More stories

  • in

    Synapsid tracks with skin impressions illuminate the terrestrial tetrapod diversity in the earliest Permian of equatorial Pangea

    Špinar, Z. V. Revize nĕkterých moravských diskosauriscidů (Labyrinthodontia). Rozpravy Ústředního Ústavu Geologického. 15, 1–115 (1952).
    Google Scholar 
    Klembara, J. & Meszároš, Š. New finds of Discosauriscus austriacus (Makowsky 1876) from the Lower Permian of the Boskovice Furrow (Czecho-Slovakia). Geol. Carpath. 43, 305–312 (1992).
    Google Scholar 
    Klembara, J. The external gills and ornamentation of the skull roof bones of the Lower Permian tetrapod Discosauriscus austriacus (Makowsky 1876) with remarks to its ontogeny. Paläontol. Z. 69, 265–281 (1995).
    Google Scholar 
    Klembara, J. The cranial anatomy of Discosauriscus Kuhn, a seymouriamorph tetrapod from the Lower Permian of the Boskovice Furrow (Czech Republic). Philos. Trans. R. Soc. B 352, 257–302 (1997).ADS 

    Google Scholar 
    Calábková, G., Březina, J. & Madzia, D. Evidence of large terrestrial seymouriamorphs in the lowermost Permian of the Czech Republic. Pap. Palaeontol. https://doi.org/10.1002/spp2.1428 (2022).Article 

    Google Scholar 
    Makowsky, A. Über einen neuen Labyrinthodonten ‘Archegosaurus austriacus nov. spec’. Sitzungsberichte der keiserischen Akademie der Wissenschaft. 73, 155–166 (1876).
    Google Scholar 
    Fritsch, H. A. Neue Übersicht der in der Gaskohle und den Kalksteinen der Permformation in Böhmen vorgefundenen Tierreste. Sitzungsberichte der königlichen böhmische Gesellschaft der Wissenschaften in Prag 1879, 184–195 (1880).
    Google Scholar 
    Klembara, J. A new discosauriscid seymouriamorph tetrapod from the Lower Permian of Moravia, Czech Republic. Acta Palaeontol. Pol. 50, 25–48 (2005).
    Google Scholar 
    Klembara, J. New cranial and dental features of Discosauriscus austriacus (Seymouriamorpha, Discosauriscidae) and the ontogenetic conditions of Discosauriscus. Spec. Pap. Palaeontol. 81, 61–69 (2009).
    Google Scholar 
    Klembara, J. A new find of discosauriscid seymouriamorph from the Lower Permian of Boskovice Basin in Moravia (the Czech Republic). Fossil Imprint 72, 117–121 (2016).
    Google Scholar 
    Augusta, J. Spodnopermaská zvířena a květena z nového naleziště za pilou dolu “Antonín” u Zbýšova na Moravě. Věstník Státního geologického Ústavu. 22(4), 187–224 (1947).
    Google Scholar 
    Milner, A. W., Klembara, J. & Dostál, O. A zatrachydid temnospondyl from the Lower Permian of the Boskovice Furrow in Moravia (Czech Republic). J. Vertebr. Paleontol. 27, 711–715 (2007).
    Google Scholar 
    Klembara, J. & Steyer, S. A new species of Sclerocephalus (Temnospondyli: Stereospondylomorpha) from the Early Permian of the Boskovice Basin (Czech Republic). J. Paleontol. 86, 302–310 (2012).
    Google Scholar 
    Zajíc, J. & Štamberg, S. Selected important fossiliferous horizons of the Boskovice Basin in the light of the new zoopaleontological data. Acta Musei Reginaehradecensis A 30, 5–15 (2004).
    Google Scholar 
    Štamberg, S. & Zajíc, J. Carboniferous and Permian faunas and Their Occurrence in the Limnic Basins of the Czech Republic Museum of Eastern Bohemia (Hradec Králové, 2008).Calábková, G. & Nosek, V. Stopy velkého čtvernožce z permu boskovické brázdy. Sborník Muzea Brněnska. 59–68 (2022).Calábková, G., Březina, J., Nosek, V. & Madzia, D. High diversity of tetrapods in the lower Permian of the Boskovice Basin, Czech Republic. In 21st Slovak-Czech-Polish Paleontological Conference, Bratislava, Slovakia 113–114 (2022).Fritsch, H. A. Über die Fauna der Gaskohle der Pilsner und Rakonitzer Beckens. In Věstník Královské české společnosti nauk. Třída mathematicko-přírodovědecká. 70–79. (Praha, 1875).Fritsch, A. Fauna der Gaskohle und der Kalksteine der Permformation Böhmens. II/2. Prague: F. Řivnáč. 33–64 (1885).Fritsch, H. A. Ueber neue Wirbelthiere aus der Permformation Böhmens nebst einer Uebersicht der aus derselben bekannt gewordenen Arten. Sitzungsberichte der königl. böhmischen Gesellschaft der Wissenschaften, mathematischnaturwissenschaftliche Classe 52, 17 (1895).Švestka, F. Příspěvek k dnešní bilanci nálezů rostlinných fossilií z uhelné pánve rosicko-oslavanské a památné Rybičkové skály pod spodnopermským Konvizem u Padochova. Příroda. 35(5), 116–119 (1943).
    Google Scholar 
    Švestka, F. Druhý příspěvek k fytopaleontologickému Průzkumu spodního perrnu a permokarbonu Oslavan, Padochova a Zbýšova. Příroda. 36, 159–165 (1944).
    Google Scholar 
    Fritsch, A. Fauna der Gaskohle und der Kalksteine der Permformation Böhmens II/4. Prague: F. Řivnáč. 93–114 (1889).Reisz, R. R. Pennsylvanian Pelycosaurs from Linton, Ohio and Nýřany, Czechoslovakia. J. Paleontol. 49, 522–527 (1975).
    Google Scholar 
    Fröbisch, J., Schoch, R. R., Müller, J., Schindler, T. & Schweiss, D. A new basal sphenacodontid synapsid from the Late Carboniferous of the Saar-Nahe Basin, Germany. Acta Palaeontol. Pol. 56, 113–120 (2011).
    Google Scholar 
    Spindler, F., Voigt, S. & Fischer, J. Edaphosauridae (Synapsida, Eupelycosauria) from Europe and their relationship to North American representatives. PalZ. 94, 125–153 (2019).
    Google Scholar 
    Jaroš, J. Litostratigrafie permokarbonu Boskovické brázdy. Věstník Ústředního ústavu geologického 38, 115–118 (1963).
    Google Scholar 
    Jaroš J. & Malý, L. Boskovická brázda. 208–223. In Geologie a ložiska svrchnopaleozoických limnických pánví České republiky (ed. PEšEK, J.) (Český geologický ústav, 2001).Pešek, J. Late Paleozoic limnic basins and coal deposits of the Czech Republic. Folia Musei Rerum Naturalium Bohemiae occidentalis: Geologica et Paleobiologica, 1 (2004).Jaroš, J. Geologický vývoj a stavba boskovické brázdy. PhD thesis, Charles University, Prague, Czech Republic (1962).Houzar, S., Hršelová, P., Gilíková, H., Buriánek, D. & Nehyba, S. Přehled historie vyzkumů permokarbonskych sedimentů jižni časti boskovicke brazdy (Čast 2. Geologie a petrografie). Acta Musei Moraviae Scientiae Geologicae. 102, 3–65 (2017).
    Google Scholar 
    Opluštil, S., Jirásek, J., Schmitz, M. & Matýsek, D. Biotic changes around the radioisotopically constrained Carboniferous-Permian boundary in the Boskovice Basin (Czech Republic). Bull. Geosci. 92, 95–122 (2017).
    Google Scholar 
    Dopita, M., Havlena, V. & Pešek, J. Ložiska fosilních paliv. Vyd. 1. Nakladatelství technické literatury, Praha (1985).Pešek, J., Holub, V., Jaroš, J., Malý, L., Martínek, K., Prouza, V., Spudil, J. & Tasler, R. Geologie a ložiska svrchnopaleozoických limnických pánví České republiky. Český geologický ústav, Praha (2001).Šimůnek, Z. & Martínek, K. A study of Late Carboniferous and Early Permian plant assemblages from the Boskovice Basin, Czech Republic. Rev. Palaeobot. Palynol. 155, 275–307 (2009).
    Google Scholar 
    Kukalová, J. On the Family Blattinopsidae Bolton, 1925 (Insecta, Protorthoptera). Rozpravy Československé akademie věd, Rada matematických a přírodních věd 69, 1–27 (1959).
    Google Scholar 
    Kukalová, J. Permian protelytroptera, coleoptera and protorthoptera (insecta) of Moravia. Sborník geologických věd, Paleontonologie. 6, 61–98 (1965).
    Google Scholar 
    Schneider, J. W. Zur Entomofauna des Jungpalaozoikums der Boskovicer Furche (ČSSR), Teil 1: Mylacridae (Insecta, Blattoidea). Freiberger Forschungshefte C 357, 43–55 (1980).
    Google Scholar 
    Schneider, J. W. Zur Entomofauna des Jungpalaozoikums der Boskovicer Furche (ČSSR), Teil 2: Phyloblattidae (Insecta, Blattoidea). Freiberger Forschungshefte C 395, 19–37 (1984).
    Google Scholar 
    Zajíc, J. Sladkovodní mikrovertebrátní společenstva svrchního Stefanu a spodního autunu Čech. Závěrečný zpráva za grant GAČR, MS, Česká geologický Ústav, 1–61. Praha (1996).Zajíc, J., Martínek, K., Šimůnek Z. & Drábková, J. Permokarbon Boskovické brázdy ve výkopu pro rozšíření tranzitního plynovodu. Zprávy o geologických výzkumech v roce 1995, 179–182. Praha. (1996).Ivanov, M. Přehled historie paleontologickeho badani v permokarbonu boskovicke brazdy na Moravě. Acta Musei Moraviae Scientiae Geologicae. 88, 3–112 (2003).
    Google Scholar 
    Zajíc, J. Vertebrate biozonation of the Permo-Carboniferous lakes of the Czech Republic: New data. Acta Musei Reginaehradecensis A 30, 15–16 (2004).
    Google Scholar 
    Zajíc, J. Permian acanthodians of the Czech Republic Czech Geological Survey Special Paper. 18, 1–42 (2005).Štamberg, S. Fossiliferous Early Permian horizons of the Krkonoše Piedmont Basin and the Boskovice Graben (Bohemian Massif) in view of the occurrence of actinopterygians. Paläontologie, Stratigraphie, Fazies (22). Freiberger Forschungshefte, C, 548, 45–60 (2014).Kukalová, J. Permian insects of Moravia. Part I: Miomoptera. Sborník geologických věd, Paleontonologie 1, 7–52 (1963).
    Google Scholar 
    Kukalová, J. Permian insects of Moravia. Part II: Liomopteridae. Sborník geologických věd, Paleontonologie. 3, 3–118 (1964).
    Google Scholar 
    Štamberg, S. Permo-Carboniferous actinopterygians of the Boskovice Graben. Part 1. Neslovicella, Bourbonnella, Letovichthys. Museum of Eastern Bohemia in Hradec Králové (2007).Klembara, J. The skeletal anatomy and relationships of a new discosauriscid seymouriamorph from the Lower Permian of Moravia (Czech Republic). Ann. Carnegie Museum 77, 451–484 (2009).
    Google Scholar 
    Klembara, J. & Mikudíková, M. New cranial material of Discosauriscus pulcherrimus (Seymouriamorpha, Discosauriscidae) from the Lower Permian of the Boskovice Basin (Czech Republic). Earth Environ. Sci. Trans. R. Soc. Edinb. 109, 225–236 (2018).
    Google Scholar 
    Leonardi, G. Glossary and Manual of Tetrapod Footprint Palaeoichnology 1–117 (Departamento Nacional de Producao Mineral, 1987).
    Google Scholar 
    Porter, S., Roussel, M. & Soressi, M. A simple photogrammetry rig for the reliable creation of 3D artifact models in the field: Lithic examples from the early upper paleolithic sequence of Les Cottés (France). Adv. Archaeol. Pract. 4, 1–86 (2016).
    Google Scholar 
    Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J. & Reynolds, J. M. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 179, 300–314 (2012).ADS 

    Google Scholar 
    Yilmaz, H., Yakar, M., Gulec, S. & Dulgerler, O. Importance of digital close-range photogrammetry in documentation of cultural heritage. J. Cult. Herit. 8(4), 428–433 (2007).
    Google Scholar 
    Haeckel, E. Generelle Morphologie der Organismen (Reimer, 1866).
    Google Scholar 
    Osborn, H. F. The reptilian subclasses Diapsida and Synapsida and the early history of the Diaptosauria. Mem. Am. Mus. Nat. Hist. 1, 265–270 (1903).
    Google Scholar 
    Romer, A. S. & Price, L. I. Review of the Pelycosauria. Geol. Soc. Am. Spec. Pap. 28, 1–538 (1940).
    Google Scholar 
    Geinitz, H. B. Beiträge zur Kenntnis der organischen Überreste in der Dyas (oder permischen Formation zum Theil) und über den Namen Dyas: Neues Jahrbuch für Mineralogie, Geologie und Paläontologie. 385–398 (1863).Voigt, S. & Lucas, S. G. Outline of a Permian tetrapod footprint ichnostratigraphy. 387–404. In The Permian Timescale: An Introduction (eds. Lucas, S. G. and Shen, S. Z.) 450 (Geological Society, London, Special Publications, 2016). https://doi.org/10.1144/SP450.10 (2016).Voigt, S. & Ganzelewski, M. Toward the origin of amniotes: Diadectomorph and synapsid footprints from the early Late Carboniferous of Germany. Acta Palaeontol. Pol. 55, 57–72 (2010).
    Google Scholar 
    Marchetti, L. et al. Defining the morphological quality of fossil footprints. Problems and principles of preservation in tetrapod ichnology with examples from the Palaeozoic to the present. Earth Sci. Rev. 193, 109–145 (2019).ADS 

    Google Scholar 
    Voigt, S. Die Tetrapodenichnofauna des kontinentalen Oberkarbon und Perm im Thüringer Wald—Ichnotaxonomie, Paläoökologie und Biostratigraphie. Cuvillier, Göttingen (2005).Voigt, S. & Lucas, S. G. On a diverse tetrapod ichnofauna from early Permian red beds in San Miguel County, north-central New Mexico: New Mexico Geological Society. Guidebook. 66, 241–252 (2015).
    Google Scholar 
    Tilton, J. L. Permian vertebrate tracks in West Virginia. Bull. Geol. Soc. Am. 42, 547–556 (1931).
    Google Scholar 
    Van Allen, H. E. K., Calder, J. H. & Hunt, A. P. The trackway record of a tetrapod community in a walchian conifer forest from the Permo-Carboniferous of Nova Scotia. N. M. Mus. Nat. Hist. Sci. Bull. 30, 322–332 (2005).
    Google Scholar 
    Gand, G. Les traces de Vertébrés Tétrapodes du Permien français: Paléontologie, stratigraphie, paléoenvironnements (Bourgogne University, 1987).
    Google Scholar 
    Sacchi, E., Cifelli, R., Citton, P., Nicosia, U. & Romano, M. Dimetropus osageorum n. isp. from the Early Permian of Oklahoma (USA): A trace and its trackmaker. Ichnos 21, 175–192 (2014).
    Google Scholar 
    Buchwitz, M. & Voigt, S. On the morphological variability of Ichniotherium tracks and evolution of locomotion in the sistergroup of amniotes. PeerJ 6, e4346. https://doi.org/10.7717/peerj.4346 (2018).Article 
    CAS 

