More stories

  • in

    Microbial growth and carbon use efficiency show seasonal responses in a multifactorial climate change experiment

    1.
    Soong, J. L. et al. Microbial carbon limitation: the need for integrating microorganisms into our understanding of ecosystem carbon cycling. Glob. Chang. Biol. 00, 1–9 (2020).
    Google Scholar 
    2.
    Liang, C. & Balser, T. C. Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy. Nat. Rev. Microbiol. 9, 75 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Miltner, A., Bombach, P., Schmidt-Brücken, B. & Kästner, M. SOM genesis: microbial biomass as a significant source. Biogeochemistry 111, 41–55 (2012).
    CAS  Article  Google Scholar 

    4.
    Lehmann, J. & Kleber, M. The contentious nature of soil organic matter. Nature 528, 60–68 (2015).
    CAS  Article  Google Scholar 

    5.
    Manzoni, S., Taylor, P., Richter, A., Porporato, A. & Ågren, G. I. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. N. Phytol. 196, 79–91 (2012).
    CAS  Article  Google Scholar 

    6.
    Sinsabaugh, R. L., Manzoni, S., Moorhead, D. L. & Richter, A. Carbon use efficiency of microbial communities: Stoichiometry, methodology and modelling. Ecol. Lett. 16, 930–939 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    7.
    Allison, S. D. Modeling adaptation of carbon use efficiency in microbial communities. Front. Microbiol. 5, 1–9 (2014).
    Google Scholar 

    8.
    Geyer, K. M., Kyker-Snowman, E., Grandy, A. S. & Frey, S. D. Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter. Biogeochemistry 127, 173–188 (2016).
    CAS  Article  Google Scholar 

    9.
    Hagerty, S. B., Allison, S. D. & Schimel, J. P. Evaluating soil microbial carbon use efficiency explicitly as a function of cellular processes: implications for measurements and models. Biogeochemistry 140, 269–283 (2018).
    CAS  Article  Google Scholar 

    10.
    Manzoni, S., Schimel, J. P. & Porporato, A. Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology 93, 930–938 (2011).
    Article  Google Scholar 

    11.
    Williams, M. A. & Rice, C. W. Seven years of enhanced water availability influences the physiological, structural, and functional attributes of a soil microbial community. Appl. Soil Ecol. 35, 535–545 (2007).
    Article  Google Scholar 

    12.
    Zheng, Q. et al. Growth explains microbial carbon use efficiency across soils differing in land use and geology. Soil Biol. Biochem. 128, 45–55 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Pritchard, S. G. Soil organisms and global climate change. Plant Pathol. 60, 82–99 (2011).
    Article  Google Scholar 

    14.
    Classen, A. E. T. et al. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead? Ecosphere 6, 1–21 (2015).
    Article  Google Scholar 

    15.
    IPCC. Summary for policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013).

    16.
    Dieleman, W. I. J. et al. Simple additive effects are rare: A quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature. Glob. Chang. Biol. 18, 2681–2693 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    17.
    Yue, K. et al. Influence of multiple global change drivers on terrestrial carbon storage: additive effects are common. Ecol. Lett. 20, 663–672 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    18.
    Song, J. et al. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat. Ecol. Evol. 3, 1309–1320 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    19.
    Le Quéré, C. et al. Global Carbon Budget 2018. Earth Syst. Sci. Data Discuss. 10, 2141–2194 (2018).
    Article  Google Scholar 

    20.
    Bloom, A. A., Exbrayat, J. F., Van Der Velde, I. R., Feng, L. & Williams, M. The decadal state of the terrestrial carbon cycle: Global retrievals of terrestrial carbon allocation, pools, and residence times. Proc. Natl Acad. Sci. USA 113, 1285–1290 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Alster, C. J., Baas, P., Wallenstein, M. D., Johnson, N. G. & von Fischer, J. C. Temperature sensitivity as a microbial trait using parameters from macromolecular rate theory. Front. Microbiol. 7, 1–10 (2016).
    Article  Google Scholar 

    22.
    Bradford, M. A. Thermal adaptation of decomposer communities in warming soils. Front. Microbiol. 4, 1–16 (2013).
    Article  Google Scholar 

    23.
    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Bárcenas-Moreno, G., Gómez-Brandón, M., Rousk, J. & Bååth, E. Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment. Glob. Chang. Biol. 15, 2950–2957 (2009).
    Article  Google Scholar 

    25.
    Fenner, N., Freeman, C. & Reynolds, B. Observations of a seasonally shifting thermal optimum in peatland carbon-cycling processes; implications for the global carbon cycle and soil enzyme methodologies. Soil Biol. Biochem. 37, 1814–1821 (2005).
    CAS  Article  Google Scholar 

    26.
    Schimel Balser, T. C. & Wallenstein, M. Microbial stress-response physiology and its implications for ecosystem function. Ecology 88, 1386–1394 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    27.
    Schimel. Life in dry soils: effects of drought on soil microbial communities and processes. Annu. Rev. Ecol. Evol. Syst. 49, 409–432 (2018).
    Article  Google Scholar 

    28.
    Bardgett, R. D., Freeman, C. & Ostle, N. J. Microbial contributions to climate change through carbon cycle feedbacks. ISME J. 2, 805–814 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Andresen, L. C. et al. Biomass responses in a temperate European grassland through 17 years of elevated CO2. Glob. Chang. Biol. 24, 3875–3885 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    30.
    Parvin, S. et al. Free air CO2 enrichment (FACE) improves water use efficiency and moderates drought effect on N2 fixation of Pisum sativum L. Plant Soil 436, 587–606 (2019).
    CAS  Article  Google Scholar 

    31.
    Yuhui, W. et al. Effects of elevated CO2 and drought on plant physiology, soil carbon and soil enzyme activities. Pedosphere 27, 846–855 (2017).
    Article  Google Scholar 

    32.
    Eisenhauer, N., Cesarz, S., Koller, R., Worm, K. & Reich, P. B. Global change belowground: Impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity. Glob. Chang. Biol. 18, 435–447 (2012).
    Article  Google Scholar 

    33.
    Nie, M., Lu, M., Bell, J., Raut, S. & Pendall, E. Altered root traits due to elevated CO2: A meta-analysis. Glob. Ecol. Biogeogr. 22, 1095–1105 (2013).
    Article  Google Scholar 

    34.
    Tucker, C. L., Bell, J., Pendall, E. & Ogle, K. Does declining carbon-use efficiency explain thermal acclimation of soil respiration with warming? Glob. Chang. Biol. 19, 252–263 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    35.
    Kuzyakov, Y., Horwath, W. R., Dorodnikov, M. & Blagodatskaya, E. Review and synthesis of the effects of elevated atmospheric CO2 on soil processes: No changes in pools, but increased fluxes and accelerated cycles. Soil Biol. Biochem. 128, 66–78 (2019).
    CAS  Article  Google Scholar 

    36.
    Wan, S., Norby, R. J., Ledford, J. & Weltzin, J. F. Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland. Glob. Chang. Biol. 13, 2411–2424 (2007).
    Article  Google Scholar 

    37.
    Madhu, M. & Hatfeld, J. L. Dynamics of plant root growth under increased atmospheric carbon dioxide. Agron. J. 105, 657–669 (2013).
    CAS  Article  Google Scholar 

    38.
    Roy, J. et al. Elevated CO2 maintains grassland net carbon uptake under a future heat and drought extreme. Proc. Natl Acad. Sci. U.S.A 113, 6224–6229 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Walker, T. W. N. et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat. Clim. Chang. 8, 885–889 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Hagerty, S. B. et al. Accelerated microbial turnover but constant growth efficiency with warming in soil. Nat. Clim. Chang. 4, 903–906 (2014).
    CAS  Article  Google Scholar 

    41.
    Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).
    CAS  Article  Google Scholar 

    42.
    Lehmeier, C. A., Ballantyne, F. IV, Min, K. & Billings, S. A. Temperature-mediated changes in microbial carbon use efficiency and 13C discrimination. Biogeosciences 13, 3319–3329 (2016).
    CAS  Article  Google Scholar 

    43.
    Fuchslueger, L. et al. Microbial carbon and nitrogen cycling responses to drought and temperature in differently managed mountain grasslands. Soil Biol. Biochem. 135, 144–153 (2019).
    CAS  Article  Google Scholar 

    44.
    Alvarez, G. et al. Catalytic power of enzymes decreases with temperature: New insights for understanding soil C cycling and microbial ecology under warming. Glob. Chang. Biol. 24, 4238–4250 (2018).
    PubMed  Article  Google Scholar 

    45.
    Dijkstra, P. et al. Effect of temperature on metabolic activity of intact microbial communities: Evidence for altered metabolic pathway activity but not for increased maintenance respiration and reduced carbon use efficiency. Soil Biol. Biochem. 43, 2023–2031 (2011).
    CAS  Article  Google Scholar 

    46.
    Manzoni, S. et al. Reviews and syntheses: Carbon use efficiency from organisms to ecosystems – Definitions, theories, and empirical evidence. Biogeosciences 15, 5929–5949 (2018).
    CAS  Article  Google Scholar 

    47.
    Schmidt, S. K. et al. Biogeochemical consequences of rapid microbial turnover and seasonal succession in soil. Ecology 88, 1379–1385 (2007).
    CAS  PubMed  Article  Google Scholar 

    48.
    Blume, E. et al. Surface and subsurface microbial biomass, community structure and metabolic activity as a function of soil depth and season. Appl. Soil Ecol. 20, 171–181 (2002).
    Article  Google Scholar 

    49.
    Regan, K. M. et al. Seasonal controls on grassland microbial biogeography: Are they governed by plants, abiotic properties or both? Soil Biol. Biochem. 71, 21–30 (2014).
    CAS  Article  Google Scholar 

    50.
    Piepho Herndl, M., Pötsch, E. M. & Bahn, M. Designing an experiment with quantitative treatment factors to study the effects of climate change. J. Agron. Crop Sci. 203, 584–592 (2017).
    Article  CAS  Google Scholar 

    51.
    Liu, Y. et al. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biol. Biochem. 121, 35–42 (2018).
    CAS  Article  Google Scholar 

    52.
    Rustad, L. E. et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126, 543–562 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Schwarz, B. et al. Warming alters energetic structure and function but not resilience of soil food webs. Nat. Clim. Chang. 7, 895–900 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    54.
    Hartley, I. P., Heinemeyer, A. & Ineson, P. Effects of three years of soil warming and shading on the rate of soil respiration: Substrate availability and not thermal acclimation mediates observed response. Glob. Chang. Biol. 13, 1761–1770 (2007).
    Article  Google Scholar 

    55.
    Drigo, B., Kowalchuk, G. A. & van Veen, J. A. Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biol. Fertil. Soils 44, 667–679 (2008).
    Article  Google Scholar 

    56.
    Kowalchuk, G. A. et al. Impacts of 3 years of elevated atmospheric CO2 on rhizosphere carbon flow and microbial community dynamics. Glob. Chang. Biol. 19, 621–636 (2012).
    PubMed  PubMed Central  Google Scholar 

    57.
    Luo, Y., Hui, D. & Zhang, D. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: A meta-analysis. Ecology 87, 53–63 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    58.
    Pausch, J. & Kuzyakov, Y. Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Glob. Chang. Biol. 24, 1–12 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    59.
    Carrillo, Y., Dijkstra, F., LeCain, D., Blumenthal, D. & Pendall, E. Elevated CO2 and warming cause interactive effects on soil carbon and shifts in carbon use by bacteria. Ecol. Lett. 21, 1639–1648 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    60.
    Adair, K. L. et al. Above and belowground community strategies respond to different global change drivers. Sci. Rep. 9, 1–11 (2019).
    CAS  Article  Google Scholar 

    61.
    Deltedesco, E. et al. Trace gas fluxes from managed grassland soil subject to multifactorial climate change manipulation. Appl. Soil Ecol. 137, 1–11 (2019).
    Article  Google Scholar 

    62.
    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).
    CAS  Article  Google Scholar 

    63.
    Spohn, M., Klaus, K., Wanek, W. & Richter, A. Microbial carbon use efficiency and biomass turnover times depending on soil depth – Implications for carbon cycling. Soil Biol. Biochem. 96, 74–81 (2016).
    CAS  Article  Google Scholar 

    64.
    Pinheiro, J., Bates, D., Debroy, S., Sarkar, D. & R-core Team. nlme: linear and nonlinear mixed effects models. R package version 3 (2019).

    65.
    Galecki, A. & Burzykowski, T. Linear Mixed Effects Models Using R.: A Step-by-Step Approach. https://doi.org/10.1007/978-1-4614-3900-4 (2013).

    66.
    Piepho, H. P. & Edmondson, R. N. A tutorial on the statistical analysis of factorial experiments with qualitative and quantitative treatment factor levels. J. Agron. Crop Sci. 204, 429–455 (2018).
    Article  Google Scholar 

    67.
    Box, G. E. P. & Jenkins, G. M. Time Series Analysis: Forecasting and Control. (Holden-Day, San Francisco, CA, US, 1976).

    68.
    Finerty, J. P. The Population Ecology of Cycles in Small Mammals. (Yale University Press, New Haven and London, UK, 1980).

    69.
    Nisbet, R. M. & Gurney, W. S. C. Modelling Fluctuating Populations. (John Wiley & Sons, New York, US, 1982).

    70.
    Turchin, P. & Taylor, D. Complex dynamics in ecological time series. Ecology 73, 289–305 (1992).
    Article  Google Scholar 

    71.
    Davies, N. & Chatfield, C. The Analysis of Time Series: An Introduction. The Mathematical Gazette vol. 74 (Chapman and Hall, 2007).

    72.
    Kozak, M. & Piepho, H. P. What’s normal anyway? Residual plots are more telling than significance tests when checking ANOVA assumptions. J. Agron. Crop Sci. 204, 86–98 (2018).
    Article  Google Scholar 

    73.
    Lenth, R. V. Response-surface methods in R, using rsm. J. Stat. Softw. 32, 1–21 (2010). More

  • in

    The importance of genomic variation for biodiversity, ecosystems and people

    1.
    Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 
    2.
    Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).
    Article  Google Scholar 

    3.
    Faith, D. P. et al. Evosystem services: an evolutionary perspective on the links between biodiversity and human well-being. Curr. Opin. Environ. Sustain. 2, 66–74 (2010).
    Article  Google Scholar 

    4.
    Mimura, M. et al. Understanding and monitoring the consequences of human impacts on intraspecific variation. Evol. Appl. 10, 121–139 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    5.
    Rudman, S. M. et al. What genomic data can reveal about eco-evolutionary dynamics. Nat. Ecol. Evol. 2, 9–15 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    6.
    Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    7.
    Therkildsen, N. O. et al. Contrasting genomic shifts underlie parallel phenotypic evolution in response to fishing. Science 365, 487–490 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Crutsinger, G. M. et al. Plant genotypic diversity predicts community structure and governs an ecosystem process. Science 313, 966–968 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Leigh, D. M., Hendry, A. P., Vázquez-Domínguez, E. & Friesen, V. L. Estimated six per cent loss of genetic variation in wild populations since the industrial revolution. Evol. Appl. 12, 1505–1512 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    10.
    Boeuf, G. Marine biodiversity characteristics. C. R. Biol. 334, 435–440 (2011).
    PubMed  Article  Google Scholar 

    11.
    Loss, S. R., Terwilliger, L. A. & Peterson, A. C. Assisted colonization: integrating conservation strategies in the face of climate change. Biol. Conserv. 144, 92–100 (2011).
    Article  Google Scholar 

    12.
    Aitken, S. N. & Whitlock, M. C. Assisted gene flow to facilitate local adaptation to climate change. Annu. Rev. Ecol. Evol. Syst. 44, 367–388 (2013).
    Article  Google Scholar 

    13.
    Witzenberger, K. A. & Hochkirch, A. Ex situ conservation genetics: a review of molecular studies on the genetic consequences of captive breeding programmes for endangered animal species. Biodivers. Conserv. 20, 1843–1861 (2011).
    Article  Google Scholar 

    14.
    Novak, B. J. De-extinction. Genes 9, 548 (2018).
    PubMed Central  Article  CAS  PubMed  Google Scholar 

    15.
    Muir, W. M. et al. Genome-wide assessment of worldwide chicken SNP genetic diversity indicates significant absence of rare alleles in commercial breeds. Proc. Natl Acad. Sci. USA 105, 17312–17317 (2008).
    CAS  PubMed  Article  Google Scholar 

    16.
    Beck, M. W. et al. The global flood protection savings provided by coral reefs. Nat. Commun 9, 2186 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    17.
    Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis (Island Press, 2005).

