Organic amendment treatments for antimicrobial resistance and mobile element genes risk reduction in soil-crop systems
D’Costa, V. M. et al. Antibiotic resistance is ancient. Nature 477, 457–461. https://doi.org/10.1038/nature10388 (2011).Article
ADS
Google Scholar
Cytryn, E. The soil resistome: The anthropogenic, the native, and the unknown. Soil Biol. Biochem. 63, 18–23. https://doi.org/10.1016/j.soilbio.2013.03.017 (2013).Article
Google Scholar
Holmes, A. H. et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 387, 176–187. https://doi.org/10.1016/S0140-6736(15)00473-0 (2016).Article
Google Scholar
Regulation (EC) No 1831/2003 of the European parliament and of the council of 22 September 2003 on additives for use in animal nutrition.European Commission. Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions: A farm to fork strategy for a fair, healthy and environmentally-friendly food system COM/2020/381 Final, (2020).Kumar, K. C., Gupta, S. C., Chander, Y. & Singh, A. K. Antibiotic use in agriculture and its impact on the terrestrial environment. Adv. Agron. 87, 1–54. https://doi.org/10.1016/S0065-2113(05)87001-4 (2005).Article
Google Scholar
Chee-Sanford, J. C. et al. Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. J. Environ. Qual. 38, 1086–1108. https://doi.org/10.2134/jeq2008.0128 (2009).Article
Google Scholar
Heuer, H., Schmitt, H. & Smalla, K. Antibiotic resistance gene spread due to manure application on agricultural fields. Curr. Opin. Microbiol. 14, 236–243. https://doi.org/10.1016/j.mib.2011.04.009 (2011).Article
Google Scholar
Epelde, L. et al. Characterization of composted organic amendments for agricultural use. Front. Sustain. Food Syst. 2, 44. https://doi.org/10.3389/fsufs.2018.00044 (2018).Article
Google Scholar
Youngquist, C. P., Mitchell, S. M. & Cogger, C. G. Fate of antibiotics and antibiotic resistance during digestion and composting: A review. J. Environ. Qual. 45, 537–545. https://doi.org/10.2134/jeq2015.05.0256 (2016).Article
Google Scholar
Ma, X., Xue, X., González-Mejía, A., Garland, J. & Cashdollar, J. Sustainable water systems for the city of tomorrow: A conceptual framework. Sustainability 7, 12071–12105. https://doi.org/10.3390/su70912071 (2015).Article
Google Scholar
Wang, Y. et al. Degradation of antibiotic resistance genes and mobile gene elements in dairy manure anerobic digestion. PLoS ONE 16, e0254836. https://doi.org/10.1371/journal.pone.0254836 (2021).Article
Google Scholar
Thanomsub, B. et al. Effects of ozone treatment on cell growth and ultrastructural changes in bacteria. J. Gen. Appl. Microbiol. 48, 193–199. https://doi.org/10.2323/jgam.48.193 (2002).Article
Google Scholar
Sousa, J. M. et al. Ozonation and UV254nm radiation for the removal of microorganisms and antibiotic resistance genes from urban wastewater. J. Hazard. Mater. 323, 434–441. https://doi.org/10.1016/j.jhazmat.2016.03.096 (2017).Article
Google Scholar
Park, J. H., Choppala, G. K., Bolan, N. S., Chung, J. W. & Chuasavathi, T. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348, 439–451. https://doi.org/10.1007/s11104-011-0948-y (2011).Article
Google Scholar
Jeffery, S. et al. The way forward in biochar research: targeting trade-offs between the potential wins. GCB Bioenergy 7, 1–13. https://doi.org/10.1111/gcbb.12132 (2015).Article
Google Scholar
Krasucka, P. et al. Engineered biochar: A sustainable solution for the removal of antibiotics from water. Chem. Eng. J. 405, 126926. https://doi.org/10.1016/j.cej.2020.126926 (2021).Article
Google Scholar
Ken, D. S. & Sinha, A. Recent developments in surface modification of Nano zero-valent iron (nZVI): remediation, toxicity and environmental impacts. Environ. Nanotechnol. Monit. Manag. 14, 100344. https://doi.org/10.1016/j.enmm.2020.100344 (2020).Article
Google Scholar
Zhao, X. et al. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Res. 100, 245–266. https://doi.org/10.1016/j.watres.2016.05.019 (2016).Article
Google Scholar
Diao, M. & Yao, M. Use of zero-valent iron nanoparticles in inactivating microbes. Water Res. 43, 5243–5251. https://doi.org/10.1016/j.watres.2009.08.051 (2009).Article
Google Scholar
Shi, C. J., Wei, J., Jin, Y., Kniel, K. E. & Chiu, P. C. Removal of viruses and bacteriophages from drinking water using zero-valent iron. Sep. Purif. Technol. 84, 72–78. https://doi.org/10.1016/j.seppur.2011.06.036 (2012).Article
Google Scholar
Anza, M., Salazar, O., Epelde, L., Alkorta, I. & Garbisu, C. The application of nanoscale zero-valent iron promotes soil remediation while negatively affecting soil microbial biomass and activity. Front. Environ. Sci. 7, 19. https://doi.org/10.3389/fenvs.2019.00019 (2019).Article
Google Scholar
FAOSTAT. Mushrooms and truffles, production quantity (tons). https://www.tilasto.com/en/topic/geography-and-agriculture/crop/mushrooms-and-truffles/mushrooms-and-truffles-production-quantity/spain, (2020).Polat, E., Uzun, H., Topçuo, B., Önal, K. & Onus, A. N. Effects of spent mushroom compost on quality and productivity of cucumber (Cucumis sativus L.) grown in greenhouses. Afr. J. Biotechnol. 8, 176–180 (2009).