    Google Scholar 
    Mujal, E., Marchetti, L., Schoch, R. R. & Fortuny, J. Upper Paleozoic to lower mesozoic tetrapod ichnology revisited: Photogrammetry and relative depth pattern inferences on functional prevalence of autopodia. Front. Earth Sci. 8(248), 1–23 (2020).
    Google Scholar 
    Lucas, S. G., Kollar, A. D., Berman, D. S. & Henrici, A. C. Pelycosaurian-grade (Amniota: Synapsida) footprints from the Lower Permian Dunkard Group of Pennsylvania and West Virginia. Ann. Carnegie Mus. 83(4), 287–294 (2016).
    Google Scholar 
    Haubold, H., Hunt, A. P., Lucas, S. G. & Lockley, M. G. Wolfcampian (Early Permian) vertebrate tracks from Arizona and New Mexico. N. M. Mus. Nat. Hist. Sci. Bull. 6, 135–165 (1995).
    Google Scholar 
    Meade, L. E., Jones, A. S. & Butler, R. J. A revision of tetrapod footprints from the late Carboniferous of the West Midlands, UK. PeerJ 4, e2718. https://doi.org/10.7717/peerj.2718 (2016).Article 

    Google Scholar 
    Haubold, H. Die Tetrapodenfährten des Buntsandsteins. Paläontologische Abhandlungen A. IV, 395–548 (1971).Gand, G. & Haubold, H. Traces de Vertébrés du Permien du bassin de Saint-Affrique (Description, datation, comparaison avec celles du bassin de Lodève). Géologie Méditerranéenne 11, 321–348 (1984).
    Google Scholar 
    Voigt, S., Niedźwiedski, G., Raczyński, P., Mastaler, K. & Ptaszyński, T. Early Permian tetrapod ichnofauna from the Intra-Sudetic Basin, SW Poland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 313–314, 173–180 (2012).
    Google Scholar 
    Niedźwiedzki, G. & Bojanowski, M. A supposed eupelycosaur body impression from the Early Permian of the Intra-Sudetic Basin, Poland. Ichnos Int. J. Plant Anim. Traces. 19(3), 150–155 (2012).
    Google Scholar 
    Marchetti, L. New occurrences of tetrapod ichnotaxa from the Permian Orobic Basin (Northern Italy) and critical discussion of the age of the ichnoassociation. Pap. Palaeontol. 2, 363–386. https://doi.org/10.1002/spp2.1045 (2016).Article 

    Google Scholar 
    Mujal, E. et al. Palaeoenvironmental reconstruction and early Permian ichnoassemblage from the NE Iberian Peninsula (Pyrenean Basin). Geol. Mag. 153, 578–600 (2016).ADS 

    Google Scholar 
    Matamales-Andreu, R., Mujal, E., Galobart, A. & Fortuny, J. Insights on the evolution of synapsid locomotion based on tetrapod tracks from the lower Permian of Mallorca (Balearic Islands, western Mediterranean). Palaeogeogr. Palaeoclimatol. Palaeoecol. 579, 110589 (2021).
    Google Scholar 
    Matamales-Andreu, R. et al. Early–middle Permian ecosystems of equatorial Pangaea: Integrated multi-stratigraphic and palaeontological review of the Permian of Mallorca (Balearic Islands, western Mediterranean. Earth Sci. Rev. 228, 103948 (2022).
    Google Scholar 
    Voigt, S., Lagnaoui, A., Hminna, A., Saber, H. & Schneider, J. W. Revisional notes on the Permian tetrapod ichnofauna from the Tiddas Basin, central Morocco. Palaeogeogr. Palaeoclimatol. Palaeoecol. 302, 474–483 (2011).
    Google Scholar 
    Voigt, S., Saber, H., Schneider, J. W., Hmich, D. & Hminna, A. Late Carboniferous-early Permian tetrapod ichnofauna from the Khenifra Basin, central Morocco. Geobios 44, 309–407 (2011).
    Google Scholar 
    Lagnaoui, A. et al. Late Carboniferous tetrapod footprints from the Souss Basin, Western High Atlas Mountains, Morocco. Ichnos https://doi.org/10.1080/10420940.2017.1320284 (2017).Article 

    Google Scholar 
    Fichter, J. Aktuopaläontologische Studien zur Lokomotion rezenter Urodelen und Lacertilier sowie paläontologische Untersuchungen an Tetrapodenfährten des Rotliegenden (Unter-Perm) SW-Deutschlands. PhD thesis. Johannes-Gutenberg University, Mainz (1979).Haubold, H. The Early Permian tetrapod ichnofauna of Tambach, the changing concepts in ichnotaxonomy. Hallesches Jahrb. Geowiss. B 20, 1–16 (1998).Haubold, H. Tetrapodenfährten aus dem Perm—Kenntnisstand und Progress 2000. Hallesches Jahrb. Geowiss. B 22, 1–16 (2000).Romano, M., Citton, P. & Nicosia, U. Corroborating trackmaker identification through footprint functional analysis: The case study of Ichniotherium and Dimetropus. Lethaia 49(1), 102–116. https://doi.org/10.1111/let.12136 (2016).Article 

    Google Scholar 
    Ford, D. P. & Benson, J. B. R. The phylogeny of early amniotes and the affinities of Parareptilia and Varanopidae. Nat. Ecol. Evol. 4, 57–65. https://doi.org/10.1038/s41559-019-1047-3 (2020).Article 

    Google Scholar 
    Modesto, S. P. Rooting about reptile relationships. Nat. Ecol. Evol. 4, 10–11 (2020).
    Google Scholar 
    Spindler, F. et al. First arboreal ’pelycosaurs’ (Synapsida: Varanopidae) from the early Permian Chemnitz Fossil Lagerstätte, SE Germany, with a review of varanopid phylogeny. PalZ. 92, 315–364 (2018).
    Google Scholar 
    Haubold, H. & Sarjeant, W. A. S. Tetrapodenfährten aus den Keele und Enville Groups (Permokarbon: Stefan und Autun) von Shropshire und South Staffordshire. Großbritannien. Z. geol. Wiss 1, 895–933 (1973).
    Google Scholar 
    Kümmell, S., Abdala, F., Sassoon, J. & Abdala, V. Evolution and identity of synapsid carpal bones. Acta Palaeontol. Pol. 65(4), 649–678 (2020).
    Google Scholar 
    Berman, D. S. et al. New primitive caseid (Synapsida, Caseasauria) from the Early Permian of Germany. Ann. Carnegie Museum 86(1), 47–74 (2020).
    Google Scholar 
    Spindler, F., Falconnet, J. & Fröbisch, J. Callibrachion and Datheosaurus, Two Historical and Previously Mistaken Basal Caseasaurian Synapsids From Europe. Acta Palaeontol. Pol. 61(3), 597–616 (2016).
    Google Scholar 
    Reisz, R. R., Madin, H. C., Fröbisch, J. & Falconnet, J. A new large caseid (Synapsida, Caseasauria) from the Permian of Rodez (France), including a reappraisal of “Casea” rutena Sigogneau-Russell & Russell, 1974. Geodiversitas 33(2), 227–246. https://doi.org/10.5252/g2011n2a2 (2011).Article 

    Google Scholar 
    Voigt, S. & Lucas, S. G. Permian tetrapod ichnodiversity of the Prehistoric Trackways National Monument (south-central New Mexico, USA). N. M. Mus. Nat. Hist. Sci. Bull. 65, 153–167 (2015).
    Google Scholar 
    Brand, L. R. Variations in salamander trackways resulting from substrate differences. J. Paleontol. 70, 1004–1010 (1996).
    Google Scholar 
    Krapovickas, V., Marsicano, C. A., Mancuso, A. C., de la Fuente, M. S. & Ottone, E. G. Tetrapod and invertebrate trace fossils from aeolian deposits of the lower Permian of central-western Argentina. Hist. Biol. 27, 827–842 (2015).
    Google Scholar 
    Benson, R. B. J. Interrelationships of basal synapsids: Cranial and postcranial morphological partitions suggest different topologies. J. Syst. Paleontol. 10, 601–624 (2012).
    Google Scholar 
    Spindler, F. The basal Sphenacodontia—Systematic revision and evolutionary implications. PhD Thesis, Technische Universität Bergakademie Freiberg, Germany (2015).Spindler, F. Re-evaluation of an early sphenacodontian synapsid from the Lower Permian of England. Earth Environ. Sci. Trans. R. Soc. Edinb. 111, 27–37 (2020).
    Google Scholar 
    Reisz, R. R. & Fröbisch, J. The oldest caseid synapsid from the Late Pennsylvanian of Kansas, and the evolution of herbivory in terrestrial vertebrates. PLoS ONE 9(4), e94518. https://doi.org/10.1371/journal.pone.00945 (2014) (1–9).Article 
    ADS 

    Google Scholar 
    Werneburg, R., Spindler, F., Falconnet, J., Steyer, J.-S., Vianey-Liaud, M & Schneider, J. W. New caseid synapsid from the Permian (Guadalupian) of the Lodève basin (Occitanie, France). Palaeo Vertebrata 1–36 (2022).Ronchi, A., Sacchi, E., Romano, M. & Nicosia, U. A huge caseid pelycosaur from north-western Sardinia and its bearing on European Permian stratigraphy and palaeobiogeography. Acta Palaeontol. Pol. 56, 723–738 (2011).
    Google Scholar 
    Romano, M. & Nicosia, U. Alierasaurus ronchii, gen. et. Sp. nov., a caseid from the Permian of Sardinia, Italy. J. Vertebr. Paleontol. 34, 900–913 (2014).
    Google Scholar 
    Maddin, H. C., Sidor, C. A. & Reisz, R. R. Cranial anatomy of Ennatosaurus tecton (Synapsida: Caseidae) from the Middle Permian of Russia and the evolutionary relationships of Caseidae. J. Vertebr. Paleontol. 28, 160–180 (2008).
    Google Scholar 
    Langiaux, J., Parriat, H. & Sotty, D. Faune fossile du bassin de Blanzy-Montceau. La Physiophilie. 80, 55–67 (1974).
    Google Scholar 
    Gaudry, A. Sur un reptile très perfectionné trouvé dans le terrain permien. Comptes rendus hebdomadaires des Séances de l’Académie des Sciences. 91(16), 669–671 (1880).
    Google Scholar 
    Reisz, R. R. Handbuch der Paläoherpetologie. Teil 17A, Pelycosauria. (Gustav Fischer Verlag, 1986).Ziegler, J. et al. U-Pb ages of magmatic and detrital zircon of the Döhlen Basin: Geological history of a Permian strike-slip basin in the Elbe Zone (Germany). Int. J. Earth Sci. 108, 887–910 (2019).
    Google Scholar  More

  • in

    Nudibranch predation boosts sponge silicon cycling

    Tréguer, P. J. et al. Reviews and syntheses: The biogeochemical cycle of silicon in the modern ocean. Biogeosciences 18, 1269–1289 (2021).Article 
    ADS 

    Google Scholar 
    Tréguer, P. et al. Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci. 11, 27–37 (2018).Article 
    ADS 

    Google Scholar 
    Benoiston, A.-S. et al. The evolution of diatoms and their biogeochemical functions. Phil. Trans. R. Soc. B 372, 20160397 (2017).Article 

    Google Scholar 
    de Goeij, J. M. et al. Surviving in a marine desert: The sponge loop retains resources within coral reefs. Science 342, 108–110 (2013).Article 
    ADS 

    Google Scholar 
    Folkers, M. & Rombouts, T. Sponges revealed: a synthesis of their overlooked ecological functions within aquatic ecosystems. In YOUMARES 9—The Oceans: Our Research, Our Future (eds. Jungblut, S. et al.) 181–193 (Springer International Publishing, 2020).Kristiansen, S. & Hoell, E. E. The importance of silicon for marine production. Hydrobiologia 484, 21–31 (2002).Article 
    CAS 

    Google Scholar 
    Henderson, M. J., Huff, D. D. & Yoklavich, M. M. Deep-sea coral and sponge taxa increase demersal fish diversity and the probability of fish presence. Front. Mar. Sci. 7, 593844 (2020).Article 

    Google Scholar 
    McGrath, E. C., Woods, L., Jompa, J., Haris, A. & Bell, J. J. Growth and longevity in giant barrel sponges: Redwoods of the reef or pines in the Indo-Pacific?. Sci. Rep. 8, 15317 (2018).Article 
    ADS 

    Google Scholar 
    Jochum, K. P., Wang, X. H., Vennemann, T. W., Sinha, B. & Muller, W. E. G. Siliceous deep-sea sponge Monorhaphis chuni: A potential paleoclimate archive in ancient animals. Chem. Geol. 300, 143–151 (2012).Article 
    ADS 

    Google Scholar 
    Maldonado, M. et al. Sponge grounds as key marine habitats: A synthetic review of types, structure, functional roles, and conservation concerns. In Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots (eds. Rossi, S. et al.) vol. 1 145–184 (Springer International Publishing, 2017).Maldonado, M. et al. Sponge skeletons as an important sink of silicon in the global oceans. Nat. Geosci. 12, 815–822 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Maldonado, M. et al. Siliceous sponges as a silicon sink: An overlooked aspect of benthopelagic coupling in the marine silicon cycle. Limnol. Oceanogr. 50, 799–809 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    López-Acosta, M. et al. Sponge contribution to the silicon cycle of a diatom-rich shallow bay. Limnol. Oceanogr. 67, 2431–2447 (2022).Article 
    ADS 

    Google Scholar 
    Maldonado, M. et al. Massive silicon utilization facilitated by a benthic-pelagic coupled feedback sustains deep-sea sponge aggregations. Limnol. Oceanogr. 66, 366–391 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Wulff, J. L. Ecological interactions of marine sponges. Can. J. Zool. 84, 146–166 (2006).Article 

    Google Scholar 
    Pawlik, J. R., Loh, T.-L. & McMurray, S. E. A review of bottom-up vs. top-down control of sponges on Caribbean fore-reefs: What’s old, what’s new, and future directions. PeerJ 6, 4343 (2018).Article 

    Google Scholar 
    Dayton, P. K., Robilliard, G. A., Paine, R. T. & Dayton, L. B. Biological Accommodation in the Benthic Community at McMurdo Sound, Antartica. Ecol. Monogr. 44, 105–128 (1974).Article 

    Google Scholar 
    Meylan, A. Spongivory in hawksbill turtles: A diet of glass. Science 239, 393–395 (1988).Article 
    ADS 
    CAS 

    Google Scholar 
    Wulff, J. Sponge-feeding by Caribbean angelfishes, trunk-fishes, and filefishes. In Sponges in time and space 265–271 (A. A. Balkema, 1994).Santos, C. P., Coutinho, A. B. & Hajdu, E. Spongivory by Eucidaris tribuloides from Salvador, Bahia (Echinodermata: Echinoidea). J. Mar. Biol. Ass. 82, 295–297 (2002).Article 

    Google Scholar 
    Chu, J. W. F. & Leys, S. P. The dorid nudibranchs Peltodoris lentiginosa and Archidoris odhneri as predators of glass sponges. Invertebr. Biol. 131, 75–81 (2012).Article 

    Google Scholar 
    Maschette, D. et al. Characteristics and implications of spongivory in the Knifejaw Oplegnathus woodwardi (Waite) in temperate mesophotic waters. J. Sea Res. 157, 101847 (2020).Article 

    Google Scholar 
    Knowlton, A. L. & Highsmith, R. C. Nudibranch-sponge feeding dynamics: Benefits of symbiont-containing sponge to Archidoris montereyensis (Cooper, 1862) and recovery of nudibranch feeding scars by Halichondria panicea (Pallas, 1766). J. Exp. Mar. Biol. Ecol. 327, 36–46 (2005).Article 

