy of the predicted 3D model for the candidate Elovl proteins, the Ramachandran plot analysis was employed (Figure S1). In model validation, the qualities of the Elovl proteins model varied from 90 to 98% based on the Ramachandran plot analysis, suggesting the reasonably good quality and reliability of the predicted 3D models. These results indicated that the predicted 3D model of Elovl proteins could provide valuable information for the further comprehensive studies of molecular function in the fatty acids biosynthesis in Eleutheronema species. Additionally, the comparisons between these structures in E. tetradactylum and E. rhadinum suggested that the Elovl proteins encompassed the conserved structures. In addition, gene duplication resulted in obvious 3D structural variation in the duplicated genes, such as Elovl4 (elovl4a and elovl4b), Elovl6 (elovl6 and elovl6l). The ascertained variations were revealed in duplicated Elovl proteins, and the diversities in these proteins structure may reflect their different obligations in the fatty acid biosynthesis and other biological processes.Figure 4Three-dimensional modeling of Elovl proteins in E. tetradactylum and E. rhadinum. All models have confidence levels above 90%.Full size imageTo explore the functional selection pressures acting on Elovl gene family, Ka, Ks, and Ka/Ks ratios were calculated for each gene. Generally, Ka/Ks  1 indicates positive selection. In this study, we found that all the Ka/Ks ratios for each gene were less than 0.5, suggesting that they were subjected to strong purifying selection during evolution, and their functions might be evolutionarily conserved (Fig. 5). Therefore, theoretically, the Elovl genes in the Eleutheronema genus had eliminated deleterious mutations in the population through purification selection. Similar results were also observed in Elovl gene family of Gymnocypris przewalskii that no positive selection trace was detected in most members except elovl211. Moreover, elovl6l and elovl8b showed a higher average Ka/Ks ratio than the other seven members, indicating that the evolution of elovl6l and elovl8b might be much less conservative and thereby could provide more variants for natural selection in Eleutheronema species.Figure 5The evolutionary rates of the Elovl genes in (a) E. tetradactylum and (b) E. rhadinum. The Ka, Ks, and Ka/Ks values were demonstrated in boxplots with error lines.Full size imageChromosomal location, collinearity, and protein–protein interaction network analysis of Elovl genesAs shown in Fig. 6a and b, Elovl genes were randomly and unevenly distributed on seven chromosomes in both E. tetradactylum and E. rhadinum, including Chr5, Chr6, Chr8, Chr10, Chr11, Chr13, and Chr25. The Chr5 and Chr6 harbored two Elovl genes (elovl1b and elovl8b in Chr5, elovl5 and elovl6l in Chr6), while other chromosomes each carried a single Elovl gene. Collinearity relationship analysis was performed to further investigate the gene duplication events within the Elovl gene family. The results revealed that a pair of segmental duplication genes (elovl4a/4b) showed collinear relationships. A chromosome-wide collinearity analysis also showed that the chromosomes were highly homologous between E. tetradactylum and E. rhadinum, including the Elovl gene family (Figure S2). To infer the protein interaction within Elovl gene family, we constructed the protein–protein interaction (PPI) network of the Elovl proteins based on the interaction relationship of the homologous Elovl proteins in zebrafish. The results showed that Elovl genes had close interaction with other members except for the elovl4a/4b and elovl8b (Fig. 6c), which suggested that they might participate in diverse functions by interacting with other proteins. Thus far, elovl4a and elovl4b were widely identified in most fish, which could effectively elongate PUFA substrates37. In addition, the elovl4a/4b were identified to be homologous proteins of zebrafish, indicating that the elovl4 subtype was highly conserved during evolution and played important roles in the biosynthesis of LC-PUFA in Eleutheronema.Figure 6Chromosomal location and collinearity analysis of Elovl gene family in (a) E. tetradactylum and (b) E. rhadinum. Colored boxes represented chromosomes. Segmental duplication genes are connected with grey lines; (c) a protein–protein interaction network for Elovl genes based on their orthologs in zebrafish.Full size imageExpression patterns of ELOVL genes in different tissuesIn the present study, we aimed to determine the expression patterns and gained insights into the potential functions of Elovl genes in the brain, eye, gill, heart, kidney, liver, muscle, stomach, and intestine. The expression patterns of Elovl genes in different tissues and species were distinct, suggesting the diverse roles during fish development (Fig. 7a and b). In our present study, the elovl1a and elvovl1b were expressed in a relatively narrow range of tissues, including the liver, stomach, and intestine. Some Elovl genes had much higher relative expression rates, e.g., elovl1a and elovl7a. The elovl4a was primarily distributed in the brain and eye, slightly expressed in gills while hardly detectable in other tissues, consistent with previous studies37, 38, which might play an important role in endogenous biosynthesis of LC-PUFA in the neural system of fish. In contrast to elovl4a, elovl4b was ubiquitously, instead of tissue-specific, expressed in most tissues while hardly examined in the heart and kidney. The elovl4a and elovl4b were two commonly paralogues in evolutionarily diverged fish species, and the striking difference in expression patterns between elovl4a and elovl4b might be due to the potential functional divergence of these two paralogues. In addition, elovl8b, the novel active member of the Elovl protein family, was expressed in several tissues, suggesting the essential roles in LC-PUFAs biosynthesis of teleost as indicated by a previous study20. Moreover, the differences in expression patterns among different Elovl genes indicated that these genes might possibly undergo functional divergence during evolution in the Eleutheronema genus. Overall, our present study firstly provided the preliminary organ-specific expression data of the Elovl gene family in E. tetradactylum and E. rhadinum, which could provide the foundation for further clarifying the function of these genes in the evolutionary development of the Eleutheronema genus.Figure 7qPCR assessment of tissue distribution of elovl1a, elovl1b, elovl4a, elovl4b, elovl5, elovl6, elovl6l, elovl7a, and elovl8b gene expression in (a) E. tetradactylum and (b) E. rhadinum for various tissues including the brain, eye, gill, heart, kidney, liver, muscle, stomach, and intestine.Full size image More

  • in

    Human fingerprint on structural density of forests globally

    Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).Article 

    Google Scholar 
    Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. https://doi.org/10.1126/sciadv.1600821 (2017).Matricardi, E. A. T. et al. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 369, 1378–1382 (2020).Article 
    CAS 

    Google Scholar 
    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).Article 
    CAS 

    Google Scholar 
    Grantham, H. S. et al. The emerging threat of extractives sector to intact forest landscapes. Front. For. Glob. Change https://doi.org/10.3389/ffgc.2021.692338 (2021).IPBES: Summary for Policymakers. In The Global Assessment Report on Biodiversity and Ecosystem Services (eds Díaz, S. et al.) (IPBES, 2019).Qin, Y. et al. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nat. Clim. Change https://doi.org/10.1038/s41558-021-01026-5 (2021).Article 

    Google Scholar 
    Maxwell, S. L. et al. Degradation and forgone removals increase the carbon impact of intact forest loss by 626%. Sci. Adv. 5, eaax2546 (2019).Article 
    CAS 

    Google Scholar 
    Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).Article 
    CAS 

    Google Scholar 
    Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).Article 

    Google Scholar 
    Laurance, W. F. et al. Averting biodiversity collapse in tropical forest protected areas. Nature 489, 290–294 (2012).Article 
    CAS 

    Google Scholar 
    Coad, L. et al. Measuring impact of protected area management interventions: current and future use of the global database of protected area management effectiveness. Phil. Trans. R. Soc. B 370, 20140281 (2015).Article 

    Google Scholar 
    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).Article 
    CAS 