Google Scholar
Fazaeli, H. & Masoodi, A. R. T. Spent wheat straw compost of Agaricus bisporus mushroom as ruminant feed. Asian-Australas. J. Anim. Sci. 19, 845–851. https://doi.org/10.5713/ajas.2006.845 (2006).Article
Google Scholar
Phan, C. W. & Sabaratnam, V. Potential uses of spent mushroom substrate and its associated lignocellulosic enzymes. Appl. Microbiol. Biotechnol. 96, 863–873. https://doi.org/10.1007/s00253-012-4446-9 (2012).Article
Google Scholar
Lau, K. L., Tsang, Y. Y. & Chiu, S. W. Use of spent mushroom compost to bioremediate PAH-contaminated samples. Chemosphere 52, 1539–1546. https://doi.org/10.1016/S0045-6535(03)00493-4 (2003).Article
ADS
Google Scholar
Mayans, B. et al. An assessment of Pleurotus ostreatus to remove sulfonamides, and its role as a biofilter based on its own spent mushroom substrate. Environ. Sci. Pollut. Res. Int. 28, 7032–7042. https://doi.org/10.1007/s11356-020-11078-3 (2021).Article
Google Scholar
Congilosi, J. L. & Aga, D. S. Review on the fate of antimicrobials, antimicrobial resistance genes, and other micropollutants in manure during enhanced anaerobic digestion and composting. J. Hazard. Mater. 405, 123634. https://doi.org/10.1016/j.jhazmat.2020.123634 (2021).Article
Google Scholar
Oliver, J. P. et al. Invited review: fate of antibiotic residues, antibiotic-resistant bacteria, and antibiotic resistance genes in US dairy manure management systems. J. Dairy Sci. 103, 1051–1071. https://doi.org/10.3168/jds.2019-16778 (2020).Article
Google Scholar
Beneragama, N. et al. Survival of multidrug-resistant bacteria in thermophilic and mesophilic anaerobic co-digestion of dairy manure and waste milk. Anim. Sci. J. 84, 426–433. https://doi.org/10.1111/asj.12017 (2013).Article
Google Scholar
Sun, W., Qian, X., Gu, J., Wang, X. J. & Duan, M. L. Mechanism and effect of temperature on variations in antibiotic resistance genes during anaerobic digestion of dairy manure. Sci. Rep. 6, 30237. https://doi.org/10.1038/srep30237 (2016).Article
ADS
Google Scholar
Sun, W., Gu, J., Wang, X., Qian, X. & Peng, H. Solid-state anaerobic digestion facilitates the removal of antibiotic resistance genes and mobile genetic elements from cattle manure. Bioresour. Technol. 274, 287–295. https://doi.org/10.1016/j.biortech.2018.09.013 (2019).Article
Google Scholar
Zou, Y., Xiao, Y., Wang, H., Fang, T. & Dong, P. New insight into fates of sulfonamide and tetracycline resistance genes and resistant bacteria during anaerobic digestion of manure at thermophilic and mesophilic temperatures. J. Hazard. Mater. 384, 121433. https://doi.org/10.1016/j.jhazmat.2019.121433 (2020).Article
Google Scholar
Agga, G. E., Kasumba, J., Loughrin, J. H. & Conte, E. D. Anaerobic digestion of tetracycline spiked livestock manure and poultry litter increased the abundances of antibiotic and heavy metal resistance genes. Front Microbiol. 11, 614424. https://doi.org/10.3389/fmicb.2020.614424 (2020).Article
Google Scholar
Jauregi, L., Epelde, L., González, A., Lavín, J. L. & Garbisu, C. Reduction of the resistome risk from cow slurry and manure microbiomes to soil and vegetable microbiomes. Environ. Microbiol. 23, 7643–7660. https://doi.org/10.1111/1462-2920.15842 (2021).Article
Google Scholar
Zhang, Z. et al. Assessment of global health risk of antibiotic resistance genes. Nat Commun 13, 1553. https://doi.org/10.1038/s41467-022-29283-8 (2022).Article
ADS
Google Scholar
He, Y. et al. Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment. npj Clean Water 3, 4. https://doi.org/10.1038/s41545-020-0051-0 (2020).Article
Google Scholar
Cui, E., Wu, Y., Zuo, Y. & Chen, H. Effect of different biochars on antibiotic resistance genes and bacterial community during chicken manure composting. Bioresour. Technol. 203, 11–17. https://doi.org/10.1016/j.biortech.2015.12.030 (2016).Article