    Google Scholar 
    Bloom, S. A. Morphological correlations between dorid nudibranch predators and sponge prey. Veliger 18, 289–301 (1976).
    Google Scholar 
    Faulkner, D. & Ghiselin, M. Chemical defense and evolutionary ecology of dorid nudibranchs and some other opisthobranch gastropods. Mar. Ecol. Prog. Ser. 13, 295–301 (1983).Article 
    ADS 

    Google Scholar 
    Bloom, S. A. Specialization and noncompetitive resource partitioning among sponge-eating dorid nudibranchs. Oecologia 49, 305–315 (1981).Article 
    ADS 

    Google Scholar 
    Clark, K. B. Nudibranch life cycles in the Northwest Atlantic and their relationship to the ecology of fouling communities. Helgolander Wiss. Meeresunters 27, 28–69 (1975).Article 
    ADS 

    Google Scholar 
    Wulff, J. Regeneration of sponges in ecological context: Is regeneration an integral part of life history and morphological strategies?. Integr. Comp. Biol. 50, 494–505 (2010).Article 

    Google Scholar 
    Wu, Y.-C., Franzenburg, S., Ribes, M. & Pita, L. Wounding response in Porifera (sponges) activates ancestral signaling cascades involved in animal healing, regeneration, and cancer. Sci. Rep. 12, 1307 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Turner, T. The marine sponge Hymeniacidon perlevis is a globally-distributed exotic species. Aquat. Invasions 15, 542–561 (2020).Article 

    Google Scholar 
    Ackers, R. G., Moss, D. & Picton, B. E. In Sponges of the British Isles (‘Sponge V’). vol. A Colour Guide and Working Document (Marine Conservation Society, 1992).Lima, P. O. V. & Simone, L. R. L. Anatomical review of Doris verrucosa and redescription of Doris januarii (Gastropoda, Nudibranchia) based on comparative morphology. J. Mar. Biol. Ass. 95, 1203–1220 (2015).Article 

    Google Scholar 
    Avila, C. et al. Biosynthetic origin and anatomical distribution of the main secondary metabolites in the nudibranch mollusc Doris verrucosa. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 97, 363–368 (1990).Article 

    Google Scholar 
    Urgorri, V. & Besteiro, C. The feeding habits of the nudibranchs of Galicia. Iberus 4, 51–58 (1984).
    Google Scholar 
    Aminot, A. & Kerouel, R. In Dosage automatique des nutriments dans les eaux marines: Méthodes en flux continu. Méthodes d’analyse en milieu marin, Ed. Ifremer 188 (2007).Hydes, D. J. & Liss, P. S. Fluorimetric method for the determination of low concentrations of dissolved aluminium in natural waters. Analyst 101, 922 (1976).Article 
    ADS 
    CAS 

    Google Scholar 
    López-Acosta, M., Leynaert, A., Coquille, V. & Maldonado, M. Silicon utilization by sponges: An assessment of seasonal changes. Mar. Ecol. Prog. Ser. 605, 111–123 (2018).Article 
    ADS 

    Google Scholar 
    Grall, J., Le-Loch, F., Guyonnet, B. & Riera, P. Community structure and food web based on stable isotopes (δ15N and δ13C) analysis of a North Eastern Atlantic maerl bed. J. Exp. Mar. Biol. Ecol. 338, 1–15 (2006).Article 
    CAS 

    Google Scholar 
    Cebrian, E., Uriz, M. J., Garrabou, J. & Ballesteros, E. Sponge Mass Mortalities in a warming Mediterranean sea: Are cyanobacteria-harboring species worse off?. PLoS ONE 6, e20211 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    McClintock, J. B. Investigation of the relationship between invertebrate predation and biochemical composition, energy content, spicule armament and toxicity of benthic sponges at McMurdo Sound, Antartica. Mar. Biol. 94, 479–487 (1987).Article 
    CAS 

    Google Scholar 
    Cockburn, T. C. & Reid, R. G. B. Digestive tract enzymes in two Aeolid nudibranchs (opisthobranchia: Gastropoda). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 65, 275–281 (1980).Article 

    Google Scholar 
    De Caralt, S., Uriz, M. & Wijffels, R. Grazing, differential size-class dynamics and survival of the Mediterranean sponge Corticium candelabrum. Mar. Ecol. Prog. Ser. 360, 97–106 (2008).Article 
    ADS 

    Google Scholar 
    Ragueneau, O., De-Blas-Varela, E., Tréguer, P., Quéguiner, B. & Del Amo, Y. Phytoplankton dynamics in relation to the biogeochemical cycle of silicon in a coastal ecosystem of western Europe. Mar. Ecol. Prog. Ser. 106, 157–172 (1994).Article 
    ADS 

    Google Scholar 
    Turon, X., Tarjuelo, I. & Uriz, M. J. Growth dynamics and mortality of the encrusting sponge Crambe crambe (Poecilosclerida) in contrasting habitats: Correlation with population structure and investment in defence: Growth and mortality of encrusting sponges. Funct. Ecol. 12, 631–639 (1998).Article 

    Google Scholar 
    Hoppe, W. F. Growth, regeneration and predation in three species of large coral reef sponges. Mar. Ecol. Prog. Ser. 50, 117–125 (1988).Article 
    ADS 

    Google Scholar 
    Ayling, A. L. Growth and regeneration rates in thinly encrusting Demospongiae from temperate waters. Biol. Bull. 165, 343–352 (1983).Article 

    Google Scholar 
    Fillinger, L., Janussen, D., Lundälv, T. & Richter, C. Rapid glass sponge expansion after climate-induced Antarctic ice shelf collapse. Curr. Biol. 23, 1330–1334 (2013).Article 
    CAS 

    Google Scholar 
    Dayton, P. K. et al. Benthic responses to an Antarctic regime shift: Food particle size and recruitment biology. Ecol. Appl. 29, 1 (2019).Article 

    Google Scholar 
    Guy, G. & Metaxas, A. Recruitment of deep-water corals and sponges in the Northwest Atlantic Ocean: Implications for habitat distribution and population connectivity. Mar. Biol. 169, 107 (2022).Article 

    Google Scholar 
    Beucher, C., Treguer, P., Corvaisier, R., Hapette, A. M. & Elskens, M. Production and dissolution of biosilica, and changing microphytoplankton dominance in the Bay of Brest (France). Mar. Ecol. Prog. Ser. 267, 57–69 (2004).Article 
    ADS 

    Google Scholar 
    López-Acosta, M., Leynaert, A. & Maldonado, M. Silicon consumption in two shallow-water sponges with contrasting biological features. Limnol. Oceanogr. 61, 2139–2150 (2016).Article 
    ADS 

    Google Scholar 
    Ellwood, M. J., Wille, M. & Maher, W. Glacial silicic acid concentrations in the Southern Ocean. Science 330, 1088–1091 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Maldonado, M. et al. Cooperation between passive and active silicon transporters clarifies the ecophysiology and evolution of biosilicification in sponges. Sci. Adv. 6, eaba9322 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Palumbi, S. R. Tactics of acclimation: morphological changes of sponges in an unpredictable environment. Science 225, 1478–1480 (1984).Article 
    ADS 
    CAS 

    Google Scholar 
    Broadribb, M., Bell, J. J. & Rovellini, A. Rapid acclimation in sponges: Seasonal variation in the organic content of two intertidal sponge species. J. Mar. Biol. Ass. 101, 983–989 (2021).Article 
    CAS 

    Google Scholar 
    Schönberg, C. H. L. & Barthel, D. Inorganic skeleton of the demosponge Halichondria panacea. Seasonality in spicule production in the Baltic Sea. Mar. Biol. 130, 133–140 (1997).Article 

    Google Scholar 
    Sheild, C. J. & Witman, J. D. The impact of Henricia sanguinolenta (O. F. Müller) (Echinodermata: Asteroidea) predation on the finger sponges, Isodictya spp.. J. Exp. Mar. Biol. Ecol. 166, 107–133 (1993).Article 

    Google Scholar 
    Lewis, J. R., Bowman, R. S., Kendall, M. A. & Williamson, P. Some geographical components in population dynamics: Possibilities and realities in some littoral species. Neth. J. Sea Res. 16, 18–28 (1982).Article 

    Google Scholar 
    Ashton, G. V. et al. Predator control of marine communities increases with temperature across 115 degrees of latitude. Science 376, 1215–1219 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Knowlton, A. & Highsmith, R. Convergence in the time-space continuum: A predator-prey interaction. Mar. Ecol. Prog. Ser. 197, 285–291 (2000).Article 
    ADS 

    Google Scholar  More

  • in

    Soil organic carbon, total nitrogen stocks and CO2 emissions in top- and subsoils with contrasting management regimes in semi-arid environments

    Lal, R. Soil Carbon sequestration impacts on global climate change and food security. Science 30, 1623–1627 (2004).ADS 

    Google Scholar 
    Stockmann, U. et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric. Ecosyst. Environ. 164, 80–99 (2013).CAS 

    Google Scholar 
    Batjes, N. H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 47(2), 151–163 (1996).CAS 

    Google Scholar 
    Michalzik, B., Kalbitz, K., Park, J. H., Solinger, S. & Matzner, E. Fluxes and concentrations of dissolved organic carbon and nitrogen: A synthesis for temperate forests. Biogeochemistry 52, 173–205 (2001).
    Google Scholar 
    Malik, A. A. et al. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 14, 1–9 (2020).CAS 

    Google Scholar 
    Song, M. H. et al. Shifts in priming partly explain impacts of long-term nitrogen input in different chemical forms on soil organic carbon storage. Glob. Chang. Biol. 24, 4160–4172 (2018).ADS 

    Google Scholar 
    Okolo, C. C. et al. Priming effect in semi-arid soils of northern Ethiopia under different land use types. Biogeochemistry https://doi.org/10.1007/s10533-022-00905-z (2022).Article 

    Google Scholar 
    Eze, P. N., Udeigwe, T. K. & Stietiya, M. H. Distribution and potential source evaluation of heavy metals in prominent soils of Accra plains, Ghana. Geoderma 156(3–4), 357–362 (2010).ADS 
    CAS 

    Google Scholar 
    Eze, P. N., Mbakwe, I. & Okolo, C. C. Ecosystem functions of the soil highlighted in Igbo proverbs. In IUSS Global Soil Proverbs: Cultural Language of the Soil (eds Yang, J. E. et al.) (Schweizerbart and Borntraeger Science Publishers, 2019).
    Google Scholar 
    Nottingham, A. T. et al. Adaptation of soil microbial growth to temperature: Using a tropical elevation gradient to predict future changes. Glob. Chang. Biol. 25, 827–838 (2019).ADS 

    Google Scholar 
    Paul, K. I., Polglase, P. J., Nyakuengama, J. G. & Khanna, P. K. Change in soil carbon following afforestation. Forest Ecol. Manag. 168, 241–257 (2002).
    Google Scholar 
    Batjes, N. H. Options for increasing carbon sequestration in West Africa soils: An exploratory study with special focus on Senegal. Land Degrad. Dev. 12, 131–142 (2001).
    Google Scholar 
    Powlson, D. S., Whitmore, A. P. & Goulding, K. W. T. Soil carbon sequestration to mitigate climate change: A critical re-examination to identify the true and the false. Eur. J. Soil Sci. 62, 42–55 (2011).CAS 

    Google Scholar 
    Zhang, K., Dang, H., Zhang, Q. & Cheng, X. Soil carbon dynamics following land-use change varied with temperature and precipitation gradients: Evidence from stable isotopes. Glob. Chang. Biol. 21, 2762–2772 (2015).ADS 

    Google Scholar 
    Gebresamuel, G. et al. Nutrient Balance of farming systems in tigray, Northern Ethiopia. J. Soil Sci. Plant Nutr. 21, 315–328 (2021).CAS 

    Google Scholar 
    IPCC, Climate Change: The physical science basis. Contribution of working Group I to the Fourth Assessment. In Report of the Intergovernmental Panel on Climate Change (Eds. Solomon, S., Quin, D and Manning, M). (Cambridge University Press, Cambridge, UK) (2007).Yang, Y. S., Xie, J. S. & Sheng, H. The impact of land use/cover change on storage and quality of soil organic carbon in mid-subtropical mountainous area of southern China. J. Geo. Sci. 19, 49–57 (2009).
    Google Scholar 
    Akinyemi, F. O., Tlhalerwa, L. T. & Eze, P. N. Land degradation assessment in an African dryland context based on the composite Land Degradation Index and mapping method. Geocarto Int. 36(16), 1838–1854 (2021).
    Google Scholar 
    Button, E. S. et al. Deep-C storage: Biological, chemical and physical strategies to enhance carbon stocks in agricultural subsoils. Soil Biol. Biochem. 170, 108697 (2022).CAS 

    Google Scholar 
    Rumpel, C. & Kögel-Knabner, I. Deep soil organic matter: A key but poorly understood component of terrestrial C cycle. Plant Soil 338(1), 143–158 (2011).CAS 

    Google Scholar 
    Lal, R., Lorenz, K., Huttle, R. F., Schneider, B. U. & Von, B. J. Terrestrial biosphere as a source and sink of atmospheric carbon dioxide. In Recarbonization of the Biosphere: Ecosystems and the Global Cycle (eds Lal, R. et al.) (Springer, 2012).
    Google Scholar 
    Shi, Z. et al. The age distribution of global soil carbon inferred from radiocarbon measurements. Nat. Geosci. 13, 555–559 (2020).ADS 
    CAS 

    Google Scholar 
    Salome, C., Nunan, N., Pouteau, V., Lerchw, T. Z. & Chenu, C. Carbon dynamics in topsoil and in subsoil may be controlled by different regulatory mechanisms. Glob. Chang. Biol. 16, 416–426 (2010).ADS 

    Google Scholar 
    Sithole, N. J., Magwaza, L. S. & Thibaud, G. R. Long-term impact of no-till conservation agriculture and N-fertilizer on soil aggregate stability, infiltration and distribution of C in different size fractions. Soil Tillage Res. 190, 147–156 (2019).
    Google Scholar 
    Tashi, S., Singh, B., Keitel, C. & Adams, M. Soil carbon and nitrogen stocks in forests along an altitudinal gradient in the eastern Himalayas and a meta-analysis of global data. Glob. Chang. Biol. 22, 2255–2268 (2016).ADS 

    Google Scholar 
    Zhou, Z., Wang, C. & Luo, Y. Effects of forest degradation on microbial communities and soil carbon cycling: A global meta-analysis. Global Ecol. Biogeography 27, 110–124 (2018).
    Google Scholar 
    Mhete, M., Eze, P. N., Rahube, T. O. & Akinyemi, F. O. Soil properties influence bacterial abundance and diversity under different land-use regimes in semi-arid environments. Sci. African 7, e00246 (2020).
    Google Scholar 
    Walker, T. W. N. et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat. Clim. Chang. 8, 885–889 (2018).ADS 
    CAS 

    Google Scholar 
    Murty, D., Kirschbaum, M. U. F., Mcmurtrie, R. E. & Mcgilvray, H. Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Glob. Chang. Biol. 8, 105–123 (2002).ADS 

    Google Scholar 
    Veldkamp, E., Schmidt, M., Powers, J. S. & Corre, M. D. Deforestation and reforestation impacts on soils in the tropics. Nat. Rev. Earth Environ. 1, 590–605 (2020).ADS 

    Google Scholar 
    Kebonye, N. M., Eze, P. N., Ahado, S. K. & John, K. Structural equation modeling of the interactions between trace elements and soil organic matter in semiarid soils. Intl. J. Environ. Sci. Technol. 17(4), 2205–2214 (2020).CAS 

    Google Scholar 
    Del Galdo, L., Six, J., Peressotti, A. & Cotrufo, M. F. Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fraction and stable C isotopes. Glob. Chang. Biol. 9, 1204–1213 (2003).ADS 