    18.
    Díaz, S. et al. The IPBES conceptual framework — connecting nature and people. Curr. Opin. Environ. Sustain. 14, 1–16 (2015).
    Article  Google Scholar 

    19.
    Hendry, A. P. Eco-evolutionary Dynamics (Princeton Univ. Press, 2017).

    20.
    Whitham, T. G. et al. Community and ecosystem genetics: a consequence of the extended phenotype. Ecology 84, 559–573 (2003).
    Article  Google Scholar 

    21.
    Larkin, A. A. & Martiny, A. C. Microdiversity shapes the traits, niche space, and biogeography of microbial taxa. Environ. Microbiol. Rep. 9, 55–70 (2017).
    CAS  PubMed  Article  Google Scholar 

    22.
    Rodríguez-Verdugo, A., Buckley, J. & Stapley, J. The genomic basis of eco-evolutionary dynamics. Mol. Ecol. 26, 1456–1464 (2017).
    PubMed  Article  CAS  Google Scholar 

    23.
    Chen, E., Huang, X., Tian, Z., Wing, R. A. & Han, B. The genomics of oryza species provides insights into rice domestication and heterosis. Annu. Rev. Plant. Biol. 70, 639–665 (2019).
    CAS  PubMed  Article  Google Scholar 

    24.
    Bailey, J. K. et al. Beavers as molecular geneticists: a genetic basis to the foraging of an ecosystem engineer. Ecology 85, 603–608 (2004).
    Article  Google Scholar 

    25.
    Whitham, T. G. et al. A framework for community and ecosystem genetics: from genes to ecosystems. Nat. Rev. Genet. 7, 510–523 (2006).
    CAS  PubMed  Article  Google Scholar 

    26.
    Lee, S. M., Jellison, T. & Alper, H. S. Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields. Biotechnol. Biofuels 7, 1–8 (2014).
    Article  CAS  Google Scholar 

    27.
    Gleizer, S. et al. Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell 179, 1255–1263.e12 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Zhu, Y. et al. Genetic diversity and disease control in rice. Nature 406, 718–722 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    King, K. C. & Lively, C. M. Does genetic diversity limit disease spread in natural host populations. Heredity 109, 199–203 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Robinson, S. J., Samuel, M. D., Johnson, C. J., Adams, M. & McKenzie, D. I. Emerging prion disease drives host selection in a wildlife population. Ecol. Appl. 22, 1050–1059 (2012).
    PubMed  Article  Google Scholar 

    31.
    Springbett, A. J., MacKenzie, K., Woolliams, J. A. & Bishop, S. C. The contribution of genetic diversity to the spread of infectious diseases in livestock populations. Genetics 165, 1465–1474 (2003).
    CAS  PubMed  PubMed Central  Google Scholar 

    32.
    McGranahan, N. & Swanton, C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168, 613–628 (2017).
    CAS  PubMed  Article  Google Scholar 

    33.
    Heap, I. M. The occurrence of herbicide-resistant weeds worldwide. Pestic. Sci. 51, 235–243 (1997).
    CAS  Article  Google Scholar 

    34.
    Whalon, M. E., Mota-Sanchez, D. & Hollingworth, R. M. Global Pesticide Resistance in Arthropods (CABI, 2008).

    35.
    Hartley, C. J. et al. Amplification of DNA from preserved specimens shows blowflies were preadapted for the rapid evolution of insecticide resistance. Proc. Natl Acad. Sci. USA 103, 8757–8762 (2006).
    CAS  PubMed  Article  Google Scholar 

    36.
    Dunlop, E. S., Eikeset, A. M. & Stenseth, N. C. From genes to populations: how fisheries-induced evolution alters stock productivity. Ecol. Appl. 25, 1860–1868 (2015).
    PubMed  Article  Google Scholar 

    37.
    Waples, R. S. & Audzijonyte, A. Fishery-induced evolution provides insights into adaptive responses of marine species to climate change. Front. Ecol. Environ. 14, 217–224 (2016).
    Article  Google Scholar 

    38.
    Food and Agriculture Organization of the United Nations. Review of the state of world marine fishery resources (FAO, 2011).

    39.
    Darimont, C. T. et al. Human predators outpace other agents of trait change in the wild. Proc. Natl Acad. Sci. USA 106, 952–954 (2009).
    CAS  PubMed  Article  Google Scholar 

    40.
    Philipp, D. P. et al. Fisheries-induced evolution in Largemouth Bass: linking vulnerability to angling, parental care, and fitness. Am. Fish. Soc. Symp. 82, 223–234 (2015).
    Google Scholar 

    41.
    Philipp, D. P. et al. Selection for vulnerability to angling in largemouth bass. Trans. Am. Fish. Soc. 138, 189–199 (2009).
    Article  Google Scholar 

    42.
    Pigeon, G., Festa-Bianchet, M., Coltman, D. W. & Pelletier, F. Intense selective hunting leads to artificial evolution in horn size. Evol. Appl. 9, 521–530 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    43.
    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).
    Article  Google Scholar 

    44.
    Carlson, S. M., Cunningham, C. J. & Westley, P. A. H. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    45.
    Hendry, A. P., Schoen, D. J., Wolak, M. E. & Reid, J. M. The contemporary evolution of fitness. Annu. Rev. Ecol. Evol. Syst. 49, 457–476 (2018).
    Article  Google Scholar 

    46.
    Dakos, V. et al. Ecosystem tipping points in an evolving world. Nat. Ecol. Evol. 3, 355–362 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    47.
    Souza, F. F. C. et al. Uncovering prokaryotic biodiversity within aerosols of the pristine Amazon forest. Sci. Total Environ. 688, 83–86 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Suffredini, I. B., Barradas Paciencia, M. L., Varella, A. D. & Younes, R. N. Antibacterial activity of Brazilian Amazon plant extracts. Braz. J. Infect. Dis. 10, 400–402 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    49.
    Blanco-Salas, J., Gutiérrez-García, L., Labrador-Moreno, J. & Ruiz-Téllez, T. Wild plants potentially used in human food in the protected area ‘Sierra Grande de Hornachos’ of Extremadura (Spain). Sustainability 11, 456 (2019).
    Article  Google Scholar 

    50.
    Sam Ma, Z., Li, L. & Zhang, Y. P. Defining individual-level genetic diversity and similarity profiles. Sci. Rep. 10, 5805 (2020).
    Article  CAS  Google Scholar 

    51.
    Avolio, M. L., Beaulieu, J. M., Lo, E. Y. Y. & Smith, M. D. Measuring genetic diversity in ecological studies. Plant. Ecol. 213, 1105–1115 (2012).
    Article  Google Scholar 

    52.
    Günther, T. & Coop, G. Robust identification of local adaptation from allele frequencies. Genetics 195, 205–220 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    53.
    Booker, T. R., Jackson, B. C. & Keightley, P. D. Detecting positive selection in the genome. BMC Biol. 15, 1–10 (2017).
    Article  CAS  Google Scholar 

    54.
    Dawkins, R. The Extended Phenotype – The Gene as the Unit of Selection (Oxford Univ. Press, 1983).

    55.
    Shuster, S. M., Lonsdorf, E. V., Wimp, G. M., Bailey, J. K. & Whitham, T. G. Community heritability measures the evolutionary consequences of indirect genetic effects on community structure. Evolution 60, 991–1003 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Sinauer Associates, 1998).

    57.
    Doudna, J. A. & Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    58.
    Knott, G. J. & Doudna, J. A. CRISPR-Cas guides the future of genetic engineering. Science 361, 866–869 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Skovmand, L. H. et al. Keystone genes. Trends Ecol. Evol. 33, 689–700 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    60.
    Pregitzer, C. C., Bailey, J. K., Hart, S. C. & Schweitzer, J. A. Soils as agents of selection: feedbacks between plants and soils alter seedling survival and performance. Evol. Ecol. 24, 1045–1059 (2010).
    Article  Google Scholar 

    61.
    Bailey, J. K. et al. From genes to ecosystems: a synthesis of the effects of plant genetic factors across levels of organization. Phil. Trans. R. Soc. B 364, 1607–1616 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    62.
    Davies, C., Ellis, C. J., Iason, G. R. & Ennos, R. A. Genotypic variation in a foundation tree (Populus tremula L.) explains community structure of associated epiphytes. Biol. Lett. 10, 20140190 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    63.
    Thompson, T. Q. et al. Anthropogenic habitat alteration leads to rapid loss of adaptive variation and restoration potential in wild salmon populations. Proc. Natl Acad. Sci. USA 116, 177–186 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Ford, M. D. et al. Reviewing and synthesizing the state of the science regarding associations between adult run timing and specific genotypes in Chinook salmon and steelhead (US Department of Commerce, 2020).

    65.
    Leroy, C. J. et al. Salmon carcasses influence genetic linkages between forests and streams. Can. J. Fish. Aquat. Sci. 73, 910–920 (2016).
    Article  Google Scholar 

    66.
    Crutsinger, G. M. et al. Testing a ‘genes-to-ecosystems’ approach to understanding aquatic-terrestrial linkages. Mol. Ecol. 23, 5888–5903 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    67.
    Lewontin, R. C. The Genetic Basis of Evolutionary Change (Columbia Univ. Press, 1974).

    68.
    Csilléry, K., Rodríguez-Verdugo, A., Rellstab, C. & Guillaume, F. Detecting the genomic signal of polygenic adaptation and the role of epistasis in evolution. Mol. Ecol. 27, 606–612 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    69.
    Zytynska, S. E., Fleming, S., Tétard-Jones, C., Kertesz, M. A. & Preziosi, R. F. Community genetic interactions mediate indirect ecological effects between a parasitoid wasp and rhizobacteria. Ecology 91, 1563–1568 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    70.
    Carroll, S. P., Dingle, H. & Famula, T. R. Rapid appearance of epistasis during adaptive divergence following colonization. Proc. R. Soc. Lond. B 270, S80–S83 (2003).
    Article  Google Scholar 

    71.
    Carroll, S. P. et al. And the beak shall inherit – evolution in response to invasion. Ecol. Lett. 8, 944–951 (2005).
    Article  Google Scholar 

    72.
    Doust, A. N. et al. Beyond the single gene: how epistasis and gene-byenvironment effects influence crop domestication. Proc. Natl Acad. Sci. USA 111, 6178–6183 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    Wellenreuther, M., Mérot, C., Berdan, E. & Bernatchez, L. Going beyond SNPs: the role of structural genomic variants in adaptive evolution and species diversification. Mol. Ecol. 28, 1203–1209 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    74.
    Ayala, D. et al. Association mapping desiccation resistance within chromosomal inversions in the African malaria vector Anopheles gambiae. Mol. Ecol. 28, 1333–1342 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Christmas, M. J. et al. Chromosomal inversions associated with environmental adaptation in honeybees. Mol. Ecol. 28, 1358–1374 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    76.
    Kess, T. et al. A migration-associated supergene reveals loss of biocomplexity in Atlantic cod. Sci. Adv. 5, eaav2461 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    77.
    Berg, P. R. et al. Trans-oceanic genomic divergence of Atlantic cod ecotypes is associated with large inversions. Heredity 119, 418–428 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    78.
    Frank, K. T., Petrie, B., Choi, J. S. & Leggett, W. C. Ecology: trophic cascades in a formerly cod-dominated ecosystem. Science 308, 1621–1623 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    79.
    Prunier, J. et al. Gene copy number variations involved in balsam poplar (Populus balsamifera L.) adaptive variations. Mol. Ecol. 28, 1476–1490 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    80.
    Youngson, N. A. & Whitelaw, E. Transgenerational epigenetic effects. Annu. Rev. Genomics Hum. Genet. 9, 233–257 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    81.
    Miura, K. et al. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 42, 545–549 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    82.
    Ong-Abdullah, M. et al. Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature 525, 533–537 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    83.
    Le Luyer, J. et al. Parallel epigenetic modifications induced by hatchery rearing in a Pacific salmon. Proc. Natl Acad. Sci. USA 114, 12964–12969 (2017).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    84.
    Baerwald, M. R. et al. Migration-related phenotypic divergence is associated with epigenetic modifications in rainbow trout. Mol. Ecol. 25, 1785–1800 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    85.
    Oke, K. B. et al. Recent declines in salmon body size impact ecosystems and fisheries. Nat. Commun. 11, 4155 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    86.
    Davies, T. J., Urban, M. C., Rayfield, B., Cadotte, M. W. & Peres-Neto, P. R. Deconstructing the relationships between phylogenetic diversity and ecology: a case study on ecosystem functioning. Ecology 97, 2212–2222 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    87.
    Cadotte, M. W. Phylogenetic diversity-ecosystem function relationships are insensitive to phylogenetic edge lengths. Funct. Ecol. 29, 718–723 (2015).
    Article  Google Scholar 

    88.
    Cadotte, M. W. Experimental evidence that evolutionarily diverse assemblages result in higher productivity. Proc. Natl Acad. Sci. USA 110, 8996–9000 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    89.
    MacIvor, J. S. et al. Manipulating plant phylogenetic diversity for green roof ecosystem service delivery. Evol. Appl. 11, 2014–2024 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    90.
    Clark, J. S., Scher, C. L. & Swift, M. The emergent interactions that govern biodiversity change. Proc. Natl Acad. Sci. USA 117, 17074–17083 (2020).
    PubMed  Article  Google Scholar 

    91.
    Crutsinger, G. M. A community genetics perspective: opportunities for the coming decade. N. Phytol. 210, 65–70 (2016).
    Article  Google Scholar 

    92.
    Zuppinger-Dingley, D. et al. Selection for niche differentiation in plant communities increases biodiversity effects. Nature 515, 108–111 (2014).
    CAS  PubMed  Article  Google Scholar 

    93.
    van Moorsel, S. J. et al. Community evolution increases plant productivity at low diversity. Ecol. Lett. 21, 128–137 (2018).
    PubMed  Article  Google Scholar 

    94.
    Wade, M. J. The co-evolutionary genetics of ecological communities. Nat. Rev. Genet. 8, 185–195 (2007).
    CAS  PubMed  Article  Google Scholar 

    95.
    Genung, M. A., Bailey, J. K. & Schweitzer, J. A. Welcome to the neighbourhood: Interspecific genotype by genotype interactions in Solidago influence above- and belowground biomass and associated communities. Ecol. Lett. 15, 65–73 (2012).
    PubMed  Article  Google Scholar 

    96.
    Genung, M. A., Bailey, J. K. & Schweitzer, J. A. The afterlife of interspecific indirect genetic effects: genotype interactions alter litter quality with consequences for decomposition and nutrient dynamics. PLoS ONE 8, e53718 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    97.
    Lankau, R. A. & Nodurft, R. N. An exotic invader drives the evolution of plant traits that determine mycorrhizal fungal diversity in a native competitor. Mol. Ecol. 22, 5472–5485 (2013).
    PubMed  Article  Google Scholar 

    98.
    Lankau, R. A., Nuzzo, V., Spyreas, G. & Davis, A. S. Evolutionary limits ameliorate the negative impact of an invasive plant. Proc. Natl Acad. Sci. USA 107, 1253 (2010).
    CAS  Article  Google Scholar 

    99.
    Lankau, R. A. Coevolution between invasive and native plants driven by chemical competition and soil biota. Proc. Natl Acad. Sci. USA 109, 11240–11245 (2012).
    CAS  PubMed  Article  Google Scholar 

    100.
    Lankau, R. A., Bauer, J. T., Anderson, M. R. & Anderson, R. C. Long-term legacies and partial recovery of mycorrhizal communities after invasive plant removal. Biol. Invasions 16, 1979–1990 (2014).
    Article  Google Scholar 

    101.
    Miller, E. T., Svanbäck, R. & Bohannan, B. J. M. Microbiomes as metacommunities: understanding host-associated microbes through metacommunity ecology. Trends Ecol. Evol. 33, 926–935 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    102.
    Pearse, D. E., Miller, M. R., Abadía-Cardoso, A. & Garza, J. C. Rapid parallel evolution of standing variation in a single, complex, genomic region is associated with life history in steelhead/rainbow trout. Proc. R. Soc. B 281, 20140012 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    103.
    Narum, S. R., Genova, A. D., Micheletti, S. J. & Maass, A. Genomic variation underlying complex life-history traits revealed by genome sequencing in Chinook salmon. Proc. R. Soc. B 285, 20180935 (2018).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    104.
    Prince, D. J. et al. The evolutionary basis of premature migration in Pacific salmon highlights the utility of genomics for informing conservation. Sci. Adv. 3, e1603198 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    105.
    Rey, O. et al. Linking epigenetics and biological conservation: towards a conservation epigenetics perspective. Funct. Ecol. 34, 414–427 (2020).
    Article  Google Scholar 

    106.
    Hu, J. & Barrett, R. D. H. Epigenetics in natural animal populations. J. Evol. Biol. 30, 1612–1632 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    107.
    Herrera, C. M., Medrano, M., Pérez, R., Bazaga, P. & Alonso, C. Within-plant heterogeneity in fecundity and herbivory induced by localized DNA hypomethylation in the perennial herb Helleborus foetidus. Am. J. Bot. 106, 798–806 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    108.
    Cohen, S. N., Chang, A. C. Y., Boyer, H. W. & Helling, R. B. Construction of biologically functional bacterial plasmids in vitro (R factor/restriction enzyme/transformation/endonuclease/antibiotic resistance). Proc. Natl Acad. Sci. USA 70, 3240–3244 (1973).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    109.
    Porteus, M. H. & Carroll, D. Gene targeting using zinc finger nucleases. Nat. Biotechnol. 23, 967–973 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    110.
    Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S. & Gregory, P. D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11, 636–646 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    111.
    Joung, J. K. & Sander, J. D. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 14, 49–55 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    112.
    Burt, A. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc. R. Soc. Lond. B 270, 921–928 (2003).
    CAS  Article  Google Scholar 

    113.
    Zhang, Y., Massel, K., Godwin, I. D. & Gao, C. Applications and potential of genome editing in crop improvement. Genome Biol. 19, 210 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    114.
    Charu, V. & Kaplan, D. L. Silk as a biomaterial. Prog. Polym. Sci. 100, 130–134 (2012).
    Google Scholar 

    115.
    Mosa, K. A., Saadoun, I., Kumar, K., Helmy, M. & Dhankher, O. P. Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front. Plant Sci. 7, 303 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    116.
    Champer, J., Buchman, A. & Akbari, O. S. Cheating evolution: engineering gene drives to manipulate the fate of wild populations. Nat. Rev. Genet. 17, 146–159 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    117.
    Rode, N. O., Estoup, A., Bourguet, D., Courtier-Orgogozo, V. & Débarre, F. Population management using gene drive: molecular design, models of spread dynamics and assessment of ecological risks. Conserv. Genet. 20, 671–690 (2019).
    CAS  Article  Google Scholar 

    118.
    Esvelt, K. M. & Gemmell, N. J. Conservation demands safe gene drive. PLoS Biol. 15, 1–8 (2017).
    Article  CAS  Google Scholar 

    119.
    Phuc, H. et al. Late-acting dominant lethal genetic systems and mosquito control. BMC Biol. 5, 11 (2007).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    120.
    Campbell, K. J. et al. in Island Invasives: Scaling up to Meet the Challenge (eds Veitch, C. R., Clout, M. N., Martin, A. R., Russel, J. C. & West, C. J.) 6–14 (IUCN, 2019).

