More stories

  • in

    This baby turtle surprised scientists by swimming against the current

    In 2008, I had just begun volunteering at Equilibrio Azul — a non-profit marine-research and -conservation organization based in Quito — when colleagues discovered a hawksbill sea turtle (Eretmochelys imbricata) nesting at La Playita beach in Ecuador. The eastern Pacific population of hawksbill sea turtles is one of the most endangered in the world and was considered functionally extinct in the region before this turtle and others were observed.That discovery was a tipping point for hawksbill research in Ecuador and throughout the Pacific Ocean. Since 2008, we’ve found about 20 nests each year at La Playita, and one season, we documented 50.We have tagged 11 adult females with satellite transmitters. Previously, most of our understanding of these turtles had been based on observations in the Caribbean, where the reptiles are strictly coral-reef dwellers. But Ecuador’s reefs are mostly rocky, with patches of coral, and we were surprised to see females migrate south to mangroves, mainly for food.
    Women in science
    In this image, we have just attached a transmitter to a baby turtle — a first for hawksbill turtles this young and in the eastern Pacific region. We did not know much about hawksbills at this young age. It is tricky working with baby turtles, because they grow very fast, and the transmitters, which give us location data, can easily fall off. We’ve used cement to glue the devices to the shells of six newborns so far. The longest the transmitters have lasted is three months and the shortest period was only six weeks — but the devices provided our first insights into the ‘lost years’ of sea-turtle biology.Our findings have overturned assumptions that neonates were just carried along by currents. Instead, we found that one-day-old turtles can swim against the current. They aim for a specific direction — north by northwest — as they learn to dive and swim. We tracked one-year-old hawksbills to Costa Rican waters, a journey of roughly 2,000 kilometres, before we lost their signal.Cristina Miranda is a scientific coordinator at Equilibrio Azul in Quito, Ecuador. Interview by Virginia Gewin. More

  • in

    Diverse secondary metabolites are expressed in particle-associated and free-living microorganisms of the permanently anoxic Cariaco Basin

    Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol 8, 15–25 (2010).CAS 

    Google Scholar 
    Cragg, G. M. & Newman, D. J. Natural products: a continuing source of novel drug leads. Biochim. Biophys. Acta 1830, 3670–3695 (2013).CAS 

    Google Scholar 
    Blin, K., Kim, H. U., Medema, M. H. & Weber, T. Recent development of antiSMASH and other computational approaches to mine secondary metabolite biosynthetic gene clusters. Brief. Bioinform. 20, 1103–1113 (2019).CAS 

    Google Scholar 
    Paoli, L. et al. Biosynthetic potential of the global ocean microbiome. Nature 607, 111–118 (2022).Gavriilidou, A. et al. Compendium of specialized metabolite biosynthetic diversity encoded in bacterial genomes. Nat. Microbiol. 7, 726–735 (2022).CAS 

    Google Scholar 
    Scherlach, K. & Hertweck, C. Triggering cryptic natural product biosynthesis in microorganisms. Org. Biomol. Chem. 7, 1753–1760 (2009).CAS 

    Google Scholar 
    Gilly, W. F., Beman, J. M., Litvin, S. Y. & Robison, B. H. Oceanographic and biological effects of shoaling of the oxygen minimum zone. Ann. Rev. Mar. Sci. 5, 393–420 (2013).
    Google Scholar 
    Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 542, 335–339 (2017).ADS 
    CAS 

    Google Scholar 
    Naqvi, S. W. A. et al. Marine hypoxia/anoxia as a source of CH 4 and N 2 O. Biogeosciences 7, 2159–2190 (2010).ADS 
    CAS 

    Google Scholar 
    Scranton, M. I., Sayles, F. L., Bacon, M. P. & Brewer, P. G. Temporal changes in the hydrography and chemistry of the Cariaco Trench. Deep-Sea Res. Part A. Oceanogr. Res. Pap. 34, 945–963 (1987).ADS 
    CAS 

    Google Scholar 
    Taylor, G. T. et al. Chemoautotrophy in the redox transition zone of the Cariaco Basin: a significant midwater source of organic carbon production. Limnol. Oceanogr. 46, 148–163 (2001).ADS 
    CAS 

    Google Scholar 
    Scranton, M. I., Astor, Y., Bohrer, R., Ho, T.-Y. & Muller-Karger, F. Controls on temporal variability of the geochemistry of the deep Cariaco Basin. Deep-Sea Res. I Oceanogr. Res. Pap. 48, 1605–1625 (2001).ADS 
    CAS 

    Google Scholar 
    Scranton, M. I. et al. Interannual and subdecadal variability in the nutrient geochemistry of the Cariaco Basin. Oceanography 27, 148–159 (2014).
    Google Scholar 
    Dalsgaard, T., Thamdrup, B., Farías, L. & Revsbech, N. P. Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. Limnol. Oceanogr. 57, 1331–1346 (2012).ADS 
    CAS 

    Google Scholar 
    Canfield, D. E. et al. A cryptic sulfur cycle in oxygen-minimum–zone waters off the Chilean coast. Science 330, 1375–1378 (2010).ADS 
    CAS 

    Google Scholar 
    Schlosser, C. et al. H 2 S events in the Peruvian oxygen minimum zone facilitate enhanced dissolved Fe concentrations. Sci. Rep. 8, 1–8 (2018).
    Google Scholar 
    Rapp, I. et al. Controls on redox-sensitive trace metals in the Mauritanian oxygen minimum zone. Biogeosciences 16, 4157–4182 (2019).ADS 
    CAS 

    Google Scholar 
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).
    Google Scholar 
    Blin, K. et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 49, W29–W35 (2021).Edgcomb, V. P. et al. Comparison of Niskin vs. in situ approaches for analysis of gene expression in deep Mediterranean Sea water samples. Deep-Sea Res. II: Top. Stud. Oceanogr. 129, 213–222 (2016).ADS 
    CAS 

    Google Scholar 
    Cabello-Yeves, P. J. et al. The microbiome of the Black Sea water column analyzed by shotgun and genome centric metagenomics. Environ. Microbiome 16, 1–15 (2021).
    Google Scholar 
    Suter, E. A., Pachiadaki, M., Taylor, G. T., Astor, Y. & Edgcomb, V. P. Free‐living chemoautotrophic and particle‐attached heterotrophic prokaryotes dominate microbial assemblages along a pelagic redox gradient. Environ. Microbiol. 20, 693–712 (2018).CAS 

    Google Scholar 
    Mestre, M. et al. Spatial variability of marine bacterial and archaeal communities along the particulate matter continuum. Mol. Ecol. 26, 6827–6840 (2017).CAS 

    Google Scholar 
    Li, J. et al. Characterization of particle-associated and free-living bacterial and archaeal communities along the water columns of the South China Sea. Biogeosciences 18, 113–133 (2021).ADS 
    CAS 

    Google Scholar 
    Mestre, M., Borrull, E., Sala, M. M. & Gasol, J. M. Patterns of bacterial diversity in the marine planktonic particulate matter continuum. ISME J. 11, 999–1010 (2017).
    Google Scholar 
    Pelve, E. A., Fontanez, K. M. & DeLong, E. F. Bacterial succession on sinking particles in the ocean’s interior. Front. Microbiol. 8, 2269 (2017).
    Google Scholar 
    Duret, M. T., Lampitt, R. S. & Lam, P. Prokaryotic niche partitioning between suspended and sinking marine particles. Environ. Microbiol. Rep. 11, 386–400 (2019).CAS 

    Google Scholar 
    Sinninghe Damsté, J. S., Rijpstra, W. I. C., Geenevasen, J. A. J., Strous, M. & Jetten, M. S. M. Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (anammox). FEBS J. 272, 4270–4283 (2005).
    Google Scholar 
    Fuchsman, C. A., Staley, J. T., Oakley, B. B., Kirkpatrick, J. B. & Murray, J. W. Free-living and aggregate-associated Planctomycetes in the Black Sea. FEMS Microbiol. Ecol. 80, 402–416 (2012).CAS 

    Google Scholar 
    Scherlach, K. & Hertweck, C. Mining and unearthing hidden biosynthetic potential. Nat. Commun. 12, 1–12 (2021).
    Google Scholar 
    Letzel, A.-C., Pidot, S. J. & Hertweck, C. A genomic approach to the cryptic secondary metabolome of the anaerobic world. Nat. Prod. Rep. 30, 392–428 (2013).CAS 

    Google Scholar 
    Navarro-Muñoz, J. C. et al. A computational framework to explore large-scale biosynthetic diversity. Nat. Chem. Biol. 16, 60–68 (2020).
    Google Scholar 
    Mungan, M. D. et al. ARTS 2.0: feature updates and expansion of the antibiotic resistant target seeker for comparative genome mining. Nucleic Acids Res. 48, W546–W552 (2020).CAS 

    Google Scholar 
    Alanjary, M. et al. The antibiotic resistant target seeker (ARTS), an exploration engine for antibiotic cluster prioritization and novel drug target discovery. Nucleic Acids Res. 45, W42–W48 (2017).CAS 

    Google Scholar 
    Waters, A. L., Hill, R. T., Place, A. R. & Hamann, M. T. The expanding role of marine microbes in pharmaceutical development. Curr. Opin. Biotechnol. 21, 780–786 (2010).CAS 

    Google Scholar 
    Long, R. A. & Azam, F. Antagonistic interactions among marine pelagic bacteria. Appl. Environ. Microbiol. 67, 4975–4983 (2001).ADS 
    CAS 

    Google Scholar 
    Graça, A. P., Calisto, R. & Lage, O. M. Planctomycetes as novel source of bioactive molecules. Front. Microbiol. 7, 1241 (2016).
    Google Scholar 
    Murphy, C. L. et al. Genomes of novel Myxococcota reveal severely curtailed machineries for predation and cellular differentiation. Appl. Environ. Microbiol. 87, e01706–e01721 (2021).CAS 

    Google Scholar 
    Pachiadaki, M. G. et al. Charting the complexity of the marine microbiome through single-cell genomics. Cell 179, 1623–1635 (2019).CAS 

    Google Scholar 
    Charlesworth, J. C. & Burns, B. P. Untapped resources: biotechnological potential of peptides and secondary metabolites in archaea. Archaea 2015, 282035 (2015).Wang, S. & Lu, Z. in Biocommunication of Archaea (ed. Witzany, G.) 67–101 (Springer, 2017).Castelle, C. J. et al. Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr. Biol. 25, 690–701 (2015).CAS 

    Google Scholar 
    McInnes, L., Healy, J. & Melville, J. Umap: uniform manifold approximation and projection for dimension reduction. Journal of Open Source Software 3, 861 (2018).Rattray, J. E. et al. A comparative genomics study of genetic products potentially encoding ladderane lipid biosynthesis. Biol. Direct 4, 1–16 (2009).
    Google Scholar 
    Orakov, A. et al. GUNC: detection of chimerism and contamination in prokaryotic genomes. Genome Biol. 22, 1–19 (2021).
    Google Scholar 
    Choudoir, M. J., Pepe-Ranney, C. & Buckley, D. H. Diversification of secondary metabolite biosynthetic gene clusters coincides with lineage divergence in Streptomyces. Antibiotics 7, 12 (2018).
    Google Scholar 
    Li, Y. & Rebuffat, S. The manifold roles of microbial ribosomal peptide–based natural products in physiology and ecology. J. Biol. Chem. 295, 34–54 (2020).CAS 

    Google Scholar 
    Ma, L. & Payne, S. M. AhpC is required for optimal production of enterobactin by Escherichia coli. J. Bacteriol. 194, 6748–6757 (2012).CAS 

    Google Scholar 
    Davis, C. et al. The role of glutathione S-transferase GliG in gliotoxin biosynthesis in Aspergillus fumigatus. Chem. Biol. 18, 542–552 (2011).CAS 

    Google Scholar 
    Kautsar, S. A. et al. MIBiG 2.0: a repository for biosynthetic gene clusters of known function. Nucleic Acids Res. 48, D454–D458 (2020).
    Google Scholar 
    Wang, Y. et al. Phenazine-1-carboxylic acid promotes bacterial biofilm development via ferrous iron acquisition. J. Bacteriol. 193, 3606–3617 (2011).CAS 

    Google Scholar 
    Laursen, J. B. & Nielsen, J. Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem. Rev. 104, 1663–1686 (2004).CAS 

    Google Scholar 
    McParland, E. et al. Cycling of suspended particulate phosphorus in the redoxcline of the Cariaco Basin. Mar. Chem. 176, 64–74 (2015).CAS 

    Google Scholar 
    McRose, D. L. & Newman, D. K. Redox-active antibiotics enhance phosphorus bioavailability. Science 371, 1033–1037 (2021).ADS 
    CAS 

    Google Scholar 
    Cundliffe, E. How antibiotic-producing organisms avoid suicide. Annu. Rev. Microbiol. 43, 207–233 (1989).ADS 
    CAS 

    Google Scholar 
    Webber, M. A. & Piddock, L. J. V. The importance of efflux pumps in bacterial antibiotic resistance. J. Antimicrob. Chemother. 51, 9–11 (2003).CAS 

    Google Scholar 
    Vetting, M. W. et al. Pentapeptide repeat proteins. Biochemistry 45, 1–10 (2006).CAS 

    Google Scholar 
    Kauppinen, S., Siggaard-Andersen, M. & von Wettstein-Knowles, P. β-ketoacyl-ACP synthase I of Escherichia coli: nucleotide sequence of thefabB gene and identification of the cerulenin binding residue. Carlsberg Res. Commun. 53, 357–370 (1988).CAS 

    Google Scholar 
    Kloosterman, A. M., Shelton, K. E., van Wezel, G. P., Medema, M. H. & Mitchell, D. A. RRE-Finder: a genome-mining tool for class-independent RiPP discovery. mSystems 5, e00267–20 (2020).CAS 

    Google Scholar 
    Barry, S. M. & Challis, G. L. Mechanism and catalytic diversity of Rieske non-heme iron-dependent oxygenases. ACS Catal. 3, 2362–2370 (2013).CAS 

    Google Scholar 
    Benjdia, A., Balty, C. & Berteau, O. Radical SAM enzymes in the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs). Front. Chem. 5, 87 (2017).
    Google Scholar 
    Pandey, R. P., Parajuli, P. & Sohng, J. K. Metabolic engineering of glycosylated polyketide biosynthesis. Emerg. Top. Life Sci. 2, 389–403 (2018).CAS 

    Google Scholar 
    Argueta, E. A., Amoh, A. N., Kafle, P. & Schneider, T. L. Unusual non-enzymatic flavin catalysis enhances understanding of flavoenzymes. FEBS Lett. 589, 880–884 (2015).CAS 

    Google Scholar 
    Jarrett, J. T. Surprise! A hidden B12 cofactor catalyzes a radical methylation. J. Biol. Chem. 294, 11726–11727 (2019).CAS 

    Google Scholar 
    Byers, D. M. & Gong, H. Acyl carrier protein: structure–function relationships in a conserved multifunctional protein family. Biochem. Cell Biol. 85, 649–662 (2007).CAS 

    Google Scholar 
    D’Andrea, L. D. & Regan, L. TPR proteins: the versatile helix. Trends Biochem. Sci. 28, 655–662 (2003).
    Google Scholar 
    Ganesh, S. et al. Size-fraction partitioning of community gene transcription and nitrogen metabolism in a marine oxygen minimum zone. ISME J. 9, 2682–2696 (2015).CAS 

    Google Scholar 
    Ganesh, S., Parris, D. J., DeLong, E. F. & Stewart, F. J. Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone. ISME J. 8, 187–211 (2014).CAS 