    Google Scholar 
    Lal, R. Carbon sequestration in dry land ecosystems of West Asia and North Africa. Land Degrad. Dev. 13, 45–59 (2002).
    Google Scholar 
    Gebresamuel, G., Singh, B. R., Mitiku, H., Borresen, T. & Lal, R. Carbon Stocks in Ethiopian Soils in relation to land use and soil management. Land Degrad. Dev. 19(4), 351–367 (2008).
    Google Scholar 
    Fisseha, I., Mats, O. & Karl, S. Effect of land use changes on soil carbon status of some soil types in the Ethiopian Rift Valley. J. Drylands 4(1), 289–299 (2011).
    Google Scholar 
    Shiferaw, A., Hans, H. & Gete, Z. A review on soil carbon sequestration in Ethiopia to Mitigate land degradation and climate change. J. Environ. Earth Sci. 3(12), 187–201 (2013).
    Google Scholar 
    Bazezew, M. N., Teshome, S. & Eyale, B. Above- and below-ground reserved carbon in danaba community forest of Oromia Region, Ethiopia: Implications for CO2 emission balance. Am. J. Environ. Prot. 4(2), 75–82 (2015).
    Google Scholar 
    Berihu, T. et al. Soil carbon and nitrogen losses following deforestation in Ethiopia. Agron. Sust. Dev. 37, 1 (2017).CAS 

    Google Scholar 
    Gebresamuel, G. et al. Changes in soil organic carbon stock and nutrient status after conversion of pasture land to cultivated land in semi-arid areas of northern Ethiopia. Arch. Agron. Soil Sci. https://doi.org/10.1080/03650340.2020.1823372 (2022).Article 

    Google Scholar 
    Hoyle, F. C., Baldock, J. A. & Murphy, D. V. Soil organic carbon: Role in rainfed farming systems: With particular reference to Australian Conditions. In Rainfed Farming Systems (eds Tow, P. et al.) (Springer, 2011). https://doi.org/10.1007/978-1-4020-9132-2_14.Chapter 

    Google Scholar 
    Mekuria, W. et al. Restoration of degraded landscapes for ecosystem services in North-Western Ethiopia. Heliyon 4, e00764. https://doi.org/10.1016/j.heliyon.2018 (2018).Article 

    Google Scholar 
    Okolo, C. C. et al. Assessing the sustainability of land use management of Northern Ethiopian drylands by various indicators for soil health. Ecol. Indic. 112, 106092. https://doi.org/10.1016/j.ecolind.2020.106092 (2020).Article 
    CAS 

    Google Scholar 
    WRB. International Union of Soil Science Working Group. In World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome (2014).NMA 2018. National Metrological Agency (NMA), 2018. The National Metrological Agency of Ethiopia Mekelle center, Tigray Regional State, Mekelle, Ethiopia.Anikwe, M. A. N., Obi, M. E. & Agbim, N. N. Effect of crop and soil management practices soil compactibility in maize and groundnut plots in a Paleustult in Southeastern Nigeria. Plant Soils. 253, 457–465 (2003).CAS 

    Google Scholar 
    Anikwe, M. A. N. Carbon storage in soils of southeastern Nigeria under different management practices. Carbon Bal. Manag. https://doi.org/10.1186/1750-0680-5-5 (2010).Article 

    Google Scholar 
    IPCC Guidelines for National Greenhouse Gas Inventories. In Vol. 4: Agriculture, Forestry and other Land Use (eds. Eggleston, S., Buendia, K., Miwa, K., Ngara, T. and Tanabe, K.) (Institute for Global Environmental Strategies, 2006).McKenzie, N., Ryan, P., Fogarty, P. & Wood, J. Sampling, measurement and analytical protocols for carbon estimation in soil, litter and coarse woody debris. National Carbon Accounting System Technical Report No. 14. Australian Greenhouse Office, Canberra (2000).Nelson, D. W. & Sommers, L. E. Total carbon, total organic carbon and organic matter. In Methods of Soil Analysis. Part 3: Chemical Methods. Agronomy Monograph No. 9 (Ed. Sparks, D.L) 961–1010. (American Society of Agronomy, 1996).Bremner, J. M. & Mulvaney, C. S. Nitrogen-total. In Chemical and Microbiological Properties (eds Keeney, D. R. et al.) 595–624 (American Society of Agronomy and Soil Science Society of America, 1982).
    Google Scholar 
    McLean, E. O. Soil pH and lime requirement. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. 2nd edn. Agronomy monograph No. 9 (Eds. Page, A.L., Miller, R.H and Keeney, D.R). 199–224. (American Society of Agronomy, 1982).Rhoades, J. D. Cation exchange capacity. In Methods of Soil Analysis: Part 2 Chemical and Microbial Properties. Agronomy Monograph No. 9. (Eds. Page, A.L., Miller, R.H and Keeney, D.R) pp. 149–157 (American Society of Agronomy, 1982).Blake, G. R. & Hartge, K. H. Bulk density. In Methods of Soil Analysis. Part 1: Physical and Mineralogical Properties. 2nd edn. Agronomy Monograph No. 9 (ed. Klute, A) 363–382. (American Society of Agronomy, 1986).Gee, G. W. & Bauder, J. W. Particle size analysis. In Methods of Soil Analysis. Part 1: Physical and Mineralogical Properties. 2nd edn. Agronomy Monograph No. 9. (Ed. A Klute) 91–100. (American Society of Agronomy, 1986).Gelaw, A. M., Singh, B. R. & Lal, R. Soil organic carbon and total nitrogen stocks under different land uses in a semi-arid watershed in Tigray, Northern Ethiopia. Agric. Ecosyst. Environ. 188, 256–263 (2014).
    Google Scholar 
    Puget, P. & Lal, R. Soil organic carbon and nitrogen in a Mollisol in Central Ohio as affected by tillage and land use. Soil Tillage Res. 80, 201–213 (2005).
    Google Scholar 
    Chan, Y. Increasing soil organic carbon of agricultural land. Primefact 735, 1–5 (2008).
    Google Scholar 
    Worku, G., Bantider, A. & Temesgen, H. Effects of land use/land cover change on some soil physical and chemical properties in Ameleke micro-watershed Gedeo and Borena Zones. South Ethiopia. J. Environ. Earth Sci. 4, 13–24 (2014).
    Google Scholar 
    Assefa, D. et al. Deforestation and land use strongly effect soil organic carbon and nitrogen stock in Northwest Ethiopia. CATENA 153, 89–99 (2017).CAS 

    Google Scholar 
    Gessesse, T. A., Khamzina, A., Gebresamuel, G. & Amelung, W. Terrestrial carbon stocks following 15 years of integrated watershed management intervention in semi-arid Ethiopia. CATENA 190, 104543 (2020).CAS 

    Google Scholar 
    Haileslassie, A., Priess, J., Veldkamp, E., Teketay, D. & Lesschen, J. P. Assessment of soil nutrient depletion and its spatial variability on smallholders’ mixed farming systems in Ethiopia using partial versus full nutrient balances. Agric. Ecosyst. Environ. 108, 1–16 (2005).
    Google Scholar 
    Lemenih, M., Lemma, B. & Teketay, D. Changes in soil carbon and total nitrogen following reforestation of previously cultivated land in the highlands of Ethiopia. Ethiopian J. Sci. 28(2), 99–108 (2005).
    Google Scholar 
    Lemenih, M., Karltun, E. & Olsson, M. Soil organic matter dynamics after deforestation along a farm field chronosequences in southern highlands of Ethiopia. Agric. Ecosyst. Environ. 109, 9–19 (2005).
    Google Scholar 
    Okebalama, C. B., Igwe, C. A. & Okolo, C. C. Soil organic carbon levels in soils of contrasting land uses in Southeastern Nigeria. Trop. Subtrop. Agroecosyst. 20, 493–504 (2017).CAS 

    Google Scholar 
    Nwite, J. N., Orji, J. E. & Okolo, C. C. Effect of different land use systems on soil carbon storage and structural indices in Abakaliki, Nigeria. Indian J. Ecol. 45(3), 522–527 (2018).
    Google Scholar 
    Don, A., Schumacher, J. & Freibauer, A. Impact of tropical land-use change on soil organic carbon stocks–a meta-analysis. Glob. Chang. Biol. 17, 1658–1670 (2011).ADS 

    Google Scholar 
    Zinn, Y. L., Marrenjo, G. J. & Silva, C. A. Soil C: N ratos are unresponsive to land use change in Brazil: A comparative analysis. Agric. Ecosyst. Environ. 255, 62–72 (2018).CAS 

    Google Scholar 
    Lou, Y. L., Xu, M. G., Chen, X. N., He, X. H. & Zhao, K. Stratification of soil organic C, N and C: N ratio as affected by conservation tillage in two maize fields of China. CATENA 95, 124–130 (2012).CAS 

    Google Scholar 
    Xiao, X., Kuang, X., Sauer, T. J., Heitman, J. L. & Horton, R. Bare soil carbon dioxide fluxes with time and depth determined by high-resolution gradient-based measurements and surface chambers. Soil Sci. Soc. Am. 79, 1073–1083 (2015).CAS 

    Google Scholar 
    Wang, X. et al. Forest soil profile inversion and mixing change the vertical stratification of soil CO2 concentration without altering soil surface CO2 Flux. Forests 10, 192 (2019).
    Google Scholar 
    Bates, C. T. et al. Conversion of marginal land into switchgrass conditionally accrues soil carbon but reduces methane consumption. ISME J. 16, 10 (2021).
    Google Scholar 
    Slessarev, E. W. et al. Quantifying the effects of switchgrass (Panicum virgatum) on deep organic C stocks using natural abundance 14C in three marginal soils. GCB Bioenergy 12, 834–847 (2020).CAS 

    Google Scholar 
    Balesdent, J., Besnard, E., Arrouays, D. & Chenu, C. The dynamics of carbon in particle size fractions of soil in a forest-cultivation sequence. Plant Soil 201, 49–57 (1998).CAS 

    Google Scholar 
    Birch, H. F. & Friend, M. T. The organ matter and nitrogen status of east African soils. J. Soil Sci. 7, 156–167 (1956).CAS 

    Google Scholar 
    Deng, L., Zhu, G., Tang, Z. & Shangguan, Z. Global patterns of the effects of land-usechanges on soil carbon stocks. Glob. Ecol. Conserv. 5, 127–138 (2016).
    Google Scholar 
    Post, W. M. & Kwon, K. C. Soil carbon sequestration and land-use change: Processes and potential. Glob. Chang. Biol. 6, 317–327 (2000).ADS 

    Google Scholar 
    Feng, X. & Simpson, M. J. Temperature responses of individual soil organic matter components. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2008JG000743 (2008).Article 

    Google Scholar 
    Chen, S., Huang, Y., Zou, J. & Shi, Y. Mean residence time of global topsoil organic carbon depends on temperature, precipitation and soil nitrogen. Glob. Planet. Chang. 100, 99–108 (2013).ADS 

    Google Scholar 
    Alemayehu, K. & Sheleme, B. Effects of different land use systems on selected soi properties in South Ethiopia. J. Soil Sci. Environ. Manag. 4(5), 100–107 (2013).
    Google Scholar 
    Bockheim, J. G. Soil endemism and its relation to soil formation theory. Geoderma 129, 109–124 (2005).ADS 

    Google Scholar 
    Ukaegbu, E. P., Osuaku, S. K. & Okolo, C. C. Suitability assessment of soils supporting oilpalm plantations in the coastal plains sand, Imo State Nigeria. Int. J. Agric. For. 5(2), 113–120 (2015).
    Google Scholar 
    Okolo, C. C. et al. Impact of open cast mine land use on soil physical properties in Enyigba, Southeastern Nigeria and the implication for sustainable land use management. Niger. J. Soil Sci. 25(1), 95–101 (2015).
    Google Scholar 
    Nwite, J. N. & Okolo, C. C. Soil water relations of an Ultisol amended with agro-wastes and its effect on grain yield of maize (Zea Mays L.) in Abakaliki, Southeastern Nigeria. Eur. J. Sci. Res. 141, 126–140 (2016).
    Google Scholar 
    Nwite, J. N. & Okolo, C. C. Organic carbon dynamics and changes in some physical properties of soil and their effect on grain yield of maize under conservative tillage practices in Abakaliki, Nigeria. Afr. J. Agric. Res. 12(26), 2215–2222 (2017).CAS 

    Google Scholar 
    Mbah, C. N., Njoku, C., Okolo, C. C., Attoe, E. & Osakwe, U. C. Amelioration of a degraded Ultisol with hardwood biochar: Effects on soil physico-chemical properties and yield of cucumber (Cucumis sativus L). Afr. J. Agric. Res. 12(21), 1781–1792 (2017).CAS 

    Google Scholar 
    Nandan, R. et al. Impact of conservation tillage in rice–based cropping systems on soil aggregation, carbon pools and nutrients. Geoderma 340, 104–114 (2019).ADS 
    CAS 

    Google Scholar 
    Sharma, K.L. Effect of agroforestry systems on soil quality–monitoring and assessment. Central Research Institute for Dryland Agriculture. 2011. http://www.crida.in/DRM1-WinterSchool/KLS.pdf/. Accessed on 30 Dec 2018.Okolo, C. C., Gebresamuel, G., Zenebe, A., Haile, M. & Eze, P. N. Accumulation of organic carbon in various soil aggregate sizes under different land use systems in a semi-arid environment. Agric. Ecosyst. Environ. 297, 106924. https://doi.org/10.1016/j.agee.2020.106924 (2020).Article 
    CAS 

    Google Scholar 
    Okolo, C. C., Gebresamuel, G., Retta, A. N., Zenebe, A. & Haile, M. Advances in quantifying soil organic carbon under different land uses in Ethiopia: A review and synthesis. Bull. Natl. Res. Cent. 43(99), 2019. https://doi.org/10.1186/s42269-019-0120-z (2019).Article 

    Google Scholar  More

  • in

    The influence of task difficulty, social tolerance and model success on social learning in Barbary macaques

    Heyes, B. Y. C. M. Social learning in animals: Categories and mechanisms. Biol. Rev. 69(2), 207–231. https://doi.org/10.1111/j.1469-185X.1994.tb01506.x (1994).Article 
    CAS 

    Google Scholar 
    Hoppitt, W. & Laland, K. N. Social processes influencing learning in animals: A review of the evidence. Adv. Study Behav. 38, 105–165. https://doi.org/10.1016/S0065-3454(08)00003-X (2008).Article 

    Google Scholar 
    Kendal, R. L., Coolen, I. & Laland, K. N. Adaptive trade-offs in the use of social and personal information. In Cognitive Ecology II (eds Dukas, R. & Ratcliffe, J. M.) 249–271 (University of Chicago Press, 2009).Chapter 

    Google Scholar 
    Marshall-Pescini, S. & Whiten, A. Social learning of nut-cracking behavior in East African sanctuary-living chimpanzees (Pan troglodytes schweinfurthii). J. Comp. Psychol. 122(2), 186. https://doi.org/10.1037/0735-7036.122.2.186 (2008).Article 

    Google Scholar 
    Hobaiter, C., Poisot, T., Zuberbühler, K., Hoppitt, W. & Gruber, T. Social network analysis shows direct evidence for social transmission of tool use in wild chimpanzees. PLoS Biol. 12(9), e1001960. https://doi.org/10.1371/journal.pbio.1001960 (2014).Article 
    CAS 

    Google Scholar 
    Coelho, C. G. et al. Social learning strategies for nut-cracking by tufted capuchin monkeys (Sapajus spp.). Anim. Cogn. 18(4), 911–919. https://doi.org/10.1007/s10071-015-0861-5 (2015).Article 
    CAS 

    Google Scholar 
    Boyd, R. & Richerson, P. J. Culture and the evolutionary process (University of Chicago press, 1985).
    Google Scholar 
    Laland, K. N. Social learning strategies. Anim. Learn. Behav. 32(1), 4–14. https://doi.org/10.3758/BF03196002 (2004).Article 