    Google Scholar 
    Ehbrecht, M. et al. Global patterns and climatic controls of forest structural complexity. Nat. Commun. 12, 519 (2021).Article 
    CAS 

    Google Scholar 
    Zhang, J., Nielsen, S. E., Mao, L., Chen, S. & Svenning, J. C. Regional and historical factors supplement current climate in shaping global forest canopy height. J. Ecol. 104, 469–478 (2016).Article 

    Google Scholar 
    Ellis, E. C. et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl Acad. Sci. USA 118, e2023483118 (2021).Article 
    CAS 

    Google Scholar 
    Knight, C. A. et al. Land management explains major trends in forest structure and composition over the last millennium in California’s Klamath Mountains. Proc. Natl Acad. Sci. USA 119, e2116264119 (2022).Article 
    CAS 

    Google Scholar 
    Stephens, L. et al. Archaeological assessment reveals Earth’s early transformation through land use. Science 365, 897–902 (2019).Article 
    CAS 

    Google Scholar 
    Asner, G. P., Llactayo, W., Tupayachi, R. & Luna, E. R. Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring. Proc. Natl Acad. Sci. USA 110, 18454–18459 (2013).Article 
    CAS 

    Google Scholar 
    Hoang, N. T. & Kanemoto, K. Mapping the deforestation footprint of nations reveals growing threat to tropical forests. Nat. Ecol. Evol. 5, 845–853 (2021).Article 

    Google Scholar 
    Lim, C. L., Prescott, G. W., De Alban, J. D. T., Ziegler, A. D. & Webb, E. L. Untangling the proximate causes and underlying drivers of deforestation and forest degradation in Myanmar. Conserv. Biol. 31, 1362–1372 (2017).Article 

    Google Scholar 
    Sandel, B. & Svenning, J. C. Human impacts drive a global topographic signature in tree cover. Nat Commun. https://doi.org/10.1038/ncomms3474 (2013).Potapov, P. et al. Mapping the world’s intact forest landscapes by remote sensing. Ecol. Soc. 13, 51 (2008).Article 

    Google Scholar 
    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209–23215 (2019).Article 
    CAS 

    Google Scholar 
    Yang, H. et al. A global assessment of the impact of individual protected areas on preventing forest loss. Sci. Total Environ. 777, 145995 (2021).Article 
    CAS 

    Google Scholar 
    Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).Article 
    CAS 

    Google Scholar 
    Clerici, N. et al. Deforestation in Colombian protected areas increased during post-conflict periods. Sci. Rep. 10, 4971 (2020).Article 
    CAS 

    Google Scholar 
    Heino, M. et al. Forest loss in protected areas and intact forest landscapes: a global analysis. PLoS ONE 10, e0138918 (2015).Article 

    Google Scholar 
    Leberger, R., Rosa, I. M. D., Guerra, C. A., Wolf, F. & Pereira, H. M. Global patterns of forest loss across IUCN categories of protected areas. Biol. Conserv. 241, 108299 (2020).Article 

    Google Scholar 
    Wade, C. M. et al. What is threatening forests in protected areas? A global assessment of deforestation in protected areas, 2001–2018. Forests 11, 539 (2020).Article 

    Google Scholar 
    Transforming Our World: The 2030 Agenda for Sustainable Development (UN DESA, 2016).Burleson, E. Paris Agreement and consensus to address climate challenge. ASIL Insight 20, 8 (2016).
    Google Scholar 
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).Article 
    CAS 

    Google Scholar 
    Quegan, S. et al. The European Space Agency BIOMASS mission: measuring forest above-ground biomass from space. Remote Sens. Environ. 227, 44–60 (2019).Article 

    Google Scholar 
    Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2011JG001708 (2011).Potapov, P. et al. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 253, 112165 (2021).Article 

    Google Scholar 
    Atkins, J. W., Fahey, R. T., Hardiman, B. S. & Gough, C. M. Forest canopy structural complexity and light absorption relationships at the subcontinental scale. J. Geophys. Res. Biogeosci. 123, 1387–1405 (2018).Article 

    Google Scholar 
    Scarth, P., Armston, J., Lucas, R. & Bunting, P. A structural classification of Australian vegetation using ICESat/GLAS, ALOS PALSAR, and Landsat sensor data. Remote Sens. 11, 147 (2019).Article 

    Google Scholar 
    Dubayah, R. et al. The global ecosystem dynamics investigation: high-resolution laser ranging of the Earth’s forests and topography. Sci. Remote Sens. 1, 100002 (2020).Article 

    Google Scholar 
    Lang, N. et al. Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles. Remote Sens. Environ. 268, 112760 (2022).Article 

    Google Scholar 
    Marselis, S. M., Keil, P., Chase, J. M. & Dubayah, R. The use of GEDI canopy structure for explaining variation in tree species richness in natural forests. Environ. Res. Lett. 17, 045003 (2022).Article 

    Google Scholar 
    MacArthur, R. H. & MacArthur, J. W. On bird species diversity. Ecology 42, 594–598 (1961).Article 

    Google Scholar 
    Walter, J. A., Stovall, A. E. L. & Atkins, J. W. Vegetation structural complexity and biodiversity in the Great Smoky Mountains. Ecosphere 12, e03390 (2021).Article 

    Google Scholar 
    Camps-Valls, G. et al. A unified vegetation index for quantifying the terrestrial biosphere. Sci. Adv. 7, eabc7447 (2021).Article 
    CAS 

    Google Scholar 
    Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, S. & Kiesecker, J. Managing the middle: a shift in conservation priorities based on the global human modification gradient. Glob. Change Biol. 25, 811–826 (2019).Article 

    Google Scholar 
    Weiss, D. J. et al. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 553, 333–336 (2018).Article 
    CAS 

    Google Scholar 
    Chazdon, R. L. et al. A policy‐driven knowledge agenda for global forest and landscape restoration. Conserv. Lett. 10, 125–132 (2017).Article 

    Google Scholar 
    Skidmore, A. K. et al. Priority list of biodiversity metrics to observe from space. Nat. Ecol. Evol. 5, 896–906 (2021).Article 

    Google Scholar 
    Schneider, F. D. et al. Mapping functional diversity from remotely sensed morphological and physiological forest traits. Nat. Commun. 8, 1441 (2017).Article 

    Google Scholar 
    Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978 (2020).Article 
    CAS 

    Google Scholar 
    Ponta, N. et al. Drivers of transgression: what pushes people to enter protected areas. Biol. Conserv. 257, 109121 (2021).Article 

    Google Scholar 
    Pack, S. M. et al. Protected area downgrading, downsizing, and degazettement (PADDD) in the Amazon. Biol. Conserv. 197, 32–39 (2016).Article 

    Google Scholar 
    Tollefson, J. Illegal mining in the Amazon hits record high amid Indigenous protests. Nature 598, 15–16 (2021).Article 
    CAS 

    Google Scholar 
    Thies, C., Rosoman, G., Cotter, J. & Meaden, S. Intact Forest Landscapes. Why It Is Crucial to Protect Them from Industrial Exploitation Technical Note Bd 5 (Greenpeace, 2011).Chazdon, R. L. Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320, 1458–1460 (2008).Article 
    CAS 

    Google Scholar 
    Lindenmayer, D. B. et al. New policies for old trees: averting a global crisis in a keystone ecological structure. Conserv. Lett. 7, 61–69 (2014).Article 