Google Scholar
Fu, Y., Zhang, A., Guo, T., Zhu, Y. & Shao, Y. Biochar and hyperthermophiles as additives accelerate the removal of antibiotic resistance genes and mobile genetic elements during composting. Materials (Basel) 14, 5428. https://doi.org/10.3390/ma14185428 (2021).Article
ADS
Google Scholar
Forsberg, K. J. et al. Bacterial phylogeny structures soil resistomes across habitats. Nature 509, 612–616. https://doi.org/10.1038/nature13377 (2014).Article
ADS
Google Scholar
Li, H. et al. Effects of bamboo charcoal on antibiotic resistance genes during chicken manure composting. Ecotoxicol. Environ. Saf. 140, 1–6. https://doi.org/10.1016/j.ecoenv.2017.01.007 (2017).Article
ADS
Google Scholar
Bondarenko, O., Ivask, A., Käkinen, A. & Kahru, A. Sub-toxic effects of CuO nanoparticles on bacteria: Kinetics, role of Cu ions and possible mechanisms of action. Environ. Pollut. 169, 81–89. https://doi.org/10.1016/j.envpol.2012.05.009 (2012).Article
Google Scholar
Wang, X. et al. Bacterial exposure to ZnO nanoparticles facilitates horizontal transfer of antibiotic resistance genes. NanoImpact 10, 61–67. https://doi.org/10.1016/j.impact.2017.11.006 (2018).Article
ADS
Google Scholar
Qiu, X., Zhou, G. & Wang, H. Nanoscale zero-valent iron inhibits the horizontal gene transfer of antibiotic resistance genes in chicken manure compost. J. Hazard. Mater. 422, 126883. https://doi.org/10.1016/j.jhazmat.2021.126883 (2022).Article
Google Scholar
Zeng, T., Wilson, C. J. & Mitch, W. A. Effect of chemical oxidation on the sorption tendency of dissolved organic matter to a model hydrophobic surface. Environ. Sci. Technol. 48, 5118–5126. https://doi.org/10.1021/es405257b (2014).Article
ADS
Google Scholar
Pak, G. et al. Comparison of antibiotic resistance removal efficiencies using ozone disinfection under different pH and suspended solids and humic substance concentrations. Environ. Sci. Technol. 50, 7590–7600. https://doi.org/10.1021/acs.est.6b01340 (2016).Article
ADS
Google Scholar
Zhuang, Y. et al. Inactivation of antibiotic resistance genes in municipal wastewater by chlorination, ultraviolet, and ozonation disinfection. Environ. Sci. Pollut. Res. Int. 22, 7037–7044. https://doi.org/10.1007/s11356-014-3919-z (2015).Article
Google Scholar
Park, S., Rana, A., Sung, W. & Munir, M. Competitiveness of quantitative polymerase chain reaction (qPCR) and droplet digital polymerase chain reaction (ddPCR) technologies, with a particular focus on detection of antibiotic resistance genes (ARGs). Appl. Microbiol. 1, 426–444. https://doi.org/10.3390/applmicrobiol1030028 (2021).Article
Google Scholar
European Medicines Agency. European surveillance of veterinary antimicrobial consumption, (2020). Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2018 (EMA/24309/2020).Heuer, H. et al. The complete sequences of plasmids pB2 and pB3 provide evidence for a recent ancestor of the IncP-1β group without any accessory genes. Microbiology (Reading) 150, 3591–3599. https://doi.org/10.1099/mic.0.27304-0 (2004).Article
Google Scholar
World Health Organization. Critically Important Antimicrobials for Human Medicine, 6th Revision (WHO, Geneva, Switzerland, 2019).Zhu, Y. G. et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc. Natl Acad. Sci. U. S. A. 110, 3435–3440. https://doi.org/10.1073/pnas.1222743110 (2013).Article
ADS
Google Scholar
Guo, T. et al. Increased occurrence of heavy metals, antibiotics and resistance genes in surface soil after long-term application of manure. Sci. Total Environ. 635, 995–1003. https://doi.org/10.1016/j.scitotenv.2018.04.194 (2018).Article
ADS
Google Scholar