    Google Scholar 
    Kendal, R. L. Animal ‘culture wars’: Evidence from the Wild?. Psychologist 21(4), 312–315 (2008).
    Google Scholar 
    Kendal, R. L., Kendal, J. R., Hoppitt, W. & Laland, K. N. Identifying social learning in animal populations: A new ‘option-bias’ method. PLoS ONE 4(8), e6541. https://doi.org/10.1371/journal.pone.0006541 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Giraldeau, L. A., Valone, T. J. & Templeton, J. J. Potential disadvantages of using socially acquired information. Philos. Trans. R. Soc. Lond. Series B. 357(1427), 1559–1566. https://doi.org/10.1098/rstb.2002.1065 (2002).Article 

    Google Scholar 
    Kendal, R. L., Coolen, I., van Bergen, Y. & Laland, K. N. Trade-offs in the adaptive use of social and asocial learning. Adv. Study Behav. 35, 333–379. https://doi.org/10.1016/S0065-3454(05)35008-X (2005).Article 

    Google Scholar 
    Galef, B. G. Jr. Why behaviour patterns that animals learn socially are locally adaptive. Anim. Behav. 49(5), 1325–1334. https://doi.org/10.1006/anbe.1995.0164 (1995).Article 

    Google Scholar 
    Kendal, R. L. et al. Social learning strategies: Bridge-building between fields. Trends Cogn. Sci. 22(7), 651–665. https://doi.org/10.1016/j.tics.2018.04.003 (2018).Article 

    Google Scholar 
    Rendell, L. et al. Cognitive culture: Theoretical and empirical insights into social learning strategies. Trends Cogn. Sci. 15(2), 68–76. https://doi.org/10.1016/j.tics.2010.12.002 (2011).Article 

    Google Scholar 
    Dindo, M., Thierry, B. & Whiten, A. Social diffusion of novel foraging methods in brown capuchin monkeys (Cebus apella). Proc. R. Soc. B 275(1631), 187–193. https://doi.org/10.1098/rspb.2007.1318 (2008).Article 

    Google Scholar 
    Reader, S. M. & Biro, D. Experimental identification of social learning in wild animals. Learn. Behav. 38(3), 265–283. https://doi.org/10.3758/LB.38.3.265 (2010).Article 

    Google Scholar 
    Hoppitt, W. & Laland, K. N. Social Learning: An Introduction to Mechanisms, Methods, and Models (Princeton University Press, 2013).Book 

    Google Scholar 
    Byrne, R. W. & Russon, A. E. Learning by imitation: A hierarchical approach. Behav. Brain Sci. 21(5), 667–684. https://doi.org/10.1017/S0140525X9833174X (1998).Article 
    CAS 

    Google Scholar 
    Kendal, R. L. et al. Evidence for social learning in wild lemurs (Lemur catta). Learn. Behav. 38(3), 220–234. https://doi.org/10.3758/LB.38.3.220 (2010).Article 

    Google Scholar 
    Lonsdorf, E. V. & Bonnie, K. E. Opportunities and constraints when studying social learning: Developmental approaches and social factors. Learn. Behav. 38(3), 195–205. https://doi.org/10.3758/LB.38.3.195 (2010).Article 

    Google Scholar 
    Coussi-korbel, S. & Fragaszy, M. On the relation between social dynamics and social learning. Anim. Behav. 50(6), 1441–1453. https://doi.org/10.1016/0003-3472(95)80001-8 (1995).Article 

    Google Scholar 
    Franz, M. & Nunn, C. L. Network-based diffusion analysis: A new method for detecting social learning. Proc. R. Soc. Lond B 276(1663), 1829–1836. https://doi.org/10.1098/rspb.2008.1824 (2009).Article 

    Google Scholar 
    Hoppitt, W., Boogert, N. J. & Laland, K. N. Detecting social transmission in networks. J. Theor. Biol. 263(4), 544–555. https://doi.org/10.1016/j.jtbi.2010.01.004 (2010).Article 
    ADS 
    MATH 

    Google Scholar 
    Hoppitt, W. & Laland, K. N. Detecting social learning using networks: A users guide. Am. J. Primatol. 73(8), 834–844. https://doi.org/10.1002/ajp.20920 (2011).Article 

    Google Scholar 
    Hasenjager, M. J., Leadbeater, E. & Hoppitt, W. Detecting and quantifying social transmission using network-based diffusion analysis. J. Anim. Ecol. 90(1), 8–26. https://doi.org/10.1111/1365-2656.13307 (2021).Article 

    Google Scholar 
    Schnoell, A. V. & Fichtel, C. Wild red-fronted lemurs (Eulemur rufifrons) use social information to learn new foraging techniques. Anim. Cogn. 15(4), 505–516. https://doi.org/10.1007/s10071-012-0477-y (2012).Article 

    Google Scholar 
    Coelho, C. Social Dynamics and Diffusion of Novel Behaviour Patterns in Wild Capuchin Monkeys (Sapajus libidinosus) Inhabiting the Serra da Capivara National Park. (Unpublished Doctoral Dissertation) (Durham University, 2015).
    Google Scholar 
    Claidière, N., Messer, E. J., Hoppitt, W. & Whiten, A. Diffusion dynamics of socially learned foraging techniques in squirrel monkeys. Curr. Biol. 23(13), 1251–1255. https://doi.org/10.1016/j.cub.2013.05.036 (2013).Article 
    CAS 

    Google Scholar 
    van Leeuwen, E. J., Staes, N., Verspeek, J., Hoppitt, W. J. & Stevens, J. M. Social culture in bonobos. Curr. Biol. 30(6), R261–R262. https://doi.org/10.1016/j.cub.2020.02.038 (2020).Article 
    CAS 

    Google Scholar 
    Canteloup, C., Hoppitt, W. & van de Waal, E. Wild primates copy higher-ranked individuals in a social transmission experiment. Nat. Commun. 11(1), 1–10. https://doi.org/10.1038/s41467-019-14209-8 (2020).Article 
    CAS 

    Google Scholar 
    Kawai, M. Newly-acquired pre-cultural behavior of the natural troop of Japanese monkeys on Koshima Islet. Primates 6(1), 1–30. https://doi.org/10.1007/BF01794457 (1965).Article 

    Google Scholar 
    Huffman, M. A., Leca, J. B. & Nahallage, C. A. Cultured Japanese macaques: A multidisciplinary approach to stone handling behavior and its implications for the evolution of behavioral tradition in nonhuman primates. In The Japanese Macaques (eds Nakagawa, N. et al.) 191–219 (Springer, 2010). https://doi.org/10.1007/978-4-431-53886-8_9.Chapter 

    Google Scholar 
    Drapier, M. & Thierry, B. Social transmission of feeding techniques in Tonkean macaques?. Int. J. Primatol. 23(1), 105–122. https://doi.org/10.1023/A:1013201924975 (2002).Article 

    Google Scholar 
    Ducoing, A. M. & Thierry, B. Tool-use learning in Tonkean macaques (Macaca tonkeana). Anim. Cogn. 8(2), 103–113. https://doi.org/10.1007/s10071-004-0240-0 (2005).Article 

    Google Scholar 
    Ferrari, P. F. et al. Neonatal imitation in rhesus macaques. PLoS Biol. 4(9), e302. https://doi.org/10.1371/journal.pbio.0040302 (2006).Article 
    CAS 

    Google Scholar 
    Leca, J. B., Gunst, N. & Huffman, M. A. The first case of dental flossing by a Japanese macaque (Macaca fuscata): Implications for the determinants of behavioral innovation and the constraints on social transmission. Primates 51(1), 13. https://doi.org/10.1007/s10329-009-0159-9 (2010).Article 

    Google Scholar 
    Macellini, S. et al. Individual and social learning processes involved in the acquisition and generalization of tool use in macaques. Philos. Trans. R. Soc. B 367(1585), 24–36. https://doi.org/10.1098/rstb.2011.0125 (2012).Article 
    CAS 

    Google Scholar 
    Redshaw, J. Re-analysis of data reveals no evidence for neonatal imitation in rhesus macaques. Biol. Let. 15(7), 20190342. https://doi.org/10.1098/rsbl.2019.0342 (2019).Article 

    Google Scholar 
    Hook, M. A. et al. Inter-group variation in abnormal behavior in chimpanzees (Pan troglodytes) and rhesus macaques (Macaca mulatta). Appl. Anim. Behav. Sci. 76(2), 165–176. https://doi.org/10.1016/S0168-1591(02)00005-9 (2002).Article 

    Google Scholar 
    Watanabe, K., Urasopon, N. & Malaivijitnond, S. Long-tailed macaques use human hair as dental floss. Am. J. Primatol. 69(8), 940–944. https://doi.org/10.1002/ajp.20403 (2007).Article 

    Google Scholar 
    Gumert, M. D., Kluck, M. & Malaivijitnond, S. The physical characteristics and usage patterns of stone axe and pounding hammers used by long-tailed macaques in the Andaman Sea region of Thailand. Am. J. Primatol. 71(7), 594–608. https://doi.org/10.1002/ajp.20694 (2009).Article 

    Google Scholar 
    Tan, A. W., Hemelrijk, C. K., Malaivijitnond, S. & Gumert, M. D. Young macaques (Macaca fascicularis) preferentially bias attention towards closer, older, and better tool users. Anim. Cogn. 21(4), 551–563. https://doi.org/10.1007/s10071-018-1188-9 (2018).Article 

    Google Scholar 
    Bandini, E. & Tennie, C. Exploring the role of individual learning in animal tool-use. PeerJ 8, e9877. https://doi.org/10.7717/peerj.9877 (2020).Article 

    Google Scholar 
    Leca, J. B., Gunst, N., & Huffman, M. A. Japanese macaque cultures: Inter-and intra-troop behavioural variability of stone handling patterns across 10 troops. Behaviour, 251–281. https://www.jstor.org/stable/4536445 (2007).Tanaka, I. Matrilineal distribution of louse egg-handling techniques during grooming in free-ranging Japanese macaques. Am. J. Phys. Anthropol. 98(2), 197–201. https://doi.org/10.1002/ajpa.1330980208 (1995).Article 
    CAS 

    Google Scholar 
    Tanaka, I. Social diffusion of modified louse egg-handling techniques during grooming in free-ranging Japanese macaques. Anim. Behav. 56(5), 1229–1236. https://doi.org/10.1006/anbe.1998.0891 (1998).Article 
    CAS 

    Google Scholar 
    Whiten, A. & van de Waal, E. The pervasive role of social learning in primate lifetime development. Behav. Ecol. Sociobiol. 72(5), 1–16. https://doi.org/10.1007/s00265-018-2489-3 (2018).Article 

    Google Scholar 
    Widdig, A., Streich, W. J. & Tembrock, G. Coalition formation among male Barbary macaques (Macaca sylvanus). Am. J. Primatol. 50(1), 37–51. https://doi.org/10.1002/(SICI)1098-2345(200001)50:1%3c37::AID-AJP4%3e3.0.CO;2-3 (2000).Article 
    CAS 

    Google Scholar 
    Thierry, B. Unity in diversity: Lessons from macaque societies. Evol. Anthropol. 16(6), 224–238. https://doi.org/10.1002/evan.20147 (2007).Article 

    Google Scholar 
    Berghänel, A., Ostner, J., Schröder, U. & Schülke, O. Social bonds predict future cooperation in male Barbary macaques, Macaca sylvanus. Anim. Behav. 81(6), 1109–1116. https://doi.org/10.1016/j.anbehav.2011.02.009 (2011).Article 

    Google Scholar 
    Carne, C., Wiper, S. & Semple, S. Reciprocation and interchange of grooming, agonistic support, feeding tolerance, and aggression in semi-free-ranging Barbary macaques. Am. J. Primatol. 73(11), 1127–1133. https://doi.org/10.1002/ajp.20979 (2011).Article 

    Google Scholar 
    Molesti, S. & Majolo, B. Cooperation in wild Barbary macaques: Factors affecting free partner choice. Anim. Cogn. 19(1), 133–146. https://doi.org/10.1007/s10071-015-0919-4 (2016).Article 

    Google Scholar 
    Rebout, N., Desportes, C. & Thierry, B. Resource partitioning in tolerant and intolerant macaques. Aggress. Behav. 43(5), 513–520. https://doi.org/10.1002/ab.21709 (2017).Article 

    Google Scholar 
    Amici, F., Caicoya, A. L., Majolo, B. & Widdig, A. Innovation in wild Barbary macaques (Macaca sylvanus). Sci. Rep. 10(1), 1–12. https://doi.org/10.1038/s41598-020-61558-2 (2020).Article 
    CAS 

    Google Scholar 
    Fischer, J. Emergence of individual recognition in young macaques. Anim. Behav. 67(4), 655–661. https://doi.org/10.1016/j.anbehav.2003.08.006 (2004).Article 

    Google Scholar 
    Seyfarth, R. M. & Cheney, D. L. Production, usage, and comprehension in animal vocalizations. Brain Lang. 115(1), 92–100. https://doi.org/10.1016/j.bandl.2009.10.003 (2010).Article 

    Google Scholar 
    Garcia-Nisa, I. Communication and cultural transmission in populations of semi free-ranging Barbary macaques (Macaca sylvanus). (Doctoral dissertation). Durham University, United Kingdom. http://etheses.dur.ac.uk/14140/ (2021).Hoppitt, W. The conceptual foundations of network-based diffusion analysis: Choosing networks and interpreting results. Philos. Trans. R. Soc. B 372(1735), 20160418. https://doi.org/10.1098/rstb.2016.0418 (2017).Article 

    Google Scholar 
    Hikami, K., Hasegawa, Y. & Matsuzawa, T. Social transmission of food preferences in Japanese monkeys (Macaca fuscata) after mere exposure or aversion training. J. Comp. Psychol. 104(3), 233. https://doi.org/10.1037/0735-7036.104.3.233 (1990).Article 
    CAS 

    Google Scholar 
    Deaner, R. O., Khera, A. V. & Platt, M. L. Monkeys pay per view: Adaptive valuation of social images by rhesus macaques. Curr. Biol. 15(6), 543–548. https://doi.org/10.1016/j.cub.2005.01.044 (2005).Article 
    CAS 

    Google Scholar 
    Gariépy, J. F. et al. Social learning in humans and other animals. Front. Neurosci. 8, 58. https://doi.org/10.3389/fnins.2014.00058 (2014).Article 

    Google Scholar 
    Barrett, B. J., McElreath, R. L. & Perry, S. E. Pay-off-biased social learning underlies the diffusion of novel extractive foraging traditions in a wild primate. Proc. R. Soc. B 284(1856), 20170358. https://doi.org/10.1098/rspb.2017.0358 (2017).Article 

    Google Scholar 
    Kuester, J. & Paul, A. Group fission in Barbary macaques (Macaca sylvanus) at Affenberg Salem. Int. J. Primatol. 18(6), 941–966. https://doi.org/10.1023/A:1026396113830 (1997).Article 

    Google Scholar 
    Whitehead, H. Analyzing Animal Societies: Quantitative Methods for Vertebrate Social Analysis (University of Chicago Press, 2008).Book 

    Google Scholar 
    Hoppitt, W. (2011). NBDA User Guide V1.2. https://lalandlab.st-andrews.ac.uk/freeware/ 28 Sept 2016.Fleiss, J. L., Levin, B. & Paik, M. C. Statistical Methods for Rates and Proportions 3rd edn. (Wiley, 2003).Book 
    MATH 