    Google Scholar 
    Dave, R. et al. Second Bonn Challenge Progress Report: Application of the Barometer in 2018 (IUCN, 2018).Tang, H. & Armston, J. Algorithm Theoretical Basis Document (ATBD) for GEDI L2B Footprint Canopy Cover and Vertical Profile Metrics (Goddard Space Flight Center, 2019).Adam, M., Urbazaev, M., Dubois, C. & Schmullius, C. Accuracy assessment of GEDI terrain elevation and canopy height estimates in European temperate forests: influence of environmental and acquisition parameters. Remote Sens. 12, 3948 (2020).Article 

    Google Scholar 
    Dorado-Roda, I. et al. Assessing the accuracy of GEDI data for canopy height and aboveground biomass estimates in Mediterranean forests. Remote Sens. 13, 2279 (2021).Article 

    Google Scholar 
    Duncanson, L. et al. Aboveground biomass density models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) lidar mission. Remote Sens. Environ. 270, 112845 (2022).Article 

    Google Scholar 
    Hofton, M., Blair, J. B., Story, S. & Yi, D. Algorithm Theoretical Basis Document (ATBD) (NASA, 2020).Dubayah, R. et al. GEDI L3 Gridded Land Surface Metrics v.2 (ORNL DAAC, 2021).Roy, D. P., Kashongwe, H. B. & Armston, J. The impact of geolocation uncertainty on GEDI tropical forest canopy height estimation and change monitoring. Sci. Remote Sens. 4, 100024 (2021).Article 

    Google Scholar 
    Potapov, P., Hansen, M. C., Stehman, S. V., Loveland, T. R. & Pittman, K. Combining MODIS and Landsat imagery to estimate and map boreal forest cover loss. Remote Sens. Environ. 112, 3708–3719 (2008).Article 

    Google Scholar 
    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).Article 

    Google Scholar 
    Silva, C. A. et al. rGEDI: NASA’s global ecosystem ynamics investigation (GEDI) data visualization and processing. R package version 0.1.2. (2020).The R Project for Statistical Computing (The R Foundation, 2014); https://www.R-project.org/Fischer, B., Smith, M., Pau, G., Morgan, M. & van Twisk, D. rhdf5: R interface to HDF5. R package version 2.40.0 (2022).Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).Article 

    Google Scholar 
    Giglio, L., Loboda, T., Roy, D. P., Quayle, B. & Justice, C. O. An active-fire based burned area mapping algorithm for the MODIS sensor. Remote Sens. Environ. 113, 408–420 (2009).Article 

    Google Scholar 
    Hengl, T. & Wheeler, I. Soil organic carbon content in x 5 g/kg at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution. Zenodo https://doi.org/10.5281/zenodo.1475458 (2018).Farr, T. The shuttle radar topography mission. Rev. Geophys. https://doi.org/10.1029/2005RG000183 (2007).James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning Vol. 112 (Springer, 2013).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Bivand, R. et al. Package ‘spdep’: spatial dependence: weighting schemes, statistics version 1.2-7 (The Comprehensive R Archive Network, 2015).Bivand, R., Yu, D., Nakaya, T., Garcia-Lopez, M.-A. & Bivand, M. R. Package ‘spgwr’: geographically eighted regression. R package version 0.6-35 (2020).Fotheringham, A. S., Brunsdon, C. & Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships (Wiley, 2003). More

  • in

    Synthesis of heat-resistant and water/oil-repellent aromatic polyketones bearing tetrakis(nonafluorobutyl)-p-terphenylene units

    Hou J, Sun J, Fang Q. A fluorinated low dielectric polymer at high frequency derived from allylphenol and benzocyclobutene by a facile route. Eur Polym J. 2022;163:110943–9.Article 
    CAS 

    Google Scholar 
    Qiu Z, Wu S, Li Z, Zhang S, Xing W, Liu S. Sulfonated Poly(arylene-co-naphthalimide)s Synthesized by Copolymerization of Primarily Sulfonated Monomer and Fluorinated Naphthalimide Dichlorides as Novel Polymers for Proton Exchange Membranes. Macromolecules 2006;39:6425–32.Article 
    CAS 

    Google Scholar 
    Schönberger F, Chromik A, Kerres J. Synthesis and characterization of novel (sulfonated) poly(arylene ether)s with pendent trifluoromethyl groups. Polymer 2009;50:2010–24.Article 

    Google Scholar 
    Chen JC, Liu YC, Ju JJ, Chiang CJ, Chern YT. Synthesis, characterization and hydrolysis of aromatic polyazomethines containing non-coplanar biphenyl structures. Polymer 2011;52:954–64.Article 
    CAS 

    Google Scholar 
    Liaw DJ, Huang CC, Chen WH. Color lightness and highly organosoluble fluorinated polyamides, polyimides and poly(amide–imide)s based on noncoplanar 2,2’-dimethyl-4,4’-biphenylene units. Polymer 2006;47:2337–48.Article 
    CAS 

    Google Scholar 
    Shohbuke E, Kobayashi Y, Okubayashi S. Effects of acrylate monomers containing alkyl groups on water and oil repellent treatments of polyester fabrics. Colloids. Surf. A: Physicochem Eng Asp. 2021;631:127632–9.Article 
    CAS 

    Google Scholar 
    Sun Y, Zhao X, Liu R, Chen G, Zhou X. Synthesis and characterization of fluorinated polyacrylate as water and oil repellent and soil release finishing agent for polyester fabric. Prog Org Coat. 2018;123:306–13.Article 
    CAS 

    Google Scholar 
    Tang W, Huang Y, Qing FL. Synthesis and characterization of fluorinated polyacrylate graft copolymers capable as water and oil repellent finishing agents. J Appl Polym Sci. 2011;119:84–92.Article 
    CAS 

    Google Scholar 
    Jiang J, Zhang G, Wang Q, Zhang Q, Zhan X, Chen F. Novel Fluorinated Polymers Containing Short Perfluorobutyl Side Chains and Their Super Wetting Performance on Diverse Substrates. ACS Appl Mater Interfaces. 2016;8:10513–23.Article 
    CAS 

    Google Scholar 
    Honda K, Morita M, Otsuka H, Takahara A. Molecular Aggregation Structure and Surface Properties of Poly(fluoroalkyl acrylate) Thin Films. Macromolecules 2005;38:5699–705.Article 
    CAS 

    Google Scholar 
    Shaver AT, Yin K, Borjigin H, Zhang W, Choudhury SR, Baer E, Mecham SJ, Riffle JS, McGrath JE. Fluorinated poly(arylene ether ketone)s for high temperature dielectrics. Polymer 2016;83:199–204.Article 
    CAS 

    Google Scholar 
    Attwood TE, Dawson PC, Freeman JL, Hoy LRJ, Rose JB, Staniland PA. Synthesis and properties of polyaryletherketones. Polymer. 1981;22:1096–103.Article 
    CAS 

    Google Scholar 
    Yonezawa N, Okamoto A. Synthesis of Wholly Aromatic Polyketones. Polym J. 2009;41:899–928.Article 
    CAS 

    Google Scholar 
    Maeyama K, Ito S. Synthesis of aromatic poly(ether ketone)s bearing 9,9-dialkylfuorene-2,7-diyl units through nucleophilic aromatic substitution polymerization. Polym Bull.2018;75:5763–76.Article 
    CAS 

    Google Scholar 
    Blundell DJ, Osborn BN. The morphology of poly(aryl-ether-ether ketone). Polymer 1983;24:953–8.Article 
    CAS 

    Google Scholar 
    Maeyama K, Hikiji I, Ogura K, Okamoto A, Ogino K, Saito H, Yonezawa N. Synthesis of Optically Active Aromatic Poly(ether ketone)s via Nucleophilic Aromatic Substitution Polymerization. Polym J. 2005;37:707–10.Article 
    CAS 