    Google Scholar 
    Fuchsman, C. A., Kirkpatrick, J. B., Brazelton, W. J., Murray, J. W. & Staley, J. T. Metabolic strategies of free-living and aggregate-associated bacterial communities inferred from biologic and chemical profiles in the Black Sea suboxic zone. FEMS Microbiol. Ecol. 78, 586–603 (2011).CAS 

    Google Scholar 
    Alldredge, A. L. & Cohen, Y. Can microscale chemical patches persist in the sea? Microelectrode study of marine snow, fecal pellets. Science 235, 689–691 (1987).ADS 
    CAS 

    Google Scholar 
    Scranton, M. I. et al. Temporal variability in the nutrient chemistry of the Cariaco Basin. in Past and Present Water Column Anoxia. Nato Science Series: IV: Earth and Environmental Sciences, Vol. 64. (ed. Neretin, L.) 139–160 (Springer Dordrecht, 2006).Firn, R. D. & Jones, C. G. The evolution of secondary metabolism–a unifying model. Mol. Microbiol. 37, 989–994 (2000).CAS 

    Google Scholar 
    Junkins, E. N., McWhirter, J. B., McCall, L.-I. & Stevenson, B. S. Environmental structure impacts microbial composition and secondary metabolism. ISME Commun. 2, 1–10 (2022).
    Google Scholar 
    Penn, K. et al. Genomic islands link secondary metabolism to functional adaptation in marine Actinobacteria. ISME J. 3, 1193–1203 (2009).CAS 

    Google Scholar 
    Thaker, M. N. et al. Identifying producers of antibacterial compounds by screening for antibiotic resistance. Nat. Biotechnol. 31, 922–927 (2013).CAS 

    Google Scholar 
    Taylor, C. D. & Doherty, K. W. Submersible Incubation Device (SID), autonomous instrumentation for the in situ measurement of primary production and other microbial rate processes. Deep-Sea Res. Part A. Oceanogr. Res. Pap. 37, 343–358 (1990).ADS 
    CAS 

    Google Scholar 
    Pachiadaki, M. G., Rédou, V., Beaudoin, D. J., Burgaud, G. & Edgcomb, V. P. Fungal and prokaryotic activities in the marine subsurface biosphere at Peru Margin and Canterbury Basin inferred from RNA-based analyses and microscopy. Front. Microbiol. 7, 846 (2016).
    Google Scholar 
    Frias-Lopez, J. et al. Microbial community gene expression in ocean surface waters. Proc. Natl Acad. Sci. USA 105, 3805–3810 (2008).ADS 
    CAS 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 

    Google Scholar 
    Stewart, F. J., Ulloa, O. & DeLong, E. F. Microbial metatranscriptomics in a permanent marine oxygen minimum zone. Environ. Microbiol. 14, 23–40 (2012).CAS 

    Google Scholar 
    Conroy, J. L. et al. Unprecedented recent warming of surface temperatures in the eastern tropical Pacific Ocean. Nat. Geosci. 2, 46–50 (2009).ADS 
    CAS 

    Google Scholar 
    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).MathSciNet 
    CAS 

    Google Scholar 
    Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).
    Google Scholar 
    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).CAS 

    Google Scholar 
    Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2020).Giovannoni, S. J., Britschgi, T. B., Moyer, C. L. & Field, K. G. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345, 60–63 (1990).ADS 
    CAS 

    Google Scholar 
    Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3, e1319 (2015).
    Google Scholar 
    Delmont, T. O. et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat. Microbiol. 3, 804–813 (2018).CAS 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 

    Google Scholar 
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
    Google Scholar 
    Team, R. C. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2013).Marçais, G. et al. MUMmer4: a fast and versatile genome alignment system. PLoS Comput. Biol. 14, e1005944 (2018).
    Google Scholar 
    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv, 1303.3997v2 (2013).Ben Woodcroft. CoverM. https://github.com/wwood/CoverM (2022).Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 11, 1–11 (2010).
    Google Scholar 
    Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).CAS 

    Google Scholar 
    Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).CAS 

    Google Scholar 
    Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).CAS 

    Google Scholar 
    Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).CAS 

    Google Scholar 
    Konopka, T. umap. Uniform manifold approximation and projection (2018).Wickham, H., Chang, W. & Wickham, M. H. Package ‘ggplot2’. Create elegant data visualisations using the grammar of graphics. Version 2, 1–189 (2016).
    Google Scholar 
    Hahsler, M., Piekenbrock, M. & Doran, D. dbscan: fast density-based clustering with R. J. Stat. Softw. 91, 1–30 (2019).
    Google Scholar 
    Geller-McGrath, D. et al. Diverse secondary metabolites are expressed in particle-associated and free-living microorganisms of the permanently anoxic Cariaco Basin. https://github.com/d-mcgrath/cariaco_basin (2023). More

  • in

    Aerial transport of bacteria by dust plumes in the Eastern Mediterranean revealed by complementary rRNA/rRNA-gene sequencing

    Katra, I. et al. Richness and diversity in dust stormborne biomes at the Southeast Mediterranean. Sci. Rep. 4, 5265 (2014).CAS 

    Google Scholar 
    Kellogg, C. A. & Griffin, D. W. Aerobiology and the global transport of desert dust. Trends Ecol. Evolution 21, 638–644 (2006).
    Google Scholar 
    Mazar, Y., Cytryn, E., Erel, Y. & Rudich, Y. Effect of dust storms on the atmospheric microbiome in the eastern Mediterranean. Environ. Sci. Technol. 50, 4194–4202 (2016).CAS 

    Google Scholar 
    Gat, D., Mazar, Y., Cytryn, E. & Rudich, Y. Origin-dependent variations in the atmospheric microbiome community in Eastern Mediterranean Dust Storms. Environ. Sci. Technol. 51, 6709–6718 (2017).CAS 

    Google Scholar 
    Lang-Yona, N. et al. Links between airborne microbiome, meteorology, and chemical composition in northwestern Turkey. Sci. Total Environ. 725, 138227 (2020).CAS 

    Google Scholar 
    Gat, D. et al. Size-resolved community structure of bacteria and fungi transported by dust in the Middle East. Front. Microbiol. 12 (2021) https://doi.org/10.3389/fmicb.2021.744117.Hill, T. C. J. et al. Sources of organic ice nucleating particles in soils. Atmos. Chem. Phys. 16, 7195–7211 (2016).CAS 

    Google Scholar 
    Pandey, R. et al. Ice-nucleating bacteria control the order and dynamics of interfacial water. Sci. Adv. 2, e1501630 (2016).
    Google Scholar 
    Fröhlich-Nowoisky, J. et al. Ice nucleation activity in the widespread soil fungus Mortierella alpina. Biogeosciences 12, 1057–1071 (2015).
    Google Scholar 
    Estillore, A. D., Trueblood, J. V. & Grassian, V. H. Atmospheric chemistry of bioaerosols: heterogeneous and multiphase reactions with atmospheric oxidants and other trace gases. Chem. Sci. 7, 6604–6616 (2016).CAS 

    Google Scholar 
    Brodie, E. L. et al. Urban aerosols harbor diverse and dynamic bacterial populations. Proc. Natl. Acad. Sci. 104, 299–304 (2007).CAS 

    Google Scholar 
    Šantl-Temkiv, T. et al. Characterization of airborne ice-nucleation-active bacteria and bacterial fragments. Atmos. Environ. 109, 105–117 (2015).
    Google Scholar 
    Rahav, E., Ovadia, G., Paytan, A. & Herut, B. Contribution of airborne microbes to bacterial production and N2 fixation in seawater upon aerosol deposition. Geophys. Res. Lett. 43, 719–727 (2016).CAS 

    Google Scholar 
    Failor, K. C., Schmale, D. G., Vinatzer, B. A. & Monteil, C. L. Ice nucleation active bacteria in precipitation are genetically diverse and nucleate ice by employing different mechanisms. ISME J. 11, 2740–2753 (2017).CAS 

    Google Scholar 
    de Araujo, G. G., Rodrigues, F., Gonçalves, F. L. T. & Galante, D. Survival and ice nucleation activity of Pseudomonas syringae strains exposed to simulated high-altitude atmospheric conditions. Sci. Rep. 9, 7768 (2019).
    Google Scholar 
    Lazaridis, M. Bacteria as Cloud Condensation Nuclei (CCN) in the Atmosphere. Atmosphere 10, 786 (2019).CAS 

    Google Scholar 
    Amato, P. et al. Active microorganisms thrive among extremely diverse communities in cloud water. PLOS ONE 12, e0182869 (2017).
    Google Scholar 
    Amato, P. et al. Metatranscriptomic exploration of microbial functioning in clouds. Sci. Rep. 9, 4383 (2019).
    Google Scholar 
    Vaïtilingom, M. et al. Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds. Proc. Natl. Acad. Sci. 110, 559–564 (2013).
    Google Scholar 
    Triadó-Margarit, X., Cáliz, J. & Casamayor, E. O. A long-term atmospheric baseline for intercontinental exchange of airborne pathogens. Environ. Int. 158, 106916 (2022).
    Google Scholar 
    Brodie, E. L. et al. Urban aerosols harbor diverse and dynamic bacterial populations. Proc. Natl. Acad. Sci. 104, 299 (2007).CAS 

    Google Scholar 
    Archer, S. D. J. et al. Airborne microbial transport limitation to isolated Antarctic soil habitats. Nat. Microbiol 4, 925–932 (2019).CAS 

    Google Scholar 
    Mayol, E. et al. Long-range transport of airborne microbes over the global tropical and subtropical ocean. Nat. Commun. 8, 201 (2017).
    Google Scholar 
    Favet, J. et al. Microbial hitchhikers on intercontinental dust: catching a lift in Chad. ISME J. 7, 850–867 (2013).CAS 

    Google Scholar 
    Cáliz, J., Triadó-Margarit, X., Camarero, L. & Casamayor, E. O. A long-term survey unveils strong seasonal patterns in the airborne microbiome coupled to general and regional atmospheric circulations. Proc. Natl. Acad. Sci. 115, 12229–12234 (2018).
    Google Scholar 
    Du, P., Du, R., Ren, W., Lu, Z. & Fu, P. Seasonal variation characteristic of inhalable microbial communities in PM2.5 in Beijing city, China. Sci. Total Environ. 610-611, 308–315 (2018).CAS 

    Google Scholar 
    Lang-Yona, N. et al. Links between airborne microbiome, meteorology, and chemical composition in northwestern Turkey. Sci. Total Environ. 725, 138227 (2020).CAS 

    Google Scholar 
    Gong, J., Qi, J., E, B., Yin, Y. & Gao, D. Concentration, viability and size distribution of bacteria in atmospheric bioaerosols under different types of pollution. Environ. Pollut. 257, 113485 (2020).CAS 

    Google Scholar 
    Zhang, T., Li, X., Wang, M., Chen, H. & Yao, M. Time- and size-resolved bacterial aerosol dynamics in highly polluted air: new clues for haze formation mechanism. bioRxiv, 513093 (2019) https://doi.org/10.1101/513093.Wei, M. et al. Size distribution of bioaerosols from biomass burning emissions: Characteristics of bacterial and fungal communities in submicron (PM1.0) and fine (PM2.5) particles. Ecotoxicol. Environ. Saf. 171, 37–46 (2019).CAS 

    Google Scholar 
    Blazewicz, S. J., Barnard, R. L., Daly, R. A. & Firestone, M. K. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. Isme J. 7, 2061–2068 (2013).CAS 

    Google Scholar 
    Barnard, R. L., Osborne, C. A. & Firestone, M. K. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME J. 7, 2229–2241 (2013).CAS 

    Google Scholar 
    Schostag, M. et al. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses. Front. Microbiol. 6 (2015) https://doi.org/10.3389/fmicb.2015.00399.Campbell, B. J., Yu, L., Heidelberg, J. F. & Kirchman, D. L. Activity of abundant and rare bacteria in a coastal ocean. Proc. Natl Acad. Sci. 108, 12776–12781 (2011).CAS 

    Google Scholar 
    Denef, V. J., Fujimoto, M., Berry, M. A. & Schmidt, M. L. Seasonal succession leads to habitat-dependent differentiation in ribosomal RNA:DNA Ratios among freshwater lake bacteria. Front. Microbiol.7 (2016) https://doi.org/10.3389/fmicb.2016.00606.Zhang, Y., Zhao, Z., Dai, M., Jiao, N. & Herndl, G. J. Drivers shaping the diversity and biogeography of total and active bacterial communities in the South China Sea. Mol. Ecol. 23, 2260–2274 (2014).CAS 

    Google Scholar 
    Hospodsky, D., Yamamoto, N. & Peccia, J. Accuracy, precision, and method detection limits of quantitative PCR for airborne bacteria and fungi. Appl Environ. Microbiol 76, 7004–7012 (2010).CAS 

    Google Scholar 
    Nieto-Caballero, M., Savage, N., Keady, P. & Hernandez, M. High fidelity recovery of airborne microbial genetic materials by direct condensation capture into genomic preservatives. J. Microbiological Methods 157, 1–3 (2019).CAS 

    Google Scholar 
    Behzad, H., Gojobori, T. & Mineta, K. Challenges and opportunities of airborne metagenomics. Genome Biol. Evol. 7, 1216–1226 (2015).CAS 

    Google Scholar 
    Šantl-Temkiv, T., Gosewinkel, U., Starnawski, P., Lever, M. & Finster, K. Aeolian dispersal of bacteria in southwest Greenland: their sources, abundance, diversity and physiological states. FEMS Microbiol. Ecol. 94 (2018) https://doi.org/10.1093/femsec/fiy031.Klein, A. M., Bohannan, B. J. M., Jaffe, D. A., Levin, D. A. & Green, J. L. Molecular evidence for metabolically active bacteria in the atmosphere. Front. Microbiol. 7, 772–772 (2016).
    Google Scholar 
    Amato, P. et al. Active microorganisms thrive among extremely diverse communities in cloud water. PLoS One 12, e0182869 (2017).
    Google Scholar 
    Vellend, B. M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).
    Google Scholar 
    Bodenheimer, S., Lensky, I. M. & Dayan, U. Characterization of Eastern Mediterranean dust storms by area of origin; North Africa vs. Arabian Peninsula. Atmos. Environ. 198, 158–165 (2019).CAS 

    Google Scholar 
    Kishcha, P., Volpov, E., Starobinets, B., Alpert, P. & Nickovic, S. Dust dry deposition over Israel. Atmosphere 11, 197 (2020).
    Google Scholar 
    Krasnov, H., Katra, I. & Friger, M. Increase in dust storm related PM10 concentrations: A time series analysis of 2001-2015. Environ. Pollut. 213, 36–42 (2016).CAS 

    Google Scholar 
    Zittis, G. et al. Climate change and weather extremes in the eastern Mediterranean and Middle East. Rev. Geophysics 60, e2021RG000762 (2022).
    Google Scholar 
    Griffin, D. W. Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin. Microbiol Rev. 20, 459–477 (2007).
    Google Scholar 
    Prospero, J. M. Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of the southeastern United States. Proc. Natl. Acad. Sci. 96, 3396–3403 (1999).CAS 

    Google Scholar 
    Klingmüller, K., Pozzer, A., Metzger, S., Stenchikov, G. L. & Lelieveld, J. Aerosol optical depth trend over the Middle East. Atmos. Chem. Phys. 16, 5063–5073 (2016).
    Google Scholar 
    Notaro, M., Alkolibi, F., Fadda, E. & Bakhrjy, F. Trajectory analysis of Saudi Arabian dust storms. J. Geophys. Res. Atmospheres 118, 6028–6043 (2013).
    Google Scholar 
    Tegen, I. & Schepanski, K. The global distribution of mineral dust. IOP Conf. Ser. Earth Environ. Sci. 7, 012001 (2009).
    Google Scholar 
    Klappenbach, J. A., Saxman, P. R., Cole, J. R. & Schmidt, T. M. rrndb: the Ribosomal RNA Operon Copy Number Database. Nucleic Acids Res. 29, 181–184 (2001).CAS 

