The interspecific growth–mortality trade-off is not a general framework for tropical forest community structure
1.
Loehle, C. Tree life history strategies: the role of defenses. Can. J. For. Res. 18, 209–222 (1988).
Article Google Scholar
2.
Kitajima, K. Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia 98, 419–428 (1994).
PubMed Article Google Scholar
3.
Kobe, R. K., Pacala, S. W., Silander, J. A. & Canham, C. D. Juvenile tree survivorship as a component of shade tolerance. Ecol. Appl. 5, 517–532 (1995).
Article Google Scholar
4.
Rees, M., Condit, R., Crawley, M., Pacala, S. & Tilman, D. Long-term studies of vegetation dynamics. Science 293, 650–655 (2001).
CAS PubMed Article Google Scholar
5.
Russo, S. E., Brown, P., Tan, S. & Davies, S. J. Interspecific demographic trade-offs and soil-related habitat associations of tree species along resource gradients. J. Ecol. 96, 192–203 (2008).
Article Google Scholar
6.
Wright, S. J. et al. Functional traits and the growth–mortality trade-off in tropical trees. Ecology 91, 3664–3674 (2010).
PubMed Article Google Scholar
7.
Hubbell, S. P. & Foster, R. B. Short-term dynamics of a neotropical forest: why ecological research matters to tropical conservation and management. Oikos 63, 48–61 (1992).
Article Google Scholar
8.
Stephenson, N. L. et al. Causes and implications of the correlation between forest productivity and tree mortality rates. Ecol. Monogr. 81, 527–555 (2011).
Article Google Scholar
9.
Adler, P. B., HilleRisLambers, J. & Levine, J. M. A niche for neutrality. Ecol. Lett. 10, 95–104 (2007).
PubMed Article Google Scholar
10.
Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ. Press, 2001).
11.
Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).
Article Google Scholar
12.
Poorter, L. et al. Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology 89, 1908–1920 (2008).
CAS PubMed Article Google Scholar
13.
Paine, C. E. T. et al. Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why. J. Ecol. 103, 978–989 (2015).
Article Google Scholar
14.
Cailleret, M. et al. A synthesis of radial growth patterns preceding tree mortality. Glob. Change Biol. 23, 1675–1690 (2017).
Article Google Scholar
15.
Wyckoff, P. H. & Clark, J. S. The relationship between growth and mortality for seven co-occurring tree species in the southern Appalachian Mountains. J. Ecol. 90, 604–615 (2002).
Article Google Scholar
16.
Kobe, R. K. Intraspecific variation in sapling mortality and growth predicts geographic variation in forest composition. Ecol. Monogr. 66, 181–201 (1996).
Article Google Scholar
17.
Kobe, R. K. Light gradient partitioning among tropical tree species through differential seedling mortality and growth. Ecology 80, 187–207 (1999).
Article Google Scholar
18.
Chapin, F. S., Autumn, K. & Pugnaire, F. Evolution of suites of traits in response to environmental stress. Am. Nat. 142, S78–S92 (1993).
Article Google Scholar
19.
Grime, J. P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary biology. Am. Nat. 111, 1169–1194 (1977).
Article Google Scholar
20.
Westoby, M., Warton, D. & Reich, P. B. The time value of leaf area. Am. Nat. 155, 649–656 (2000).
PubMed Article Google Scholar
21.
Zera, A. J. & Harshman, L. G. The physiology of life history trade-offs in animals. Annu. Rev. Ecol. Syst. 32, 95–126 (2003).
Article Google Scholar
22.
Russo, S. E., Davies, S. J., King, D. A. & Tan, S. Soil-related performance variation and distributions of tree species in a Bornean rain forest. J. Ecol. 93, 879–889 (2005).
CAS Article Google Scholar
23.
Obeso, J. R. The costs of reproduction in plants. N. Phytol. 155, 321–348 (2002).
Article Google Scholar
24.
Roxburgh, S. H., Shea, K. & Wilson, J. B. The intermediate disturbance hypothesis: patch dynamics and mechanisms of species coexistence. Ecology 85, 359–371 (2004).
Article Google Scholar
25.
Lambers, H. & Poorter, H. Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Adv. Ecol. Res. 34, 187–261 (1992).
Article Google Scholar
26.
Metcalf, C. J. E. Invisible trade-offs: Van Noordwijk and de Jong and life-history evolution. Am. Nat. 187, iii–v (2016).
PubMed Article Google Scholar
27.
Van Noordwijk, A. J. & Jong, G. D. Acquisition and allocation of resources: their influence on variation in life history tactics. Am. Nat. 128, 137–142 (1986).
Article Google Scholar
28.
Condit, R. et al. Importance of demographic niches to tree diversity. Science 313, 98–101 (2006).
CAS PubMed Article Google Scholar
29.
Ricklefs, R. E. Community diversity: relative roles of local and regional processes. Science 235, 167–171 (1987).
CAS PubMed Article Google Scholar
30.