    Google Scholar 
    Liu Q, Zhang S, Wang Z, Chen Y, Jian X. Effect of pendent phenyl and bis-phthalazinone moieties on the properties of N-heterocyclic poly(aryl ether ketone ketone)s. Polymer 2020;198:122525–34.Article 
    CAS 

    Google Scholar 
    Eaton PE, Carlson GR, Lee JT. Phosphorus Pentoxide-Methanesulfonic Acid. A Convenient Alternative to Polyphosphoric Acid. J Org Chem. 1973;38:4071–3.Article 
    CAS 

    Google Scholar 
    Nowacki B, Iamazaki E, Cirpan A, Karasz F, Atvars TDZ, Akcelrud L. Highly efficient polymer blends from a polyfluorene derivative and PVK for LEDs. Polymer 2009;50:6057–64.Article 
    CAS 

    Google Scholar 
    Wang TQ, Zhao SL, Zhang WM, Lin HX, Cui YM. Synthesis, X-ray crystal structure, and optical properties of novel 9,9-diethyl-1,2-diaryl-1,9-dihydrofluoreno[2,3-d]imidazoles. Monatsh Chem. 2016;147:1991–9.Article 
    CAS 

    Google Scholar 
    Chen J, Onogi S, Hsieh YC, Hsiao CC, Higashibayashi S, Sakurai H, Wu YT. Palladium-Catalyzed Arylation of Methylene-Bridged Polyarenes: Synthesis and Structures of 9-Arylfluorene Derivatives. Adv Synth Catal. 2012;354:1551–8.Article 
    CAS 

    Google Scholar 
    Manuel S, Anne S, Larissa AC, Stefan M. Uniform shape monodisperse single chain nanocrystals by living aqueous catalytic polymerization. Nat Commun.2019;10:2592.Article 

    Google Scholar 
    Lee KS, Lee JS. Synthesis of Highly Fluorinated Poly(arylene ether sulfide) for Polymeric Optical Waveguides. Chem Mater. 2006;18:4519–25.Article 
    CAS 

    Google Scholar 
    Natarajan P, Vagicherla VD, Vijayan MT. A mild oxidation of deactivated naphthalenes and anthracenes to corresponding para-quinones by N-bromosuccinimide. Tetrahedron Lett. 2014;55:3511–5.Article 
    CAS 

    Google Scholar 
    Faury T, Dumur F, Clair S, Abel M, Porte L, Gigmes D. Side functionalization of diboronic acid precursors for covalent organic frameworks. Cryst Eng Comm. 2013;15:2067–75.Article 
    CAS 

    Google Scholar 
    Shaposhnikova VV, Tkachenko AS, Zvukova ND, Peregudov AS, Klemenkova ZS, Ponomarev AF, Il´yasov VK, Lachinov AN, Salazkin SN. New possibilities for the effective influence on the charge transport in poly(arylene ether ketones) without using phthalide-containing fragments in the polymer chains. Rus Chem Bull Int Ed. 2016;65:502–6.Article 
    CAS 

    Google Scholar 
    Owens DK, Wendt RC. Estimation of the Surface Free Energy of Polymers. J Appl Polym Sci. 1969;13:1741–7.Article 
    CAS 

    Google Scholar 
    Fox HW, Zisman WA. The spreading of liquids on low energy surfaces. I. Polytetrafluoroethylene. J Colloid Sci. 1950;5:514–31.Article 
    CAS 

    Google Scholar  More

  • in

    Widespread spring phenology effects on drought recovery of Northern Hemisphere ecosystems

    Choat, B. et al. Triggers of tree mortality under drought. Nature 558, 531–539 (2018).Article 
    CAS 

    Google Scholar 
    DeSoto, L. et al. Low growth resilience to drought is related to future mortality risk in trees. Nat. Commun. 11, 545 (2020).Article 
    CAS 

    Google Scholar 
    Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 1–55 (2015).Article 

    Google Scholar 
    Schwalm, C. R. et al. Global patterns of drought recovery. Nature 548, 202–205 (2017).Article 
    CAS 

    Google Scholar 
    IPCC. Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).Gazol, A. et al. Forest resilience to drought varies across biomes. Glob. Change Biol. 24, 2143–2158 (2018).Wu, X. et al. Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere. Glob. Change Biol. 24, 504–516 (2018).Article 

    Google Scholar 
    Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).Article 
    CAS 

    Google Scholar 
    Li, X. et al. Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought. Nat. Ecol. Evol. 4, 1075–1083 (2020).Article 

    Google Scholar 
    Kannenberg, S. A. et al. Drought legacies are dependent on water table depth, wood anatomy and drought timing across the eastern US. Ecol. Lett. 22, 119–127 (2019).Article 

    Google Scholar 
    Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, eaax0255 (2020).Article 

    Google Scholar 
    Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).Article 

    Google Scholar 
    Bastos, A. et al. Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Sci. Adv. 6, eaba2724 (2020).Article 
    CAS 

    Google Scholar 
    Buermann, W. et al. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature 562, 110–114 (2018).Article 
    CAS 

    Google Scholar 
    Lian, X. et al. Seasonal biological carryover dominates northern vegetation growth. Nat. Commun. 12, 983 (2021).Myneni, R. B. et al. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702 (1997).Article 
    CAS 

    Google Scholar 
    Jeong, S. J. et al. Application of satellite solar-induced chlorophyll fluorescence to understanding large-scale variations in vegetation phenology and function over northern high latitude forests. Remote Sens. Environ. 190, 178–187 (2017).Article 

    Google Scholar 
    Zeng, Z. et al. Legacy effects of spring phenology on vegetation growth under preseason meteorological drought in the Northern Hemisphere. Agric. Meteorol. 310, 108630 (2021).Article 

    Google Scholar 
    Kelsey, K. C. et al. Winter snow and spring temperature have differential effects on vegetation phenology and productivity across Arctic plant communities. Glob. Change Biol. 27, 1572–1586 (2021).Article 

    Google Scholar 
    Wang, X. et al. Disentangling the mechanisms behind winter snow impact on vegetation activity in northern ecosystems. Glob. Change Biol. 24, 1651–1662 (2018).Article 

    Google Scholar 
    IPCC. Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).Pinzon, J. E. & Tucker, C. J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).Article 

    Google Scholar 
    Magney, T. S. et al. Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proc. Natl Acad. Sci. USA 116, 11640–11645 (2019).Article 
    CAS 

    Google Scholar 
    Zhang, Y. et al. Large and projected strengthening moisture limitation on end-of-season photosynthesis. Proc. Natl Acad. Sci. USA 117, 9216–9222 (2020).Article 
    CAS 

    Google Scholar 
    Liu, Y. Y. et al. Global long-term passive microwave satellite-based retrievals of vegetation optical depth. Geophys. Res. Lett. 38, L18402 (2011).Article 

    Google Scholar 
    Beguería, S. et al. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 34, 3001–3023 (2014).Article 

    Google Scholar 
    Wolf, S. et al. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proc. Natl Acad. Sci. USA 113, 5880–5885 (2016).Article 
    CAS 

    Google Scholar 
    D’Andrea, E. et al. Unravelling resilience mechanisms in forests: role of non-structural carbohydrates in responding to extreme weather events. Tree Physiol. 41, 1808–1818 (2021).Article 

    Google Scholar 
    Yun, J. et al. Influence of winter precipitation on spring phenology in boreal forests. Glob. Change Biol. 24, 5176–5187 (2018).Article 