    Google Scholar 
    Bremer, H. & Dennis, P. P. Modulation of chemical composition and other parameters of the cell at different exponential growth rates. EcoSal Plus 3 (2008) https://doi.org/10.1128/ecosal.5.2.3.Schneider, D. A., Ross, W. & Gourse, R. L. Control of rRNA expression in Escherichia coli. Curr. Opin. Microbiol 6, 151–156 (2003).CAS 

    Google Scholar 
    Gralla, J. D. Escherichia coli ribosomal RNA transcription: regulatory roles for ppGpp, NTPs, architectural proteins and a polymerase-binding protein. Mol. Microbiol 55, 973–977 (2005).CAS 

    Google Scholar 
    Oliveira, A. et al. Insight of genus corynebacterium: ascertaining the role of pathogenic and non-pathogenic species. Front. Microbiol. 8, 1937–1937 (2017).
    Google Scholar 
    Wexler, H. M. Bacteroides: the good, the bad, and the nitty-gritty. Clin. Microbiol Rev. 20, 593–621 (2007).CAS 

    Google Scholar 
    Duar, R. M. et al. Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiol. Rev. 41, S27–S48 (2017).
    Google Scholar 
    Magzal, F. et al. Increased physical activity improves gut microbiota composition and reduces short-chain fatty acid concentrations in older adults with insomnia. Sci. Rep. 12, 2265 (2022).CAS 

    Google Scholar 
    Wang, L. et al. Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder. Mol. Autism 4, 42 (2013).CAS 

    Google Scholar 
    Tavella, T. et al. Elevated gut microbiome abundance of Christensenellaceae, Porphyromonadaceae and Rikenellaceae is associated with reduced visceral adipose tissue and healthier metabolic profile in Italian elderly. Gut microbes 13, 1–19 (2021).
    Google Scholar 
    Bennur, T., Kumar, A. R., Zinjarde, S. & Javdekar, V. Nocardiopsis species: Incidence, ecological roles and adaptations. Microbiological Res. 174, 33–47 (2015).
    Google Scholar 
    Jones, S. E. & Elliot, M. A. Streptomyces exploration: competition, volatile communication and new bacterial behaviours. Trends Microbiol. 25, 522–531 (2017).CAS 

    Google Scholar 
    Gtari, M. et al. Contrasted resistance of stone-dwelling Geodermatophilaceae species to stresses known to give rise to reactive oxygen species. FEMS Microbiol. Ecol. 80, 566–577 (2012).CAS 

    Google Scholar 
    Weon, H.-Y. et al. Adhaeribacter aerophilus sp. nov., Adhaeribacter aerolatus sp. nov. and Segetibacter aerophilus sp. nov., isolated from air samples. Int. J. Syst. Evolut. Microbiol. 60, 2424–2429 (2010).CAS 

    Google Scholar 
    Marín, I. et al.) 115-133 (Springer Berlin Heidelberg, 2014).Yoon, J.-H. et al.) 1099-1113 (Springer New York, 2006).Steinberg, J. P. & Burd, E. M. in Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases (Eighth Edition) (eds John E. Bennett, R. Dolin, & M. J. Blaser) 2667-2683.e2664 (W.B. Saunders, 2015).Kelly, D. P., et al.) 232-249 (Springer New York, 2006).Silby, M. W., Winstanley, C., Godfrey, S. A. C., Levy, S. B. & Jackson, R. W. Pseudomonas genomes: diverse and adaptable. FEMS Microbiol. Rev. 35, 652–680 (2011).CAS 

    Google Scholar 
    Hyeon, J. W. & Jeon, C. O. Roseomonas aerofrigidensis sp. nov., isolated from an air conditioner. Int. J. Syst. Evolut. Microbiol. 67, 4039–4044 (2017).CAS 

    Google Scholar 
    Battista, J. R. & Rainey, F. A. in Bergey’s Manual of Systematics of Archaea and Bacteria 1-13.Angly, F. E. et al. Marine microbial communities of the Great Barrier Reef lagoon are influenced by riverine floodwaters and seasonal weather events. PeerJ 4, e1511 (2016).
    Google Scholar 
    Cárdenas, A., Rodriguez-R, L. M., Pizarro, V., Cadavid, L. F. & Arévalo-Ferro, C. Shifts in bacterial communities of two caribbean reef-building coral species affected by white plague disease. ISME J. 6, 502–512 (2012).
    Google Scholar 
    Kämpfer, P., Lodders, N., Huber, B., Falsen, E. & Busse, H. J. Deinococcus aquatilis sp. nov., isolated from water. Int J. Syst. Evol. Microbiol 58, 2803–2806 (2008).
    Google Scholar 
    Gallego, V., Sánchez-Porro, C., García, M. T. & Ventosa, A. Roseomonas aquatica sp. nov., isolated from drinking water. Int J. Syst. Evol. Microbiol 56, 2291–2295 (2006).CAS 

    Google Scholar 
    Roskin, J., Katra, I. & Blumberg, D. G. Particle-size fractionation of eolian sand along the Sinai–Negev erg of Egypt and Israel. GSA Bull. 126, 47–65 (2014).
    Google Scholar 
    Ganor, E. & Foner, H. A. Mineral dust concentrations, deposition fluxes and deposition velocities in dust episodes over Israel. J. Geophys. Res.: Atmospheres 106, 18431–18437 (2001).CAS 

    Google Scholar 
    Amir, A., Ozel, E., Haberman, Y. & Shental, N. Achieving pan-microbiome biological insights via the dbBact knowledge base. bioRxiv, 2022.2002.2027.482174 (2022) https://doi.org/10.1101/2022.02.27.482174.Eisenhofer, R. et al. Contamination in low microbial biomass microbiome studies: issues and recommendations. Trends Microbiol. 27, 105–117 (2019).CAS 

    Google Scholar 
    Labeda, D. P. & Goodfellow, M. in Bergey’s Manual of Systematics of Archaea and Bacteria 1-7.Rickard, A. H. et al. Adhaeribacter aquaticus gen. nov., sp. nov., a Gram-negative isolate from a potable water biofilm. Int J. Syst. Evol. Microbiol 55, 821–829 (2005).CAS 

    Google Scholar 
    Guo, L. et al. Oligotrophic bacterium Hymenobacter latericoloratus CGMCC 16346 degrades the neonicotinoid imidacloprid in surface water. AMB Express 10, 7 (2020).CAS 

    Google Scholar 
    Philippon, T. et al. Denitrifying bio-cathodes developed from constructed wetland sediments exhibit electroactive nitrate reducing biofilms dominated by the genera Azoarcus and Pontibacter. Bioelectrochemistry 140, 107819 (2021).CAS 

    Google Scholar 
    Jurado, V., Miller, A. Z., Alias-Villegas, C., Laiz, L. & Saiz-Jimenez, C. Rubrobacter bracarensis sp. nov., a novel member of the genus Rubrobacter isolated from a biodeteriorated monument. Syst. Appl Microbiol 35, 306–309 (2012).CAS 

    Google Scholar 
    de Vries, H. J. et al. Isolation and characterization of Sphingomonadaceae from fouled membranes. npj Biofilms Microbiomes 5, 6 (2019).
    Google Scholar 
    Vacca, M. et al. The Controversial Role of Human Gut Lachnospiraceae. Microorganisms 8, 573 (2020).CAS 

    Google Scholar 
    Baldani, J. I. et al. in The Prokaryotes: Alphaproteobacteria and Betaproteobacteria (eds Eugene Rosenberg et al.) 919-974 (Springer Berlin Heidelberg, 2014).Dastager, S. G., et al.) 455-498 (Springer Berlin Heidelberg, 2014).Ivanova, N. et al. Complete genome sequence of Geodermatophilus obscurus type strain (G-20). Stand Genom. Sci. 2, 158–167 (2010).
    Google Scholar 
    Alonso-Reyes, D. et al. Genomic Insights of an Andean Multi-resistant Soil Actinobacterium of Biotechnological Interest. bioRxiv, 2020.2012.2021.423370 (2020) https://doi.org/10.1101/2020.12.21.423370.Kumar, C. G. & Sujitha, P. Kocuran, an exopolysaccharide isolated from Kocuria rosea strain BS-1 and evaluation of its in vitro immunosuppression activities. Enzym. Micro. Technol. 55, 113–120 (2014).CAS 

    Google Scholar 
    Raguénès, G. et al. A novel exopolymer-producing bacterium, Paracoccus zeaxanthinifaciens subsp. payriae, isolated from a “kopara” mat located in Rangiroa, an atoll of French Polynesia. Curr. Microbiol 49, 145–151 (2004).
    Google Scholar 
    Bailey, A. C. et al. Draft Genome Sequence of Massilia sp. Strain BSC265, Isolated from Biological Soil Crust of Moab, Utah. Genome Announc 2, e01199–01114 (2014).
    Google Scholar 
    Denef, V. J., Fujimoto, M., Berry, M. A. & Schmidt, M. L. Seasonal succession leads to habitat-dependent differentiation in ribosomal RNA:DNA Ratios among freshwater lake bacteria. Front Microbiol 7, 606 (2016).
    Google Scholar 
    Salazar, G. et al. Particle-association lifestyle is a phylogenetically conserved trait in bathypelagic prokaryotes. Mol. Ecol. 24, 5692–5706 (2015).
    Google Scholar 
    Schmidt, M. L., White, J. D. & Denef, V. J. Phylogenetic conservation of freshwater lake habitat preference varies between abundant bacterioplankton phyla. Environ. Microbiol. 18, 1212–1226 (2016).
    Google Scholar 
    Stepanauskas, R. et al. Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles. Nat. Commun. 8, 84 (2017).
    Google Scholar 
    Doughari, H. J., Ndakidemi, P. A., Human, I. S. & Benade, S. The ecology, biology and pathogenesis of Acinetobacter spp.: an overview. Microbes Environ. 26, 101–112 (2011).
    Google Scholar 
    Bläckberg, A., Falk, L., Oldberg, K., Olaison, L. & Rasmussen, M. infective endocarditis due to corynebacterium species: clinical features and antibiotic resistance. Open Forum Infect. Dis. 8 (2021) https://doi.org/10.1093/ofid/ofab055.Zhang, Q. et al. Hymenobacter xinjiangensis sp. nov., a radiation-resistant bacterium isolated from the desert of Xinjiang, China. Int J. Syst. Evol. Microbiol 57, 1752–1756 (2007).CAS 

    Google Scholar 
    Lee, J.-J. et al. Hymenobacter aquaticus sp. nov., a radiation-resistant bacterium isolated from a river. Int. J. Syst. Evolut. Microbiol. 67, 1206–1211 (2017).CAS 

    Google Scholar 
    Alessa, O. et al. Comprehensive comparative genomics and phenotyping of methylobacterium species. Front. Microbiol. 12 (2021) https://doi.org/10.3389/fmicb.2021.740610.Titécat, M., Wallet, F., Vieillard, M. H., Courcol, R. J. & Loïez, C. Ruminococcus gnavus: an unusual pathogen in septic arthritis. Anaerobe 30, 159–160 (2014).
    Google Scholar 
    Weber, B. S., Harding, C. M. & Feldman, M. F. Pathogenic acinetobacter: from the cell surface to infinity and beyond. J. Bacteriol. 198, 880–887 (2015).
    Google Scholar 
    Hacker, E., Antunes, C. A., Mattos-Guaraldi, A. L., Burkovski, A. & Tauch, A. Corynebacterium ulcerans, an emerging human pathogen. Future Microbiol. 11, 1191–1208 (2016).CAS 

    Google Scholar 
    Smith, K. F. & Oram, D. M. in Encyclopedia of Microbiology (Third Edition) (ed Moselio Schaechter) 94-106 (Academic Press, 2009).Kovaleva, J., Degener, J. E. & van der Mei, H. C. Methylobacterium and its role in health care-associated infection. J. Clin. Microbiol 52, 1317–1321 (2014).
    Google Scholar 
    Dyer, J. & Harris, P. Paracoccus yeei—An emerging pathogen or incidental finding? Pathology 52, S123 (2020).
    Google Scholar 
    Moradali, M. F., Ghods, S. & Rehm, B. H. A. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front. Cellular Infect. Microbiol. 7 (2017) https://doi.org/10.3389/fcimb.2017.00039.Ryan, M. P. & Adley, C. C. Sphingomonas paucimobilis: a persistent Gram-negative nosocomial infectious organism. J. Hosp. Infect. 75, 153–157 (2010).CAS 

    Google Scholar 
    Souto, A., Guinda, M., Mera, A. & Pardo, F. Septic arthritis caused by Sphingomonas paucimobilis in an immunocompetent patient. Reumatol. Clin. 8, 378–379 (2012).
    Google Scholar 
    Lanoix, J. P. et al. Sphingomonas paucimobilis bacteremia related to intravenous human immunoglobulin injections. Med Mal. Infect. 42, 37–39 (2012).
    Google Scholar 
    van Bruggen, A. H., Brown, P. R. & Jochimsen, K. N. Corky root of lettuce caused by strains of a gram-negative bacterium from muck soils of Florida, new york, and wisconsin. Appl Environ. Microbiol 55, 2635–2640 (1989).
    Google Scholar 
    VAN BRUGGEN, A. H. C., JOCHIMSEN, K. N. & BROWN, P. R. Rhizomonas suberifaciens gen. nov., sp. nov., the Causal Agent of Corky Root of Lettuce. Int. J. Syst. Evolut. Microbiol. 40, 175–188 (1990).
    Google Scholar 
    Davis, J. H. & Williamson, J. R. Structure and dynamics of bacterial ribosome biogenesis. Philos. Trans. R Soc. Lond. B Biol. Sci. 372 (2017) https://doi.org/10.1098/rstb.2016.0181.Maitra, A. & Dill, K. A. Bacterial growth laws reflect the evolutionary importance of energy efficiency. Proc. Natl Acad. Sci. 112, 406–411 (2015).CAS 

    Google Scholar 
    Klumpp, S. & Hwa, T. Traffic patrol in the transcription of ribosomal RNA. RNA Biol. 6, 392–394 (2009).CAS 

    Google Scholar 
    Jia, Y. et al. Rare taxa exhibit disproportionate cell-level metabolic activity in enriched anaerobic digestion microbial communities. mSystems 4, e00208–e00218 (2019).CAS 

    Google Scholar 
    Zhou, Y. et al. Profiling airborne microbiota in mechanically ventilated buildings across seasons in hong kong reveals higher metabolic activity in low-abundance bacteria. Environ. Sci. Technol. 55, 249–259 (2021).CAS 

    Google Scholar 
    Fessler, M., Gummesson, B., Charbon, G., Svenningsen, S. L. & Sørensen, M. A. Short-term kinetics of rRNA degradation in Escherichia coli upon starvation for carbon, amino acid or phosphate. Mol. Microbiol. 113, 951–963 (2020).CAS 

    Google Scholar 
    Lahtinen, S. J. et al. Degradation of 16S rRNA and attributes of viability of viable but nonculturable probiotic bacteria. Lett. Appl Microbiol 46, 693–698 (2008).CAS 

    Google Scholar 
    Li, R. et al. Comparison of DNA-, PMA-, and RNA-based 16S rRNA Illumina sequencing for detection of live bacteria in water. Sci. Rep. 7, 5752 (2017).
    Google Scholar 
    McKillip, J. L., Jaykus, L. A. & Drake, M. rRNA stability in heat-killed and UV-irradiated enterotoxigenic Staphylococcus aureus and Escherichia coli O157:H7. Appl Environ. Microbiol 64, 4264–4268 (1998).CAS 