    121.
    Sherkow, J. S. & Greely, H. T. What if extinction is not forever? Science 340, 32–33 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    122.
    Otoupal, P. B., Cordell, W. T., Bachu, V., Sitton, M. J. & Chatterjee, A. Multiplexed deactivated CRISPR-Cas9 gene expression perturbations deter bacterial adaptation by inducing negative epistasis. Commun. Biol. 1, 129 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    123.
    Kraft, K. et al. Deletions, inversions, duplications: engineering of structural variants using CRISPR/Cas in mice. Cell Rep. 10, 833–839 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    124.
    Springer, N. M. & Schmitz, R. J. Exploiting induced and natural epigenetic variation for crop improvement. Nat. Rev. Genet. 18, 563–575 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    125.
    Reinders, J. et al. Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev. 23, 939–950 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    126.
    Carrière, Y., Crowder, D. W. & Tabashnik, B. E. Evolutionary ecology of insect adaptation to Bt crops. Evol. Appl. 3, 561–573 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    127.
    Fish, D. & Carpenter, S. R. Leaf litter and larval mosquito dynamics in tree-hole ecosystems. Ecology 63, 283–288 (1982).
    Article  Google Scholar 

    128.
    Kraus, J. M. & Vonesh, J. R. Fluxes of terrestrial and aquatic carbon by emergent mosquitoes: a test of controls and implications for cross-ecosystem linkages. Oecologia 170, 1111–1122 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    129.
    Sheehan, S. & Song, Y. S. Deep learning for population genetic inference. PLoS Comput. Biol. 12, e1004845 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    130.
    Schrider, D. R. & Kern, A. D. Supervised machine learning for population genetics: a new paradigm. Trends Genet. 34, 301–312 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    131.
    Christin, S., Hervet, É. & Lecomte, N. Applications for deep learning in ecology. Methods Ecol. Evol. 10, 1632–1644 (2019).
    Article  Google Scholar 

    132.
    Desjardins-Proulx, P., Laigle, I., Poisot, T. & Gravel, D. Ecological interactions and the Netflix problem. PeerJ 2017, e3644 (2017).
    Article  Google Scholar 

    133.
    Ruffley, M., Peterson, K., Week, B., Tank, D. C. & Harmon, L. J. Identifying models of trait-mediated community assembly using random forests and approximate Bayesian computation. Dep. Biol. Sci. https://doi.org/10.1002/ece3.5773 (2019).
    Article  Google Scholar 

    134.
    Laikre, L. et al. Neglect of genetic diversity in implementation of the convention on biological diversity: conservation in practice and policy. Conserv. Biol. 24, 86–88 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    135.
    Hoban, S. et al. Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biol. Conserv. 248, 108654 (2020).
    Article  Google Scholar 

    136.
    Meyer, P. et al. Endogenous and environmental factors influence 35S promoter methylation of a maize A1 gene construct in transgenic petunia and its colour phenotype. Mol. Gen. Genet. 231, 345–352 (1992).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    137.
    Morandin, L. A. & Winston, M. L. Wild bee abundance and seed production in conventional, organic, and genetically modified canola. Ecol. Appl. 15, 871–881 (2005).
    Article  Google Scholar 

    138.
    Axelsson, E. P. et al. Leaf litter from insect-resistant transgenic trees causes changes in aquatic insect community composition. J. Appl. Ecol. 48, 1472–1479 (2011).
    Article  Google Scholar 

    139.
    Axelsson, E. P., Hjältén, J. & LeRoy, C. J. Performance of insect-resistant Bacillus thuringiensis (Bt)-expressing aspens under semi-natural field conditions including natural herbivory in Sweden. For. Ecol. Manage. 264, 167–171 (2012).
    Article  Google Scholar 

    140.
    Sundström, L. F., Lõhmus, M., Tymchuk, W. E. & Devlin, R. H. Gene-environment interactions influence ecological consequences of transgenic animals. Proc. Natl Acad. Sci. USA 104, 3889–3894 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    141.
    Sundström, L. F., Lôhmus, M., Johnsson, J. I. & Devlin, R. H. Growth hormone transgenic salmon pay for growth potential with increased predation mortality. Proc. R. Soc. Lond. B 271, 350–352 (2004).
    Article  Google Scholar 

    142.
    Bodbyl Roels, S. A. & Kelly, J. K. Rapid evolution caused by pollinator loss in Mimulus guttatus. Evolution 65, 2541–2552 (2011).
    PubMed Central  Article  Google Scholar 

    143.
    Cheptou, P. O., Carrue, O., Rouifed, S. & Cantarel, A. Rapid evolution of seed dispersal in an urban environment in the weed Crepis sancta. Proc. Natl Acad. Sci. USA 105, 3796–3799 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    144.
    Polymenakou, P. N. Atmosphere: a source of pathogenic or beneficial microbes? Atmosphere 3, 87–102 (2012).
    Article  Google Scholar 

    145.
    Collins, S. Many possible worlds: expanding the ecological scenarios in experimental evolution. Evol. Biol. 38, 3–14 (2011).
    Article  Google Scholar 

    146.
    Archer, D. et al. Atmospheric lifetime of fossil fuel carbon dioxide. Annu. Rev. Earth Planet. Sci. 37, 117–134 (2009).
    CAS  Article  Google Scholar 

    147.
    Sunday, J. M. et al. Evolution in an acidifying ocean. Trends Ecol. Evol. 29, 117–125 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    148.
    Harmon, L. J. et al. Evolutionary diversification in stickleback affects ecosystem functioning. Nature 458, 1167–1170 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    149.
    Hairston, N. G. et al. Rapid evolution revealed by dormant eggs. Nature 401, 446–446 (1999).
    Article  Google Scholar 

    150.
    Bothe, H. & Słomka, A. Divergent biology of facultative heavy metal plants. J. Plant Physiol. 219, 45–61 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    151.
    Reusch, T. B. H., Ehlers, A., Hammerli, A. & Worm, B. Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proc. Natl Acad. Sci. USA 102, 2826–2831 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    152.
    Crutsinger, G. M., Souza, L. & Sanders, N. J. Intraspecific diversity and dominant genotypes resist plant invasions. Ecol. Lett. 11, 16–23 (2008).
    PubMed  PubMed Central  Google Scholar 

    153.
    Pelz, H. J. et al. The genetic basis of resistance to anticoagulants in rodents. Genetics 170, 1839–1847 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    154.
    National Research Council. Materials Research to Meet 21st Century Defense Needs (National Academies Press, 2003).

    155.
    Hutchison, W. D. et al. Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330, 222–225 (2010).
    CAS  PubMed  Article  Google Scholar 

    156.
    Leale, A. M. & Kassen, R. The emergence, maintenance, and demise of diversity in a spatially variable antibiotic regime. Evol. Lett. 2, 134–143 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    157.
    Grant, P. R. & Grant, B. R. Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296, 707–711 (2002).
    CAS  PubMed  Article  Google Scholar 

    158.
    Grant, P. R. & Grant, B. R. Evolution of character displacement in Darwin’ s finches. Science 313, 224–226 (2006).
    CAS  PubMed  Article  Google Scholar 

    159.
    Lamichhaney, S. et al. Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518, 371–375 (2015).
    CAS  PubMed  Article  Google Scholar 

    160.
    Constantino, V. Instinct extinct: the great pacific flyway. Leonardo 52, 5–11 (2018).
    Article  Google Scholar 

    161.
    Lewis, B., Grant, W. S., Brenner, R. E. & Hamazaki, T. Changes in size and age of chinook salmon Oncorhynchus tshawytscha returning to Alaska. PLoS ONE 10, 132872 (2015).
    Google Scholar 

    162.
    Schweitzer, J. A. et al. From genes to ecosystems: the genetic basis of condensed tannins and their role in nutrient regulation in a Populus model system. Ecosystems 11, 1005–1020 (2008).
    CAS  Article  Google Scholar 

    163.
    Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270–272 (2018). Introduction to the key concept of NCP.
    PubMed  Article  Google Scholar  More

  • in

    A bacterial endophyte exploits chemotropism of a fungal pathogen for plant colonization