    Google Scholar 
    Xie, J. et al. Spring temperature and snow cover climatology drive the advanced springtime phenology (1991–2014) in the European Alps. J. Geophys. Res. Biogeosci. 126, e2020JG006150 (2021).Xie, J. et al. Altitude-dependent influence of snow cover on alpine land surface phenology. J. Geophys. Res. Biogeosci. 122, 1107–1122 (2017).Article 

    Google Scholar 
    Peng, S. et al. Change in winter snow depth and its impacts on vegetation in China. Glob. Change Biol. 16, 3004–3013 (2010).
    Google Scholar 
    Wu, X. et al. Uneven winter snow influence on tree growth across temperate China. Glob. Change Biol. 25, 144–154 (2019).Article 

    Google Scholar 
    Angert, A. et al. Drier summers cancel out the CO2 uptake enhancement induced by warmer springs. Proc. Natl Acad. Sci. USA 102, 10823–10827 (2005).Article 
    CAS 

    Google Scholar 
    Musselman, K. N. et al. Winter melt trends portend widespread declines in snow water resources. Nat. Clim. Change 11, 418–424 (2021).Article 

    Google Scholar 
    Kreyling, J. Winter climate change: a critical factor for temperate vegetation performance. Ecology 91, 1939–1948 (2010).Article 

    Google Scholar 
    Bose, A. K. et al. Growth and resilience responses of Scots pine to extreme droughts across Europe depend on predrought growth conditions. Glob. Change Biol. 26, 4521–4537 (2020).Article 

    Google Scholar 
    Martinez-Vilalta, J. et al. Hydraulic adjustment of Scots pine across Europe. New Phytol. 184, 353–364 (2009).Article 
    CAS 

    Google Scholar 
    Klein, T. et al. Drought stress, growth and nonstructural carbohydrate dynamics of pine trees in a semi-arid forest. Tree Physiol. 34, 981–992 (2014).Article 
    CAS 

    Google Scholar 
    Kannenberg, S. A. & Phillips, R. P. Non-structural carbohydrate pools not linked to hydraulic strategies or carbon supply in tree saplings during severe drought and subsequent recovery. Tree Physiol. 40, 259–271 (2020).Article 
    CAS 

    Google Scholar 
    Karst, J. et al. Stress differentially causes roots of tree seedlings to exude carbon. Tree Physiol. 37, 154–164 (2017).CAS 

    Google Scholar 
    Chitra-Tarak, R. et al. Hydraulically-vulnerable trees survive on deep-water access during droughts in a tropical forest. New Phytol. 231, 1798–1813 (2021).Article 

    Google Scholar 
    Jiao, W. et al. Observed increasing water constraint on vegetation growth over the last three decades. Nat. Commun. 12, 3777 (2021).Wu, X. et al. Higher temperature variability reduces temperature sensitivity of vegetation growth in Northern Hemisphere. Geophys. Res. Lett. 44, 6173–6181 (2017).Article 

    Google Scholar 
    Anderegg, W. R. L. et al. Widespread drought-induced tree mortality at dry range edges indicates that climate stress exceeds species’ compensating mechanisms. Glob. Change Biol. 25, 3793–3802 (2019).Article 

    Google Scholar 
    Martin-Benito, D. & Pederson, N. Convergence in drought stress, but a divergence of climatic drivers across a latitudinal gradient in a temperate broadleaf forest. J. Biogeogr. 42, 925–937 (2015).Article 

    Google Scholar 
    Tucker, C. J. et al. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 26, 4485–4498 (2005).Article 

    Google Scholar 
    Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl Acad. Sci. USA 110, 52–57 (2013).Article 
    CAS 

    Google Scholar 
    Zhang, W. et al. Divergent response of vegetation growth to soil water availability in dry and wet periods over Central Asia. J. Geophys. Res. Biogeosci. 126, e2020JG005912 (2021).Article 

    Google Scholar 
    Richardson, A. D. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 169, 156–173 (2013).Article 

    Google Scholar 
    Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).Article 

    Google Scholar 
    Liang, W. et al. Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982 to 2010. Agric. For. Meteorol. 204, 22–36 (2015).Article 

    Google Scholar 
    Zhang, Y. et al. A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences 15, 5779–5800 (2018).Article 
    CAS 

    Google Scholar 
    Jones, M. O. et al. Satellite passive microwave remote sensing for monitoring global land surface phenology. Remote Sens. Environ. 115, 1102–1114 (2011).Article 

    Google Scholar 
    Konings, A. G. et al. Interannual variations of vegetation optical depth are due to both water stress and biomass changes. Geophys. Res. Lett. 48, e2021GL095267 (2021).Article 

    Google Scholar 
    Du, J. et al. A global satellite environmental data record derived from AMSR-E and AMSR2 microwave Earth observations. Earth Syst. Sci. Data 9, 791–808 (2017).Article 

    Google Scholar 
    Harris, I. et al. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).Article 

    Google Scholar 
    Barichivich, J. et al. Temperature and snow-mediated moisture controls of summer photosynthetic activity in northern terrestrial ecosystems between 1982 and 2011. Remote Sens. 6, 1390–1431 (2014).Article 

    Google Scholar 
    Vicente-Serrano, S. M., Begueria, S. & Lopez-Moreno, J. I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).Article 

    Google Scholar 
    Wieder, W. R. et al. Regridded Harmonized World Soil Database v1.2 (ORNL DAAC, 2014); https://doi.org/10.3334/ORNLDAAC/1247Kottek, M. et al. World map of the Koppen–Geiger climate classification updated. Meteorol. Z. 15, 259–263 (2006).Article 

    Google Scholar 
    Jakubauskas, M. E., Legates, D. R. & Kastens, J. H. Harmonic analysis of time-series AVHRR NDVI data. Photogramm. Eng. Remote Sens. 67, 461–470 (2001).
    Google Scholar 
    Liu, Q. et al. Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China. Glob. Change Biol. 22, 644–655 (2016).Article 
    CAS 

    Google Scholar 
    Fu, Y. H. et al. Recent spring phenology shifts in western Central Europe based on multiscale observations. Glob. Ecol. Biogeogr. 23, 1255–1263 (2014).Article 

    Google Scholar 
    Jiang, P. et al. Enhanced growth after extreme wetness compensates for post-drought carbon loss in dry forests. Nat. Commun. 10, 195 (2019).Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).Pham, L. T. H. & Brabyn, L. Monitoring mangrove biomass change in Vietnam using SPOT images and an object-based approach combined with machine learning algorithms. ISPRS J. Photogramm. Remote Sens. 128, 86–97 (2017).Article 

    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article 

    Google Scholar 
    Li, Y. Code for ‘Widespread spring phenology effects on drought recovery of Northern Hemisphere ecosystems’. GitHub https://github.com/leeyang1991/phenology-effects-on-drought-recovery (2022). More

  • in

    Diel niche variation in mammalian declines in the Anthropocene

    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Young, H. S., McCauley, D. J., Galetti, M. & Dirzo, R. Patterns, causes, and consequences of anthropocene defaunation. Annu. Rev. Ecol. Evol. Syst. 47, 333–358 (2016).Article 

    Google Scholar 
    Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science 330, 1503–1509 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Ceballos, G. et al. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).Article 
    ADS 

    Google Scholar 
    Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signalled by vertebrate population losses and declines. PNAS 114, E6089–E6096 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Almond, R. E. A. et al. (eds) Living Planet Report 2020—Bending the Curve of Biodiversity Loss (WWF, 2020).
    Google Scholar 
    Murali, G., de Oliveira Caetano, G. H., Barki, G., Meiri, S. & Roll, U. Emphasizing declining populations in the Living Planet Report. Nature 601, E20–E24 (2022).Article 
    CAS 