    Google Scholar 
    Sheridan, G. E., Masters, C. I., Shallcross, J. A. & MacKey, B. M. Detection of mRNA by reverse transcription-PCR as an indicator of viability in Escherichia coli cells. Appl. Environ. Microbiol. 64, 1313–1318 (1998).CAS 

    Google Scholar 
    Villarino, A., Bouvet, O. M., Regnault, B., Martin-Delautre, S. & Grimont, P. A. D. Exploring the frontier between life and death in Escherichia coli: evaluation of different viability markers in live and heat- or UV-killed cells. Res Microbiol 151, 755–768 (2000).CAS 

    Google Scholar 
    Schostag, M. D., Albers, C. N., Jacobsen, C. S. & Priemé, A. Low turnover of soil bacterial rRNA at low temperatures. Front. Microbiol. 11 (2020) https://doi.org/10.3389/fmicb.2020.00962.Emerson, J. B. et al. Schrödinger’s microbes: Tools for distinguishing the living from the dead in microbial ecosystems. Microbiome 5, 86 (2017).
    Google Scholar 
    Wang, Y. et al. Characterizing microbial community viability with RNA-based high-throughput sequencing. Microbiome Version 1, posted 22 Jul, 2022 (2022) https://doi.org/10.21203/rs.3.rs-1870950/v1.Mbareche, H., Veillette, M., Bilodeau, G. J., Duchaine, C. & Schaffner, D. W. Bioaerosol sampler choice should consider efficiency and ability of samplers to cover microbial diversity. Appl. Environ. Microbiol. 84, e01589–01518 (2018).CAS 

    Google Scholar 
    Pan, M., Lednicky, J. A. & Wu, C.-Y. Collection, particle sizing and detection of airborne viruses. J. Appl. Microbiol. 127, 1596–1611 (2019).CAS 

    Google Scholar 
    Nieto-Caballero, M., Savage, N., Keady, P. & Hernandez, M. High fidelity recovery of airborne microbial genetic materials by direct condensation capture into genomic preservatives. J. Microbiol Methods 157, 1–3 (2019).CAS 

    Google Scholar 
    Šantl-Temkiv, T., Gosewinkel, U., Starnawski, P., Lever, M. & Finster, K. Aeolian dispersal of bacteria in southwest Greenland: their sources, abundance, diversity and physiological states. FEMS Microbiol Ecol 94 (2018) https://doi.org/10.1093/femsec/fiy031.Maki, T. et al. Aeolian dispersal of bacteria associated with desert dust and anthropogenic particles over continental and oceanic surfaces. J. Geophys. Res.: Atmospheres 124, 5579–5588 (2019).
    Google Scholar 
    Gonzalez-Martin, C., Teigell-Perez, N., Valladares, B. & Griffin, D. W. in Advances in Agronomy Vol. 127 (ed Donald Sparks) 1-41 (Academic Press, 2014).Tisch Environmental, I. (2004).Krasnov, H., Katra, I. & Friger, M. Increase in dust storm related PM10 concentrations: A time series analysis of 2001–2015. Environ. Pollut. 213, 36–42 (2016).CAS 

    Google Scholar 
    Varga, G., Újvári, G. & Kovács, J. Spatiotemporal patterns of Saharan dust outbreaks in the Mediterranean Basin. Aeolian Res. 15, 151–160 (2014).
    Google Scholar 
    Dayan, U. & Levy, I. Relationship between synoptic-scale atmospheric circulation and ozone concentrations over Israel. J. Geophys. Res.: Atmospheres 107, ACL 31-31–ACL 31-12 (2002).
    Google Scholar 
    Klein, A. M., Bohannan, B. J. M., Jaffe, D. A., Levin, D. A. & Green, J. L. Molecular Evidence for Metabolically Active Bacteria in the Atmosphere. Front. Microbiol. 7 (2016) https://doi.org/10.3389/fmicb.2016.00772.Luhung, I. et al. Experimental parameters defining ultra-low biomass bioaerosol analysis. npj Biofilms Microbiomes 7, 37 (2021).CAS 

    Google Scholar 
    Stein, A. F. et al. Noaa’s Hysplit Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorological Soc. 96, 2059–2077 (2015).
    Google Scholar 
    Rolph, G., Stein, A. & Stunder, B. Real-time Environmental Applications and Display sYstem: READY. Environ. Model. Softw. 95, 210–228 (2017).
    Google Scholar 
    Acker, J. G. & Leptoukh, G. Online analysis enhances use of NASA Earth science data. Eos, Trans. Am. Geophys. Union 88, 14–17 (2007).
    Google Scholar 
    Brauer, S. L. et al. Culturable Rhodobacter and Shewanella species are abundant in estuarine turbidity maxima of the Columbia River. Environ. Microbiol. 13, 589–603 (2011).CAS 

    Google Scholar 
    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. Isme J. 6, 1621–1624 (2012).CAS 

    Google Scholar 
    Soergel, D. A. W., Dey, N., Knight, R. & Brenner, S. E. Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences. ISME J. 6, 1440–1444 (2012).CAS 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581 (2016).CAS 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).CAS 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 

    Google Scholar 
    Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018).
    Google Scholar 
    Martin-Fernandez, J. A., Hron, K., Templ, M., Filzmoser, P. & Palarea-Albaladejo, J. Bayesian-multiplicative treatment of count zeros in compositional data sets. Stat. Model. 15 (2015) https://doi.org/10.1177/1471082×14535524.Palarea-Albaladejo, J. & Martin-Fernandez, J. A. zCompositions—R Package for multivariate imputation of left-censored data under a compositional approach. Chemometrics Intell. Lab. Syst. 143, 85–96 (2015).CAS 

    Google Scholar 
    van den Boogaart, K. G. & Tolosana-Delgado, R. “compositions”: A unified R package to analyze compositional data. Comput. Geosci. 34, 320–338 (2008).
    Google Scholar 
    Amato, P. et al. In Microbiology of Aerosols 1–21 (2017).Rao, A. K. & Whitby, K. T. Nonideal collection characteristics of single stage and cascade impactors. Am. Ind. Hyg. Assoc. J. 38, 174–179 (1977).CAS 

    Google Scholar 
    Jari Oksanen, F. G. B. et al. vegan: Community Ecology Package. (2020).Gilmour, S. G. In Wiley StatsRef: Statistics Reference Online.Margolin, B. H. In Wiley StatsRef: Statistics Reference Online.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 57, 289–300 (1995).
    Google Scholar 
    Mallick, H. et al. Multivariable association discovery in population-scale meta-omics studies. PLOS Comput. Biol. 17, e1009442 (2021).CAS 

    Google Scholar  More

  • in

    Joint use of location and acceleration data reveals influences on transitions among habitats in wintering birds

    Goose capture and trackingWe used rocket netting and leg snares to capture white-fronted geese in three regions in Texas (Rolling Plains, Lower Texas Coast, and South Texas Brushlands) and one region in Louisiana (Chenier Plain) from October to February 2016–2018 (Fig. 1). We determined age and sex of individuals by cloacal inversion, rectrices and other plumage characteristics27,28. We fit a solar powered GPS/ACC/Global System for Mobile communication (GSM) neckband tracking device (Cellular Tracking Technologies Versions BT3.0, BT3.5 and BT3.75; 44–54 g; Rio Grande, New Jersey, USA, and Ornitela OrniTrack-N38; 36 g; Vilnius, Lithuania), and an aluminum U.S. Geological Survey Bird Banding Laboratory metal leg band (Supplementary Fig. S1) on each bird. Geese were captured and tagged under USGS Bird Banding Permits #21314 and #23792, and Texas A&M University-Kingsville Institutional Animal Care and Use Committee #2015-09-01B. Captive geese were permitted under TAMUK IACUC #2018-01-11 and United States Fish and Wildlife Service Waterfowl Sale and Disposal permit #MB03808D-0. All applicable field methods were carried out in accordance with relevant guidelines and regulations. All animal handling protocols were approved by TAMUK IACUC committees and the USGS Bird Banding Laboratory. When multiple white-fronted geese were captured simultaneously, devices were only placed on adult females or adult males to eliminate the potential of placing devices on mated pairs, thus biasing independent data collection due to monogamous, long-term pair bonds in white-fronted geese. Location duty cycles were set to collect a GPS location every 30 min (i.e., 48/day) and location accuracy was 7.2 and 6.5 m for CTT and Ornitela devices, respectively. Data were uploaded once daily to respective online user interface websites when within areas of GSM coverage. When not in coverage areas, data were stored onboard the device until birds returned to coverage areas. All devices were equipped with a tri-axial ACC sensor which measured G-force (g; CTT devices) or millivolts (mV; Ornitela devices) at a fixed sampling scheme; CTT BT3.5 and Ornitela devices collected ACC data for a duration of 3 s every 6 min at 10 Hz, while BT3.0 devices collected data for a duration of 10 s every 6 min at 10 Hz. Generation BT3.0 devices were subsampled to match the sampling scheme of 3 s bursts before analyses. Ornitela units measured in mV were converted to G-force. We applied manufacturer- and tag-specific ACC calibration to all units, respectively, by collecting ACC data on each possible rotation for all axes when the device was stationary and applying the calibration to the raw ACC values (see Ref.29 for full calibration procedure). All devices recorded temperature in °C at each GPS fix. We censored GPS and ACC data from the time of release until individuals appeared to resume normal movement activity (i.e., roosting and foraging), as geese typically flew to the nearest wetland immediately after release where they remained without leaving while acclimating to wearing devices, which ranged from 1 to 7 days30. We defined the start of the winter period following a southward migratory movement from staging areas in Canada, without additional migratory movements southward below 40° 0′ 00″ N, or from the time of device deployment (minus device acclimation period) until geese made large northward migratory movements, or 28 February if geese remained in wintering areas.Figure 1Primary wintering regions of the Midcontinent population of greater white-fronted goose (Anser albifrons frontalis) in North America (excluding regions in Mexico). Transmitters were deployed during winters 2016–2018 in the Chenier Plain (Louisiana), Lower Texas Coast, and Rolling/High Plains regions. Geese that made winter movements outside of these defined regions were classified as ‘Other’ regions. Map created using Esri ArcMap (version 10.3.1; www.esri.com).Full size imageLand cover covariatesWe used publicly available spatial landcover data sets (30-m resolution) in combination with remote sensing to create landscape layers using programs Esri ArcMap (version 10.3.1), Erdas Imagine, and Program R (version 3.5.231). We used 2017 and 2018 National Agricultural Statistics Service Cropland Data Layer (CDL) data sets for agricultural crop types and freshwater wetlands, and the 2010 Coastal Change Analysis Program layer for saltwater and coastal wetland classifications29,32. Additionally, we used multi-spectral Landsat 8 Operational Land Imager satellite imagery, with principal component analysis on eight Landsat bands and a normalized difference vegetation index band, and unsupervised classification33,34 to accurately identify and create a spatial layer for peanut fields. We developed this layer for two regions with annual peanut agriculture (i.e., the Rolling/High Plains and South Texas Brushlands) using ground-truthed peanut fields, because the CDL layer did not identify this crop accurately based on our field observations during captures. We achieved  > 90% accuracy of peanut identification for each image independently based on annual ground-truthed observations of peanut fields. Finally, we grouped like-habitat categories to reduce the total number of categories to eight: corn, grass/winter wheat, herbaceous wetlands, other grains (i.e., soybeans, sorghum, and peanuts), rice, woody wetlands, open water/unconsolidated shore and other (Supplementary Table S1). White-fronted geese used several ecologically distinct regions in both winters of our study (Fig. 1), where the landscape composition of specific landcover types varied. To account for regional variability, we added region ID as a categorical variable to all GPS locations. Regions included the MAV, Chenier Plain, Texas Mid-coast, Lower Texas Coast, South Texas Brushlands, Texas Rolling/High Plains, and Other (i.e., locations outside of these identified wintering regions; Fig. 1). We used regional shapefiles of Gulf Coast Joint Venture Initiative Areas (Laguna Madre [Lower Texas Coast], Texas Mid-coast, and Chenier Plain35), and Level III Ecoregions (Mississippi Alluvial Valley, Texas Rolling/High Plains, and South Texas Brushlands36) as boundaries to classify data into regions. Due to insufficient and incompatible spatial layers for Mexico, we limited analyses to locations within the US.Location and acceleration data collectionRemotely determining behaviors of individuals using ACC data is most accurately addressed by developing a training dataset of known behaviors linked with ACC measurements of those behaviors18,37. To develop a training dataset, we collected video footage of two domestic white-fronted geese in Texas, US, and 18 tagged wild Greenland white-fronted geese (A. a. flavirostris) fitted with the same device types and the same data collection scheme, in Wexford, Ireland and Hvanneyri, Iceland during winters 2017–2018. We supplemented wild recordings with behavioral recordings of captive white-fronted geese as a proxy for wild individuals due to difficulty filming wild geese in inclement weather and obstructed video footage, which is common in ACC literature19,20,38,39. To replicate devices placed on wild white-fronted geese and account for potential variation in ACC measurements between device brands, among device versions and individual geese, we deployed three versions of devices used in this study on captive white-fronted geese during filming sessions38,40. We attached tracking devices to captive geese one week prior to video collection to allow geese to adjust to wearing devices. We collected ACC measurements for 3 s bursts, at 1 min intervals, at 10 Hz. We constructed a 149 m2 enclosure in an agricultural field to imitate an environment that wild geese may encounter. We created two enclosure settings allowing captive geese to forage on sprouted winter wheat (~ 2–15 cm) or on a randomly dispersed mixture of grain seeds (corn, wheat, sorghum) to account for both ‘grazing’ of vascular vegetation and ‘gleaning’ of agricultural grains to imitate foraging in wild geese. We used Sony Handycam DCR-SR45 video cameras, matched internal camera clocks with a running Universal Coordinated Time clock, and verbally re-calibrated the current time every 2 min during video footage collection. We filmed 119.5 h of video footage, and matched behavior with recorded ACC measurements by pairing video and device timestamps for each device using JWatcher41 and Program R.We characterized goose behaviors into four categories: ‘stationary’, ‘walk’, and ‘foraging’ from ground-truthed video footage, and ‘flight’ from visual inspection of the ACC data and consecutive GPS tracks during migration where device-measured speed remained  > 4.63 km/h (based on a natural break in the speed density distribution of all GPS locations). Each ACC burst was classified as only one behavior (i.e., a goose that was walking as it foraged was classified as ‘foraging’). We combined wild goose behaviors and captive goose behaviors after identifying minimal differences in ACC burst summary statistics29 for ‘stationary’ and ‘walk’ behaviors. We used ‘graze’ behaviors only from wild geese because of low sample size for captive geese and slight differences in ACC summary statistics between captive and wild geese for this behavior. ‘Glean’ foraging behavior was only classified from captive geese. We then combined ‘graze’ and ‘glean’ behaviors into an overall ‘foraging’ behavior to account for variation in foraging behavior of wild geese, and because machine learning models could not accurately distinguish between the two foraging modes40. We randomly subsampled all behaviors to 150 bursts if our dataset contained at least that many bursts to reduce the risk of artificially increasing prediction accuracy20. We determined there were insufficient differences in ACC signatures between CTT BT3.0 and BT3.5 versions by visual comparison of signatures and summary statistics, and merged all bursts into an overall CTT-specific training data set, and retained CTT- and Ornitela-specific training data sets to account for brand-specific ACC measurement schemes. The final training data sets consisted of 150 stationary, 150 walking, 118 foraging, and 150 flying bursts (CTT), and 150 stationary, 75 walking, 120 foraging, and 150 flying bursts (Ornitela).We used the training data sets to predict behaviors of tagged, wild white-fronted geese during winter with temporally aligned GPS and ACC data. We used a suite of supervised machine-learning algorithms and selected the algorithm with greatest prediction accuracy based on an 80% training, 20% testing sample approach. We tested random forest, support vector machines, K-nearest neighbors, classification and regression trees, and linear discriminant analysis, all with cross validation in Program R18,29,42. We evaluated models using three metrics defined in Ref.42: (1) overall classification accuracy as the percent of classifications in the test data set that were predicted correctly, (2) precision of assignment, the probability that an assigned behavior in the test data set was correct, and (3) model recall, the probability that a sample with a specific behavior in the test data set was correctly classified as that behavior by the model. Random forests provided the highest overall classification accuracy (95.6% for CTT and 96.0% for Ornitela), as well as high precision and recall for each behavior (CTT range 93.1–99.3, Ornitela range 88.9–100.0%), and therefore we labeled behaviors from wild goose ACC data using the random forests.Habitat transition modelOur habitat-transition model required temporally matched GPS and ACC datasets. Therefore, we subset all GPS locations to match the time-series of ACC data per individual because devices typically acquired GPS data longer than ACC data before device failure or individual mortality. For each GPS location, we extracted the landcover type and wintering region from spatial layers and retained temperature recorded from the device. To link classified ACC behaviors to GPS locations, we matched ACC timestamps between two GPS locations with the previous GPS timestamp. That is, all ACC bursts between two GPS locations were assigned backward to the previous GPS location. In this way, an individual’s first location is collected in GPS landcover type A, ACC data are collected in 5 bursts, their behaviors are classified and assigned to the first GPS location A and associated landcover type, followed by collection of GPS location B, in which the subsequent 5 ACC bursts are associated to GPS location/landcover type B. In the case of missing GPS locations, we matched ACC bursts to the previous GPS location only if the ACC timestamps were within 60 min of the GPS timestamp, and ACC bursts occurring greater than 60 min after GPS acquisition were removed until the next GPS fix. To account for temporal variation in habitat-behavior relationships, we calculated two continuous covariates representing time-of-day based on the local time associated with the timestamp of each GPS location for each individual. The variable cos(Diel) represented diurnal (negative values) and nocturnal (positive values) periods, and sin(Time) represented midnight until 11:59 a.m. (positive values) and noon until the following 11:59 p.m. (negative values), where high and low values ranged continuously between 1 and − 143. Our temporally matched time series of GPS and ACC data yielded 53,502 GPS locations linked with 300,348 ACC bursts across both winters.We used a Bayesian Markov model with Pólya-Gamma sampling following43), [cf. Refs.44,45] to determine how transitions between landcover types were influenced by behavior, temperature, time-of-day, and wintering region. The proportion of time spent foraging, walking, and stationary between each successive GPS fix was included as a covariate; flight was not included to reduce multicollinearity due to behavior proportions summing to one. Markov models account for non-independence among observations by assuming that the current state (i.e., landcover type) is dependent upon the previous state, and allow the determination of covariate influences on the probability of transitioning among states through a logistic link function. The transition probability from habitat i to habitat j at time t for individual n is modeled with multinomial logistic regression:$$begin{aligned} & logitleft( {p_{nijt} } right) = logleft( {frac{{p_{nijt} }}{{p_{niJt} }}} right) = mathop sum limits_{{r in {mathcal{R}}_{j} }} beta_{0jr} Ileft( {Region_{nt} = r} right) + beta_{1j} {text{cos}}left( {Diel_{nt} } right) \ & quad + beta_{2j} {text{sin}}left( {Time_{nt} } right) + beta_{3ij} Forage_{nt} + beta_{4ij} Walk_{nt} + beta_{5ij} Stationary_{nt} + beta_{6ij} Temperature_{nt} , \ end{aligned}$$where ({mathcal{R}}_{j}) is the set of wintering regions (r) where habitat (j) occurs, (Regio{n}_{rnt}) indicated wintering region (r), and (mathrm{cos}left({Diel}_{nt}right)) and (mathrm{sin}({Time}_{nt})) were temporal covariates (described above) for habitat j. Quantities ({Forage}_{nt}, {Walk}_{nt},mathrm{ and }{Stationary}_{nt}) were the scaled (mean = 0, standard deviation = 1) proportion of time spent in each behavior between transitions from habitat i to habitat j, and ({Temperature}_{nt}) was scaled ambient temperature (°C) for transitions from habitat i to habitat j. All coefficients for transitions to the baseline habitat (J) were set to 0 (i.e., ({beta }_{0Jr}) for all (r), ({beta }_{1J}), ({beta }_{2J}), ({beta }_{3iJ}), ({beta }_{4iJ}), ({beta }_{5iJ}),({beta }_{6iJ}), for all (i)). We set the baseline habitat (J) as open water/unconsolidated shore because this habitat is used primarily for both nocturnal roosting and diurnal loafing, included all behaviors, and transitions to all other landcover types were frequent in each region.The prior for the set of winter region intercepts for each habitat was:$${beta }_{0jr}sim N({beta }_{0j},{sigma }_{0jr}^{2}),$$for (rin {mathcal{R}}_{j}), ({beta }_{0j}) was the mean intercept, and ({sigma }_{0jr}^{2}) was set to 100. For ({beta }_{0j}), a vague prior mean 0 and σ2 = 100 was used with an assumed normal distribution.The Markov model was executed within a Bayesian framework to robustly quantify uncertainty. The Markov model assumed that data were collected at regular time intervals for both GPS (30 min) and ACC (6 min), however imperfect collection by devices created irregular data sets. Therefore, we subsampled GPS locations and constrained time series data to sequences where GPS locations missing  > 120 min intervals (i.e., 4 locations) were separated into sequences of regular time series data for each individual46. We extended43 by including a mix of both transition-specific effects (i.e., behaviors, temperature) and habitat-specific effects (i.e., wintering region, cos(Diel), and sin(Time)), where transition-specific effects were allowed to vary for a current habitat state, while habitat-specific effects were not. We included a mix of coefficients because initial model runs indicated that some effects were similar regardless of the current habitat (i.e., were habitat- and not transition-specific decisions). We also incorporated a model feature to exclude estimation of transitions that did not occur either within the dataset as a whole or within each specific wintering region because landcover types varied among them by setting those specific transition probabilities to zero. We centered and standardized all behavior and temperature covariates, sampled 50,000 iterations from the model posterior using one chain, and discarded the first 10,000 iterations as burn-in. We assessed model convergence by evaluating trace plots and setting random initial values, examined autocorrelation plots, and Geweke diagnostics using the R package ‘coda’47,48,49. More