    Google Scholar 
    McHugh, M. L. Interrater reliability: the kappa statistic. Biochemia medica: Biochemia medica, 22(3), 276–282. https://hrcak.srce.hr/89395 (2012).Hair, J. F., Anderson, R. E., Babin, B. J. & Black, W. C. Multivariate Data Analysis: A Global Perspective Vol. 7 (Pearson Education, 2010).
    Google Scholar 
    Campbell, L. A., Tkaczynski, P. J., Lehmann, J., Mouna, M. & Majolo, B. Social thermoregulation as a potential mechanism linking sociality and fitness: Barbary macaques with more social partners form larger huddles. Sci. Rep. 8(1), 1–8. https://doi.org/10.1038/s41598-018-24373-4 (2018).Article 
    CAS 

    Google Scholar 
    Barrett, L., Henzi, S. P., Weingrill, T., Lycett, J. E. & Hill, R. A. Market forces predict grooming reciprocity in female baboons. Proc. R. Soc. Lond. Ser. B 266(1420), 665–670. https://doi.org/10.1098/rspb.1999.0687 (1999).Article 

    Google Scholar 
    Henzi, S. P. et al. Effect of resource competition on the long-term allocation of grooming by female baboons: Evaluating Seyfarth’s model. Anim. Behav. 66(5), 931–938. https://doi.org/10.1006/anbe.2003.2244 (2003).Article 

    Google Scholar 
    Ueno, M. & Nakamichi, M. Grooming facilitates huddling formation in Japanese macaques. Behav. Ecol. Sociobiol. 72(6), 1–10. https://doi.org/10.1007/s00265-018-2514-6 (2018).Article 

    Google Scholar 
    Carter, A. J., Tico, M. T. & Cowlishaw, G. Sequential phenotypic constraints on social information use in wild baboons. Elife 5, e13125. https://doi.org/10.7554/eLife.13125.001 (2016).Article 

    Google Scholar 
    Barelli, C., Reichard, U. H. & Mundry, R. Is grooming used as a commodity in wild white-handed gibbons, Hylobates lar?. Anim. Behav. 82(4), 801–809. https://doi.org/10.1016/j.anbehav.2011.07.012 (2011).Article 

    Google Scholar 
    Schülke, O., Dumdey, N. & Ostner, J. Selective attention for affiliative and agonistic interactions of dominants and close affiliates in macaques. Sci. Rep. 10(1), 1–8. https://doi.org/10.1038/s41598-020-62772-8 (2020).Article 
    CAS 

    Google Scholar 
    Heesen, M., Macdonald, S., Ostner, J. & Schülke, O. Ecological and social determinants of group cohesiveness and within-group spatial position in wild Assamese macaques. Ethology 121(3), 270–283. https://doi.org/10.1111/eth.12336 (2015).Article 

    Google Scholar 
    Ortiz, K. M. Female feeding competition in a folivorous primate (Propithecus verreauxi) with formalized dominance hierarchies: contest or scramble? (Doctoral dissertation). University of Texas, USA. https://repositories.lib.utexas.edu/handle/2152/34120 (2015).Jurczyk, V., Fröber, K. & Dreisbach, G. Increasing reward prospect motivates switching to the more difficult task. Mot. Sci. 5(4), 295–313. https://doi.org/10.1037/mot0000119 (2019).Article 

    Google Scholar 
    Rathke, E. M. & Fischer, J. Differential ageing trajectories in motivation, inhibitory control and cognitive flexibility in Barbary macaques (Macaca sylvanus). Philos. Trans. R. Soc. B 375(1811), 20190617. https://doi.org/10.1098/rstb.2019.0617 (2020).Article 

    Google Scholar 
    Kendal, R. et al. Chimpanzees copy dominant and knowledgeable individuals: Implications for cultural diversity. Evol. Hum. Behav. 36(1), 65–72. https://doi.org/10.1016/j.evolhumbehav.2014.09.002 (2015).Article 

    Google Scholar 
    van de Waal, E., Claidière, N. & Whiten, A. Social learning and spread of alternative means of opening an artificial fruit in four groups of vervet monkeys. Anim. Behav. 85(1), 71–76. https://doi.org/10.1016/j.anbehav.2012.10.008 (2013).Article 

    Google Scholar 
    Luncz, L. V. & Boesch, C. Tradition over trend: Neighboring chimpanzee communities maintain differences in cultural behavior despite frequent immigration of adult females. Am. J. Primatol. 76(7), 649–657. https://doi.org/10.1002/ajp.22259 (2014).Article 

    Google Scholar 
    van Leeuwen, E. J., Acerbi, A., Kendal, R. L., Tennie, C. & Haun, D. B. A reappreciation of ‘conformity’. Anim. Behav. 122, e5–e10. https://doi.org/10.1016/j.anbehav.2016.09.010 (2016).Article 

    Google Scholar 
    Horner, V. & Whiten, A. Causal knowledge and imitation/emulation switching in chimpanzees (Pan troglodytes) and children (Homo sapiens). Anim. Cogn. 8(3), 164–181. https://doi.org/10.1007/s10071-004-0239-6 (2005).Article 

    Google Scholar 
    Wood, L. The influence of model-based biases and observer prior experience on social learning mechanisms and strategies. (Doctoral dissertation). Durham University, United Kingdom. http://etheses.dur.ac.uk/7274/ (2013).van Leeuwen, E. J., Cronin, K. A., Schütte, S., Call, J. & Haun, D. B. Chimpanzees (Pan troglodytes) flexibly adjust their behaviour in order to maximize payoffs, not to conform to majorities. PLoS ONE 8(11), e80945. https://doi.org/10.1371/journal.pone.0080945 (2013).Article 
    CAS 

    Google Scholar 
    Vale, G. L., Flynn, E. G., Lambeth, S. P., Schapiro, S. J. & Kendal, R. L. Public information use in chimpanzees (Pan troglodytes) and children (Homo sapiens). J. Comp. Psychol. 128(2), 215–223. https://doi.org/10.1037/a0034420 (2014).Article 

    Google Scholar 
    Canteloup, C., Cera, M. B., Barrett, B. J. & van de Waal, E. Processing of novel food reveals payoff and rank-biased social learning in a wild primate. Sci. Rep. 11(1), 1–13. https://doi.org/10.1038/s41598-021-88857-6 (2021).Article 
    CAS 

    Google Scholar 
    Boccaletti, S. et al. The structure and dynamics of multilayer networks. Phys. Rep. 544(1), 1–122. https://doi.org/10.1016/j.physrep.2014.07.001 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Kivela, M. et al. Multilayer networks. J. Complex Netw. 2(3), 203e271. https://doi.org/10.1093/comnet/cnu016 (2014).Article 

    Google Scholar 
    Snijders, L. & Naguib, M. Communication in animal social networks: A missing link. Adv. Study Behav. 49, 297–359. https://doi.org/10.1016/bs.asb.2017.02.004 (2017).Article 

    Google Scholar 
    Finn, K. R., Silk, M. J., Porter, M. A. & Pinter-Wollman, N. The use of multilayer network analysis in animal behaviour. Anim. Behav. 149, 7–22. https://doi.org/10.1016/j.anbehav.2018.12.016 (2019).Article 

    Google Scholar  More

  • in

    Food insecurity and health outcomes among community-dwelling middle-aged and older adults in India

    Food, Agricultural Organisation. The State of Food Security and Nutrition in the World 2019: Transforming Food Systems for Affordable Healthy Diets. Safeguarding against Economic Slowdowns and Downturns (2020). http://www.fao.org/documents/card/en/c/ca9692en (Accessed 12 June 2021).Rautela, G. et al. Prevalence and correlates of household food insecurity in Delhi and Chennai India. Food Secur. 12(2), 391–404. https://doi.org/10.1007/s12571-020-01015-0 (2020).Article 

    Google Scholar 
    Nagappa, B. et al. Prevalence of food insecurity at household level and its associated factors in rural Puducherry: A cross-sectional study. Indian J. Community Med. 45(3), 303–306. https://doi.org/10.4103/ijcm.IJCM_233_19 (2020).Article 

    Google Scholar 
    Schrock, J. M. et al. Food insecurity partially mediates associations between social disadvantage and body composition among older adults in india: Results from the study on global AGEing and adult health (SAGE). Am. J. Hum. Biol. https://doi.org/10.1002/ajhb.23033 (2017).Article 

    Google Scholar 
    Narayanan, S. Food security in India: The imperative and its challenges. Asia Pac. Policy Stud. 2, 197–209. https://doi.org/10.1002/app5.62 (2015).Article 

    Google Scholar 
    George, N. A. & McKay, F. H. The public distribution system and food security in India. Int. J. Environ. Res. Public Health 16(17), 3221. https://doi.org/10.3390/ijerph16173221 (2019).Article 

    Google Scholar 
    Global Food Security Index. India. https://impact.economist.com/sustainability/project/food-security-index/explore-countries/india (Accessed 12 November 2022).United Nations Population Fund 2017. Caring for Our Elders: Early Responses – India Ageing Report—2017. UNFPA, New Delhi, India.Arenas, D. J., Thomas, A., Wang, J. & DeLisser, H. M. A systematic review and meta-analysis of depression, anxiety, and sleep disorders in US adults with food insecurity. J. Gen. Intern. Med. 34(12), 2874–2882. https://doi.org/10.1007/s11606-019-05202-4 (2019).Article 

    Google Scholar 
    Pourmotabbed, A. et al. Food insecurity and mental health: A systematic review and meta-analysis. Public Health Nutr. 23(10), 1778–1790. https://doi.org/10.1017/S136898001900435X (2020).Article 

    Google Scholar 
    McMichael, A. J. et al. Food insecurity and brain health in adults: A systematic review. Crit. Rev. Food Sci. Nutr. 62, 1–16. https://doi.org/10.1080/10408398.2021.1932721 (2021).Article 

    Google Scholar 
    Smith, L. et al. Association between food insecurity and depression among older adults from low- and middle-income countries. Depress Anxiety 38(4), 439–446. https://doi.org/10.1002/da.23147 (2021).Article 

    Google Scholar 
    Muhammad, T., Sulaiman, K. M., Drishti, D. & Srivastava, S. Food insecurity and associated depression among older adults in India: Evidence from a population-based study. BMJ Open 12(4), e052718. https://doi.org/10.1136/bmjopen-2021-052718 (2022).Article 

    Google Scholar 
    Saha, S. K. et al. Magnitude of mental morbidity and its correlates with special reference to household food insecurity among adult slum dwellers of Bankura, India: A cross-sectional survey. Indian J. Psychol. Med. 41(1), 54–60. https://doi.org/10.4103/IJPSYM.IJPSYM_129_18 (2019).Article 

    Google Scholar 
    Frongillo, E. A., Nguyen, H. T., Smith, M. D. & Coleman-Jensen, A. Food insecurity is associated with subjective well-being among individuals from 138 countries in the 2014 Gallup World Poll. J. Nutr. 147(4), 680–687. https://doi.org/10.3945/jn.116.243642 (2017).Article 
    CAS 

    Google Scholar 
    Na, M. et al. Food insecurity and cognitive function in middle to older adulthood: A systematic review. Adv. Nutr. 11(3), 667–676. https://doi.org/10.1093/advances/nmz122 (2020).Article 

    Google Scholar 
    Srivastava, S. & Muhammad, T. Rural-urban differences in food insecurity and associated cognitive impairment among older adults: Findings from a nationally representative survey. BMC Geriatr. 22(1), 287. https://doi.org/10.1186/s12877-022-02984-x (2022).Article 

    Google Scholar 
    Miguel, E. D. S. et al. Association between food insecurity and cardiometabolic risk in adults and the elderly: A systematic review. J. Glob. Health 10(2), 020402. https://doi.org/10.7189/jogh.10.020402 (2020).Article 

    Google Scholar 
    Liu, Y. & Eicher-Miller, H. A. Food insecurity and cardiovascular disease risk. Curr. Atheroscler. Rep. 23(6), 24. https://doi.org/10.1007/s11883-021-00923-6 (2021).Article 
    CAS 

    Google Scholar 
    Beltrán, S. et al. Food insecurity and hypertension: A systematic review and meta-analysis. PLoS One 15(11), e0241628. https://doi.org/10.1371/journal.pone.0241628 (2020).Article 
    CAS 

    Google Scholar 
    Vaccaro, J. A. & Huffman, F. G. Sex and race/ethnic disparities in food security and chronic diseases in U.S. older adults. Gerontol. Geriatr. Med. 3, 2333721417718344. https://doi.org/10.1177/2333721417718344 (2017).Article 

    Google Scholar 
    Abdurahman, A. A., Chaka, E. E., Nedjat, S., Dorosty, A. R. & Majdzadeh, R. The association of household food insecurity with the risk of type 2 diabetes mellitus in adults: A systematic review and meta-analysis. Eur. J. Nutr. 58(4), 1341–1350. https://doi.org/10.1007/s00394-018-1705-2 (2019).Article 

    Google Scholar 
    Muhammad, T., Saravanakumar, P., Sharma, A., Srivastava, S. & Irshad, C. V. Association of food insecurity with physical frailty among older adults: Study based on LASI, 2017–18. Arch. Gerontol. Geriatr. 103, 104762. https://doi.org/10.1016/j.archger.2022.104762 (2022).Article 
    CAS 

    Google Scholar 
    Venci, B. J. & Lee, S. Y. Functional limitation and chronic diseases are associated with food insecurity among U.S. adults. Ann. Epidemiol. 28(3), 182–188. https://doi.org/10.1016/j.annepidem.2018.01.005 (2018).Article 

    Google Scholar 
    Kim-Mozeleski, J. E. & Pandey, R. The intersection of food insecurity and tobacco use: A scoping review. Health Promot. Pract. 21(1_suppl), 124S-138S. https://doi.org/10.1177/1524839919874054 (2020).Article 

    Google Scholar 
    Mendy, V. L. et al. Food insecurity and cardiovascular disease risk factors among mississippi adults. Int. J. Environ. Res. Public Health 15(9), 2016. https://doi.org/10.3390/ijerph15092016 (2018).Article 

    Google Scholar 
    Bergmans, R. S., Coughlin, L., Wilson, T. & Malecki, K. Cross-sectional associations of food insecurity with smoking cigarettes and heavy alcohol use in a population-based sample of adults. Drug Alcohol Depend. 205, 107646. https://doi.org/10.1016/j.drugalcdep.2019.107646 (2019).Article 

    Google Scholar 
    International Institute for Population Sciences (IIPS), NPHCE, MoHFW, Harvard T. H. Chan School of Public Health (HSPH) and the University of Southern California (USC). Longitudinal Ageing Study in India (LASI) Wave 1, 2017–18, India Report, International Institute for Population Sciences, Mumbai, 2020.Srivastava, S., Muhammad, T., Paul, R. & Thomas, A. R. Multivariate decomposition analysis of sex differences in functional difficulty among older adults based on Longitudinal Ageing Study in India, 2017–2018. BMJ Open 12(4), e054661. https://doi.org/10.1136/bmjopen-2021-054661 (2022).Article 

    Google Scholar 
    Schnittker, J. & Bacak, V. The increasing predictive validity of self-rated health. PLoS One 9(1), e84933. https://doi.org/10.1371/journal.pone.0084933 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Cheung, F. & Lucas, R. E. Assessing the validity of single-item life satisfaction measures: Results from three large samples. Qual. Life Res. 23(10), 2809–2818. https://doi.org/10.1007/s11136-014-0726-4 (2014).Article 

    Google Scholar 
    Diener, E., Lucas, R. E. & Oishi, S. Advances and open questions in the science of subjective well-being. Collabra Psychol. 4(1), 15. https://doi.org/10.1525/collabra.115 (2018).Article 

    Google Scholar 
    Lee, J. & Smith, J. P. Regional disparities in adult height, educational attainment and gender difference in late- life cognition: Findings from the Longitudinal Aging Study in India (LASI). J. Econ. Ageing 4, 26–34. https://doi.org/10.1016/j.jeoa.2014.02.002 (2014).Article 