    Google Scholar 
    Pianka, E. R., Vitt, L. J., Pelegrin, N., Fitzgerald, D. B. & Winemiller, K. O. Toward a periodic table of niches, for exploring the lizard niche hypervolume. Am. Nat. 190, 601–616 (2017).Article 

    Google Scholar 
    Cox, D. T. C., Gardner, A. S. & Gaston, K. J. Diel niche variation in mammals associated with expanded trait space. Nat. Commun. 12, 1753 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Cox, D. T. C., Baker, D. J., Gardner, A. S. & Gaston, K. J. Global variation in unique and redundant mammal functional diversity across the daily cycle. J. Biogeogr. In PressChichorro, F., Juslén, A. & Cardoso, P. A review of the relation between species traits and extinction risk. Biol. Conserv. 237, 220–229 (2019).Article 

    Google Scholar 
    Cox, D. T. C., Gardner, A. S. & Gaston, K. J. Global and regional erosion of mammalian functional diversity across the diel cycle. Sci. Adv. 8, adb6008 (2022).Article 

    Google Scholar 
    Levy, O., Dayan, T., Porter, W. P. & Kronfeld-Schor, N. Time and ecological resilience: Can diurnal animals compensate for climate change by shifting to nocturnal activity?. Ecol. Monogr. 89, e01334 (2019).Article 

    Google Scholar 
    Bonebrake, T. C., Rezende, E. L. & Bozinovic, F. Climate change and thermoregulatory consequences of activity time in mammals. Am. Nat. 196, 45–56 (2020).Article 

    Google Scholar 
    Cox, D. T. C., Maclean, I. M. D., Gardner, A. S. & Gaston, K. J. Global variation in diurnal asymmetry in temperature, cloud cover, specific humidity and precipitation and its association with leaf area index. Glob. Change Biol. 26, 7099–7111 (2020).Article 
    ADS 

    Google Scholar 
    Fritts, T. H. & Rodda, G. H. The role of introduced species in the degradation of island ecosystems: A case history of Guam. Annu. Rev. Ecol. Evol. Syst. 29, 113–140 (1998).Article 

    Google Scholar 
    Su, J.-Q., Han, X. & Chen, B.-M. Do day and night warming exert different effects on growth and competitive interaction between invasive and native plants?. Biol. Invasions 23, 157–166 (2021).Article 

    Google Scholar 
    Peres, C. A. Synergistic effects of subsistence hunting and habitat fragmentation on Amazonian forest vertebrates. Conserv. Biol. 15, 1490–1505 (2001).Article 

    Google Scholar 
    Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).Article 

    Google Scholar 
    Brodie, J. F. Synergistic effects of climate change and agricultural land use on mammals. Front. Ecol. Environ. 14, 20–26 (2016).Article 

    Google Scholar 
    Brodie, J. F., Williams, S. & Garner, B. The decline of mammal functional and evolutionary diversity worldwide. PNAS https://doi.org/10.1073/pnas.1921849118 (2021).Article 

    Google Scholar 
    IUCN. The IUCN Red List of threatened species. Version 2021-3. https://www.iucnredlist.org. Downloaded on [21stt March 2022] (2021).Faurby, S. et al. PHYLACINE 1.2.1: The phylogenetic atlas of mammal macroecology. Ecology. 99, 2626–2626 (2018).Article 

    Google Scholar 
    Ripple, W. J. et al. Bushmeat hunting and extinction risk to the world’s mammals. R. Soc. Open Sci. 3, 160498 (2016).Article 
    ADS 

    Google Scholar 
    Ripple, W. J. et al. Are we eating the world’s megafauna to extinction? Conserv. Lett. 12, e12627 (2019).Article 

    Google Scholar 
    Nasi, R., Taber, A. & Van Vliet, N. Empty forests, empty stomachs? Bushmeat and livelihoods in the Congo and Amazon Basins. Int. For. Rev. 13, 355–368 (2011).
    Google Scholar 
    Woinarski, J. C. Z., Burbidge, A. A. & Harrison, P. L. Ongoing unravelling of a continental fauna: decline and extinction of Australian mammals since European settlement. PNAS 112, 4531–4540 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Welbergen, J. A., Klose, S. M., Markus, N. & Eby, P. Climate change and the effects of the temperature extremes on Australian flying-foxes. Proc. R. Soc. B. 275, 419–425 (2008).Article 

    Google Scholar 
    Ramesh, T., Kalle, R., Sankar, K. & Qureshi, Q. Role of body size in activity budget of mammals in the Western ghats of India. J. Trop. Biol. 31, 315–323 (2015).
    Google Scholar 
    Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Bennie, J. J., Duffy, J. P., Inger, R. & Gaston, K. J. Biogeography of time partitioning in mammals. PNAS 111, 13727–13732 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Forbes, B. C. et al. Sea ice, rain-on-snow and tundra reindeer nomadism in Arctic Russia. Biol. Lett. 12, 20160466 (2016).Article 

    Google Scholar 
    Safronov, V. M. Climate change and mammals of Yakutia. Biol. Bull Russ. Acad. Sci. 43, 1256–1270 (2016).Article 

    Google Scholar 
    Galán-Acedo, C. et al. The conservation value of human-modified landscapes for the world’s primates. Nat. Commun. 10, 152 (2019).Article 
    ADS 

    Google Scholar 
    Gaston, K. J. Nighttime ecology: the “nocturnal problem” revisited. Am. Nat. 193, 481–502 (2019).Article 

    Google Scholar 
    Mittermeier, R., Rylands, A., Lacher, T. & Wilson, D. Handbook of the Mammals of the World Vol. 1–3 & 5–9 (Lynx Edicions, Cham, 2001-2019).
    Google Scholar 
    Ives, A. R. & Garland, T. Jr. Phylogenetic logistic regression for binary dependent variables. Syst. Biol. 59, 9–26 (2010).Article 

    Google Scholar 
    Ho, T. & Ané, C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).Article 

    Google Scholar 
    Penone, C. et al. Imputation of missing data in life-history trait datasets: which approach performs the best? Methods Ecol. Evol. 5, 961–970 (2014).Article 

    Google Scholar 
    Brodzik, M. J., Billingsley, B., Haran, T., Raup, B. & Savoie, M. H. EASE-Grid 2.0: Incremental but significant improvements for earth-gridded data sets. ISPRS Int. J. Geo-Inf. 1, 32–45 (2012).Article 

    Google Scholar  More

  • in

    Bioclimatic atlas of the terrestrial Arctic

    Box, J. E. et al. Key indicators of Arctic climate change: 1971–2017. Environ. Res. Lett. 14, 045010 (2019).ADS 
    CAS 

    Google Scholar 
    Previdi, M., Smith, K. L. & Polvani, L. M. Arctic amplification of climate change: a review of underlying mechanisms. Environ. Res. Lett. 16, 093003 (2021).ADS 
    CAS 

    Google Scholar 
    Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 3, 1–10 (2022).ADS 

    Google Scholar 
    Stroeve, J. & Notz, D. Changing state of Arctic sea ice across all seasons. Environ. Res. Lett. 13, 103001 (2018).ADS 

    Google Scholar 
    Kopec, B. G., Feng, X., Michel, F. A. & Posmentier, E. S. Influence of sea ice on Arctic precipitation. Proc. Natl. Acad. Sci. 113, 46–51 (2016).ADS 
    CAS 

    Google Scholar 
    Smith, S. L., O’Neill, H. B., Isaksen, K., Noetzli, J. & Romanovsky, V. E. The changing thermal state of permafrost. Nat. Rev. Earth Environ. 3, 10–23 (2022).ADS 