  • in

    Rapid diversification underlying the global dominance of a cosmopolitan phytoplankton

    Genetic and morphological delineation between G. huxleyi strainsWe first assessed genetic variability through analysis of genomic polymorphism to determine whether distinct genetic lineages exist in G. huxleyi and to test whether these relate to morphotypes. We used 2,086,643 high-quality biallelic single nucleotide polymorphisms (SNPs) retrieved from the 47 clonal culture strains with the best genome sequence coverage ( >20×). A principal component analysis (PCA) and a discriminant analysis in principal component (DAPC) both delineate three well-defined genetic groups, with the distribution of strains being unequal and with no overlap on the principal components (Fig. 1a; Supplementary Fig. S3a,b). With regards to population structure, the DAPC analysis suggested that 3 clusters (K = 3) can be used to depict a genotype membership matrix for each strain (Fig. 1b; Supplementary Fig. S4). As such, it confirmed the three-lineage delineation proposed by the PCA, while illustrating no admixture between lineages.Fig. 1: Relationship between genetic structure and morphotypes in G. huxleyi.a Principal component analysis (PCA) based on 2,086,643 SNPs recovered from 47 G. huxleyi genomes; b Relationship between coalescent species phylogeny (ASTRAL tree based on 1000 supergenes) and DAPC clustering; c Correspondence between morphotypes and lineages within G. huxleyi, and sub-lineages within A1 (scale bar = 4 μm). Variable elements in relation to genotypes are highlighted in the schematics under the SEM pictures; d Distribution of coccolith length for 5 randomly chosen strains representing each clade and sub-clade, with a jittered box-plot on the left and a half-violin plot on the right for each group; e Matrix plot of Bonferroni corrected p-value corresponding to the Dunn-test for the comparison of coccolith length measurements between groups.Full size imagePhylogenetic inference based on alignments with higher mapping coverage only (47 strains) or including sequences with lower mapping coverage (59 strains) all supported segregation of strains into three main lineages, which we term clades A1, A2 and B, with A1 and A2 being more closely related to each other than to B (Fig. 1b; Supplementary Fig. S5a, b). This delineation is congruent with previous studies on the phylogeny of the Gephyrocapsa genus [17, 46, 65]. These clades also correspond to differences in morphotypes (Fig. 1b, c). All strains in clade A1 produce unambiguous A-group coccolith morphotypes (type A and type R). Similarly, all strains in clade B produce unambiguous B-group coccolith morphotypes (type B and type O). Clade A2 is less distinctive, with strains producing lightly calcified type A coccoliths. Some of these strains could be classified as type B/C [66] or C (both regarded as B-group morphotypes), but distinctive by the lower elevation of distal shield elements and by greater degree of calcification of the central area grid (which is reduced and sometimes absent in morphotypes B/C and C). At a finer level, clade A1 is composed of four sub-clades, which we term A1a, A1b, A1c, and A1d. Strains in sub-clades A1a, A1c and A1d all produce coccoliths with type A morphologies and distinctive degrees of calcification: strains in the sub-clade A1a form relatively lightly calcified coccoliths with regular elements, while strains in sub-clades A1c and A1d produce similar moderately calcified coccoliths, sometimes with conspicuous irregularities (inner tube elements overlapping into the central area). Strains in clade A1b produce distinct coccoliths exhibiting A-group morphology but with heavy calcification, including forms with heavily calcified shields which have been termed type R and also forms with heavily calcified central areas which have been referred to as “type A overcalcified”. Some clade A2 strains produce coccoliths with a similar morphology to strains in A1a, indicative of partially cryptic lineages (Supplementary Fig. S2; Supplementary Table S4).The congruence between morphotypes and clades is also supported by significant differences in the length of coccoliths measured between some of the clades (Fig. 1d, e). The morphogroups A and B differ significantly, and insignificant comparison relates to the comparison of sub-clades against the clade A2, which reinforces the closest relationship between A1 and A2. We denote also that the case of A1a and A2 demonstrating no significant difference in coccolith length concurs with the cryptic delineation mentioned above.Based on the clustering analyses and the phylogenetic reconstructions, we tested whether different groupings are distinct species with regards to the null hypothesis “G. huxleyi is a single species”, which correspond to the current state of taxonomy. Species delimitation based on comparison of Marginal Likelihood Estimators (MLE) with Bayes Factors (BF) supported the hypothesis that the three lineages depicted by ordination and phylogenetic reconstructions are distinct species as the best model (Table 1).Table 1 Species delimitation based on Bayes Factor Delimitation (BDF).Full size tableD-statistics calculated to estimate gene flow reveal a non-significant excess of alleles shared between the three lineages (Fig. 2a; Supplementary Table S5). Fbranch statistics, (fb) revealed significant signatures of gene-flow between sub-lineages within A1 associated with correlated estimates in relation to A1a, A2 and B (Fig. 2a) [60]. Signatures on the basal branch of diversification in A1 may correspond to genetic exchanges between A1 and B, with gene-flow signatures attributed to A2 corresponding to correlated estimates due to common ancestry. Recent signatures of gene-flow throughout the evolution of A1 are thus likely associated to the common ancestry between A1a, A2 and B during gene-flow events between the sub-lineages, as supported by the non-significant D statistics between the three lineages. Moreover, the phylogenetic network revealed similar convolutions between A1 sub-lineages but clear separation of the main lineages and longer branches in the A2 lineage (Fig. 2b).Fig. 2: Excess of allele sharing and differentiation in G. huxleyi.a f-branch (fb) statistics between lineages and sub-lineages. The gradient represents the fb score, grey blocks represents tests not consistent with the species tree (for each branch on the topology of the y axis, having itself or a sister taxon as donor on the topology of the x axis); asterisks denote block jack-knifing significance at p  More

  • in

    Life on a beach leads to phenotypic divergence despite gene flow for an island lizard

    Bay, R. A. et al. Genetic coupling of female mate choice with polygenic ecological divergence facilitates stickleback speciation. Curr. Biol. 27, 3344–3349 (2017).CAS 

    Google Scholar 
    Johannesson, K., Butlin, R. K., Panova, M. & Westram, A. M. Population Genomics: Marine Organisms (eds. Oleksiak, M. F. & Rajora, O. P.) 277–301 (Springer, 2017).Riesch, R. et al. Transitions between phases of genomic differentiation during stick-insect speciation. Nat. Ecol. Evol. 1, 1–13 (2017).
    Google Scholar 
    Feder, J. L. & Nosil, P. The efficacy of divergence hitchhiking in generating genomic islands during ecological speciation. Evolution 64, 1729–1747 (2010).
    Google Scholar 
    Rosenblum, E. B., Hickerson, M. J. & Moritz, C. A multilocus perspective on colonization accompanied by selection and gene flow. Evolution 61, 2971–2985 (2007).CAS 

    Google Scholar 
    Nosil, P., Egan, S. P. & Funk, D. J. Heterogeneous genomic differentiation between walking‐stick ecotypes: “isolation by adaptation” and multiple roles for divergent selection. Evolution 62, 316–336 (2008).
    Google Scholar 
    Orsini, L., Vanoverbeke, J., Swillen, I., Mergeay, J. & Meester, L. Drivers of population genetic differentiation in the wild: isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Mol. Ecol. 22, 5983–5999 (2013).
    Google Scholar 
    Sexton, J. P., Hangartner, S. B. & Hoffmann, A. A. Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution 68, 1–15 (2014).CAS 

    Google Scholar 
    Roderick, G. K. & Gillespie, R. G. Speciation and phylogeography of Hawaiian terrestrial arthropods. Mol. Ecol. 7, 519–531 (1998).CAS 

    Google Scholar 
    Juan, C., Emerson, B. C., Oromı́, P. & Hewitt, G. M. Colonization and diversification: towards a phylogeographic synthesis for the Canary Islands. Trends Ecol. Evol. 15, 104–109 (2000).CAS 

    Google Scholar 
    Brown, R. P., Hoskisson, P. A., Welton, J. H. & Báez, M. Geological history and within‐island diversity: a debris avalanche and the Tenerife lizard Gallotia galloti. Mol. Ecol. 15, 3631–3640 (2006).CAS 

    Google Scholar 
    O’Connell, K. A., Prates, I., Scheinberg, L. A., Mulder, K. P. & Bell, R. C. Speciation and secondary contact in a fossorial island endemic, the São Tomé caecilian. Mol. Ecol. 30, 2859–2871 (2021).
    Google Scholar 
    Malhotra, A. & Thorpe, R. S. The dynamics of natural selection and vicariance in the Dominican anole: patterns of within‐island molecular and morphological divergence. Evolution 54, 245–258 (2000).CAS 

    Google Scholar 
    Brown, R. P., Woods, M. & Thorpe, R. S. Historical volcanism and within-island genetic divergence in the Tenerife skink (Chalcides viridanus). Biol. J. Linnean Soc. 122, 166–175 (2017).
    Google Scholar 
    Losos, J. Lizards in an Evolutionary Tree: Ecology and Adaptive Radiation of Anoles (University of California Press, 2009).Mahler, D. L., Revell, L. J., Glor, R. E. & Losos, J. B. Ecological opportunity and the rate of morphological evolution in the diversification of Greater Antillean anoles. Evolution 64, 2731–2745 (2010).
    Google Scholar 
    Wang, I. J., Glor, R. E. & Losos, J. B. Quantifying the roles of ecology and geography in spatial genetic divergence. Ecol. Lett. 16, 175–182 (2013).
    Google Scholar 
    Beerli, P. & Felsenstein, J. Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Genetics 152, 763–773 (1999).CAS 