    Fungal, yeast, and bacterial strains and culture conditions
    Rahnella aquatilis strain 36 (Ra36) was previously isolated from chickpea roots23. Escherichia coli and Ra36 were routinely grown at 37 °C or 28 °C, respectively, in Luria Bertani (LB) medium (5 g/L yeast extract, 10 g/L peptone, 10 g/L NaCl, pH 7.0) containing kanamycin sulfate (50 µg/mL), ampicillin (250 µg/mL) or carbenicillin (100 µg/mL), where appropriate. Saccharomyces cerevisiae was grown in yeast extract peptone dextrose (YPD; 1% Bacto yeast extract, 2% bacto peptone, and 2% dextrose), except for the selection of recombinants which was carried out in yeast nitrogen base medium (Sigma-Aldrich, Madrid, Spain) containing the appropriate amino-acid supplements.
    F. oxysporum f. sp. lycopersici race 2 isolate 4287 (FGSC9935; Fol) or previously reported Fol mutants either lacking the ste2 gene6 or constitutively expressing the GFP7 were used throughout the work. For microconidia production, cultures were grown in potato dextrose broth (PDB) at 28 °C with shaking at 170 rpm38. For phenotypic analysis of Fol colony growth, serial dilutions (106, 105, 104, and 103 mL−1) of freshly obtained microconidia were spotted onto YPD agar plates supplemented or not with 0.8% (w/v) GlcA (Sigma-Aldrich), incubated at 28 °C for 3 d and imaged. Experiments included three replicates and were performed at least three times with similar results. Microconidial and bacterial cell suspensions were routinely stored at −80 °C with 30% glycerol.
    Bioinformatic analysis
    Identification of gcd and fliC gene orthologs from different R. aquatilis strains was performed with the BLAST algorithm39, using the R. aquatilis HX2 gcd and fliC genes as baits. Nucleotide sequences encompassing the entire gcd and fliC genes and comprising 1.5-kb upstream and downstream of the retrieved ORFs were aligned using the BioEdit 7.0.0 software (Ibis Bioscience, Carlsbad, CA, USA). Primer pairs Gcd7/Gcd8 and Flic7/Flic8 were designed on conserved upstream and downstream gene regions and used for amplification and sequencing of the two genes from Ra36. A complete list of the primer sequences used in this study is provided in Supplementary Table 1.
    Nucleic acid manipulations
    Isolation of genomic and plasmid DNA from yeast and bacterial cells was performed with the Puragene Yeast/Bact. Kit B and QIAprep Spin Miniprep Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Total genomic DNA from tomato seedlings was extracted by using the DNeasy Plant Mini Kit (Qiagen) according to the manufacturer’s instructions. Routine nucleic acid manipulations were performed according to standard protocols40.
    Rahnella aquatilis mutant generation
    The Ra36 gcd− and fliC− mutants were generated by targeted replacement with the kanamycin resistance marker. DNA fragments flanking the gcd and fliC coding regions were amplified from gDNA of Ra36 using primer pairs Gcd1+Gcd2, Gcd3+Gcd4 and Flic1+Flic2, Flic3+Flic4, respectively. The kanamycin resistance marker was amplified from the pET28-c (+) plasmid (Novagen, Merck, Darmstadt, Germany) using primers Kanf+Kanr. The S. cerevisiae recombination cloning method41 was used to assemble the complete deletion cassette in the pRS246 vector42 linearized with EcoRI/HindIII, by co-transformation with 1 µg of each of the four DNA fragments into the yeast strain FY83443. The resulting plasmids pRS426.1 and pRS426.2 were isolated from yeast and cloned and propagated in the E. coli TOP10 strain (Invitrogen, Barcelona, Spain) using standard protocols40. The gcd− and fliC− deletion alleles were amplified from pRS426.1 and pRS426.2, respectively, with primers PRS426f+PRS426r and used to transform cells of the Ra36 wild-type strain. Kanamycin-resistant transformants showing homologous insertion in the gcd and fliC coding regions were identified by PCR of gDNA with primers Gcd5+Gcd6 and Flic5+Flic6, respectively. Allelic replacement of the gcd and fliC genes was further confirmed by DNA sequencing of a PCR fragment amplified from gDNA of the transformants with primers Gcd7+Gcd8 and Flic7+Flic8, respectively.
    For fluorescence microscopy analysis, a red fluorescent strain of Ra36 was obtained by transforming bacterial cells with 5 µg of plasmid FPB-31-444 (ATUM Bio, Newark, CA, USA) carrying the red fluorescent protein Rudolph-RFP and an ampicillin resistance cassette, using a Bio-Rad Gene Pulser electroporator (Bio-Rad, Madrid, Spain) set at 1.8 kV, 200 W and 25 μF and 0.1 cm cuvettes.
    Extracellular pH determination and GlcA quantification
    For visual evaluation of Ra36 acidifying activity, 5 µL drops containing 2.5 × 106Ra36 or Ra36 gcd− colony forming unit (CFU) were spot-inoculated onto plates containing minimal medium with urea (MMU; 15 g L−1 glucose, 0.5 g L−1 MgSO4·7(H2O), 0.5 g L−1 KCl, 1.0 g L−1 KH2PO4, 1.5 g L−1 urea, 20 g L−1 agar) adjusted to pH 7. After 2 days of incubation at 28 °C, plates were overlaid with a 0.833 μM solution of the pH indicator bromocresol green or purple and imaged. Experiments were performed at least four times, with two replicates each.
    To assess a possible inhibitory effect of Ra36 on Fol colony growth and to visualize Ra36-mediated alkalinisation of Fol colony margins, 5 µL drops containing 5 × 104Fol microconidia and 2.5 × 106 CFU mL−1Ra36 or Ra36 gcd− were spot-inoculated at a distance of 30 mm on MMU plates adjusted to pH 7.0. Visual analysis of pH change was performed by supplementing media with bromocresol purple (0.833 μM). Plates were incubated at 28 °C for 4–7 d before imaging. All fungus–bacteria confrontation assays were performed in three or more independent experiments with three replicates each.
    For plate visualization of rhizosphere pH dynamics12 during the Fol-Ra36–plant interaction, 2-week-old tomato seedlings (Solanum lycopersicum cv. Moneymaker; used throughout the study) were either left untreated or inoculated by dipping roots into a suspension of Ra36 or Ra36 gcd− cells in water (1 × 109 CFU mL−1). Seedlings were then transferred onto 0.5% water agar plates supplemented with bromocresol purple (0.833 μM) and containing either Fol microconidia (1.25 × 106 mL−1) or water (negative control). Plates were incubated at 25 °C with 14 h light and 10 h dark up to 3 d before imaging. Experiments included three replicate plates and were performed at least three times with similar results.
    To record pH dynamics in liquid media, Fol microconidia (5 × 105 conidia mL−1) were pre-germinated 14 h in MMU medium with shaking (170 rpm) at 28 °C, washed with sterile ddH2O and shifted to fresh MMU medium adjusted to pH 7. Then, 5 × 106 CFU mL−1Ra36 or Ra36 gcd− were added and cultures were incubated at 28 °C and 170 rpm. Each hour, aliquots of culture supernatant were withdrawn, and pH was measured in a pH meter. Cultures containing either Fol or Ra36 alone were used as controls. Experiments were performed on three to four independent occasions with three replicates each.
    To monitor pH dynamics in liquid media in the presence of the plant, 5 × 105 mL−1Fol microconidia and 5 × 106 CFU mL−1Ra36 or Ra36 gcd− were inoculated in sterile H2O. Then, a 2-week-old tomato plant was added to keep only the root submerged in the liquid. The culture was incubated, aliquots of culture supernatant were collected, and pH was measured as described above. Cultures containing either Fol, Ra36, or tomato plants alone were used as controls. Experiments were performed on three to four independent occasions with three replicates each.
    To investigate rhizosphere pH dynamics in soil, 3-week-old tomato seedlings were dip-inoculated with a suspension of Ra36 or Ra36 gcd− cells (1 × 109 CFU mL−1), transferred to non-sterilized or sterilized (autoclaved 20 min at 120 °C) horticultural soil obtained from a tomato field located in Riccia, Molise (Italy) and maintained in a growth chamber (14⁄10 h light⁄dark cycle) at 28 °C. After 2 weeks, 10 plants per treatment were collected, roots were cleaned from the soil, submerged in 5 mL sterile ddH2O for 12 hours at 28 °C and extracellular pH was measured in a pH meter. Uninoculated plants were used as controls. Experiments were performed on four independent occasions with three replicates each.
    D-GlcA concentrations in culture supernatants or tomato root exudates described above was determined using the K-GATE detection kit (Megazyme International, Bray, Ireland) according to the manufacturer’s instructions. For all experiments, GlcA measurements were performed on three to four independent occasions with at least three replicates per treatment.
    Virulence-related assays
    Assays for the evaluation of Fol invasive growth on living plant tissue7 were performed using tomato fruits (cultivar Rovente). In brief, the epidermis of surface sterilized tomato fruits was punctured with a pipette tip and 10 µL of bacterial suspension (109 CFU mL−1) or water (control) was injected into the fruit tissue. After 30 min, 10 µL of a suspension of Fol microconidia (5 × 108 mL−1) or water (control) was injected into the same inoculation site. Fruits were incubated at 28 °C in a humid chamber and infection sites were imaged 5 days after inoculation (DAI). Experiments were performed on three independent occasions with three replicates each.
    Cellophane invasion assays9 were performed on MMU plates. In brief, 100 µL of a Ra36 cell suspension (OD600 of 0.1) or water (control) was uniformly spread on the culture medium before placing an autoclaved cellophane sheet on the plate (colorless; Manipulados Margok, Zizurkil, Spain). Next, 2 × 105Fol microconidia were spot-inoculated at the center of the plate. After 4 days at 28 °C, plates were imaged (before), then the cellophane membrane was carefully removed, and plates were incubated for one additional day at 28 °C and imaged (after). MMU was either unbuffered or buffered to pH 5 or 7 with 100 mm 2-(N-morpholino) ethanesulfonic acid (MES). Experiments included three replicate plates and were performed three times with similar results.
    For analysis of hyphal aggregation, fungal (2.5 × 106 conidia mL−1) and bacterial (108 CFU mL−1) strains were co-cultivated for 48 h in liquid MMU at 28 °C and 170 rpm. Experiments included four replicates and were performed at least three times with similar results.
    For root adhesion assays7, entire roots of 2-week-old tomato seedlings were dip-inoculated with Ra36 as described above, placed in Erlenmeyer flasks containing a suspension of 107 mL−1Fol microconidia and incubated 3 days at 28 °C and 120 rpm. Fungal aggregates in liquid medium or on tomato roots were imaged in a Leica binocular microscope (Leica Microsistemas S.L.U., Barcelona, Spain) using a Leica DC 300 F digital camera. Experiments included four replicates and were performed at least three times with similar results.
    Plant infection assays
    Roots of 2-week-old tomato seedlings were dipped for 30 min into a suspension of Fol microconidia in water (5 × 106 conidia mL−1). For co-inoculation assays, plant roots were immersed for 2 h in a suspension of Ra36 cells (1 × 109 CFU mL−1) and then dip-inoculated with Fol microconidia (5 × 106 conidia mL−1). To test the effect of inoculum density, suspensions of Ra36 cells at different concentrations (1 × 1010; 1 × 109; 1 × 108; 1 × 107, and 1 × 106 CFU mL−1) were used. After root inoculation, tomato seedlings were planted in vermiculite or in non-sterilized or sterilized horticultural soil (see above), maintained in a growth chamber (14⁄10 h light⁄dark cycle) at 28 °C and irrigated either with unbuffered water or with a solution of 1 mM MES buffer adjusted to pH 5.0 or pH 7.0.
    Soil inoculation was performed by mixing non-sterilized or sterilized horticultural soil with Ra36 cells and/or Fol microconidia at concentrations of 1 × 108 CFU and 4 × 105 conidia per g of soil, respectively.
    Plant survival was recorded daily up to 55 days, calculated by the Kaplan–Meier method, and compared among groups using the log-rank test. All infection assays included fifteen plants per treatment and were performed at least three times with similar results. Data were plotted using the GraphPad Prism 5 software (GraphPad Software, La Jolla, CA, USA).
    Detection of Fol and Ra36 in tomato plant tissue
    Qualitative assessment of fungal and bacterial colonization of tomato plants was performed 2 weeks after dip-inoculation of 2-week-old tomato roots with a suspension of Ra36 cells (1 × 109 CFU mL−1) and/or Fol microconidia in water (5 × 106 conidia mL−1) as described above. Seedlings were removed from the vermiculite and the roots and stems were surface sterilized by submerging them into 2% sodium hypochlorite for 2 min. Plant tissues were rinsed twice with sterile distilled water and cut into 1 cm long sections, which were transferred onto MMU plates with or without 0.833 μM of the pH indicator bromocresol purple. Fungal or bacterial growth was recorded after 5 days of incubation at 28 °C. Experiments included three replicate plates per treatment and were performed at least three times with similar results.
    Quantification of fungal and bacterial biomass in Fol- and/or Ra36-inoculated tomato plants grown in vermiculite was carried out by real-time qPCR19, using total gDNA extracted from tomato roots 15 days after dip-inoculation with a suspension of Ra36 cells (1 × 109 CFU mL−1) and/or Fol microconidia (5 × 106 conidia mL−1). To measure the effect of Fol in soil on the colonization ability of Ra36, 2-week-old tomato seedlings were planted in horticultural soil containing 2 × 104Fol microconidia g−1 soil. After 3 days, 50 µl of a suspension of Ra36 cells containing 8 × 108 CFU mL−1 were added at a distance of 5 cm from the hypocotyl. After 10 days, total gDNA was extracted from the tomato roots and biomass of Ra36 was measured by real-time qPCR.
    Real-time qPCR reactions were performed with the SYBR® Premix Ex Taq™ (Takara Bio, Inc., Otsu, Japan) in a Eppendorf Mastercycler ep gradient S system (Eppendorf, Milan, Italy), using the primer pairs Gcd9 + Gcd10 (located outside of the deleted region of the Ra36 gcd gene), ACT2 + ACTQ6 (Fol actin gene) and GADPH1 + GADPH2 (tomato gadph gene) (Supplementary Table 1). Relative amounts of fungal and bacterial genomic DNA were calculated by comparative ΔΔCt with the tomato gadph gene. DNA concentrations in each sample were extrapolated from standard curves obtained by plotting the logarithm of known concentrations (10-fold dilution series from 10 ng to 1 pg/25 μL reaction) of Fol and Ra36 gDNA against the Ct values. To normalize the serially diluted DNA samples, 100 ng gDNA from non-inoculated plants was added to each sample of the dilution series. Real-time qPCR data represent the mean ± SE from three independent experiments, each with five plants per treatment.
    Collection of exudates from tomato roots and Fol hyphae
    To obtain tomato root exudate6, uninoculated or Ra36-inoculated tomato roots (1 × 109 CFU/mL) were placed in sterile ddH2O in the absence or presence of 5 × 105 microconidia mL−1 of Fol. After 48 h at 25 °C, the supernatant was sterilized by filtration through a 0.22-μm membrane (Merck Millipore) and stored at −20 °C until use.
    To obtain Fol hyphal exudate4, 1 × 107 microconidia mL−1 were pre-germinated for 16 h in 50 mL diluted PDB (1:50; v:v in H2O) at 28 °C with shaking at 170 rpm. Germlings were washed twice with sterile ddH2O and incubated for 48 h in 5 mL sterile ddH2O at 28 °C and 170 rpm. The supernatant was sterilized by filtration through a 0.22-μm membrane (Merck Millipore) and stored at −20 °C until use. When required, the pH was adjusted to 5.8 with 0.1 N HCl.
    Assays for fungal chemotropism and bacterial chemotaxis
    Plate preparation, chemoattractant application, and scoring of Fol germ tube redirectioning toward gradients of root exudates obtained from untreated or Ra36-inoculated plants were performed by using a hyphal chemotropism assay6. In brief, 2.5 × 106Fol microconidia mL−1 were embedded in 4 ml water agar (WA; 0.5%, w/v) (Oxoid) and poured into a 9 cm Petri dish. Then, two parallel wells, each at 5 mm distance from the scoring line, were filled with 40 μL of the test compound or the solvent control solution. Scoring was done on five independent batches of cells (n = 100 cells per batch) for each test compound. Experiments were performed at least three times with similar results.
    Chemotaxis capillary assays32 were carried out as follows. Ra36 wild-type, Ra gcd−, and Ra fliC− strains were grown in LB overnight at 28 °C, washed either with sterile ddH2O, PBS, tomato root exudate or Fol hyphal exudate depending on the experiment, and diluted in the same medium to an OD600 of 0.1. Aliquots of 250 μL bacterial suspension were added to individual wells of a 96-well microtiter plate together with a 10-µL capillary containing the test compound or the solvent control. For competing gradient assays, two capillaries containing the different test compounds were added to the well. Plates were incubated for 60 min at 28 °C, capillaries were carefully lifted, the content was serially diluted and plated onto LA medium, and CFUs were counted 48 h after incubation at 28 °C. The following chemoattractant compounds and concentrations were tested: glutamine (Gln), tryptophan (Trp), all at 295 mM; glucose (Gluc), galactose (Gal), all at 50 mM. The chemotaxis ratio was calculated by dividing the number of bacteria in the tube containing the test compound by the number of bacteria in the tube containing the solvent control. All experiments included two replicates and were performed at least three times with similar results.
    Flagellum-dependent swimming motility assays44 were performed as follows. In brief, LB plates (0.3% w/v agarose) were spot-inoculated in the center with 5 μl of an overnight culture of the Ra36 wild-type or fliC− strain, incubated 24 h at 30 °C and colony radial growth was imaged. Experiments were performed three times, with four replicates each.
    Fluorescence microscopy
    For microscopic observation in tomato roots of GFP-tagged Fol and RFP-tagged Ra36 strains, 2-week-old tomato seedlings were dip-inoculated into suspensions of Fol microconidia (5 × 106 conidia mL−1) and/or Ra36 cells (1 × 109 CFU mL−1), planted in moist vermiculite and maintained in a growth chamber (14⁄10 h light⁄dark photoperiod) at 28 °C. Two and four DAI, roots were gently washed to remove the adhering vermiculite, incubated in a 95% perfluorodecalin solution (Sigma-Aldrich), stained for 2 min with 0.005% (w/v) calcofluor white (CFW; Sigma-Aldrich) to visualize the plant cell wall and imaged. Experiments were performed three times, with two replicates each.
    To observe Ra36 swarming toward Fol hyphae, 2 µL drops containing 5 × 104Fol-GFP microconidia or 2.5 × 106 CFU Ra36-RFP were spot-inoculated at a distance of 5 mm on a 1 × 1 cm square pad of soft (0.25% w/v) agarose MMU medium placed on top of a microscope glass slide. Images were recorded every 30 min up to 4 h post inoculation. Experiments were performed three times, with two replicates each.
    To study bacterial movement along fungal hyphae, 2 µL drops containing 5 × 104Fol-GFP microconidia or 2.5 × 106Ra36-RFP CFU were spot-inoculated at a distance of 30 mm on MMU medium plates. Microscopic observation of Fol hyphae was performed 48 h after fungal and bacterial colonies had merged. Experiments were performed four times, with two replicates each.
    To determine the movement of Ra36 and Fol hyphae across a medium-free space, 5 × 104Fol-GFP microconidia and 2.5 × 106Ra36-RFP CFU were spot-inoculated either individually or together on soft (0.7% w/v) agarose MMU plates. Next, a 2-day-old tomato seedling was placed at a distance of 15 mm, and a 5-mm wide medium-free gap was created between the inoculation point and the tomato root by removing the medium with a sterile spatula. Microscopic observation was performed daily up to 3 DAI to follow Ra36 and Fol dynamics over time. To qualitatively assess the presence of Ra36 and Fol on the plant roots, tomato seedlings were gently removed from the plate at 2 DAI, rinsed under sterile H2O and stained with CFW, as described above. Experiments were performed at least three times on two or more separate days.
    Low-resolution imaging was performed using a SteREO Lumar.V12 fluorescence stereomicroscope (Zeiss, Barcelona, Spain). Wide-field fluorescence imaging was performed using a Zeiss Axio Imager M2 Dual Cam microscope (Zeiss) equipped with a Photometrics Evolve EM512 digital camera (Photometrics Technology, Tucson, AZ, USA). Examination using epifluorescence (×400 magnification) was performed with the following filter blocks: CFW staining (G 365, FT 395, LP 420), RFP (BP 560/40, FT 585, BP 630/75), GFP (BP 450/490, FT 510, LP 515). Images were captured and processed using Axiovision 4.8, ZEN lite 2.3 (both from Zeiss) or ImageJ (v1.52)45.
    Statistical analysis
    Percentage of plant survival was compared among treatment groups using the log-rank test. For multiple-group comparisons, a one-way analysis of variance was used for testing no differences among the group means. Post hoc comparisons were adjusted using Dunnett’s or Tukey’s corrections (chemotaxis and real-time qPCR data). Comparisons between two groups were carried out using a two-tailed unpaired Student’s t test (chemotaxis data). A Yates’ corrected Chi-squared test (two-sided) was used to determine significant differences between the observed frequencies of fungal germ tubes pointing toward the chemoattractant or the solvent control (chemotropism data).
    Real-time qPCR data are presented as mean ± SE. Data from chemotaxis and chemotropism experiments and from pH and GlcA measurements are presented as mean ± SD.
    Statistical analyses were performed using GraphPad Prism 5 software (GraphPad Software). In all cases a value of P  More

  • in

    Identification of plastic-associated species in the Mediterranean Sea using DNA metabarcoding with Nanopore MinION

    1.
    Windsor, F. M. et al. A catchment-scale perspective of plastic pollution. Glob. Change Biol. 25, 1207–1221 (2019).
    ADS  Article  Google Scholar 
    2.
    Boucher, J. & Billard, G. The challenges of measuring plastic pollution. Field Actions Sci. Rep. J. Field Actions 19, 68–75 (2019).
    Google Scholar 

    3.
    Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Worm, B., Lotze, H. K., Jubinville, I., Wilcox, C. & Jambeck, J. Plastic as a persistent marine pollutant. Annu. Rev. Environ. Resour. 42, 1–26 (2017).
    Article  Google Scholar 

    5.
    Amaral-Zettler, L. A., Zettler, E. R. & Mincer, T. J. Ecology of the plastisphere. Nat. Rev. Microbiol. 18, 139–151 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Zettler, E. R., Mincer, T. J. & Amaral-Zettler, L. A. Life in the “plastisphere”: microbial communities on plastic marine debris. Environ. Sci. Technol. 47, 7137–7146 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Dussud, C. et al. Evidence of niche partitioning among bacteria living on plastics, organic particles and surrounding seawaters. Environ. Pollut. 236, 807–816 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21, 2045–2050 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    De Tender, C. A. et al. Bacterial community profiling of plastic litter in the Belgian part of the North Sea. Environ. Sci. Technol. 49, 9629–9638 (2015).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    10.
    Santos, A., van Aerle, R., Barrientos, L. & Martinez-Urtaza, J. Computational methods for 16S metabarcoding studies using Nanopore sequencing data. Comput. Struct. Biotechnol. J. 18, 296–305 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Jacquin, J. et al. Microbial ecotoxicology of marine plastic debris: a review on colonization and biodegradation by the ‘plastisphere’. Front. Microbiol. 10, 865 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    12.
    Bleidorn, C. Third generation sequencing: technology and its potential impact on evolutionary biodiversity research. Syst. Biodivers. 14, 1–8 (2016).
    Article  Google Scholar 

    13.
    Krehenwinkel, H. et al. Nanopore sequencing of long ribosomal DNA amplicons enables portable and simple biodiversity assessments with high phylogenetic resolution across broad taxonomic scale. GigaScience 8, giz006 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    14.
    Pawlowski, J. et al. CBOL protist working group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biol. 10, e1001419 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Leray, M. & Knowlton, N. Censusing marine eukaryotic diversity in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150331 (2016).
    Article  Google Scholar 

    16.
    Piganeau, G., Eyre-Walker, A., Grimsley, N. & Moreau, H. How and why DNA barcodes underestimate the diversity of microbial eukaryotes. PLoS ONE 6, e16342 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Saunders, G. W. & Kucera, H. An evaluation of rbcL, tufA, UPA, LSU and ITS as DNA barcode markers for the marine green macroalgae. Cryptogamie Algologie 31, 487 (2010).
    Google Scholar 

    18.
    Schoch, C. L. et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. 109, 6241–6246 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Hebert, P. D., Cywinska, A., Ball, S. L. & Dewaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. Ser. B Biol. Sci. 270, 313–321 (2003).
    CAS  Article  Google Scholar 

    20.
    Bahram, M., Anslan, S., Hildebrand, F., Bork, P. & Tedersoo, L. Newly designed 16S rRNA metabarcoding primers amplify diverse and novel archaeal taxa from the environment. Environ. Microbiol. Rep. 11, 487–494 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    21.
    Debeljak, P. et al. Extracting DNA from ocean microplastics: a method comparison study. Anal. Methods 9, 1521–1526 (2017).
    CAS  Article  Google Scholar 

    22.
    Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703 (1991).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).
    PubMed  PubMed Central  Google Scholar 

    24.
    Hadziavdic, K. et al. Characterization of the 18S rRNA gene for designing universal eukaryote specific primers. PLoS ONE 9, e87624 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    25.
    Vieira, H. H. et al. tufA gene as molecular marker for freshwater Chlorophyceae. Algae 31, 155–165 (2016).
    CAS  Article  Google Scholar 

    26.
    De Beeck, M. O. et al. Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. PLoS ONE 9, e97629 (2014).
    ADS  Article  Google Scholar 

    27.
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).
    Article  Google Scholar 

    28.
    De Coster, W., D’Hert, S., Schultz, D. T., Cruts, M. & Van Broeckhoven, C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 34, 2666–2669 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    29.
    Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Baloğlu, B. et al. A workflow for accurate metabarcoding using nanopore MinION sequencing. BioRxiv. https://doi.org/10.1101/2020.05.21.108852 (2020).
    Article  Google Scholar 

    31.
    Srivathsan, A. et al. A Min IONTM-based pipeline for fast and cost-effective DNA barcoding. Mol. Ecol. Resour. 18, 1035–1049 (2018).
    CAS  Article  Google Scholar 

    32.
    Maestri, S. et al. A rapid and accurate MinION-based workflow for tracking species biodiversity in the field. Genes 10, 468 (2019).
    CAS  PubMed Central  Article  Google Scholar 

    33.
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Voorhuijzen-Harink, M. M. et al. Toward on-site food authentication using nanopore sequencing. Food Chem. X2 (2019).