    Google Scholar 
    Overland, J. et al. The urgency of Arctic change. Polar Sci. 21, 6–13 (2019).ADS 

    Google Scholar 
    Post, E. et al. The polar regions in a 2 °C warmer world. Sci. Adv. 5, eaaw9883 (2019).ADS 
    CAS 

    Google Scholar 
    Ciavarella, A. et al. Prolonged Siberian heat of 2020 almost impossible without human influence. Clim. Change 166, 9 (2021).ADS 

    Google Scholar 
    Dobricic, S., Russo, S., Pozzoli, L., Wilson, J. & Vignati, E. Increasing occurrence of heat waves in the terrestrial Arctic. Environ. Res. Lett. 15, 024022 (2020).ADS 

    Google Scholar 
    Graham, R. M. et al. Increasing frequency and duration of Arctic winter warming events. Geophys. Res. Lett. 44, 6974–6983 (2017).ADS 

    Google Scholar 
    Knight, J. & Harrison, S. The impacts of climate change on terrestrial Earth surface systems. Nat. Clim. Change 3, 24–29 (2013).ADS 

    Google Scholar 
    Pearson, R. G. et al. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat. Clim. Change 3, 673–677 (2013).ADS 

    Google Scholar 
    Beck, P. S. A. et al. Changes in forest productivity across Alaska consistent with biome shift. Ecol. Lett. 14, 373–379 (2011).
    Google Scholar 
    Reichle, L. M., Epstein, H. E., Bhatt, U. S., Raynolds, M. K. & Walker, D. A. Spatial Heterogeneity of the Temporal Dynamics of Arctic Tundra Vegetation. Geophys. Res. Lett. 45, 9206–9215 (2018).ADS 

    Google Scholar 
    Sturm, M., Racine, C. & Tape, K. Increasing shrub abundance in the Arctic. Nature 411, 546–547 (2001).ADS 
    CAS 

    Google Scholar 
    Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020).ADS 

    Google Scholar 
    Phoenix, G. K. & Bjerke, J. W. Arctic browning: extreme events and trends reversing arctic greening. Glob. Change Biol. 22, 2960–2962 (2016).ADS 

    Google Scholar 
    Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D. & Willis, K. J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531, 229–232 (2016).ADS 
    CAS 

    Google Scholar 
    Jentsch, A., Kreyling, J. & Beierkuhnlein, C. A new generation of climate-change experiments: events, not trends. Front. Ecol. Environ. 5, 365–374 (2007).
    Google Scholar 
    Virkkala, A.-M. et al. Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties. Glob. Change Biol. 27, 4040–4059 (2021).CAS 

    Google Scholar 
    Elith, J. & Leathwick, J. R. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).
    Google Scholar 
    Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).ADS 

    Google Scholar 
    Rienecker, M. M. et al. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Clim. 24, 3624–3648 (2011).ADS 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).
    Google Scholar 
    Karger, D. N., Schmatz, D. R., Dettling, G. & Zimmermann, N. E. High-resolution monthly precipitation and temperature time series from 2006 to 2100. Sci. Data 7, 248 (2020).
    Google Scholar 
    Vega, G. C., Pertierra, L. R. & Olalla-Tárraga, M. Á. MERRAclim, a high-resolution global dataset of remotely sensed bioclimatic variables for ecological modelling. Sci. Data 4, 170078 (2017).
    Google Scholar 
    Niittynen, P., Heikkinen, R. K. & Luoto, M. Snow cover is a neglected driver of Arctic biodiversity loss. Nat. Clim. Change 8, 997–1001 (2018).ADS 

    Google Scholar 
    Slatyer, R. A., Umbers, K. D. L. & Arnold, P. A. Ecological responses to variation in seasonal snow cover. Conserv. Biol. 36, e13727 (2022).
    Google Scholar 
    Serreze, M. C. et al. Arctic rain on snow events: bridging observations to understand environmental and livelihood impacts. Environ. Res. Lett. 16, 105009 (2021).ADS 

    Google Scholar 
    López, J., Way, D. A. & Sadok, W. Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity. Glob. Change Biol. 27, 1704–1720 (2021).ADS 

    Google Scholar 
    Ennos, A. R. Wind as an ecological factor. Trends Ecol. Evol. 12, 108–111 (1997).CAS 

    Google Scholar 
    Muñoz-Sabater, J. et al. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 13, 4349–4383 (2021).ADS 

    Google Scholar 
    Boussetta, S. et al. ECLand: The ECMWF Land Surface Modelling System. Atmosphere 12, 723 (2021).ADS 
    CAS 

    Google Scholar 
    Munõz-Sabater, J. ERA5-Land hourly data from 1981 to present. ECMWF https://doi.org/10.24381/cds.e2161bac (2019). Munõz-Sabater, J. ERA5-Land hourly data from 1950 to 1980. ECMWF https://doi.org/10.24381/cds.e2161bac (2021).Hoyer, S. & Hamman, J. xarray: N-D labeled Arrays and Datasets in Python. J. Open Res. Softw. 5, 10 (2017).
    Google Scholar 
    Sen, P. K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).MATH 

    Google Scholar 
    Theil, H. A rank-invariant method of linear and polynomial regression analysis I, II and III. Indag. Math. 173 (1950).Hussain, M. M. & Mahmud, I. pyMannKendall: a python package for non parametric Mann Kendall family of trend tests. J. Open Source Softw. 4, 1556 (2019).ADS 

    Google Scholar 
    Aalto, J. et al. High-resolution analysis of observed thermal growing season variability over northern Europe. Clim. Dyn. 58, 1477–1493 (2022).
    Google Scholar 
    Zhou, B., Zhai, P., Chen, Y. & Yu, R. Projected changes of thermal growing season over Northern Eurasia in a 1.5 °C and 2 °C warming world. Environ. Res. Lett. 13, 035004 (2018).ADS 

    Google Scholar 
    Barichivich, J., Briffa, K. R., Osborn, T. J., Melvin, T. M. & Caesar, J. Thermal growing season and timing of biospheric carbon uptake across the Northern Hemisphere. Glob. Biogeochem. Cycles 26 (2012).Wu, F., Jiang, Y., Wen, Y., Zhao, S. & Xu, H. Spatial synchrony in the start and end of the thermal growing season has different trends in the mid-high latitudes of the Northern Hemisphere. Environ. Res. Lett. 16, 124017 (2021).ADS 

    Google Scholar 
    Ruosteenoja, K., Räisänen, J., Venäläinen, A. & Kämäräinen, M. Projections for the duration and degree days of the thermal growing season in Europe derived from CMIP5 model output. Int. J. Climatol. 36, 3039–3055 (2016).
    Google Scholar 
    Niittynen, P. & Luoto, M. The importance of snow in species distribution models of arctic vegetation. Ecography 41, 1024–1037 (2018).
    Google Scholar 
    McMaster, G. S. & Wilhelm, W. W. Growing degree-days: one equation, two interpretations. Agric. For. Meteorol. 87, 291–300 (1997).ADS 

    Google Scholar 
    Körner, C. Plant adaptation to cold climates. F1000Research 5, F1000 Faculty Rev-2769 (2016).Niittynen, P. et al. Fine-scale tundra vegetation patterns are strongly related to winter thermal conditions. Nat. Clim. Change 10, 1143–U134 (2020).ADS 

    Google Scholar 
    Cohen, J., Ye, H. & Jones, J. Trends and variability in rain-on-snow events. Geophys. Res. Lett. 42, 7115–7122 (2015).ADS 