    Google Scholar 
    Hey, J. & Nielsen, R. Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 167, 747–760 (2004).CAS 

    Google Scholar 
    Hey, J. Recent advances in assessing gene flow between diverging populations and species. Curr. Opin. Genet. Dev. 16, 592–596 (2006).CAS 

    Google Scholar 
    Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C. & Foll, M. Robust demographic inference from genomic and SNP data. PLoS Genet. 9, 1003905 (2013).
    Google Scholar 
    Butlin, R. K. et al. Parallel evolution of local adaptation and reproductive isolation in the face of gene flow. Evolution 68, 935–949 (2014).
    Google Scholar 
    Rosenblum, E. B., Hoekstra, H. E. & Nachman, M. W. Adaptive reptile color variation and the evolution of the MCIR gene. Evolution 58, 1794–1808 (2004).CAS 

    Google Scholar 
    Rosenblum, E. B. Convergent evolution and divergent selection: lizards at the White Sands ecotone. Am. Nat. 167, 1–15 (2006).
    Google Scholar 
    Sumner, F. B. An analysis of geographic variation in mice of the Peromyscus polionotus group from Florida and Alabama. J. Mammal. 7, 149–184 (1926).
    Google Scholar 
    Davenport, J., & Dellinger, T. Melanism and foraging behaviour in an intertidal population of the Madeiran lizard Podarcis (= Lacerta) dugesii (Milne-Edwards, 1829). Herpetol. J. 5, 200–203 (1995).
    Google Scholar 
    Galán, P. Demography and population dynamics of the lacertid lizard Podarcis bocagei in north-west Spain. J. Zool. 249, 203–218 (1999).
    Google Scholar 
    Censky, E. J., Hodge, K. & Dudley, J. Over-water dispersal of lizards due to hurricanes. Nature 395, 556 (1998).CAS 

    Google Scholar 
    Rolán‐Alvarez, E., Erlandsson, J., Johannesson, K. & Cruz, R. Mechanisms of incomplete prezygotic reproductive isolation in an intertidal snail: testing behavioural models in wild populations. J. Evol. Biol. 12, 879–890 (1999).
    Google Scholar 
    Ludt, W. B. & Rocha, L. A. Shifting seas: the impacts of Pleistocene sea‐level fluctuations on the evolution of tropical marine taxa. J. Biogeogr. 42, 25–38 (2015).
    Google Scholar 
    Lambeck, K. Late Pleistocene, Holocene and present sea-levels: constraints on future change. Glob. Planet Change 3, 205–217 (1990). & J.
    Google Scholar 
    Rosenblum, E. B. The role of phenotypic plasticity in color variation of Tularosa Basin lizards. Copeia 2005, 586–596 (2005).
    Google Scholar 
    Jin, Y. et al. Dorsal pigmentation and its association with functional variation in MC1R in a lizard from different elevations on the Qinghai–Tibetan plateau. Genome Biol. Evol. 12, 2303–2313 (2020).CAS 

    Google Scholar 
    Corl, A. et al. The genetic basis of adaptation following plastic changes in coloration in a novel environment. Curr. Biol. 28, 2970–2977 (2018).CAS 

    Google Scholar 
    Sacchi, R. et al. Genetic and phenotypic component in head shape of common wall lizard Podarcis muralis. Amphib.-Reptilia 37, 301–310 (2016).
    Google Scholar 
    Dice, L. R. Variation of the deer-mouse (Peromyscus maniculatus) on the Sand Hills of Nebraska and adjacent areas. Contrib. Lab Vertebrate Biol. Univ. Mich. 15, 1–19 (1941).
    Google Scholar 
    Vitt, L. J., Caldwell, J. P., Zani, P. A. & Titus, T. A. The role of habitat shift in the evolution of lizard morphology: evidence from tropical Tropidurus. Proc. Natl Acad. Sci. USA 94, 3828–3832 (1997).CAS 

    Google Scholar 
    Pfeifer, S. P. et al. The evolutionary history of Nebraska deer mice: local adaptation in the face of strong gene flow. Mol. Biol. Evol. 35, 792–806 (2018).CAS 

    Google Scholar 
    Scherrer, R., Donihue, C. M., Reynolds, R. G., Losos, J. B. & Geneva, A. J. Dewlap colour variation in Anolis sagrei is maintained among habitats within islands of the West Indies. J. Evol. Biol. 35, 680–692 (2022).
    Google Scholar 
    Janson, K. Selection and migration in two distinct phenotypes of Littorina saxatilis in Sweden. Oecologia 59, 58–61 (1983).CAS 

    Google Scholar 
    Richardson, J. L., Urban, M. C., Bolnick, D. I. & Skelly, D. K. Microgeographic adaptation and the spatial scale of evolution. Trends Ecol. Evol. 29, 165–176 (2014).
    Google Scholar 
    Engelstoft, C., Robinson, J., Fraser, D. & Hanke, G. Recent rapid expansion of common wall lizards (Podarcis muralis) in British Columbia, Canada. Northwest. Naturalist 101, 50–55 (2020).
    Google Scholar 
    Cascio, P. L. & Pasta, S. Preliminary data on the biometry and the diet of a microinsular population of Podarcis wagleriana (Reptilia: Lacertidae). Acta Herpetol. 1, 147–152 (2006).
    Google Scholar 
    Janssen, J., Towns, D. R., Duxbury, M. & Heitkönig, I. M. Surviving in a semi-marine habitat: dietary salt exposure and salt secretion of a New Zealand intertidal skink. Comp. Biochem Physiol. A Mol. Integr. Physiol. 189, 21–29 (2015).CAS 

    Google Scholar 
    Grismer, L. L. Three new species of intertidal side-blotched lizards (genus Uta) from the Gulf of California, Mexico. Herpetologica 50, 451–474 (1994).
    Google Scholar 
    Sepúlveda, M., Sabat, P., Porter, W. P. & Fariña, J. M. One solution for two challenges: the lizard Microlophus atacamensis avoids overheating by foraging in intertidal shores. PLoS One 9, 97735 (2014).
    Google Scholar 
    Hobson, E. S. Observations on diving in the Galapagos marine iguana, Amblyrhynchus cristatus (Bell). Copeia 1965, 249–250 (1965).Balakrishna, S., Amdekar, M. S. & Thaker, M. Morphological divergence, tail loss, and predation risk in urban lizards. Urban Ecosyst. 24, 1391–1398 (2021).
    Google Scholar 
    Falvey, C. H., Aviles-Rodriguez, K. J., Hagey, T. J. & Winchell, K. M. The finer points of urban adaptation: intraspecific variation in lizard claw morphology. Biol. J. Linn. Soc. 131, 304–318 (2020).
    Google Scholar 
    Marnocha, E., Pollinger, J. & Smith, T. B. Human‐induced morphological shifts in an island lizard. Evol. Appl 4, 388–396 (2011).
    Google Scholar 
    Rocha, R., Paixão, M. & Gouveia, R. Predation note: Anthus berthelotii madeirensis (Passeriformes: Motacillidae) catches Teira dugesii mauli (Squamata: Lacertidae) in Deserta Grande, Madeira Archipel. Herpetol. Notes 3, 77–78 (2010).
    Google Scholar 
    Völkl, W. & Brandl, R. Tail break rate in the Madeiran lizard (Podarcis dugesii). Amphibia-Reptilia 9, 213–218 (1988).Malhotra, A. & Thorpe, R. S. Microgeographic variation in Anolis oculatus, on the island of Dominica, West Indies. J. Evol. Biol. 4, 321–335 (1991).
    Google Scholar 
    Thorpe, R. S. & Brown, R. P. Microgeographic variation in the colour pattern of the lizard Gallotia galloti within the island of Tenerife: distribution, pattern and hypothesis testing. Biol. J. Linn. Soc. 38, 303–322 (1989).
    Google Scholar 
    Brown, R. P., Thorpe, R. S. & Báez, M. Parallel within-island microevolution of lizards on neighbouring islands. Nature 352, 60–62 (1991).
    Google Scholar 
    Báez, M. & Brown, R. P. Testing multivariate patterns of within‐island differentiation in Podarcis dugesii from Madeira. J. Evol. Biol. 10, 575–587 (1997).
    Google Scholar 
    Cook, L. M. Density of lizards in Madeira. Bocagiana (Funchal) 66, 1–3 (1983).
    Google Scholar 
    Sadek, R. A. The diet of the Madeiran lizard Lacerta dugesii. Zool. J. Linn. Soc. 73, 313–341 (1981).
    Google Scholar 
    Brehm, A. et al. Phylogeography of the Madeiran endemic lizard Lacerta dugesii inferred from mtDNA sequences. Mol. Phylogenetics Evol. 26, 222–230 (2003).CAS 

    Google Scholar 
    Suárez, N. M., Pestano, J. & Brown, R. P. Ecological divergence combined with ancient allopatry in lizard populations from a small volcanic island. Mol. Ecol. 23, 4799–4812 (2014).
    Google Scholar 
    Towns, D. R. Ecology of the black shore skink, Leiolopisma suteri (Lacertilia: Scincidae), in boulder beach habitats. N. Z. J. Zool. 2, 389–407 (1975).
    Google Scholar 
    Cook, L. M. Variation in the Madeiran lizard Lacerta dugesii. J. Zool. 187, 327–340 (1979).
    Google Scholar 
    Troscianko, J. & Stevens, M. Image calibration and analysis toolbox–a free software suite for objectively measuring reflectance, colour, and pattern. Methods Ecol. Evol. 6, 1320–1331 (2015).
    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 

    Google Scholar 
    Rohlf, F. J. The tps series of software. Hystrix, Ital. J. Mammal. 26, 9–12 (2015).
    Google Scholar 
    Bookstein, F. L. Morphometric Tools for Landmark Data: Geometry and Biology (Cambridge University Press, 1991).Klingenberg, C. P. MorphoJ: an integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11, 353–357 (2011).
    Google Scholar 
    Rohlf, F. J. & Slice, D. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst. Biol. 39, 40–59 (1990).
    Google Scholar 
    Klingenberg, C. P., Barluenga, M. & Meyer, A. Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evolution 56, 1909–1920 (2002).
    Google Scholar 
    Andrews, S. FastQC: a Quality Control Tool for High Throughput Sequence Data. Babraham Bioinformatics version 0.11.7. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).Melo, A. T., Bartaula, R. & Hale, I. GBS-SNP-CROP: a reference-optional pipeline for SNP discovery and plant germplasm characterization using variable length, paired-end genotyping-by-sequencing data. BMC Bioinform. 17, 1–15 (2016).
    Google Scholar 
    Sabadin, F., Carvalho, H. F., Galli, G. & Fritsche-Neto, R. Population-tailored mock genome enables genomic studies in species without a reference genome. Mol. Genet. Genom. 297, 33–46 (2022).CAS 

    Google Scholar 
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).CAS 

    Google Scholar 
    Pfeifer, B., Wittelsbürger, U., Ramos-Onsins, S. E. & Lercher, M. J. PopGenome: an efficient swiss army knife for population genomic analyses in R. Mol. Biol. Evol. 31, 1929–1936 (2014).CAS 

    Google Scholar 
    Team, R. C. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2022).Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 

    Google Scholar 
    Luu, K., Bazin, E. & Blum, M. G. pcadapt: an R package to perform genome scans for selection based on principal component analysis. Mol. Ecol. Resour. 17, 67–77 (2017).CAS 

    Google Scholar 
    Günther, T. & Coop, G. Robust identification of local adaptation from allele frequencies. Genetics 195, 205–220 (2013).
    Google Scholar 
    Dray, S. et al. Package ‘adespatial.’ Available from: https://cran.r-project.org/package=adespatial (2018).Montano, V. & Jombart, T. An eigenvalue test for spatial principal component analysis. BMC Bioinform. 18, 1–7 (2017).
    Google Scholar 
    Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).CAS 

    Google Scholar  More

  • in

    Different effects of pesticides on transcripts of the endocrine regulation and energy metabolism in honeybee foragers from different colonies

    Eilers, E. J., Kremen, C., Smith Greenleaf, S., Garber, A. K. & Klein, A. M. Contribution of pollinator-mediated crops to nutrients in the human food supply. PLoS ONE 6, 21363 (2011).ADS 

    Google Scholar 
    Williams, P. H. The dependence of crop pollination within the European Union on pollination by honey bees. Agric. Zool. Rev. 6, 229–257 (1994).
    Google Scholar 
    Burd, M. Bateman’s principle and plant reproduction: the role of pollen limitation in fruit and seed set. Bot. Rev. 60, 83–139 (1994).MathSciNet 

    Google Scholar 
    Aguilar, R., Ashworth, L., Galetto, L. & Aizen, M. A. Plant reproductive susceptibility to habitat fragmentation: Review and synthesis through a meta-analysis. Ecol. Lett. 9, 968–980 (2006).
    Google Scholar 
    Potts, S. G. et al. Declines of managed honey bees and beekeepers in Europe. J. Apic. Res. 49, 15–22 (2010).
    Google Scholar 
    van Engelsdorp, D., Hayes, J., Underwood, R. M. & Pettis, J. A survey of honey bee colony losses in the U.S., fall 2007 to spring 2008. PLoS ONE 3, e4071 (2008).ADS 

    Google Scholar 
    Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol. 19, 915–918 (2009).CAS 

    Google Scholar 
    Van Engelsdorp, D. et al. Colony collapse disorder: A descriptive study. PLoS ONE 4, e6481 (2009).ADS 

    Google Scholar 
    Genersch, E. American foulbrood in honeybees and its causative agent, Paenibacillus larvae. J. Invertebr. Pathol. 103(suppl 1), 10–19 (2010).
    Google Scholar 
    Graystock, P., Yates, K., Darvill, B., Goulson, D. & Hughes, W. O. H. Emerging dangers: Deadly effects of an emergent parasite in a new pollinator host. J. Invertebr. Pathol. 114, 114–119 (2013).
    Google Scholar 
    Insolia, L. et al. Honey bee colony loss linked to parasites, pesticides and extreme weather across the United States. Sci. Rep. 12(1), 20787. https://doi.org/10.1038/s41598-022-24946-4 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Sanchez-Bayo, F. & Goka, K. Pesticide residues and bees: A risk assessment. PLoS ONE 9(4), e94482 (2014).ADS 

    Google Scholar 
    Bolognesi, C. & Merlo, F. D. Pesticides: Human health effects. Encyclop. Environ. Health 1, 438–453 (2011).
    Google Scholar 
    Mullin, C. A. et al. High levels of miticides and agrochemicals in North American apiaries: Implications for honey bee health. PLoS ONE 1, e9754 (2015).
    Google Scholar 
    Calatayud-Vernich, P., Calatayud, F., Simó, E. & Picó, Y. Pesticide residues in honey bees, pollen and beeswax: Assessing beehive exposure. Environ. Pollut. 241, 106–114. https://doi.org/10.1016/j.envpol.2018.05.062 (2018).Article 
    CAS 

    Google Scholar 
    Woodcock, B. A. et al. Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat. Commun. 2016(7), 12459 (2016).ADS 

    Google Scholar 
    Zhao, H. et al. Review on effects of some insecticides on honey bee health. Pestic. Biochem. Physiol. 188, 105219. https://doi.org/10.1016/j.pestbp.2022.105219 (2022).Article 
    CAS 

    Google Scholar 
    Ludicke, J. C. & Nieh, J. C. Thiamethoxam impairs honey bee visual learning, alters decision times, and increases abnormal behaviors. Ecotoxicol. Environ. Saf. 193, 110367 (2020).CAS 