    35.
    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, 259–264 (2019).
    Article  CAS  Google Scholar 

    36.
    Sauvage, T., Schmidt, W. E., Suda, S. & Fredericq, S. A metabarcoding framework for facilitated survey of endolithic phototrophs with tufA. BMC Ecol. 16, 8 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    37.
    Heller, P., Casaletto, J., Ruiz, G. & Geller, J. A database of metazoan cytochrome c oxidase subunit I gene sequences derived from GenBank with CO-ARBitrator. Sci. Data 5, 180156 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Andersen, K. S., Kirkegaard, R. H., Karst, S. M. & Albertsen, M. ampvis2: an R package to analyse and visualise 16S rRNA amplicon data. BioRxiv, 299537 (2018).

    40.
    R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, 2014).
    Google Scholar 

    41.
    Mafune, K. K., Godfrey, B. J., Vogt, D. J. & Vogt, K. A. A rapid approach to profiling diverse fungal communities using the MinION™ nanopore sequencer. BioTechniques 68, 72–78 (2019).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    42.
    Herbst, F. A. et al. Elucidation of in situ polycyclic aromatic hydrocarbon degradation by functional metaproteomics (protein-SIP). Proteomics 13, 2910–2920 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Jin, H. M., Kim, J. M., Lee, H. J., Madsen, E. L. & Jeon, C. O. Alteromonas as a key agent of polycyclic aromatic hydrocarbon biodegradation in crude oil-contaminated coastal sediment. Environ. Sci. Technol. 46, 7731–7740 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Lin, X., Yang, B., Shen, J. & Du, N. Biodegradation of crude oil by an Arctic psychrotrophic bacterium Pseudoalteromomas sp. P29. Curr. Microbiol. 59, 341–345 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Hedlund, B. P. & Staley, J. T. Isolation and characterization of Pseudoalteromonas strains with divergent polycyclic aromatic hydrocarbon catabolic properties. Environ. Microbiol. 8, 178–182 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Schneiker, S. et al. Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat. Biotechnol. 24, 997–1004 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Yakimov, M. M. et al. Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int. J. Syst. Evolut. Microbiol. 48, 339–348 (1998).
    CAS  Google Scholar 

    48.
    Delacuvellerie, A., Cyriaque, V., Gobert, S., Benali, S. & Wattiez, R. The plastisphere in marine ecosystem hosts potential specific microbial degraders including Alcanivorax borkumensis as a key player for the low-density polyethylene degradation. J. Hazard. Mater. 380, 120899 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    Wangensteen, O. S. & Turon, X. Metabarcoding techniques for assessing biodiversity of marine animal forests. Mar. Anim. For. Ecol. Benthic Biodivers. Hotspots 1, 445–503 (2017).
    Article  Google Scholar 

    50.
    Truelove, N. K., Andruszkiewicz, E. A. & Block, B. A. A rapid environmental DNA method for detecting white sharks in the open ocean. Methods Ecol. Evol. 10, 1128–1135 (2019).
    Article  Google Scholar 

    51.
    Gillespie, R. et al. Nanopore sequencing of long ribosomal DNA amplicons enables portable and simple biodiversity assessments with high phylogenetic resolution across broad taxonomic scale. GigaScience 8, giz006 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    52.
    Kono, N. & Arakawa, K. Nanopore sequencing: review of potential applications in functional genomics. Dev. Growth Differ. 61, 316–326 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    53.
    Nair, S. A., Devassy, V., Dwivedi, S. & Selvakumar, R. Preliminary observations on tar-like material observed on some beaches. Curr. Sci. India 41, 766–767 (1972).
    Google Scholar 

    54.
    Kasai, Y. et al. Predominant growth of Alcanivorax strains in oil-contaminated and nutrient-supplemented sea water. Environ. Microbiol. 4, 141–147 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Reisser, J. et al. Millimeter-sized marine plastics: a new pelagic habitat for microorganisms and invertebrates. PLoS ONE 9, e100289 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    56.
    Masó, M., Fortuño, J. M., de Juan, S. & Demestre, M. Microfouling communities from pelagic and benthic marine plastic debris sampled across Mediterranean coastal waters. Sci. Mar. 80, 117–127 (2016).
    Article  Google Scholar 

    57.
    Wang, S. et al. The interactions between microplastic polyvinyl chloride and marine diatoms: physiological, morphological, and growth effects. Ecotoxicol. Environ. Saf. 203, 111000 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    De Tender, C. et al. A review of microscopy and comparative molecular-based methods to characterize “Plastisphere” communities. Anal. Methods 9, 2132–2143 (2017).
    Article  CAS  Google Scholar  More

  • in

    Relationships between nitrogen cycling microbial community abundance and composition reveal the indirect effect of soil pH on oak decline

    1.
    van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin JF, Fule PZ, et al. Widespread increase of tree mortality rates in the western United States. Science. 2009;323:521–4.
    PubMed  Article  CAS  PubMed Central  Google Scholar 
    2.
    Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag. 2010;259:660–84.
    Article  Google Scholar 

    3.
    Carnicer J, Coll M, Ninyerola M, Pons X, Sanchez G, Penuelas J. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc Natl Acad Sci USA. 2011;108:1474–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Brown N, Vanguelova E, Parnell S, Broadmeadow S, Denman S. Predisposition of forests to biotic disturbance: predicting the distribution of Acute Oak Decline using environmental factors. For Ecol Manag. 2018;407:145–54.
    Article  Google Scholar 

    5.
    Denman S, Doonan J, Ransom-Jones E, Broberg M, Plummer S, Kirk S, et al. Microbiome and infectivity studies reveal complex polyspecies tree disease in Acute Oak Decline. ISME J. 2017. https://doi.org/10.1038/ismej.2017.170.

    6.
    Denman S, Barrett G, Kirk SA, McDonald JE, Coetzee MPA. Identification of Armillaria species on oak in Britain: implications for Oak Health. Forestry. 2017;90:148–61.
    Article  Google Scholar 

    7.
    Martınez-Vilalta J, Lloret F, Breshears DD. Drought-induced forest decline: causes, scope and implications. Biol Lett. 2012;8:689–91.
    PubMed  Article  PubMed Central  Google Scholar 

    8.
    McDowell NG, Ryan MG, Zeppel MJB, Tissue DT. Improving our knowledge of drought-induced forest mortality through experiments, observations, and modeling. N. Phytologist. 2013;200:289–93.
    Article  Google Scholar 

    9.
    Thomas FM, Blank R, Hartmann G. Abiotic and biotic factors and their interactions as causes of oak decline in central Europe. Pathol. 2002;32:277–307.
    Article  Google Scholar 

    10.
    Niinemets Ü. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: past stress history, stress interactions, tolerance and acclimation. Ecol Manag. 2010;260:1623–39.
    Article  Google Scholar 

    11.
    Amoroso MM, Daniels LD, Larson BC. Temporal patterns of radial growth in declining Austrocedrus chilensis forests in Northern Patagonia: the use of treerings as an indicator of forest decline. Ecol Manag. 2012;265:62–70.
    Article  Google Scholar 

    12.
    Bansal S, Hallsby G, Löfvenius MO, Nilsson MC. Synergistic, additive and antagonistic impacts of drought on herbivory on Pinus sylvestris: leaf, tissue and whole-plant responses and recovery. Tree Physiol. 2013;33:451–63.
    CAS  PubMed  Article  Google Scholar 

    13.
    Whyte G, Howard K, Hardy GEStJ, Burgess T. The Tree Decline Recovery Seesaw; a conceptual model of the decline and recovery of drought stressed plantation trees. For Ecol Manag. 2016;370:102–13.
    Article  Google Scholar 

    14.
    Calder JA, Kirkpatrick JB. Climate change and other factors influencing the decline of the Tasmanian cider gum (Eucalyptus gunnii). Australian J Botany. 2008;56. https://doi.org/10.1071/BT08105.

    15.
    Avila JM, Gallardo A, Ibáñez B, Gómez‐Aparicio L. Quercus suber dieback alters soil respiration and nutrient availability in Mediterranean forests. J Ecol. 2016;104:1441–52.
    Article  Google Scholar 

    16.
    Crawford N. Nitrate: nutrient and signal for plant growth. Plant Cell. 1995;7:859–68.
    CAS  PubMed  PubMed Central  Google Scholar 

    17.
    Lovett GM, Arthur MA, Weathers KC, Griffin JM. Long-term changes in forest carbon and nitrogen cycling caused by an introduced pest/pathogen complex. Ecosystems. 2010;13:1188–1200.
    CAS  Article  Google Scholar 

    18.
    Throop H, Lerdau MT. Effects of nitrogen deposition on insect herbivory: Implications for community and ecosystem processes. Ecosystems. 2004;7:109–33.
    CAS  Article  Google Scholar 

    19.
    Thomas FM, Ahlers U. Effects of excess nitrogen on frost hardiness and freezing injury of above-ground tissue in young oaks (Quercus petraea and Q. robur). N. Phytologist. 1999;144:73–83.
    Article  Google Scholar 

    20.
    Hardham AR. The cell biology behind Phytophthora pathogenicity. Australas Plant Pathol. 2001;30:91–98.
    Article  Google Scholar 

    21.
    Brown N, Jeger M, Kirk S, Xu X, Denman S. Spatial and temporal patterns in symptom expression within eight woodlands affected by acute Oak Decline. For Ecol Manag. 2016;360:97–109.
    Article  Google Scholar 

    22.
    Scarlett K, Guest DI, Daniel R. Elevated soil nitrogen increases the severity of dieback due to Phytophthora cinnamomi. Australas Plant Pathol. 2013;42:155–62.
    Article  Google Scholar 

    23.
    Yao H, Bowman D, Shi W. Seasonal variations in soil microbial biomass and activity in warm and cool season turfgrass systems. Soil Biol Biochem. 2011;43:1536–43.
    CAS  Article  Google Scholar 

    24.
    Prosser JI, Nicol GW. Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol. 2008;10:2931–41.
    CAS  PubMed  Article  Google Scholar 

    25.
    Prosser JI, Nicol GW. Archaeal and bacterial ammonia oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol. 2012;20:523–31.
    CAS  PubMed  Article  Google Scholar 

    26.
    Erguder TH, Boon N, Wittebolle L, Marzorati M, Verstraete W. Environmental factors shaping the ecological niches of ammonia‐oxidizing archaea. FEMS Microbiol Rev. 2009;33:855–69.
    CAS  PubMed  Article  Google Scholar 

    27.
    Hink L, Lycus P, Gubry-Rangin C, Frostgard A, Nicol GW, Prosser JI, et al. Kinetics of NH3‐oxidation, NO‐turnover, N2O‐production and electron flow during oxygen depletion in model bacterial and archaeal ammonia oxidisers. Environ Microbiol. 2017;19:4882–96.
    CAS  PubMed  Article  Google Scholar 

    28.
    Gubry-Rangin C, Hai B, Quince C, Engel M, Thomson BC, James P, et al. Niche specialization of terrestrial archaeal ammonia oxidisers. Proc Natl Acad Sci. 2011;108:21206–11.
    CAS  PubMed  Article  Google Scholar 

    29.
    Leininger S, Schloter UT, Schwark I, Qi J, Nicol GW, Prosser JI, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature. 2006;442:806–9.
    CAS  PubMed  Article  Google Scholar 

    30.
    Gubry-Rangin C, Nicol GW, Prosser JI. Archaea rather than bacterial control nitrification in two agricultural acidic soils. FEMS Microbiol Ecol. 2010;74:566–74.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Verhamme DT, Prosser JI, Nicol GW. Ammonia concentration determines differential growth of ammonia oxidizing archaeal and bacteria in soil microcosms. ISME J. 2011;5:1067–71.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Di HJ, Cameron KC, Shen J-P, Winefield CS, O’Callaghan M, Bowatte S, et al. Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiol Ecol. 2010;72:386–94.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Hink L, Gubry-Rangin C, Nicol GW, Prosser J. The consequences of niche and physiological differentiation of archaeal and bacterial ammonia oxidisers for nitrous oxide emissions. ISME J. 2018;12:1084–93.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Clark D, McKew B, Dong L, Leung G, Dumbrell AJ, Stott A, et al. Mineralization and nitrification: archaea dominate ammonia-oxidising communities in grassland soils. Soil Biol Biochem. 2020;143:107725.
    CAS  Article  Google Scholar 

    35.
    Delgado-Baquerizo M, Maestre FT, Eldridge DJ, Singh BK. Microsite differentiation drives the abundance of soil ammonia oxidizing bacteria along aridity gradients. Front Microbiol. 2016;7:505.
    PubMed  PubMed Central  Article  Google Scholar 

    36.
    Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature. 2009;461:976–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Barta J, Tahovska K, Santruckova H, Oulehle F. Microbial communities with distinct denitrification potential in spruce and beech soils differing in nitrate leaching. Sci Rep Nat. 2017;7:9738.
    Article  CAS  Google Scholar 

    38.
    Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 2012;6:1007–17. https://doi.org/10.1038/ismej.2011.159.
    CAS  Article  PubMed  Google Scholar 

    39.
    Ramirez KS, Lauber CL, Knight R, Bradford MA, Fierer N. Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems. Ecology. 2010;91:3463–70. https://doi.org/10.1890/10-0426.1.
    Article  PubMed  PubMed Central  Google Scholar 

    40.
    Cranfield University 2020. The Soils Guide. www.landis.org.uk. UK; Cranfield University.

    41.
    G Kerr, J Haufe. Thinning practice. A Silvicultural Guide. Bristol: Forestry Commission; 2011;1:54.

    42.
    Cools N, De Vos B Sampling and Analysis of Soil. In: Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Hamburg: UNECE, ICP Forests; 2010, pp. 208.

    43.
    MAFF. Code of good agricultural practice for the protection of soil. London, UK: Ministry of Agriculture, Fisheries and Food; 1993.
    Google Scholar 

    44.
    Li J, Nedwell DB, Beddow J, Dumbrell AJ, McKew BA, Thorpe EL, et al. amoA gene abundances and nitrification potential rates suggest that benthic ammonia-oxidizing bacteria (AOB) not archaea (AOA) dominate N cycling in the Colne estuary, UK. Appl Environ Microbiol. 2015;81:159–65.
    PubMed  Article  CAS  Google Scholar 

    45.
    Beddow J, Stolpe B, Cole PA, Lead JR, Sapp M, Lyons BP, et al. Nanosilver inhibits nitrification and reduces ammonia-oxidizing bacterial but not archaeal amoA gene abundance in estuarine sediments. Environ Microbiol. 2017;19:500–10.
    CAS  PubMed  Article  Google Scholar 

    46.
    Tourna M, Freitag TE, Nicol GW, Prosser JI. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ Microbiol. 2008;10:1357–64.
    CAS  PubMed  Article  Google Scholar 

    47.
    Rotthauwe JH, Witzel KP, Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol. 1997;63:4704–12.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Throbäck IN, Enwall K, Jarvis A, Hallin S. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol. 2004;49:401–17.
    PubMed  Article  CAS  Google Scholar 

    49.
    Braker G, Fesefeldt A, Witzel KP. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl Environ Microbiol. 1998;64:3769–75.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Henry S, Bru D, Stres B, Hallet S, Philippot L. Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ Genes in Soils. Appl Environ Microbiol. 2006;72:5181–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Herlemann D, Labrenz M, Jürgens K, Bertilsson S, Waniek J, Andersson A. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011;5:1571–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Raskin L, Stromley JM, Rittmann BE, Stahl DA. Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol. 1994;60:1232–40.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Stahl DA, Amann R Development and application of nucleic acid probes. In: Nucleic acid techniques in bacterial systematics. Stackebrandt, E, Goodfellow M, editors. Chichester, UK: John Wiley & Sons Ltd; 1991. pp. 205–48.

    54.
    Dumbrell AJ, Ferguson RMW, Clark DR. Microbial community analysis by single-amplicon high-throughput next generation sequencing: Data analysis—from raw output to ecology. In: McGenity T, Timmis K, Nogales B, editors. Hydrocarbon and Lipid Microbiology Protocols. Berlin, Heidelberg: Springer Protocols Handbooks. Springer; 2016. 155–206.

