Artificial intelligence for automated detection of large mammals creates path to upscale drone surveys
Chapman, A. It’s okay to call them drones. J. Unmanned Veh. Syst. 2, iii–v (2014).Article
Google Scholar
Chabot, D., Hodgson, A. J., Hodgson, J. C. & Anderson, K. ‘Drone’: Technically correct, popularly accepted, socially acceptable. Drone Syst. Appl. 10, 399–405 (2022).Article
Google Scholar
Chabot, D. & Bird, D. M. Wildlife research and management methods in the 21st century: Where do unmanned aircraft fit in?. J. Unmanned Veh. Syst. 3, 137–155 (2015).Article
Google Scholar
Christie, K. S., Gilbert, S. L., Brown, C. L., Hatfield, M. & Hanson, L. Unmanned aircraft systems in wildlife research: Current and future applications of a transformative technology. Front. Ecol. Environ. 14, 241–251 (2016).Article
Google Scholar
Whitehead, K. & Hugenholtz, C. H. Remote sensing of the environment with small unmanned aircraft systems (UASs), part 1: A review of progress and challenges. J. Unmanned Veh. Syst. 2, 69–85 (2014).Article
Google Scholar
Barnas, A. et al. Evaluating behavioral responses of nesting lesser snow geese to unmanned aircraft surveys. Ecol. Evol. 8, 1328–1338 (2018).Article
Google Scholar
Mulero-Pázmány, M. et al. Unmanned aircraft systems as a new source of disturbance for wildlife: A systematic review. PLoS ONE 12, e0178448 (2017).Article
Google Scholar
Linchant, J., Lisein, J., Semeki, J., Lejeune, P. & Vermeulen, C. Are unmanned aircraft systems (UAS s) the future of wildlife monitoring? A review of accomplishments and challenges. Mammal Rev. 45, 239–252 (2015).Article
Google Scholar
Whitehead, K. et al. Remote sensing of the environment with small unmanned aircraft systems (UASs), part 2: Scientific and commercial applications. J. Unmanned Veh. Syst. 2, 86–102 (2014).Article
Google Scholar
Barasona, J. A. et al. Unmanned aircraft systems for studying spatial abundance of ungulates: Relevance to spatial epidemiology. PLoS ONE 9, e115608 (2014).Article
ADS
Google Scholar
Chrétien, L. P., Théau, J. & Ménard, P. Wildlife multispecies remote sensing using visible and thermal infrared imagery acquired from an unmanned aerial vehicle (UAV). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 40, 241 (2015).Article
Google Scholar
Guo, X. et al. Application of UAV remote sensing for a population census of large wild herbivores—Taking the headwater region of the yellow river as an example. Remote Sens. 10, 1041 (2018).Article
ADS
Google Scholar
Hu, J., Wu, X. & Dai, M. Estimating the population size of migrating Tibetan antelopes Pantholops hodgsonii with unmanned aerial vehicles. Oryx 54, 101–109 (2020).Article
Google Scholar
Mulero-Pázmány, M., Stolper, R., Van Essen, L. D., Negro, J. J. & Sassen, T. Remotely piloted aircraft systems as a rhinoceros anti-poaching tool in Africa. PLoS ONE 9, e83873 (2014).Article
ADS
Google Scholar
Rey, N., Volpi, M., Joost, S. & Tuia, D. Detecting animals in African Savanna with UAVs and the crowds. Remote Sens. Environ. 200, 341–351 (2017).Article
ADS
Google Scholar
Schroeder, N. M., Panebianco, A., Gonzalez Musso, R. & Carmanchahi, P. An experimental approach to evaluate the potential of drones in terrestrial mammal research: A gregarious ungulate as a study model. R. Soc. Open Sci. 7, 191482 (2020).Article
ADS
Google Scholar
Su, X. et al. Using an unmanned aerial vehicle (UAV) to study wild yak in the highest desert in the world. Int. J. Remote Sens. 39, 5490–5503 (2018).Article
Google Scholar
Vermeulen, C., Lejeune, P., Lisein, J., Sawadogo, P. & Bouché, P. Unmanned aerial survey of elephants. PLoS ONE 8, e54700 (2013).Article
ADS
CAS
Google Scholar
Mallory, M. L. et al. Financial costs of conducting science in the Arctic: Examples from seabird research. Arct. Sci. 4, 624–633 (2018).Article
Google Scholar
Sasse, D. B. Job-related mortality of wildlife workers in the United States, 1937–2000. Wildl. Soc. Bull. 31, 1015–1020 (2003).