    Google Scholar 
    Lee, J., Shih, R. A., Feeney, K. C. & Langa, K. M. Cognitive Health of Older Indians: Individual and Geographic Determinants of Female Disadvantage, WR-889 (RAND Corporation, 2011).Book 

    Google Scholar 
    Ganguli, M. et al. A Hindi version of the MMSE: The development of a cognitive screening instrument for a largely illiterate rural population in India. Int. Psychogeriatr. 10, 367–377 (1995).
    Google Scholar 
    Tiwari, S. C., Tripathi, R. K. & Kumar, A. Applicability of the Mini-mental State Examination (MMSE) and the Hindi Mental State Examination (HMSE) to the urban elderly in India: A pilot study. Int. Psychogeriatr. 21(1), 123–128. https://doi.org/10.1017/S1041610208007916 (2009).Article 
    CAS 

    Google Scholar 
    Mathuranath, P. S. et al. Mini mental state examination and the Addenbrooke’s cognitive examination: Effect of education and norms for a multicultural population. Neurol. India 55(2), 106–110. https://doi.org/10.4103/0028-3886.32779 (2007).Article 
    CAS 

    Google Scholar 
    Jenkins, C. D., Stanton, B. A., Niemcryk, S. J. & Rose, R. M. A scale for the estimation of sleep problems in clinical research. J. Clin. Epidemiol. 41(4), 313–321. https://doi.org/10.1016/0895-4356(88)90138-2 (1988).Article 
    CAS 

    Google Scholar 
    Cho, E. & Chen, T. Y. The bidirectional relationships between effort-reward imbalance and sleep problems among older workers. Sleep Health 6(3), 299–305. https://doi.org/10.1016/j.sleh.2020.01.008 (2020).Article 

    Google Scholar 
    Fabbri, M. et al. Measuring subjective sleep quality: A review. Int. J. Environ. Res. Public Health 18(3), 1082. https://doi.org/10.3390/ijerph18031082 (2021).Article 

    Google Scholar 
    Andresen, E. M., Malmgren, J. A., Carter, W. B. & Patrick, D. L. Screening for depression in well older adults: Evaluation of a short form of the CES-D (Center for Epidemiologic Studies Depression Scale). Am. J. Prev. Med. 10(2), 77–84 (1994).Article 
    CAS 

    Google Scholar 
    Kumar, S., Nakulan, A., Thoppil, S. P., Parassery, R. P. & Kunnukattil, S. S. Screening for depression among community-dwelling elders: Usefulness of the center for epidemiologic studies depression scale. Indian J. Psychol. Med. 38(5), 483–485. https://doi.org/10.4103/0253-7176.191380 (2016).Article 

    Google Scholar 
    Chokkanathan, S. & Mohanty, J. Factor structure of the CES-D scale among older adults in Chennai India. Aging Ment. Health 17, 517–525 (2013).Article 

    Google Scholar 
    Kessler, R. C., Andrews, A., Mroczek, D., Ustun, B. & Wittchen, H. U. The World Health Organization composite international diagnostic interview short-form (CIDI-SF). Int. J. Methods Psychiatr. Res. 7, 171–185 (1998).Article 

    Google Scholar 
    Steffick D. Documentation of affective functioning measures in the health and retirement study, 2000. http://hrsonline.isr.umich.edu/sitedocs/userg/dr-005.pdf (Accessed 2 January 2021).Trainor, K., Mallett, J. & Rushe, T. Age related differences in mental health scale scores and depression diagnosis: Adult responses to the CIDI-SF and MHI-5. J. Affect. Disord. 151(2), 639–645 (2013).Article 

    Google Scholar 
    Wen, C. P. et al. Are Asians at greater mortality risks for being overweight than Caucasians? Redefining obesity for Asians. Public Health Nutr. 12(4), 497–506. https://doi.org/10.1017/S1368980008002802 (2009).Article 

    Google Scholar 
    Dhawan, D. & Sharma, S. Abdominal Obesity, adipokines and non-communicable diseases. J. Steroid Biochem. Mol. Biol. 203, 105737. https://doi.org/10.1016/j.jsbmb.2020.105737 (2020).Article 
    CAS 

    Google Scholar 
    Rose, G. A. The diagnosis of ischaemic heart pain and intermittent claudication in field surveys. Bull. World Health Organ. 27, 645–658 (1962).CAS 

    Google Scholar 
    Achterberg, S. et al. Prognostic value of the Rose questionnaire: A validation with future coronary events in the SMART study. Eur. J. Prev. Cardiol. 19(1), 5–14. https://doi.org/10.1177/1741826710391117 (2012).Article 
    CAS 

    Google Scholar 
    Rahman, M. A. et al. Rose Angina questionnaire: Validation with cardiologists’ diagnoses to detect coronary heart disease in Bangladesh. Indian Heart J. 65(1), 30–39. https://doi.org/10.1016/j.ihj.2012.09.008 (2013).Article 

    Google Scholar 
    Chobanian, A. V. et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 42(6), 1206–52. https://doi.org/10.1161/01.HYP.0000107251.49515.c2 (2003).Article 
    CAS 

    Google Scholar 
    Katz, S., Ford, A. B., Moskowitz, R. W., Jackson, B. A. & Jaffe, M. W. Studies of illness in the aged. The index of adl: A standardized measure of biological and psychosocial function. JAMA 185, 914–9. https://doi.org/10.1001/jama.1963.03060120024016 (1963).Article 
    CAS 

    Google Scholar 
    Lawton, M. P. & Brody, E. M. Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist 9(3), 179–186 (1969).Article 
    CAS 

    Google Scholar 
    Singh, S., Multani, S. & Verma, N. Development and validation of geriatric assessment tools: A preliminary report from Indian population. JESP 3(2), 103–110 (2007).
    Google Scholar 
    Blumberg, S. J., Bialostosky, K., Hamilton, W. L. & Briefel, R. R. The effectiveness of a short form of the household food security scale. Am. J. Public Health 89(8), 1231–1234. https://doi.org/10.2105/ajph.89.8.1231 (1999).Article 
    CAS 

    Google Scholar 
    Lee, J., Shih, R.A., Feeney, K., Langa, K.M. Cognitive health of older indians individual and geographic determinants of female disadvantage. https://www.rand.org/content/dam/rand/pubs/working_papers/2011/RAND_WR889.pdf (Accessed 5 June 2021) (2011).Coates, J. et al. Commonalities in the experience of household food insecurity across cultures: What are measures missing?. J. Nutr. 136(5), 1438S-1448S. https://doi.org/10.1093/jn/136.5.1438S (2006).Article 
    CAS 

    Google Scholar 
    Sethi, V., Maitra, C., Avula, R. & Bhalla, S. Internal validity and reliability of experience-based household food insecurity scales in Indian settings. Agric. Food Secur. 6, 21. https://doi.org/10.1186/s40066-017-0099-3 (2017).Article 

    Google Scholar 
    Berkman, L. F., Sekher, T. V., Capistrant, B. & Zheng, Y. Social networks, family, and care giving among older adults in India. In Aging in Asia: Findings From New and Emerging Data Initiatives (eds Smith, J. P. & Majmundar, M.) 261–278 (The National Academic Press, 2012).
    Google Scholar 
    Marsland, A. L., Gianaros, P. J., Abramowitch, S. M., Manuck, S. B. & Hariri, A. R. Interleukin-6 covaries inversely with hippocampal grey matter volume in middle-aged adults. Biol. Psychiatry 64(6), 484–490. https://doi.org/10.1016/j.biopsych.2008.04.016 (2008).Article 
    CAS 

    Google Scholar 
    Bruening, M., Dinour, L. M. & Chavez, J. B. R. Food insecurity and emotional health in the USA: A systematic narrative review of longitudinal research. Public Health Nutr. 20(17), 3200–3208. https://doi.org/10.1017/S1368980017002221 (2017).Article 

    Google Scholar 
    Huddleston-Casas, C., Charnigo, R. & Simmons, L. A. Food insecurity and maternal depression in rural, low-income families: A longitudinal investigation. Public Health Nutr. 12(8), 1133–1140. https://doi.org/10.1017/S1368980008003650 (2009).Article 

    Google Scholar 
    Leung, C. W., Epel, E. S., Willett, W. C., Rimm, E. B. & Laraia, B. A. Household food insecurity is positively associated with depression among low-income supplemental nutrition assistance program participants and income-eligible nonparticipants. J. Nutr. 145(3), 622–627. https://doi.org/10.3945/jn.114.199414 (2015).Article 
    CAS 

    Google Scholar 
    Laraia, B. A. Food insecurity and chronic disease. Adv. Nutr. 4(2), 203–212. https://doi.org/10.3945/an.112.003277 (2013).Article 

    Google Scholar 
    Vercammen, K. A. et al. Food security and 10-year cardiovascular disease risk among U.S. adults. Am. J. Prev. Med. 56(5), 689–697. https://doi.org/10.1016/j.amepre.2018.11.016 (2019).Article 

    Google Scholar 
    Chakraborty R, Kundu J, Jana A. Factors associated with food insecurity among older adults in India: Impacts of functional impairments and chronic diseases. Ageing International, 1–24 (2022).
    Jackson, J. A., Branscum, A., Tang, A. & Smit, E. Food insecurity and physical functioning limitations among older U.S. adults. Prev. Med. Rep. 14, 100829. https://doi.org/10.1016/j.pmedr.2019.100829 (2019).Article 

    Google Scholar 
    Sreeramareddy, C. T. & Ramakrishnareddy, N. Association of adult tobacco use with household food access insecurity: Results from Nepal demographic and health survey, 2011. BMC Public Health 18(1), 48. https://doi.org/10.1186/s12889-017-4579-y (2017).Article 

    Google Scholar 
    Mayer, M., Gueorguieva, R., Ma, X. & White, M. A. Tobacco use increases risk of food insecurity: An analysis of continuous NHANES data from 1999 to 2014. Prev. Med. 126, 105765. https://doi.org/10.1016/j.ypmed.2019.105765 (2019).Article 

    Google Scholar 
    Kim-Mozeleski, J. E., Poudel, K. C. & Tsoh, J. Y. Examining reciprocal effects of cigarette smoking, food insecurity and psychological distress in the U.S.. J. Psychoact. Drugs 53(2), 177–184. https://doi.org/10.1080/02791072.2020.1845419 (2021).Article 

    Google Scholar 
    Dewing, S., Tomlinson, M., le Roux, I. M., Chopra, M. & Tsai, A. C. Food insecurity and its association with co-occurring postnatal depression, hazardous drinking, and suicidality among women in peri-urban South Africa. J. Affect. Disord. 150(2), 460–465. https://doi.org/10.1016/j.jad.2013.04.040 (2013).Article 

    Google Scholar  More

  • in

    Unspoilt forests fall to feed the global supply chain

    .readcube-buybox { display: none !important;}
    Agricultural expansion can plunder forests, but it is not the only human activity to do so. Researchers have found that more than one-third of the loss of Earth’s large, intact forests is driven by production for export — especially of wood, minerals and energy1.

    Access options

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0 0;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50%0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:””;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to Nature and 55 other Nature journal$29.99monthlySubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueAll prices are NET prices.VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00All prices are NET prices.

    Additional access options:

    doi: https://doi.org/10.1038/d41586-023-00119-9

    References

    Subjects

    Conservation biology More

  • in

    Significant changes in soil microbial community structure and metabolic function after Mikania micrantha invasion

    Runyon, J. B., Butler, J. L., Friggens, M. M., Meyer, S. E. & Sing, S. E. Invasive species and climate change. USDA For. Serv. 285, 97–115 (2012).
    Google Scholar 
    Murphy, G. E. & Romanuk, T. N. A meta-analysis of declines in local species richness from human disturbances. Ecol. Evol. 4, 91–103 (2014).Article 

    Google Scholar 
    Mollot, G., Pantel, J. H. & Romanuk, T. N. The effects of invasive species on the decline in species richness: a global meta-analysis. Adv. Ecol. Res. 56, 61–83 (2017).Article 

    Google Scholar 
    Gaertner, M., Den Breeyen, A., Hui, C. & Richardson, D. M. Impacts of alien plant invasions on species richness in Mediterranean-type ecosystems: A meta-analysis. Prog. Phys. Geog. 33, 319–338 (2009).Article 

    Google Scholar 
    Vilà, M. et al. Local and regional assessments of the impacts of plant invaders on vegetation structure and soil properties of Mediterranean islands. J. Biogeogr. 33, 853–861 (2010).Article 

    Google Scholar 
    Hejda, M., Pysek, P. & Jarosik, V. Impact of invasive plants on the species richness, diversity and composition of invaded communities. J. Ecol. 97, 393–403 (2009).Article 

    Google Scholar 
    Powell, K. I., Chase, J. M. & Knight, T. M. A synthesis of plant invasion effects on biodiversity across spatial scales. Am. J. Bot. 98, 539–548 (2011).Article 

    Google Scholar 
    Ehrenfeld, J. G. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6, 503–523 (2003).Article 
    CAS 

    Google Scholar 
    Liao, C. et al. Altered ecosystem carbon and nitrogen cycles by plant invasion: A meta-analysis. New Phytol. 177, 706–714 (2008).Article 
    CAS 

    Google Scholar 
    Chabrerie, O., Laval, K., Puget, P., Desaire, S. & Alard, D. Relationship between plant and soil microbial communities along a successional gradient in a chalk grassland in north-western France. Appl. Soil Ecol. 24, 43–56 (2003).Article 

    Google Scholar 
    Harris, J. Soil microbial communities and restoration ecology: Facilitators or followers?. Science 325, 573–574 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Dawson, W. & Schrama, M. Identifying the role of soil microbes in plant invasions. J. Ecol. 104, 1211–1218 (2016).Article 

    Google Scholar 
    Lankau, R. Soil microbial communities alter allelopathic competition between Alliaria petiolata and a native species. Biol. Invasions 12, 2059–2068 (2010).Article 

    Google Scholar 
    Siefert, A., Zillig, K. W., Friesen, M. L. & Strauss, S. Y. Soil microbial communities alter conspecific and congeneric competition consistent with patterns of field coexistence in three Trifolium congeners. J. Ecol. 106, 1876–1891 (2018).Article 
    CAS 

    Google Scholar 
    Kourtev, P. S., Ehrenfeld, J. G. & Haggblom, M. Exotic plant species alter the microbial community structure and function in the soil. Ecology 83, 3152–3166 (2002).Article 

    Google Scholar 
    Li, W. H., Zhang, C. B., Jiang, H. B., Xin, G. R. & Yang, Z. Y. Changes in soil microbial community associated with invasion of the exotic weed, Mikania micrantha H.B.K. Plant Soil 281, 309–324 (2006).Article 
    CAS 

    Google Scholar 
    Li, W. H., Zhang, C., Gao, G., Zan, Q. & Yang, Z. Relationship between Mikania micrantha invasion and soil microbial biomass, respiration and functional diversity. Plant Soil 296, 197–207 (2007).Article 
    CAS 

    Google Scholar 
    Chen, X. P. et al. Exotic plant Alnus trabeculosa alters the composition and diversity of native rhizosphere bacterial communities of Phragmites australis. Pedosphere 26, 108–119 (2016).Article 

    Google Scholar 
    Yin, L., Liu, B., Wang, H., Zhang, Y. & Fan, W. The rhizosphere microbiome of Mikania micrantha provides insight into adaptation and invasion. Front. Microbiol. 11, 1462 (2020).Article 

    Google Scholar 
    Griffiths, B. S., Ritz, K. & Wheatley, R. E. Relationship between functional diversity and genetic diversity in complex microbial communities. In Microbial Communities (eds Insam, H. & Rangger, A.) 1–9 (Springer, 1997). https://doi.org/10.1007/978-3-642-60694-6_1.Chapter 