    55.
    Joshi NA, Fass JN Sickle: A Sliding-Window, Adaptive, Quality-Based Trimming Tool for FastQ Files 2011; (Version 1.33).

    56.
    Nurk S, Bankevich A, Antipov D, Gurevich AA, Korobeynikov A, Lapidus A, et al. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J Comput Biol. 2013;20:714–37.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Nikolenko SI, Korobeynikov AI, Alekseyev MA. BayesHammer: Bayesian clustering for error correction in single-cell sequencing. BMC Genomics SP. 2013;14:S7.
    Article  Google Scholar 

    58.
    Rognes T, Flouri T, Nichols B, Quince C, Mahé F VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4. https://doi.org/10.7717/peerj.2584.

    59.
    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;16:2194–200.
    Article  CAS  Google Scholar 

    60.
    Wang Q, Quensen JF, Fish JA, Lee TK, Sun Y, Tiedje JM, et al. Ecological patterns of nifH genes in four terrestrial climatic zones explored with targeted metagenomics using FrameBot, a new informatics tool. MBio. 2013;4:e00592–13.
    PubMed  PubMed Central  Google Scholar 

    61.
    Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;16:5261–7.
    Article  CAS  Google Scholar 

    62.
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;5:1792–7.
    Article  CAS  Google Scholar 

    63.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;12:2725–9.
    Article  CAS  Google Scholar 

    64.
    Fish J, Chai B, Wang Q, Sun Y, Brown CT, Tiedje JM, et al. FunGene: the functional gene pipeline and repository. Front Microbiol. 2013;4:291.
    PubMed  PubMed Central  Article  Google Scholar 

    65.
    Altschul S, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Lefcheck J. PIECEWISESEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol Evol. 2016;7:573–9.
    Article  Google Scholar 

    67.
    Shipley B. A new inferential test for path models based on directed acyclic graphs. Struct Equ Modeling. 2000;7:206–18.
    Article  Google Scholar 

    68.
    Grace JB. Structural Equation Modelling and Natural Systems. New York, NY: Cambridge University Press; 2006.
    Google Scholar 

    69.
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Vegan: Community Ecology Package. R package Version. 2017;2:4–3.
    Google Scholar 

    70.
    Leininger Wang Y, Naumann U, Wright S, Warton D. Mvabund—an R package for model‐based analysis of multivariate abundance data. Methods Ecol Evolution. 2012;3:471–4.
    Article  Google Scholar 

    71.
    Lehtovirta-Morley LE, Stoecker K, Vilcinskas A, Prosser JI, Nicol GW. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proc Natl Acad Sci USA. 2011;108:15892–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    72.
    Hu H, Zhang L, Dai Y, et al. pH-dependent distribution of soil ammonia oxidizers across a large geographical scale as revealed by high-throughput pyrosequencing. J Soils Sediment. 2013;13:1439–49.
    Article  CAS  Google Scholar 

    73.
    Hu BL, Liu S, Wang W, Shen LD, Lou LP, Liu WP, et al. pH-dominated niche segregation of ammonia-oxidising microorganisms in Chinese agricultural soils. FEMS Microbiol Ecol. 2014;90:290–9. https://doi.org/10.1111/1574-6941.12391.
    CAS  Article  Google Scholar 

    74.
    Hu H, Zhang L, Yuan C, Zheng Y, Wang J, Chen D, et al. The large-scale distribution of ammonia oxidizers in paddy soils is driven by soil pH, geographic distance, and climatic factors. Front Microbiol. 2015;6:938.
    PubMed  PubMed Central  Google Scholar 

    75.
    Delgado-Baquerizo M, Gallardo A, Wallenstein MD, Maestre FT. Vascular plants mediate the effects of aridity and soil properties on ammonia-oxidizing bacteria and archaea. FEMS Microbiol Ecol. 2013;13:273–82.
    Article  CAS  Google Scholar 

    76.
    Eldridge DJ, Beecham G, Grace J. Do shrubs reduce the adverse effects of grazing on soil properties? Ecohydrology. 2015;8:1503–13.
    Article  Google Scholar 

    77.
    Berdugo M, Soliveres S, Maestre FT. Vascular plants and biocrusts modulate how abiotic factors affect wetting and drying events in drylands. Ecosystems. 2014;17:1242–56.
    CAS  Article  Google Scholar 

    78.
    Köhler S, Levia DF, Jungkunst HF, Gerold G. An In Situ Method to Measure and Map Bark pH. J Wood Chem Technol. 2015;35:438–49.
    Article  CAS  Google Scholar 

    79.
    Matschonat G, Falkengren-Grerup U. Recovery of soil pH, Cation-exchange Capacity and the Saturation of Exchange Sites from Stemflow-induced Soil Acidification in Three Swedish Beech (Fagus sylvatica L.) Forests. Scand J For Res. 2000;15:39–48.
    Article  Google Scholar 

    80.
    Wang Y, Uchida Y, Shimomura U, Akiyama H, Hayatsu M. Responses of denitrifying bacterial communities to short-term waterlogging of soils. Sci Rep. 2017;7:803.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    81.
    Liu J, Yu Z, Yao Q, Sui Y, Shi Y, Chu H, et al. Ammonia-oxidizing Archaea show more distinct biogeographic distribution patterns than ammonia-oxidizing bacteria across the black soil zone of Northeast China. Front Microbiol. 2018;9:171.
    PubMed  PubMed Central  Article  Google Scholar 

    82.
    Shen C, Xiong J, Zhang H, Feng Y, Lin X, Li X, et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol Biochem. 2013;57:204–11.
    CAS  Article  Google Scholar 

    83.
    Nicol GW, Leininger S, Schleper C, Prosser JI. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol. 2008;10:2966–78.
    CAS  PubMed  Article  Google Scholar 

    84.
    Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010;4:1340–51.
    PubMed  Article  Google Scholar 

    85.
    Yuan YL, Si GC, Wang J, Luo TX, Zhang GX. Bacterial community in alpine grasslands along an altitudinal gradient on the Tibetan Plateau. FEMS Microbiol Ecol. 2014;87:121–32.
    CAS  PubMed  Article  Google Scholar 

    86.
    Kaiser k, Wemheuer B, Korolkow V, Wemheuer F, Nacke H, Schöning I, et al. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests. Sci Rep. 2017;7:9738.
    Article  CAS  Google Scholar 

    87.
    Meaden S, Metcalf CJE, Koskella B. The effects of host age and spatial location on bacterial community composition in the English Oak tree (Quercus robur). Environ Microbiol Rep. 2016;8:649–58.
    CAS  PubMed  Article  Google Scholar 

    88.
    Patra AK, Abbadie L, Clays-Josserand A, Degrange V, Grayston SJ, Guillaumaud N, et al. Effects of management regime and plant species on the enzyme activity and genetic structure of N-fixing, denitrifying and nitrifying bacterial communities in grassland soils. Environ Microbiol. 2006;8:1005–16.
    CAS  PubMed  Article  Google Scholar 

    89.
    Bremer C, Braker G, Matthies D, Beierkuhnlein C, Conrad R. Plant presence and species combination, but not diversity, influence denitrifier activity and the composition of nirK-type denitrifier communities in grassland soil. FEMS Microbiol Ecol. 2009;70:377–87.
    CAS  PubMed  Article  Google Scholar  More

  • in

    The role of kinship and demography in shaping cooperation amongst male lions

    1.
    Hamilton, W. D. The genetic theory of social behaviour I and II. J. Theor. Biol. 7, 1–52 (1964).
    CAS  PubMed  Article  Google Scholar 
    2.
    Ward, A., & Webster, M. Sociality: the behaviour of group-living animals (Springer,2016).

    3.
    Lehmann, L., & Keller, L. The evolution of cooperation and altruism. A general framework and classification of models. J. Evol. Biol.19, 1365–1378 (2006).

    4.
    Sueur, C. et al. Collective decision-making and fission–fusion dynamics: a conceptual framework. Oikos 120, 1608–1617 (2011).
    Article  Google Scholar 

    5.
    Jones, T. B. et al. Consistent sociality but flexible social associations across temporal and spatial foraging contexts in a colonial breeder. Ecol. Lett. https://doi.org/10.1111/ele.13507 (2020).
    Article  PubMed  Google Scholar 

    6.
    Carter, G. G. & Wilkinson, G. S. Food sharing in vampire bats: reciprocal help predicts donations more than relatedness or harassment. Proc. R. Soc. B. 280, 20122573. https://doi.org/10.1098/rspb.2012.2573 (2013).
    Article  PubMed  Google Scholar 

    7.
    Baglione, V., Canestrari, D., Marcos, J. M. & Ekman, J. Kin selection in cooperative alliances of carrion crows. Science 300, 1947–1949 (2003).
    ADS  CAS  PubMed  Article  Google Scholar 

    8.
    Wahaj, S. A. et al. Kin discrimination in the spotted hyena (Crocuta crocuta): nepotism among siblings. Behav. Ecol. Sociobiol. 56, 237–247 (2004).
    Article  Google Scholar 

    9.
    East, M. L. et al. Maternal effects on offspring social status in spotted hyenas. Behav. Ecol. 20, 478–483 (2009).
    Article  Google Scholar 

    10.
    Komdeur, J., Burke, T., Dugdale, H.L., & Richardson, D.S. Seychelles warblers: Complexities of the helping paradox in Cooperative breeding in vertebrates: studies of ecology, evolution and behavior (ed. Koenig, W. D. & Dickinson, J. L.) 197–216 (Cambridge University Press, 2016).

    11.
    Krakauer, A. H. Kin selection and cooperative courtship in wild turkeys. Nature 434, 69–72 (2005).
    ADS  CAS  PubMed  Article  Google Scholar 

    12.
    De Moor, D., Roos, C., Ostner, J. & Schülke, O. Bonds of bros and brothers: kinship and social bonding in post-dispersal male macaques. Mol. Ecol. https://doi.org/10.1111/mec.15560 (2020).
    Article  PubMed  Google Scholar 

    13.
    Koykka, C. & Wild, W. Concessions, lifetime fitness consequences, and the evolution of coalitionary behaviour. Behav. Ecol. 28, 20–30 (2016).
    Article  Google Scholar 

    14.
    Clutton-Brock, T. Cooperation between non-kin in animal societies. Nature 46, 51–57 (2009).
    ADS  Article  CAS  Google Scholar 

    15.
    Schaller, G.B. The Serengeti Lion: a study of predator-prey relations. (University of Chicago Press, 1972).

    16.
    Bertram, B. C. Social factors influencing reproduction in wild lions. J. Zool. 177, 463–482 (1975).
    Article  Google Scholar 

    17.
    Bygott, J. D., Bertram, B. C. & Hanby, J. P. Male lions in large coalitions gain reproductive advantages. Nature 282, 839 (1979).
    ADS  Article  Google Scholar 

    18.
    Packer, C. & Pusey, A. E. Cooperation and competition within coalitions of male lions: Kin selection or game theory?. Nature 296, 740 (1982).
    ADS  Article  Google Scholar 

    19.
    Grinnell, J., Packer, C. & Pusey, A. E. Cooperation in male lions: kinship, reciprocity or mutualism?. Anim. Behav. 49, 95–105 (1995).
    Article  Google Scholar 

    20.
    Chakrabarti, S. & Jhala, Y. V. Selfish partners: resource partitioning in male coalitions of Asiatic lions. Behav. Ecol. 28, 1532–1539 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    Packer, C. et al. Reproductive success of lions in Reproductive success (ed. Clutton-Brock, T.H.) 363–383 (University of Chicago Press, 1988).

    22.
    Packer, C., Gilbert, D. A., Pusey, A. E. & O’Brien, S. J. A molecular genetic analysis of kinship and cooperation in African lions. Nature 351, 562–565 (1991).
    ADS  CAS  Article  Google Scholar 

    23.
    Connor, R. C., Smolker, R. A., & Richards, A. F. Two levels of alliance formation among male bottlenose dolphins (Tursiops sp.). PNAS. 89, 987–990 (1992).

    24.
    Parsons, K. M. et al. Kinship as a basis for alliance formation between male bottlenose dolphins, Tursiops truncatus, in the Bahamas. Anim. Behav. 66, 185–194 (2003).
    Article  Google Scholar 

    25.
    Widdig, A., Streich, W. J. & Tembrock, G. Coalition formation among male Barbary macaques (Macaca sylvanus). Am. J. Primatol. 50, 37–51 (2000).
    CAS  PubMed  Article  Google Scholar 

    26.
    Gottelli, D., Wang, J., Bashir, S. & Durant, S. M. Genetic analysis reveals promiscuity among female cheetahs. Proc. R. Soc. B. 274, 1993–2001 (2007).
    PubMed  Article  Google Scholar 

    27.
    Bertram, B.C. Pride of lions. (JM Dent and Sons Ltd, 1978).

    28.
    O’Brien, S.J. Prides and Prejudice in Tears of the cheetah and other tales from the genetic frontier: the genetic secrets of our animal ancestors (ed. O’Brien, S.J.) 35–55 (Thomas Dunne Books, 2003).

    29.
    de Manuel, M. et al. The evolutionary history of extinct and living lions. PNAS 117, 10927–10934 (2020).
    PubMed  Article  CAS  Google Scholar 

    30.
    Clutton-Brock, T. H. Reproductive skew, concessions and limited control. Trends Ecol. Evol. 13, 288–292 (1998).
    CAS  PubMed  Article  Google Scholar 

    31.
    Queller, D. C. & Keith, F. G. Estimating relatedness using genetic markers. Evolution 43, 258–275 (1989).
    PubMed  Article  Google Scholar 

    32.
    Wang, J. Estimating pairwise relatedness in a small sample of individuals. Heredity 119, 302–313 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Sandel, A. A., Langergraber, K. E. & Mitani, J. C. Adolescent male chimpanzees (Pan troglodytes) form social bonds with their brothers and others during the transition to adulthood. Am. J. Primatol. 82, 23091. https://doi.org/10.1002/ajp.23091 (2020).
    Article  Google Scholar 

    34.
    Dal Pesco, F. Dynamics and fitness benefits of male-male sociality in wild Guinea baboons (Papio papio). (PhD thesis), Georg-August University, Göttingen, Germany.

    35.
    Christakis, N. A. & Fowler, J. H. Friendship and natural selection. PNAS 111, 10796–10801 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    36.
    Engh, A. L. et al. Behavioural and hormonal responses to predation in female chacma baboons (Papio hamadryas ursinus). Proc. R. Soc. B. 273, 707–712 (2006).
    CAS  PubMed  Article  Google Scholar 

    37.
    Hill, K. R. et al. Co-residence patterns in hunter-gatherer societies show unique human social structure. Science 331, 1286–1289 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    38.
    Silk, J.B. Practicing Hamilton’s Rule: kin selection in primate groups in Cooperation in primates and humans (ed. Kappeler, P.M., & van Schaik, C.P.) 25–46 (Springer, 2006).

    39.
    Chakrabarti, S. et al. Adding constraints to predation through allometric relation of scats to consumption. J. Anim. Ecol. 85, 660–670 (2016).
    PubMed  Article  Google Scholar 

    40.
    Møller, A. P. & Birkhead, T. R. Copulation behaviour in mammals: evidence that sperm competition is widespread. Biol. J. Linn. Soc. 38, 119–131 (1989).
    Article  Google Scholar 

    41.
    Chakrabarti, S. & Jhala, Y. V. Battle of the sexes: a multi-male mating strategy helps lionesses win the gender war of fitness. Behav. Ecol. 30, 1050–1061 (2019).
    Article  Google Scholar 

    42.
    Jhala, Y. V. et al. Asiatic lion: ecology, economics and politics of conservation. Front. Ecol. Evol. 7, 312 (2019).
    ADS  Article  Google Scholar 

    43.
    Boom, R. C. J. A. et al. Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol. 28, 495–503 (1990).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Antunes, A. et al. The evolutionary dynamics of the lion Panthera leo revealed by host and viral population genomics. PLoS Genet. 4, 1000251. https://doi.org/10.1371/journal.pgen.1000251 (2008).
    CAS  Article  Google Scholar 

    45.
    Singh, A., Shailaja, K., Gaur, A., & Singh., L. Development and characterization of novel microsatellite markers in the Asiatic lion (Panthera leo persica). Mol. Ecol. Notes. 2, 542–543 (2002).

    46.
    Gaur, A. et al. Twenty polymorphic microsatellite markers in the Asiatic lion (Panthera leo persica). Conserv. Genet. 7, 1005–1008 (2006).
    CAS  Article  Google Scholar 

    47.
    Menotti-Raymond, M. et al. A genetic linkage map of microsatellites in the domestic cat (Felis catus). Genomics 57, 9–23 (1999).
    CAS  PubMed  Article  Google Scholar 

    48.
    Menotti-Raymond, M. et al. An STR forensic typing system for genetic individualization of domestic cat (Felis catus) samples. J. Forensic Sci. 50, 1061–1070 (2005).
    CAS  PubMed  Article  Google Scholar 

    49.
    Williamson, J. E., Huebinger, R. M., Sommer, J. A., Louis, E. E. Jr. & Barber, R. C. Development and cross-species amplification of 18 microsatellite markers in the Sumatran tiger (Panthera tigris sumatrae). Mol. Ecol. Notes. 2, 110–112 (2002).
    CAS  Article  Google Scholar 

    50.
    Drummond, A.J.A.B. et. al. v5. 4. Auckland (2011).

    51.
    Matschiner, M. & Salzburger, W. TANDEM: integrating automated allele binning into genetics and genomics workflows. Bioinformatics 25, 1982–1983 (2009).
    CAS  PubMed  Article  Google Scholar 

    52.
    Taberlet, P. et al. Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res. 24, 3189–3194 (1996).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Peakall, R.O.D., & Smouse, P.E. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes. 6, 288–295 (2006).