Nõlvak, H. et al. Inorganic and organic fertilizers impact the abundance and proportion of antibiotic resistance and integron-integrase genes in agricultural grassland soil. Sci. Total Environ. 562, 678–689. https://doi.org/10.1016/j.scitotenv.2016.04.035 (2016).Article
ADS
Google Scholar
Chen, Q. L. et al. Effect of biochar amendment on the alleviation of antibiotic resistance in soil and phyllosphere of Brassica chinensis L.. Soil Biol. Biochem. 119, 74–82. https://doi.org/10.1016/j.soilbio.2018.01.015 (2018).Article
Google Scholar
Zhu, B., Chen, Q., Chen, S. & Zhu, Y. G. Does organically produced lettuce harbor higher abundance of antibiotic resistance genes than conventionally produced?. Environ. Int. 98, 152–159. https://doi.org/10.1016/j.envint.2016.11.001 (2017) .Article
Google Scholar
Métodos, M. A. P. A. Oficiales de análisis de suelos y Aguas Para riego. Minist. Agric. Pesca Aliment. Métodos Oficiales Anal. III (1994).Muziasari, W. I. et al. Aquaculture changes the profile of antibiotic resistance and mobile genetic element associated genes in Baltic Sea sediments. FEMS Microbiol. Ecol. 92, fiw052. https://doi.org/10.1093/femsec/fiw052 (2016).Article
Google Scholar
Muurinen, J. et al. Influence of manure application on the environmental resistome under Finnish agricultural practice with restricted antibiotic use. Environ. Sci. Technol. 51, 5989–5999. https://doi.org/10.1021/acs.est.7b00551 (2017).Article
ADS
Google Scholar
Muziasari, W. I. et al. The resistome of farmed fish feces contributes to the enrichment of antibiotic resistance genes in sediments below Baltic Sea fish farms. Front. Microbiol. 7, 2137. https://doi.org/10.3389/fmicb.2016.02137 (2017).Article
Google Scholar
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408. https://doi.org/10.1006/meth.2001.1262 (2001).Article
Google Scholar
Ovreås, L., Forney, L., Daae, F. L. & Torsvik, V. Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl. Environ. Microbiol. 63, 3367–3373. https://doi.org/10.1128/aem.63.9.3367-3373.1997 (1997) .Article
ADS
Google Scholar
Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624. https://doi.org/10.1038/ismej.2012.8 (2012).Article
Google Scholar
Lanzén, A. et al. Multi-targeted metagenetic analysis of the influence of climate and environmental parameters on soil microbial communities along an elevational gradient. Sci. Rep. 6, 28257. https://doi.org/10.1038/srep28257 (2016).Article
ADS
Google Scholar
Pinna, N. K., Dutta, A., Monzoorul, H. M. & Mande, S. S. Can targeting non-contiguous V-regions with paired-end sequencing improve 16S rRNA-based taxonomic resolution of microbiomes?: An in silico evaluation. Front. Genet. 10, 653. https://doi.org/10.3389/fgene.2019.00653 (2019).Article
Google Scholar
Andrews, S. FastQC: A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12. https://doi.org/10.14806/ej.17.1.200 (2011).Article
Google Scholar
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. https://doi.org/10.1038/s41587-019-0209-9 (2019).Article
Google Scholar
Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2, e00191-e216. https://doi.org/10.1128/mSystems.00191-16 (2017).Article
Google Scholar
Yang, Y., Li, B., Zou, S., Fang, H. H. P. & Zhang, T. Fate of antibiotic resistance genes in sewage treatment plant revealed by metagenomic approach. Water Res. 62, 97–106. https://doi.org/10.1016/j.watres.2014.05.019 (2014).Article
Google Scholar
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).Book
MATH
Google Scholar
de Mendiburu, F. Agricolae: Statistical procedures for agricultural research. R package version 1.3-3. https://CRAN.R-project.org/package=agricolae (2020).Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528. https://doi.org/10.1093/bioinformatics/bty633 (2019).Article
Google Scholar
Oksanen, J. et al. Vegan: Community ecology package. R Package Version 2.3-1. (2015). More