    Google Scholar 
    Pérez-Piqueres, A., Edel-Hermann, V., Alabouvette, C. & Steinberg, C. Response of soil microbial communities to compost amendments. Soil Biol. Biochem. 38, 460–470 (2006).Article 

    Google Scholar 
    Grime, J. P. Plant strategies and vegetation processes. Biol. Plant 23, 254–254 (1979).
    Google Scholar 
    Goldberg, D. & Novoplansky, A. On the relative importance of competition in unproductive environments. J. Ecol. 85, 409–418 (1997).Article 

    Google Scholar 
    Goldberg, D. E., Martina, J. P., Elgersma, K. J. & Currie, W. S. Plant size and competitive dynamics along nutrient gradients. Am. Nat. 190, 229–243 (2017).Article 

    Google Scholar 
    Castro-Díez, P., Godoy, O., Alonso, A., Gallardo, A. & Saldaña, A. What explains variation in the impacts of exotic plant invasions on the nitrogen cycle? A meta-analysis. Ecol. Lett. 17, 1–12 (2014).Article 

    Google Scholar 
    Chapuis-Lardy, L., Vanderhoeven, S., Dassonville, N., Koutika, L. S. & Meerts, P. Effect of the exotic invasive plant Solidago gigantea on soil phosphorus status. Biol. Fertil. Soils 42, 481–489 (2006).Article 

    Google Scholar 
    Thorpe, A. S., Archer, V. & DeLuca, T. H. The invasive forb, Centaurea maculosa, increases phosphorus availability in Montana grasslands. Appl. Soil Ecol. 32, 118–122 (2006).Article 

    Google Scholar 
    Hawkes, C. V., Wren, I. F., Herman, D. J. & Firestone, M. K. Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecol. Lett. 8, 976–985 (2005).Article 

    Google Scholar 
    Zhang, A. M., Chen, Z. H., Zhang, G. N., Chen, L. J. & Wu, Z. J. Soil phosphorus composition determined by 31P NMR spectroscopy and relative phosphatase activities influenced by land use. Eur. J. Soil Biol. 52, 73–77 (2012).Article 

    Google Scholar 
    Souza-Alonso, P., Novoa, A. & Gonzalez, L. Soil biochemical alterations and microbial community responses under Acacia dealbata Link invasion. Soil Biol. Biochem. 79, 100–108 (2014).Article 
    CAS 

    Google Scholar 
    Callaway, M. et al. Exotic invasive plants increase productivity, abundance of ammonia-oxidizing bacteria and nitrogen availability in intermountain grasslands. J. Ecol. 104, 994–1002 (2016).Article 

    Google Scholar 
    Zhao, M. et al. Ageratina adenophora invasions are associated with microbially mediated differences in biogeochemical cycles. Sci. Total Environ. 677, 47–56 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Litton, C. M., Sandquist, D. R. & Cordell, S. Effects of non-native grass invasion on aboveground carbon pools and tree population structure in a tropical dry forest of Hawaii. For. Ecol. Manag. 231, 105–113 (2006).Article 

    Google Scholar 
    Wolkovich, E. M., Lipson, D. A., Virginia, R. A., Cottingham, K. L. & Bolger, D. T. Grass invasion causes rapid increases in ecosystem carbon and nitrogen storage in a semiarid shrubland. Glob. Chang. Biol. 16, 1351–1365 (2010).Article 
    ADS 

    Google Scholar 
    Sardans, J. et al. Plant invasion is associated with higher plant-soil nutrient concentrations in nutrient-poor environments. Glob. Chang. Biol. 23, 1282–1291 (2017).Article 
    ADS 

    Google Scholar 
    Yu, H. et al. Soil nitrogen dynamics and competition during plant invasion: insights from Mikania micrantha invasions in China. New Phytol. 229, 3440–3452 (2021).Article 
    CAS 

    Google Scholar 
    Day, M. D. et al. Biology and impacts of pacific islands invasive species. 13. Mikania micrantha Kunth (Asteraceae). Pac. Sci. 70, 257–285 (2016).Article 

    Google Scholar 
    Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. (eds) 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive Species Database. CID: 20.500.12592/drpzmz. (Auckland: Invasive Species Specialist Group, 2000).Zhang, L. Y., Ye, W. H., Cao, H. L. & Feng, H. L. Mikania micrantha H.B.K. in China: An overview. Weed Res. 44, 42–49 (2004).Article 

    Google Scholar 
    Manrique, V., Diaz, R., Cuda, J. P. & Overholt, W. A. Suitability of a new plant invader as a target for biological control in Florida. Invas. Plant Sci. Manag. 4, 1–10 (2011).Article 

    Google Scholar 
    Macanawai, A., Day, M., Tumaneng-Diete, T., Adkins, S. & Nausori, F. Impact of Mikania micrantha on crop production systems in Viti Levu, Fiji. Pak. J. Weed Sci. Res. 18, 357–365 (2012).
    Google Scholar 
    Carter, M. R. & Gregorich, E. G. (eds) Soil Sampling and Methods of Analysis 2nd edn. (CRC Press, 2007). https://doi.org/10.1201/9781420005271.Book 

    Google Scholar 
    Liu, X. et al. Will nitrogen deposition mitigate warming-increased soil respiration in a young subtropical plantation?. Agric. For. Meteorol. 246, 78–85 (2017).Article 
    ADS 

    Google Scholar 
    Turner, B. L. & Wright, S. J. The response of microbial biomass and hydrolytic enzymes to a decade of nitrogen, phosphorus, and potassium addition in a lowland tropical rain forest. Biogeochemistry 117, 115–130 (2014).Article 
    CAS 

    Google Scholar 
    Sun, S. & Badgley, B. D. Changes in microbial functional genes within the soil metagenome during forest ecosystem restoration. Soil Biol. Biochem. 135, 163–172 (2019).Article 
    CAS 

    Google Scholar 
    Saiya-Cork, K. R., Sinsabaugh, R. L. & Zak, D. R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol. Biochem. 34, 1309–1315 (2002).Article 
    CAS 

    Google Scholar 
    Dawkins, K. & Esiobu, N. The invasive brazilian pepper tree (Schinus terebinthifolius) is colonized by a root microbiome enriched with Alphaproteobacteria and unclassified Spartobacteria. Front. Microbiol. 9, 876 (2018).Article 

    Google Scholar 
    Carey, C. J., Beman, J. M., Eviner, V. T., Malmstrom, C. M. & Hart, S. C. Soil microbial community structure is unaltered by plant invasion, vegetation clipping, and nitrogen fertilization in experimental semi-arid grasslands. Front. Microbiol. 6, 466 (2015).Article 

    Google Scholar 
    Strickland, M. S., Osburn, E., Lauber, C., Fierer, N. & Bradford, M. A. Litter quality is in the eye of the beholder: Initial decomposition rates as a function of inoculum characteristics. Funct. Ecol. 23, 627–636 (2009).Article 

    Google Scholar 
    Kanokratana, P. et al. Insights into the phylogeny and metabolic potential of a primary tropical peat swamp forest microbial community by metagenomic analysis. Microb. Ecol. 61, 518–528 (2011).Article 

    Google Scholar 
    Margesin, R., Jud, M., Tscherko, D. & Schinner, F. Microbial communities and activities in alpine and subalpine soils. FEMS Microbiol. Ecol. 67, 208–218 (2009).Article 
    CAS 

    Google Scholar 
    Xu, Z. W. et al. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC). Soil Biol. Biochem. 104, 152–163 (2017).Article 
    CAS 

    Google Scholar 
    Zhou, X. et al. Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland. Sci. Total Environ. 444, 552–558 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Mao, T. & Minoru, K. Using the KEGG database resource. Curr. Protoc. Bioinform. 38, 1121–11243. https://doi.org/10.1002/0471250953.bi0112s38 (2012).Article 

    Google Scholar 
    Grayston, S. J., Griffith, G. S., Mawdsley, J. L., Campbell, C. D. & Bardgett, R. D. Accounting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biol. Biochem. 33, 533–551 (2001).Article 
    CAS 

    Google Scholar 
    Chen, W. B. & Chen, B. M. Considering the preferences for nitrogen forms by invasive plants: a case study from a hydroponic culture experiment. Weed Res. 59, 49–57 (2019).CAS 

    Google Scholar 
    Christian, J. M. & Wilson, S. D. Long-term ecosystem impacts of an introduced grass in the northern Great Plains. Ecology 80, 2397–2407 (1999).Article 

    Google Scholar 
    Strickland, M. S., Devore, J. L., Maerz, J. C. & Bradford, M. A. Grass invasion of a hardwood forest is associated with declines in belowground carbon pools. Glob. Chang. Biol. 16, 1338–1350 (2010).Article 
    ADS 

    Google Scholar 
    Bradley, B. A., Houghtonw, R. A., Mustard, J. F. & Hamburg, S. P. Invasive grass reduces aboveground carbon stocks in shrublands of the Western US. Glob. Chang. Biol. 12, 1815–1822 (2006).Article 
    ADS 

    Google Scholar 
    Ogle, S. M., Ojima, D. & Reiners, W. A. Modeling the impact of exotic annual brome grasses on soil organic carbon storage in a northern mixed-grass prairie. Biol. Invasions 6, 365–377 (2004).Article 

    Google Scholar 
    Ni, G. Y. et al. Mikania micrantha invasion enhances the carbon (C) transfer from plant to soil and mediates the soil C utilization through altering microbial community. Sci. Total Environ. 711, 135020. https://doi.org/10.1016/j.scitotenv.2019.135020 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Callaway, R. M., Thelen, G. C., Rodriguez, A. & Holben, W. E. Soil biota and exotic plant invasion. Nature 427, 731–733 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Klironomos, J. N. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417, 67–70 (2002).Article 
    ADS 
    CAS 

    Google Scholar 
    Kourtev, P. S., Ehrenfeld, J. G. & Haggblom, M. Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biol. Biochem. 35, 895–905 (2003).Article 
    CAS 

    Google Scholar 
    Jansson, J. K. & Hofmockel, K. S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 18, 35–46 (2020).Article 
    CAS 

    Google Scholar 
    Ehrenfeld, J. G., Kourtev, P. & Huang, W. Z. Changes in soil functions following invasions of exotic understory plants in deciduous forests. Ecol. Appl. 11, 1287–1300 (2001).Article 

    Google Scholar 
    Allison, S. D. & Vitousek, P. M. Rapid nutrient cycling in leaf litter from invasive plants in Hawai’i. Oecologia 141, 612–619 (2004).Article 
    ADS 

    Google Scholar 
    Harner, M. J. et al. Decomposition of leaf litter from a native tree and an actinorhizal invasive across riparian habitats. Ecol. Appl. 19, 1135–1146 (2009).Article 

    Google Scholar 
    Wolkovich, E. M. Nonnative grass litter enhances grazing arthropod assemblages by increasing native shrub growth. Ecology 91, 756–766 (2010).Article 

    Google Scholar 
    Yan, J. et al. Conversion of organic carbon from decayed native and invasive plant litter in Jiuduansha wetland and its implications for SOC formation and sequestration. J. Soils Sediments 20, 675–689 (2020).Article 
    CAS 

    Google Scholar 
    Aerts, R. & de Caluwe, H. Nitrogen deposition effects on carbon dioxide and methane emissions from temperate peatland soils. Oikos 84, 44–54 (1999).Article 

    Google Scholar 
    Shen, C. C. et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol. Biochem. 57, 204–211 (2013).Article 
    CAS 

    Google Scholar 
    Kuypers, M. M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).Article 
    CAS 

    Google Scholar 
    Mothé, G. P. B., Quintanilha-Peixoto, G., Souza, G. R. D., Ramos, A. C. & Intorne, A. C. Overview of the role of nitrogen in copper pollution and bioremediation mediated by plant–microbe interactions. In Soil Nitrogen Ecology (eds Cruz, C. et al.) 249–264. https://doi.org/10.1007/978-3-030-71206-8_12 (Springer, 2021).Chapter 

    Google Scholar 
    Chen, B. M., Peng, S. L. & Ni, G. Y. Effects of the invasive plant Mikania micrantha H.B.K. on soil nitrogen availability through allelopathy in South China. Biol. Invasions 11, 1291–1299 (2009).Article 

    Google Scholar 
    Fan, Y. X. et al. Decreased soil organic P fraction associated with ectomycorrhizal fungal activity to meet increased P demand under N application in a subtropical forest ecosystem. Biol. Fertil. Soils 54, 149–161 (2018).Article 
    CAS 

    Google Scholar 
    Walker, T. W. & Syers, J. K. The fate of phosphorus during pedogenesis. Geoderma 15, 1–19 (1976).Article 
    ADS 
    CAS 

    Google Scholar 
    Khan, M. S., Zaidi, A., Ahemad, M. & Oves, M. Plant growth promotion by phosphate solubilizing fungi: Current perspective. Arch. Agron. Soil Sci. 56, 73–98 (2010).Article 
    CAS 

    Google Scholar 
    Kouas, S., Labidi, N., Debez, A. & Abdelly, C. Effect of P on nodule formation and N fixation in bean. Agron. Sustain. Dev. 25, 389–393 (2005).Article 
    CAS 

    Google Scholar 
    Bolan, N. S. et al. Dissolved organic matter: biogeochemistry, dynamics, and environmental significance in soils. Adv. Agron. 110, 1–75 (2011).Article 
    CAS 

    Google Scholar 
    Dail, D. B., Davidson, E. A. & Chorover, J. Rapid abiotic transformation of nitrate in an acid forest soil. Biogeochemistry 54, 131–146 (2001).Article 
    CAS 

    Google Scholar 
    Fitzhugh, R. D., Lovett, G. M. & Venterea, R. T. Biotic and abiotic immobilization of ammonium, nitrite, and nitrate in soils developed under different tree species in the Catskill Mountains, New York, USA. Glob. Chang. Biol. 9, 1591–1601 (2003).Article 
    ADS 

    Google Scholar  More

  • in

    Evolutionary diversification of methanotrophic ANME-1 archaea and their expansive virome

    Sampling and incubationFour rock samples were collected from the 3.7 km-deep Auka vent field in the Southern Pescadero Basin (23.956094N, 108.86192W)20,23. Sample NA091.008 was collected in 2017 on cruise NA091 with the Eexploration vessle Nautilus and incubated as described previously34. Samples 12,019 (S0200-R1), 11,719 (S0193-R2) and 11,868 (S0197-PC1), the latter representing a lithified nodule recovered from a sediment push core, were collected with Remotely operated vehicle SuBastian and Research vessel Falkor on cruise FK181031 in November 2018. These samples were processed shipboard and stored under anoxic conditions at 4 °C for subsequent incubation in the laboratory. In the laboratory, rock samples 12,019 and 11,719 were broken into smaller pieces under sterile conditions, immersed in N2-sparged sterilized artificial sea water and incubated under anoxic conditions with methane, as described previously for NA091.008 (ref. 34). Additional sampling information can be found in Supplementary Table 1. Mineralogical analysis by X-ray Powder Diffraction (XRD) identified barite in several of these samples, collected from two locations in the Auka vent field, including on the western side of the Matterhorn vent (11,719, NA091.008), and one oil-saturated sample (12,019) recovered from the sedimented flanks from the southern side of Z vent. Our analysis also includes metagenomic data from two sediment cores from the Auka vent field (DR750-PC67 and DR750-PC80) collected in April 2015 with the ROV Doc Ricketts and R/V Western Flyer (MBARI2015), previously published (ref. 23).Fluorescence in situ hybridizationSamples were fixed shipboard using freshly prepared paraformaldehyde (2 vol% in 3× Phosphate Buffer Solution (PBS), EMS15713) at 4 °C overnight, rinsed twice using 3× PBS, and stored in ethanol (50% in 1× PBS) at −20 °C until processing. Small pieces ( More