    Google Scholar 
    Tison, L., Duer, A., Púčiková, V., Greggers, U. & Menzel, R. Detrimental effects of clothianidin on foraging and dance communication in honey bees. PLoS ONE 15(10), e0241134 (2020).CAS 

    Google Scholar 
    Fent, K., Schmid, M. & Christen, V. Global transcriptome analysis reveals relevant effects at environmental concentrations of cypermethrin in honey bees (Apis mellifera). Environ. Pollut. 259, 113715 (2020).CAS 

    Google Scholar 
    Christen, V., Krebs, J., Bünter, I. & Fent, K. Biopesticide spinosad induces transcriptional alterations in genes associated with energy production in honey bees (Apis mellifera) at sublethal concentrations. J. Hazard. Mater. 378, 120736 (2019).CAS 

    Google Scholar 
    Christen, V., Krebs, J. & Fent, K. Fungicides chlorothanolin, azoxystrobin and folpet induce transcriptional alterations in genes encoding enzymes involved in oxidative phosphorylation and metabolism in honey bees (Apis mellifera) at sublethal concentrations. J. Hazard. Mater. 377, 215–226 (2019).CAS 

    Google Scholar 
    Fent, K., Haltiner, T., Kunz, P. & Christen, V. Insecticides cause transcriptional alterations of endocrine related genes in the brain of honey bee foragers. Chemosphere 260, 127542 (2020).ADS 
    CAS 

    Google Scholar 
    Christen, V., Grossar, D., Charrière, J. D., Eyer, M. & Jeker, L. Correlation between increased homing flight duration and altered gene expression in the brain of honey bee foragers after acute oral exposure to thiacloprid and thiamethoxam. Insect Sci. 1, 1–15 (2021).
    Google Scholar 
    Mao, W., Schuler, M. A. & Berenbaum, M. R. Disruption of quercetin metabolism by fungicide affects energy production in honey bees (Apis mellifera). Proc. Natl. Acad. Sci. USA 114(10), 2538–2543 (2017).ADS 
    CAS 

    Google Scholar 
    Christen, V., Kunz, P. Y. & Fent, K. Endocrine disruption and chronic effects of plant protection products in bees: Can we better protect our pollinators?. Environ. Pollut. 243(Pt B), 1588–1601 (2018).CAS 

    Google Scholar 
    Testai, E., Buratti, F. & Di Consiglio, E. Chlorpyrifos Hayes’ Handbook of Pesticide Toxicology 1505–1526 (Academic Press, 2010).
    Google Scholar 
    Eastmond, D. & Balakrishnan, S. Genotoxicity of Pesticides Hayes’ Handbook of Pesticide Toxicology 357–380 (Academic Press, 2010).
    Google Scholar 
    Urlacher, E. et al. Measurements of chlorpyrifos levels in forager bees and comparison with levels that disrupt honey bee odor-mediated learning under laboratory conditions. J. Chem. Ecol. 42(2), 127–138 (2016).CAS 

    Google Scholar 
    Li, Z. et al. Effects of sublethal concentrations of chlorpyrifos on olfactory learning and memory performances in two bee species, Apis mellifera and Apis cerana. Sociobiology 64, 174 (2017).
    Google Scholar 
    DeGrandi-Hoffman, G., Chen, Y. & Simonds, R. The effects of pesticides on queen rearing and virus titers in honey bees (Apis mellifera L.). Insects 4, 71–89 (2013).
    Google Scholar 
    Cutler, G. C., Purdy, J., Giesy, J. P. & Solomon, K. R. Risk to pollinators from the use of chlorpyrifos in the United States. In Ecological Risk Assessment for Chlorpyrifos in Terrestrial and Aquatic Systems in the United States Reviews of Environmental Contamination and Toxicology (eds Giesy, J. & Solomon, K.) (Springer, 2014).
    Google Scholar 
    Christen, V. & Fent, K. Exposure of honey bees (Apis mellifera) to different classes of insecticides exhibit distinct molecular effect patterns at concentrations that mimic environmental contamination. Environ. Pollut. 226, 48–59 (2017).CAS 

    Google Scholar 
    Stevenson, J. H. The acute toxicity of unformulated pesticides to worker honey bees (Apis mellifera L.). Plant Pathol. 27, 38–40 (1978).CAS 

    Google Scholar 
    Bartlett, D. W. et al. The strobilurin fungicides. Pest. Manag. Sci. 58, 649–662 (2002).CAS 

    Google Scholar 
    Ostiguy, N. et al. Honey bee exposure to pesticides: A four-year nationwide study. Insects. 10, 13 (2019).
    Google Scholar 
    Inoue, L. V. B., Domingues, C. E. C., Gregorc, A., Silva-Zacarin, E. C. M. & Malaspina, O. Harmful effects of pyraclostrobin on the fat body and pericardial cells of foragers of africanized honey bee. Toxics 10, 530. https://doi.org/10.3390/toxics10090530 (2022).Article 
    CAS 

    Google Scholar 
    Nicodemo, D. et al. Mitochondrial respiratory inhibition promoted by pyraclostrobin in fungi is also observed in honey bees. Environ. Toxicol. Chem. 39, 1267–1272 (2020).CAS 

    Google Scholar 
    Domingues, C. E. C., Inoue, L. V. B., Silva-Zacarin, E. C. M. & Malaspina, O. Foragers of Africanized honeybee are more sensitive to fungicide pyraclostrobin than newly emerged bees. Environ. Pollut. 266, 115267 (2020).
    Google Scholar 
    Tadei, R. et al. Late effect of larval co-exposure to the insecticide clothianidin and fungicide pyraclostrobin in Africanized Apis mellifera. Sci. Rep 9, 3277 (2019).ADS 

    Google Scholar 
    Zioga, E., Kelly, R., White, B. & Stout, J. C. Plant protection product residues in plant pollen and nectar: A review of current knowledge. Environ. Res. 189, 109873 (2020).CAS 

    Google Scholar 
    Corona, M. et al. Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. Proc. Natl. Acad. Sci. USA 104, 7128–7133 (2007).ADS 
    CAS 

    Google Scholar 
    Winston, M. L. The Biology of the Honey Bee (Harvard University Press, 1987).
    Google Scholar 
    Ueno, T., Nakaoka, T., Takeuchi, H. & Kubo, T. Differential gene expression in the hypopharyngeal glands of worker honeybees (Apis mellifera L.) associated with an age-dependent role change. Zool. Sci. 8, 557–563 (2009).
    Google Scholar 
    Kubo, T. et al. Change in the expression of hypopharyngealgland proteins of the worker honeybees (Apis mellifera L.) with age and/or role. J. Biochem. 119, 291–295 (1996).CAS 

    Google Scholar 
    Ohashi, K., Sawata, M., Takeuchi, H., Natori, S. & Kubo, T. Molecular cloning of cDNA and analysis of expression of the gene for alpha-glucosidase from the hypopharyngeal gland of the honeybee Apis mellifera L. Biochem. Biophys. Res. Commun. 221, 380–385 (1996).CAS 

    Google Scholar 
    Ohashi, K., Natori, S. & Kubo, T. Expression of amylase and glucose oxidase in the hypopharyngeal gland with an age dependent role change of the worker honeybee (Apis mellifera L.). Eur. J. Biochem. 265, 127–133 (1999).CAS 

    Google Scholar 
    Chanchao, C., Padoongsupalai, R. & Sangvanich, P. Expression and characterization of α-glucosidase III in the dwarf honeybee, Apis florea (Hymenoptera: Apoidea: Apidae). Insect Sci. 14(4), 283–293 (2007).CAS 

    Google Scholar 
    Corby-Harris, V. & Snyder, L. A. Measuring hypopharyngeal gland acinus size in honey bee (Apis mellifera) Workers. J. Vis. Exp. 139, 58261 (2018).
    Google Scholar 
    Yamada, T. & Yamada, K. Comparison of long-term changes in size and longevity of bee colonies in mid-west Japan and Maui with and without exposure to pesticide, cold winters, and mites. PeerJ 8, e9505 (2020).
    Google Scholar 
    Rinkevich, F. D. et al. Genetics, synergists, and age affect insecticide sensitivity of the honey bee, Apis mellifera. PLoS ONE 10(10), e0139841 (2015).
    Google Scholar 
    Weidenmüller, A. The control of nest climate in bumblebee (Bombus terrestris) colonies: Interindividual variability and self reinforcement in fanning response. Behav. Ecol. 15(1), 120–128 (2004).MathSciNet 

    Google Scholar 
    Flatt, T., Tu, M. P. & Tatar, M. Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history. BioEssays 27, 999–1010 (2005).CAS 

    Google Scholar 
    Wu, M. C., Chang, Y. W., Lu, K. H. & Yang, E. C. Gene expression changes in honey bees induced by sublethal imidacloprid exposure during the larval stage. Insect. Biochem. Mol. Biol. 88, 12–20 (2017).CAS 

    Google Scholar 
    Ament, S. A., Corona, M., Pollock, H. S. & Robinson, G. E. Insulin signaling is involved in the regulation of worker division of labor in honey bee colonies. Proc. Natl. Acad. Sci. USA 105, 4226–4231 (2008).ADS 
    CAS 

    Google Scholar 
    Nicodemo, D. et al. Fipronil and imidacloprid reduce honeybee mitochondrial activity. Environ. Toxicol. Chem. 33(9), 2070–2075 (2014).CAS 

    Google Scholar 
    Syromyatnikov, M. Y., Lopatin, A. V., Starkov, A. A. & Popov, V. N. Isolation and properties of flight muscle mitochondria of the bumblebee Bombus terrestris (L.). Biochemistry 78(8), 909–914 (2013).CAS 

    Google Scholar 
    Dayer, F. C. Coadaptation of colony design and worker performance in honeybees. In Diversity in the Genus Apis (ed. Smith, D. R.) 2133–2245 (Westview Press, 1991).
    Google Scholar 
    Simon-Delso, N., Amaral-Rogers, V. & Belzunces, L. P. Systemic insecticides (neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. 22, 5–34 (2015).CAS 

    Google Scholar 
    Evans, J. D. et al. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect. Mol. Biol. 5, 645–656 (2006).
    Google Scholar 
    Pankiw, T. & Page, R. E. Response thresholds to sucrose predict foraging division of labor in honeybees. Behav. Ecol. Sociobiol. 47, 265–267 (2000).
    Google Scholar  More

  • in

    Fabrication of biochar derived from different types of feedstocks as an efficient adsorbent for soil heavy metal removal

    Anae, J. et al. Recent advances in biochar engineering for soil contaminated with complex chemical mixtures: Remediation strategies and future perspectives. Sci. Total Environ. 767, 144351. https://doi.org/10.1016/j.scitotenv.2020.144351 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Kiran, B. R. & Prasad, M. N. V. Biochar and rice husk ash assisted phytoremediation potentials of Ricinus communis L. for lead-spiked soils. Ecotoxicol Environ Saf 183, 109574. https://doi.org/10.1016/j.ecoenv.2019.109574 (2019).Article 
    CAS 

    Google Scholar 
    Bolan, N. et al. Remediation of heavy metal(loid)s contaminated soils – To mobilize or to immobilize?. J. Hazard. Mater. 266, 141–166. https://doi.org/10.1016/j.jhazmat.2013.12.018 (2014).Article 
    CAS 

    Google Scholar 
    Burachevskaya, M. et al. The effect of granular activated carbon and biochar on the availability of Cu and Zn to Hordeum sativum distichum in contaminated soil. Plants https://doi.org/10.3390/plants10050841 (2021).Article 

    Google Scholar 
    Cao, P. et al. Mercapto propyltrimethoxysilane- and ferrous sulfate-modified nano-silica for immobilization of lead and cadmium as well as arsenic in heavy metal-contaminated soil. Environ. Pollut. 266, 115152. https://doi.org/10.1016/j.envpol.2020.115152 (2020).Article 
    CAS 

    Google Scholar 
    Ok, Y. S. et al. Ameliorants to immobilize Cd in rice paddy soils contaminated by abandoned metal mines in Korea. Environ. Geochem. Health 33(Suppl 1), 23–30. https://doi.org/10.1007/s10653-010-9364-0 (2011).Article 
    CAS 

    Google Scholar 
    Qin, Y. et al. Dual-wastes derived biochar with tailored surface features for highly efficient p-nitrophenol adsorption. J. Clean. Prod. 353, 131571. https://doi.org/10.1016/j.jclepro.2022.131571 (2022).Article 
    CAS 

    Google Scholar 
    Rajput, V. D. et al. Nano-biochar: A novel solution for sustainable agriculture and environmental remediation. Environ. Res. 210, 112891. https://doi.org/10.1016/j.envres.2022.112891 (2022).Article 
    CAS 

    Google Scholar 
    Ding, Y. et al. Biochar to improve soil fertility. A review. Agron. Sustain. Dev. 36, 36. https://doi.org/10.1007/s13593-016-0372-z (2016).Article 
    CAS 

    Google Scholar 
    Oni, B. A., Oziegbe, O. & Olawole, O. O. Significance of biochar application to the environment and economy. Ann. Agric. Sci. 64, 222–236. https://doi.org/10.1016/j.aoas.2019.12.006 (2019).Article 

    Google Scholar 
    He, E. et al. Two years of aging influences the distribution and lability of metal(loid)s in a contaminated soil amended with different biochars. Sci. Total Environ. 673, 245–253. https://doi.org/10.1016/j.scitotenv.2019.04.037 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Netherway, P. et al. Phosphorus-rich biochars can transform lead in an urban contaminated soil. J. Environ. Qual. 48, 1091–1099. https://doi.org/10.2134/jeq2018.09.0324 (2019).Article 
    CAS 

    Google Scholar 
    O’Connor, D. et al. Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials. Sci. Total Environ. 619–620, 815–826. https://doi.org/10.1016/j.scitotenv.2017.11.132 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Xu, X. et al. Effect of physicochemical properties of biochar from different feedstock on remediation of heavy metal contaminated soil in mining area. Surf. Interfaces 32, 102058. https://doi.org/10.1016/j.surfin.2022.102058 (2022).Article 
    CAS 

    Google Scholar 
    Melo, L. C. A. et al. Sorption and desorption of cadmium and zinc in two tropical soils amended with sugarcane-straw-derived biochar. J. Soils Sediments 16, 226–234. https://doi.org/10.1007/s11368-015-1199-y (2016).Article 

    Google Scholar 
    Uchimiya, M., Chang, S. & Klasson, K. T. Screening biochars for heavy metal retention in soil: Role of oxygen functional groups. J. Hazard. Mater. 190, 432–441. https://doi.org/10.1016/j.jhazmat.2011.03.063 (2011).Article 
    CAS 

    Google Scholar 
    Jatav, H. S. et al. Sustainable approach and safe use of biochar and its possible consequences. Sustainability https://doi.org/10.3390/su131810362 (2021).Article 

    Google Scholar 
    Varalta, F. & Sorvari, J. In Organic Waste Composting through Nexus Thinking: Practices, Policies, and Trends (eds Hettiarachchi, H. et al.) 213–232 (Springer International Publishing, 2020).Chapter 

    Google Scholar 
    Pinotti, L. et al. Recycling food leftovers in feed as opportunity to increase the sustainability of livestock production. J. Clean. Prod. 294, 126290. https://doi.org/10.1016/j.jclepro.2021.126290 (2021).Article 

    Google Scholar 
    Jafri, N., Wong, W. Y., Doshi, V., Yoon, L. W. & Cheah, K. H. A review on production and characterization of biochars for application in direct carbon fuel cells. Process Saf. Environ. Prot. 118, 152–166. https://doi.org/10.1016/j.psep.2018.06.036 (2018).Article 
    CAS 