Google Scholar
Loarie, S. R., Joppa, L. N. & Pimm, S. L. Satellites miss environmental priorities. Trends Ecol. Evol. 22, 630–632 (2007).Article
Google Scholar
IUCN. The IUCN Red List of Threatened Species. IUCN Red List of Threatened Species https://www.iucnredlist.org/en (2021).Mech, L. D. & Barber, S. M. A critique of wildlife radio-tracking and its use in National Parks: a report to the National Park Service. (2002).Patterson, C., Koski, W., Pace, P., McLuckie, B. & Bird, D. M. Evaluation of an unmanned aircraft system for detecting surrogate caribou targets in Labrador. J. Unmanned Veh. Syst. 4, 53–69 (2015).Article
Google Scholar
Hodgson, J. C. et al. Drones count wildlife more accurately and precisely than humans. Methods Ecol. Evol. 9, 1160–1167 (2018).Article
Google Scholar
Seymour, A. C., Dale, J., Hammill, M., Halpin, P. N. & Johnston, D. W. Automated detection and enumeration of marine wildlife using unmanned aircraft systems (UAS) and thermal imagery. Sci. Rep. 7, 1–10 (2017).Article
Google Scholar
COSEWIC. COSEWIC assessment and status report on the caribou (Rangifer tarandus) eastern migratory population, Torngat mountain population in Canada. (COSEWIC, Committee on the Status of Endangered Wildlife in Canada, 2017).Albawi, S., Mohammed, T. A. & Al-Zawi, S. Understanding of a convolutional neural network. in 2017 international conference on engineering and technology (ICET) 1–6 (IEEE, 2017).Gu, J. et al. Recent advances in convolutional neural networks. Pattern Recognit. 77, 354–377 (2018).Article
ADS
Google Scholar
Teuwen, J. & Moriakov, N. Convolutional neural networks. in Handbook of medical image computing and computer assisted intervention 481–501 (Elsevier, 2020).Corcoran, E., Winsen, M., Sudholz, A. & Hamilton, G. Automated detection of wildlife using drones: Synthesis, opportunities and constraints. Methods Ecol. Evol. 12, 1103–1114 (2021).Article
Google Scholar
Corcoran, E., Denman, S., Hanger, J., Wilson, B. & Hamilton, G. Automated detection of koalas using low-level aerial surveillance and machine learning. Sci. Rep. 9, 3208 (2019).Article
ADS
Google Scholar
Gray, P. C. et al. Drones and convolutional neural networks facilitate automated and accurate cetacean species identification and photogrammetry. Methods Ecol. Evol. 10, 1490–1500 (2019).Article
Google Scholar
Gray, P. C. et al. A convolutional neural network for detecting sea turtles in drone imagery. Methods Ecol. Evol. 10, 345–355 (2019).Article
Google Scholar
Peng, J. et al. Wild animal survey using UAS imagery and deep learning: modified Faster R-CNN for kiang detection in Tibetan Plateau. ISPRS J. Photogramm. Remote Sens. 169, 364–376 (2020).Article
ADS
Google Scholar
Borowicz, A. et al. Multi-modal survey of Adélie penguin mega-colonies reveals the Danger Islands as a seabird hotspot. Sci. Rep. 8, 3926 (2018).Article
ADS
Google Scholar
Francis, R. J., Lyons, M. B., Kingsford, R. T. & Brandis, K. J. Counting mixed breeding aggregations of animal species using drones: Lessons from waterbirds on semi-automation. Remote Sens. 12, 1185 (2020).Article
ADS
Google Scholar
Santangeli, A. et al. Integrating drone-borne thermal imaging with artificial intelligence to locate bird nests on agricultural land. Sci. Rep. 10, 1–8 (2020).Article
Google Scholar
Bowley, C., Mattingly, M., Barnas, A., Ellis-Felege, S. & Desell, T. An analysis of altitude, citizen science and a convolutional neural network feedback loop on object detection in unmanned aerial systems. J. Comput. Sci. 34, 102–116 (2019).Article
Google Scholar
Bowley, C., Mattingly, M., Barnas, A., Ellis-Felege, S. & Desell, T. Detecting wildlife in unmanned aerial systems imagery using convolutional neural networks trained with an automated feedback loop. in International Conference on Computational Science 69–82 (Springer, 2018).Delplanque, A., Foucher, S., Lejeune, P., Linchant, J. & Théau, J. Multispecies detection and identification of African mammals in aerial imagery using convolutional neural networks. Remote Sens. Ecol. Conserv. 8, 166–179 (2021).Article
Google Scholar
Eikelboom, J. A. J. et al. Improving the precision and accuracy of animal population estimates with aerial image object detection. Methods Ecol. Evol. 10, 1875–1887 (2019).Article
Google Scholar
Kellenberger, B., Marcos, D. & Tuia, D. Detecting mammals in UAV images: Best practices to address a substantially imbalanced dataset with deep learning. Remote Sens. Environ. 216, 139–153 (2018).Article
ADS
Google Scholar
Hooge, I. T. C., Niehorster, D. C., Nyström, M., Andersson, R. & Hessels, R. S. Is human classification by experienced untrained observers a gold standard in fixation detection?. Behav. Res. Methods 50, 1864–1881 (2018).Article
Google Scholar
Barnas, A. F., Darby, B. J., Vandeberg, G. S., Rockwell, R. F. & Ellis-Felege, S. N. A comparison of drone imagery and ground-based methods for estimating the extent of habitat destruction by lesser snow geese (Anser caerulescens caerulescens) in La Pérouse Bay. PLoS ONE 14, e0217049 (2019).Article
CAS
Google Scholar
Brook, R. K. & Kenkel, N. C. A multivariate approach to vegetation mapping of Manitoba’s Hudson Bay Lowlands. Int. J. Remote Sens. 23, 4761–4776 (2002).Article
Google Scholar
Shilts, W. W., Aylsworth, J. M., Kaszycki, C. A., Klassen, R. A. & Graf, W. L. Canadian shield. in Geomorphic Systems of North America vol. 2 119–161 (Geological Society of America Boulder, Colorado, 1987).Barnas, A. F., Felege, C. J., Rockwell, R. F. & Ellis-Felege, S. N. A pilot (less) study on the use of an unmanned aircraft system for studying polar bears (Ursus maritimus). Polar Biol. 41, 1055–1062 (2018).Article
Google Scholar
Ellis-Felege, S. N. et al. Nesting common eiders (Somateria mollissima) show little behavioral response to fixed-wing drone surveys. J. Unmanned Veh. Syst. 10, 1–4 (2021).