    54.
    Bergner, L. M., Jamieson, I. G. & Robertson, B. C. Combining genetic data to identify relatedness among founders in a genetically depauperate parrot, the Kakapo (Strigops habroptilus). Conserv. Genet. 15, 1013–1020 (2014).
    Article  Google Scholar 

    55.
    Gilbert, D. A., Packer, C., Pusey, A. E., Stephens, J. C. & O’Brien, S. J. Analytical DNA fingerprinting in lions: parentage, genetic diversity, and kinship. J. Hered. 82, 378–386 (1991).
    CAS  PubMed  Article  Google Scholar 

    56.
    Pemberton, J. M., Albon, S. D., Guinness, F. E., Clutton-Brock, T. H. & Dover, G. A. Behavioral estimates of male mating success tested by DNA fingerprinting in a polygynous mammal. Behav. Ecol. 3, 66–75 (1992).
    Article  Google Scholar 

    57.
    Dixson, A. F., Bossi, T. & Wickings, E. J. Male dominance and genetically determined reproductive success in the mandrill (Mandrillus sphinx). Primates 34, 525–532 (1993).
    Article  Google Scholar 

    58.
    Krebs, J.R., & Davies, N.B. An introduction to behavioural ecology. (Blackwell Scientific Publications, 1987).

    59.
    Smith, J. M. Group selection and kin selection. Nature 201, 1145–1147 (1964).
    ADS  Article  Google Scholar 

    60.
    Banerjee, K. & Jhala, Y. V. Demographic parameters of endangered Asiatic lions (Panthera leo persica) in Gir forests India. J. Mammal. 93, 1420–1430 (2012).
    Article  Google Scholar 

    61.
    Meena, V. Reproductive strategy and behaviour of male Asiatic lions. [Dissertation/Ph.D. thesis]. (Forest Research Institute University, 2008).

    62.
    Banerjee, K. Ranging patterns, habitat use and food habits of the satellite lion populations (Panthera leo persica) in Gujarat, India. [Dissertation/Ph.D. thesis]. (Forest Research Institute Deemed University, 2012).

    63.
    Gogoi, K., Kumar, U., Banerjee, K. & Jhala, Y. V. Spatially explicit density and its determinants for Asiatic lions in the Gir forests. PLoS ONE 15, 0228374. https://doi.org/10.1371/journal.pone.0228374 (2020).
    CAS  Article  Google Scholar 

    64.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. (2019). More

  • in

    Population genomics in two cave-obligate invertebrates confirms extremely limited dispersal between caves

    1.
    Rétaux, S. & Casane, D. Evolution of eye development in the darkness of caves: adaptation, drift, or both?. EvoDevo 4, 1–12 (2013).
    Article  Google Scholar 
    2.
    Culver, D. C. & Pipan, T. The Biology of Caves and Other Subterranean Habitats (Oxford University Press, Oxford, 2019).
    Google Scholar 

    3.
    Poulson, T. L. & White, W. B. The cave environment. Science (80–) 165, 971–981 (1969).
    ADS  CAS  Article  Google Scholar 

    4.
    Peck, S. B. Evolution of adult morphology and life-history characters in cavernicolous Ptomaphagus beetles. Evolution (N. Y). 40, 1021–1030 (1986).
    Google Scholar 

    5.
    Trontelj, P., Borko, Š & Delić, T. Testing the uniqueness of deep terrestrial life. Sci. Rep. 9, 1–9 (2019).
    CAS  Article  Google Scholar 

    6.
    Polo-Cavia, N. & Gomez-Mestre, I. Pigmentation plasticity enhances crypsis in larval newts: associated metabolic cost and background choice behaviour. Sci. Rep. 7, 1–10 (2017).
    Article  CAS  Google Scholar 

    7.
    Cook, L. M. & Saccheri, I. J. The peppered moth and industrial melanism: evolution of a natural selection case study. Heredity (Edinb.). 110, 207–212 (2013).
    CAS  PubMed  Article  Google Scholar 

    8.
    Stevens, M. & Merilaita, S. Animal camouflage: current issues and new perspectives. Philos. Trans. R. Soc. B. Biol. Sci. 364, 423–427 (2009).
    Article  Google Scholar 

    9.
    Culver, D. C., Master, L. L., Christman, M. C. & Hobbs, H. H. Obligate cave fauna of the 48 contiguous United States. Conserv. Biol. 14, 386–401 (2000).
    Article  Google Scholar 

    10.
    Niemiller, M. L. & Zigler, K. S. Patterns of cave biodiversity and endemism in the Appalachians and Interior Plateau of Tennessee, USA. PLoS ONE 8, e64177 (2013).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Christman, M. C., Culver, D. C., Madden, M. K. & White, D. Patterns of endemism of the eastern North American cave fauna. J. Biogeogr. 32, 1441–1452 (2005).
    Article  Google Scholar 

    12.
    Snowman, C. V., Zigler, K. S. & Hedin, M. Caves as islands: mitochondrial phylogeography of the cave-obligate spider species Nesticus barri (Araneae: Nesticidae). J. Arachnol. 38, 49–56 (2010).
    Article  Google Scholar 

    13.
    Dixon, G. B. & Zigler, K. S. Cave-obligate biodiversity on the campus of Sewanee: The University of the South, Franklin County, Tennessee. Northeast. Nat. 10, 251–266 (2011).
    Google Scholar 

    14.
    Christman, M. C. & Culver, D. C. The relationship between cave biodiversity and available habitat. J. Biogeogr. 28, 367–380 (2001).
    Article  Google Scholar 

    15.
    Zigler, K. S., Niemiller, M. L. & Fenolio, D. B. Cave Biodiversity of the Southern Cumberland Plateau. In 2014 National Speleological Society Convention Guidebook, 159–163 (National Speleological Society, 2014).

    16.
    Hedin, M. C. Speciational history in a diverse clade of habitat-specialized spiders (Araneae: Nesticidae: Nesticus): inferences from geographic-based sampling. Evolution (N. Y.). 51, 1929–1945 (1997).
    Google Scholar 

    17.
    Hedin, M. & Dellinger, B. Descriptions of a new species and previously unknown males of Nesticus (Araneae: Nesticidae) from caves in Eastern North America, with comments on species rarity. Zootaxa 19, 1–19 (2005).
    Article  Google Scholar 

    18.
    Carver, L. M., Perlaky, P., Cressler, A. & Zigler, K. S. Reproductive seasonality in Nesticus (Araneae: Nesticidae) cave spiders. PLoS ONE 11, 7–8 (2016).
    Article  CAS  Google Scholar 

    19.
    Leray, V. L., Caravas, J., Friedrich, M. & Zigler, K. S. Mitochondrial sequence data indicate “Vicariance by Erosion” as a mechanism of species diversification in North American Ptomaphagus (Coleoptera, Leiodidae, Cholevinae ) cave beetles. 57, 35–57 (2019).

    20.
    Wang, S., Meyer, E., McKay, J. K. & Matz, M. V. 2b-RAD: a simple and flexible method for genome-wide genotyping. Nat. Methods 9, 808–810 (2012).
    CAS  PubMed  Article  Google Scholar 

    21.
    Rokas, A. & Abbot, P. Harnessing genomics for evolutionary insights. Trends Ecol. Evol. 24, 192–200 (2009).
    PubMed  Article  Google Scholar 

    22.
    Nunziata, S. O. & Weisrock, D. W. Estimation of contemporary effective population size and population declines using RAD sequence data. Heredity 120, 196–207. https://doi.org/10.1038/s41437-017-0037-y (2018).
    CAS  Article  PubMed  Google Scholar 

    23.
    Ortuño, V. M. et al. The ‘alluvial mesovoid shallow substratum’, a new subterranean habitat. PLoS ONE 8, 1–16 (2013).
    Article  CAS  Google Scholar 

    24.
    Mammola, S. et al. Ecology and sampling techniques of an understudied subterranean habitat: the Milieu Souterrain Superficiel (MSS). Naturwissenschaften 103, 88 (2016).
    PubMed  Article  CAS  Google Scholar 

    25.
    Wakefield, K. R. & Zigler, K. S. Obligate subterranean fauna of Carter State Natural Area, Franklin County, Tennessee. Speleobiol. Notes 4, 24–28 (2012).
    Google Scholar 

    26.
    Dixon, G. B. et al. Genomic determinants of coral heat tolerance across latitudes. Science (80–). 348, 1460–1462 (2015).
    ADS  CAS  Article  Google Scholar 

    27.
    Matz, M. V., Treml, E. A., Aglyamova, G. V. & Bay, L. K. Potential and limits for rapid genetic adaptation to warming in a Great Barrier Reef coral. PLoS Genet. 14, 1–19 (2018).
    Article  CAS  Google Scholar 

    28.
    Matz, M. V. 2bRAD_denovo git repository. https://github.com/z0on/2bRAD_denovo (2019). Accessed 12 September 2020.

    29.
    Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).
    CAS  PubMed  Article  Google Scholar 

    30.
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    32.
    Nielsen, R., Korneliussen, T., Albrechtsen, A., Li, Y. & Wang, J. SNP calling, genotype calling, and sample allele frequency estimation from new-generation sequencing data. PLoS ONE 7, e37558 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Korneliussen, T. S. ANGSD web page. https://www.popgen.dk/angsd/index.php/ANGSD (2013). Accessed 12 September 2020.

    35.
    Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinf. 15, 1–13 (2014).
    Article  Google Scholar 

    36.
    ANGSD. angsd git repository. https://github.com/ANGSD/angsd (2014). Accessed 12 September 2020.

    37.
    Dixon, G. caveRAD git repository. https://github.com/grovesdixon/caveRAD (2019). Accessed 12 September 2020.

    38.
    Dixon, G., Kitano, J. & Kirkpatrick, M. The origin of a new sex chromosome by introgression between two stickleback fishes. Mol. Biol. Evol. 36, 28–38 (2019).
    CAS  PubMed  Article  Google Scholar 

    39.
    Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Guo, Y. et al. The effect of strand bias in Illumina short-read sequencing data. BMC Genom. 13, 1–11 (2012).
    CAS  Article  Google Scholar 

    41.
    Vieira, F. G., Fumagalli, M., Albrechtsen, A. & Nielsen, R. Estimating inbreeding coefficients from NGS data: impact on genotype calling and allele frequency estimation. Genome Res. 23, 1852–1861 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Fraley, C. & Raftery, A. E. Model-based methods of classification: using the mclust software in chemometrics. J. Stat. Softw. 18, 1–13 (2007).
    Article  Google Scholar 

    43.
    Skotte, L., Korneliussen, T. S. & Albrechtsen, A. Estimating individual admixture proportions from next generation sequencing data. Genetics 195, 693–702 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Fumagalli, M. et al. Quantifying population genetic differentiation from next-generation sequencing data. Genetics 195, 979–992 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Reynolds, J., Weir, B. S. & Cockerham, C. C. Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genet. Soc. Am. 105, 767–779 (1983).
    CAS  Article  Google Scholar 

    46.
    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution (N. Y.). 38, 1358–1370 (1984).
    CAS  Google Scholar 

    47.
    Hahn, M. W. Molecular Population Genetics (Oxford University Press, Oxford, 2018).
    Google Scholar 

    48.
    Korneliussen, T. S., Moltke, I., Albrechtsen, A. & Nielsen, R. Calculation of Tajima’s D and other neutrality test statistics from low depth next-generation sequencing data. BMC Bioinf. 14, 1–14 (2013).

    49.
    Keightley, P. D., Ness, R. W., Halligan, D. L. & Haddrill, P. R. Estimation of the spontaneous mutation rate per nucleotide site in a Drosophila melanogaster full-sib family. Genetics 196, 313–320 (2014).
    CAS  PubMed  Article  Google Scholar 

    50.
    Wright, S. Variability Within and Among Natural Populations (University of Chicago Press, Chicago, 1978).
    Google Scholar 

    51.
    Kamimura, Y., Abe, J., Ferreira, R. L. & Yoshizawa, K. Microsatellite markers developed using a next-generation sequencing technique for Neotrogla spp. (Psocodea: Prionoglarididae), cave dwelling insects with sex-reversed genitalia. Entomol. Sci. 22, 48–55 (2019).
    Article  Google Scholar 

    52.
    Schäfer, M. A., Orsini, L., McAllister, B. F. & Schlötterer, C. Patterns of microsatellite variation through a transition zone of a chromosomal cline in Drosophila americana. Heredity (Edinb). 97, 291–295 (2006).
    PubMed  Article  CAS  Google Scholar 

    53.
    Bradic, M., Beerli, P., García-De Leán, F. J., Esquivel-Bobadilla, S. & Borowsky, R. L. Gene flow and population structure in the Mexican blind cavefish complex (Astyanax mexicanus). BMC Evol. Biol. 12, 9 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    54.
    Juan, C., Guzik, M. T., Jaume, D. & Cooper, S. J. B. Evolution in caves: Darwin’s ‘wrecks of ancient life’ in the molecular era. Mol. Ecol. 19, 3865–3880 (2010).
    PubMed  Article  Google Scholar 

    55.
    Pool, J. E., Hellmann, I., Jensen, J. D. & Nielsen, R. Population genetic inference from genomic sequence variation. Genome Res. 20, 291–300 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Silva, M. S., Martins, R. P. & Ferreira, R. L. Cave lithology determining the structure of the invertebrate communities in the Brazilian Atlantic Rain Forest. Biodivers. Conserv. 20, 1713–1729 (2011).
    Article  Google Scholar 

    57.
    Brunet, A. K. & Medellín, R. A. The species-area relationship in bat assemblages of tropical caves. J. Mammal. 82, 1114–1122 (2001).
    Article  Google Scholar 

    58.
    Culver, D. C., Christman, M. C., Elliott, W. R., Hobbs, H. H. & Reddell, J. R. The North American obligate cave fauna: regional patterns. Biodivers. Conserv. 12, 441–468 (2003).
    Article  Google Scholar  More

  • in

    Experimentally-validated correlation analysis reveals new anaerobic methane oxidation partnerships with consortium-level heterogeneity in diazotrophy

    1.
    Knittel K, Boetius A. Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol. 2009;63:311–34.
    CAS  PubMed  Article  Google Scholar 
    2.
    Reeburgh WS. Oceanic Methane Biogeochemistry. Chem Rev. 2007;107:486–513.
    CAS  PubMed  Article  Google Scholar 

    3.
    Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science. 2001;293:484–7.
    CAS  PubMed  Article  Google Scholar 

    4.
    Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature. 2000;407:623.
    CAS  PubMed  Article  Google Scholar 

    5.
    McGlynn SE, Chadwick GL, Kempes CP, Orphan VJ. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature. 2015;526:531–5.
    CAS  PubMed  Article  Google Scholar 

    6.
    Scheller S, Yu H, Chadwick GL, McGlynn SE, Orphan VJ. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science. 2016;351:703–7.
    CAS  PubMed  Article  Google Scholar 

    7.
    Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature. 2015;526:587–90.
    CAS  PubMed  Article  Google Scholar 

    8.
    Dekas AE, Connon SA, Chadwick GL, Trembath-Reichert E, Orphan VJ. Activity and interactions of methane seep microorganisms assessed by parallel transcription and FISH-NanoSIMS analyses. ISME J. 2016;10:678–92.
    CAS  PubMed  Article  Google Scholar 

    9.
    Dekas AE, Poretsky RS, Orphan VJ. Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science. 2009;326:422–6.
    CAS  PubMed  Article  Google Scholar 

    10.
    Dekas AE, Chadwick GL, Bowles MW, Joye SB, Orphan VJ. Spatial distribution of nitrogen fixation in methane seep sediment and the role of the ANME archaea. Environ Microbiol. 2014;16:3012–29.
    CAS  PubMed  Article  Google Scholar 

    11.
    Orphan VJ, Turk KA, Green AM, House CH. Patterns of 15N assimilation and growth of methanotrophic ANME-2 archaea and sulfate-reducing bacteria within structured syntrophic consortia revealed by FISH-SIMS. Environ Microbiol. 2009;11:1777–91.
    CAS  PubMed  Article  Google Scholar 

    12.
    Evans PN, Boyd JA, Leu AO, Woodcroft BJ, Parks DH, Hugenholtz P, et al. An evolving view of methane metabolism in the Archaea. Nat Rev Microbiol. 2019;17:219–32.
    CAS  PubMed  Article  Google Scholar 

    13.
    Krukenberg V, Riedel D, Gruber‐Vodicka HR, Buttigieg PL, Tegetmeyer HE, Boetius A, et al. Gene expression and ultrastructure of meso- and thermophilic methanotrophic consortia. Environ Microbiol. 2018;20:1651–66.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    14.
    Skennerton CT, Chourey K, Iyer R, Hettich RL, Tyson GW, Orphan VJ. Methane-fueled syntrophy through extracellular electron transfer: uncovering the genomic traits conserved within diverse bacterial partners of anaerobic methanotrophic archaea. mBio. 2017;8:e00530–17.
    PubMed  PubMed Central  Google Scholar 