    Google Scholar 
    Jin, Y. et al. Characterization of biochars derived from various spent mushroom substrates and evaluation of their adsorption performance of Cu(II) ions from aqueous solution. Environ. Res. 196, 110323. https://doi.org/10.1016/j.envres.2020.110323 (2021).Article 
    CAS 

    Google Scholar 
    Tomczyk, A., Sokołowska, Z. & Boguta, P. Biomass type effect on biochar surface characteristic and adsorption capacity relative to silver and copper. Fuel 278, 118168. https://doi.org/10.1016/j.fuel.2020.118168 (2020).Article 
    CAS 

    Google Scholar 
    FAO. Food Outlook – Biannual Report on Global Food Markets: November 2020. Rome. Phytoremediation of copper-contaminated soil by Artemisia absinthium: comparative effect of chelating agents. Environmental Geochemistry and Health. (2020). https://doi.org/10.4060/cb1993enRussian-Statistical-Year-Book. Statistical handbook. P76 M., 2020 – 700 p. ISBN 978-5-89476-497-9 (2020).Cheng, C.-H., Lehmann, J., Thies, J. E. & Burton, S. D. Stability of black carbon in soils across a climatic gradient. J. Geophys. Res. Biogeosci. 113, 55. https://doi.org/10.1029/2007JG000642 (2008).Article 
    CAS 

    Google Scholar 
    Singh, B. P., Cowie, A. L. & Smernik, R. J. Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environ. Sci. Technol. 46, 11770–11778. https://doi.org/10.1021/es302545b (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    He, Y. et al. Effects of biochar application on soil greenhouse gas fluxes: A meta-analysis. GCB Bioenergy 9, 743–755. https://doi.org/10.1111/gcbb.12376 (2017).Article 
    CAS 

    Google Scholar 
    Janu, R. et al. Biochar surface functional groups as affected by biomass feedstock, biochar composition and pyrolysis temperature. Carbon Resour. Convers. 4, 36–46. https://doi.org/10.1016/j.crcon.2021.01.003 (2021).Article 
    CAS 

    Google Scholar 
    Tan, X. et al. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125, 70–85. https://doi.org/10.1016/j.chemosphere.2014.12.058 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Ni, B.-J. et al. Competitive adsorption of heavy metals in aqueous solution onto biochar derived from anaerobically digested sludge. Chemosphere 219, 351–357. https://doi.org/10.1016/j.chemosphere.2018.12.053 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Park, J.-H. et al. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere 142, 77–83. https://doi.org/10.1016/j.chemosphere.2015.05.093 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Methodological-Guidelines. Methodological guidelines for the determination of heavy metals in the soils of agricultural land and crop production – M., TSINAO, 61 (1992)Zhang, A., Li, X., Xing, J. & Xu, G. Adsorption of potentially toxic elements in water by modified biochar: A review. J. Environ. Chem. Eng. 8, 104196. https://doi.org/10.1016/j.jece.2020.104196 (2020).Article 
    CAS 

    Google Scholar 
    Avramiotis, E., Frontistis, Z., Manariotis, I. D., Vakros, J. & Mantzavinos, D. On the performance of a sustainable rice husk biochar for the activation of persulfate and the degradation of antibiotics. Catalysts 11, 1303 (2021).Article 
    CAS 

    Google Scholar 
    Maiti, S., Dey, S., Purakayastha, S. & Ghosh, B. Physical and thermochemical characterization of rice husk char as a potential biomass energy source. Biores. Technol. 97, 2065–2070. https://doi.org/10.1016/j.biortech.2005.10.005 (2006).Article 
    CAS 

    Google Scholar 
    Herrera, K., Morales, L. F., Tarazona, N. A., Aguado, R. & Saldarriaga, J. F. Use of biochar from rice husk pyrolysis: Part A: Recovery as an adsorbent in the removal of emerging compounds. ACS Omega 7, 7625–7637. https://doi.org/10.1021/acsomega.1c06147 (2022).Article 
    CAS 

    Google Scholar 
    Szewczuk-Karpisz, K., Tomczyk, A., Grygorczuk-Płaneta, K. & Naveed, S. Rhizobium leguminosarum bv. trifolii exopolysaccharide and sunflower husk biochar as factors affecting immobilization of both tetracycline and Cd2+ ions on soil solid phase. J. Soils Sediments 22, 2620–2639. https://doi.org/10.1007/s11368-022-03255-3 (2022).Article 
    CAS 

    Google Scholar 
    Hubetska, T. S., Kobylinska, N. G. & García, J. R. Sunflower biomass power plant by-products: Properties and its potential for water purification of organic pollutants. J. Anal. Appl. Pyrolysis 157, 105237. https://doi.org/10.1016/j.jaap.2021.105237 (2021).Article 
    CAS 

    Google Scholar 
    Braghiroli, F. L. et al. The influence of pilot-scale pyro-gasification and activation conditions on porosity development in activated biochars. Biomass Bioenerg. 118, 105–114. https://doi.org/10.1016/j.biombioe.2018.08.016 (2018).Article 
    CAS 

    Google Scholar 
    Braghiroli, F. L. et al. The conversion of wood residues, using pilot-scale technologies, into porous activated biochars for supercapacitors. J. Porous Mater. 27, 537–548. https://doi.org/10.1007/s10934-019-00823-w (2020).Article 
    CAS 

    Google Scholar 
    Boraah, N., Chakma, S. & Kaushal, P. Attributes of wood biochar as an efficient adsorbent for remediating heavy metals and emerging contaminants from water: A critical review and bibliometric analysis. J. Environ. Chem. Eng. 10, 107825. https://doi.org/10.1016/j.jece.2022.107825 (2022).Article 
    CAS 

    Google Scholar 
    Phillips, C. L. et al. Towards predicting biochar impacts on plant-available soil nitrogen content. Biochar 4, 9. https://doi.org/10.1007/s42773-022-00137-2 (2022).Article 
    CAS 

    Google Scholar 
    Sun, L. & Gong, K. Silicon-based materials from rice husks and their applications. Ind. Eng. Chem. Res. 40, 5861–5877. https://doi.org/10.1021/ie010284b (2001).Article 
    CAS 

    Google Scholar 
    Islam, T. et al. Synthesis of rice husk-derived magnetic biochar through liquefaction to adsorb anionic and cationic dyes from aqueous solutions. Arab. J. Sci. Eng. 46, 233–246. https://doi.org/10.1007/s13369-020-04537-z (2021).Article 
    CAS 

    Google Scholar 
    Mohan, D. et al. Biochar production and applications in soil fertility and carbon sequestration – a sustainable solution to crop-residue burning in India. RSC Adv. 8, 508–520. https://doi.org/10.1039/C7RA10353K (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Li, F. et al. Preparation and characterization of biochars from Eichornia crassipes for cadmium removal in aqueous solutions. PLoS ONE 11, e0148132. https://doi.org/10.1371/journal.pone.0148132 (2016).Article 
    CAS 

    Google Scholar 
    Song, H. et al. Potential of novel biochars produced from invasive aquatic species outside food chain in removing ammonium nitrogen: Comparison with conventional biochars and clinoptilolite. Sustainability https://doi.org/10.3390/su11247136 (2019).Article 

    Google Scholar 
    Yang, G. et al. Effects of pyrolysis temperature on the physicochemical properties of biochar derived from vermicompost and its potential use as an environmental amendment. RSC Adv. 5, 40117–40125. https://doi.org/10.1039/C5RA02836A (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Enders, A., Hanley, K., Whitman, T., Joseph, S. & Lehmann, J. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour. Technol. 114, 644–653. https://doi.org/10.1016/j.biortech.2012.03.022 (2012).Article 
    CAS 

    Google Scholar 
    Zhang, Y., Wang, J. & Feng, Y. The effects of biochar addition on soil physicochemical properties: A review. CATENA 202, 105284. https://doi.org/10.1016/j.catena.2021.105284 (2021).Article 
    CAS 

    Google Scholar 
    Özçimen, D. & Ersoy-Meriçboyu, A. Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials. Renew. Energy 35, 1319–1324. https://doi.org/10.1016/j.renene.2009.11.042 (2010).Article 
    CAS 

    Google Scholar 
    Lin, Q. et al. Effects of biochar-based materials on the bioavailability of soil organic pollutants and their biological impacts. Sci. Total Environ. 826, 153956. https://doi.org/10.1016/j.scitotenv.2022.153956 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Yang, H. et al. Thermogravimetric analysis−fourier transform infrared analysis of palm oil waste pyrolysis. Energy Fuels 18, 1814–1821. https://doi.org/10.1021/ef030193m (2004).Article 
    CAS 

    Google Scholar 
    Pasangulapati, V. et al. Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass. Biores. Technol. 114, 663–669. https://doi.org/10.1016/j.biortech.2012.03.036 (2012).Article 
    CAS 

    Google Scholar 
    Kim, P. et al. Surface functionality and carbon structures in lignocellulosic-derived biochars produced by fast pyrolysis. Energy Fuels 25, 4693–4703. https://doi.org/10.1021/ef200915s (2011).Article 
    CAS 

    Google Scholar 
    Keiluweit, M., Nico, P. S., Johnson, M. G. & Kleber, M. dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 44, 1247–1253. https://doi.org/10.1021/es9031419 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Wijeyawardana, P. et al. Removal of Cu, Pb and Zn from stormwater using an industrially manufactured sawdust and paddy husk derived biochar. Environ. Technol. Innov. 28, 102640. https://doi.org/10.1016/j.eti.2022.102640 (2022).Article 
    CAS 

    Google Scholar 
    Kołodyńska, D., Krukowska, J. & Thomas, P. Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon. Chem. Eng. J. 307, 353–363. https://doi.org/10.1016/j.cej.2016.08.088 (2017).Article 
    CAS 

    Google Scholar 
    Uchimiya, M. et al. Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. J. Agric. Food Chem. 58, 5538–5544. https://doi.org/10.1021/jf9044217 (2010).Article 
    CAS 

    Google Scholar 
    Misono, M., Ochiai, E. I., Saito, Y. & Yoneda, Y. A new dual parameter scale for the strength of lewis acids and bases with the evaluation of their softness. J. Inorg. Nucl. Chem. 29, 2685–2691. https://doi.org/10.1016/0022-1902(67)80006-X (1967).Article 
    CAS 

    Google Scholar 
    McBride, M. B. Environmental Chemistry of Soils (Oxford University Press, 1994).
    Google Scholar 
    Basta, N. T. & Tabatabai, M. A. Effect of cropping systems on adsorption of metals by soils: III. Competitive adsorption1. Soil Sci. 153, 331–337 (1992).Article 
    ADS 
    CAS 

    Google Scholar 
    Sposito, G. The Chemistry of Soils (Oxford University Press, 2016).Bauer, T. V. et al. Application of XAFS and XRD methods for describing the copper and zinc adsorption characteristics in hydromorphic soils. Environ. Geochem. Health 44, 335–347. https://doi.org/10.1007/s10653-020-00773-2 (2022).Article 
    CAS 

    Google Scholar 
    Abd-Elfattah, A. L. Y. & Wada, K. Adsorption of lead, copper, zinc, cobalt, and cadmium by soils that differ in cation-exchange materials. J. Soil Sci. 32, 271–283. https://doi.org/10.1111/j.1365-2389.1981.tb01706.x (1981).Article 
    CAS 

    Google Scholar 
    Etesami, H., Fatemi, H. & Rizwan, M. Interactions of nanoparticles and salinity stress at physiological, biochemical and molecular levels in plants: A review. Ecotoxicol. Environ. Saf. 225, 112769. https://doi.org/10.1016/j.ecoenv.2021.112769 (2021).Article 
    CAS 

    Google Scholar 
    Soria, R. I., Rolfe, S. A., Betancourth, M. P. & Thornton, S. F. The relationship between properties of plant-based biochars and sorption of Cd(II), Pb(II) and Zn(II) in soil model systems. Heliyon 6, e05388. https://doi.org/10.1016/j.heliyon.2020.e05388 (2020).Article 

    Google Scholar 
    Alfarra, A., Frackowiak, E. & Béguin, F. The HSAB concept as a means to interpret the adsorption of metal ions onto activated carbons. Appl. Surf. Sci. 228, 84–92. https://doi.org/10.1016/j.apsusc.2003.12.033 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Hu, J., Zhou, X., Shi, Y., Wang, X. & Li, H. Enhancing biochar sorption properties through self-templating strategy and ultrasonic fore-modified pre-treatment: Characteristic, kinetic and mechanism studies. Sci. Total Environ. 769, 144574. https://doi.org/10.1016/j.scitotenv.2020.144574 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Ward, J., Rasul, M. G. & Bhuiya, M. M. K. Energy recovery from biomass by fast pyrolysis. Proced. Eng. 90, 669–674. https://doi.org/10.1016/j.proeng.2014.11.791 (2014).Article 
    CAS 

    Google Scholar 
    Al-Wabel, M. I., Al-Omran, A., El-Naggar, A. H., Nadeem, M. & Usman, A. R. A. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Biores. Technol. 131, 374–379. https://doi.org/10.1016/j.biortech.2012.12.165 (2013).Article 
    CAS 

    Google Scholar 
    Calvelo Pereira, R. et al. Contribution to characterisation of biochar to estimate the labile fraction of carbon. Org. Geochem. 42, 1331–1342. https://doi.org/10.1016/j.orggeochem.2011.09.002 (2011).Article 
    CAS 

    Google Scholar 
    Vorob’eva, L. A. Theory and Practice Chemical Analysis of Soils (GEOS Press, Moscow, 2006).
    Google Scholar 
    Pinskii, D. L. et al. Copper adsorption by chernozem soils and parent rocks in Southern Russia. Geochem. Int. 56, 266–275. https://doi.org/10.1134/S0016702918030072 (2018).Article 
    CAS 

    Google Scholar 
    Wang, Q., Wang, B., Lee, X., Lehmann, J. & Gao, B. Sorption and desorption of Pb(II) to biochar as affected by oxidation and pH. Sci. Total Environ. 634, 188–194. https://doi.org/10.1016/j.scitotenv.2018.03.189 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Pourret, O. & Houben, D. Characterization of metal binding sites onto biochar using rare earth elements as a fingerprint. Heliyon 4, e00543. https://doi.org/10.1016/j.heliyon.2018.e00543 (2018).Article 

    Google Scholar 
    Huang, L. et al. High-resolution insight into the competitive adsorption of heavy metals on natural sediment by site energy distribution. Chemosphere 197, 411–419. https://doi.org/10.1016/j.chemosphere.2018.01.056 (2018).Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar 
    Ming, H. et al. Competitive sorption of cadmium and zinc in contrasting soils. Geoderma 268, 60–68. https://doi.org/10.1016/j.geoderma.2016.01.021 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Musso, T. B., Parolo, M. E., Pettinari, G. & Francisca, F. M. Cu(II) and Zn(II) adsorption capacity of three different clay liner materials. J. Environ. Manag. 146, 50–58. https://doi.org/10.1016/j.jenvman.2014.07.026 (2014).Article 
    CAS 

    Google Scholar 
    Cui, H. et al. Immobilization of Cu and Cd in a contaminated soil: One- and four-year field effects. J. Soils Sediments 14, 1397–1406. https://doi.org/10.1007/s11368-014-0882-8 (2014).Article 
    CAS 

    Google Scholar 
    Elbana, T. A. et al. Freundlich sorption parameters for cadmium, copper, nickel, lead, and zinc for different soils: Influence of kinetics. Geoderma 324, 80–88. https://doi.org/10.1016/j.geoderma.2018.03.019 (2018).Article 
    ADS 
    CAS 

    Google Scholar  More