Google Scholar
Barnas, A. F. et al. A standardized protocol for reporting methods when using drones for wildlife research. J. Unmanned Veh. Syst. 8, 89–98 (2020).Article
Google Scholar
Ren, S., He, K., Girshick, R. & Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28, 91–99 (2016).
Google Scholar
Chen, T., Xu, B., Zhang, C. & Guestrin, C. Training Deep Nets with Sublinear Memory Cost. ArXiv160406174 Cs (2016).Pinckaers, H. & Litjens, G. Training convolutional neural networks with megapixel images. ArXiv180405712 Cs (2018).Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous systems. (2015).Janocha, K. & Czarnecki, W. M. On loss functions for deep neural networks in classification. ArXiv Prepr. ArXiv170205659. (2017).Murata, N., Yoshizawa, S. & Amari, S. Learning curves, model selection and complexity of neural networks. Adv. Neural Inf. Process. Syst. 5, 607–614 (1992).
Google Scholar
Hänsch, R. & Hellwich, O. The truth about ground truth: Label noise in human-generated reference data. in IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium 5594–5597 (IEEE, 2019).Bowler, E., Fretwell, P. T., French, G. & Mackiewicz, M. Using deep learning to count albatrosses from space: Assessing results in light of ground truth uncertainty. Remote Sens. 12, 2026 (2020).Article
ADS
Google Scholar
Brack, I. V., Kindel, A. & Oliveira, L. F. B. Detection errors in wildlife abundance estimates from Unmanned Aerial Systems (UAS) surveys: Synthesis, solutions, and challenges. Methods Ecol. Evol. 9, 1864–1873 (2018).Article
Google Scholar
Jagielski, P. M. et al. The utility of drones for studying polar bear behaviour in the Canadian Arctic: Opportunities and recommendations. Drone Syst. Appl. 10, 97–110 (2022).Article
Google Scholar
Williams, P. J., Hooten, M. B., Womble, J. N. & Bower, M. R. Estimating occupancy and abundance using aerial images with imperfect detection. Methods Ecol. Evol. 8, 1679–1689 (2017).Article
Google Scholar
Link, W. A., Schofield, M. R., Barker, R. J. & Sauer, J. R. On the robustness of N-mixture models. Ecology 99, 1547–1551 (2018).Article
Google Scholar
Horvitz, D. G. & Thompson, D. J. A generalization of sampling without replacement from a finite universe. J. Am. Stat. Assoc. 47, 663–685 (1952).Article
MATH
Google Scholar
Corcoran, E., Denman, S. & Hamilton, G. New technologies in the mix: Assessing N-mixture models for abundance estimation using automated detection data from drone surveys. Ecol. Evol. 10, 8176–8185 (2020).Article
Google Scholar
Lunga, D., Arndt, J., Gerrand, J. & Stewart, R. ReSFlow: A remote sensing imagery data-flow for improved model generalization. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14, 10468–10483 (2021).Article
ADS
Google Scholar
Fromm, M., Schubert, M., Castilla, G., Linke, J. & McDermid, G. Automated detection of conifer seedlings in drone imagery using convolutional neural networks. Remote Sens. 11, 2585 (2019).Article
ADS
Google Scholar
Velumani, K. et al. Estimates of maize plant density from UAV RGB images using Faster-RCNN detection model: Impact of the spatial resolution. Plant Phenomics 2021, 9824843 (2021).Article
CAS
Google Scholar
Hodgson, A., Peel, D. & Kelly, N. Unmanned aerial vehicles for surveying marine fauna: Assessing detection probability. Ecol. Appl. 27, 1253–1267 (2017).Article
Google Scholar
Ferguson, M. C. et al. Performance of manned and unmanned aerial surveys to collect visual data and imagery for estimating arctic cetacean density and associated uncertainty. J. Unmanned Veh. Syst. 6, 128–154 (2018).Article
Google Scholar
Zmarz, A. et al. Application of UAV BVLOS remote sensing data for multi-faceted analysis of Antarctic ecosystem. Remote Sens. Environ. 217, 375–388 (2018).Article
ADS
Google Scholar
Lyons, M. B. et al. Monitoring large and complex wildlife aggregations with drones. Methods Ecol. Evol. 10, 1024–1035 (2019).Article
Google Scholar More