    Google Scholar 
    Mooney, P. A. & Li, L. Near future changes to rain-on-snow events in Norway. Environ. Res. Lett. 16, 064039 (2021).ADS 

    Google Scholar 
    Preece, C., Callaghan, T. V. & Phoenix, G. K. Impacts of winter icing events on the growth, phenology and physiology of sub-arctic dwarf shrubs. Physiol. Plant. 146, 460–472 (2012).CAS 

    Google Scholar 
    Putkonen, J. & Roe, G. Rain-on-snow events impact soil temperatures and affect ungulate survival. Geophys. Res. Lett. 30, (2003).Treharne, R., Bjerke, J. W. & Tømmervik, H. & Phoenix, G. K. Development of new metrics to assess and quantify climatic drivers of extreme event driven Arctic browning. Remote Sens. Environ. 243, 111749 (2020).ADS 

    Google Scholar 
    Bokhorst, S. et al. Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community. Physiol. Plant. 140, 128–140 (2010).CAS 

    Google Scholar 
    Russo, S., Sillmann, J. & Fischer, E. M. Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett. 10, 124003 (2015).ADS 

    Google Scholar 
    Alduchov, O. A. & Eskridge, R. E. Improved Magnus Form Approximation of Saturation Vapor Pressure. J. Appl. Meteorol. Climatol. 35, 601–609 (1996).ADS 

    Google Scholar 
    Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).
    Google Scholar 
    Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).ADS 
    CAS 

    Google Scholar 
    De Frenne, P. et al. Forest microclimates and climate change: Importance, drivers and future research agenda. Glob. Change Biol. 27, 2279–2297 (2021).ADS 

    Google Scholar 
    Berner, L. T. et al. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat. Commun. 11, 4621 (2020).ADS 
    CAS 

    Google Scholar 
    Berner, L. T., Jantz, P., Tape, K. D. & Goetz, S. J. Tundra plant above-ground biomass and shrub dominance mapped across the North Slope of Alaska. Environ. Res. Lett. 13, 035002 (2018).ADS 

    Google Scholar 
    Walker, D. A. et al. Phytomass, LAI, and NDVI in northern Alaska: Relationships to summer warmth, soil pH, plant functional types, and extrapolation to the circumpolar Arctic. J. Geophys. Res. Atmospheres 108, (2003).Williams, C. M., Henry, H. A. L. & Sinclair, B. J. Cold truths: how winter drives responses of terrestrial organisms to climate change. Biol. Rev. 90, 214–235 (2015).
    Google Scholar 
    Peng, S. et al. Change in snow phenology and its potential feedback to temperature in the Northern Hemisphere over the last three decades. Environ. Res. Lett. 8, 014008 (2013).ADS 

    Google Scholar 
    Wheeler, J. A. et al. Increased spring freezing vulnerability for alpine shrubs under early snowmelt. Oecologia 175, 219–229 (2014).ADS 
    CAS 

    Google Scholar 
    Zhu, L., Ives, A. R., Zhang, C., Guo, Y. & Radeloff, V. C. Climate change causes functionally colder winters for snow cover-dependent organisms. Nat. Clim. Change 9, 886–893 (2019).ADS 

    Google Scholar 
    Vitasse, Y. et al. ‘Hearing’ alpine plants growing after snowmelt: ultrasonic snow sensors provide long-term series of alpine plant phenology. Int. J. Biometeorol. 61, 349–361 (2017).ADS 

    Google Scholar 
    Kling, M. M. & Ackerly, D. D. Global wind patterns and the vulnerability of wind-dispersed species to climate change. Nat. Clim. Change 10, 868–875 (2020).ADS 

    Google Scholar 
    Dial, R. J., Maher, C. T., Hewitt, R. E. & Sullivan, P. F. Sufficient conditions for rapid range expansion of a boreal conifer. Nature 608, 546–551 (2022).ADS 
    CAS 

    Google Scholar 
    Nathan, R. et al. Mechanisms of long-distance dispersal of seeds by wind. Nature 418, 409–413 (2002).ADS 
    CAS 

    Google Scholar 
    Sakai, A. Mechanism of Desiccation Damage of Conifers Wintering in Soil-Frozen Areas. Ecology 51, 657–664 (1970).
    Google Scholar 
    Wilson, J. W. Notes on Wind and its Effects in Arctic-Alpine Vegetation. J. Ecol. 47, 415–427 (1959).
    Google Scholar 
    Rantanen, M. et al. Bioclimatic atlas of the terrestrial Arctic, figshare, https://doi.org/10.6084/m9.figshare.c.6216368 (2023).Räisänen, J. Snow conditions in northern Europe: the dynamics of interannual variability versus projected long-term change. The Cryosphere 15, 1677–1696 (2021).ADS 

    Google Scholar 
    Xu, J., Ma, Z., Yan, S. & Peng, J. Do ERA5 and ERA5-land precipitation estimates outperform satellite-based precipitation products? A comprehensive comparison between state-of-the-art model-based and satellite-based precipitation products over mainland China. J. Hydrol. 605, 127353 (2022).
    Google Scholar 
    Behrangi, A., Singh, A., Song, Y. & Panahi, M. Assessing Gauge Undercatch Correction in Arctic Basins in Light of GRACE Observations. Geophys. Res. Lett. 46, 11358–11366 (2019).ADS 

    Google Scholar 
    Menne, M. J., Williams, C. N., Gleason, B. E., Rennie, J. J. & Lawrimore, J. H. The Global Historical Climatology Network Monthly Temperature Dataset, Version 4. J. Clim. 31, 9835–9854 (2018).ADS 

    Google Scholar 
    Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E. & Houston, T. G. An Overview of the Global Historical Climatology Network-Daily Database. J. Atmospheric Ocean. Technol. 29, 897–910 (2012).ADS 

    Google Scholar 
    Atlaskin, E. & Vihma, T. Evaluation of NWP results for wintertime nocturnal boundary-layer temperatures over Europe and Finland. Q. J. R. Meteorol. Soc. 138, 1440–1451 (2012).ADS 

    Google Scholar 
    Lindsay, R., Wensnahan, M., Schweiger, A. & Zhang, J. Evaluation of Seven Different Atmospheric Reanalysis Products in the Arctic. J. Clim. 27, 2588–2606 (2014).ADS 

    Google Scholar 
    Wang, C., Graham, R. M., Wang, K., Gerland, S. & Granskog, M. A. Comparison of ERA5 and ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic sea ice: effects on sea ice thermodynamics and evolution. The Cryosphere 13, 1661–1679 (2019).ADS 

    Google Scholar 
    Wesslén, C. et al. The Arctic summer atmosphere: an evaluation of reanalyses using ASCOS data. Atmospheric Chem. Phys. 14, 2605–2624 (2014).ADS 

    Google Scholar  More

  • in

    Sleep deprivation among adolescents in urban and indigenous-rural Mexican communities

    Our main objective was to test the SJH (positing that adolescents living in “traditional”, non-industrial environments will more closely fulfil their “biological/natural” sleep requirements25,26) by comparing sleep deprivation among adolescents in rural and urban societies. The SJH argues that adolescent “biological/natural” sleep quotas and circadian cycles can be ascertained from free days, when sleep patterns are minimally shaped by social commitments5,37. Therefore, we predicted that sleep deprivation would be rare in the more rural agricultural settings of Puebla and Campeche but more frequent among participants in Mexico City. Likewise, we predicted that we would not see sleep deprivation on free days among any of the rural participants.Our predictions were not supported, instead, we found that short sleep quotas during school nights are common in both rural agricultural settings, with over 75% of adolescents in each group sleeping  More