Bormann, F. H. & Likens, G. E. Pattern and Process in a Forested Ecosystem (Springer, 1979).
31.
Salguero-Gómez, R. et al. Fast–slow continuum and reproductive strategies structure plant life-history variation worldwide. Proc. Natl Acad. Sci. USA 113, 230–235 (2016).
PubMed Article CAS Google Scholar
32.
Rüger, N. et al. Beyond the fast–slow continuum: demographic dimensions structuring a tropical tree community. Ecol. Lett. 21, 1075–1084 (2018).
PubMed Article Google Scholar
33.
McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).
PubMed Article Google Scholar
34.
McMahon, S. M., Metcalf, C. J. E. & Woodall, C. W. High-dimensional coexistence of temperate tree species: functional traits, demographic rates, life-history stages, and their physical context. PLoS ONE 6, e16253 (2011).
CAS PubMed PubMed Central Article Google Scholar
35.
Reich, P. B. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).
Article Google Scholar
36.
Marks, C. O. & Lechowicz, M. J. Alternative designs and the evolution of functional diversity. Am. Nat. 167, 55–66 (2006).
PubMed Article Google Scholar
37.
Visser, M. D. et al. Functional traits as predictors of vital rates across the life cycle of tropical trees. Funct. Ecol. 30, 168–180 (2016).
Article Google Scholar
38.
Detto, M. & Xu, X. Optimal leaf life strategies determine Vc,max dynamic during ontogeny. New Phytol. https://doi.org/10.1111/nph.16712 (2020).
39.
Poorter, L. & Bongers, F. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87, 1733–1743 (2006).
PubMed Article Google Scholar
40.
Anderson-Teixeira, K. J. et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Change Biol. 21, 528–549 (2015).
Article Google Scholar
41.
R Core Team R: A Language and Environment for Statistical Computing version 3.6.1 (R Foundation for Statistical Computing, 2017).
42.
Warton, D. I., Wright, I. J., Falster, D. S. & Westoby, M. Bivariate line-fitting methods for allometry. Biol. Rev. 81, 259–291 (2006).
PubMed Article Google Scholar
43.
Warton, D. I., Duursma, R. A., Falster, D. S. & Taskinen, S. smatr 3— an R package for estimation and inference about allometric lines. Methods Ecol. Evol. 3, 257–259 (2012).
Article Google Scholar
44.
Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. Bayesian Data Analysis 2nd edn (Chapman and Hall/CRC, 2004).
45.
Kenfack, D., Chuyong, G., Condit, R., Russo, S. & Thomas, D. Demographic variation and habitat specialization of tree species in a diverse tropical forest of Cameroon. For. Ecosyst. 1, 22 (2014).
Article Google Scholar
46.
Condit, R. et al. Tropical forest dynamics across a rainfall gradient and the impact of an El Niño dry season. J. Trop. Ecol. 20, 51–72 (2004).
Article Google Scholar
47.
Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R package version 0.3.3.0 (2020).
48.
Robinson, D. broom: An R Package for Converting Statistical Analysis Objects Into Tidy Data Frames. R package version 2 (2014); https://arxiv.org/abs/1412.3565
49.
Nagelkerke, N. J. D. A note on a general definition of the coefficient of determination. Biometrika 78, 691–692 (1991).
Article Google Scholar
50.
Long, J. S. Regression Models for Categorical and Limited Dependent Variables (Sage, 1997).
51.
Paul-Victor, C., Züst, T., Rees, M., Kliebenstein, D. J. & Turnbull, L. A. A new method for measuring relative growth rate can uncover the costs of defensive compounds in Arabidopsis thaliana. New Phytol. 187, 1102–1111 (2010).
PubMed Article CAS Google Scholar
52.
Coomes, D. A. & Allen, R. B. Effects of size, competition and altitude on tree growth. Ecol. Lett. 95, 1084–1097 (2007).
Google Scholar
53.
Björklund, M. Are ‘comparative methods’ always necessary? Oikos 80, 607–612 (1997).
Article Google Scholar
54.
Losos, J. B. Uncertainty in the reconstruction of ancestral character states and limitations on the use of phylogenetic comparative methods. Anim. Behav. 58, 1319–1324 (1999).
CAS PubMed Article Google Scholar
55.
Losos, J. B. Seeing the forest for the trees: the limitations of phylogenies in comparative biology. Am. Nat. 177, 709–727 (2011).
PubMed Article Google Scholar
56.
Stearns, S. C. The Evolution of Life Histories (Oxford Univ. Press, 1992).
57.
Rose, K. E., Atkinson, R. L., Turnbull, L. A. & Rees, M. The costs and benefits of fast living. Ecol. Lett. 12, 1379–1384 (2009).
PubMed Article Google Scholar
58.
Makana, J.-R. et al. Demography and biomass change in monodominant and mixed old-growth forest of the Congo. J. Trop. Ecol. 27, 447–461 (2011).
Article Google Scholar More