    15.
    Schreiber L, Holler T, Knittel K, Meyerdierks A, Amann R. Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade. Environ Microbiol. 2010;12:2327–40.
    CAS  PubMed  Google Scholar 

    16.
    Green-Saxena A, Dekas AE, Dalleska NF, Orphan VJ. Nitrate-based niche differentiation by distinct sulfate-reducing bacteria involved in the anaerobic oxidation of methane. ISME J. 2014;8:150–63.
    CAS  PubMed  Article  Google Scholar 

    17.
    Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG, DeLong EF. Methane-consuming archaebacteria in marine sediments. Nature. 1999;398:802.
    CAS  PubMed  Article  Google Scholar 

    18.
    Hallam SJ, Girguis PR, Preston CM, Richardson PM, DeLong EF. Identification of methyl coenzyme M Reductase A (mcrA) genes associated with methane-oxidizing archaea. Appl Environ Microbiol. 2003;69:5483–91.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Michaelis W, Seifert R, Nauhaus K, Treude T, Thiel V, Blumenberg M, et al. Microbial reefs in the black sea fueled by anaerobic oxidation of methane. Science. 2002;297:1013–5.
    CAS  PubMed  Article  Google Scholar 

    20.
    Knittel K, Lösekann T, Boetius A, Kort R, Amann R. Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol. 2005;71:467–79.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Orphan VJ, Hinrichs K-U, Ussler W, Paull CK, Taylor LT, Sylva SP, et al. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol. 2001;67:1922–34.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc Natl Acad Sci. 2002;99:7663–8.
    CAS  PubMed  Article  Google Scholar 

    23.
    Raghoebarsing AA, Pol A, Pas-Schoonen KT, van de, Smolders AJP, Ettwig KF, Rijpstra WIC, et al. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature. 2006;440:918.
    CAS  PubMed  Article  Google Scholar 

    24.
    Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature. 2013;500:567–70.
    CAS  PubMed  Article  Google Scholar 

    25.
    Niemann H, Lösekann T, Beer D, de, Elvert M, Nadalig T, Knittel K, et al. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature. 2006;443:854.
    CAS  PubMed  Article  Google Scholar 

    26.
    Lösekann T, Knittel K, Nadalig T, Fuchs B, Niemann H, Boetius A, et al. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl Environ Microbiol. 2007;73:3348–62.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    27.
    Manz W, Eisenbrecher M, Neu TR, Szewzyk U. Abundance and spatial organization of gram-negative sulfate-reducing bacteria in activated sludge investigated by in situ probing with specific 16S rRNA targeted oligonucleotides. FEMS Microbiol Ecol. 1998;25:43–61.
    CAS  Article  Google Scholar 

    28.
    Nauhaus K, Albrecht M, Elvert M, Boetius A, Widdel F. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environ Microbiol. 2007;9:187–96.
    CAS  PubMed  Article  Google Scholar 

    29.
    Pernthaler A, Dekas AE, Brown CT, Goffredi SK, Embaye T, Orphan VJ. Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proc Natl Acad Sci USA. 2008;105:7052–7.
    CAS  PubMed  Article  Google Scholar 

    30.
    Vigneron A, Cruaud P, Pignet P, Caprais J-C, Cambon-Bonavita M-A, Godfroy A, et al. Archaeal and anaerobic methane oxidizer communities in the Sonora Margin cold seeps, Guaymas Basin (Gulf of California). ISME J. 2013;7:1595–608.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    McGlynn SE, Chadwick GL, O’Neill A, Mackey M, Thor A, Deerinck TJ, et al. Subgroup characteristics of marine methane-oxidizing ANME-2 archaea and their syntrophic partners as revealed by integrated multimodal analytical microscopy. Appl Environ Microbiol. 2018;84:e00399–18.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Treude T, Krüger M, Boetius A, Jørgensen BB. Environmental control on anaerobic oxidation of methane in the gassy sediments of Eckernförde Bay (German Baltic). Limnol Oceanogr. 2005;50:1771–86.
    CAS  Article  Google Scholar 

    33.
    Girguis PR, Orphan VJ, Hallam SJ, DeLong EF. Growth and methane oxidation rates of anaerobic methanotrophic archaea in a continuous-flow bioreactor. Appl Environ Microbiol. 2003;69:5472–82.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Kleindienst S, Ramette A, Amann R, Knittel K. Distribution and in situ abundance of sulfate-reducing bacteria in diverse marine hydrocarbon seep sediments. Environ Microbiol. 2012;14:2689–710.
    CAS  PubMed  Article  Google Scholar 

    35.
    Holler T, Widdel F, Knittel K, Amann R, Kellermann MY, Hinrichs K-U, et al. Thermophilic anaerobic oxidation of methane by marine microbial consortia. ISME J. 2011;5:1946–56.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Loy A, Lehner A, Lee N, Adamczyk J, Meier H, Ernst J, et al. Oligonucleotide Microarray for 16S rRNA Gene-Based Detection of All Recognized Lineages of Sulfate-Reducing Prokaryotes in the Environment. Appl Environ Microbiol. 2002;68:5064–81.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Trembath-Reichert E, Case DH, Orphan VJ. Characterization of microbial associations with methanotrophic archaea and sulfate-reducing bacteria through statistical comparison of nested Magneto-FISH enrichments. PeerJ. 2016;4:e1913.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    38.
    Trembath-Reichert E, Green-Saxena A, Orphan VJ. Chapter Two—whole cell immunomagnetic enrichment of environmental microbial consortia using rRNA-targeted magneto-FISH. In: DeLong EF (eds). Methods in Enzymology. (Academic Press, San Diego, 2013) pp 21–44.

    39.
    Hatzenpichler R, Connon SA, Goudeau D, Malmstrom RR, Woyke T, Orphan VJ. Visualizing in situ translational activity for identifying and sorting slow-growing archaeal−bacterial consortia. Proc Natl Acad Sci. 2016;113:E4069–78.
    CAS  PubMed  Article  Google Scholar 

    40.
    Degnan PH, Ochman H. Illumina-based analysis of microbial community diversity. ISME J. 2012;6:183–94.
    CAS  PubMed  Article  Google Scholar 

    41.
    Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLOS Comput Biol. 2012;8:e1002687.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLOS Comput Biol. 2015;11:e1004226.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    43.
    Schwager E, Mallick H, Ventz S, Huttenhower C. A Bayesian method for detecting pairwise associations in compositional data. PLOS Comput Biol. 2017;13:e1005852.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, et al. Determinants of community structure in the global plankton interactome. Science. 2015;348:1–9.
    Article  CAS  Google Scholar 

    45.
    Bohrmann G, Heeschen K, Jung C, Weinrebe W, Baranov B, Cailleau B, et al. Widespread fluid expulsion along the seafloor of the Costa Rica convergent margin. Terra Nova. 2002;14:69–79.
    Article  Google Scholar 

    46.
    Mau S, Sahling H, Rehder G, Suess E, Linke P, Soeding E. Estimates of methane output from mud extrusions at the erosive convergent margin off Costa Rica. Mar Geol. 2006;225:129–44.
    CAS  Article  Google Scholar 

    47.
    Sahling H, Masson DG, Ranero CR, Hühnerbach V, Weinrebe W, Klaucke I, et al. Fluid seepage at the continental margin offshore Costa Rica and southern Nicaragua. Geochem Geophys Geosyst. 2008;9:1–22.
    Article  Google Scholar 

    48.
    Glass JB, Yu H, Steele JA, Dawson KS, Sun S, Chourey K, et al. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulphidic marine sediments. Environ Microbiol. 2014;16:1592–611.
    CAS  PubMed  Article  Google Scholar 

    49.
    Case DH, Pasulka AL, Marlow JJ, Grupe BM, Levin LA, Orphan VJ. Methane seep carbonates host distinct, diverse, and dynamic microbial assemblages. mBio. 2015;6:1–12.
    CAS  Article  Google Scholar 

    50.
    Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.
    CAS  PubMed  Article  Google Scholar 

    51.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Mason OU, Case DH, Naehr TH, Lee RW, Thomas RB, Bailey JV, et al. Comparison of archaeal and bacterial diversity in methane seep carbonate nodules and host sediments, Eel River Basin and Hydrate Ridge, USA. Micro Ecol. 2015;70:766–84.
    CAS  Article  Google Scholar 

    53.
    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.
    CAS  Article  Google Scholar 

    54.
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.
    CAS  PubMed  Article  Google Scholar 

    55.
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Towns J, Cockerill T, Dahan M, Foster I, Gaither K, Grimshaw A, et al. XSEDE: accelerating scientific discovery. Comput Sci Eng. 2014;16:62–74.
    Article  CAS  Google Scholar 

    57.
    Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the 2010 Gateway Computing Environments Workshop (GCE). (San Diego Supercomputing Center, San Diego, 2010) pp 1–8.

    58.
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319.
    PubMed  PubMed Central  Article  Google Scholar 

    60.
    Campbell BJ, Yu L, Heidelberg JF, Kirchman DL. Activity of abundant and rare bacteria in a coastal ocean. Proc Natl Acad Sci. 2011;108:12776–81.
    CAS  PubMed  Article  Google Scholar 

    61.
    Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, et al. ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Daims H, Stoecker K, Wagner M, Stoecker K, Wagner M. Fluorescence in situ hybridization for the detection of prokaryotes. Mol Microbial Ecol. https://www.taylorfrancis.com/. Accessed 15 Jul 2019.

    64.
    Glöckner FO, Fuchs BM, Amann R. Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol. 1999;65:3721–6.
    PubMed  PubMed Central  Article  Google Scholar 

    65.
    Dirks RM, Pierce NA. Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci. 2004;101:15275–8.
    CAS  PubMed  Article  Google Scholar 

    66.
    Choi HMT, Beck VA, Pierce NA. Next-generation in situ hybridization chain reaction: higher gain, lower cost, greater durability. ACS Nano. 2014;8:4284–94.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    67.
    Yamaguchi T, Kawakami S, Hatamoto M, Imachi H, Takahashi M, Araki N, et al. In situ DNA-hybridization chain reaction (HCR): a facilitated in situ HCR system for the detection of environmental microorganisms. Environ Microbiol. 2015;17:2532–41.
    CAS  PubMed  Article  Google Scholar 

    68.
    Choi HMT, Schwarzkopf M, Fornace ME, Acharya A, Artavanis G, Stegmaier J, et al. Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust. Development. 2018;145:1–10.
    Article  CAS  Google Scholar 

    69.
    Bolte S, Cordelières FP. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc. 2006;224:213–32.
    CAS  PubMed  Article  Google Scholar 

    70.
    Dabundo R, Lehmann MF, Treibergs L, Tobias CR, Altabet MA, Moisander PA, Granger J. The contamination of commercial 15N2 gas stocks with 15N-labeled nitrate and ammonium and consequences for nitrogen fixation measurements. PLoS ONE. 2014;9:e110335.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    71.
    Cline JD. Spectrophotometric determination of hydrogen sulfide in natural waters1. Limnol Oceanogr. 1969;14:454–8.
    CAS  Article  Google Scholar 

    72.
    Dekas AE, Orphan VJ. Chapter Twelve—identification of diazotrophic microorganisms in marine sediment via fluorescence in situ hybridization coupled to nanoscale secondary ion mass spectrometry (FISH-NanoSIMS). In: Klotz MG, editor. Methods in enzymology. Academic Press; 2011. p 281–305.

    73.
    Polerecky L, Adam B, Milucka J, Musat N, Vagner T, Kuypers MMM. Look@NanoSIMS-a tool for the analysis of nanoSIMS data in environmental microbiology. Environ Microbiol. 2012;14:1009–23.
    CAS  PubMed  Article  Google Scholar 

    74.
    Berry D, Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol. 2014;5:1–14.
    Article  Google Scholar 

    75.
    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.
    CAS  Article  Google Scholar 

    76.
    Leone V, Gibbons SM, Martinez K, Hutchison AL, Huang EY, Cham CM, et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe. 2015;17:681–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    77.
    Ruff SE, Biddle JF, Teske AP, Knittel K, Boetius A, Ramette A. Global dispersion and local diversification of the methane seep microbiome. Proc Natl Acad Sci. 2015;112:4015–20.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    78.
    Fruchterman TMJ, Reingold EM. Graph drawing by force-directed placement. Softw Pr Exp. 1991;21:1129–64.
    Article  Google Scholar 

    79.
    Moody J, White DR. Structural cohesion and embeddedness: a hierarchical concept of social groups. Am Socio Rev. 2003;68:103–27.
    Article  Google Scholar 

    80.
    Gu Z, Gu L, Eils R, Schlesner M, Brors B. Circlize implements and enhances circular visualization in R. Bioinformatics. 2014;30:2811–2.
    CAS  PubMed  Article  Google Scholar 

    81.
    Nikolakakis K, Lehnert E, McFall-Ngai MJ, Ruby EG. Use of hybridization chain reaction-fluorescent in situ hybridization to track gene expression by both partners during initiation of symbiosis. Appl Environ Microbiol. 2015;81:4728–35.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    82.
    DePas WH, Starwalt-Lee R, Sambeek LV, Kumar SR, Gradinaru V, Newman DK. Exposing the three-dimensional biogeography and metabolic states of pathogens in cystic fibrosis sputum via hydrogel embedding, clearing, and rRNA Labeling. mBio. 2016;7:1–11.
    Article  Google Scholar 

    83.
    Imachi H, Nobu MK, Nakahara N, Morono Y, Ogawara M, Takaki Y, et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature. 2020;577:519–25.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    84.
    Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional: and this is not optional. Front Microbiol. 2017;8:1–6.
    Article  Google Scholar 

    85.
    Sampayo EM, Ridgway T, Bongaerts P, Hoegh-Guldberg O. Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc Natl Acad Sci. 2008;105:10444–9.
    CAS  PubMed  Article  Google Scholar 

    86.
    Parkinson JE, Baumgarten S, Michell CT, Baums IB, LaJeunesse TC, Voolstra CR. Gene expression variation resolves species and individual strains among coral-associated dinoflagellates within the genus symbiodinium. Genome Biol Evol. 2016;8:665–80.
    PubMed  PubMed Central  Article  Google Scholar 

    87.
    Barshis DJ, Ladner JT, Oliver TA, Palumbi SR. Lineage-specific transcriptional profiles of Symbiodinium spp. unaltered by heat stress in a coral host. Mol Biol Evol. 2014;31:1343–52.
    CAS  PubMed  Article  Google Scholar 

    88.
    Kapili BJ, Barnett SE, Buckley DH, Dekas AE. Evidence for phylogenetically and catabolically diverse active diazotrophs in deep-sea sediment. ISME J. 2020;14:971–83.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    89.
    Klawonn I, Eichner MJ, Wilson ST, Moradi N, Thamdrup B, Kümmel S, et al. Distinct nitrogen cycling and steep chemical gradients in Trichodesmium colonies. ISME J. 2020;14:399–412.
    CAS  PubMed  Article  Google Scholar 

    90.
    Petroff AP, Wu T-D, Liang B, Mui J, Guerquin-Kern J-L, Vali H, et al. Reaction–diffusion model of nutrient uptake in a biofilm: Theory and experiment. J Theor Biol. 2011;289:90–5.
    CAS  PubMed  Article  Google Scholar 

    91.
    Dekas AE, Fike DA, Chadwick GL, Green‐Saxena A, Fortney J, Connon SA, et al. Widespread nitrogen fixation in sediments from diverse deep-sea sites of elevated carbon loading. Environ Microbiol. 2018;20:4281–96.
    CAS  PubMed  Article  Google Scholar 

    92.
    Knapp AN. The sensitivity of marine N2 fixation to dissolved inorganic nitrogen. Front Microbiol. 2012;3:1–14.
    Google Scholar 

    93.
    Bertics VJ, Löscher CR, Salonen I, Dale AW, Gier J, Schmitz RA, et al. Occurrence of benthic microbial nitrogen fixation coupled to sulfate reduction in the seasonally hypoxic Eckernförde Bay, Baltic Sea. Biogeosciences. 2013;10:1243–58.
    CAS  Article  Google Scholar 

    94.
    Gier J, Sommer S, Löscher CR, Dale AW, Schmitz RA, Treude T. Nitrogen fixation in sediments along a depth transect through the Peruvian oxygen minimum zone. Biogeosciences. 2016;13:4065–80.
    CAS  Article  Google Scholar 

    95.
    Ackermann M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol. 2015;13:497–508.
    CAS  PubMed  Article  Google Scholar 

    96.
    Schreiber F, Littmann S, Lavik G, Escrig S, Meibom A, Kuypers MMM, et al. Phenotypic heterogeneity driven by nutrient limitation promotes growth in fluctuating environments. Nat Microbiol. 2016;1:1–7.
    Article  CAS  Google Scholar 

    97.
    Masuda T, Inomura K, Takahata N, Shiozaki T, Yuji S. Heterogeneous nitrogen fixation rates confer energetic advantage and expanded ecological niche of unicellular diazotroph populations. Commun Biol. 2020;3:1–12.
    Article  CAS  Google Scholar 

    98.
    Raymond J, Siefert JL, Staples CR, Blankenship RE. The natural history of nitrogen fixation. Mol Biol Evol. 2004;21:541–54.
    CAS  PubMed  Article  Google Scholar  More